
Sm
edås, H

jerpbakk, Å
kerholt, Skaara

N
eodroid P

layground

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Halvor Bakken Smedås
Aksel Hjerpbakk
Nikolai Åkerholt
Jone Martin Skaara

Neodroid Playground

Designing environments and tasks for learning
robots in virtual reality

Bachelor’s project in Programming [Games|Applications]
Supervisor: Mariusz Nowostawski

May 2019

Halvor Bakken Smedås
Aksel Hjerpbakk
Nikolai Åkerholt
Jone Martin Skaara

Neodroid Playground

Designing environments and tasks for learning
robots in virtual reality

Bachelor’s project in Programming [Games|Applications]
Supervisor: Mariusz Nowostawski
May 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Neodroid Playground:
Designing environments and tasks for
learning robots in virtual reality

Author(s)

Halvor Bakken Smedås
Nikolai Åkerholt
Jone Martin Skaara
Aksel Hjerpbakk

Bachelor in Programming [Games|Applications]
20 ECTS

Department of Computer Science
Norwegian University of Science and Technology,

20.05.2019

Supervisor Mariusz Nowostawski

Neodroid Playground

Sammendrag av Bacheloroppgaven

Tittel: Neodroid Playground:
Design av miljøer og oppgaver for lærende roboter i
virtuell virkelighet

Dato: 20.05.2019

Deltakere: Halvor Bakken Smedås
Nikolai Åkerholt
Jone Martin Skaara
Aksel Hjerpbakk

Veiledere: Mariusz Nowostawski

Oppdragsgiver: SINTEF Ocean SeaLab

Kontaktperson: John Reidar Mathiassen,
John.Reidar.Mathiassen@sintef.no

Nøkkelord: Bacheloroppgave, Kunstig Intelligens, AI, UX, Virtuell
Virkelighet, VR, Unity, Programmering, Maskinlæring

Antall sider: 76
Antall vedlegg: 9
Tilgjengelighet: Åpen

Sammendrag:
Denne bacheloroppgaven beskriver et Unity-prosjekt som forsøker å simplifisere utvikling
av maskin-lærende robotter sine virtuelle miljøer og oppgaver. Prosjektet er todelt; en
del baserer seg på å definere hvordan en bruker kan beskrive en oppgave for en lærende
robot som tar i bruk Reverse Curriculum Learning. Den andre delen går ut på konstruk-
sjon av et rammeverk for å definere moduler og grensesnitt for å beskrive oppgaver, slik
at også eksterne utviklere skal være i stand til å bygge på kodebasen med minst mulig
problemer i tilfeller hvor eksempelmodulene vi har bygd ikke strekker til. En av de mer
utfordrende problemstillingene er implisitt konstruksjon av en evalueringsfunksjon for
AI-agenten. Vi løste dette i systemet vårt ved å la brukeren beskrive tilstanden de ulike
objektene skal være i for en måltilstand av miljøet. Dette gjør det mulig å beskrive en
hvilken som helst oppgave i VR. Neodroid plattformen er ment for akademisk forskn-
ing, da prosjektet er open-source, men det er også et mål å løse problemstillinger i ulike
industrier.

Automasjon innad i ulike industrier har vært et en problemstilling i flere tiår. Det
er mange manuelle oppgaver kan bli automatisert hvis en tilstrekkelig løsning fantes.
Dette vil føre til reduserte driftskostnader, og i tillegg redusere potensielt skadeomfang i
farlige arbeidsmiljøer. Problemet er at det å automatisere arbeidsoppgaver ikke er enkelt.
Et annet problem er at mange arbeidsoppgaver er for kompliserte og dynamiske til at de
kan bli hardkodet.

En mulig løsning på dette problemet er å simulere robotens trening i et virtuelt miljø
slik at det ikke er noen fare å trene den opp ved hjelp av maskin læring i stedet for
hardkodet oppførsel. Vårt mål for Neodroid Playground er å generalisere hvordan arbei-
dsoppgaven beskrives ved hjelp av virtuell virkelighet.

i

mailto:John.Reidar.Mathiassen@sintef.no

Neodroid Playground

Summary of Graduate Project

Title: Neodroid Playground:
Designing environments and tasks for learning robots
in virtual reality

Date: 20.05.2019

Authors: Halvor Bakken Smedås
Nikolai Åkerholt
Jone Martin Skaara
Aksel Hjerpbakk

Supervisor: Mariusz Nowostawski

Employer: SINTEF Ocean SeaLab

Contact Person: John Reidar Mathiassen,
John.Reidar.Mathiassen@sintef.no

Keywords: Thesis, Artificial Intelligence, AI, Virtual Reality, VR, Unity,
Programming, Machine Learning, User Experience, UX

Pages: 76
Attachments: 9
Availability: Open

Abstract:
This thesis describes a Unity project that aims to simplify the development of machine
learning agents’ environments and tasks. There are two parts of the task. It requires
external developers to be able to extend it with relative ease. Users of the system need
to be able to load up a scene and annotate a task with the use of VR. One of the more
difficult issues to handle is implicit construction of an evaluation function for the AI. We
solved this in our system by using conditions that describe what the desired goal state of
the environment is. This makes it possible to describe any task through our interface in
VR. The Neodroid platform is intended for use in academic research, as it is open source,
but potentially also to solve issues in the industry.

Automation in the industry is something people have been striving towards for sev-
eral decades. There are a lot of man-hours of manual labour that can be automated if
there is a reasonable solutiton to them. This will save time and money, but addition-
ally, it will help reduce damage potential for labour that is done in hazardous working
environments. However, automating manual labour is not very straightforward, and the
standard in the industry is that simple tasks that do not need any consideration of the
environment can easily be done by a hard-coded robot. This becomes a problem when
the tasks have complex issues that are too advanced for hard-coded robots to resolve.

A solution to these issues with automation is to simulate the robot in this environ-
ment and apply machine learning to it. That way, it will get years of experience through
a simulated environment that is approximating the environment the task needs to be
automated within. Our vision for the Neodroid Playground is to simplify and generalize
a way to describe these tasks within virtual reality, such that a robot can learn how to do
it in the simulated environment.

ii

mailto:John.Reidar.Mathiassen@sintef.no

Neodroid Playground

Acknowledgements

We would like to thank SINTEF Ocean SeaLab, John Reidar Mathiassen and Jonathan
Sjølund Dyrstad for this amazing opportunity to contribute to their Neodroid Project,
it has been a true joy working with you on this bleeding edge technology. We hope to
see it and Neodroid Playground evolve and flourish in the future, and we are excited to
help it along the way as we are going to keep working on it throughout the summer at
SINTEF Ocean SeaLab, and further integrate it into the Neodroid Platform.

In addition, we thank Christian Heider Nielsen for taking the time to talk us through
some of the more complicated concepts in artificial intelligence, and teach us about what
the different modules of the Neodroid Platform does, and how they work.

We would like to thank our supervisor Mariusz Nowostawski for his counsel through-
out the development of the Neodroid Playground, and through the process of writing this
thesis.

Lastly, we would like to thank NTNU’s Department of Computer Science, NTNU IDI,
for their support; without them, the cooperation with SINTEF Ocean SeaLab would have
been more difficult to arrange.

iii

Neodroid Playground

Contents

Acknowledgements . iii

Contents . iv

List of Figures . viii

List of Tables . x

Listings . xi

Glossary . xii

1 Introduction . 1

1.1 Background . 1

1.1.1 Academic Background . 1

1.1.2 Subject Area . 1

1.2 Project Scope . 2

1.2.1 Limitations . 2

1.2.2 Task Description . 2

1.2.3 Restrictions . 3

1.2.4 Boundaries . 3

1.2.5 Target Audience . 4

1.3 Project Goals . 4

1.3.1 Business Goals . 4

1.3.2 Impact Goals . 4

1.4 Thesis Structure . 5

2 Specification . 6

2.1 Functional Requirements . 6

2.1.1 User Stories . 6

2.1.2 Use Cases . 7

2.1.3 High-Level Use Cases . 9

2.2 Supplementary Requirements . 13

2.2.1 System Requirements . 13

2.2.2 Performance . 13

2.2.3 Usability . 14

2.2.4 Neodroid Integration . 14

3 Technical Design . 15

3.1 Unity’s Paradigm . 15

3.2 Conditions . 16

3.2.1 Condition Relatives . 16

3.2.2 Terminating Conditions and Goal Conditions 17

iv

Neodroid Playground

3.2.3 Group Conditions . 17

3.3 SceneObject . 18

3.4 Scene State Evaluation . 20

3.5 Playground Manager . 21

3.6 System Serialization and File I/O . 21

3.7 User Interface . 22

3.7.1 Editor and Widget Creation . 22

3.7.2 Widget Event Propagation . 25

3.7.3 Widget ValueHandles . 27

4 User Experience Design . 28

4.1 Tablet Menu . 28

4.1.1 Overview Menu . 28

4.1.2 Condition Editor Menu . 29

4.1.3 Status Menu . 29

4.2 2D Widgets . 30

4.3 3D Widgets . 30

5 Development Process . 33

5.1 Technology . 33

5.1.1 Digital Tools . 33

5.1.2 Programming Languages . 33

5.2 Project Organization . 33

5.2.1 Scrum . 33

5.2.2 Work Boundaries . 34

5.2.3 Roles . 35

5.2.4 Routines and Rules in the Group 35

5.3 Test-Driven Development . 36

5.4 Continuous Integration . 36

5.4.1 Git Hooks . 37

5.4.2 Doxygen Documentation . 37

6 Implementation . 39

6.1 Conditions . 39

6.1.1 The Problem . 39

6.1.2 Evaluation . 39

6.1.3 Condition Relatives . 40

6.1.4 Grouping of Conditions . 41

6.2 Playground Manager . 41

6.2.1 The Problem . 41

6.2.2 Central Tasks . 42

6.3 The Player and UI . 42

6.3.1 Sub-Menus . 42

v

Neodroid Playground

6.3.2 Floating UI and Laser Pointers . 43

6.3.3 Widget . 44

6.3.4 Condition Editor Menu Generation 44

6.4 System Serialization and File I/O . 45

6.4.1 Condition Container . 45

6.4.2 Condition Data Manager . 46

6.4.3 Saves Editor Window . 47

6.5 Collision Detection and Physics Simulation 47

6.5.1 The Problem . 47

6.5.2 SAColliderBuilder . 48

6.5.3 Friction Solutions . 49

6.5.4 Panda Hand Colliders . 50

6.6 AI Training . 51

6.6.1 Interfacing with Neo . 52

6.6.2 Sparse Rewards and State Evaluation 53

6.6.3 Reverse Curriculum Generation . 54

6.6.4 Simple Prototype Environments . 55

7 Testing and Quality Assurance . 58

7.1 Pair Programming . 58

7.2 Test-Driven Development . 58

7.2.1 Creating Good Tests . 58

7.3 Git Hooks . 59

7.3.1 Result . 59

7.4 Profiling in Unity . 60

7.4.1 System and Environment . 60

7.4.2 Conditions . 60

7.4.3 Saving and Loading . 61

7.5 User Interface . 62

7.5.1 Minimizing Number of "Clicks" . 63

8 Discussion . 64

8.1 Implementation Specific . 64

8.1.1 Unit Testing . 64

8.1.2 Use of Namespaces . 64

8.1.3 Discarded CI Functionality . 65

8.1.4 Graphical User Interface In Virtual Reality 65

8.1.5 Using Git with Unity . 66

8.1.6 Optimizing Evaluation . 67

8.2 Project Planning . 68

8.2.1 Actual Milestones . 68

8.3 Work Reflection . 69

vi

Neodroid Playground

8.3.1 Scrum . 69

8.3.2 State of Completion . 69

8.3.3 Group Work Reflection . 70

8.4 Alternative Choices . 71

8.5 Future Work . 72

9 Conclusion . 73

Bibliography . 74

A Appendix . 77

B Project Agreement . 78

C Meeting Logs . 82

D Project Plan . 98

E Reflection notes . 113

F Referenced Code, Full Code . 134

F.1 PositionCondition . 134

F.2 TouchCondition . 134

F.3 RotationConditionTest . 135

F.4 TouchConditionTest . 136

F.5 SceneStateEvaluation . 137

F.6 Widget Base Classes . 138

F.6.1 Widget . 138

F.6.2 Widget2D . 139

F.6.3 Widget2D<T> . 139

F.6.4 WidgetVR . 139

F.6.5 WidgetVR<T> . 141

F.7 DropdownWidget2D . 141

F.8 SubMenu . 142

F.9 RaycastingInputModule . 146

G Gantt Diagram . 152

H Original Task Description . 153

I Scrumboard . 156

vii

Neodroid Playground

List of Figures

1 Run Time Use Cases . 7

2 Framework Use Cases . 8

3 System Overview . 15

4 Design Of Conditions . 16

5 Default Scene Evaluation Logic Tree . 18

6 Alternative Default Scene Evaluation . 19

7 Scene State Evaluation . 20

8 Serialization Architecture . 21

9 Widget Class Diagram . 22

10 Creation Of Condition Editor . 23

11 Constructing Editor’s Widgets . 24

12 Widget Interaction Overview . 25

13 Condition Overview Mock . 28

14 Editor Menu Mockups . 29

15 3D Widgets . 31

16 Use Of Widgets . 32

17 Project Roles . 35

18 Git Hooks Sequence Diagram . 37

19 Condition Profiles Editor Window . 47

20 Problem With Convex Colliders . 48

21 SACollider . 49

22 Panda Hand Colliders . 51

23 Neodroid-Agent Connection With Unity Game 52

24 Simple Franka Task . 55

25 Simple Franka Task Completed Goal . 56

26 Simple Ball-agent Scene . 57

27 Git Hooks Pre-Push Output . 59

28 Evaluation Of 1000 Conditions . 60

29 Loading 1000 Conditions . 61

30 Loading 15000 Conditions . 61

31 Prototype Condition Setup Menu . 62

32 Current Condition Overview Menu . 63

33 Project File Structure . 66

viii

Neodroid Playground

34 Time Delegation . 69

35 Gantt Diagram . 152

36 Scrum Board . 157

ix

Neodroid Playground

List of Tables

1 Use Case - Select object . 9

2 Use Case - Instantiate condition . 9

3 Use Case - Manipulate conditions through its editor’s widgets 9

4 Use Case - Group conditions . 10

5 Use Case - Save and load scene state (conditions state) 10

6 Use Case - Start and stop training . 10

7 Use Case - Create training environment . 11

8 Use Case - Add and define observer components 11

9 Use Case - Add and define motor components 12

10 Use Case - Define conditions . 12

11 Use Case - Define condition editor . 12

12 Use Case - Define and make widgets and their prefabs 13

x

Neodroid Playground

Listings

5.1 CI Configuration . 38

6.1 PositionCondition’s Evaluation Function 39

6.2 TouchCondition’s Evalutation Function . 40

6.3 Base Class of Conditions with a Relative 40

6.4 AND-Condition Group Evaluation Eunction 41

6.5 Menu Alignment . 43

6.6 Example Of Condition Editor Menu Generation 44

6.7 PositionCondition Container Creation . 46

6.8 Scene State Evaluation . 53

F.1 Full Code - PositionCondition . 134

F.2 Full Code - TouchCondition . 134

F.3 Full Code - RotationConditionTest . 135

F.4 Full Code - TouchConditionTest . 136

F.5 Full Code - SceneStateEvaluation . 137

F.6 Full Code - Widget . 138

F.7 Full Code - Widget2D . 139

F.8 Full Code - Widget2D<T> . 139

F.9 Full Code - WidgetVR . 139

F.10 Full Code - WidgetVR<T> . 141

F.11 Full Code - DropdownWidget2D . 141

F.12 Full Code - SubMenu . 142

F.13 Full Code - RaycastingInputModule . 146

xi

Neodroid Playground

Glossary

Tools

Blender is an open source tool that offers 3D modelling, animation and simulation
among other more in-depth features related to 3D media creation. 33

Discord is a communication platform that supports several text channels with user ac-
cess control for individual channels [1]. 35, 69, 70, 73

Docker is a virtualization tool that does virtualization on a operating-system-level [2].
36, 38, 65

Doxygen is a free software for generating/writing software reference documentation.
The documentation is written within code, and is thus relatively easy to keep up to
date. Doxygen can cross reference documentation and code, so that the reader of a
document can easily refer to the actual code. 36–38

Franka Emika Panda A robot arm created by Franka Emika GmbH [3]. Widely used in
the industry, and also used by SINTEF. A model of this robot arm is what we often
used as the agent in the Playground. 50, 55, 56

Git is a free and open source distributed version control system designed to handle ev-
erything from small to very large projects with speed and efficiency. 33, 36, 38,
66

GitLab is a DevOps-application including source code management and CI/CD opera-
tions. 33, 36–38, 65, 69, 73

Large File Storage A git extension that allows for handling of Binary Large Object data.
xviii, 66

Microsoft Visual Studio is an Integrated Development Environment from Microsoft. As
any IDE, it is used to draft and write code for software development while also
giving extra functionality required to do so. xii, 33

NUnit is a unit testing framework for .NET code. Initially a ported version of JUnit a
Java version of the framework. Version 3 is a complete rewrite rather than a port.
58

ReSharper is a static code quality analysis software. Can be used through its Command-
Line Interface or with integration in Microsoft Visual Studio. 33, 37, 59

SAColliderBuilder A Unity package that build a collider for a mesh using only primi-
tives. 48, 49

xii

Neodroid Playground

SteamVR A Unity package for working with Virtual Reality (VR). 1, 13, 22, 25, 26, 42,
48, 49

Toggl A time tracking tool for counting hours spent working. 33

Unity is a cross-platform real-time game engine developed by Unity Technologies. xii–
xvi, 1, 3, 4, 7, 10, 15, 16, 21, 23, 26, 33, 36, 40, 43, 45–48, 52, 58, 61, 64–66,
71

Development Concepts & Terms

Microsoft Mixed Reality A category of virtual reality headsets that use inside-out track-
ing, allowing for portable VR with a short setup time [4]. 71

Object-Oriented Programming is a programming paradigm based on the concept of
objects, which can contain data, in the form of fields, and code, in the form of
procedures/methods. xviii, 46

Quality of Life Additional feature to make life easier. In software development this term
is often used for features that improve user experience, or when used in the con-
text of development, it might involve additional layers abstractions to simplify the
interface to some code. xviii, 58

Refactoring To go over older work and improving/altering code structure without chang-
ing its behaviour. 22

Scrum An agile software development framework. 33, 69, 73

Test-Driven Development Test-driven development (TDD) is a software development
process that relies on the repetition of a very short development cycle: requirements
are turned into very specific test cases, then the software is improved to pass the
new tests, only. This is opposed to software development that allows software to be
added that is not proven to meet requirements [5]. xviii, 36

Unit Test is a software testing method by which individual units of source code, sets
of one or more computer program modules together with associated control data,
usage procedures, and operating procedures, are tested to determine whether they
are fit for use [6]. 58

Code Concepts

Binary Large Object describes any large file that consist of binary data usually in the
context of data management systems. xii, xviii, 66

xiii

Neodroid Playground

Generic The concept of type parameters introduced to the .NET Framework, which make
it possible to design classes and methods that defer the specification of one or more
types until the class or method is declared and instantiated by client code [7].
Sample: public class SomeClass<T> where T : SomeOtherClass. 16, 22, 26,
27, 40, 44

Pure Object A regular C# class. It does not derive from any Unity-classes. This often has
implications on serialization as we need to tell it to serialize. Additionally, it will
mean the object will not reside in the scene, but rather purely in memory, which
often can be a desirable trait, as the former will cause some overhead (simply
because they derive from larger classes and are maintained by Unity’s different run
time systems). 16, 71

Reflection Reflection provides objects (of type Type) that describe assemblies, modules
and types. You can use reflection to dynamically create an instance of a type, bind
the type to an existing object, or get the type from an existing object and invoke its
methods or access its fields and properties. If you are using attributes in your code,
reflection enables you to access them [8]. 24

Serialization The process of converting data to byte streams. Usually used for transfer-
ence of data or intermediate object states. xiv, 16, 21, 45, 46

Singleton The singleton is a pattern for an object that always exist (if used), and is the
only object of the specific type. The pattern ensure this by checking against a static
field of its own type in itself and deleting itself if it finds that it is not the instance,
if the field is not set when another object tries to communicate with it, the pattern
instantiates an object to be the instance. 21, 41, 46

Surrogate is a feature designed to be used for type customization and substitution in
situations where users want to change how a type is serialized [9]. 21

Thread A unit that execute commands/code. There can be multiple threads working in
a single process, which allows the process to multitask. 67

Unsafe The unsafe keyword denotes an unsafe context, which is required for any op-
eration involving pointers [10]. C# is a managed language, meaning it deals with
pointers and references under the hood, so the programmer does not need to worry
about making memory leaks, with the exception of code blocks marked as unsafe.
27

Unity Concepts

Component A Unity Component, typically implementing some specific behaviour for the
GameObject. xiv–xvii, 16, 39–41

GameObject An object that has a presence in a scene, by extension it always holds
a Transform. Typically it also holds some additional components defining its be-
haviour. xiv, xv, xvii, 11–13, 15, 39, 42, 45, 72

xiv

Neodroid Playground

MonoBehaviour The base class of (nearly) all implemented Unity components. 21, 36,
45, 46, 71

Prefab A prefab is a GameObject stored aside as a reusable asset, complete with all its
components, property values, and child GameObjects. The Prefab asset acts as a
template from which you can create new Prefab instances in the scene. Allows for
use of the prototype pattern on a GameObject level. 24

Rigidbody A Unity component that lets a GameObject have physics behaviour, such as
applying forces on objects and gravity. 49

ScriptableObject The base class of classes that do not need to exist attached to a Game-
Object in a scene, but rather should exist on its own. This is typically used to store
data both in run time and edit time. 24

Transform A special kind of a Unity component that exist on all GameObjects. It defines
the position, rotation, and scale of the object. xiv, 40, 48, 49

AI Concepts & Terms

Entropy is a measure of uncertainty for a machine-learning agent. The higher entropy,
the less it has "understood" of the environment, and takes more random actions..
56

Frontier An abstract factor defining the training scope in Reverse Curriculum Genera-
tion. It increases incrementally as the agent learns how to complete its task in the
environment, causing the agent to incrementally learn more and more of the full
task. In a discrete environment, the frontier is directly comparable with the expected
number of actions to complete the task. 2, 52, 54, 57

Reinforcement Learning is a machine learning concept based on how learning might
occur in nature; where an agent might perform an action, and either cumulate a
reward, or a penalty based on the outcome of the performed action. xv, 2, 54

Reverse Curriculum Generation is a state generation concept used in machine learning
to train an agent in reverse. The agent will start in the goal state and expand out
from it [11], gradually learning how to reach the goal state from a set of different
start states. Each state is called a reverse curriculum point. xv, xviii, 2, 52, 54, 55,
57, 72

Sparse Reward is a rewarding mechanism used in machine learning, specifically in Re-
inforcement Learning. It provides few signals to the agent performing actions. Usu-
ally it only gives a signal when an agent has fully completed its goal, or when
it has done something it was not allowed to. This is an approach of doing rein-
forcement learning that often leads to better results, as the agent will not be able
to peak its performance by continuously striving for intermediary rewards rather
than actually completing its task. This is can eality occur when using reinforcement
learning, when sparse reward is not applied. 2, 3, 51, 53, 54

xv

Neodroid Playground

Neodroid Terms

Actor A component that works as a container for motors the AI can interact with. 3, 41

Agent A collection of machine learning algorithms that interfaces with Neo. xvi, 6, 10,
13, 14, 33, 51, 52, 55, 56

Droid The interface between Neo and a learning environment in Unity. xvi, 1, 10, 11,
13, 14, 18, 20, 51, 52, 57, 71

Neo A process that runs a given learning algorithm and interfaces through Transmission
Control Protocol packets. xvi, 1–3, 6, 13, 14, 18, 33, 39, 51, 52, 57, 71

Neodroid Platform is the platform made by SINTEF including Neo, Droid and Agent.
xvi, 1–3, 6, 7, 14, 36, 68

Neodroid Playground is the module we are developing to add a final abstraction layer
between the Neodroid platform and the users of the system. 2–4, 7, 11, 13, 16, 18,
21, 22, 33, 52, 55, 71

Neodroid Project is the reseach project funded by the Research Council of Norway. It
consists of the Neodroid Platform, the development of Artificial Intelligence that
processes 3D images to be used as input, and testing of AI learning processes when
used on real-life robots. 1, 6

Playground Terms

2D-Widget User Interface elements such as sliders and dropdown menus that are used
to define input to conditions similarly to 3D-widgets. Although 2D-widgets are
operated using a laser pointer in Virtual Reality, or potentially a mouse outside VR.
xvii, 9, 12, 13, 23, 26, 29, 30, 43, 44

3D-Widget A GameObject in the scene that is VR interactable, and can be used to define
a volume, a vector, numerical value or any other property that could be used as to
define a property of a condition. In code they are named WidgetVR precisely for
this reason. xvi, xvii, 9, 12, 13, 23, 26, 29–31, 45

Absolute State A purely internal state, i.e. an object-state which can be considered a
global fact as it does not depend on external factors (side effects). Any condition
with no relatives will operate on absolute states, either evaluate properties of them-
selves or their context SceneObject. 16, 39

Annotate To give explanation on how a task should be performed by describing it
through User Interface. xvii, 1, 3, 4, 7, 13, 17, 21, 47, 68

Condition A constraint defining what states an object can be in, in order to fulfill a goal
state or terminating state. Like being inside a volume or touching another object.
All conditions can be evaluated to satisfied (true) or unsatisfied (false). xvi, xvii,
4, 6, 9, 10, 12–14, 16–18, 21, 25, 27–30, 36, 39–42, 44–47, 53, 55, 56, 58, 60,
62–64, 67, 68, 71, 73

xvi

Neodroid Playground

Condition Data Container is a container for all required data within a condition. The
containers are used for serializing and de-serializing data for loading and saving
profiles. 21

Condition Editor A class responsible for the creation of, and maintenance of widgets
used to interface a condition. 22, 23, 27

Condition Group A special type of condition that allow nesting of conditions by utilizing
the composite pattern. The evaluate function propogates an evaluate-call. 17, 41,
42, 46, 53, 62, 67

Context Object The SceneObject that is held as a context in a condition. xvii, 16, 18,
30, 39, 63

Environment Engineer The person that builds a virtual environment by populating a
scene with SceneObjects, and defines new conditions that is needed for a given
tasks to be performed/trained in the environment. xvii, 8, 21, 41, 42, 45, 46, 48

Goal State is the desired state of an object or a scene. When the AI-agent has fulfilled a
goal state it is given a reward. xvi, 2, 9, 17, 18, 28, 53, 54, 63, 68

Relative A component that a condition’s fulfillment depends on. A good example of this
is the TouchCondition (full code F.2) which uses the Collider of a SceneObject as
relative, essentially constraining the condition to only evaluate touches between
the context of the condition and the relative. xvi, 16, 31, 39, 40, 63

SceneObject A GameObject in the scene that has the attached SceneObject-component.
It has a goal and terminating list of conditions and is evaluated as a part of the
scene state to use as input for AI. xvi, xvii, 9, 11, 17, 18, 20, 21, 28–31, 39, 40, 42,
43, 45, 46, 51, 53, 61–63, 67, 68

Terminating State is when an AI-agent has done something it was not supposed to. This
will cause the session to terminate and the agent will be reset and punished. xvi,
3, 9, 17, 18, 28, 53, 63, 67, 68

Trainer The person that interacts with an environment built by an environment engineer
in order to define a task for the AI by annotating the conditions they want. 4, 7,
21, 26, 31, 41–43, 47, 73

Widget An abstraction for interactable elements used to annotate conditions. (see 3D-
widget & 2D-widget). xvii, 9, 12, 13, 22, 24, 25, 27, 44, 73

xvii

Neodroid Playground

Acronyms & Abbreviations

AI Artificial Intelligence. xvi, 1–3, 7, 33, 39, 41, 42, 48

API Application Programming Interface. 1, 4

BLOB Binary Large Object. xii, 66

CI Continuous Integration. xii, 33, 36–38, 59, 65

CLI Command-Line Interface. xii, 33, 37, 58, 59, 65

CPU Central Processing Unit. 67

DOTS Data-Oriented Technology Stack. 15

ECS Entity Component System. 15

FPS Frames per Second. 3, 13, 14, 60

GPU Graphical Processing Unit. 13

GUI Graphical User Interface. 6, 25, 58, 65

IDE Integrated Development Environment. xii, 33

LERP Linear Interpolation. 43, 49, 57

LFS Large File Storage. 66

OOP Object-Oriented Programming. 22

QOL Quality of Life. 58

RAM Random-Access Memory. 67

RCG Reverse Curriculum Generation. xv, 2, 3, 54, 55, 68, 71, 72

RCP Reverse Curriculum Point. 2, 54, 57

TCP Transmission Control Protocol. xvi, 1

TDD Test-Driven Development. 36, 58, 64

UI User Interface. xvi, 2, 4, 14, 23, 24, 26, 29, 30, 43, 45, 58, 63, 65, 71, 73

VR Virtual Reality. xiii, xvi, 1–4, 6, 7, 10, 13, 14, 26, 29–31, 33, 40, 41, 43, 47, 48, 50,
63, 65, 71

xviii

1 | Introduction Neodroid Playground

1 Introduction

1.1 Background

SINTEF Ocean SeaLab (hereby referred to as SINTEF) is actively building on something
they call Neodroid project which is a collection of smaller projects. Neodroid platform is
one of these, built in collaboration with Christian Heider Nielsen to create “a reality-
ready robot brain in virtual reality” [12]. When we started this semester there were two
main modules to this platform: Neo and Droid. Neo is a python software that uses Trans-
mission Control Protocol (TCP) to communicate with other processes and uses this data
to learn from the said process. Droid is a Unity package and an Application Program-
ming Interface (API) for developers to communicate with Neo using standard Unity C#

programming.

The ultimate goal for SINTEF with the Neodroid project is to have a framework that
can be used by staff in industries in many different disciplines. This framework should be
used to demonstrate how a given task should be performed. Then have a robot trained
in this task until it is deemed capable of performing it with a high precision, to then have
it deploy image data for training the physical robot.

Our goal is to add a final abstraction layer for the end user. This layer would become
Neodroid Playground which allows the user to annotate an agent’s environment with lit-
tle to no prior knowledge about Unity or Artificial Intelligence (AI). Ultimately, enabling
any layman to create an environment through VR for an agent to learn in.

1.1.1 Academic Background

The educational program has introduced us (the students) to the basics of concepts like
AI and game programming. We have touched upon topics like machine learning and re-
inforcement learning. We also have become sufficiently skillful in game oriented code
and code abstractions to simplify and solve complex issues. These are some of the rele-
vant skillsets which have come in handy throughout the development of the Playground.
There are also aspects of professionalism that we need to account for while working
on more complex, open source systems, such as work ethics, coding conventions and
documentation.

We have also had experiences with working on VR environments in the Unity engine
already, and specifically C# and the SteamVR API. This has given us a good basis for
issues we need to deal with, and how we should design and structure the system.

1.1.2 Subject Area

Virtual Reality

VR is a fairly new technology to work with, and good user input methods are constantly
evolving. The standard for VR equipment is constantly being changed, and because of
that, software made for VR also must adapt to these changes. One example is that some
VR headsets motion controls use a touchpad (Vive) while others make use of an analog
thumb-stick (Oculus).

1

1 | Introduction Neodroid Playground

User-Experience and User-Interface

User experience in VR is also quite a design challenge. User Interface (UI) in VR must be
designed very unique compared to mouse and keyboard applications. The user must also
be comfortable with the environment they are placed in.

Reinforcement Learning

Machine learning is a central theme in the Neodroid Playground as Neo is based on
this. Reinforcement learning is a subclass of machine learning, and is based on either
rewarding or punishing an agent for its actions. Even though AI is not going to be the
main focus for our project, we are going to develop a system that works with the already
implemented machine learning algorithms in the Neodroid platform, which means it re-
quires consideration on our end to make AI training possible. There are several concepts
that can be used to apply machine learning, and one of the desired techniques for use in
Playground is sparse rewards. Sparse Reward is a principle of only giving a reward signal
when the task is fully completed, otherwise, the agent will only receive zero or minus one
as signals (if it did something it was not allowed to). Using sparse rewards simplifies the
concept, but results in a high probability that the agent will never learn as it is unlikely to
reach a goal state. One way to solve this is to use Reverse Curriculum Generation (RCG),
which initializes the agent with a simple state at first, with very few steps required to
reach the goal state (a Reverse Curriculum Point (RCP) with low difficulty). It will learn
to recognize these states before expanding its frontier by initiating it with progressively
harder RCPs to solve the problem from.

Simulate / Emulate Physics

In the Playground, the robot should learn to interact with a number of objects that will
behave as realistically as possible. In some cases, it may be relevant to simulate their
properties, such as soft-body physics to determine the behaviour of the object in order to
make it as true to life as we can.

1.2 Project Scope

1.2.1 Limitations

The Neodroid platform is intended for use in academic research, specifically for the de-
veloper’s own interests. Our task is to streamline the use of the platform with regards to
the construction of a playground and its user interface. The goal is to make it easier to
go from specific issue to implemented solution as quick as possible.

1.2.2 Task Description

Our task is to create what we call the Playground module. This includes focus on how
annotating and demonstrating a task should be done, but also generalizing the overall
Neodroid platform. This means we need to make it possible to easily describe a range of
different tasks to an agent within this playground, and make it possible for the agent to
learn that specific task if the environment is set up correctly. Having a developer set up
an environment for a task is the first part of the intended flow. It is desirable to create
a standard for different types of objects, and what components they need within the
playground. The playground should then consist of a set of objects (such as the robot,
and interactable objects).

2

1 | Introduction Neodroid Playground

After playground construction is done, a user should be able to demonstrate the task
the agent is supposed to learn correctly and seamless without any necessary prior knowl-
edge about Unity or AI. This will be an essential part of the task, as a good user interface
is crucial for a good product. The user will be defining a task by annotating goal- and
terminating states according to the desired behaviour of the agent. The Actor should be
able to deal with simple single-goal environments, but should also be able to potentially
take several important "intermediate" states. These states will then be used to generate
the data set for learning by RCG. If the order of these states is important, that should
also be considered by the agent.

When annotating objects and points in a demonstration, one should be able to em-
phasize what observations are important for the goal state. In some cases, one might
need to consider the position of the object, and for other cases, it might be the rotation,
or it could also be a combination of these observations. These constraints should be an-
notated and taken into account. The process of defining small precise targets should also
be as intuitive as possible for the user, and optimally allow editing of several objects’
properties at once.

For the machine learning, sparse rewards and RCG is used to achieve the desired
result. In order for the agent to be able to learn how to optimize the result, one can also
use energy minimization to avoid unnecessary steps. When the agent is crashing into
objects it is not supposed to interact with, or doing unwanted actions it is given a penalty
and terminated.

1.2.3 Restrictions

Documenting or refactoring existing code in the Neodroid platform is not part of the task.
However, where applicable we are encouraged to do so.

It is not part of the task to expand Neo (the machine learning component of the
system), even though if we would see it necessary we are free to expand on it.

Our task is not to train a real robot. We do not have access to a physical robot to
try this, but the product owner should have access. The virtual playground will be only
operating with perfect data for learning. The reason why we use perfect data is that the
robot should train itself in the virtual world, the physical robot will then use image data
generated from the training to apply machine learning based on those images.

1.2.4 Boundaries

The application we develop is made in the Unity game engine, as specified by SINTEF
since their existing framework is made in this environment.

It is not a focus to extend the Neodroid platform’s existing modules. We are however
encouraged to improve it. The main focus is on creating a Unity application with a VR
playground where the user can demonstrate a task. Playground can be used to train an
AI to perform a demonstrated task. The Playground is planned to be integrated as a part
of the Neodroid platform in the future.

Performance is important both for the Playground part of the application and for the
simulation section. In VR, it is important that the frame rate is more than 90 to avoid VR
sickness.

3

1 | Introduction Neodroid Playground

1.2.5 Target Audience

The target audience is a combination of non-technical people and developers using Unity.
The layman should be able to pick up the headset and motion controllers and annotate
valid conditions for an agent to follow.

For this person, it is not very relevant how we evaluate the agent-environment state,
how condition logic is built or any other technical details. The user can communicate
with our system through the VR-UI.

The Unity developer needs clean code to read, as well as simple and clear instructions
on how a scene should be built. Like the layman, the developer needs their own interface,
although this person will be more exposed to an API that allows them to expand the
functionality without having to rewrite existing systems.

1.3 Project Goals

1.3.1 Business Goals

• Create a standard for components used in a Playground, such that a technician
can build the needed playground with ease, let a demonstrating user define the
conditions and virtual robots interact with it.

• Allow for simulation of a scene with realistic behaviour.

1.3.2 Impact Goals

• Generalize how robots are used in industry - if a robot can learn and do any num-
ber of different tasks, it will mean that you do not need to construct hard-coded
specialized robots.

• Reduce damage potential for people and equipment in the context of automation
in hazardous work environments - a robot can be taught in complete safety using
the virtual training environment

4

1 | Introduction Neodroid Playground

1.4 Thesis Structure

The document consists of 9 chapters.

1. Introduction - Project overview and our motives for working on this bachelor thesis.
2. Specification - Chapter describing functional requirements and use-cases for the

application.
3. Technical Design - Describing components and underlying architecture in the Play-

ground system.
4. User Experience Design - Describing how we have approached user experience de-

sign, both by making user interfaces simpler, as well as dealing with input in a
sensible way.

5. Development Process - Tools and processes used during the development of the
software, and how they were used.

6. Implementation - Discussing how the functionality was implemented from a lower
level perspective.

7. Testing and Quality Assurance - Discussion about code quality assurance and pro-
filing in Unity.

8. Discussion - Discussing different aspects of the project and evaluate our own work.
9. Conclusion - Final thoughts on the project and results.

5

2 | Specification Neodroid Playground

2 Specification

2.1 Functional Requirements

We are going to develop a module that is supposed to generalize the Neodroid platform,
making it easier to implement a solution for teaching a robot any type of task that it
should be able to do in the real world. This means our system must provide a natural
and precise way of defining conditions for someone with little or no technical knowledge.
The system must also be very flexible as it should be possible to teach a robot both simple
and advanced tasks.

We must also have developers in mind, as they are supposed to set up an environment
for an expert within a field to demonstrate how the task should be done correctly. The
system must be easy to understand, and components needed for it to function correctly
should be well defined. This is important to developers, so they can easily set up their
own environment, and possibly expand on features or create their own where they feel it
is necessary. As the Neodroid project is open-source, we also feel it is important that the
code is easy to understand and well documented. This makes it simpler to understand
and expand.

Integration with existing Neodroid modules must work as intended. Meaning that any
task set up with any type of actor(s), should be able to learn through the learning process
in Agent if the environment is set up correctly by the developer. Furthermore, saving
and loading conditions into scenes must be possible, making it easier to go back and
edit an environment’s conditions. Loading an environment with pre-set conditions from
the demonstrator or from earlier sessions is also very practical when applying machine
learning, so one does not need to re-demonstrate every time.

2.1.1 User Stories

• The users can with ease start training with Neo when having a valid playground
scene.

• The user can select any SceneObject in the current scene using a VR laser pointer.
After selection, the user can view the objects conditions through a Graphical User
Interface (GUI).

• Through the selection-GUI, the user modifies condition that is being displayed.
• Through the selection-GUI, the user adds a condition to goal and to terminating

list.
• Through the selection-GUI, the user deletes a condition from goal and from termi-

nating list.
• Through a menu system, the user can save and load conditions into the scene.

6

2 | Specification Neodroid Playground

2.1.2 Use Cases

The ultimate goal of this technology is to allow a person who does not know anything
about AI, VR, or Unity to train an AI to do any task in any environment. This would
involve making some system that allows the trainer to both define the environment, and
the tasks. As an intermediary step, the thought scenario is that we have a system that
allows the end-user to specify the tasks for the AI, but leave the construction of the
training environment up to someone with experience in the platforms used (i.e. Unity &
Neodroid platform). This essentially means that the Playground is both a framework and
a tool; as such, it made sense to model the use cases into two diagrams:

Figure 1: Run time Use Cases - Use cases showing the capabilities of the Playground during run
time (also called annotation mode), in which a trainer interacts with the different components
already built as part of the Playground, or components deriving from them.

7

2 | Specification Neodroid Playground

Figure 2: Edit time Use Cases - Framework use cases show the use cases of the Playground as a
framework, highlighting what a developer, or environment engineer will use it for.

8

2 | Specification Neodroid Playground

2.1.3 High-Level Use Cases

Run Time

Use case: Select object
Primary actor: Client/Trainer
Goal: Edit an object’s conditions.
Alternative goals: View an object’s conditions.
Regular flow:

1. The actor points at SceneObject.
2. The actor selects the object by button press.
3. SceneObject’s condition overview menu is displayed

(see fig. 13).

Possible variations: None

Use case: Instantiate condition
Primary actor: Client/Trainer
Goal: Add a preferred state (goal state) to the selected object.
Alternative goals: Add an undesirable state (terminating state) to the selected

object.
Regular flow:

1. The actor chooses the desired condition type
2. The actor selects the condition’s relative object
3. The actor configures condition through its editor’s wid-

gets
4. The actor saves condition setup

Possible variations: The actor can choose to not select a relative object. This means
the condition would default to be relative to the environment.
The actor can also choose to not configure the condition val-
ues, which results in the condition saving its default values.

Use case: Manipulate conditions through its editor’s widgets
Primary actor: Client/Trainer
Goal: Configure intended condition values
Alternative goals: None
Regular flow:

1. The actor has a SceneObject’s condition selected.
2. The actor can change a condition’s values by interacting

with the widgets provided by the condition’s editor:
3. The widgets consists of two different types:

• 2D-widgets:
Configuring values through a 2D-Tablet in VR
(see section 4.2).

• 3D-widgets:
Configuring values through 3D-representations of
condition values (see fig. 15).

Possible variations: None

9

2 | Specification Neodroid Playground

Use case: Group conditions
Primary actor: Client/Trainer
Goal: Describe a condition with a group of several conditions to

achieve the desired result.
Alternative goals: Group conditions to describe the correct order of completion

to fulfill a task.
Regular flow:

1. The actor opens the condition overview menu
(see fig. 13).

2. The actor drags a condition from the conditions tab into
another existing condition in goal or terminating list.

3. The actor can instantiate any of these grouping types:

• AND
• OR
• XOR

Possible variations: None

Use case: Save and load scene state (conditions state)
Primary actor: Client/Trainer
Goal: Save current setup to run machine learning on it later.
Alternative goals: Save the setup so one can load and edit it later.
Regular flow:

1. The actor opens VR saves-menu
2. The actor gives name to the current setup
3. The actor saves the current setup to disk locally

Possible variations: The actor can also choose to manage the saves from Unity’s
editor, using an EditorWindow for Playground-saves.
If the scene exits runtime without having the current setup
saved to disk yet, a temporary save will be written to disk, so
the actor does not lose unsaved changes.

Use case: Start and stop training
Primary actor: Client/Trainer
Goal: Apply machine learning so the agent learns the task.
Alternative goals: None
Regular flow:

1. The actor has an environment with set conditions active.
2. The actor starts a process in Neodroid-Agent for machine

learning.
3. This process connects to the running Droid environment

to receive and send signals.

Possible variations: None

10

2 | Specification Neodroid Playground

Edit Time

Use case: Create training environment
Primary actor: Environment Engineer
Goal: Replicate the surroundings of the intended task’s environment

to the best extent possible. Later on, this will be given to the
client/trainer, so they can annotate how the task in it should
be performed. After annotation in this environment is done,
the goal is to apply machine learning on the agent.

Alternative goals: None
Regular flow:

1. The actor has a Unity project with the Playground and
Droid module.

2. The actor creates a new scene.
3. The actor adds all required components for a

Playground-environment.
4. The actor can now do several things to create his envi-

ronment:

• Add new SceneObjects
• Add and define observer components
• Add and define motor components

Possible variations: If the actor does not have the Playground or Droid correctly
setup, the actor will receive warnings and have to read up on
documentation on how to resolve the issue.

Use case: Add and define observer components
Primary actor: Environment Engineer
Goal: Ensure all correct observations needed is sent to the AI when

applying machine learning.
Alternative goals: None
Regular flow:

1. The actor selects a GameObject in the environment that
needs to be observed.

2. The actor adds the observer components required on the
specific object.

Possible variations: The actor might not find an observer suitable for his needs and
could decide to implement his own observers to fulfill this.

11

2 | Specification Neodroid Playground

Use case: Add and define motor components
Primary actor: Environment Engineer
Goal: Create an agent that can interact in the scene with output from

the AI.
Alternative goals: None
Regular flow:

1. The actor adds his desired agent GameObjects to the
scene.

2. The actor adds motor components to this agent.

Possible variations: The actor might not find a motor component suitable for their
needs, and could decide to implement his own motors to fulfill
this.

Use case: Define conditions
Primary actor: Environment Engineer
Goal: Create a new condition type as there does not exist any that

fulfills the actor’s or client’s needs.
Alternative goals: None
Regular flow:

1. The actor creates a script that inherits from the base con-
dition class or Condition<TRelative>

2. The actor creates a container with mirrored variables
3. The actor creates an editor for the new condition.
4. The actor creates the interface for the editor with new or

existing widgets.

Possible variations: The actor might not know the structure of the conditions and
how they are implemented. This means that the actor must
read up on existing documentation on conditions, and also on
how to implement their own.

Use case: Define condition editor
Primary actor: Environment Engineer
Goal: Create a way for the client/trainer to interact with a condi-

tion’s values.
Alternative goals: None.
Regular flow:

1. The actor creates a script that inherits from the base Con-
ditionEditor class.

2. The actor creates widgets to be used by the editor for
user interaction. These could be either 2D-widgets or
3D-widgets.

3. The actor implements the interface for the condition by
implementing the widgets into the editor.

Possible variations: The actor might already find existing widgets suitable for the
specific editor and can just directly implement these into the
editor.

12

2 | Specification Neodroid Playground

Use case: Define and make widgets and their prefabs
Primary actor: Environment Engineer
Goal: Create an interface for editing a condition’s values by imple-

menting these widgets into a condition’s editor.
Alternative goals: None
Regular flow:

1. The actor creates a script that inherits from the 2D-
widget or 3D-widget class.

2. The actor creates GameObject prefabs for these widgets.

Possible variations: None

2.2 Supplementary Requirements

2.2.1 System Requirements

Platform

Our Playground module is mainly about interacting with a scene in VR, so naturally,
our application requires a VR headset. Preferably HTC Vive, as our platform is mainly
developed for that. However, other headsets will supposedly also work, as long as it
has controllers or some other input mechanism for interacting with the scene. We have
been using the SteamVR module for implementing VR into our project, and it is aimed
at working with multiple VR headsets [13]. Despite functionality probably working with
other headsets, we can not guarantee it. We have decided to mainly target and develop
for HTC Vive on Windows 10, and make sure functionality is working as intended for
that platform. This is due to our time limit within the scope of the project.

For the machine learning part done in Neo, it is preferred to have a decent Graphical
Processing Unit (GPU). This is also the case for our VR environment, even though the
scene might not be that complex, it is important to have sufficient frames per second
(FPS) to avoid VR sickness.

Playground depends on the Droid module to function correctly. Additionally, to run
machine learning it is required to have a functional instance of the Agent module set up.

Recommended system to run the application:

• Minimum Nvidia GTX 970 GPU
• 3 GHz Processing power
• Minimum 8GB RAM
• HTC Vive-headset

2.2.2 Performance

The main performance measurements in our system are frame rate and scene evaluation
speed. Frame rate is important in VR to avoid potential motion-sickness caused by low
FPS [14]. The speed of condition evaluation is critical because it will affect FPS in both
annotation mode and also machine learning mode. We do not want scene evaluation to
affect the performance of either of these modes, therefore it is something we need to
consider thoroughly. Secondary performance measurements for our system is saving and
loading speed of scenes’ conditions and how much disk space these saves use.

13

2 | Specification Neodroid Playground

Requirements

• The application must be running above 90 FPS while in VR.
• The system must be able to handle up to 500 conditions without any noticeable

performance hit.
• Loading 500 conditions should take less than 1 second on a SSD (solid state drive).

2.2.3 Usability

The intentions of the module lie in the hands of a developer’s own interests, or for a
client that wants a task to be automated. For this reason, it is important that our system
is intuitive to use and understand. For a developer, it must be simple to understand
our code and how to use it and expand it. Additionally, a client using the system might
not have technical knowledge of how machine learning or VR works. This means it is
important that our user interface is easy to understand and interact with. A client must
be able to set up correct conditions on an environment with ease, with a few simple
instructions on how the Playground works.

Requirements

• Setting up conditions must be intuitive, and have a UI with as little friction as
possible.

• Conditions that are set up should be displayed if wanted, and they must be simple
to understand.

• The code must be easy to understand from a developer’s point of view, well docu-
mented and be expandable.

2.2.4 Neodroid Integration

Our system is not a stand-alone module, though parts of it will work without dependen-
cies. It is supposed to be working with both the Neo and Droid modules in Neodroid
platform. This has brought our attention to how we should interface with these existing
modules, to make interaction fluid and functioning.

Requirements

• A universal method of evaluating Droid-environments with conditions regardless
of the condition types must be operative. Each specific condition type must have its
own working evaluation function.

• Starting a learning process in Agent and connecting it with the Playground should
be possible.

• Proper documentation explaining what components are required for the system to
correctly interact with the other Neodroid modules.

14

3 | Technical Design Neodroid Playground

3 Technical Design

Figure 3: System overview (Package Diagram): There are 3 assemblies in our system with a total
of 5 namespaces.

3.1 Unity’s Paradigm

As we work in Unity, all work we do has to take Unity’s paradigms into consideration
when we design and implement features. Object-oriented code is one of these paradigms.
Unity uses C# as its main language. C# is mostly object-oriented in nature. For example,
C# does not allow functions to exist without a class. This will change in the coming ver-
sions of Unity where they are planning to properly deploy their burst compiler and En-
tity Component System (ECS) (data-oriented pattern [15]) through their Data-Oriented
Technology Stack (DOTS). This will make Unity more data-oriented in nature.

Unity uses the component pattern to keep as many systems as possible independent
of each other. Every GameObject can have any number of components that do differ-
ent tasks. Adapting to the component paradigm in Unity delivers a lot of benefits in
developing. For instance inspection of values in the inspector during run time and easy
communication between different GameObjects.

15

3 | Technical Design Neodroid Playground

Components work by providing functionality for other objects without having to use
inheritance. The reason for using the component pattern is to avoid the deadly diamond
of death problem [16] and duplicate data/logic [17].

3.2 Conditions

Conditions are one of the core elements that Playground consist of. In essence, they are
components that wrap boolean expressions of any complexity describing a certain aspect
of a scene’s state. Initially, they were planned to be pure objects as they are generally
more light-weight; hence, they’re faster. We later redesigned this, as going with pure C#

classes added a lot more complexity in regards to serialization and in-editor displaying of
the objects, mainly due to the lack of support for serialization of generic classes in Unity
(see sections 6.4 and 8.4).

Figure 4: The Fundamental Design of Conditions. Highlighted is the composite pattern.

3.2.1 Condition Relatives

We found that we would be able to describe fairly complex scene states with just two
fundamental condition types: One describing absolute states, meaning it does not depend
on external factors (i.e. no relative dependencies), but rather purely on its context’s own
internal properties. The other type describes the complete opposite: Conditions that are
dependent on external factors. We have designed a special kind of condition for this, that
uses C#-generics to defer what kind of component it depends on. We have come to call
these components relatives.

16

3 | Technical Design Neodroid Playground

3.2.2 Terminating Conditions and Goal Conditions

Conditions can be used to annotate tasks in two ways: A condition can be enlisted as a
goal condition, where the condition embodies a requirement for the scene to be in a goal
state, or it can be enlisted as a terminating condition, where the condition, if fulfilled puts
the scene in a terminating state.

3.2.3 Group Conditions

As illustrated by the figure above (fig. 4), we have a special type of condition that can
contain other conditions. This condition group embodies the structural pattern known
as the composite pattern. It is useful in cases where a task is more complex than just
one condition on a SceneObject and depends on states of inter-condition fulfillment. The
thought behind these composite constructs is that they allow us to model highly complex
logical evaluations of a scene’s different conditions.

We have modeled three condition groups thus far, where only two are actually used
in the current version of Neodroid Playground: the AND-, OR- and XOR groups, which
incidentally are named as such because they closely resemble the equally named logic
gates in electronic circuits in behaviour. Seeing as a condition group may contain more
than two conditions, we have had to extend the behaviour of them beyond that of logic
gates, as they typically only have two inputs, whereas we have range of 0 − n inputs in
our groups’ evaluation functions.

The AND-group requires all conditions to be satisfied, the OR-group requires one or
more conditions to be satisfied, lastly the XOR-group requires one and only one condition
to be satisfied. With this being the case, we might yet change the name of these in the
future, to further emphasize their use.

17

3 | Technical Design Neodroid Playground

3.3 SceneObject

The SceneObject was designed as one of the core component of Playground. It acts as
the subject of conditions (i.e. the context of a condition), and as the container of them.
Each SceneObject is observed by the Neo network through Droid-Observers that gather
information about objects’ states relevant for machine learning.

Below (figs. 5 and 6) we have described a simple scene to showcase how SceneObjects
are used to construct a definition of goal states. There are five objects: 1 mug, 2 plates,
and 2 tables, each of which hold their conditions grouped in a specific way to convey the
requirements of the goal state. In this scenario the goal state is to have the mug placed
on one of the plates, facing upwards, and also to have the plates facing up relative to the
either of the two tables.

Figure 5: Condition Evaluation Logic tree grouping as a logic tree

One of the important decisions we had to make when designing the SceneObject
was what the default behaviour of evaluation should be: We could either consider the
SceneObject satisfied when at least one of its conditions were satisfied, or when all of
its conditions were satisfied. It is a decision with fairly severe consequences and could
result in as can be seen in the figure below (fig. 6), so we discussed this for quite a
bit. Through testing both by setting up these "evaluation trees" for a few simple and a
few more complex scenes we landed on the first of the two options: a SceneObject is in
a terminating state if at least one of its terminating conditions are satisfied, and it’s in
a goal state if it’s not in a terminating state and at least one of its goal conditions are
satisfied

The diagrams (figs. 5 and 6) are incomplete models made just to show of the difference
between the two defaulting modes we could have opted for. The table on which the different
SceneObjects are placed on, for example, is a SceneObject left out of the tree, though that
would also have a list of conditions on it

18

3 | Technical Design Neodroid Playground

Figure 6: Condition evaluation tree defaulting SceneObjects’ conditions to be evaluted in an AND-
manner (all or nothing).

Then again, there are cases where the optimal evaluation tree would be based around
AND-defaulting. A thought scenario for this could be a simpler scene than the one
above (figs. 5 and 6), where there’s only one plate, and only one table.

19

3 | Technical Design Neodroid Playground

3.4 Scene State Evaluation

Evaluation of the scene is rooted in the SceneStateEvaluation class. It will fetch all
the SceneObjects in the scene and initiate the evaluation using the mediator pattern.
The mediator pattern is about having an intermediate class that functions as an interface
between classes [18]. So all Droid has to evaluate is the SceneStateEvaluation which
will propagate the evaluation-call through the scene and its SceneObjects.

Figure 7: Evaluation of scene represented as an activity diagram.

20

3 | Technical Design Neodroid Playground

3.5 Playground Manager

The Playground manager is, as the name suggests, an entity dealing with the business
logic in the scene. It contains information about the state of the environment, and all its
SceneObjects. It ensures that the scene is set up correctly by fetching the required objects
for a Playground environment. During annotation of the SceneObjects, the Playground
manager evaluates the scene and displays condition-fulfillment, allowing the trainer to
rapidly test their conditions.

The specific design of the Playground manager was not decided early on, instead,
it became progressively more clear what it needed to contain and what functionality
it needed to have. Now that we know what it needs to be able to do, we have seen a
potential way of restructuring it into several components and divide its responsibilities
in a more modular way.

3.6 System Serialization and File I/O

When a developer/contributor creates a new condition, they also have to create a condi-
tion data container, and the functions required to ensure interchangeability (see fig. 8).
This is only if they want to save these conditions after instantiating. The container has a
defined method (GetDataContainer see section 6.4.1) that can be implemented to con-
vert it into a condition and vice versa (see serialization). The goal of this design is that the
generation of these containers could be automated and therefore the environment engi-
neer would not have to think about serialization when implementing new conditions. We
have a singleton class that uses containers to save and load to file.

A lot of conditions derive from MonoBehaviour, which means that the data manager’s
serializer needs surrogates to support these. An environment engineer can also add cus-
tom surrogates to the manager if their condition is using Unity classes that we do not
surrogate natively.

Figure 8: Serialization architecture

21

3 | Technical Design Neodroid Playground

3.7 User Interface

3.7.1 Editor and Widget Creation

The underlying structure

of widgets and condition editors is fairly complex, and so we spent quite a while
refining and refactoring the design of it throughout the development of Playground. The
ultimate design of it is very much an object-oriented one, where the main components
all derive from the same base class: Widget

Figure 9: Function overview shown in a class diagram of the fundamental Widget classes. The red
numbers (#n) are specific points of interest tagged later throughout this section.
In summary they are:

#1 & #2 Value-wrapping Widgets using C#generics.
#3 Widgets’ main calls to update values.
#4 Calls to propagate the relevant events.
#5 SteamVR’s Interactable-events.

22

3 | Technical Design Neodroid Playground

When coming up with the concept of condition editors we were inspired by Unity’s
own way of dealing with (custom) editors, where you can define how everything is pre-
sented explicitly. An editor is in essence just an instruction set for what UI elements need
to be present, and how they interface the thing being edited.

Figure 10: Creation of a condition editor, where BuildUI_2D(), and BuildUI_3D() are the
overridable instruction sets for any condition editor.

Our system is designed to deal with two core types of such elements, namely 3D
elements - 3D-widgets, and 2D elements - 2D-widgets, where the core difference is in how
you interact with them. As illustrated in the sequence diagram fig. 11a, the creation of
widgets are fairly straight forward. Given that both a widget type and prefab are defined,
an editor will be able to request the needed widgets by its type.

23

3 | Technical Design Neodroid Playground

(a) For condition editors, the building of UI
(both 3D and 2D) is done through a few
calls to the inherited CreateWidget2D/
CreateWidget3D functions.

(b) A widget is created by looking for its type name in the WidgetCollection
(a ScriptableObject acting as a dictionary for widget-prefabs). The found
prefab is instantiated, its ValueHandle (see section 3.7.3) is obtained, and
the rest of the widget’s setup is invoked.

Figure 11: Construction of an editor’s UI components - Widgets.

24

3 | Technical Design Neodroid Playground

3.7.2 Widget Event Propagation

Figure 12: How 3D widgets receive events and propagate them to the editor in order to update the
condition. A 3D widgets event propagation is first invoked (fig. 9 #5) by listening to SteamVR’s
interactable-events (fig. 9 #4)

Widgets are designed as a means to modify a condition’s parameters, yet they cannot
directly modify the internal values of the condition, as the conditions internal parameters
might not be easily interfaceable - a condition may hold one set of parameters that are
useful from an evaluation point of view, but completely useless from a GUI-point of view.

Designing a good interface for a condition will in many cases involve translating the
parameters of a condition into a different, more user-friendly set of parameters that can
more easily be understood and interfaced. An example of this is a positional volume (as
seen in full code F.1 - PositionCondition), where the evaluation of whether something is
inside the volume is most easily done through mathematical formulas, making this how

25

3 | Technical Design Neodroid Playground

they are defined internally. However, presenting these values to the trainer makes little
sense, and does not utilize the third dimension VR grants us for use in UI.

We wanted to present the trainer with an easy-to-use- and easy-to-understand UI,
meaning that the widgets needed to process some user input and convert it to the con-
dition’s actual value. Equally, the widget’s value must be restorable from the condition’s
internal value in order to maintain persistence. We modeled this value-wrapping using
C#-generics (fig. 9 #1 & #2).

3D-widgets work by defining some arbitrary data that should represent the condition.
For example, you could draw a vector in world space to represent a max velocity for
a velocity condition. This vector should then be able to be scaled by grabbing an edge
of the vector. 2D-widgets work a little bit differently as they need to represent a value
in a more conventional manner. The velocity data could be represented with the use of
three seek-bars (x, y, z) as an example. The seek-bars can then be placed in our condition
editor menu as a UI element.

We allow widgets to be children of other widgets as part of our design (i.e. the com-
posite pattern); a pattern we utilize to build complex widgets. To do this we defined a
set of overridable functions (fig. 9 #3), and made their execution propagate through the
widgets’ parents, ultimately ending up at the editor itself, which applies the values of the
widgets to the appropriate properties of the condition (as seen in fig. 12).

For 3D-widgets the triggers for these functions are the events raised by the SteamVR
Interactable upon grab/hold/release (with the VR-Controller) of an object. This is nice
from a design point of view, as it means that all 3D-Widgets essentially have the same
entry point of execution, making it easier for any external developer to understand how
to use the widgets.

2D-widgets are a bit different, in that they don’t inherently have a shared trigger for
execution like the 3D-Widgets have. This is mainly due to the fact that we use Unity’s
own solution for 2D UI, where there’s no shared interface for all UI elements, as there
are several of these that do not need events such as onPointerPress, onPointerHover, on-
PointerUnpress, etc.

We still wanted a unified way of talking about the propagated events of widgets how-
ever, as that has the benefit of being easier to understand from an external point of view.
The solution we ended on is to let 2D-widgets themselves hook up to the Unity-UI ele-
ments’ events during run time as event listeners. This is a solution that works well as it
is very explicit about how a 2D-widget’s state is updated and propagated.

public class DropdownWidget2D : Widget2D <int >
{

// UnityEngine.UI.Dropdown - the Dropdown Component by Unity
public Dropdown dropdown;

private void Awake ()
{

// inject calls to our interface
dropdown.onValueChanged.AddListener(_ => PropogatePushChanges ());

//call directly to the base in order to propogate the event
}
public override void SetInitialState () => dropdown.value = Value;
public override void OnPushChanges () => Value = dropdown.value;

}

Listing: Dropdown Widget Hooking Itself Up To Unity’s Dropdown Component]Dropdown Widget

26

3 | Technical Design Neodroid Playground

hooking itself up to Unity’s Dropdown Component, making the OnPushChanges-call propagate up
through its parents whenever the dropdown is changed (full code F.7).

3.7.3 Widget ValueHandles

One of the concerns we got while designing widgets was the fact that there might be
some values of a condition that would make sense to be presented both in 2D and 3D,
or a case where you might want to switch between editing modes; that is, editing the
same value of a condition, but through different widgets. In such a case, it would be
problematic if all widgets edit their own separate values before they are pushed up to
the condition editor to be applied to the condition. In such an event, the editor would
have to take preference of one widget over another when applying the widgets’ values
(because it essentially is trying to change the same condition value). This means that
the other widget, in this case, could not actually modify anything, it could only receive
updates indirectly from the other widget.

The wanted behaviour is that when moving a point widget (PointWidget3D) in VR,
the changed values would be reflected in the condition menu (in the PointWidget2D).

Our solution to this problem is very much inspired by shared pointers from C++

where two classes might reference the same variable through a shared pointer. There’s
no such concept as pointers in non-unsafe C#-code. However, there is another concept
core to C# we can use, which is the fact that objects of classes are copied by reference
(meaning that the copied object will be pointing to the object that was copied, rather
than being a new object on its own, essentially giving us the same behaviour as from a
shared pointer in C++).

public class SomeClass {
public int someInteger = 123;

}
public void SomeFunc () {

SomeClass a = new SomeClass ();
SomeClass b = a; // reads as ’b’ is ’a’, or ’b’ points to ’a’
b.someInteger = 321;
print(b.someInteger); // prints ’321’
print(a.someInteger); // prints ’321’ - a & b refer to the same object

}

Having C#’s generics, we designed a class that could wrap anything into itself, allowing
us to share it between multiple widget instances.

27

4 | User Experience Design Neodroid Playground

4 User Experience Design

4.1 Tablet Menu

The tablet menu is the user’s main way of interacting with the application. The user gets
a laser pointer in one hand, and the tablet menu in the other. If the user opens the menu
in the left hand, the laser pointer is in the right hand, and vice versa. This way of opening
the menu is intuitive for both left- and right-handed users. See how it works in this gif1.

To mitigate tracking noise and shaky hands, the tablet menu follows the user’s hand
with a smooth motion that stops within a dead-zone. The dead-zone allows minute move-
ments to be ignored, making it easier to hit buttons accurately with the laser pointer. The
behaviour of the tablet menu is demonstrated in this gif2.

4.1.1 Overview Menu

The overview menu is only available when a SceneObject is selected. It is structured into
three lists:

• Goal list: Contains conditions or condition groups, when all these evaluate to true,
the object is in a goal state.

• Terminating list: Contains conditions or condition groups, when at least one evalu-
ates to true, the object is in a terminating state, even if all goal conditions also are
true.

• A list of all possible conditions. These can be dragged into the goal list or terminat-
ing list in order to instantiate them and create a new condition.

Figure 13: Condition overview menu mock-up

1A demonstration of how the tablet menu can open in either hands.
https://justworksltd.gitlab.io/playground-docs/media/Gifs/UI/Toggleable.gif

2A demonstration of how the tablet menu follows the player’s hand in VR.
https://justworksltd.gitlab.io/playground-docs/media/Gifs/UI/UIFloat.gif

28

https://justworksltd.gitlab.io/playground-docs/media/Gifs/UI/Toggleable.gif
https://justworksltd.gitlab.io/playground-docs/media/Gifs/UI/UIFloat.gif

4 | User Experience Design Neodroid Playground

Simplifying UI

While designing the 2D UI for the application, we tried minimizing the number of clicks
the user has to make. This is even more important in VR as laser pointer clicking is
more tedious than with a mouse. Originally, we had a setup-queue menu that contained
all the conditions that needed some setup process to work. We initially saw this as very
useful, because we thought the process of setting up conditions would have a very unified
flow. However, what the setup-queue actually did, was moving the setup process behind
unnecessary clicks and forcing a specific way to instantiate conditions. For these reasons,
we decided to discard the setup-queue from the UI design, and go for a more flexible
solution where the user could go into any step of the setup process at any time.

4.1.2 Condition Editor Menu

The condition editor menu is only available when a condition is selected within either
of the two state lists (fig. 13). The menu contains all the 2D-widgets related to that
condition, which are used to change its properties. There will usually just be a few 2D-
widgets in the editor menu, as we focus as much as possible on annotatable 3D-widgets.
This is a decision we have made, as we want to reduce the number of clicks needed
because it is harder and more time consuming to use than an equivalent solution as a
3D-widget.

(a) Position condition editor menu (b) Speed condition editor menu

Figure 14: Mockups of condition editor menus.

4.1.3 Status Menu

The status menu displays a summary of the scene, it displays:

• How many SceneObjects are in a goal state.
• How many SceneObjects are in a terminating state.
• How many SceneObjects there are in total.

The status menu has buttons to interact with the application and perform tasks like:

• Reloading the scene.
• Removing all conditions in the scene.
• Saving the state of the conditions to disk.
• Running setup for AI training.

29

4 | User Experience Design Neodroid Playground

4.2 2D Widgets

2D-widgets are UI elements used with the laser pointer within the condition editor menu
to change the condition-properties. They are very similar to common UI-element abstrac-
tions in other frameworks, such as Views in Android Studio or UIControls in iOS. Exam-
ples of properties to change with 2D-widgets are: max speed for a VelocityCondition
using a seek-bar, or volume type selection for a PositionCondition using a drop-down
widget. Some of the 2D-widgets we see useful are:

Check-box widget A button that is either checked or unchecked.

Radio-button widget A group of buttons where only one can be selected at a time.

Seek-bar widget A slider between a minimum and a maximum value. (See fig. 14b)

2D-direction Widget A circle where the user can select a point within this circle.

Drop-down Widget A menu that expands when clicked to reveal a list of items where
one is selected. (See fig. 14a)

Spinner Widget A text field with an up and a down button that increases or de-
creases a numerical value in the text field. (See fig. 14b)

Separator Widget A simple line to separate the editor into parts. (See fig. 14b)

Label Widget A simple text label. (See fig. 14)

4.3 3D Widgets

3D-widgets are the user’s way to define a condition’s properties in VR with motion-
controllers. When setting up a condition that requires a volume, a 3D-widget will be
used to define that volume, as doing this in 2D would be tedious in comparison. For
instance, a PositionCondition needs to know where the SceneObject in question (the
condition’s context) is supposed to end up in order for it to be fulfilled. The user is able to
change which volume widget they would like to use, move it around, scale it and rotate
it in VR. The 3D-widgets are instantiated with a size matching the relative object of the
condition it belongs to, meaning a grape will have a small 3D-widget to mark its volume,
while a table will have a large one. Some of the 3D-widgets we see useful are:

Point Widget A single point that can be moved in 3D space to define a position.

Vector Widget A set of point widgets that define a vector in 3D space.

Scale Widget A single handle that can be moved along an arbitrary 3D axis relative
to its origin to define a numerical value (being the magnitude of the
vector to the handle-point).

Cuboid Widget A set of 6 scale widgets and a grab handle (for moving the entire
widget around). Allowing it to be picked up, moved, rotated and scaled
in 3-dimensional space to define a cuboid volume.

Sphere Widget A point widget and a grab handle that can be picked up, moved, ro-
tated and scaled along an arbitrary axis (radius) to define a volume.

Cylinder Widget A set of 2 scale widgets, a point widget and a grab handle that can be
picked up, moved, rotated and scaled along 2 axes to define a volume.

30

4 | User Experience Design Neodroid Playground

(a) Cuboid (b) Sphere (c) Cylinder

Figure 15: 3D-widgets defining a primitive volume to annotate a goal area or fatal area for a
SceneObject.

3D-widgets are moved and rotated by grabbing its center handle (called a grab han-
dle), see the blue cube in the center of the widgets (fig. 15). The widget can then be
moved around like any interactable object in VR. Most 3D-widgets can also be scaled
to better fit the desired area the trainer wishes to mark as a goal or terminating area.
This is done by grabbing the radius handle (a point widget, the small white sphere.
see fig. 16a) and moving it. This will change the radius of the widget, some of the wid-
gets can also be scaled along an axis. These scale handles are the green handles on the
widget (see fig. 16c). To better see how the widget is used, have a look at this short
video3. It is worth noting that the widget in this short video was not relative to anything,
so they were instantiated with quite large size.

3A demonstration of how widgets were scaled and moved in VR.
https://justworksltd.gitlab.io/playground-docs/media/Gifs/UI/2019-04-06_20-13-58.mp4

31

https://justworksltd.gitlab.io/playground-docs/media/Gifs/UI/2019-04-06_20-13-58.mp4

4 | User Experience Design Neodroid Playground

(a) Grab radius handle (b) Move radius handle and release

(c) Grab height scale handle (d) Move height handle and release

Figure 16: Scaling of a Cylinder Widget.

32

5 | Development Process Neodroid Playground

5 Development Process

5.1 Technology

5.1.1 Digital Tools

The following tools have been used actively throughout the development of Playground:

Microsoft Visual Studio Integrated Development Environment (IDE).

Unity Component-based 3D game engine [19].

Git A free and open source version control system [20].

GitLab Version control, Scrum-board for assignment of work tasks,
and CI [21].

ReSharper Command-Line Interface (CLI) for linting and inspecting code
quality before pushing to remote [22].

Blender 3D modeling tool [23].

Toggl Time tracking tool [24].

5.1.2 Programming Languages

C# is the main language we program in, this is because C# is the Unity standard, and
because it is the language that gets the most support from the developers and users
of Unity.

Python is also a candidate for certain parts of the project that involve interacting with
the machine learning module (Agent) or the communication link (Neo) between
the machine learning algorithms and Unity. The reason for this is that these mod-
ules are all written in Python, besides Python is recognized as one of the best
languages to work in when it comes to AI.

ShaderLab & CG are also used to write shaders to visualize highlighted objects in VR.

Bash is used to implement the Continuous Integration (CI) parts of our development
process.

5.2 Project Organization

5.2.1 Scrum

The development model we decided on for the project was Scrum. This is the model we
were most familiar with, and is also commonly used in the industry. Since all the design
and structure had not been decided when the development started, an agile method was
the best option. With the project having a hard deadline in only a few months, dividing
the total time into sprints of one week and setting milestones was a good plan for the
project. The scrum board was also heavily in use, with labels for all main categories of
tasks.

33

5 | Development Process Neodroid Playground

5.2.2 Work Boundaries

For the internal organization of the group we had compulsory scrum meetings once a
week where we had discussions of work done in between meetings.

Group Policies

§1 Money and expenses

1. For expenses that exceed what is covered by the client and NTNU IDI, the
expenditure(s) is shared evenly between the group members, unless otherwise
agreed between the parties involved.

§2 Illness

1. If you become too ill for attendance during the project, you must communicate
this to the other group members.

§3 Scrum

1. It is up to each member to report a lack of sprint goals if one completes all the
sprint goals they were given at the beginning of the sprint period.

2. It is up to each member to report having too much work assigned them as early
as possible, if it is obvious that it will not be completed, the other members
should be informed.

3. If the scope becomes so large that it slows down the project’s progress due
to dependencies in certain modules, there should be a group meeting on how
this should be solved, this should also be with the supervisor.

§4 Meeting

1. In case of any disagreements in regulations/polls, the group leader has two
votes, so that we can always end up with a majority since our group consists
of 4 members.

§5 Digital tools

Version control:

1. There are several branches:

• master is the most stable and verified.
• dev is the head of development. This is where general progress is pushed

to. The dev branch is merged to master after verifying that the system is
in a stable state.

• feature branches are dedicated to developing one specific set of features
that would create friction for other developers if pushed to dev.

2. All Git commit messages must follow a standard to clarify the changes that
have been made. Each commit should only do one thing:

1. Each commit message should start with a verb ("refactored", "removed",
"fixed", etc) to specify what was done to the object of the message. Other-
wise "added" is assumed. (e.g. "Refactored Script.cs" or "Widget.prefab").

34

5 | Development Process Neodroid Playground

2. Each commit that has a correlation to an issue must reference the issue
with its number. (e.g. "Fixed #104: Collider getting stuck.")

Communication platform:

Communication channel is Discord using our server. Messages should be posted in
the relevant channel.

§6 Documentation

1. Each class and function must be documented using C# XML Docs. [25]

5.2.3 Roles

• Contracting entity: SINTEF Ocean SeaLab
(John Reidar Mathiassen, Jonathan Sjølund Dyrstad, Christian Heider Nielsen)

• Project leader: Halvor Bakken Smedås
• Scrum master: Halvor Bakken Smedås
• Log writer: Jone Martin Skaara
• Thesis supervisor: Mariusz Nowostawski

Playground Team

FULL TIME

ON
DEMAND

PRODUCT
OWNER

FRAMEWORK
CREATOR

LOCAL THESIS
SUPERVISOR

CONTRACTING ENTITY

PROJECT LEADER/

SCRUM MASTER

Figure 17: An overview of the involved parties in the development of Neodroid Playground.

5.2.4 Routines and Rules in the Group

• The agreed workload is 30 hours per week per group member (approximately 5
hours each weekday).

• We have a weekly sprint meeting on the first day of a sprint. In the meeting we
review the previous sprint, verify issues in the scrum-board, and move new issues
into the sprint backlog.

• After a meeting, we write a short summary of the topics that were discussed so we
can look back on details, and reflect on decisions that we make.

• Whenever an important implementation decision is made, it is documented so we
can reflect on them later and get a good overview of the progress of the project.

35

5 | Development Process Neodroid Playground

5.3 Test-Driven Development

Test-Driven Development (TDD) is something we wanted to apply to this project. The
goal of test-driven is to ensure functionality in the program, but also create specification
for it. We realized that using TDD would come at a cost of initial time use. One can argue
that the time cost is repaid as bugs are detected early, and will be beneficial to the project
over time, especially during the iterations of the architecture. We decided to use TDD for
our condition components as they were very important for the project, and very testable
by their boolean nature. This way we could ensure condition performance and still avoid
TDD taking too much focus away from the project.

5.4 Continuous Integration

We were intrigued to try setting up CI for our project as we saw a potential gain in having
a few different integration-processes running remotely while we kept working with the
code. The idea initially was to get a container up and running with Unity to compile our
project and run all the unit tests. This would be useful as we could set up an automatic
Git-mechanism remotely, where we would be able to push to an "untested" branch, then
leave the remote process to run all the unit tests. If successful, it would push the work to
a "tested" branch. This proved to be problematic as the CI-integration on the local GitLab
instance was not configured to have the needed Docker images to run Unity, nor were
there any available Docker images for the latest version of Unity. This made building
remotely impossible in the first place, as we (and the Neodroid platform as a whole)
utilize bleeding edge technologies from the Unity feature stack.

Branching was another concept we did not find necessary in the early stages of the
project. We did not meet any merge conflicts that gave us issues as we had individ-
ual Unity scenes and generally avoided working on the same scripts. When working on
larger features such as serialization and converting conditions to MonoBehaviour we
used branches to avoid breaking our master.

As the project grew in size and complexity the need for generated documentation
grew with it. We ended up using GitLab to run CI processes on code from our prod3
(NTNU Gjøvik’s local GitLab) repository. We then used GitLab’s deployed pipeline to
generate documentation and host it using doxygen.

36

5 | Development Process Neodroid Playground

5.4.1 Git Hooks

Figure 18: Sequence diagram describing how we applied git hooks and CI to our development
process.

In order to enforce a specific style of code, we introduced ReSharper CLI InspectCode [22]
as part of our commit- and push-processes by using Git hooks. With it, our code is linted
pre-push and a log of all bad practices in the commited work is printed, enforcing us to
correct them before actually pushing to the remote. Initially this was a bit of a hurdle
to get over, as we needed to get a few settings set up correctly using editorconfig and
DotSettings. Ironically enough, the documentation for doing so was a bit lacking, but
when all was set up correctly, it turned out to be a very valuable step in the process to
ensure good code quality and consistent coding style between the members of the group.

5.4.2 Doxygen Documentation

We revisited CI again when we realized that we could utilize it to automatically generate
reference documentation by having it run doxygen on our project files. This has since
been very useful by giving us an overview of the current state of documentation, and
to see where we are lacking documentation. Documentation is, after all, very important
in our project, as we are essentially building a framework for others to later utilize and
extend upon.

Seeing as we already had committed to working on the local GitLab instance, we
actually have an unusual approach to CI, where we have the two repositories: One with
our code, and one just containing the CI-instructions (listing 5.1) which was hosted
on the official GitLab instance, and was configured to have the pipeline running on a

37

5 | Development Process Neodroid Playground

schedule, once every day.

We later realized that we could host media files on the documentation pages. This
enabled us to reference and use these in our documentation on certain parts where we
felt graphical and practical explanations were required.

1 image: alpine:latest
2
3 before_script:
4 - apk update
5 - apk add git
6 - apk add doxygen
7 - apk add ttf-freefont graphviz
8
9 pages:

10 script:
11 - git clone "http:// prod3.imt.hig.no/justworks/playground.git"
12 - cd playground
13 - most_recent_branch=$(git for-each-ref --sort -committerdate

refs/remotes | awk -F ’/’ ’NR==1{ print $4}’)
14 - git checkout $most_recent_branch
15 - cd ..
16 - ’(cat Doxyfile; echo "PROJECT_BRIEF=Generated of a WIP branch:

$most_recent_branch") | doxygen -’
17 - mv ./docs/html/* ./ public/
18 artifacts:
19 paths:
20 - public
21 only:
22 - master

Listing 5.1: GitLab CI configuration for documentation generation.

In our configuration file we opted for using the smallest Linux image we found, as
we did not require many features from the running container, additionally there is a
benefit of shorter setup-time with smaller images. We obtain Git and doxygen as those
are the two essentials for obtaining the remote repository files and generating the doc-
umentation. We obtain graphviz, which is used by Doxygen to generate graphs for the
documented code.

As discussed previously, we are using separate repositories for our CI and our code,
as we could not set up CI on the local GitLab-instance. We found that this configuration
was nice to use as it does not clutter up the folder structure of the project (i.e. the code
repository), but rather kept them separate.

We clone the code repository in order to let Doxygen iterate over it, look for the
branch most recently pushed to (for development reasons, we thought it most useful
to see the latest state of documentation), to clarify this we also append a project brief
to the Doxyfile making the header of the documentation page show which branch the
documentation is generated from. The end result is that we have Doxygen generated
documentation hosted on the official gitlab domain. Please see footnote 1 for an example
of our documentation. Do note some of our classes are lacking in documentation and
specifications on the hosted page at the time of this writing.

1Playground documentation of the condition editor
https://justworksltd.gitlab.io/playground-docs/class_playground_1_1_u_i_1_1_condition_
editor.html

38

https://justworksltd.gitlab.io/playground-docs/class_playground_1_1_u_i_1_1_condition_editor.html
https://justworksltd.gitlab.io/playground-docs/class_playground_1_1_u_i_1_1_condition_editor.html

6 | Implementation Neodroid Playground

6 Implementation

6.1 Conditions

An AI learns a task within an environment. As such, it should hold restrictions and goals
that can be evaluated and propagated to Neo in the form of positive and negative signals
passed to a training algorithm. Conditions are abstractions of these goals and restrictions.

A condition always has a context, which is the SceneObject it is attached to. Most
conditions also have a concept of a relative component which they will use differently
depending on the nature of the condition. An example of a condition with a relative
is the PositionCondition (see full code F.1), which has a Transform-component as
its relative. This allows us to describe a position relative to another transform. Another
example is the TouchCondition, which has a Collider-component as its relative. As
such, the relative component’s GameObject is the one that needs to be touched in order
to satisfy the condition.

There might exist conditions that are not dependent on a relation with something
else in the scene, but rather on some internal state of the condition’s context itself. Such
conditions could be called absolute state-conditions, as they do not depend on anything
but their own state. Some theoretical examples of this would be IsOnFireCondition,
IsAliveCondition, IsOldCondition, all of which we deliberately named just as you
would with boolean variables and predicate functions, precisely because these conditions
would either be wrappers of booleans or of simple boolean expressions.

6.1.1 The Problem

It can become intricate and difficult for a user to define complex logical structures with-
out any prior experience with boolean logic. Conditions had to be simple in order to not
confuse the user. Our goal was to project natural language onto goals and restrictions.
Additionally, to combine the two so that the user only had to learn one system.

6.1.2 Evaluation

Each condition is self-contained in its state-evaluation, making conditions modular. Each
condition type implements their own unique evaluation function. The evaluation is one
of the two main differences between different types of conditions, the other being how
(or if) it uses its relative. For example:

public override bool Evaluate ()
{

var evaluation = _volume.InsideVolume(Context.transform.position);
return evaluation;

}

Listing 6.1: PositionCondition’s evaluation of state (see full code F.1).

39

6 | Implementation Neodroid Playground

public override bool Evaluate ()
{

return _isColliding;
}

Listing 6.2: TouchCondition’s evaluation of state (see full code F.2).

There are two types of evaluation functions: Active and passive. In the case of the
PositionCondition, the evaluation-function (listing 6.1) is active in the sense that it
continuously updates its own state. In contrast, the TouchCondition’s evaluation-function
(see listing 6.2) is a passive one as its state is updated externally by others, while the
evaluation-function only returns the currently stored state. In the case of TouchCondition,
its state is updated by collision events in Unity.

The implementation of the evaluation-functions of conditions can deviate a lot from
each other, although the pattern stays the same. This means that developers have famil-
iarity when creating new conditions, but still have flexibility in what they can do with
them.

To create your own condition you either make your condition a subclass of Condition
or of Condition<TRelative>. You then define variables needed to define the condition.
After this is done, the logic of it all is put into the overridden Evaluate-function.

In order to use the condition though, you will also need to define how to interact with
it in VR, which is a separate issue entirely (discussed in section 6.3.3).

6.1.3 Condition Relatives

Some conditions are more complex than others and many will depend on something else
in the scene. Therefore we wanted to allow conditions to have a relation with anything
in the scene, and so we opted for using C#-generics in one of the condition base classes
to defer this relation:

public abstract class Condition <TRelative > : Condition ,
Internal.IHasRelative where TRelative : Component

Listing 6.3: Foundation of conditions with a relative.

Doing this essentially generalizes the structure in a way that allows each condition to
have a relative of an arbitrary component-type, while still leaving the implementation of
evaluation up to the individual condition.

An example of one such condition is the PositionCondition. It holds a Transform
as its TRelative, allowing it to access said transform in its evaluation function. The
reason for this is that a position condition should be able to change based on the position
of another SceneObject: If you want a cup to be placed on a table, then you want the
condition to follow the table. You want it to be relative to the table, hence the name. It is
up to each condition derived from Condition<TRelative> to define what the relation to
their TRelative means by utilizing the relative’s properties in the evaluation-function.

40

6 | Implementation Neodroid Playground

6.1.4 Grouping of Conditions

To achieve a verbose logical structure, you need groupings of conditions into AND-groups,
OR-groups, XOR-groups and so on. condition groups themselves are conditions in our
system. We have a base group class that derives from the base class Condition. The
group class manages a list of conditions, which it uses to evaluate its own state. Let us
use the AND-group as an example:

public override bool Evaluate ()
{
// The base class ’ConditionGroup ’ implements IEnumerable <Condition >,
// allowing us to loop on ’this ’,i.e. the content of the underlying list

foreach (Condition condition in this)
{
// if we hit an unsatisfied condition , the AND -group by definition
// cannot be satisfied , do an early return for performance reasons.

if (! condition.Evaluate ()) return false;
}
return true;

}

Listing 6.4: AND-condition group evaluation function.

As seen in this example, just like in boolean logic, our AND-group ensures that there are
no member conditions that evaluate to false before returning true.

6.2 Playground Manager

The Playground manager is a singleton that handles state in the scene, presence of im-
portant objects and some central tasks like reloading the scene.

6.2.1 The Problem

In a scene, there is no guaranty that all necessary components are present. The environ-
ment engineer is required to populate the scene with a handful of objects that perform
critical tasks:

• VR player: the trainer’s presence in the world.
• Tablet menu and its corresponding laser pointer: the trainer’s means of interacting

with conditions.
• Actor: the AI’s means of interacting with the scene. Its reactions are performed by

the actor.

If any of these are missing, then the scene will not work as intended. It can be hard for
the environment engineer that builds the scene to manage these if there is no feedback
from the application.

41

6 | Implementation Neodroid Playground

6.2.2 Central Tasks

Evaluate the Scene

The Playground manager keeps lists of different kinds of GameObjects, one of which is a
list of all SceneObjects which it uses to update visual feedback regarding their state.

Setup

On start up the Playground manager will search for all key components. If some are
missing, it will try to instantiate them. It can fail if it was not configured with prefab
references to the object it is trying to instantiate. In that situation it will be unable to
instantiate them, and will instead print errors to let the environment engineer know
what is missing so they can add these references to the Playground manager, or add the
prefabs manually to the scene.

Another situation where this becomes relevant is the reloading of scenes. The scene
that is being loaded does not necessarily have all the relevant components, or it may
have them already. Duplicates of unique components can occur, in that case, only one
will remain, the others are destroyed.

Switching States

The application needed to switch between states, going between annotating a task and
running AI training. The Playground manager switches between states by enabling and
disabling objects in its lists.

6.3 The Player and UI

The player had no way of interacting with conditions or the application as a whole. We
were limited to SteamVR’s functionality like teleporting and picking up SceneObjects. In
order to set up a scene that is ready for AI training, the player needs to be able to select
SceneObjects, add a condition to it, specify which list it should belong to, group it with
others in condition groups and modify its values, as well as the rest of the use cases in
the use case diagram (see fig. 1).

6.3.1 Sub-Menus

When we initially developed our menu system, we wanted menus to be very flexible in
the way they were created and interacted with. We came up with a system which we call
Sub-Menus. Essentially sub-menus can have a hierarchy of child sub-menus that can be
moved around and interacted with using SteamVR. Trainer can change and move sub-
menus to other locations in the virtual environment to fit their workflow better. In prac-
tice, this means that the trainer can change the hierarchy of menus (see full code F.8).
The current menus do not utilize the strengths of the sub-menus to the best extent pos-
sible, as we needed the base functionality of the menus in place before focusing on
usability.

42

6 | Implementation Neodroid Playground

6.3.2 Floating UI and Laser Pointers

Tablet Menu

The user interface in VR is moved to be positioned above the trainer’s hand using spheri-
cal LERP (SLERP) for rotation. The menu also has a dead-zone that causes minute move-
ments to be ignored, making it easier to interact with 2D-widgets using the laser pointer.

if ((target.position - transform.position).magnitude > _posAlignmentDeadzone)
{

Vector3 vec = target.position
+ target.TransformVector(_initialPosition)
- transform.position;

transform.position += (vec - vec.normalized * _posAlignmentDeadzone)
* _posAlignmentSpeed
* Time.deltaTime;

}

//Rotation , slerping if outside deadzone:
float t = Mathf.Abs(Quaternion.Dot(transform.rotation , target.rotation *

_initialRotation));

Quaternion to = target.rotation * _initialRotation;
Quaternion from = transform.rotation;

Quaternion deltaTarget = Quaternion.RotateTowards(
to , from , _angAlignmentDeadzone

);

transform.rotation = Quaternion.Slerp(
from , deltaRotation , t * _angAlignmentSpeed

);

Listing 6.5: Menu alignment. The menu / laser pointer aligns with one motion controller each.

The player can also choose which hand they want the menu in by pressing the menu
button on their preferred hand.

Laser Pointer and Ray casting Input Module

The laser pointer uses the same script as the tablet menu to follow the player’s hand,
although without dead-zones and with much higher speed values. It is using both physics
ray casting and graphics ray casting. Physics ray casting is used to select SceneObjects,
and graphics ray casting is used to interact with UI elements/2D-widgets on canvases
like the tablet menu.

Our menu system is based upon Unity’s own menu system. We need to emulate a
mouse cursor on the canvas by translating the laser pointer’s RaycastHit into a canvas-
space position, and call events on the UI-elements under said cursor as the default mouse
input in Unity does (see full code F.9). To know our position in the menu we need to do
a graphics ray cast and that requires a camera [26]. The camera admittedly could create
overhead, but it’s disabled and is only used to perform a graphics ray cast. We also use a
low field of view and a sum of 1 pixel on the camera so even if it did render most of the
overhead would come from the extra draw-call.

43

6 | Implementation Neodroid Playground

6.3.3 Widget

Most widgets are generic classes in our system. A member of those is the ValueHandle<T>
which has the same generic specifier as the widget, as this makes it easier to set up an
editor with many widgets that operate on different condition properties (which most
often is the case). If an editor needs two or more widgets to operate on the same values of
a condition, they should do this by using these functions accessible through the widgets:

• FetchHandle(out ValueHandle<T> handle)
• SetValueHandle(ValueHandle<T> handle)

[ConditionEditor(typeof(SomeCondition))]
public sealed class SomeConditionEditor : ConditionEditor <SomeCondition >
{

//3D Widgets
SomeWidget3D _someWidget;
SomeOtherWidget3D _someOtherWidget;
ValueHandle <float > _someFloatHandle;

protected override void BuildUI_3D ()
{

CreateWidget3D(
widget: out _someWidget ,
valueHandle: out _someFloatHandle ,
initialValue: Condition.theFloatTheConditionDependsOn

);
CreateWidget3D(

widget: out _someOtherWidget ,
valueHandle: out var throwAwayHandle ,
initialValue: Condition.theFloatTheConditionDependsOn

);
_someOtherWidget.SetValueHandle(_someFloatHandle);

}

public override void OnPushChanges ()
{

Condition.theFloatTheConditionDependsOn = _someFloatHandle.Value;
}

}

6.3.4 Condition Editor Menu Generation

The condition menu is generated by each condition. A condition implements an abstract
function - BuildUI_2D(), which tells the editor to create all the necessary 2D-widgets.

ValueHandle <int > _dropdownHandle;
DropdownWidget2D _volumeModeDropdown;

\\ ... some other code ...

public override void BuildUI_2D ()
{

CreateWidget2D(
widget: out _volumeModeDropdown ,
valueHandle: out _dropdownHandle ,
initialValue: (int)Condition.volumeMode ,
setup: w => w.SetOptions(Condition.volumeMode)

);
}

Listing 6.6: An example of condition editor menu generation. This is the position condition, which
only has a single drop-down 2D-widget in its editor, controlling the type of volume the position
condition should use (see fig. 11).

44

6 | Implementation Neodroid Playground

This way of generating the editor panel makes it easy to create new conditions in respects
to UI.

A downside is that the editor menu will simply put the UI elements downward, one
after the other. More complex structures could be introduced by implementing a horizon-
tal grouping widget (similar to horizontal layout groups in other UI-frameworks). This
grouping widget would hold an arbitrary number of widgets, and divide the width of the
editor among the widgets it contains. This would be very useful in the case of labeling a
seek-bar, where you would want both to be on the same line with an uneven division of
the editor’s width. A solution like this would allow a more natural UI layout with better
utilization of the space to fit more widgets on the screen than it could otherwise.

Like every GameObject in Unity, our menu system uses the prototype pattern for
instantiating. We use a template menu (Unity prefab) to instantiate the menu in the
scene on demand. The prototype pattern is an alternative to the factory pattern and
offers a more lightweight solution to instantiating an object [27] (it also avoids complex
polymorphic structures which can become an issue with the factory pattern).

The current 3D-widgets (see fig. 15) should suffice in most cases. However, the envi-
ronment engineer can at any time create their own if need be. The documentation and
existing code should be enough to learn how to develop custom widgets.

6.4 System Serialization and File I/O

Serialization is important in many aspects of software. We need it specifically to save
SceneObjects to file. The project has some unique problems when it comes to serializa-
tion. Normally when you have a UnityEngine.MonoBehaviour you can let Unity serialize
the class for you, and the object will be stored in the scene file. The problem is that Sce-
neObjects are instantiated during run time and will therefore not be saved to the scene
and will also be destroyed when exiting run time. MonoBehaviour objects are also not se-
rializable with for example .NET serialization using the ISerializeableSurrogate [28]
when using multi-inheritance. The reason being that surrogate selectors do not support
inheritance in the sense of surrogating base classes (like MonoBehaviour) of a class as
the serializer is unable to select the proper surrogate in generics.

6.4.1 Condition Container

It became clear we needed a custom surrogate type; the ConditionContainer filled this
need. Since the container only holds the unique members of each condition and does
not have a rooted inheritance of MonoBehaviour, we could serialize these containers
and instantiate conditions when loading based on the container data. This solution was
deemed a "necessary evil" to get serialization working. Each condition needs to imple-
ment a GetDataContainer-function which a later component can use to serialize the
data.

45

6 | Implementation Neodroid Playground

public override ConditionContainer GetDataContainer(ConditionValue
conditionValue , bool inNestedGroupParam)

{
var container = base.GetDataContainer(conditionValue ,

inNestedGroupParam);

var pcc = container.CopyBasicValues <PositionConditionContainer >();
pcc.volumeBase = _volume;
pcc.volumeMode = volumeMode;

return pcc;
}

Listing 6.7: PositionCondition container creation (see full code F.1).

We tried to make the implementation of new GetDataContainer-functions as easy as
possible for the environment engineers. For this, it is useful to utilize the object ori-
ented nature of ConditionContainer by calling the base class’ implementation of the
GetDataContainer-function, so that the base class fields are serialized. Remaining fields
can often be serialized using functions like CopyBasicValues<TContainer>().

To summarize: when creating a new condition, a GetDataContainer-function needs
to be implemented. When implementing it, you should probably call GetDataContainer
on the base class to get a basic container. After this is done, you can get all the base
values set with CopyBasicValues<TContainer>() where TContainer is the container
type you have created to mirror your new condition’s serializable values. When this is
done you can simply copy your custom values into your custom container. We hope to
generate these containers in the future so that an environment engineer does not have
to think about this.

6.4.2 Condition Data Manager

The ConditionDataManager is a singleton that handles saving and loading containers
while maintaining the nested structure of the condition groups. As of now, it only sup-
ports byte data storage, but with the container system implemented, it should be possible
to use other forms of data storage as well, such as pure text-yaml.

The idea is that the ConditionDataManager should be easy to modify, so that we
could deprecate the container solution in the future, in favor of a better one.

To serialize a condition, it needs to create a custom container type which gets serial-
ized by the data manager. When loading, the data manager needs to load custom con-
tainers and restore their original condition’s data; like location in the scene and member
variables.

Just like MonoBehaviour, any other UnityEngine-namespace type does not support
System-namespace serialization. However, since these types are members of our classes
they need to be serialized in some way. The containers could contain extracted values
of Unity-types (for example 3 floats instead of a Vector3), but a more elegant solution
is implementing ISerializeableSurrogate for each Unity-type like Vector3. We have
some of these types wrapped as such surrogates and they are used in the data manager,
but an environment engineer can add new ones by implementing the interface for the
wanted type and use a function called AddSurrogate.

The manager also utilizes a simple ID-system. When a Condition or SceneObject is
created it requests a unique ID from the manager which will return said ID. This logic

46

6 | Implementation Neodroid Playground

is in the most basic condition type and the environment engineer do not need to think
about this. This ID is in turn used by the manager to identify its location in the scene and
grouping hierarchy. This means that groups are stored as a list of IDs. Conditions that are
part of nested groups become tagged as such.

When the manager saves, it saves the members before the group. When the manager
loads, it stores all the nested conditions in their container form. When a group is loaded,
the manager finds these unloaded containers and converts them to actual conditions in
the group.

6.4.3 Saves Editor Window

We found it useful to have an editor window for interacting with the saved profiles with-
out needing to go into VR. This tool makes it less tedious to load and save profiles,
especially if the goal is to run machine learning on a previously annotated set of condi-
tions. Potentially, one could create editors for instantiating conditions in Unity’s editor
instead of in VR, making this tool even more useful.

Figure 19: How the saves window looks in Unity’s editor.

The window made it easy to hot-swap and manage a scene’s profiles. In VR, the trainer
will, for the most part, just save the state into a new profile and occasionally load existing
profiles. Managing the saves is a process that is simpler to do with mouse and keyboard,
which led us to the decision of making this editor window.

6.5 Collision Detection and Physics Simulation

6.5.1 The Problem

Colliders

The colliders for mesh objects need to be easy to pick up and act as similar as possible to
how they would behave in real life. Unity physics have some limitations when it comes
to colliders and physics that operate on them. Concave colliders were not supported, so
convex colliders are the only option for mesh colliders. In other words, mesh colliders
cannot have holes.

This is problematic in our torus-on-pole-example, as shown in the animated gif.1 The

1Problems with convex colliders in Unity.

47

6 | Implementation Neodroid Playground

objects would not behave realistically, and the AI would not be able to learn from this
flawed data. There are workarounds like, dividing the object up into several colliders,
however, this is very time consuming for the environment engineer who will be building
the scene.

Figure 20: Convex collider vs manually built collider

Friction

The grabbing-physics is very important to the goal of the project, and a critical part of
the implementation. Since the focus is to have the grabbing work as realistically as pos-
sible, using object parenting is out of the question as friction is effectively infinite when
parenting two objects together. The other issue with parenting using Unity-physics is that
moving something by setting its transform’s position, is that friction is not calculated on
the objects, as seen in the animated gif.2 This was a huge problem because a part of the
task was to create a robot hand that would pick up objects using a motion-controller in
VR. Unfortunately, SteamVR’s Interactable works by setting the held transform’s posi-
tion. Setting a transform’s position directly also meant that the object that is held would
pass through solid surfaces, which was also a major flaw with parenting that needed to
be solved because of the requirement for realism.

6.5.2 SAColliderBuilder

Our problem was that colliders were too different from the mesh of the object. SACollider-
Builder solved this problem for us in most cases. SAColliderBuilder is a tool to generate
a collection of primitive colliders to approximate a concave collider. The process of con-
verting an object using a mesh collider, into an object using a SACollider is relatively
painless depending on the complexity of the mesh. It allowed us to make a torus with a
hole pretty fast, see it in the animated gif.3 Though, at times it is needed to tweak the
SACollider. In many cases, a convex collider will be better. However, for the objects that
have a concave shape which the collider needs to reflect, SAColliderBuilder saves a lot of
time.

https://justworksltd.gitlab.io/playground-docs/media/Gifs/Colliders/
issueswithcolliders210219.gif

2Panda hand has no friction.
https://justworksltd.gitlab.io/playground-docs/media/Gifs/Panda%20hand/VRSlippery.gif

3Torus using a SACollider.
https://justworksltd.gitlab.io/playground-docs/media/Gifs/Colliders/TorusWithHole.gif

48

https://justworksltd.gitlab.io/playground-docs/media/Gifs/Colliders/issueswithcolliders210219.gif
https://justworksltd.gitlab.io/playground-docs/media/Gifs/Colliders/issueswithcolliders210219.gif
https://justworksltd.gitlab.io/playground-docs/media/Gifs/Panda%20hand/VRSlippery.gif
https://justworksltd.gitlab.io/playground-docs/media/Gifs/Colliders/TorusWithHole.gif

6 | Implementation Neodroid Playground

A limitation of the SAColliders is that it generates primitives that all have an origin
somewhere on the surface of the mesh. Meaning that the SACollider will always have a
larger boundary than the corresponding mesh collider, making it less accurate by nature.
However, for our use, the accuracy is more than enough. If some edge case occurs where
the collider is too inaccurate, it can be adjusted manually. This takes significantly less
time than making the whole collider from scratch.

Figure 21: SACollider - A collection of primitive colliders generated along an object’s surface. The
pole uses capsule colliders, while the torus uses cube colliders.

6.5.3 Friction Solutions

Rigidbody’s Move Function

An early solution to the friction problem was using a Rigidbody’s move function
(someRigidbody.MovePosition(somePosition)) to translate the hand as shown in the
animated gif.4

Proxy Rigidbody

When moving something by setting the transform’s position directly, friction is not ap-
plied. We solved this by creating a target transform that is moved by SteamVR(setting
the transform’s position directly), then the actual object that needs friction sets the rigid-
body’s velocity to move towards the target transform as demonstrated in this animated
gif.5

Since it now uses velocity and angular velocity, we do spherical LERP on the rotation
to make it more realistic, as a robot hand in real life does not suddenly change rotation.
Other minor improvements this allowed, was to clamp both the acceleration and the max
speed of the robot hand to make it act more like the real life servo powered robot hand.
This approach also fixed the issue with the robot hand passing through solid surfaces, as
the motion-controller and the actual hand was disjointed, meaning the controller could
move through the wall while the hand collides with the wall and stops.

4Panda hand uses Rigidbody move function to calculate friction.
https://justworksltd.gitlab.io/playground-docs/media/Gifs/Panda%20hand/VRGrabby.gif

5Panda hand moves by proxy Rigidbody.
https://justworksltd.gitlab.io/playground-docs/media/Gifs/Colliders/GoodAgent.gif

49

https://justworksltd.gitlab.io/playground-docs/media/Gifs/Panda%20hand/VRGrabby.gif
https://justworksltd.gitlab.io/playground-docs/media/Gifs/Colliders/GoodAgent.gif

6 | Implementation Neodroid Playground

NewtonVR

Another solution to the friction problem was to use a package called NewtonVR[29].
It offers velocity based physics between motion-controllers in VR and Interactable ob-
jects. Unfortunately, we needed velocity based physics on an equippable object (the robot
hand), and NewtonVR did not have an implementation for this. If we had decided to use
NewtonVR for Neodroid Playground, we would have had to implement this extension
ourselves.

We ultimately decided not to use NewtonVR. However, if we had used it, we could have
gotten a few things like object collision sound as a bonus.

Logic Based Friction

Our last resort to solving our friction problem if all else had failed, would have been to
emulate friction using logic. We would approach this by calculating some value describ-
ing how good your grip on an object was. For example by how much force are being used
combined with how much surface area is supposed to be generating the "friction".

Using these two factors as a baseline, we would attach the object to the hand with a
joint. This joint would break if the force acting upon it became too great. This force limit
would be calculated using the surface area value, force applied, the physical material’s
properties of the object being picked up, and whatever other factors we could think of
that would improve the results.

There are many programming challenges with this approach, such as finding the sur-
face area. We could test if both fingers are colliding with the same object, but this is a
boolean value, and not a float. This means that getting a really bad angle on the object
would not matter, as it would still give perfect friction, which is not realistic behaviour.

Another issue would be how to find the force used in a reliable way. When grabbing
the object, we could potentially store at which distance both the fingers collided. Then
we could measure the difference in distance between where the fingers are, and how far
they want to go. Essentially, measuring how far into the object they would have gotten if
the object was not in the way of the fingers. Then using that distance as a value for how
much force is being used.

The Solution We Used

Because using a proxy-rigidbody to get friction worked as well as it did, and considering
how complicated logic based friction would have been, we decided not to attempt it. Im-
plementing logic based friction would have taken up a lot of time as well, while probably
still not giving ideal results. We decided on using the proxy-rigidbody solution instead,
as it provided promising results, had better scalablilty, and was a more elegant solution
in general.

6.5.4 Panda Hand Colliders

The robot grabbing hand on the Franka Emika Panda robot needed to behave realistically.
It consists of three bodies, the main body of the hand, and one for each finger. The fingers
are connected to the main body using the ConfigurableJoint class, and are opened and
closed with a script.

The fingers would fold unnaturally when it hit a static object since no amount of
spring/motor strength in the finger’s joint could overpower the infinite inertia of a static

50

6 | Implementation Neodroid Playground

object. It would fold on an axis it was supposed to be completely restricted in. This issue
was solved using collision layers, which we have illustrated in fig. 22. The four colours
of colliders highlight how the hand is split up in order to get the most realistic collision:
blue, green, yellow and red. The green is on the default collision layer, the blue is on a
second, while the yellow and red are on a third.

Figure 22: How the colliders of the Panda Hand are organized - Green collides with everything, blue
collides with everything except SceneObjects, and is used as a "shield", and yellow & red collides
with only SceneObjects

The green section collides with everything. The blue layer collides with everything
except SceneObjects. It acts as a shield for the fingers against static objects, like a table
or the ground. The yellow section of the collider only hits SceneObjects and acts like
metal in respects to friction values. Lastly, the red section acts the same way as the
yellow, however, it has friction properties that act more like rubber because it is the part
of the hand that is supposed to be the easiest to grab objects with.

In order for the blue "shield" to protect the fingers, it needed to follow them as they
slid back- and forwards. They could not be a part of the fingers themselves, as they would
then be affected by static objects the same way as the yellow and red colliders. The blue
"shield" is instead a part of the main body and is moved to the same location as the
fingers using the same script that is moving the fingers’ joints.

6.6 AI Training

The end goal of the system is to apply machine learning on an agent in a set environment
with a specific task to solve. There are several issues to consider in regards to this. First
of all, we need to have a working interface with Neo, meaning that we must create
our system as required by Droid to have a working connection with Neo, when there
is an Agent-process running. Furthermore, we must ensure that the evaluation of the
scene makes sense and works to get the intended behaviour from the agent. Also, as we
are using sparse rewards for the evaluation sent to Neo, we have to consider that the

51

6 | Implementation Neodroid Playground

machine learning will struggle to even find a reward at all. Especially when there is a
multi-dimensional action-space, which can cause the agent in our scene to get lost quite
quickly.

To counteract the issues of sparse rewards, we need to use reverse curriculum gen-
eration to ensure that the agent first is given simple states that it can solve easily. That
way it will learn those simple states and expand its frontier to learn how to complete the
task.

6.6.1 Interfacing with Neo

To ensure a functional interface between Neo and the Playground we needed to look into
how Droid establishes this connection between the learning-process and the environment
within Unity. For a visualization of this, see fig. 23 below. We got an impression of how
to set up a functional environment with Droid when we visited SINTEFfor a workshop.
When we started developing the Playground and established working environments for
machine learning, we found this prior experience to be really helpful. As it taught us a
lot about how the Droid system works internally.

Figure 23: Displays the relation between the Agent process and the scene containing Droid com-
ponents in Unity. Figure taken from the official Neodroid documentation [30].

In essence, we used a lot of the pre-existing components in Droid. Where we saw it
necessary, we implemented our own versions of the Droid-components. At its core there
are a couple of components required for Droid and Neo to work together correctly:

DroidEnvironment This is a container for the agent’s environment.

Evaluation This component evaluates whether an agent should receive a re-
ward or be punished depending on the state of the scene. Evalua-
tion can be implemented in several different ways, depending on
what the current task is.

Actor This component acts as the agent in a scene, fundamentally it works
as a container for the motors that the agent uses to interact with
objects in the environment.

Motors Components on an actor that can apply some sort of motion based
on the output from Neo. These are components that make it possible
for the actor to interact with the environment.

Observers These are the components gathering information (observations) on
objects in the environment, which is sent as input to Neo.

52

6 | Implementation Neodroid Playground

Taking these into account, we could for the most part use these components as they
were. We found the pre-existing motors and observers sufficient for our needs. However
we needed to implement a generalized Evaluation for any configuration of a scene.
All the existing Evaluation classes in Droid were very specialized. Thus, we created
the SceneStateEvaluation class that would take all conditions into consideration when
evaluating the state of the environment (see fig. 7). By doing this, we made sure that
no matter how many or what type of conditions existed in the environment, it would be
able to evaluate it correctly for the Neodroid-Agent module.

6.6.2 Sparse Rewards and State Evaluation

For the agent to learn the task correctly, we use sparse rewards. In practice, this means
that the agent will only be rewarded when successfully entering the intended goal state.
Which means that the signals it could receive are:

1: The environment is now in its intended goal state and the agent receives a reward
for this to emphasize that this is something it should work towards.

0: The environment is neither in a goal state nor a terminating state, meaning that
the agent receives a neutral signal that it has not caused anything wrong, but not
fulfilled the goal state yet either.

-1: The environment is in a fatal state, because the agent did something it was not
allowed to. This yields a punishment for the agent to emphasize that this is some-
thing it should try to avoid.

These signals originate from the SceneStateEvaluation which is traverses the con-
dition-logic-trees (as seen in fig. 5). The SceneStateEvaluation will go through each
SceneObject in the environment and its conditions each object will evaluate whether
they are fulfilled or not (see section 6.1.2). In other words, the SceneStateEvaluation
will go through a tree-like structure consisting of one list of terminating conditions, and
one list of goal conditions, as can be seen in listing 6.8 below, it will go through each
SceneObject in the scene. First, it will check for any terminating conditions, if these are
fulfilled it will return −1 and terminate the session. However, if no terminating condi-
tions are fulfilled, it will go through the list of goal conditions and the condition groups
within it. If any of the root conditions or condition groups are fulfilled, it will return 1 to
reward the agent for its actions which resulted in a goal state.

public override float InternalEvaluate ()
{

foreach (var sceneObject in sceneObjects)
{

if (sceneObject.TerminatingConditions.ConditionsInGroup > 0 &&
sceneObject.TerminatingConditions.Evaluate ())

{
ParentEnvironment ?. Terminate($"Entered terminating state on object: { sceneObject }");
return -1; // Terminating condition were fulfilled , returning negative signal

}
}
foreach (var sceneObject in sceneObjects) // Checking goal conditions after termination conditions
{

if (sceneObject.GoalConditions.ConditionsInGroup > 0 && sceneObject.GoalConditions.Evaluate ())
{

ParentEnvironment ?. Terminate($"Entered goal state on object: { sceneObject }");
return 1; // Goal conditions were fulfilled , returning positive signal

}
}
return 0; // No conditions were fulfilled , returning neutral signal

}

Listing 6.8: Scene state evaluation (see full code F.5).

53

6 | Implementation Neodroid Playground

6.6.3 Reverse Curriculum Generation

Using sparse rewards causes some issues when it comes to reinforcement learning, mainly
due to the low rate of signals. When an agent does not receive a positive, nor a negative
signal for its actions, it is difficult for the agent to learn how to solve the task. We are
working with an agent that has a multi-dimensional action space, the likelihood that the
agent will choose a correct set of actions to reach a goal state is very low. To solve these
issues caused by sparse rewards, we use a concept called reverse curriculum generation.
Fundamentally, this entails that the agent starts from simple states that are few actions
away from a goal state, and when it learns to recognize correct action sets from these
easier states, we expand its frontier by deviating further from the states it has learned to
recognize.

As of now, we do not have generic RCG implemented as intended. The reasons for
this are discussed in section 8.4. Our idea for how this would work can be broken down
in a few quite simple steps:

1. Put the environment in a goal state.
2. Put the agent next to the object that is in a goal state.
3. The agent applies some random motions on its motors until the amount of actions

required are just outside the agents frontier.
4. If the environment no longer is in a goal state and not in a terminating state either,

we save this scene state as a RCP.
5. Repeat steps 1-4 until we have a big enough sample size to start machine learning.
6. Apply machine learning on the samples collected.
7. Once the agent’s accuracy reaches a certain threshold from these RCPs we repeat

steps 3-6 again. However, now we use the previously generated RCPs as the starting
points, expanding its frontier.

This is simple in theory, but it gets quite advanced for environments with several complex
condition configurations. Furthermore, there could also be that some conditions that
depend on other conditions. With all of these factors to consider, an implementation of
RCG in our system will have to be carefully planned. Even though this is not something
we have implemented at this point, it is something we are looking to implement in the
future (see section 8.5).

We do have a simple proof-of-concept. Although it is not as functional as intended,
it does show how the concept works to some degree. This is further covered in the sec-
tion 6.6.4 below.

54

6 | Implementation Neodroid Playground

6.6.4 Simple Prototype Environments

To confirm that our interface with Agent was working as intended, we created a few
simple environments to be able to test this out. This way it was easier to see if the
Playground was implemented correctly, and whether it had any flaws.

Simple Franka Scene

The first time we set up a prototype environment to test our system for connecting with
Agent and for testing our conditions in practice, we created a simple scenario where a
robot would try to move its hand into a specific volume (using PositionCondition). The
scenario was very simple as we did not have any reverse curriculum generation yet. For
this agent, we used an actor consisting of the Franka Emika Panda robot arm, created by
Franka Emika GmbH [3], which is one of the robots SINTEF has been using.

Figure 24: Scene with a very simple task for the Franka agent to solve. The task is to move the
hand (marked with blue) into the goal volume, and stay outside the terminating volume

To mitigate the issues with not having RCG set up yet, we tried to create a really
simple case where the actor would also be put very few actions away from the goal state.
This did work to some degree. However, we did not find the agent to be very clever
in that we did not see any significant improvement in its learning. It would appear to
be relatively random whether the agent made it to the goal or not. This is not really
unexpected, as the agent still needs to perform a multitude of actions. Even when we
placed it very close to a goal state, the action-to-reward rate was too low to learn from.
In other words, the action space and chance of getting off track is very likely, despite the
task at hand being so simple. Have a look at this gif to see it in action.6

6Franka robot arm training example.
https://justworksltd.gitlab.io/playground-docs/media/Gifs/AI%20Training/TrainingStart.gif

55

https://justworksltd.gitlab.io/playground-docs/media/Gifs/AI%20Training/TrainingStart.gif

6 | Implementation Neodroid Playground

Figure 25: Franka Emika Panda achieving its goal condition. The graphs displayed are debug in-
formation and machine learning information from Agent. The red graph displays the signals the
agent has received (rewards), the green displays the duration the episodes’ lasted, and the yellow
displays its entropy.

It is worth mentioning that it seemed to make some progress after many iterations,
but because the rate of completion was very random, the progress seemed to be very
slow. If this scenario had used RCG, the number of actions done in each episode would
on average be significantly lower because the likelihood of completion would be a lot
higher. Whenever the agent completes the task, it would be rewarded and go to the next
episode. This would help emphasize what is important in the environment for the agent
as well as speeding up the whole machine learning process drastically. We worked out
a way of approximating reverse curriculum for another simple environment, which is
covered in the next section.

56

6 | Implementation Neodroid Playground

Rolling Ball Scene

We made a simple scene to showcase our system working with Neo to train a ball.
The scene consists of five cubes and one ball. Four of the cubes have a terminating
TouchCondition on them, and the remaining cube has a goal TouchCondition. The
ball is a Droid actor, meaning that with a proper Neo environment the ball takes actions
and learns from the Playground scene’s feedback. The goal is randomized to be either
up, down, left or right.

Figure 26: Simple ball-agent scene.

We also simulate RCPs in this scene by using Linear Interpolation (LERP) on the ball’s
spawn position based on the agent’s accuracy. Right now this accuracy is independent of
where the cube spawns. So the success rate is global and not relative to where the goal
is (up, down, left or right). We would like to iterate this later. LERPing the ball’s spawn
position does to some degree work as an approximation of what reverse curriculum does,
it is not as accurate. With working RCG, we would ensure that the agent would always
expand its frontier every time its success rate had reached the desired threshold. Meaning
that the agent would only have to apply one new set of actions on its motors to get to
a state it could recognize. With LERPing the spawn position, we approximate the same
thing, but there is a lot more room for errors. When LERPing; the agent will be less likely
to fall into a state it could recognize from previous episodes. Even though it is not as
precise as we would like, this scene does show the proof-of-concept to a certain degree.

It is worth mentioning that in a real scenario, one probably has a more complex
environment than this, so the proof-of-concept using LERP, although seemingly working,
would probably not scale to such a complex environment.

57

7 | Testing and Quality Assurance Neodroid Playground

7 Testing and Quality Assurance

7.1 Pair Programming

Pair programming is a work procedure where two or more programmers work on the
same screen to solve a problem. The persons with the keyboard is a driver while the
others are navigators [31].

Pair programming was used when a problem was deemed complex in nature or very
ambiguous in how one should solve it. Conditions were always very essential to our
project and because of this, we pair programmed the conditions the first week. This also
helped us share ideas about conventions. UI was also one of the bigger parts in the system
and was designed and created through pair programming and -revision.

7.2 Test-Driven Development

We wanted to integrate TDD into our work process when developing the conditions as
they are logical in nature and, in theory, easy to unit test. Unity test runner, an inte-
gration of Nunit (a framework for developing unit tests in C#) in Unity was our best
contender [32]. The framework supplies functionality that you can come to expect from
a unit test framework, like executing tests in any order through code (and GUI, and
CLI), common setup and teardown functionality between the execution of tests, multiple
assert functions, and so on.

7.2.1 Creating Good Tests

According to Microsoft [33], there are five main characteristics of a good test:

Fast Tests need to be fast as the number of tests can become very high. This
is true, but not a key point in our project as tests are mainly used while
developing conditions and not the whole system.

Isolated It is also important to stride for isolation of tests, so that they do not
depend on mutable data to work properly.

Repeatable Repeatable tests are something we have been striving towards. Admit-
tedly, some of our tests are not always repeatable as they are based on
physics, and may change based on this (because physics in Unity is not
deterministic). This could cause some tests to fail even when they should
not.

Self-Checking Self-checking is something all tests become if you write unit tests in a
proper framework. In our case, a test needs an "assert" to work and will
be self-checking in nature.

Timely Timely is another thing you get for free by using a proper test frame-
work. Examples of Quality of Life (QOL) features from Unity Test Run-
ner are the teardown function, setup function, and data source (see full
code F.3).

58

7 | Testing and Quality Assurance Neodroid Playground

We used the AAA (Arrange Act Assert) pattern when writing tests. Unit tests should
start by arranging the scene, then act upon the built scene, and finally, assert that the
result of the action is the expected outcome.

7.3 Git Hooks

We wanted to apply CI to our work process, but working on NTNU’s deployment of
GitLab 1 meant that we did not have all GitLab’s functionality. There were some desired
behaviour we wanted running upon a push, including: automatic linting of pushed code,
execution of written tests, generation of documentation when pushing new code.

Our supervisor advised us to implement some git hooks to get this done instead (as we
were unable to set up CI initially), which could do all of these things in theory although
in a more inconvenient manner as it involves running the processes locally before a push.

Figure 27: Output from ReSharper [22] linting on pre-push hook.

7.3.1 Result

We made a batch script that moves the hooks from the repository into the .git-folder. The
hook itself is used to run ReSharper CLI to do basic linting on the commited code. It also
checks the commit message to make sure it follows our conventions. The result is that
if you are trying to commit code that does not follow the agreed-upon conventions or
make invalid commit messages, it will cancel the push and provide feedback on why the
push was cancelled.

1NTNU Gjøvik’s deployment of GitLab - http://prod3.imt.hig.no/

59

http://prod3.imt.hig.no/

7 | Testing and Quality Assurance Neodroid Playground

7.4 Profiling in Unity

7.4.1 System and Environment

The laptop used for the profiling was an MSI GL62 6QF-1418NE

Storage RAM CPU

Type SSD
Memory
size

8 GB Model
Intel Core
i5 6300HQ

Read 534MB/s
Memory
speed

2133 MHz Cores 4

Write 178MB/s
Memory
type

SO-DIMM
(DDR4)

Clock
speed

2.3 GHz

GPU: Nvidia GeForce GTX 960M

Vsync (Vertical Sync) was enabled with 60 FPS during the profiling session. We also
conducted tests using only PositionConditions as they are the most used condition inter-
nally, has a decent amount of member data, and a relatively complex evaluation.

The specs used to conduct the profiling are below our recommended specs, but will work
to showcase how scalable our system is.

7.4.2 Conditions

Condition evaluation is something that in theory might happen every frame. Because of
this, we think performance is essential.

Evaluating 1000 Conditions

Figure 28: Profiling evaluation of 1000 conditions.

The evaluation time of 1000 false PositionConditions is between 0.25-0.4 ms. Using an
average of 0.33ms and dividing with the number of conditions gives us an evaluation
time of 0.00033ms or 330ns per condition. It’s worth noting that if for example the first
of the 1000 conditions were true, none of the others would be evaluated as the grouping
is an OR-group.

60

7 | Testing and Quality Assurance Neodroid Playground

7.4.3 Saving and Loading

Prior to our conducted tests, we tried reloading a Unity scene to see how long it would
take to reload, which on average was 70 ms on our system. We also note that a high
condition count will slow down and can potentially crash the inspector if a SceneObject
with high condition count is selected in the Unity inspector. This is expected, as the
inspector will execute evaluation and redraw for every condition (in order to visualize
condition fulfillment). Hence the loading of a scene with such a high count of conditions
should not be used for editor inspection, but rather for editing conditions on an existing
profile or to run machine learning on the environment.

Loading 1000 Conditions

Figure 29: Profiling loading 1000 conditions.

The result of loading 1000 PositionConditions is about 519 ms load time (script time used
on the load frame) - Approximately ~0.519 ms per condition.

Loading 15000 Conditions

Figure 30: Profiling loading 15000 conditions.

The result of loading 15000 PositionConditions is about 27883 ms load time. The resulting
load time per condition is ~1.86 ms. That’s about ~360% increase in load time per
condition compared to the 1000 condition result.

61

7 | Testing and Quality Assurance Neodroid Playground

Results Discussion

We are not sure about the cause of the increased load time per condition. Our guess is
that it has to do with caching of the groups’ lists becoming segmented after a growing
to a certain size. Naturally, a user will probably never get 15000 conditions in a scene
unless they are doing some benchmarking of their own. It gives us some insight into the
performance cost of conditions and load time that’s why it’s worth looking at.

We would like to improve load times in the future, but it would require a total rewrite
of the save/load-system. There are some things we could change in the current system.
For example: at the moment it loads a container of the condition and then converts it. It
would likely be faster to collect all containers and convert them all at the end instead.

7.5 User Interface

When we developed the menus for conditions, we created a quick prototype early in
development. This was due to the fact that we wanted to have the program flow as
early as possible. That way, we could iterate through initial design decisions and work
on improving parts of the system whilst maintaining an operating program flow The
prototype gave us access to test out more functionality in development, but it had a few
flaws: It was very hard-coded and had a specific sequence flow, which was not something
we wanted for the end product. It also caused this menu to lack certain features, like
observing what conditions a SceneObject already contained, or modifying the properties
of those conditions.

Another issue with the prototype menu was that it required a lot of "clicks" from the
user, creating a less fluid experience.2

Figure 31: How one of the states of setup within the prototype menu looked like.

2Demonstration of prototype condition setup menu.
https://justworksltd.gitlab.io/playground-docs/media/Gifs/UI/earlymenuversion15022019.gif

62

https://justworksltd.gitlab.io/playground-docs/media/Gifs/UI/earlymenuversion15022019.gif

7 | Testing and Quality Assurance Neodroid Playground

7.5.1 Minimizing Number of "Clicks"

When we implemented the revised tablet menu for the Playground, we had the prototype
menu’s flaws in mind. We knew there were several things to improve upon, particularly
creating a better user experience by reducing the number of "clicks" needed within the
menu to achieve the same thing.

Figure 32: How the current condition overview menu looks like. The two empty columns represent
the goal list and terminating list, as can be seen in fig. 13.

We immediately felt that this design was a lot better, even though it took some time
to implement the way we wanted, as UI in VR can be quite challenging to do correctly.
The new menu uses drag-and-drop interactions and some clicking, whilst the prototype
menu only used clicking. So we can compare them by number of interactions instead of
number of "clicks":
To instantiate a new condition, the prototype menu required at least 8 interactions:

1. Select context SceneObject.
2. Confirm context selection.
3. Select relative SceneObject.
4. Confirm relative selection.
5. Select condition to add.
6. Press ’Apply Conditions’.
7. Edit condition’s values.
8. Select state type (terminating state or goal state).

With the current menu we managed to reduce the number of actions required to 4:

1. Select context SceneObject.
2. Drag-and-drop condition to add into terminating list or goal list.
3. Select relative SceneObject.
4. Edit the condition’s values.

One factor that allowed fewer interactions was the fact that any action can be undone.
This menu allows a user to edit or remove existing conditions, thus, there is not a lot of
confirmations required from the user. Further, as all information is available in the menu’s
default view at all times, the whole interface is easier to manage for the user.

63

8 | Discussion Neodroid Playground

8 Discussion

8.1 Implementation Specific

8.1.1 Unit Testing

Testing Gains

We decided early on that conditions should have tests covering their use. Parallel to the
creation of conditions, we made tests utilizing them. Most of the tests were made before
the conditions as is most common to do in TDD. These tests have saved us some time as
we discovered some condition-states previously not thought of.

We got what we wanted out of tests: We ensured working conditions throughout
development, and the tests we have made can now serve as examples for future additions
to the code base.

Refactoring

Our current tests are problematic at best. Some of them use physics-frames to work,
meaning they are neither deterministic (see section 7.2.1) nor fast. This is planned to be
phased out - Full code F.3 is a refactored example that runs in edit time (i.e. no physics-
frames) instead. We plan to move most existing tests to edit time in the future. Some tests
like those in TouchConditionTest (see full code F.4) will still require physics-frames to
pass, to let Unity raise events.

8.1.2 Use of Namespaces

Conventions

One should not take namespace names for granted. There needs to be a certain clarity
and transfer of information when reading a namespace name (just like general naming
in code). Microsoft defines good naming of namespaces as follows:

<Company>.(<Product>|<Technology>)[.<Feature>][.<Subnamespace>] [34]

There is a good reason for this convention, especially the first part "<Company>". If
a developer wants to use two systems called Playground by different companies, then
they would be unable to. If both namespaces were used, they would get "symbol already
defined" as the two namespaces collide.

Microsoft also has some other rules regarding namespaces:

• Use pascal casing when naming namespaces.
• Do not inlcude version number in the namespace name.
• Consider using plural names where approperiate.

64

8 | Discussion Neodroid Playground

Our Namespaces

We have tried to follow Microsoft’s naming convention. We contravene one of the main
rules. As of writing this: we do not work directly for SINTEF nor NTNU, and because of
this we are not starting our namespaces with a company name, though this can easily be
done later.

Our namespaces are as followes:

Playground - For components that are meant to be extended and used by external de-
velopers

Playground.Internal - For components that are designed to be "hidden" from external
developers. This simply means that they ultimately should not need to be used
directly, they are only used by internally by other systems.

Playground.SaveSystem - For the core save functionality. We chose a unique namespace
for this module as it is one of the main modules we would like to rewrite and
change in the future. Making a namespace makes it easier to do so. It is also one
of the larger modules. Note that we do not follow the plural rule. As it is a single
system namespace we deemed it appropriate.

Playground.UI - For all our UI related components. Just like the SaveSystem, the size of
the UI system justifies its own namespace.

Playground.Tests - For unit tests and testing utilities.

8.1.3 Discarded CI Functionality

As mentioned, the GitLab CI pipeline did not work locally, and therefore we were un-
able to be deploy a Docker container that would run tests, do linting, and generate
documentation remotely. All "CI" functionality was, for most of the development-time,
implemented using git hooks.

Some group members used the first week of development to look into this. The Unity
CLI was the first thing that wanted to have running remotely. There were no existing
docker images of the Unity verion we used, and it was deemed too much work to make
one from scratch to get it to build and run test, and was therefore discarded within
the first days. We then tried to have a git-hook run the tests automatically locally upon
pushing, but the Unity CLI did not allow this if you had a Unity process already running.
Any attempt at making a workaround did not fix this issue and automatic testing was
therefore discarded.

8.1.4 Graphical User Interface In Virtual Reality

One of the feature sets we had the most difficulty with was GUI. We were surprised by
how little of Unity’s GUI systems worked out of the box with VR. Subsequently, we spent
a lot more time on it than we anticipated. We did not spend much time researching
packages that could have helped us with this, which we should have in hindsight, as GUI
is something most applications need. If we had found a suitable package to help us, we
could have saved a lot of time.

65

8 | Discussion Neodroid Playground

8.1.5 Using Git with Unity

Unity tends to generate a lot of Binary Large Object (BLOB) data by default, and Git
happens to be pretty bad at handling BLOB data. Fortunately, Unity has an option to force
yaml-serialization, meaning we will not have binary-file conflicts. However, it is still very
difficult to properly merge if a conflict arise in such a yaml-file, as they barely human-
readable. [35] To avoid this problem, we decided early on to work on separate files of
this type (scenes, meta files, prefabs, asset files, etc.). Additionally, whenever pushing
asstes, we ensured the corresponding meta file was included in the same commit. This
strategy worked fine for us.

Git LFS

One of the shortcomings with Git is that it is slow at transferring large files. We enabled
Git Large File Storage (LFS) to handle large files in our project. Git uses HTTPS to transfer
the files separately, and so by using LFS, we are sparing Git these large file transfers.
Using Git LFS in projects with large files improves pull-/pull times significantly.

Project File Structure

Figure 33: Project File Structure

From previous experiences, we knew that working actively on files within Unity’s default
folder Assets can be tedious when trying to add files for commit in Git. It also tends to
create messy navigation within Unity in the Assets-folder, as it tends to get filled up with
a lot of other files (from external plugins and packages). For these reasons we used an
_Assets.folder as our main folder, making Unity place it on the top in the project window,
and allowing us to separate our project files from external files.

66

8 | Discussion Neodroid Playground

8.1.6 Optimizing Evaluation

It’s is worth starting this section by mentioning that the performance of condition evalu-
ation has not been a problem in our current tests (see section 7.4.2). We admit however
that the current evaluation is not speed oriented. Although we would like to make evalu-
ation faster, we do not want to trade in readability for speed when speed is not an issue.
There are some things that we could do in theory to increase the speed while maintaining
readability.

We are already optimizing evaluation speed by ending the evaluation if we find a
SceneObject to be in a terminating state. By evaluating terminating conditions on Scene-
Objects before its goal conditions, we ensure that we end evaluation early if the environ-
ment is in a TerminatingState (see fig. 7). However, there are several other ways we see
as potential candidates for improving performance when evaluating the scene state:

Multithreading is the first improvement we would like to introduce. The groupings
of conditions allow us to create threads to evaluate larger groupings. In the case of
SceneObjects, we could dynamically create threads when groups are deemed big enough.
Since the group structure is branching, we could also create threads when there are big
enough branches where the gained speed makes up for the overhead of creating a new
thread. This would come at the cost of introducing complexity to the code and although
complexity does not imply worse readability, it usually is a precursor to it.

The second improvement we could make is usage of Data oriented programming. It
usually results in a great speed boost when handling big sets of data, as you move the
data from the heap to the stack to allow the Central Processing Unit (CPU) to cache data
more optimally as relevant data is in most cases sequential in memory. You achieve this
by separating data from logic so that data can be arranged into arrays. The mindset of
this paradigm originates from something called a Von Neumann bottleneck, which has
become an increasing problem in software performance. This is when the CPU has to
wait for the transfer of data between it and the Random-Access Memory (RAM) [36].
The problem is alleviated with the use of data-oriented design, as it drastically decreases
the amount of cache-misses because of the sequential layout of the data. The paradigm
also allows for easier multithreading as types are placed in arrays. An arbitrary amount
of threads can then iterate an assigned array and process it. This can lead to more cache
misses and would have to be tested before applied in production.

Another potential optimization of condition evaluation as the system is now, is sorting
SceneStateEvaluation’s list of SceneObjects based on how many conditions they have
in their terminating condition groups. Larger groupings within a SceneObject’s terminat-
ing list are evaluated first, as they are more probable to terminate the session early (in
theory).

After there are no more SceneObjects with terminating conditions, the evaluation
could sort on condition count and stop the evaluation loop when it reached the first
SceneObject without a single condition. Since SceneObjects without conditions always
evaluate to true, there is no need to change stack frames lots of times when evaluating
potentially thousands of empty SceneObjects.

67

8 | Discussion Neodroid Playground

8.2 Project Planning

Our Gantt chart (see fig. 35 in appendix G) describes some of our initial milestones. As
the module we were developing did not have any hard requirements on what it should be
able to do or how it should be implemented, therefore these milestones had to be taken
with a grain of salt. This is because the scope could easily change over the course of the
project due to its agile nature. So when talking about milestones, one has to know that
they were desired features to have implemented at certain times of the project, but they
were not necessarily needed to be implemented within the time frame we had initially
set.

8.2.1 Actual Milestones

Looking at a few of the milestones, we see that we did not really fulfill the set dates
for completion. Take the GameLoop-milestone as an example - this was something we
wanted to have early due to experiences from earlier projects; as it can end up being
a lot of work to sew and couple things together if we do not consider the game loop
early. We did think about the program loop early. The loop consists of several parts. One
of the first parts we had was being able to annotate conditions in a scene, where they
are contained in SceneObjects with some standards being defined there to some degree.
We ended up having a loop with the Neodroid platform about one month later than
the intended milestone date, around the middle of March. Although there are still some
missing key points in this, like RCG, there are some hacked solutions in the system as
a proof-of-concept. This is something we will look into in the future, as we will also be
working with SINTEF this summer.

We moved away from referring to the milestones, and moved over to user-stories
instead over the course of the project. We saw this as more suiting for the development.
It allowed us to fill them into our scrum-board and move them over to the completed-list
when they were implemented and verified.

User-Stories Completed

• Point to a SceneObject and add a condition (end of February).
• Verify that conditions are setup correctly by manually putting objects in their sup-

posed goal states and terminating states (beginning of March).
• Start learning phase with robot arm after task annotation (middle of March).
• The user can save and load conditions into the scene through a editor window

(beginning of April).

68

8 | Discussion Neodroid Playground

8.3 Work Reflection

8.3.1 Scrum

How we used Scrum

We used Scrum as our development model of choice. The issue board has been a fantastic
tool to help us organize our workload. We have used GitLab’s issue tracker, which we
have used extensively. Issues are made for every task we come up with, and its issue
number is referred to in commit messages that are relevant. Throughout the development
we have not been punctual in relation to the activities and routines related to Scrum.

Deviation from Scrum

Scrum uses sprints to divide the work period into manageable chunks, with routine meet-
ings to discuss the previous sprint, verify functionality, estimate the coming tasks and
problems, and assign work to the developers. In the start of the project, we were more
punctual. We had sprint meetings every Monday, and the first part of the day was dedi-
cated to the sprint meeting. As the deadline moved closer, we stopped having the sprint
meeting and continued working instead. We chose to prioritize productivity over blindly
following structure. This is a risk we took, as the lack of management had the risk of
hurting our productivity. Being less strict about meetings worked out for us because of
proper communication about issues and other details through channels like the reposi-
tory and Discord. Every day we worked in the same room, making it easy to quickly ask
each other questions, ask for help or discuss issues on the board.

8.3.2 State of Completion

Figure 34: Time delegation percentages of major project topics in the implementation phase.

The current state of the project is that a lot of the architecture is there, and the main
components are working as intended. The features we decided to focus on the most, got
to a state where they are feature complete and without major known bugs. However, as
fig. 34 suggests, three of our core features were still worked on at the last day of devel-
opment. These being condition implementations and testing (like PositionCondition),
Widgets (functional 3D- and 2D-widgets) and the tablet menu. This is because these fea-
tures are not fully implemented at the time of writing. There are two main reasons for
these components being incomplete: The first reason is that we have focused more on the
framework and underlying architecture rather than front-end parts of the application.

The second reason is that the task itself was very open-ended in what way we wanted
to approach it, which led to us creating a too big of a scope to manage within the time
limit of the project. Though, it is worth noting that despite the large scope, we feel we

69

8 | Discussion Neodroid Playground

managed to keep our focus on the most important aspects for the final product, and still
delivered something that works because we focused on minimum viable product.

At different times in the development, we learned to be able to take a break from
certain modules we had started on. This was the case for less vital tasks, or if a task would
take too long to compared to what benefit it would provide. One example of a system
like this is the SubMenu system as shown in fig. 34. These were features we wanted, to
make a better experience for the end user, but we realized during development that the
tablet menu was more important, and had to be prioritized. Even though the SubMenu is
partially deprecated, parts of it were used to create the current tablet menu, so it was not
like all the work was discarded. We also intend to expand on the features we did not get
to fully implement when we are going to work at SINTEF as explained in section 8.5.

8.3.3 Group Work Reflection

Work Commitment

Throughout the project, all group members have been hard working. There has been
very little absence of members in our group, and full day leaves have always had a good
reason and been communicated.

Punctuality related to meeting times were a little lacking. This was not a big problem
for us since all group members still were productive. It did not matter if a member
showed up on time, as long the member showed up eventually during the meeting, and
they got the agreed amount of work done. This flexibility meant that some members
worked the night before a meeting, and were a bit late to the meeting. While others did
not work much from home but worked the agreed time during the meeting. We believe
this flexibility has had a positive impact on productivity as members could work when
they felt like it without feeling that they were forced to work more than others. If we
had been stricter, members might have chosen not to work when they would be most
productive, and wait for the meeting where they would be less productive.

Attitude Towards Structure

Although we assigned specific roles with responsibilities, we have not felt the need to
enforce that rigid structure. The roles in our project like the log writer (Jone Martin
Skaara), were assigned because we needed to ensure those responsibilities were fulfilled.
However other members have also been handling this responsibility, resulting in an even
distribution of work. Each member was encouraged to write reflection notes about the
features they had been working on. We learned more from each other as we got to read
each others’ reflections on the problems we encountered.

Another of the roles we assigned was project leader (Halvor Bakken Smedås). The
main function of the group leader was to make decisions when there were disputes in
the group. In the case where a vote resulted in a tie, the group leader would have two
votes, effectively being the tie-breaker. We never had to use this as we primarily managed
to discuss our options until the group met an agreement.

Communication

As mentioned we used Discord for communication. We had one channel for bachelor
related discussion, one for off-topic discussion and a final for communication with the
supervisor. This really lowered the bar for what was an acceptable post. You could write

70

8 | Discussion Neodroid Playground

about, or link to anything in the off-topic channel, even if it was just something insignifi-
cant like a funny tweet, or a nice shader. All but the supervisor-channel was internal and
is not visible to the supervisor, meaning we did not have to write formally. We feel this
created a better group dynamic, as not all group members had worked together before.
This lets us share interests and get to know each other better, which overall led to better
work morale.

Portable VR for Testing

When developing for VR, a VR headset is required to test certain aspects of the functional-
ity, some of the functionality can be tested without a VR setup, for example, serialization
while other functionality like UI requires it.

During the implementation phase of the project, we had access to a MR headset.
We set this up in whatever room we were working in that day. This meant that any
functionality members had changed or expanded on from home could be tested in group
work the next day. A positive side effect of this was that the functionality would be
subject to pair review, opening for suggesting improvements and uncovering problems
that would not have been discovered if it had been tested only by the developer who
made it. It also served as a demonstration to the rest of the group that kept everyone up
to date on the status of the different UI features.

Emulating VR Input

Some things related to UI needed a VR headset to be properly tested. When one was
not available to a group member who was working on UI, they would be unable to
test the functionality they were making. We solved this by emulating the behaviour of
a VR headset and were able to test the UI using this system. An example of this is the
drag-and-drop of conditions within the condition overview menu. for an animated gif
demonstrating this, see 1.

8.4 Alternative Choices

In retrospect, there are some things we probably would have done differently if we ap-
proached this task again. First of all, when we had our workshop in Trondheim at SINTEF,
we made a simple game with Droid, to apply machine learning on it with Neo. However,
the game we made was not really suitable for RCG, and as a result of that, we did not
get a chance to properly understand RCG with Neo and Droid. This has led to us not
having worked out RCG in Playground. It is however something we will be looking at in
the future (see section 8.5).

Secondly, we initially created conditions as pure objects. The reason for this was
that we did not think we needed all the overhead functionality you get from using
Unity’s MonoBehaviours. However as the project went on, we ended up migrating over
to MonoBehaviours after all, this gave us free Unity serialization for inspecting data in
the editor, but it made it hard to do any .NET-serialization (or use other libraries that
serialize). We did this migration due to serialization problems with more complex pure
C# classes in Unity. As the system required some restructuring when it got the point were
we needed serialization. We acknowledge that we should have gone for MonoBehaviours

1Demonstration of VR laser pointer emulation.
https://justworksltd.gitlab.io/playground-docs/media/Gifs/UI/laserpointer_emulate.gif

71

https://justworksltd.gitlab.io/playground-docs/media/Gifs/UI/laserpointer_emulate.gif

8 | Discussion Neodroid Playground

in the first place, while also thinking more about the design of the different systems in
regards to serialization earlier on.

When the Playground Manager was drafted we did not think about the pattern and
ended up using the manager pattern. We talked about Unity’s paradigm (see section 3.1)
previously. The component pattern works great for decoupling large classes into more
modular and maintainable code. What we realize is that Playground Manager’s tasks are
too ambiguous, therefore the component pattern would have been the better alternative
as we could decouple the logic into smaller components while still having a manager
GameObject that contained said components. In theory, the components would make the
code more maintainable and decoupled for further potential restructuring.

The private pattern could be used in our project. The private pattern is when you
have a dedicated private data class for your main class [37]. As the serialization at the
moment uses a container class of each condition, it would be easy to apply this pattern to
existing conditions. It would also simplify the logic of serialization as the classes would be
interchangeable without any custom logic. Potentially, it could break Unity-serialization
and we therefore decided not to use it. Admittedly, the benefit of the private pattern is
just speculation on our end, as we have not tested it because it struck us as an opportunity
too late in the project.

8.5 Future Work

There are a few missing key points in Neodroid Playground that we would like to have
fully implemented, like reverse curriculum generation. We have also focused a lot on
making the PositionCondition full code F.1 work as well as possible, as we see it as
the most essential condition. For future development, we wish to expand our set of con-
ditions and look more into how other conditions should be implemented. This will make
the system more viable for a wider range of tasks that would need to be described within
Playground. We have been offered to work at SINTEF over the summer to continue the
work we have started with this bachelor thesis, and we are looking forward to expand-
ing Playground and its features when we are there. Also by co-operating with Christian
Heider Nielsen we will hopefully be able to set up RCG to work with Playground. When
we have that, there will be more room for testing out the system and expanding existing
functionality.

72

9 | Conclusion Neodroid Playground

9 Conclusion

The final product is something we definitely are satisfied with. Most of the underlying
structure and architecture of the framework is complete, and the parts using the frame-
work is in working order. On the other hand, we are lacking some essential UI function-
ality, but everything we want the user to do is possible through scripts. In other words:
the framework is mostly complete. We are not done with all the functionality in the run
time part of the solution.

The Scrum model turned out to be useful for our group, but our deviations from it
helped us confine the model more to our needs. The sprints aspect of Scrum was used
to divide and conquer our problems. Scrum meetings helped us become more efficient at
communicating and teamwork, but became seemingly redundant later as communica-
tion efficiency increased through channels like Discord and the GitLab issue board. We
changed the meetings to be more "on demand" rather than on a regular basis.

The scope of the project was never limited to a certain set of features. Instead, we and
SINTEF came to an understanding of what the system was supposed to be. We definitely
did not think we would be able to implement everything we discussed, and we did not
get as far as we initially thought.

We have learned to take a step back every once in a while to look at other options in-
stead of focusing on whatever problems are present at that time. We also experienced that
keeping a document with reflections and implementation-dilemmas helped other group
members get an overview of the project in the sense of why features were implemented
the way they were, and what they tried first that failed. Developing and documenting
a publicly available product has also taught us about what mindset we need to be in to
properly get the point across - we needed to be more explicit and write in a coherent way
so that any other developer would understand how to use our system.

In the end, we do have a solution that is only partially implemented, due to the
reasons described in section 8.3.2. We defined a way to interface the abstract concept of
task descriptions in a simple, yet powerful way by means of widgets and condition. We
have made a framework that can be used to define new ways to describe tasks by making
new widgets and conditions.

There are still important functionality missing from Neodroid Playground, such as
persistence in condition properties (after changing them through widgets and opening
the editor anew), interactions enabling the trainer to group conditions (which currently
only is possible through code), missing widgets for existing conditions (meaning some
conditions are not manipulatable, making them only useful from code), and removal of
individual conditions.

To summarize, the project and report-writing in its entirety has been very educa-
tional, and exciting to work with as this was a new experience for us. It has been a nice
conclusion to our bachelor studies here at NTNU Gjøvik.

73

9 | Conclusion Neodroid Playground

Bibliography

[1] Discord. 2019. Discord - free voice and text chat for gamers. (Accessed on
10/05/2019). URL: https://discordapp.com.

[2] Wikipedia contributors. 2019. Docker (software) — Wikipedia, the free encyclo-
pedia. (Accessed on 07/05/2019). URL: https://en.wikipedia.org/w/index.
php?title=Docker_(software)&oldid=895045866.

[3] GmbH, F. E. 2018. Franka Emika. (Accessed on 05/05/2019). URL: https:
//www.franka.de/.

[4] Microsoft. 2019. Windows mixed reality | ar mixed with vr gaming, travel
& streaming in windows 10. (Accessed on 07/05/2019). URL: https://www.
microsoft.com/en-us/windows/windows-mixed-reality.

[5] Wikipedia contributors. 2019. Test-driven development — Wikipedia, the free
encyclopedia. [Accessed on 15/05/2019). URL: https://en.wikipedia.org/w/
index.php?title=Test-driven_development&oldid=895358559.

[6] Huizinga, D. & Kolawa, A. 2007. Automated defect prevention; best practices in
software management. Scitech Book News, 31(4). URL: http://search.proquest.
com/docview/200122040/.

[7] Microsoft. Generics - C# Programming Guide, 07 2015. (Accessed on
11/04/2019). URL: https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/generics/.

[8] Microsoft. 07 2015. Reflection (C#). (Accessed on 07/05/2019). URL:
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/
concepts/reflection.

[9] Microsoft. 03 2017. Data Contract Surrogates. (Accessed on 15/05/2019). URL:
https://docs.microsoft.com/en-us/dotnet/framework/wcf/extending/
data-contract-surrogates.

[10] Microsoft. 07 2015. Unsafe keyword - (C# reference). (Accessed
on 08/05/2019). URL: https://docs.microsoft.com/en-us/dotnet/csharp/
language-reference/keywords/unsafe.

[11] Florensa, C., Held, D., Wulfmeier, M., & Abbeel, P. 2017. Reverse curricu-
lum generation for reinforcement learning. CoRR, abs/1707.05300. URL: http:
//arxiv.org/abs/1707.05300, arXiv:1707.05300.

[12] Heider, C. 2018. Neodroid Platform. URL: https://github.com/sintefneodroid.

[13] Valve. 2019. SteamVR. (Accessed on 05/05/2019). URL: https://store.
steampowered.com/app/250820/SteamVR.

74

https://discordapp.com
https://en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=895045866
https://en.wikipedia.org/w/index.php?title=Docker_(software)&oldid=895045866
https://www.franka.de/
https://www.franka.de/
https://www.microsoft.com/en-us/windows/windows-mixed-reality
https://www.microsoft.com/en-us/windows/windows-mixed-reality
https://en.wikipedia.org/w/index.php?title=Test-driven_development&oldid=895358559
https://en.wikipedia.org/w/index.php?title=Test-driven_development&oldid=895358559
http://search.proquest.com/docview/200122040/
http://search.proquest.com/docview/200122040/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
https://docs.microsoft.com/en-us/dotnet/framework/wcf/extending/data-contract-surrogates
https://docs.microsoft.com/en-us/dotnet/framework/wcf/extending/data-contract-surrogates
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/unsafe
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/unsafe
http://arxiv.org/abs/1707.05300
http://arxiv.org/abs/1707.05300
http://arxiv.org/abs/1707.05300
https://github.com/sintefneodroid
https://store.steampowered.com/app/250820/SteamVR
https://store.steampowered.com/app/250820/SteamVR

9 | Conclusion Neodroid Playground

[14] Palmer, C. 2018. Virtual Reality Blueprints create compelling VR experiences for
mobile and desktop. Packt Publishing, S.l.], 1 edition. URL: http://portal.
igpublish.com/iglibrary/search/PACKT0000015.html.

[15] Wikipedia contributors. 2019. Entity component system — Wikipedia, the free
encyclopedia. (Accessed on 30/04/2019). URL: https://en.wikipedia.org/w/
index.php?title=Entity_component_system&oldid=883535139.

[16] Wikipedia contributors. 2019. Multiple inheritance — Wikipedia, the free encyclo-
pedia. (Accessed on 06/05/2019). URL: https://en.wikipedia.org/w/index.
php?title=Multiple_inheritance&oldid=895053371#The_diamond_problem.

[17] Bob Nystrom. 2014. Component. (Accessed on 06/05/2019). URL: http://
gameprogrammingpatterns.com/component.html#tying-back-together.

[18] Gamma, E. 1995. Design patterns : elements of reusable object-oriented software.
Addison-Wesley professional computing series. Addison-Wesley, Reading, Mass.,
37th printing. edition.

[19] Technologies, U. 2019. Unity 3d. URL: https://unity.com/.

[20] Git. 2019. Git–fast-version-control. (Accessed on 06/05/2019). URL: https:
//git-scm.com/.

[21] 2019. Gitlab. (Accessed on 05/05/2019). URL: https://about.gitlab.com.

[22] JetBrains. 2013. Resharper cli. URL: https://www.jetbrains.com/resharper/
features/command-line.html.

[23] 2019. Blender - 3d modelling tool. (Accessed on 05/05/2019). URL: https:
//www.blender.org.

[24] 2019. Toggl - Time tracking tool. (Accessed on 05/05/2019). URL: https://
toggl.com.

[25] Microsoft. C# XML Documentation Guidelines, 07 2015. URL: https:
//docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/
xml-documentation-comments.

[26] Unity. 2019. Discord - free voice and text chat for gamers. (Ac-
cessed on 10/05/2019). URL: https://docs.unity3d.com/ScriptReference/
UI.GraphicRaycaster.Raycast.html.

[27] Wikipedia contributors. 2019. Prototype pattern — Wikipedia, the free encyclo-
pedia. (Accessed on 30/04/2019). URL: https://en.wikipedia.org/w/index.
php?title=Prototype_pattern&oldid=877422408.

[28] Microsoft. C# ISerializationSurrogate Documentation, 07 2015. URL: https:
//docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.
iserializationsurrogate?view=netframework-4.8.

[29] Labs, T. T. 2018. NewtonVR. URL: http://www.newtonvr.com.

75

http://portal.igpublish.com/iglibrary/search/PACKT0000015.html
http://portal.igpublish.com/iglibrary/search/PACKT0000015.html
https://en.wikipedia.org/w/index.php?title=Entity_component_system&oldid=883535139
https://en.wikipedia.org/w/index.php?title=Entity_component_system&oldid=883535139
https://en.wikipedia.org/w/index.php?title=Multiple_inheritance&oldid=895053371#The_diamond_problem
https://en.wikipedia.org/w/index.php?title=Multiple_inheritance&oldid=895053371#The_diamond_problem
http://gameprogrammingpatterns.com/component.html#tying-back-together
http://gameprogrammingpatterns.com/component.html#tying-back-together
https://unity.com/
https://git-scm.com/
https://git-scm.com/
https://about.gitlab.com
https://www.jetbrains.com/resharper/features/command-line.html
https://www.jetbrains.com/resharper/features/command-line.html
https://www.blender.org
https://www.blender.org
https://toggl.com
https://toggl.com
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/xml-documentation-comments
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/xml-documentation-comments
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/xml-documentation-comments
https://docs.unity3d.com/ScriptReference/UI.GraphicRaycaster.Raycast.html
https://docs.unity3d.com/ScriptReference/UI.GraphicRaycaster.Raycast.html
https://en.wikipedia.org/w/index.php?title=Prototype_pattern&oldid=877422408
https://en.wikipedia.org/w/index.php?title=Prototype_pattern&oldid=877422408
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.iserializationsurrogate?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.iserializationsurrogate?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.iserializationsurrogate?view=netframework-4.8
http://www.newtonvr.com

Neodroid Playground

[30] Heider, C. Neodroid Architecture. Sintef Ocean, 2017. (Accessed on 05/05/2019).
URL: http://documentation.neodroid.ml/architecture.html.

[31] Wikipedia contributors. 2019. Pair programming — Wikipedia, the free encyclo-
pedia. (Accessed on 05/05/2019). URL: https://en.wikipedia.org/w/index.
php?title=Pair_programming&oldid=892120921.

[32] Unity developers. 2018. Unity Test Runner. (Accessed on 01/05/2019). URL:
https://docs.unity3d.com/Manual/testing-editortestsrunner.html.

[33] John Reese. 2018. Unit testing best practices with .NET Core and .NET

Standard. (Accessed on 01/05/2019). URL: https://docs.microsoft.
com/en-us/dotnet/core/testing/unit-testing-best-practices#
characteristics-of-a-good-unit-test.

[34] Microsoft. 2008. Names of namespaces. (Accessed on 03/05/2019). URL:
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/
names-of-namespaces.

[35] Rick Reilly. 2017. How to git with unity. (Accessed on 05/05/2019). URL: https:
//thoughtbot.com/blog/how-to-git-with-unity.

[36] Wikipedia contributors. 2019. Von neumann architecture — Wikipedia,
the free encyclopedia. (Accessed on 06/05/2019). URL: https:
//en.wikipedia.org/w/index.php?title=Von_Neumann_architecture&oldid=
895354628#Von_Neumann_bottleneck.

[37] Bob Nystrom. 2014. Component. (Accessed on 09/05/2019). URL: https://
sourcemaking.com/design_patterns/private_class_data.

76

http://documentation.neodroid.ml/architecture.html
https://en.wikipedia.org/w/index.php?title=Pair_programming&oldid=892120921
https://en.wikipedia.org/w/index.php?title=Pair_programming&oldid=892120921
https://docs.unity3d.com/Manual/testing-editortestsrunner.html
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-practices#characteristics-of-a-good-unit-test
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-practices#characteristics-of-a-good-unit-test
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-best-practices#characteristics-of-a-good-unit-test
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/names-of-namespaces
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/names-of-namespaces
https://thoughtbot.com/blog/how-to-git-with-unity
https://thoughtbot.com/blog/how-to-git-with-unity
https://en.wikipedia.org/w/index.php?title=Von_Neumann_architecture&oldid=895354628#Von_Neumann_bottleneck
https://en.wikipedia.org/w/index.php?title=Von_Neumann_architecture&oldid=895354628#Von_Neumann_bottleneck
https://en.wikipedia.org/w/index.php?title=Von_Neumann_architecture&oldid=895354628#Von_Neumann_bottleneck
https://sourcemaking.com/design_patterns/private_class_data
https://sourcemaking.com/design_patterns/private_class_data

A | Appendix Neodroid Playground

A Appendix

77

B | Project Agreement Neodroid Playground

B Project Agreement

78

 1 av 3

Norges teknisk-naturvitenskapelige universitet

Vår dato

Vår referanse

Prosjektavtale

mellom NTNU Fakultet for informasjonsteknologi og elektroteknikk (IE) på Gjøvik (utdanningsinstitusjon), og

__

___ (oppdragsgiver), og

__

__

___ (student(er))

Avtalen angir avtalepartenes plikter vedrørende gjennomføring av prosjektet og rettigheter til anvendelse av de
resultater som prosjektet frembringer:

1. Studenten(e) skal gjennomføre prosjektet i perioden fra ____________ til______________ .

Studentene skal i denne perioden følge en oppsatt fremdriftsplan der NTNU IE på Gjøvik yter veiledning.
Oppdragsgiver yter avtalt prosjektbistand til fastsatte tider. Oppdragsgiver stiller til rådighet kunnskap og
materiale som er nødvendig for å få gjennomført prosjektet. Det forutsettes at de gitte problemstillinger det
arbeides med er aktuelle og på et nivå tilpasset studentenes faglige kunnskaper. Oppdragsgiver plikter på
forespørsel fra NTNU å gi en vurdering av prosjektet vederlagsfritt.

2. Kostnadene ved gjennomføringen av prosjektet dekkes på følgende måte:

 Oppdragsgiver dekker selv gjennomføring av prosjektet når det gjelder f.eks. materiell, telefon/fax,
reiser og nødvendig overnatting på steder langt fra NTNU på Gjøvik. Studentene dekker utgifter for
ferdigstillelse av prosjektmateriell.

 Eiendomsretten til eventuell prototyp tilfaller den som har betalt komponenter og materiell mv. som
er brukt til prototypen. Dersom det er nødvendig med større og/eller spesielle investeringer for å få
gjennomført prosjektet, må det gjøres en egen avtale mellom partene om eventuell
kostnadsfordeling og eiendomsrett.

3. NTNU IE på Gjøvik står ikke som garantist for at det oppdragsgiver har bestilt fungerer etter hensikten, ei heller
at prosjektet blir fullført. Prosjektet må anses som en eksamensrelatert oppgave som blir bedømt av intern og
ekstern sensor. Likevel er det en forpliktelse for utøverne av prosjektet å fullføre dette til avtalte
spesifikasjoner, funksjonsnivå og tider.

Norges teknisk-naturvitenskapelige universitet

Fakultet for informasjonsteknologi og elektroteknikk

2

4. Alle bacheloroppgaver som ikke er klausulert og hvor forfatteren(e) har gitt sitt samtykke til publisering, kan

gjøres tilgjengelig via NTNUs institusjonelle arkiv hvis de har skriftlig karakter A, B eller C.

Tilgjengeliggjøring i det åpne arkivet forutsetter avtale om delvis overdragelse av opphavsrett, se «avtale om
publisering» (jfr Lov om opphavsrett). Oppdragsgiver og veileder godtar slik offentliggjøring når de signerer denne
prosjektavtalen, og må evt. gi skriftlig melding til studenter og instituttleder/fagenhetsleder om de i løpet av
prosjektet endrer syn på slik offentliggjøring.

Den totale besvarelsen med tegninger, modeller og apparatur så vel som programlisting, kildekode mv. som inngår
som del av eller vedlegg til besvarelsen, kan vederlagsfritt benyttes til undervisnings- og forskningsformål.
Besvarelsen, eller vedlegg til den, må ikke nyttes av NTNU til andre formål, og ikke overlates til utenforstående uten
etter avtale med de øvrige parter i denne avtalen. Dette gjelder også firmaer hvor ansatte ved NTNU og/eller
studenter har interesser.

5. Besvarelsens spesifikasjoner og resultat kan anvendes i oppdragsgivers egen virksomhet. Gjør studenten(e) i sin

besvarelse, eller under arbeidet med den, en patentbar oppfinnelse, gjelder i forholdet mellom oppdragsgiver
og student(er) bestemmelsene i Lov om retten til oppfinnelser av 17. april 1970, §§ 4-10.

6. Ut over den offentliggjøring som er nevnt i punkt 4 har studenten(e) ikke rett til å publisere sin besvarelse, det
være seg helt eller delvis eller som del i annet arbeide, uten samtykke fra oppdragsgiver. Tilsvarende samtykke
må foreligge i forholdet mellom student(er) og faglærer/veileder for det materialet som faglærer/veileder
stiller til disposisjon.

7. Studenten(e) leverer oppgavebesvarelsen med vedlegg (pdf) i NTNUs elektroniske eksamenssystem. I tillegg
leveres ett eksemplar til oppdragsgiver.

8. Denne avtalen utferdiges med ett eksemplar til hver av partene. På vegne av NTNU, IE er det
instituttleder/faggruppeleder som godkjenner avtalen.

9. I det enkelte tilfelle kan det inngås egen avtale mellom oppdragsgiver, student(er) og NTNU som regulerer
nærmere forhold vedrørende bl.a. eiendomsrett, videre bruk, konfidensialitet, kostnadsdekning og økonomisk
utnyttelse av resultatene. Dersom oppdragsgiver og student(er) ønsker en videre eller ny avtale med
oppdragsgiver, skjer dette uten NTNU som partner.

10. Når NTNU også opptrer som oppdragsgiver, trer NTNU inn i kontrakten både som utdanningsinstitusjon og som
oppdragsgiver.

11. Eventuell uenighet vedrørende forståelse av denne avtale løses ved forhandlinger avtalepartene imellom.
Dersom det ikke oppnås enighet, er partene enige om at tvisten løses av voldgift, etter bestemmelsene i
tvistemålsloven av 13.8.1915 nr. 6, kapittel 32.

Norges teknisk-naturvitenskapelige universitet

Fakultet for informasjonsteknologi og elektroteknikk

3

12. Deltakende personer ved prosjektgjennomføringen:

NTNUs veileder (navn): __

Oppdragsgivers kontaktperson (navn): ___

Student(er) (signatur): ___ dato ____________

 ___ dato ____________

 ___ dato ____________

 ___ dato ____________

Oppdragsgiver (signatur): ___ dato ____________

Signert avtale leveres digitalt i Blackboard, rom for bacheloroppgaven.

Godkjennes digitalt av instituttleder/faggruppeleder.

Om papirversjon med signatur er ønskelig, må papirversjon leveres til instituttet i tillegg.

Plass for evt sign:

Instituttleder/faggruppeleder (signatur): ____________________________________ dato ____________

C | Meeting Logs Neodroid Playground

C Meeting Logs

The following is our meeting logs (norwegian).

82

Referat onsdag.09.01.19 kl 14:00 - 15:10

Ikke oppmøtt: INGEN

Sted: A153

- Lagde liste over nærmeste gjøremål.
“Det viktigste å gå igjennom, e jo.... nei ka va det eg sa??”

- Aksel Hjerpbakk, 2k19

Referat onsdag.10.01.19 kl 14:24 - Seint

Ikke oppmøtt: INGEN (Alle seint ute)

Sted: S410

- Den store referansedagen!

Oppgavereferanser:

https://www.forskningsradet.no/prosjektbanken/#/project/NFR/262900

https://ieeexplore.ieee.org/document/8324578

https://www.youtube.com/watch?v=ox_uJd6yHzo

https://github.com/sintefneodroid

Benchmarking av physics engines:

https://homes.cs.washington.edu/~todorov/papers/ErezICRA15.pdf

MuJoCo (Physics engine) Unity plugin - http://www.mujoco.org/book/unity.html

Expected learning outcome:

https://www.ntnu.edu/studies/courses/BPROG39#tab=omEmnet

“jeeezes!”

- Aksel Hjerpbakk, 2k19
“Min feil”

- Halvor Smedås, 2k19

Referat fredag.11.01.19 kl 12:45 -

Ikke oppmøtt: INGEN

Sted: S410

Paths etterlatt av kontrolleren under demonstrasjonen som kan markeres som prioritet eller
viskes vekk.

Hovedmålet er å lage en unity applikasjon som kan brukes til å bygge en lekegrind. Lekegrind
kan bestå av:

● Paths.
● Death sone der AI-en straffes og resettes.
● Meny til å spawne objekter.
● Velge et objekt som target, slik at resten blir ignorert.

Docs:
https://neodroid.ml

“Ingenting ska funk i dag”

- Aksel Hjerpbakk, 2k19
“Gad daaaaemn Skype for ‘Business’”

- Jone Skaara, 2k19

Referat mandag.14.01.19 kl 09:45 - 10:25

Ikke oppmøtt: Nikolai

Sted: Mariusz’ kontor

“Weeeeeell...”

- Mariusz, 2k18

Referat mandag.14.01.19 kl 12:00 - 14:00

Ikke oppmøtt: INGEN

Sted: A255

- Satt opp budsjett for tur til SINTEF

- Sendt mail for forespørsel om støtte fra NTNU og SINTEF

“Prisen for hotell er grønn fordi det ikke er utgifter men inngifter”

- Nikolai, 2k19

Referat onsdag.16.01.19 kl 12:15 - 16:15

Ikke oppmøtt: INGEN

Sted: S-bygg 2. Etasje

- Bestilt togbillett opp til Trondheim

- Bestilt hotell 22. Jan til 25. Jan

- Sendt kontaktinformasjon for NTNU til Sintef

- Startet på prosjektplan

Referat torsdag.17.01.19 kl 14:30 - XX:XX

Ikke oppmøtt: Nikolai (gyldig)

Sted: S-bygg 4. Etasje

- Det er et poeng å definere en spesifikk måte å ta input på toughpad-en på vive

kontrolleren på slik at det ikke blir flere standarder innad i prosjektet.

- Vi bør vurdere hvordan input fra toughpad-en bør gjøres med tanke på at mange

kontrollere kun har analogstikke, og å bruke den som en erstattning for touchpad

kan bli clunky hvis input systemet blir designet for dårlig.

- Mulighet: legge in MoVR-funksjonalitet for å ta opp demonstrasjonene for

instant replay. Dette kan så brukes for å se demonstrasjonen spilt igjen i VR, men

og i virkeligheten ved bruk av den fysiske roboten.

Referat mandag.21.01.19 kl 9:40 - 13:00

Ikke oppmøtt: Ingen

Sted: Mariusz kontor

- Det blir bestilt 2 nye vive kontrollere og 2 pucker/ sensorer.

- Det er lurt å ta notater under oppholdet i Trondheim.

- Nevne angående hosting av repo

- Prosjektplanen trenger ikke å være engelsk, men er lurt siden den blir brukt i

bacheloroppgaven.

- Hvem er sekretær? JONE!

- Microsoft room building tool https://www.maquette.ms/

“Historyen skal holdes...”

- Nikolai, 2k19

“Med unntak av når man ikke vil at den ska det.”

- Halvor, 2k19

Referat tirsdag.22.01.19 kl 14:45 - 21:30
“Det er dobbelt så varmt i Trondheim enn i Gjøvik” (-14C Gjøvik, -7C Trondheim :) :))

- Halvor, 2k19

Referat fredag.25.01.19 kl 09:15 - 11:00

- Definere lekegrind

- Definere lekegrind

- Ui vs ux:

- ui = utvidelse av informasjon i for a hovedsaklig GUI.

- Ux = GUI og funksjonalitet som forbedrer brukeropplevelsen.

- Konfigurérbar med object selection and action of poses/states

- also choose how many (UX & object component system

thingy (OCST))

- Mål: Fra problem-statement til implementert solution så fort

som mulig (Må ikke nødvendigvis være i VR) (-)

- Kan være enklere å annotere direkte hva som er viktig mens

man demonstrerer en task i VR. Istedenfor å generere paths og

gå over etterpå. (UI)

- Hvordan definere hva som er mål for objektet, vi forstår

colliders, men ikke “bonden”. Hvordan definere

eksplisitt/implisitt hvilke constraints som gjelder for objektet

når det skal nå mål. (UX)

- Lage et system der det skal være enkelt å generere reward

states (UX & neo?)

- Annotere meny (si hva som er viktig for staten) (UI)

- Plassere objekter i lekegrinden (editor, ev. VR om det skulle

vise seg å være bedre) (UX & OCST)

- Men lage en form for meny for hva slags scripts som skal

plasseres på et objekt som man vil utføre læring på i VR (f.eks

om man har 3d-printet en fisk og hva slags colliders som skal

plasseres på den og de forskjellige scripts, ha en generell

convention (readme for hvordan det skal gjøres?)) (UX)

- Hvilke ledd er viktig, f.eks fisk, må den ligge rett i boksen eller

kan den være krølla, etc? (UI & Neo?)

- Definere goal states (UX)

- Definere rekkefølge på flere objekter (f.eks 5 fisk i en eske

legges på mest effektiv måte) (UI & Neo?)

- Demonstrere intermediate/required states for en task (Neo &

Droid & ux)

- Sparse rewards, men flere states som gir rewards

- Eller ulike agenter koblet opp i rekkefølge?

- F.eks. ta av korken på noe før man gjør neste task

- Bruke path / timesteps før rewards states for sampling og

reverse curriculum (Neo?)

- Gjøre denne sekvensen på fisk, plukke opp og putte i boks

(Testing & example)

- Negativ reward for å applye for mye force på objektet man

jobber på, f.eks velte en stable med fisk (Neo & ui)

- Annotere steps kan være for flere goal states (delsekvenser)

eller intermediate steps for sampling (Droid)

- Energy minimization for å unngå unødvendige actions

(NeoDroid)

- Kan bruke sparse reward på goal state, men relativt til hvor

mye energi agenten har brukt f.eks (NeoDroid)

- Objekter forhåpentligvis simulert så virkelig som mulig til

virkeligheten, f.eks. fisk. dette for datasettet som skal brukes

for “kamera” for opplæring i VR. (Unity fysikk)

- Begynne med Fisk og Boks

- Kan se på rigging og fysikk av fisk (få til å plukke opp fisk med

fysikk) (Unity fysikk)

- Sette opp kamera for å generere datasett når agenten klarer

en task (?)

- Age parameter for fisk? (forandre mesh og collidere følger

med) fisk vokser forskjellig i forskjellig alder (Unity fysikk &

UX)

- Terminal state i fysikk på om det er noe som virker harmful

(Unity fysikk & UX)

-

Referat mandag 28.01.19 kl 18:00-21:10

Ikke oppmøtt: Ingen

Gjorde ferdig prosjekt plan.

Definert kodestandard.

“Sees i morgen med mindre vi ikke gjør det”

Nikolai og Aksel, 2k19

Referat onsdag.30.01.19 kl 13:10 - 13:XX

Ikke oppmøtt: Nikolai (gyldig)

Sted: Mariusz kontor

- Gikk gjennom prosjekt plan, litt.

- Submodules are messy, having to copy files in some cases. Easier to just have a

production branch. Submodules are better suited for libraries.

- Branches: master(duh), development, feature branches and hotpatch branches.

Remember its possible to have local branches that you don't push.

- CI is a good thing that looks good to have in the project, profesjonalizm.

- Will probably use gitlabs scrum-board.

- "Even if you don't use something, write down that you researched it. You might

use it in the thesis" ~ Mariusz

- Gitlab pipeline with linter to inforce code standard?

- Include gantt diagram, simply because the consor might want to see one. Even if

it doesn't help us. It can be high level and vague. Have some milestones, like

deadline.

- When writing the thesis, it's important to write about all the time spent doing

tasks that are not visible in the end product, like fixing bugs, time spent

developing features that ended up discarded. "the black time".

- Create a discord channel with a "with mariusz channel" and a "without mariusz

channel".

- Check out SOLID. A methodology for organizing code. "A class should be a

separate entity that only does one thing."

- In the thesis we should cover both architecture(vague) and design(more

spesific), some of it we will do beforehand to help us plan.

Referat torsdag 31.01.19 kl 15:15-18:00

Ikke oppmøtt: Nikolai (gyldig)

- Begynte på design av annoterings system.
“For min del så går det find for meg”

Jone, 2k19

Referat fredag 01.02.19 kl 11:15-16:15

Ikke oppmøtt: Nikolai (gyldig), HALVOR E SEIN (surprise surprise!)

- Lagd repo.

- Startet å fylle inn backlog.

- Bestemt at det ikke var verdt det med CI (se Reflection notes for mer info).

- Sett på Git hooks, mulig erstatning for CI som da bare tester lokalt når man

committer / pusher.
“Vi har jo alltid gode sitater.”

Aksel, 2k19

Referat mandag 04.02.19 kl 12:00-14:00

Ikke oppmøtt: Ingen

- Første sprint start

- Diskutert angående conditions, sceneobject, evaluator
https://drive.google.com/open?id=1da0E1GOWrypjoKqxYCX5KndagUwSCySu

- Namespaces: Playground og PlaygroundInternal

- SteamVR eller Unity.XR?

Ukens sprint backlog:

-
“TODO”

Aksel, 2k19

Referat tirsdag 05.02.19 kl 9:30-10:05

Ikke oppmøtt: Ingen

- Can use docker to host a pipeline on the server that builds unity using a script.

- Look at dash for documentation lookup.

“The first sprint always goes to hell.”

Mariusz, 2k19

Referat tirsdag 05.02.19 kl 10:20-12:05

Ikke oppmøtt: Ingen

- Vi alle objekter som har conditions, også har observable. Men ting som har

obeservable har ikke nødvendigvis condition. Eks bord(goal) eller

nono-zone(obstable).

- Røff rekefølge features skal implementeres i:

Plukke opp ting i VR

VR UI for å sette opp conditions på et Scene object (også observer + eval)

Serialize og lagre keypoints

Lagre state av scene object og deres conditions med relationer.

Multiple goals chained.

Referat fredag 08.02.19 kl 10:00-xx:xx

Ikke oppmøtt: Ingen

Gått gjennom Conditions, og SceneObject.

Videre gått gjennom PandaHand og physics problemer med friksjon ved holding

av et objekt.

Git hooks kort diskutert.

Verifyet tasks fra sprint backlog til done.

Referat mandag 25.02.2019

Ikke oppmøtt: Ingen

- Mer pair programming nå og fremover for å få alle på samme side

angående Widgets, og få kommet litt igang med det

- NewtonVR ikke så mye forskjell på å holde objekter

- NewtonVR kan være et bedre kollisjonssystem likevel

- Evt. “hotswappe” to panda-hands? (En med rb på childs og en uten)

- MeshColliders er ganske shit, burde specifye for importing av models at det

antagelig bør gåes over (evt. se mer på dette og finne en god standard og

gjøre det på)

- Se på XR prosjektet til Christian og hvordan colliders gjøres der

- https://assetstore.unity.com/packages/tools/sacolliderbuilder-15058

- Observers kan puttes på Conditions

- Conditions kan potensielt kopieres om det skal annoteres på f.eks x antall

fisker med samme type condition

“When you make prefab included mesh collider (Convex Hull) collider will lose.”

Guy about SAColliderBuilder on UnityAssetStore, 2k19

“Det e jo potensielt en fisk for det.”

Halvor, 2k19

Referat tirsdag 26.02.2019 kl 10:30-12:00

Ikke oppmøtt: Ingen

- Gått gjennom widgets mer, diskutert litt arkitektur og hvordan det skal

funke i praksis

“INTUATIVITET!”

Jone, 2k19

Referat onsdag 27.02.2019 kl 12:15-18:00

Ikke oppmøtt: Ingen

- Pair-programmet mer av CuboidWidget

- Diskutert litt mer design rundt CuboidWidget

Referat torsdag 28.02.2019 kl 10:15-17:00

Ikke oppmøtt: Ingen

- Laget Activity diagram UML for annotering av objekter i scene

Referat fredag 01.03.2019 kl 10:15-13:30

Ikke oppmøtt: Ingen

- SubMenu

Referat mandag 04.03.2019 kl 12:15-14:00

Ikke oppmøtt: Aksel (DAMA PÅ BESØK)

Fant et potensielt problem med conditions:

Conditions på sceneobject som er avhengig av andre sceneobjects conditions. I.e.

relative er en condition (sort of).

Komplekse dynamiske conditions som er dependent på states av andre

sceneobjects - fish

Referat torsdag 14.03.2019 kl 12:15-14:00

Ikke oppmøtt: Ingen

Referat fredag 15.03.2019 kl 11:30-16:15

Ikke oppmøtt: Ingen

- Møte med Mariusz for første gang på noen uker

- Fått oppdatert han litt mer om hvordan status er

- Skriv på thesis underveis

- Les opp på liknende systemer som vi kan trekke noe ut av og skriv om på

bacheloren

- AI-systemer

- Pathfinding?

- Logic-based goal/terminating states

- Sett en hardcap rundt 4 uker før innlevering at det ikke skal implementeres

noe nytt (med mindre det er noe veldig spesifikt og som man absolutt bør

få gjort)

- Fokuser derfra kun på selve rapporten og eventuelt fikse/tweake systemet

- Rapporten er det som teller absolutt mest

- Reverse curriculum generation er hard

- Mange konsepter er vanskelige å definere og er relative

- Hvordan definerer man om en condition er en viss % andel ferdig?

Referat mandag 18.03.2019 11:00-13:00

Ikke oppmøtt: Halvor

- Venter egentlig på svar fra Christian om hvordan vi skal implementere

reverse curriculum

- Tenker å lage en gameloop som bare instantiater trening på tross av å ikke

ha reverse curriculum punkter så langt, så vi i det minste får en loop som vi

kan expande og utbedre

- Treningen vil antagelig ikke gi mening og vil være helt random så agenten

vil ikke nødvendigvis lære noe, men vi vil da kunne få opp en gameloop som

vi kan jobbe ut ifra

- Dette åpner også ganske mange dører for hva som kan gjøres videre

Referat onsdag 20.03.2019 11:15-16:00

Ikke oppmøtt: Ingen

- Midway evaluation meeting

- Skrevet reflection notes rundt dette

- Fokus videre:

- Expande ConditionEditors/Widgets

- Få inn tablet/UI for conditions

- Reverse curriculum kan hackes inn på ulike måter for en somewhat

fungerende gameloop og et proof-of-concept og

minimum-viable-product

Referat torsdag 21.03.2019 kl 14:15-18:00

Ikke oppmøtt: Ingen

- Jobbet med SubMenus

Referat mandag 25.03.2019 kl 12:00 - 14:00

Ikke oppmøtt: Ingen

Møte med Christian:

- API reverse-curriculum

- Hans eksempler?

- Interface mot neo? I praksis?

- Når skal det instantieres?

- Hvordan? Vi har ikke motorer?

- Memory leak neo? Tar mye ram?

- Saving av “brain”?

- På Unity-siden klasse “Configurable”

- Sette en verdi til noe og vil være persistent gjennom reset-sessions

- F.eks sette en configurable til et målpunkt ved å sette actor sin

transform der

- Setter Flag som sier at du ikke kan terminerer

- Motorer kjører så random og gir noen randome states som kan være

reverse curriculum

- Unobservables

- Python kaller et antall states han vil ha

- Droid -> states -> neo

- Neo -> reaction -> droid

- Ulike groups av states S1, S2, S3..

- Umulige states som at agenten ikke holder objektet den skal plassere et

sted vil komme litt av seg selv, da den vil foretrekke de states der den

finner ut at her klarer jeg oppgaven min f.eks. 90% av gangene

- Man kan bruke en brukers demonstrering for å generere tilfeldige states fra

de punktene og på sånn vis på en måte ha en % fullført state

- State generering skal funke implisitt, neo setter flag om ikke terminate og

ber om nye states utfra states som er suksessfulle

Referat mandag 03.05.2019 kl 11:00 - 14:00

Ikke oppmøtt: Ingen

Møte med Mariusz:

- Levere oppgaven på Inspera innen 20.05, kan kun leveres EN gang

- Move Boundaries to be a part of Project Scope (subsection)

- Academic background part of background

- Project Goals next to project scope

- Target Audience before project scope and goals

- Target audience also part of project scope (subsection)

- Design class diagram of the whole system from some level of abstraction

where it is possible that fits within one page?

- Class diagram of specific modules could fit more well in between text

to discuss around the system architecture

- Use (...) to show there is interface with the rest if needed, and just

explain that this part is not important for what we are looking at right

here

- Showing niche parts of the system with graphical representations for

modules / subsystems (this can describe it better), don’t need to map

directly to the classes

- For concepts / abstract modular design don’t need to necessarily

follow strict UML. Can create our own diagrams and explain and

describe them.

- Should explain how the Unity entity system works and how their

constraints work and later on could say how it affects our system

- Todo’s in UX / Implementation for design to Technical design

- Ask someone if they understand how a widget works after explanation, see

if they understand how it works? If they do, the explanation and videos are

well explained. Put bubbles and annotate things.

- You can put links to gifs in the thesis

- More figures for UI/UX components part for design, also for 2DWidgets

even though we dont have so many

- Add bash for Programming languages in Chapter 5

- Change refs (to figures/tables) to using cref (cleverref), and make sure it

displays if it is a figure, table, diagram, etc.

- We can change format of cref on how it displays the ref (capital

letters, not capital letters, etc, makes it easier when we want to

change the formatting, instead of doing it manually)

- We can pull a local copy of the latex, and edit it there (if we want to search

up certain words and parts to change it) and push up to the repository

- Don’t have text in pictures too small or too big compared to the text in the

thesis

- Remove cells that are empty in high-level use-case (like where something

says: “none”)

- Code snippets text should be smaller in the thesis

- Use figures where it can help explain something for the reader that is not

self-explanatory, or just in general create a better picture of the concept for

the reader

- If something within the picture is not self-explanatory, mark things and use

“bubbles” and explanations

D | Project Plan Neodroid Playground

D Project Plan

The following is our internal planning document

98

Neodroid playground - project plan

1. Goals and Boundaries

1.1. Background
The client for this project is SINTEF. SINTEF's goal is to develop and apply technology for a
better society. Among the projects that SINTEF has been running is Neodroid, an open-source,
multi-component project, funded by Forskningsrådet researching machine learning in virtual
environments, and the potential ways of transferring the learnt/learning AI into rea
environments.

“The idea of Neodroid is to create a reality-ready robot brain in virtual reality. We specifically
focus on creating a robot brain capable of humanoid visual-motor ability. Visual-motor ability is
the integration between visual perception and motor skills. More specifically, it is the ability to
perform constructive tasks integrating both visual perception and motor skills. The motivation
behind Neodroid is to enable robots to assist humans in performing such tasks.” 1

The Neodroid platform as it is today has a number of functionalities that can be used. "Neo" is
an interface for communicating between the developer environment: the Unity 3D game engine,
and the Machine Learning implementations (the "Agent" module) in a python backend. The
"Droid" module consists of a number of components built to organize “observations” and “motor
actuators” and to communicate seamlessly with Neo, which allows developers to construct
virtual machine learning environments.

The project is still heavily in development, but SINTEF has started looking outwards at hFPSow
Neodroid should be utilized for general purpose robot teaching/learning. - This will be the basis
for our project.

1.2. Project Goals
The ultimate goal for SINTEF with the Neodroid project, is to have made a framework that can
be used by staff in industries in many different disciplines to demonstrate how a given task
should be performed, and then have a robot trained in this task during the following days /
hours.
Our goal can be seen as a step towards this, as we limit the issue to the demonstration of a few
generic tasks/problems/goals for the robot to learn to deal with initially (and when we’ve gotten

1Neodroid Documentation - Project Idea (02.11.2018) Link (25.01.19)

that working we may go on to more complex, specific tasks/problems/goals). As this will be a
first attempt at generalizing how the framework can be used, a large portion of our contribution
will also be to develop a standard for the robot interactables.

1.2.1 Business goals
- Create a standard for components used in a Neodroid virtual playground, such that a

technician can build the needed playground with ease, and let a demonstrating user and
virtual robots interact with it.

- Create an user interface to demonstrate a task/tasks to a virtual robot, in order to show
the demonstrating user that the robot is working within the correct constraints of the task

- Create virtual objects that mimic real objects as closely as possible in behavior and
appearance. One of the focuses will be to model dead fish as one of these interactable
objects, as this is one of SINTEF’s own uses for this software.

- The robot and the playground should be possible to recreate in reality and physically
test.

1.2.2 Impact Goal
- Generalize how robots are used in industry - if a robot can learn and do any number of

different tasks, it will mean that you do not need to construct hard-coded specialized
robots.

- Reduce damage potential for people and equipment in the context of automation in
hazardous work environments - a robot can be taught in complete safety using the virtual
training environment

1.2.3 Learning Objectives
- Apply machine learning for a practical purpose in a hybrid reality (real and virtual world).
- Expand our knowledge of UX / UI in a VR environment in an application context.
- Use of good coding standard in a publicly available product.

"The vision behind Neodroid is to teach robots to accomplish tasks that combine vision and
motor skills, by training the robots' brains in VR" - Norway’s Research Council's page on
Neodroid.

1.3. Boundaries
The application we will develop will be made in the Unity 3D game engine, as specified by
SINTEF since their existing framework is made in this environment.

The Neodroid platform is the system developed by SINTEF which we will make a Unity
application for. It's not a main focus to extend the Neodroid platform's functionality. However
where applicable, we are encouraged to improve it. The main focus will be on creating a Unity
application with a VR playground where the user can demonstrate a task. The playground will
be capable of generating a huge dataset, which in turn will be used to train an AI to perform the
demonstrated task. The optimal outcome would be to have this playground integrated as a part
of the Neodroid platform.

Performance is important both for the playground part of the application and for the simulation
section. In VR, it is important that the framerate is more than 90. If it goes below, the VR
headset enters a safety mode where it reduces framerate to 45. This reduced frame rate will
make the user nauseous (VR sick / motion sick).

For the simulation part of the application, performance is also important. All the objects we
make in Unity that mimic reality must run fast so that the simulation can go as fast as possible.
Training the AI faster as more instances can run in parallel.

2. Scope

2.1. Subject area

Virtual reality
Virtual reality (VR) is a fairly new space to work in, and good user input methods are constantly
evolving. The standard for VR headsets is constantly being changed, and because of that
software made for VR must also adapt to these variations in the standard, in comparison to
other markets such as mobile. One example is that some of the VR headsets motion controls
have a touchpad (Vive) while others have an analog thumb (Oculus).

User-experience (UX) and user-interface (UI)
User experience in VR is an additional design challenge. User interfaces in VR must be
designed very differently than any other mouse and keyboard applications. The user must also
be comfortable with the environment in which they are placed in. Fear of heights or
claustrophobia must be taken into account when designing the environment.

Reinforcement learning
Machine learning is a central theme in the playground as Neo is based on this. Reinforcement
learning is a subclass of this and is based on either rewarding or punishing an agent for its
actions. There are several principles and concepts that can be used to apply machine learning,
but the desired technique for our task is to use "sparse reward" where you either give zero or 1
point when the agent has successfully completed the task after a given time. This simplifies the
concept, but results in a high probability that the agent will not find the right solution. One of the
solutions to that problem is to use "reverse curriculum" that initializes the agent with simple
environments at first with very little steps required to get to the goal state, and to further make it
more and more difficult for the agent to solve the problem over several iterations.

Simulate / emulate physics
In the playground, the robot should learn to interact with a number of objects that will behave as
realistically as possible. In some cases, it may be relevant to simulate their properties, such as
soft-body physics to determine the behavior of the object in order to make it as realistic as
possible from the AI's perspective. In other cases, using logic may be more effective and
accurate to determine the wanted behavior instead.

In the context of the task, a big part of the challenge is to create an intuitive user interface that
allows users to easily demonstrate tasks by defining target states. In addition, we should be
able to define when a demonstrated goal condition is satisfied, whether it is implicitly defined
from the demonstration, or whether it must be explicitly defined, and if so, how it can be defined
explicitly.

2.2. Limitations
The Neodroid platform is intended for use in academic research, specifically for the developer's
own interests. Our task will be to streamline the use of the platform with regards to the
construction of a playground, and user interface. The goal is to make it easier to go from a
certain issue, to the implemented solution as quickly as possible.

2.3. Task description
The task is to create Neodroid playground in the Unity engine that to some extent should be
able to generalize how objects in the playground are to be instantiated to teach a robot to solve
a specific problem. However, thew construction does not have to be done in VR. Although it is a
nice bonus. The flow in this goes from the construction of the playground and its components
either by using the Unity's Editor, or constructing it through the VR environment. It is desirable to
create a standard for different types of objects, and the components they need to function
optimally within the playground. The playground should then consist of a set of units (such as
the robot, objects to pick up, storage boxes).

Furthermore, after a playground has been constructed, the user should be able to easily
demonstrate a task that the agent should be able to learn. In practice, this will be done by the
user themselves annotating the objects and positions that are important and relevant for the
task to be performed correctly by the agent. This will either be resolved with just a goal state, or
could also potentially take several important “intermediate” states, which will be used to
generate the data set for the reverse curriculum. It may also be possible to define multiple goal
states for the agent, depending on the task. If the order of these states is important, that should
also be considered by the agent.

When annotating objects and points in a demonstration, one should be able to emphasize which
observations are important for the goalstate .For example, rather the end position of the target
object is important, or rather the rotation also has to be within a threshold. Then these
constraints should be annotated and taken into account. The process of defining small precise
targets should also be as intuitive as possible for the user, and optimally allow editing of several
object's properties at once.

When it comes to the machine learning part, sparse rewards and reverse curriculum should be
used to achieve the desired result. In order for the agent to be able to learn how to optimize the
result, one can also use some sort of energy minimization to avoid unnecessary steps. While
the agent is crashing into objects it is not supposed to interact with, or doing unwanted actions,
it should be given a penalty and terminated.

2.4. Restrictions
Documenting or refactoring existing code in the Neodroid platform is not a main focus of the
task. However, where applicable we are encouraged to do so.

It is not part of the task to expand Neo (the machine-learning component of the system), even
though if we see it necessary we are free to expand on it.

Our task will not be to train a real robot. - We do not have access to a physical robot to try this,
but for the client it will be easy to do this, because the Neodroid platform have components that
can easily be inserted into our environment to further educate the physical robot. The task within
the virtual playground will be only operating with perfect data for learning.

3. Project Organization

3.1. Development model
The development model for the Neodroid playground application is SCRUM, we will have a
sprint period of one week. Weekly sprint meetings will be on Mondays where we write a short
report on last week's sprint, and discuss which tasks have be moved back to the backlog.

We then discuss which tasks are most important to do this sprint, and distribute them to all
members and register them in our GitLab scrum-board. We write a brief summary of what
decisions were made in this meeting so it can be referred to later.

Tuesdays are going to be our dedicated day for consultant meeting with our supervisor. Every
other week we will also include our Sintef contacts in the consultant meeting in order to brief
them on our progress and ask any questions about what direction the project should take.

3.2. Responsibilities and roles
Client - SINTEF Ocean
Platform developer / designer - Christian N. Heider
Product owner - John Reidar Mathiassen and Jonatan S. Dyrstad.
Project leader - Halvor B. Smedås.
Supervisor - Mariusz Nowostawski.
SCRUM roles:

● SCRUM master is Halvor B. Smedås.
● Log writer for the project is Jone Skaara who will have the main responsibility writing

reports and note important decisions and gather information in an organized manner.

3.3. Routines and rules in the group
● Agreed workload - 30 hours / week (at least 5

hours each weekday).
● Time schedule for group work
● Write weekly sprint report after each sprint is

completed.
● Write report after each meeting. Both after

meetings with supervisor and product owner,
and after internal group meetings.

● Documentation and work on logs relevant to
parts of the bachelor's degree are worked on
by each group member where it fits along the
way in the project.

Fixed schedule for each week

3.4 Technology

3.3.1 Digital tools
- Microsoft Visual Studio Community, and - Enterprise Edition - Integrated Development

Environment.
- Unity 3D - Component-based 3D game engine.
- Git - Version control (Local running GitLab server (prod3.imt.hig.no))
- GitLab scrum-board for assignment of work tasks.
- Blender - 3D modeling
- Toggl - Time tracking tool.

3.3.2 Programming languages
- C# will be the main language we program in, this is because C# is the Unity standard,

and because it is the language that gets the most support from the developers and users
of Unity

- Python is also a current candidate for certain parts of the project that involve interacting
with the machine learning module (Agent) or the communication link (Neo) between the
machine learning algorithms and Unity. - The reason for this is that these modules are all
written in Python, so something else would be much more laborious, besides Python is
recognized as one of the best languages to work on when it comes to artificial
intelligence.

- C++ Can be relevant in cases where we need high performance when a lot of data is
processed.

- HLSL (Compute shader) can also be relevant in the same case as above, depending
on if the problem can be parallelized

- ShaderLab, CG, HLSL, GLSL are also good candidates for languages we can end up
using as it is not unlikely we need shaders for visualizations in VR.

3.5. Group policies

§ 1 Money and Expenses
1.1 - For expenses that exceed what is covered by the client and NTNU IDI, the
expenditure (-e) is shared evenly between the group members, unless otherwise
agreed between the parties involved.

§ 2 - Illness
1.1 - If you become too ill for attendance during the project, you must
communicate this to the other group members.

1.2 - If the scope becomes so large that it slows down the project's progress due
to dependencies in modules in the project, there should be a group meeting on
how this should be solved, this should also be with the supervisor.

§ 3 - Scrum
3.1 It is up to each member to report a lack of sprint goals if one completes all the
sprint goals they were given at the beginning of the sprint period.

3.2 - It is up to each member to report having too much work assigned them as
early as possible, if it is obvious that it will not be completed, the other member
should be informed.

§ 4 - Meeting
4.1 - In case of any disagreements in regulations / polls, the group leader two has
votes, so that we can always end up with a majority.

§ 5 - Digital tools
5.1 - All Git commits must follow a standard to clarify the changes that have been
made. This standard can be customized for three different cases:

1. Hotfix - for line changes and similar little things (these should generally
be avoided): "HOTFIX - added missing semicolon".

2. File change - For changes that have a strong connection to one or a
few files, file names must be listed before a summary of the file change.
"ChangedFile.cs - added new function to satisfy issue # 37."
3. Larger change - usually occurs after refactoring code or the like.
“SPAWN SYSTEM - major rewrite to a more data-driven approach on
things”

5.2 - Communication channel is Discord.

§ 6 - Documentation
6.1 Each class and function must be documented using. C # xml Docs 2

4. Organizing of Quality Assurance

4.1. Coding standards
We will follow microsoft’s coding standard for C#. 3

Exception

LINQ syntax, where we will also use extension methods directly instead of using full query
syntax.

4.2. Configuration management
The software project should be (to the best of our ability) kept in a state where it builds and
executes. It should always be possible to retrieve the last commit from the project, build and run
it. In other words: pushing to git should only be done when the code has proven to be runnable.

SCRUM increments, and the backlog will be used to identify what has changed, and can
therefore easily be used to write the change log for each increment. Also, the sprint period is so
short that commit messages during the sprint can be used to more explicitly state changes.

In this project major features will have their own unique branch. Branches should be removed
after said feature becomes integrated with the main or production branch. We will also validate
along the way by continuous integration (CI) which will check that the modules compiles after
they have been pushed to the remote.

2 XML Documentation C# -
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/xmldoc/xml-documentation-comments

3 Dot Net - C# coding conventions -
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions

Risk analysis
Feature creep
Probability: Low
Consequences: Medium
Description: When the task is very open ended, there is a danger that we may be exposed to
feature creep.
Mitigation: Strict framework for SCRUM tasks and no feature list expansion without completing
the tasks already defined.

Performance Issues (VR)
Probability: Low
Consequences: High
Description: When using a more advanced physics engines and expanding code, there is a
danger of performance issues. Something that will have major consequences in VR.
Fortunately, the need for a VR user in the system is minimal and therefore will not require much
overhead in the terms of processing.
Mitigation: Good code standard and pair programming if needed. Use of Unity's profiler to find
slow parts of the code.

Problems with implementing annotation of transform targets in VR
Probability: Low
Consequences: high
Description: Annotation of transform targets through VR should be relatively trivial to implement
but may lead to problems in the project if implementation takes longer than expected
Mitigation: Good design and planning of annotation system.

Problems with implementing annotation of general component targets in VR
Probability: medium
Consequences: medium
Description: On the same line as transform, the goal is to annotate the state of other
components. The idea is that one should see similarities in the target status of components
without being directly defined by the user, but interpreted through VR.
Mitigation: Design and planning of annotation system. If this devours too much time, we will
abandon interpretation in VR and rather be explicit in the device menus and / or config file
system.

Problems with implementing annotation of relationship targets in VR
Probability: high
Consequences: medium

Description: Goals should also be relevant to several objects that have a relationship. This can
create great complexity and prove to be a big task to cover during a bachelor's degree
Mitigation: Design and planning of annotation system. If this devours too much time, we will
abandon interpretation in VR and rather be explicit in the device menus and / or config file
system.

Unity version mismatch
Probability: Medium
Consequences: Low
Description: Updating to Unity introduces new issues or instabilities that need to be resolved.
Mitigation: Version control, change unity version.

Major changes in neo or droid modules cause conflict with our code
Probability: Medium
Consequences: Medium
Description: While developing we might have to change things in either neo or droid that will be
conflicting with the external changes done to the Neodroid platform. Changes with neo or droid
might also cause conflicts with our internal code.
Mitigation: Communication with the ones responsible for the framework.

Soft body physics is too heavy to drive or is too difficult to integrate
Probability: High
Consequences: Low
Description: If soft-body physics is too slow or too difficult to integrate into the project, it cannot
be used in the project.
Mitigation: If it does not work, the branch for this feature is discarded.

5. Plan for Implementation

5.1 Work Breakdown Structure

5.2 Milestones and decision points
- “Getting Started” - Make a simple project to familiarize ourselves with the Neodroid

platform

- Game loop - Before we start working on features, we want some base functionality in
our Unity project.

- Standard for Neodroid Playground Interactables defined - A standard for further
developments, probably in the shape of interfaces and super classes.

- “Cube” - Have a simple goal state described/annotated. A box with transformational

constraints.

- Reverse Curriculum Starting Point - Able to pick out meaningful reverse curriculum
data sets for the agent.

- Midway Pivot point - Midway through the project we will analyze the progress in
comparison with plan in order to pick up on discrepancies between reality and plan, such
that we can refurbish the plan and thus appropriately scale our project.

- Simple Joint-based Interactables - e.g. fish with bones that deform the model.

- Full relational annotation support for VR - Be able to select target state attributes for

each object in the playground after a demonstration without leaving VR.

- Project Delivered - Delivery of the thesis

- Collecting image data from the playground - Past delivery (probably): Gather a large
collection of pictures from the playground to be used for teaching the physical robot.

- “Just make the rest of the platform” - Past delivery: further developments.

5.3 Gantt Chart

E | Reflection notes Neodroid Playground

E Reflection notes

These are notes we took under development discussing different aspects of features we
were working on at the time.

113

31/1/2019:
The problem of annotation of constraints
What is the constraint relative to?

Must different parts of a constraint be relevant to different objects?
Example: A fish must be put in a box (positional constraint relative to the box’s position), but
also it should be stacked in a certain way with the other fish in the box. This means it has a
secondary constraint that is only relevant and relative to the other fish in the box, and here one
must consider both position and rotation relative to several fish.

How to easily and intuitively specify this in VR?

- Interpreting user gestures and convert to logical constraints:
- Hard to do
- Error prone

- GUI
- Causes user friction

How does the demonstrating user define the tree structure of the goals?
goal is reached if (fish rotation && fish touch table) || fish inside volume
this logical structure must be defined by the demonstrating user after the demonstration, and
must be intuitive enough that farmer frank can figure it out. One way this could be made intuitive
is having a list of all conditions in the scene. All conditions in this list all has OR relations to each
other by default. Dragging one condition and dropping it onto a second puts both in a new
AND-condition-containter(similar to dragging a smartphone app icon onto another to create a
folder).

Symmetry is basically just a set of two rotation constraints with an OR relation.
The fish must lay on its XY symmetry plane = the fish must have Z rotation 0 OR Z rotation 180.

1/2/2019:
SceneObjects, evaluator structure:
We decided to have the evaluator in a simulation instance update all its SceneObjects, the
SceneObjects will update its conditions. When a SceneObjects goal state or termination state
occurs, it is returned to the evaluator which gives signal and resets the instance. This a a good
approach because the evaluator can choose which of the Scene objects needs to be evaluated,
instead of having Unity call their update() every frame.

CI
We have decided to discard CI for now as it will result in too much time consumption. We will
use git hooks to do some basic unit test and probably check that coding conventions has been
met.

5/2/2019
Git hooks
https://git-scm.com/docs/githooks
https://stackoverflow.com/a/10929511

6/2/2019
No build on hooks
Reasoning: build on hooks would create a lot of friction on the push process. And most times
you have already built the project manually. In contrast with having a pipeline CI where the build
could fail after being pushed and then having the pipeline revert automatically, the hooks seems
too cumbersome to make with little reward.

Resharper CLI lacks documentation

13/2/2019
Condition Based States
We’ve come to design our scene states through the use of conditions.
Conditions are encapsulated properties of the scene’s objects. It’s base interface is designed to
be flexible towards all object components, allowing us to easily create modular state definitions.
An example of this is: you want a coffee mug to stand on a plate. - There are several properties
to consider as part of such a state: the mug’s position relative to plate, the plate’s orientation,
the mugs orientation relative to the plate, the size of both (arguably this remains a constant, and
so it might not matter too much).
All of these properties can be mapped as conditions in our system. As a condition is placed on
an object, we consider the object to be the context of the condition. There’s also the matter of
relativeness on some conditions: “the mug’s position relative to the plate”. We’ve created the
condition base interface with this in mind, and so we allow a condition to have a generic
TRelative (i.e. a Type that is somehow relative to the context in some way for the given
condition), with the only constraint on TRelative being that it’s a Component type. This allows for
greater flexibility within the condition, as we can create evaluate relations between the context
and the relative objects’ component (of type TRelative).
Going back to the mug-on-a-plate example; we can set up a Condition for position, with the
TRelative being Transform (class SomePositionCondition : Condition<Transform>),
such that we can do an evaluation of the relative position within our
Condition.Evaluate()-function.

Having this functionality we can already loop over all conditions in the scene and in that way
evaluate whether or not the scene is in a goal state. This would assume however that we either
needed to consider all conditions essential for the goal state, or simply have consider it a goal
state when one of the conditions were met. The first of the two would probably make sense in
some demonstrations of goal state. Especially in cases where there’s only the one goal state.
But in cases where there’s more than one goal state, our condition system would be able to
map these goal states.
For the sake of giving examples; let’s say we could’ve placed the mug of either of two plates. It
might be possible to make a whole new type of condition, but that’s not ideal as we want to
cover the bases with some more generic ones for the end user.
No, instead we introduced GroupConditions to our system. Group conditions is an
implementation of the composite pattern in our condition system, where a group condition is a
collection of n conditions. We’ve defined a few concrete group conditions, all based on logic
gates such as AND and OR, where the Condition.Evaluate()-function evaluates the
conditions within with respect to the logic gates’ definitions. Using these group conditions the
scene state ends up being a tree structure made up of conditions.

And, as seen above, we can now manage to set up multiple goal conditions. The scene
evaluator behaves just like an AND-grouping condition does - i.e. loops through all conditions.
SceneObjects however may still change...

15/02/19
Test-driven development for conditions to avoid issues later on in training as condition are
essential to work for training.

24/02/2019
Complex models and problems with MeshColliders
Our whole system is supposedly built to represent the reality to the extent it is possible. Whether
it is about collisions of objects, general physics or just how the world looks. This is important for
several parts of the system to give a wanted result. First of all you have the
programmer/designer that is supposed to make environments that make sense, and hopefully
this process should not be too tedious, it should be relatively quick and easy to setup an
environment to teach a robot a new task in the Neodroid Playground. Secondly, there is the
person or expert within the certain field that is supposed to demonstrate the task the robot
should learn. For this person one needs the environment to match the reality as much as
possible, if not it would cause flaws when that person is demonstrating the certain task. Either it
would cause the demonstrator to handle the task in an unnatural manner, which would not feel
good for the demonstrator, and possibly cause issues when it comes to demonstrating the task
correctly when considering what the wanted result is. And lastly, when this task is supposed to
be learnt by a real physical robot with the usage of VR cameras, the camera data must pretty
much match the camera data a real physical robot would put out. This last part is probably the
most vulnerable part. As if the VR robot could seemingless carry an object despite there being
thin air between the robot’s arm and the object it is carrying, how would the robot know that
wouldn’t work in the real world? The problem is, it wouldn’t. So these are issues that have to be
carefully thought about and things we have to discuss and design carefully when considering
this whole task.

There are several issues we have already met when it comes to this, one of which is Unity’s
built in MeshColliders for more complex objects than their primitives. As these MeshColliders
are not necessarily accurate at all in terms of how an object looks and how it’s collision
detection works. This means that by using MeshColliders as is, it would at times detect
collisions when it is not supposed to, or other times not detect collisions when it is supposed to,
the first more than the latter though. This is ofcourse not a problem when working with simple
object primitives, like Unity’s built-in objects like spheres, cubes, etc. All of these primitives have
matching colliders that work really well, and they match the reality as good as possible for a
virtual environment. But for complex models, this is not necessarily the case with using
MeshColliders, it is just an approximation of the models vertices and the game-engine makes an
assumption of how the model is built up and how it should interact with the environment. As we
are working in Unity, for a lot of games it doesn’t matter too much if the collider doesn’t exactly
match up with the model, players may acknowledge it or they may not, but it usually isn’t
gamebreaking. However, the system we are working on is supposed to match how the object
would act in reality, and this can cause some real issues. Let’s look at a fairly simple example:

Here we have a pole, made in Blender and imported into Unity, with a torus next to it that is
supposed to be placed on this pole. A pretty simple object, and also a pretty standard Use-Case
one would consider for this system. Where a technician makes these models for someone that
wants a task to be simplified with a robot being able to do it, and the flow of it would possibly be
something like this. The technician will import these models and most likely put a MeshCollider
on this object. However, as you can see, the MeshCollider is not as accurate at all as one would
like it to be. (The collider is visualized by the green lines on the object)

Basically for this case, the task that is supposed to be demonstrated, would not be possible to
demonstrate correctly, nor would the AI learn properly by the images generated after this task
would be done by the AI. As a matter of fact the wanted goal would probably not even be
possible to get to in the virtual environment. Yet, this is a pretty simple object, but it shows pretty
good how flawed the MeshColliders can be, and why it is something that needs to be
acknowledged when designing and considering this system as a whole.

So, we know that MeshColliders is an issue, but what are the alternatives?
One thing we do know that can be a way to go about the issue, is to try and construct more
accurate collision detection by building up the model with a whole lot of primitive colliders, to try
and match the model to the extent it is possible. This would be by using BoxColliders,
SphereColliders, and CapsuleColliders. Now, let’s look at how that could be done for this object:

This is how the object’s colliders could look like if one built it up with using BoxColliders. As you
quickly can see, it certainly represents the object more accurately, but yet not really as accurate
as one would like it to be. It is far from what you need to get the object to behave truly
realistically, but it is something that at least could work and the task possibly could be taught
somewhat correctly to the AI. However, it is also worth noting that it is a really tedious process
to set up these colliders on a object, yet given just a simple object like this, it can be really hard
and tedious process, because you want it to be as accurate as possible. So one can easily
imagine how much harder it gets if you have more complex objects than this simple example.
Arguably could an object with more detail have a better looking MeshCollider from Unity,
however that may not be the case, and MeshColliders are also more performance-heavy.

So as one can see, there are a lot of issues that needs to be handled and acknowledge already
just for simple problems like this one with the “Torus on a pole”-issue. And of course that is
because the simple fact that it needs to be as close to reality as possible, this is not just
colliders for a game, but colliders that will affect whether a physical robot will be able to correctly
learn a task or not.

We are happy to be able to see these cases pretty early in the development process, so they
can be considered, and we can have internal discussions around these issues early, and
possibly come up to some good solutions to these issues. A lot of these issues that come up
with the system, has been brought up by our own Use-Cases and what we want the system to

be like. We put up some user-stories also to describe parts of our system, and with these
user-stories we can create these test-scenes pretty early on so we can see what issues they
present.

2/28/2019
Minimum viable product: We define minimum viable product as being able to customize scene
to define conditions and relations of objects such as the scene can reset and reward/punish
agent without human interaction after the annotation phase is done.

- User enters created scene
- User applies conditions, relative and logical relation between conditions in vr
- Save the conditions to disk and edit them later
- User initiate learning phase
- Conditions become persistent between scene loading
- Scene can reset for learning in a proper manner (meaning agent is capable of learning

correct action from start state)

2/28/2019
Grabbing with physics:
The grabbing physics is very core to the
goal of the project, and a fatal part of the
implementation. Since the focus is to have
the grabbing work as realistic as possible,
using object parenting is out of the
question. There are several ways to go
around this problem.

The first way we tried was to rely on unity's
friction that applies forces to objects were
both surfaces have rigidbodies and
colliders. The problem is that SteamVR
uses object parenting to grab objects,
causing there to not be any friction on the
object. So we couldn't use it to directly
demonstrate a task.

We tried to to around the problem by
separating the hand into a rigidbody and a
point. What the SteamVR hand grabs is
the point, then the hand moves using its
rigidbody to move the its position. By
moving the hand by proxy this way, we are
able to apply unity physics to the hand in
order to pick up an object.

There are libraries that provides improved
physics for VR controllers. The library we
looked at is NewtonVR(the green cubes in
the gif). The immediate problem is that they
parent the objects they grab. There could
be ways to go around this problem by
trying something like the move by proxy
method we used for the unity friction
problem.

A very interesting aspect of NewtonVR is that it stops objects from moving inside each other.
Unlike Unity's physics. Which could prove very useful to achieve the realistic behavior we are
aiming for.

1/3/2019
UI system and the decision to prototype

UI is hard to design and you need to think about certain concepts, like: reduced friction,
understandability/self explanatory and pleasant to view. After some design and discussion on UI
we have landed on making prototype for GUI to complete the game loop. The prototype will also
be used to iterate on our design decisions and after the game loop is completed we will move
on to create our GUI module/system.

11/3/2019
SACollider Builder

The colliders for mesh objects need to be
easy to pick up, and act as similar as
possible to how they would behave in real
life.

The main challenge is that Unity's mesh
colliders are convex, and often act
strangely when used with rigidbodies.
Additionally, since they are convex that
can not have holes. This is problematic in
out torus on pole example.

We checked out a unity package called
SAColliderBuilder that generates a set of
primitive colliders the use of a convex
mesh collider. The process of converting
an object using a mesh collider, into an
object using a SACollider is relatively
painless depending on the complexity of
the mesh. Though, some time is needed
to tweak the SACollider.

A limitation of the SAColliders is that it
generates primitives that all have origin
somewhere on the surface of the mesh.
Meaning that the SACollider will always
have a larger boundery than the
corresponding mesh collider. It is less
accurate by nature. However for our use,
the accuracy is more than enough.

11/03/19
Serialization of conditions and the mechanics of C# serialization
Saving data is a problem that has a lot of possible solutions. We decided to go for serialization
as it provides speed to saving and loading scenes. The problems with serialization is that unity
has its own serialization system that does not work with .net serialization. Most of unity’s basic
types like Vector3 and Quaternion does not support .net serializations.

There are some alternatives to work around this. Number one is ISerializationSurrogate which
allows you to create a dummy class that functions as a container to all essential data for class
state
Example implementation:
// property extraction source: https://stackoverflow.com/a/4144817
namespace Playground
{

[System.Serializable]
public sealed class PositionCondition : Condition<Transform>
{
 [SerializeField] private Vector3 _min;
 public Vector3 Position
 {

 get { return _min; }
 set { _min = value; }

 }

 [SerializeField] private Vector3 _size;
 public Vector3 Size
 {

 get { return _size; }
 set { _size = value.Abs(); }

 }
 public Vector3 Min
 {

 get => _min;
 set => _min = value;

 }
 public Vector3 Max
 {
 get => _min + _size;
 }

 public override bool Evaluate()
 {

 var evaluation = _volume.InsideVolume(Context.transform.position);

 return evaluation;
 }
}

/// <summary>
/// Used to serialize and deserialize PositionCondition
/// </summary>
public sealed class PosCondSerializationSurrogate : ISerializationSurrogate
{
 public void GetObjectData(object obj, SerializationInfo info, StreamingContext
context)
 {

 var positionCondition = (PositionCondition)obj;

 info.AddValue("TargetPosition.x", positionCondition.TargetPosition.x);
 info.AddValue("TargetPosition.y", positionCondition.TargetPosition.y);
 info.AddValue("TargetPosition.z", positionCondition.TargetPosition.z);

 info.AddValue("AllowedDeviation.x",
positionCondition.AllowedDeviation.x);
 info.AddValue("AllowedDeviation.y",
positionCondition.AllowedDeviation.y);
 info.AddValue("AllowedDeviation.z",
positionCondition.AllowedDeviation.z);

 }

 public object SetObjectData(object obj, SerializationInfo info, StreamingContext
context, ISurrogateSelector selector)
 {

 var positionCondition = (PositionCondition)obj;

 Vector3 targetPosition;
 targetPosition.x = (float)info.GetDouble("TargetPosition.x");
 targetPosition.y = (float)info.GetDouble("TargetPosition.y");
 targetPosition.z = (float)info.GetDouble("TargetPosition.z");
 positionCondition.TargetPosition = targetPosition;

 Vector3 allowedDeviation;
 allowedDeviation.x = (float)info.GetDouble("AllowedDeviation.x");
 allowedDeviation.y = (float)info.GetDouble("AllowedDeviation.y");
 allowedDeviation.z = (float)info.GetDouble("AllowedDeviation.z");
 positionCondition.AllowedDeviation = allowedDeviation;

 return positionCondition;
 }
}

}

By doing this, all you need then is a black
box manager class to do the serialization

This is actually a really simple solution
and would work great as it shouldn’t be
much work and pretty simple for a
contributor/dev to implement (in theory).
There are two main problems with this
solution:

Problem 1: You need to implement the
same solutions multiple times as you
create a new condition

Problem 2: Can become harder if you
introduce more complex types to your
condition. An example of this would be
an interface that would implement a
volume. Then you don’t really know the
basic types contained in the interface. A

cube volume would maybe have center and the biggest x, y, z and the smallest x,y,z. A sphere
would have center and radius. This means you need to implement even more for this condition.
This would add friction on development in the future.

So the alternative to this becomes making the
[System.Serializable] attribute work on any
condition you would make, and add the ability
to fix it if it doesn’t. This means implementing
serialization for unity types and any other
non-serializable that you would want to use.
This way we can blackbox file I/O so that the
developers and users don’t really need to
touch it. Our goal is also then to be open about
how you can make other types we have
missed serializable, so that in the event where
your custom condition fails to serialize you can
view the error message and from there easily
expand the serialization.

15/03/19
Generating reverse curriculum points. (RCP)
Training the AI with sparse rewards requires reverse curriculum to work effectively on task that
are not very tiny. Generating the RCPs that are a certain percent complete is a difficult problem.

The core problem is the measurement of how close a condition is to being complete. Since
whether a condition is complete or not, is too vague to use as a measurement, each condition
will have to implement its own way of figuring out how close it is to being completed. It's a
challenge to define, because each condition would be weighted more than others(like being in
the right position is more important than the rotation). Some conditions are binary, like the
touching condition, on a scale of 1-100 how touching are you?

The problems complicate when taking into consideration the logical structure conditions can
have. For example: there are three conditions in a scene, A, B and C. A and B are in an AND
block. Getting C to 100% will complete the scene, since a root goal condition is completed. So
the highest root group of the conditions is the one that count for the complete state of the scene.
AND[A 100%, B 100%], C 0% = scene 100%. A and B's and block is 100%.
AND[A 30%, B 30%], C 80% = scene 80%. We take C's 80 since it is highest.
AND[A 80%, B 20%], C 20% = scene ??%

18/03/19
Switching to monobehaviour
Initially the conditions was implemented to be regular C# classes because they are lightweight
and fast. This turned out to be a bad decision for several reasons.
Firstly, it meant we would have to write our own way of displaying conditions for debugging
purposes, we need to be able to verify that conditions work as they should.
Secondly, serialization of the conditions and their relative game objects turned out to be hard to
do using .net serialization as the conditions need to store references to other scene objects. It
could always be worked around by implementing our own object ID system, that way we could
reference the ID is the saved file. Though that would be a fair bit of work, and would still leave
us we the other issue of displaying the conditions. Our solutions is to go back to using
monobehaviour, and refactor the existing systems that deals with the c# class conditions.

19/03/19
Major changes and git branches
How do we deal with this? TODO: - discuss
From the start of the project and up until this point, we have been certain that our application
has been stable. Now the conditions are changing from being C# object to being
monobehaviours. With this large refactoring for the system we are not as sure whether the
application is completely stable. To ensure that the head of the master branch is stable we have
introduced a new branch dev, that we will push our changes to instead. The dev branch will be
merged with master periodically when we have verified that the current dev head is stable.

20/03/19

Midway evaluation

Our original plan/timeline

What has gone well?
Our condition system has had a lot of focus. This had led to parts of the entries in the next
header, but it has also lead to a solid backbone for the project. The resulting system is very
simple in its functionality, although the grouping and relations between conditions allow for
verbose definition of agent constraints and goals.

Group has a common goal. As a result of a lot of group meetings and discussion we all have
common understanding of what we are trying to achieve, our structural design and how we want
to reach our goal.

Improved work distribution compared to previous group work. We see clear improvements in
splitting tasks compared to previous projects, although we don’t necessarily feel like we have
mastered this field. We feel that the streamlining of our issues and issue board is something to
praise ourselves for.

What have gone wrong?
Friction in setting up CI
At the start of the project when the development environment was being set up, we wanted to
have gitlabs continuous integration build an image of the application to ensure that is builds, run
tests, and have it do linting on the new code. We were unable to set it up due to our gitlab
server not being enabled for it, and the technician responsible for the system was unable to fix
the problem.

We moved on to using git hooks instead. Writing a script that would use Unity's command line
functionality to try to build the application locally before it was pushed instead. We ran into new
problems where the Unity wouldn't start if an instance was already running locally, which there
always would be as a developer would push changes while still working on the project. This
problem made this solution obsolete as it wouldn't save us as much time.

Spending so much time on trying to have the project build when pushing changes we gave up
on it, we settled on using ReSharper CLI to do linting on the all the code locally before it was
pushed. We set it up to follow our coding standard and inforce referring to issue numbers in
commit messages. Having ReSharper setup has led to a cleaner repository and has led up to
being more mindful of writing good commit messages.

Overscope
We would have liked to be feature complete by now and begun code revision and redesign. This
is sadly not the case and we are still in a crunch to reach an acceptable gameloop. In retrospect
we should have been more reflected about the workload of implementing each system
component. Although failure to estimate did not come as a surprise.

“Following Milestones”, or rather: “not following milestones”.
Our milestones were initially stated as they are as an indicator of where we would like to be and
what we would’ve liked to have done in a seemingly sensible timeline; however, throughout the
project development it slowly became evident that our milestones were both unrealistic and
unhelpful, at least in some ways.
We started of stating that a “gameloop” was above all else in importance as it would make it
easier to work with our project as an application always capable of running from start to finish.
When we started working however, it was obvious that we would need to do a lot more design
planning than we had initially set aside time for, and so we pushed back the milestone for later.

During this process of designing and planning, we started thinking about user stories, and
allocated some space for some of these in our “Scrum”-board. During the next few weeks we
were more focused on getting into the content we had just planned and designed, and so we
unintentionally left the milestones untouched and forgot about them. When we later came back
to realize we no longer were following the plan in terms of the milestones, and to some degree
we weren’t expecting to either, but we had completely ignored using them at all.
In other words: the milestones were there in the beginning to indicate for ourselves where we
wanted to go and how we, in big steps planned to get there.
However, seeing as we had mapped out a few user stories and set them up as issues in our
issuetracker board, we had, without really planning for it, created points of importance in our
project that could be ticked off as being completed. Internally we’ve found these to be more
powerful as milestones as they directly map to what the users needs are for our application, and
so we’ve managed to stay on the right course even without the milestones.

Summarizing wrongdoings
We generally were too slow in finding alternatives whenever encountering slow-downs or full on
stops due to technological issues or other inter development related issues

What could we have done differently?
We spent more time discussing and designing the interfaces and structure of the

conditions and menu system than we thought we would. The gantt diagram from the start of the
project says we would have a game loop working after one or two weeks of development.
Looking back with the knowledge of the project we have now, that did not make sense. If we
started the project again, we would have estimated milestones a lot more accurately.

The conditions are the main components in the playground. They were initially normal C#
classes. Having them as regular classes instead of monobehaviours. Because we made this
decision, time was spent implementing functionality that already existed in monobehaviours.
Although regular classes are faster, the flexibility and convenience of monobehaviour classes
outweigh the extra speed, and we ended up changing the components to be MonoBehaviour
classes instead. This was a tedious process and caused some issues in the project, and also
some time spent on saving and serializing these as C# classes was work that just ended up
being discarded. Though there has been time consumed on something that got discarded it has
still been a learning process, and something we have learnt well from even though it caused
some significant changes in the project.

Defined branch usage better: Currently our project is kind of messy on this part, as there’s no
rule for when and why we should use different branches. Having some more clearly defined
rules for this could be helpful to avoid conflicts, keeping the repository cleaner and generally
give a better overview of what is being worked on.

How has the workflow been, and has the choice of development model
(scrum) made sense for the project so far?
Using an agile development model such as scrum has made sense for the most part of the
project, though we have been a bit flexible with our backlog and sprint backlogs during
development. This has worked out pretty well as the project and design has come along the way
during the project and not been strictly set from the beginning. Although, this has lead to some
inconvenience the workflow. This has to some degree been a new experience for us, especially
because we have had to inform and get on the same page as the 3rd parties at SINTEF.
Therefore at certain parts of the project it has been some weeks where development went
slower than intended, as a consequence of things not being mapped out entirely from the
beginning.

However this is to be expected of a research project of this nature, as it hasn’t been done
before, at certain points in the project there has been needs for planning and designing modules
of the application, and this has slowed down the development to some degree. This is due to
the art of the project, as it not having hard requirements to exactly how it is supposed to be
implemented and as it is supposed to be a publicly available product, there has been a larger
need for us to design things properly than in previous projects.

For these reasons there has always been needs for planning and designing things over, and
this has lead to changes internally on how the application layout will look like. This has also
prompted changes in the backlog considering what tasks that should be focused on at different
times of the project. All of this has been pretty natural while working with an agile development
model like scrum, and changes have always been more expected and easier to deal with.
Though we probably have had sprints where we have felt it has been hard to implement what
we supposedly were implementing at that certain time, this has been due to the need of internal
discussions of how things should be designed to get everyone on the same page. In that sense
one could say that going for scrum has not been the best decision, but we have throughout the
project so far been very flexible with the sprints. That have worked out well for us based on the
internal changes throughout the project, and made design discussions and changes easier to
handle.

20/03/19
Value Bindings in Widgets
A Central issue we started thinking about before implementing 2D UI-components (2D Widgets)
were the relation of data between widgets.
Let’s say we have two or more widgets acting on the same piece of data, how do we deal with
synchronization between the widgets to make sure the UI is consistent with the actual
underlying data the UI is controlling? - Our solution: Value Bindings.

Value Bindings are a concept utilizing C#’s standard where classes are passed by reference:
Seeing as Widgets can control the values of objects of both structures and classes, the ideal
thing would be to let all widgets that interface the same underlying data actually modify on the
same object. In C++ you could do this through a shared pointer to the object in order to share
the data between the widget instances.
Enter class references: we can achieve the same thing using C#’s copy-by-reference policy on
classes. Where data controlling widgets before looked like this:

public abstract class Widget<T> : Widget { public T value; }

public abstract class Widget<T> : Widget { public ValueBinding<T> valueBinding; }

Where the ValueBinding is a simple generic class wrapping the underlying value.
public class ValueBinding<T>

{

 public T Value { get; set; }

 public static implicit operator T(ValueBinding<T> binding) => binding.Value;

}

This gives the code using widgets the power to build bindings for said widgets in such a way
that they all talk about the same underlying data, meaning that other widgets that manipulate
the same data don’t need to sync with the one being manipulated, but instead will always have
the correct internal representation of the data being manipulated.
The external representation, i.e. the visuals of the UI will still need to be updated however, but
this is no problem, as each of the widgets pushes calls to their parent whenever they manipulate
the data. This in turn means that the widget can manipulate the internal data, push a message
to its parent (which by the way is a recursive call, as any parent will keep calling their own
parent till it’s null), then the parent can force a “redraw” on all its widget children to update their
external representation.

21/03/2019
The possibility of multithreading evaluation of conditions in the future
We realize that evaluation of the scene condition state can become heavy in more complex
scenes, and therefore we have looked into multithreading as a possible mitigation. We see
value in implementing multithreading for this, but we also understand that introducing more
complexity at this stage would not be feasible at this point. Therefore we looked into possible
solutions for future work.

.NET 4 multithreading introduces the concept of “task” through their library called TPL. The goal
of TPL “is to make developers more productive by simplifying the process of adding parallelism
and concurrency to applications”
This is a nice alternative when implementing multithreading as it could speed up the process
and result in safer code

Unity job system would be great for our project. The problem with this at the time of writing is
that the job system is still in its preview stage and are therefore it might be risky to use. We
would also have to introduce other preview packages like the BURST compiler. The job system
would however give us a even safer development environment.

26/03/2019
Simplifying UI
While designing the in-world 2D UI for the application, we tried minimizing amount of clicks the
user has to make. This is even more important in VR as laser pointer clicking is more annoying
than with a mouse. Originally we had a setup-queue-menu that contained all the conditions that
needed some setup process to work. All the menu did in reality is moving the setup process
behind unnecessary clicks, so we decided to not have the setup-queue-menu.

F | Referenced Code, Full Code Neodroid Playground

F Referenced Code, Full Code

F.1 PositionCondition

1 using UnityEngine;
2 namespace Playground
3 {
4 [System.Serializable]
5 public sealed class PositionCondition : Condition <Transform >
6 {
7 public enum VolumeMode
8 {
9 Cuboid ,

10 Sphere ,
11 Cylinder
12 }
13 public VolumeMode volumeMode;
14 [SerializeField]
15 public VolumeBase _volume;
16
17 public override bool Evaluate ()
18 {
19 var evaluation = _volume.InsideVolume(Context.transform.position);
20 return evaluation;
21 }
22
23 public override ConditionContainer GetDataContainer(ConditionValue conditionValue , bool

inNestedGroupParam)
24 {
25 var container = base.GetDataContainer(conditionValue , inNestedGroupParam);
26
27 var pcc = container.CopyBasicValues <PositionConditionContainer >();
28 pcc.volumeBase = _volume;
29 pcc.volumeMode = volumeMode;
30
31 return pcc;
32 }
33 }
34 }

F.2 TouchCondition

1 using UnityEngine;
2 using droid.Runtime.Utilities.Sensors;
3 using droid.Runtime.Utilities.Misc;
4
5
6 namespace Playground
7 {
8 [System.Serializable]
9 public sealed class TouchCondition : Condition <Collider >

10 {
11 #region context_components
12 private Collider _contextCollider; //NOTE: what about multi -collider objects - should be fixed by

using sensors
13 #endregion
14
15 #region parameters
16 #endregion
17
18 private bool _isColliding;
19
20 protected override void PreConfigure ()
21 {
22 _contextCollider = Context.GetComponent <Collider >();
23 NeodroidUtilities.RegisterCollisionTriggerCallbacksOnChildren <ChildCollider3DSensor , Collider ,

Collision >(_contextCollider , Context.transform , on_collision_enter_child: SetColliding ,
on_collision_exit_child: UnSetColliding);

24 }
25

134

F | Referenced Code, Full Code Neodroid Playground

26 void SetColliding(GameObject self , Collision collision)
27 {
28 if (collision.gameObject == Relative.gameObject)
29 _isColliding = true;
30 }
31 void UnSetColliding(GameObject self , Collision collision)
32 {
33 if (collision.gameObject == Relative.gameObject)
34 _isColliding = false;
35 }
36
37 public override bool Evaluate ()
38 {
39 return _isColliding;
40 }
41
42
43 public override ConditionContainer GetDataContainer(ConditionValue conditionValue , bool

inNestedGroupParam)
44 {
45 var container = base.GetDataContainer(conditionValue , inNestedGroupParam);
46 var tcc = container.CopyBasicValues <TouchConditionContainer >();
47
48 return tcc;
49 }
50 }
51 }

F.3 RotationConditionTest

1 using NUnit.Framework;
2 using System.Collections;
3 using UnityEngine;
4
5 // NOTE: this was written to test alternative testing methods and syntactic approaches
6 namespace Playground.Tests
7 {
8 [TestFixture]
9 public class RotationConditionTest

10 {
11 static TestData testData;
12 private RotationCondition ParamToRotationCondition(float ad1 , float ad2 , float ad3 , float tr1 ,

float tr2 , float tr3)
13 {
14
15
16 var condition = testData.contextObject.gameObject.AddComponent <RotationCondition >();
17 condition.AllowedEulerDeviation = new Vector3(ad1 , ad2 , ad3);
18 condition.TargetEulerRoation = new Vector3(tr1 , tr2 , tr3);
19
20 return condition;
21 }
22
23 // NOTE: params would break nuint it seems
24 [Test]
25 [TestCaseSource(typeof(RotationConditionData), "TestCases")]
26 public bool Rotation_Tests(float ad1 , float ad2 , float ad3 , float tr1 , float tr2 , float tr3)
27 {
28
29 testData = TestUtility.SetupDefaultScene ();
30
31 var condition = ParamToRotationCondition(ad1 , ad2 , ad3 , tr1 , tr2 , tr3);
32
33 // We need this to make linter happy even though we could have Assume for this ...
34 if (condition == null)
35 {
36 Debug.LogWarning("condition was null");
37 return false;
38 }
39 if (testData.contextObject == null)
40 {
41 Debug.LogWarning("contextObject was null");
42 return false;
43 }
44 if (testData.relativeObject == null)
45 {
46 Debug.LogWarning("relativeObject was null");
47 return false;
48 }

135

F | Referenced Code, Full Code Neodroid Playground

49
50 testData.contextObject.transform.rotation = Quaternion.identity;
51 // InitCondition(condition);
52
53 condition.Initialize(testData.contextObject);
54 condition.SetRelative(testData.relativeObject.GetComponent <Transform >());
55
56 testData.contextObject.AddGoalCondition(condition);
57 return TestUtility.EvaluateConditions(testData.contextObject);
58
59
60 }
61 }
62
63 public class RotationConditionData
64 {
65 public static IEnumerable TestCases
66 {
67 get
68 {
69 yield return new TestCaseData (10f, 10f, 10f, 0f, 0f, 0f).Returns(true);
70 yield return new TestCaseData (0f, 0f, 0f, 0f, 0f, 0f).Returns(true);
71 }
72 }
73 }
74 }

F.4 TouchConditionTest

1 using System.Collections;
2 using UnityEngine;
3 using UnityEngine.TestTools;
4 using NUnit.Framework;
5
6 namespace Playground.Tests
7 {
8 /// <summary >
9 /// Class for testing touch condition

10 /// </summary >
11 public class TouchConditionTest : ConditionsTest
12 {
13 [SetUp]
14 public override void Setup ()
15 {
16 testCount = 2;
17
18 base.Setup();
19
20 TouchCondition condition = testData.contextObject.gameObject.AddComponent <TouchCondition >();
21
22 condition.Initialize(testData.contextObject);
23 condition.SetRelative(testData.relativeObject.GetComponent <Collider >());
24
25 testData.contextObject.GoalConditions.AddCondition(condition);
26 }
27
28 [UnityTest]
29 public IEnumerator NoContact_WithRelative_ResultsToFalse ()
30 {
31 testData.contextObject.transform.position = new Vector3(0, 200, 0);
32 yield return new WaitForFixedUpdate ();//wait for physics
33
34 Assert.IsFalse(TestUtility.EvaluateConditions(testData.contextObject));
35 }
36
37 [UnityTest]
38 public IEnumerator Touching_Relative_ResultsToTrue ()
39 {
40 testData.contextObject.transform.position = new Vector3(0, 0.9f, 0);
41 for (int i = 0; i < 30; i++)
42 yield return new WaitForFixedUpdate ();
43
44 Assert.IsTrue(TestUtility.EvaluateConditions(testData.contextObject));
45 }
46
47 // teardown in base
48 }
49 }

136

F | Referenced Code, Full Code Neodroid Playground

F.5 SceneStateEvaluation

1 using droid.Runtime.Prototyping.Evaluation;
2 using System.Collections.Generic;
3
4 namespace Playground.Internal
5 {
6 public class SceneStateEvaluation : ObjectiveFunction
7 {
8 protected const int DEFAULT_NR_OF_SAMPLES = 1000;
9

10 public List <SceneObject > sceneObjects = new List <SceneObject >();
11
12 protected override void PostSetup ()
13 {
14 sceneObjects.Clear();
15 foreach (SceneObject obj in FindObjectsOfType <SceneObject >())
16 {
17 sceneObjects.Add(obj);
18 }
19 }
20
21 public override float InternalEvaluate ()
22 {
23 foreach (var sceneObject in sceneObjects)
24 {
25 if (sceneObject.TerminatingConditions.ConditionsInGroup > 0 &&

sceneObject.TerminatingConditions.Evaluate ())
26 {
27 ParentEnvironment ?. Terminate($"Entered terminating state on object: { sceneObject }");
28 return -1; // Terminating condition were fulfilled , returning negative signal
29 }
30 }
31
32 // Checking goal conditions after termination conditions
33 foreach (var sceneObject in sceneObjects)
34 {
35 if (sceneObject.GoalConditions.ConditionsInGroup > 0 &&

sceneObject.GoalConditions.Evaluate ())
36 {
37 ParentEnvironment ?. Terminate($"Entered goal state on object: { sceneObject }");
38 return 1; // Goal condition were fulfilled , returning positive signal
39 }
40 }
41 return 0; // No conditions were fulfilled , returning neutral signal
42 }
43
44 public override void InternalReset ()
45 {
46 // Could possibly do some stuff for Reverse Curriculum Generation here
47 }
48
49 public void GenerateState(float percent , uint samples , params SceneObject [] objects)
50 {
51 // construct a randomized list of the given objects; dubbed "the frontier stack"
52 // get number of sceneobjects with conditions
53 // get total number of conditions across the entire scene
54 // get nr of sceneobject ’s conditions to satisfy. -> and number of sceneobjects whole state to

satisfy.
55 // loop through the sceneobjects and conditions in question , try to generate samples that are

valid states.
56 // NOTE: conditions can implement their own "Shake" function in order to get the correct

percentage for a given sceneobject
57 // TODO: MORE
58
59 objects.Shuffle (); //use the same shuffled configuration for all the preceding samples.
60
61 //int nrOfSceneObjects = objects.Length;
62 //int nrOfConditions = 0;
63 ////get the shallow count of conditions
64 // foreach (var obj in objects)
65 //{
66 // nrOfConditions += (obj.GoalConditions.ConditionsInGroup > 0) ? 1:0;
67 // nrOfConditions += (obj.TerminatingConditions.ConditionsInGroup > 0) ? 1 : 0;
68 //}
69 }
70
71 public void GenerateState(float percent , uint samples = DEFAULT_NR_OF_SAMPLES)
72 {
73 GenerateState(percent , samples , sceneObjects.ToArray ());

137

F | Referenced Code, Full Code Neodroid Playground

74 }
75 }
76 }

F.6 Widget Base Classes

F.6.1 Widget

1 using UnityEngine;
2 using Valve.VR.InteractionSystem;
3
4 namespace Playground.UI
5 {
6 [HelpURL("https :// justworksltd.gitlab.io/playground -docs/class_playground_1_1_u_i_1_1_widget.html")]
7 public abstract class Widget : MonoBehaviour
8 {
9 #if UNITY_EDITOR

10 protected virtual void Reset () { }
11 #endif
12 [SerializeField] protected internal Widget _owner;
13 public Widget Owner => _owner;
14 public Condition Condition { get; protected set; }
15
16 public void SetOwner(Widget owner)
17 {
18 if (owner == this)
19 {
20 Debug.LogError($"{this} tried to set owner to self!");
21 return;
22 }
23 _owner = owner;
24 Condition = owner.Condition;
25 OnConditionContextSet ();
26 PropagatePushChanges (); // ensure the Widget in its finalized initial state is pushed up TODO:

This causes pro
27 }
28
29 /// <summary >
30 /// Override to do component specific setup based on condition context.
31 /// This is usually where you would ensure persistency by reconstructing
32 /// the widget settings based on the value handle of the widget
33 /// </summary >
34 protected virtual void OnConditionContextSet () { }
35
36 /// <summary >Sets the widget to its initial state.</summary >
37 public abstract void SetInitialState ();
38 protected void PropagateStartUpdate ()
39 {
40 OnStartUpdate ();
41 _owner ?. PropagateStartUpdate ();
42 }
43 protected void PropagateUpdateVisuals ()
44 {
45 OnUpdateVisuals ();
46 _owner ?. PropagateUpdateVisuals ();
47 }
48 protected void PropagateStopUpdate ()
49 {
50 OnStopUpdate ();
51 _owner ?. PropagateStopUpdate ();
52 }
53 protected void PropagatePushChanges ()
54 {
55 OnPushChanges ();
56 _owner ?. PropagatePushChanges ();
57 }
58
59 /// <summary >
60 /// Called upon when grabbed/attached
61 /// </summary >
62 public virtual void OnStartUpdate () { }
63
64 /// <summary >
65 /// Updates done internally
66 /// </summary >
67 public virtual void OnUpdateVisuals () { }
68
69 /// <summary >
70 /// Called upon when released/un -attached

138

F | Referenced Code, Full Code Neodroid Playground

71 /// </summary >
72 public virtual void OnStopUpdate () { }
73
74 /// <summary >
75 /// update external state so that the rest of the UI-system reccognize the changes made.
76 /// </summary >
77 public virtual void OnPushChanges () { }
78 }
79 }

F.6.2 Widget2D

1 using UnityEngine;
2 using Valve.VR.InteractionSystem;
3
4 namespace Playground.UI
5 {
6 public abstract class Widget2D : Widget
7 {
8 public RectTransform RectTransform => transform as RectTransform;
9 }

10 }

F.6.3 Widget2D<T>

1 using UnityEngine;
2 using Valve.VR.InteractionSystem;
3
4 namespace Playground.UI
5 {
6 public abstract class Widget2D <T> : Widget2D , IValuedWidget <T>
7 {
8 private ValueHandle <T> valueHandle = new ValueHandle <T>();
9

10 public void FetchHandle(out ValueHandle <T> handle) => handle = valueHandle;
11 public void SetValueHandle(ValueHandle <T> handle) => valueHandle = handle;
12 public T Value
13 {
14 get => valueHandle.Value;
15 set => valueHandle.Value = value;
16 }
17 }
18 }

F.6.4 WidgetVR

1 using UnityEngine;
2 using Valve.VR.InteractionSystem;
3
4 namespace Playground.UI
5 {
6 [RequireComponent(typeof(Interactable))]
7 public abstract class WidgetVR : Widget
8 {
9 #if UNITY_EDITOR

10 protected override void Reset() => _interactable = GetComponent <Interactable >();
11 #endif
12 [SerializeField] protected Interactable _interactable;
13 protected bool attached;
14 public bool Attached => attached;
15
16 [EnumFlags]
17 [Tooltip("The flags used to attach this object to the hand.")]
18 public Hand.AttachmentFlags attachmentFlags = Hand.AttachmentFlags.ParentToHand |

Hand.AttachmentFlags.DetachFromOtherHand;
19
20
21 // ===
22 // ------------------------STEAM VR-------------------------
23 // ===
24
25 // ---
26 // Attach To Hand
27 // ---
28 /// <summary >
29 /// Default implementation of hand attachment for widgets
30 /// </summary >

139

F | Referenced Code, Full Code Neodroid Playground

31 /// <param name="hand">the hand to attach to </param >
32 protected virtual void DoAttachToHand(Hand hand)
33 {
34 attached = true;
35 hand.HoverLock(null);
36 }
37 /// <summary >
38 /// Valve ’s interface for interactables
39 /// <para >What happens when the hand tries to make this attach </para >
40 /// </summary >
41 /// <param name="hand">the attaching hand </param >
42 protected void OnAttachedToHand(Hand hand)
43 {
44 DoAttachToHand(hand);
45 PropagateStartUpdate ();
46 }
47
48 // ---
49 // Hand Hover Begin
50 // ---
51 /// <summary >
52 /// Default implementation of hand beggining hovering for widgets
53 /// </summary >
54 /// <param name="hand">the hand hovering over this </param >
55 protected virtual void DoHandHoverBegin(Hand hand)
56 {
57 if (! attached)
58 {
59 GrabTypes bestGrabType = hand.GetBestGrabbingType ();
60 if (bestGrabType != GrabTypes.None)
61 {
62 hand.AttachObject(gameObject , bestGrabType , attachmentFlags);
63 }
64 }
65 }
66 /// <summary >
67 /// Valve ’s interface for interactables
68 /// <para >What happens when a hand starts hovering over this </para >
69 /// </summary >
70 /// <param name="hand">the hovering hand </param >
71 protected void OnHandHoverBegin(Hand hand) => DoHandHoverBegin(hand);
72
73 // ---
74 // Hand Hover End
75 // ---
76 /// <summary >
77 /// Default implementation of hand stopping hovering for widgets
78 /// </summary >
79 /// <param name="hand">the hand hovering over this </param >
80 protected virtual void DoHandHoverEnd(Hand hand) => hand.HideGrabHint ();
81 /// <summary >
82 /// Valve ’s interface for interactables
83 /// <para >What happens when a hand stops hovering over this </para >
84 /// </summary >
85 /// <param name="hand">the hovering hand </param >
86 protected void OnHandHoverEnd(Hand hand) => DoHandHoverEnd(hand);
87
88 // ---
89 // Hand Hover Update
90 // ---
91 /// <summary >
92 /// Default implementation of updates while hovering over widgets
93 /// </summary >
94 /// <param name="hand">the hand hovering over this </param >
95 protected virtual void DoHandHoverUpdate(Hand hand)
96 {
97 GrabTypes startingGrabType = hand.GetGrabStarting ();
98 if (startingGrabType != GrabTypes.None)
99 {

100 hand.AttachObject(gameObject , startingGrabType , attachmentFlags);
101 hand.HideGrabHint ();
102 }
103 }
104 /// <summary >
105 /// Valve ’s interface for interactables
106 /// <para >What happens during updates while hovering over this </para >
107 /// </summary >
108 /// <param name="hand">the hovering hand </param >
109 protected void HandHoverUpdate(Hand hand) => DoHandHoverUpdate(hand);
110

140

F | Referenced Code, Full Code Neodroid Playground

111
112 // ---
113 // Detach From Hand
114 // ---
115 /// <summary >
116 /// Default implementation of detaching widgets from hand
117 /// </summary >
118 /// <param name="hand">the detaching hand </param >
119 protected virtual void DoDetachFromHand(Hand hand)
120 {
121 attached = false;
122 PropagateStopUpdate ();
123 PropagatePushChanges ();
124 hand.HoverUnlock(null);
125 }
126 /// <summary >
127 /// Valve ’s interface for interactables
128 /// <para >What happens when this is detached </para >
129 /// </summary >
130 /// <param name="hand">the detaching hand </param >
131 protected void OnDetachedFromHand(Hand hand) => DoDetachFromHand(hand);
132
133
134 // ---
135 // Attached Update
136 // ---
137 /// <summary >
138 /// Default implementation of attached updates for widgets
139 /// </summary >
140 /// <param name="hand">the attached hand </param >
141 protected virtual void DoAttachedUpdate(Hand hand)
142 {
143 PropagateUpdateVisuals ();
144 if (hand.IsGrabEnding(gameObject))
145 {
146 hand.DetachObject(gameObject);
147 }
148 }
149 /// <summary >
150 /// Valve ’s interface for interactables
151 /// <para >What happens in the update loop when this is attached </para >
152 /// </summary >
153 /// <param name="hand">the attached hand </param >
154 protected void HandAttachedUpdate(Hand hand) => DoAttachedUpdate(hand);
155
156 // ---
157 // Hand Focus
158 // ---
159 protected void OnHandFocusAcquired(Hand hand) => gameObject.SetActive(true);
160 protected void OnHandFocusLost(Hand hand) => gameObject.SetActive(false);
161 }
162 }

F.6.5 WidgetVR<T>

1 using UnityEngine;
2 using Valve.VR.InteractionSystem;
3
4 namespace Playground.UI
5 {
6 public abstract class WidgetVR <T> : WidgetVR , IValuedWidget <T>
7 {
8 private ValueHandle <T> valueHandle = new ValueHandle <T>();
9 public void FetchHandle(out ValueHandle <T> handle) => handle = valueHandle;

10 public void SetValueHandle(ValueHandle <T> handle) => valueHandle = handle;
11 public T Value
12 {
13 get => valueHandle.Value;
14 set => valueHandle.Value = value;
15 }
16 }
17 }

F.7 DropdownWidget2D

1 using UnityEngine;
2 using UnityEngine.UI;
3

141

F | Referenced Code, Full Code Neodroid Playground

4 namespace Playground.UI
5 {
6 [RequireComponent(typeof(Dropdown)), AddComponentMenu("Playground/Widget 2D/Dropdown")]
7 public class DropdownWidget2D : Widget2D <int >
8 {
9 #if UNITY_EDITOR

10 protected override void Reset()
11 {
12 base.Reset();
13 dropdown = GetComponent <Dropdown >();
14 }
15 #endif
16 // UnityEngine.UI.Dropdown - the Dropdown Component by Unity
17 public Dropdown dropdown;
18
19 private void Awake ()
20 {
21 // inject calls to our interface
22 dropdown.onValueChanged.AddListener(_ => PropogatePushChanges ()); //call directly to the base

in order to propogate the event
23 }
24 public override void SetInitialState () => dropdown.value = Value;
25 protected override void OnConditionContextSet () => dropdown.value = Value;
26 public void SetOptions(in System.Enum enumValue) =>

SetOptions(System.Enum.GetNames(enumValue.GetType ()));
27
28 public void SetOptions(in string [] options)
29 {
30 dropdown.ClearOptions ();
31 dropdown.AddOptions(new System.Collections.Generic.List <string >(options));
32 }
33 public void SetOptions(in System.Collections.Generic.List <string > options)
34 {
35 dropdown.ClearOptions ();
36 dropdown.AddOptions(options);
37 }
38
39 public ref readonly T GetValue <T>(in T[] options) => ref options[Value];
40
41 public override void OnPushChanges () => Value = dropdown.value;
42 }
43 }

F.8 SubMenu

1 using System.Collections.Generic;
2 using UnityEngine;
3 using UnityEngine.UI;
4
5 using Valve.VR.InteractionSystem;
6 namespace Playground.UI {
7
8 [System.Serializable]
9 public struct LayoutData

10 {
11 /// <summary >
12 /// A reference to the child beeing layed out
13 /// </summary >
14 public SubMenu menuRef;
15 /// <summary >
16 /// The position of this child when placed inside the parent submenu
17 /// </summary >
18 public Vector3 internalPosition;
19 public Vector2 internalSizeDelta;
20 //TODO: Add internalRotation?
21 }
22
23
24 [RequireComponent(typeof(Interactable))]
25 [System.Serializable]
26 public class SubMenu : MonoBehaviour
27 {
28 #pragma warning disable 0649
29 [SerializeField] private string _name;
30 public string Name
31 {
32 get => _name;
33 set => _name = value;
34 }

142

F | Referenced Code, Full Code Neodroid Playground

35
36 [SerializeField] private SubMenu _owner;
37 private SubMenu _root;
38
39 [SerializeField] private LayoutData [] _childLayouts;
40 [SerializeField] private Widget [] _widgets; //NOTE: may not need to be serialized
41 [SerializeField] private Transform _grabbable; //i.e. the transform of the collider
42 #pragma warning restore 0649
43
44 public SubMenu Root
45 {
46 get
47 {
48 if (!_root)
49 {
50 for (SubMenu parent = _owner; parent; parent = parent._owner) {
51 _root = parent;
52 }
53 }
54 Debug.Assert(_root != null , $"{name}: Root was null when trying to access it!");
55 return _root;
56 }
57 }
58
59 [Range(50, 1000) , Tooltip("Drag Threshold in pixelspace: how far you need to drag the element in

order to detach it")]
60 [SerializeField]
61 private int _detachThreshold = 100;
62
63 [SerializeField] RectTransform container;
64
65 bool attachedToHand;
66
67 [EnumFlags , Tooltip("The flags used to attach this object to the hand.")]
68 public Hand.AttachmentFlags attachmentFlags = Hand.AttachmentFlags.ParentToHand |

Hand.AttachmentFlags.DetachFromOtherHand;
69
70 Vector3 startGrabPosition;
71
72 RectTransform RectTransform => (RectTransform)transform;
73
74 Vector3 OwnerSpace(Vector3 worldPosition) {
75 return _owner ?. transform.InverseTransformPoint(worldPosition) ?? worldPosition;
76 }
77
78 #if UNITY_EDITOR
79 [ContextMenu("Store current Child Layout")]
80 private void SaveLayout ()
81 {
82 //TODO: Remove LayoutGroup -related things
83 void RecurseTransform(ref List <SubMenu > children , Transform innerTransform)
84 {
85 for (int i = 0; i < innerTransform.childCount; i++)
86 {
87 var child = innerTransform.GetChild(i);
88 var childMenu = innerTransform.GetChild(i).GetComponent <SubMenu >();
89 if (childMenu)
90 children.Add(childMenu);
91 else
92 {
93 var layoutGroup = child.GetComponent <LayoutGroup >();
94 if(layoutGroup)
95 RecurseTransform(ref children , layoutGroup.transform);
96 }
97 }
98 }
99 List <SubMenu > childList = new List <SubMenu >();

100 RecurseTransform(ref childList , transform);
101
102
103 _childLayouts = new LayoutData[childList.Count];
104 for (int i = 0; i < _childLayouts.Length; i++)
105 {
106 childList[i]. _owner = this;
107
108 _childLayouts[i]. menuRef = childList[i];
109 _childLayouts[i]. internalPosition = _childLayouts[i]. menuRef.transform.localPosition;
110 _childLayouts[i]. internalSizeDelta = _childLayouts[i]. menuRef.RectTransform.sizeDelta;
111 _childLayouts[i]. menuRef.SaveLayout ();
112 }

143

F | Referenced Code, Full Code Neodroid Playground

113 UnityEditor.EditorUtility.SetDirty(this);
114 }
115
116 [ContextMenu("Test Revert")]
117 public void TestRevert ()
118 {
119 RevertLayoutToDefault ();
120 }
121
122 private void Reset ()
123 {
124 if (! gameObject.GetComponentInParent <SubMenu >() && _root != null)
125 {
126 Debug.LogError("invalid menu structure: parent does not contain a submenu");
127 }
128 }
129 #endif
130 /// <summary >
131 /// Handles layout position data
132 /// </summary >
133 /// <param name=" placableWidget">widget to be place </param >
134 public void InsertAndLayoutWidget(Widget2D placableWidget)
135 {
136 placableWidget.transform.SetParent(transform , true);
137 placableWidget.transform.localScale = Vector3.one;
138 //TODO: MORE
139 }
140
141 private void Start ()
142 {
143 _grabbable.Find("MenuLabel").GetComponent <Text >().text = _name;
144 }
145
146 protected void RevertLayoutToDefault ()
147 {
148 foreach(var childLayout in _childLayouts)
149 {
150 childLayout.menuRef.RevertLayoutToDefault ();
151
152 if (childLayout.menuRef._owner == this)
153 continue;
154
155 childLayout.menuRef._owner = this;
156 var oldContainer = childLayout.menuRef.transform.parent;
157 childLayout.menuRef.transform.parent = transform;
158 Destroy(oldContainer.gameObject);
159 childLayout.menuRef.transform.localPosition = childLayout.internalPosition;
160 childLayout.menuRef.RectTransform.sizeDelta = childLayout.internalSizeDelta;
161 childLayout.menuRef.transform.localRotation = Quaternion.identity;
162 }
163 }
164
165 protected void DetachFromOwner ()
166 {
167 //do some stuff , then:
168 container = (RectTransform)(new GameObject($"{name}_container", typeof(Canvas),

typeof(CanvasScaler)).transform);
169
170 container.transform.localPosition = _owner.transform.localPosition; //TODO: move the container

about to avoid floating point errors
171 container.transform.localRotation = _owner.transform.localRotation;
172 container.transform.localScale = Root.container.localScale;
173
174
175 /*
176 Container holds information about how to recover layout of detached parts
177 Dictionary might be used for this
178
179 OnDetachMenu should copy the submenu , reset the old one ’s position and disable it.
180 */
181
182 var ownerCanvasScaler = Root.container.GetComponent <CanvasScaler >();
183 var canvasScaler = container.GetComponent <CanvasScaler >();
184
185 Vector3 preUnparentPosition = transform.position;
186 _owner = null;
187 // container.sizeDelta = RectTransform.sizeDelta; Look at making the sizes nicer
188 transform.parent = container;
189
190 canvasScaler.dynamicPixelsPerUnit = ownerCanvasScaler.dynamicPixelsPerUnit;

144

F | Referenced Code, Full Code Neodroid Playground

191 canvasScaler.referencePixelsPerUnit = ownerCanvasScaler.referencePixelsPerUnit;
192
193
194 OnDetachFromOwner ();
195 }
196
197 public virtual void OnDetachFromOwner ()
198 {
199
200 }
201
202 protected void SnapBack ()
203 {
204 //snap back to the grabbing position relative to the attachment point of this menu
205 transform.localPosition = startGrabPosition - _grabbable.transform.localPosition;
206 }
207
208 public virtual void OnSnapBack ()
209 {
210
211 }
212
213 #region STEAM_VR
214 // ---
215 // Attach To Hand
216 // ---
217 /// <summary >
218 /// Valve ’s interface for interactables
219 /// <para >What happens when the hand tries to make this attach </para >
220 /// </summary >
221 /// <param name="hand">the attaching hand </param >
222 protected void OnAttachedToHand(Hand hand)
223 {
224 startGrabPosition = OwnerSpace(_grabbable.position);
225 if (_owner)
226 {
227 Debug.DrawLine(_owner.transform.TransformPoint(startGrabPosition) -

_owner.transform.forward , _owner.transform.TransformPoint(startGrabPosition) +
_owner.transform.forward , Color.red , 20.0f);

228 }
229 attachedToHand = true;
230 hand.HoverLock(null);
231 }
232
233 // ---
234 // Hand Hover Begin
235 // ---
236 /// <summary >
237 /// Valve ’s interface for interactables
238 /// <para >What happens when a hand starts hovering over this </para >
239 /// </summary >
240 /// <param name="hand">the hovering hand </param >
241 protected void OnHandHoverBegin(Hand hand)
242 {
243 if (! attachedToHand)
244 {
245 GrabTypes bestGrabType = hand.GetBestGrabbingType ();
246 if (bestGrabType != GrabTypes.None)
247 {
248 hand.AttachObject(gameObject , bestGrabType , attachmentFlags);
249 }
250 }
251 }
252
253 // ---
254 // Hand Hover End
255 // ---
256 /// <summary >
257 /// Valve ’s interface for interactables
258 /// <para >What happens when a hand stops hovering over this </para >
259 /// </summary >
260 /// <param name="hand">the hovering hand </param >
261 protected void OnHandHoverEnd(Hand hand) => hand.HideGrabHint ();
262
263 // ---
264 // Hand Hover Update
265 // ---
266 /// <summary >
267 /// Valve ’s interface for interactables
268 /// <para >What happens during updates while hovering over this </para >

145

F | Referenced Code, Full Code Neodroid Playground

269 /// </summary >
270 /// <param name="hand">the hovering hand </param >
271 protected void HandHoverUpdate(Hand hand)
272 {
273 GrabTypes startingGrabType = hand.GetGrabStarting ();
274 if (startingGrabType != GrabTypes.None)
275 {
276 hand.AttachObject(gameObject , startingGrabType , attachmentFlags);
277 hand.HideGrabHint ();
278 }
279 }
280
281
282 // ---
283 // Detach From Hand
284 // ---
285 /// <summary >
286 /// Valve ’s interface for interactables
287 /// <para >What happens when this is detached </para >
288 /// </summary >
289 /// <param name="hand">the detaching hand </param >
290 protected void OnDetachedFromHand(Hand hand)
291 {
292 if (_owner)
293 {
294 Debug.Log(Vector3.Distance(OwnerSpace(_grabbable.position), startGrabPosition));
295
296 if (Vector3.Distance(OwnerSpace(_grabbable.position), startGrabPosition) >

_detachThreshold)
297 DetachFromOwner ();
298 else
299 SnapBack ();
300 }
301
302
303 attachedToHand = false;
304 hand.HoverUnlock(null);
305 }
306
307 // ---
308 // Attached Update
309 // ---
310 /// <summary >
311 /// Valve ’s interface for interactables
312 /// <para >What happens in the update loop when this is attached </para >
313 /// </summary >
314 /// <param name="hand">the attached hand </param >
315 protected void HandAttachedUpdate(Hand hand)
316 {
317 if (hand.IsGrabEnding(gameObject))
318 {
319 hand.DetachObject(gameObject);
320 }
321 }
322
323 // ---
324 // Hand Focus
325 // ---
326 protected void OnHandFocusAcquired(Hand hand) => gameObject.SetActive(true);
327 protected void OnHandFocusLost(Hand hand) => gameObject.SetActive(false);
328 #endregion
329 }
330 }

F.9 RaycastingInputModule

1 using UnityEngine;
2 using UnityEngine.EventSystems;
3 using Valve.VR.InteractionSystem;
4 using Valve.VR;
5 using System;
6
7
8 namespace Playground.Internal
9 {

10 //https :// bitbucket.org/Unity -Technologies/ui/src /0651862509331 da4e85f519de88c99d0529493a5/UnityEngine.UI/EventSystem/InputModules/StandaloneInputModule.cs?at =2018.3%2 Fstaging&fileviewer=file -view -default
11 //https :// github.com/wacki/Unity -VRInputModule/blob/master/Assets/VRInputModule/Scripts/LaserPointerInputModule.cs
12
13 [RequireComponent(typeof(Camera))]

146

F | Referenced Code, Full Code Neodroid Playground

14 public class RaycastingInputModule : BaseInputModule
15 {
16 public Hand hand;
17
18 private float m_PrevActionTime;
19 private Vector2 m_LastMoveVector;
20 // private int m_ConsecutiveMoveCount;
21
22 private Vector2 _lastPointerPosition;
23 private Vector2 _pointerPosition;
24
25
26 #if UNITY_EDITOR
27 public bool debug;
28 public bool fallbackMock => !GameManager.Instance.usingVR;
29 private Transform _mockHandTransform => GameManager.Instance.player;//=> _hand.transform;
30 private Transform handTransform => fallbackMock ? _mockHandTransform : hand?. transform ??

_mockHandTransform;
31 # else
32 private Transform handTransform => _hand.transform;
33 #endif
34
35 public SteamVR_Input_Sources InputSource => hand?. handType ?? SteamVR_Input_Sources.Any;
36 #pragma warning disable 0649
37 [SerializeField] private LayerMask interactionLayer;
38 [SerializeField] private SteamVR_Action_Boolean _clickAction;
39 #pragma warning restore 0649
40 //[SerializeField] private SteamVR_Action_Vector2 _scrollAction;
41 #if UNITY_EDITOR
42 [Space]
43 #endif
44 [SerializeField] private float _laserReach = 100f;
45 private Camera _eventProcessingCamera;
46
47 [NonSerialized] private GameObject currentEnter;
48 [NonSerialized] private GameObject currentPressed;
49 [NonSerialized] private GameObject currentDragging;
50
51 RaycastHit [] sceneObjectHits = new RaycastHit [1];
52
53
54 protected override void Awake()
55 {
56 base.Awake();
57 _eventProcessingCamera = GetComponent <Camera >();
58 // We don ’t really care about using the camera for rendering ,
59 // so don ’t do graphics related things
60 _eventProcessingCamera.orthographic = true;
61 _eventProcessingCamera.orthographicSize = 0.01f;
62 _eventProcessingCamera.clearFlags = CameraClearFlags.Nothing;
63 _eventProcessingCamera.enabled = false;
64 _eventProcessingCamera.fieldOfView = 5;
65 _eventProcessingCamera.nearClipPlane = 0.01f;
66 _eventProcessingCamera.farClipPlane = _laserReach;
67 // _eventProccessingCamera.cullingMask = CULL NON UI?
68
69 inputOverride = GetComponent <SteamVRInput >();
70 }
71
72 protected override void Start()
73 {
74 base.Start();
75 GameManager.Instance.Canvas.worldCamera = _eventProcessingCamera;
76 }
77
78 protected bool SendUpdateEventToSelectedObject ()
79 {
80 if (eventSystem.currentSelectedGameObject == null)
81 return false;
82
83 var data = GetBaseEventData ();
84 ExecuteEvents.Execute(eventSystem.currentSelectedGameObject , data ,

ExecuteEvents.updateSelectedHandler);
85 return data.used;
86 }
87
88 public override void Process ()
89 {
90 bool usedEvent = SendUpdateEventToSelectedObject ();
91 ProcessVRPointerEvents ();

147

F | Referenced Code, Full Code Neodroid Playground

92 }
93
94 protected void ProcessVRPointerEvents ()
95 {
96 UpdateEventProcessingCamera ();
97 var eventData = GetVRPointerEventData ();
98 ProcessMove(eventData);
99 ProcessClick(eventData);

100 }
101
102 private void UpdateEventProcessingCamera ()
103 {
104 _eventProcessingCamera.transform.SetPositionAndRotation(
105 handTransform.position ,
106 handTransform.rotation
107);
108 }
109
110 private VRPointerEventData GetVRPointerEventData ()
111 {
112 VRPointerEventData eventData = new VRPointerEventData(eventSystem){ inputSource = InputSource

};
113 //TODO: cache
114 eventData.Reset();
115 eventData.position = _eventProcessingCamera.pixelRect.center;
116
117 eventData.pointerPress = currentPressed;
118 eventData.pointerDrag = currentDragging;
119 eventData.pointerEnter = currentEnter;
120
121 eventSystem.RaycastAll(eventData , m_RaycastResultCache); // fill the eventdata by casting a ray
122 eventData.pointerCurrentRaycast = FindFirstRaycast(m_RaycastResultCache);
123 //NOTE: it might be worth to do this every frame BEFORE the raycast instead ,
124 // in case we want the other results for some logic
125 m_RaycastResultCache.Clear();
126
127 _pointerPosition = eventData.pointerCurrentRaycast.worldPosition;
128 eventData.delta = _pointerPosition - _lastPointerPosition;
129 _lastPointerPosition = _pointerPosition;
130
131 //Debug.Log($"INIT DELTA: {eventData.delta }");
132
133 return eventData;
134 }
135
136
137 public void ClearSelected ()
138 {
139 if (eventSystem.currentSelectedGameObject) {
140 eventSystem.SetSelectedGameObject(null);
141 }
142 }
143
144 private static bool ShouldStartDrag(Vector2 pressPos , Vector2 currentPos , float threshold , bool

useDragThreshold)
145 {
146 if (! useDragThreshold)
147 return true;
148 return (pressPos - currentPos).sqrMagnitude >= threshold * threshold;
149 }
150
151 private void ProcessMove(VRPointerEventData e)
152 {
153 var targetGO = e.pointerCurrentRaycast.gameObject;
154 //TODO: Message the sender (controller) of the event
155 //Pass OnEnter/OnExit calls down to the UI (for hover effects ?)
156 // IPointerEnterHandler and IPointerExitHandler
157 if (ExecuteEvents.CanHandleEvent <IPointerEnterHandler >(targetGO))
158 {
159 if (currentEnter != targetGO)
160 {
161 //if (currentEnter != null)
162 {
163 currentEnter = null;
164 // ExecuteEvents.Execute(currentEnter , e, ExecuteEvents.pointerExitHandler);
165 }
166
167 if (targetGO != null)
168 {
169 currentEnter = targetGO;

148

F | Referenced Code, Full Code Neodroid Playground

170 // ExecuteEvents.Execute(currentEnter , e, ExecuteEvents.pointerEnterHandler);
171 }
172 }
173 }
174 HandlePointerExitAndEnter(e, targetGO);
175 currentEnter = e.pointerEnter;
176 }
177
178 private void ProcessClick(VRPointerEventData e)
179 {
180 var currentOverGo = e.pointerCurrentRaycast.gameObject;
181 #if UNITY_EDITOR
182 if ((fallbackMock && Input.GetMouseButtonDown (0)) || (! fallbackMock &&

_clickAction.GetStateDown(InputSource)))
183 #else
184 if (_clickAction.GetStateDown(InputSource))
185 #endif
186 {
187 e.pressPosition = e.position;
188 e.pointerPressRaycast = e.pointerCurrentRaycast;
189 e.pointerPress = null;
190
191 //if hitting a physics -interactable
192 if(Physics.RaycastNonAlloc(
193 transform.position ,
194 transform.forward ,
195 sceneObjectHits ,
196 _laserReach ,
197 interactionLayer.value ,
198 QueryTriggerInteraction.Ignore) > 0)
199 {
200 var sceneObjectGO = sceneObjectHits [0]. transform.gameObject;
201 HandlePointerExitAndEnter(e, sceneObjectGO);
202 currentEnter = e.pointerEnter;
203 if (ExecuteEvents.CanHandleEvent <IPointerClickHandler >(sceneObjectGO))
204 {
205 #if PLAYGROUND_DEBUG
206 Debug.Log($"POINTER CLICK on {sceneObjectGO}");
207 #endif
208 ExecuteEvents.Execute(sceneObjectGO , e, ExecuteEvents.pointerClickHandler);
209 }
210 }
211 else if (e.pointerCurrentRaycast.gameObject != null)
212 {
213 GameObject newPressed = ExecuteEvents.ExecuteHierarchy(currentOverGo , e,

ExecuteEvents.pointerDownHandler); // Execute a pointerDownEvent on the target
214 //TODO: Message the sender (controller) of the event
215 if (newPressed == null) //the target was not a handler of IPointerDownEvent , though it

might still be one for IClickHandler
216 {
217 newPressed = ExecuteEvents.ExecuteHierarchy(currentOverGo , e,

ExecuteEvents.pointerClickHandler);
218 #if PLAYGROUND_DEBUG
219 if (newPressed != null) Debug.Log($"POINTER CLICK on {newPressed}");
220 #endif
221 }
222 else
223 {
224 #if PLAYGROUND_DEBUG
225 Debug.Log($"POINTER DOWN on {newPressed}");
226 if(ExecuteEvents.Execute(newPressed , e, ExecuteEvents.pointerClickHandler))
227 {
228 Debug.Log($"POINTER CLICK on {newPressed}");
229 }
230 #else
231 ExecuteEvents.Execute(newPressed , e, ExecuteEvents.pointerClickHandler);
232 #endif
233 //TODO: Message the sender (controller) of the event
234 }
235 if (newPressed != null)
236 {
237 e.pointerPress = newPressed;
238 currentPressed = newPressed;
239
240 e.pointerDrag = newPressed;
241 currentDragging = newPressed;
242
243 ClearSelected ();
244
245 if (ExecuteEvents.CanHandleEvent <ISelectHandler >(newPressed))

149

F | Referenced Code, Full Code Neodroid Playground

246 {
247 #if PLAYGROUND_DEBUG
248 Debug.Log($"SELECT on {newPressed}");
249 #endif
250 eventSystem.SetSelectedGameObject(newPressed);
251 }
252 #if PLAYGROUND_DEBUG
253 if(ExecuteEvents.Execute(newPressed , e, ExecuteEvents.initializePotentialDrag))
254 {
255 Debug.Log($"INIT POTENTIAL DRAG on {newPressed}");
256 }
257 #else
258 ExecuteEvents.Execute(newPressed , e, ExecuteEvents.initializePotentialDrag);
259 #endif
260 }
261 }
262 }
263 ProcessDrag(e);
264
265 #if UNITY_EDITOR
266 if ((fallbackMock && Input.GetMouseButtonUp (0)) || (! fallbackMock &&

_clickAction.GetStateUp(InputSource)))
267 #else
268 if (_clickAction.GetStateUp(InputSource))
269 #endif
270 {
271
272 if (e.pointerPress)
273 {
274 #if PLAYGROUND_DEBUG
275 if(ExecuteEvents.Execute(e.pointerPress , e, ExecuteEvents.pointerUpHandler))
276 {
277 Debug.Log($"POINTER UP on {e.pointerPress}");
278 }
279 #else
280 ExecuteEvents.Execute(e.pointerPress , e, ExecuteEvents.pointerUpHandler);
281 #endif
282 var pointerUpHandler =

ExecuteEvents.GetEventHandler <IPointerClickHandler >(currentOverGo);
283 if (e.dragging && e.pointerDrag != null && pointerUpHandler != e.pointerPress &&

e.eligibleForClick)
284 {
285 #if PLAYGROUND_DEBUG
286 if(ExecuteEvents.ExecuteHierarchy(currentOverGo , e, ExecuteEvents.dropHandler) !=

null)
287 {
288 Debug.Log($"DROP on {currentOverGo}");
289 }
290 #else
291 ExecuteEvents.ExecuteHierarchy(currentOverGo , e, ExecuteEvents.dropHandler);
292 #endif
293 }
294
295 e.eligibleForClick = false;
296 e.pointerPress = null;
297 currentPressed = null;
298 e.rawPointerPress = null;
299
300 if (e.pointerDrag != null && e.dragging)
301 {
302 #if PLAYGROUND_DEBUG
303 if(ExecuteEvents.Execute(e.pointerDrag , e, ExecuteEvents.endDragHandler))
304 {
305 Debug.Log($"END DRAG on {e.pointerDrag}");
306 }
307 #else
308 ExecuteEvents.Execute(e.pointerDrag , e, ExecuteEvents.endDragHandler);
309 #endif
310 }
311
312 e.dragging = false;
313 e.pointerDrag = null;
314 currentDragging = null;
315
316 // redo pointer enter / exit to refresh state
317 // so that if we moused over somethign that ignored it before
318 // due to having pressed on something else
319 // it now gets it.
320 if (currentOverGo != e.pointerEnter)
321 {

150

F | Referenced Code, Full Code Neodroid Playground

322 HandlePointerExitAndEnter(e, null);
323 HandlePointerExitAndEnter(e, currentOverGo);
324 }
325
326 }
327 }
328 }
329 private void ProcessDrag(VRPointerEventData pointerEvent)
330 {
331
332 bool moving = pointerEvent.IsPointerMoving ();
333 //Debug.Log($"Pointer has {((pointerEvent.pointerDrag != null) ? "a" : "no ")} dragging

target ");
334 //Debug.Log($"Pointer should {(ShouldStartDrag(pointerEvent.pressPosition ,

pointerEvent.position , eventSystem.pixelDragThreshold , pointerEvent.useDragThreshold) ? ""
: "not ")} drag !");

335
336 if (moving && pointerEvent.pointerDrag != null
337 && !pointerEvent.dragging
338 && ShouldStartDrag(pointerEvent.pressPosition , pointerEvent.position ,

eventSystem.pixelDragThreshold , pointerEvent.useDragThreshold))
339 {
340
341 pointerEvent.dragging = ExecuteEvents.Execute(pointerEvent.pointerDrag , pointerEvent ,

ExecuteEvents.beginDragHandler);
342 #if PLAYGROUND_DEBUG
343 if(pointerEvent.dragging) Debug.Log($"BEGIN DRAG on {pointerEvent.pointerDrag}");
344 #endif
345 }
346
347 // Drag notification
348 if (pointerEvent.dragging && moving && pointerEvent.pointerDrag != null)
349 {
350 // Before doing drag we should cancel any pointer down state
351 // And clear selection!
352 if (pointerEvent.pointerPress != pointerEvent.pointerDrag)
353 {
354
355 #if PLAYGROUND_DEBUG
356 if(ExecuteEvents.Execute(pointerEvent.pointerPress , pointerEvent ,

ExecuteEvents.pointerUpHandler))
357 {
358 Debug.Log($"POINTER UP on {pointerEvent.pointerPress}");
359 }
360
361 #else
362 ExecuteEvents.Execute(pointerEvent.pointerPress , pointerEvent ,

ExecuteEvents.pointerUpHandler);
363 #endif
364 pointerEvent.eligibleForClick = false;
365 pointerEvent.pointerPress = null;
366 currentPressed = null;
367 pointerEvent.rawPointerPress = null;
368 }
369 #if PLAYGROUND_DEBUG
370 if(ExecuteEvents.Execute(pointerEvent.pointerDrag , pointerEvent ,

ExecuteEvents.dragHandler))
371 {
372 Debug.Log($"POINTER DRAG on {pointerEvent.pointerDrag}");
373 }
374 #else
375 ExecuteEvents.Execute(pointerEvent.pointerDrag , pointerEvent , ExecuteEvents.dragHandler);
376 #endif
377 }
378 }
379 }
380 }

151

G | Gantt Diagram Neodroid Playground

G Gantt Diagram

ID

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

33

34

35

36

Workshop

Project Planning

Architectural Design

Milestones

Collecting image data from the playground

"Just make the rest of the platform!"

"Getting Started" 24/01

GameLoop 06/02

Standards Defined 17/02

"Cube" 27/02

Reverse Curriculum Starting Point 10/03

Midway Evaluation Pivot 17/03

Simple Joint-based Interactables 31/03

Full Relational Constraint Annotation 14/04

Project Delivered 15/05

Sprints

Thesis Outline

Litterature Review & Background Research

Thesis Writeup

Delivery

09 14 19 24 29 03 08 13 18 23 28 02 07 12 17 22 27 04 09 14 19 24 29 03 08 13 18 23 28 03 08 13 18 23 28 02 07

December 2018 January 2019 February 2019 March 2019 April 2019 May 2019 June 2019

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 1

Project: Playground

Date: Tue 05/02/19

Figure 35: Gantt diagram

152

H | Original Task Description Neodroid Playground

H Original Task Description

The following is the original project task description

153

Oppdragsgiver
Oppdragsgiver: SINTEF Ocean AS
Kontaktperson: John Reidar Mathiassen
Adresse: Brattørkaia 17C, 7010 Trondheim
Telefon: +47 934 53 696
Epost: john.reidar.mathiassen@sintef.no

Neodroid – En virtuell lekegrind for lærende roboter
SINTEF Ocean AS har et prosjekt finansiert av Norges Forskningsråd som heter Neodroid [1]. Målet
med prosjektet er å bruker VR som et grensesnitt for å lære roboter til å gjøre handlinger som krever
visuell input i form av 3D bilder, på en måte som gjør at roboten får til å gjøre handlingene i den
virkelige verden.

Hittil har prosjektet demonstrert læring i VR [2] på enkle oppgaver (plukking av fisk) på en måte som
fungerer i den virkelige verden [3]. Det er også utviklet et rammeverk [4] som kobler Unity spillmotoren
til deep learning software. Med dette rammeverket har vi begynt å eksperimentere med læring basert
på noe som heter 'automated reverse curriculum learning'. Det ser lovende ut på enkle oppgaver, men
her trengs det mer forskning og eksperimentering. Derfor ønsker vi flere bacheloroppgaver som
sammen lager en virtuell lekegrind for lærende roboter.

Oppgaven
Utvikle en virtuell lekegrind for lærende roboter, og implementere læringsalgoritmer som gjør at
roboten kan lære av mennesker som demonstrerer oppgaven til roboten i lekegrinden. Oppgaven kan
deles inn i flere deloppgaver eller funksjonalitet som ønskes:

• Konstruksjon av en virtuell lekegrind med flere typer rigide, myke og bøyelige objekter.
• Et VR UX som gjør det mulig for et menneske å demonstrere en oppgave – hvor en enkel

oppgave er f.eks. å plukke opp en sild. En mer komplisert oppgave vil deretter være å legge
den i en boks, legge lokk på boksen og legge boksen i en eske. Begynn med enkle oppgaver. Ta
opp demonstrasjonene slik at det fungerer som et treningssett.

• En læringsalgoritme med 'sparse reward' som lærer å gjøre som mennesket har demonstrert,
gitt perfekt informasjon om objektene i lekegrinden. Dvs. at det ikke eksisterer noen virtuelle
kamera, kun informasjon om posisjon, orientering og tilstanden til objektene. Fordelen med
dette er at det er invariant til hvilken kamera hardware som velges, og det jobber i et
tilstandsrom med lavere dimensjonalitet (noe som er en fordel når man jobber med
reinforcement learning.

Den virtuelle lekegrinden og læringsalgoritmene kan benytte en modell av en ekte robot, og det bør
være mulig å konstruere en slik lekegrind og dets objekter i den virkelige verden, slik at vi kan teste om
det roboten har lært i den virtuelle lekegrinden kan overføres til den virkelige verden.

Dersom de ønsker det, vil studentene kunne jobbe tett sammen med en forsker og en PhD student hos
SINTEF Ocean AS, samt en student som utviklet Neodroid rammeverket for Unity. Med et slikt
samarbeid vil vi sørge for at det som gjøres i Bachelor-oppgavene kan overføres til en virkelig robot.

Bilder

Referanser
1. https://www.forskningsradet.no/prosjektbanken/#/project/NFR/262900
2. https://ieeexplore.ieee.org/document/8324578
3. https://www.youtube.com/watch?v=ox_uJd6yHzo
4. https://github.com/sintefneodroid

I | Scrumboard Neodroid Playground

I Scrumboard

156

I | Scrumboard Neodroid Playground

Figure 36: Scrum Board.

157

Sm
edås, H

jerpbakk, Å
kerholt, Skaara

N
eodroid P

layground

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Halvor Bakken Smedås
Aksel Hjerpbakk
Nikolai Åkerholt
Jone Martin Skaara

Neodroid Playground

Designing environments and tasks for learning
robots in virtual reality

Bachelor’s project in Programming [Games|Applications]
Supervisor: Mariusz Nowostawski

May 2019

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Glossary
	Introduction
	Background
	Academic Background
	Subject Area

	Project Scope
	Limitations
	Task Description
	Restrictions
	Boundaries
	Target Audience

	Project Goals
	Business Goals
	Impact Goals

	Thesis Structure

	Specification
	Functional Requirements
	User Stories
	Use Cases
	High-Level Use Cases

	Supplementary Requirements
	System Requirements
	Performance
	Usability
	Neodroid Integration

	Technical Design
	Unity's Paradigm
	Conditions
	Condition Relatives
	Terminating Conditions and Goal Conditions
	Group Conditions

	SceneObject
	Scene State Evaluation
	Playground Manager
	System Serialization and File I/O
	User Interface
	Editor and Widget Creation
	Widget Event Propagation
	Widget ValueHandles

	User Experience Design
	Tablet Menu
	Overview Menu
	Condition Editor Menu
	Status Menu

	2D Widgets
	3D Widgets

	Development Process
	Technology
	Digital Tools
	Programming Languages

	Project Organization
	Scrum
	Work Boundaries
	Roles
	Routines and Rules in the Group

	Test-Driven Development
	Continuous Integration
	Git Hooks
	Doxygen Documentation

	Implementation
	Conditions
	The Problem
	Evaluation
	Condition Relatives
	Grouping of Conditions

	Playground Manager
	The Problem
	Central Tasks

	The Player and UI
	Sub-Menus
	Floating UI and Laser Pointers
	Widget
	Condition Editor Menu Generation

	System Serialization and File I/O
	Condition Container
	Condition Data Manager
	Saves Editor Window

	Collision Detection and Physics Simulation
	The Problem
	SAColliderBuilder
	Friction Solutions
	Panda Hand Colliders

	AI Training
	Interfacing with Neo
	Sparse Rewards and State Evaluation
	Reverse Curriculum Generation
	Simple Prototype Environments

	Testing and Quality Assurance
	Pair Programming
	Test-Driven Development
	Creating Good Tests

	Git Hooks
	Result

	Profiling in Unity
	System and Environment
	Conditions
	Saving and Loading

	User Interface
	Minimizing Number of "Clicks"

	Discussion
	Implementation Specific
	Unit Testing
	Use of Namespaces
	Discarded CI Functionality
	Graphical User Interface In Virtual Reality
	Using Git with Unity
	Optimizing Evaluation

	Project Planning
	Actual Milestones

	Work Reflection
	Scrum
	State of Completion
	Group Work Reflection

	Alternative Choices
	Future Work

	Conclusion
	Bibliography
	Appendix
	Project Agreement
	Meeting Logs
	Project Plan
	Reflection notes
	Referenced Code, Full Code
	PositionCondition
	TouchCondition
	RotationConditionTest
	TouchConditionTest
	SceneStateEvaluation
	Widget Base Classes
	Widget
	Widget2D
	Widget2D<T>
	WidgetVR
	WidgetVR<T>

	DropdownWidget2D
	SubMenu
	RaycastingInputModule

	Gantt Diagram
	Original Task Description
	Scrumboard

