
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Andrine Celine Flatby
Ole Bjørn Gran
Marius Lillevik

Blockchain-based Ticketing

Bachelor’s project in Bachelor of Science in Engineering -
Computer Science
Supervisor: Hao Wang

May 2019

Andrine Celine Flatby
Ole Bjørn Gran
Marius Lillevik

Blockchain-based Ticketing

Bachelor’s project in Bachelor of Science in Engineering - Computer
Science
Supervisor: Hao Wang
May 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Blockchain-based Ticketing

Sammendrag av Bacheloroppgaven

Tittel: Billettsystem på Blockchain

Dato: May 19, 2019

Deltakere: Andrine Celine Flatby
Ole Bjørn Gran
Marius Lillevik

Veiledere: Hao Wang

Oppdragsgiver: Innit AS

Kontaktperson: Hao Wang, hawa@ntnu.no, +47 70 16 15 34

Nøkkelord: Blockchain, Billettsystem, Ethereum, Hyperledger Fabric,
Solidity, JavaScript

Antall sider: 43
Antall vedlegg: 6
Tilgjengelighet: Åpen

Sammendrag: Innit AS har flere lisensierte applikasjoner for billettsalg
for ishockey lag i den norske hockey ligaen. De forbedrer
kontinuerlig sine billettsystemer, og de vil se om de kan
forbedre sin eksisterende løsning ved hjelp av blockchain-
teknologi.
Blockchain er en relativt ny teknologi med mange
bruksområder. Det gjør det mulig for medlemmer
av et nettverk å dele informasjon sikkert og har
forbedret loggegenskaper sammenlignet med tradis-
jonelle databaser.

Denne oppgaven undersøker bruken av blockchain i
billett systemer. Først presenteres en bakgrunnsstudie av
blockchain-teknologien og dens utviklingsplattformer.
Deretter en undersøkelse av dagens marked og eksis-
terende løsninger bygget på blockchain. Basert på disse
funnene ble en prototype av et billettsystem utviklet som
et "proof of concept" for å fremheve mulighetene for disse
systemene.

i

Blockchain-based Ticketing

Summary of Graduate Project

Title: Blockchain-based Ticketing

Date: May 19, 2019

Authors: Andrine Celine Flatby
Ole Bjørn Gran
Marius Lillevik

Supervisor: Hao Wang

Employer: Innit AS

Contact Person: Hao Wang, hawa@ntnu.no, +47 70 16 15 34

Keywords: Blockchain, Ticket systems, Ethereum, Hyperledger Fab-
ric, Solidity, JavaScript

Pages: 43
Attachments: 6
Availability: Open

Abstract: Innit AS has multiple licensed applications for ticket sales
for ice hockey teams in the Norwegian hockey league.
They are continuously improving their ticketing systems,
and they want to see if they could improve their existing
solution by using blockchain technology.
Blockchain is a relatively new technology with a wide
variety of applications. It allows members of a network
to share information securely and has improved logging
capabilities compared to traditional databases.

This thesis investigates the applications of blockchain
in ticketing systems. First, a background study of the
blockchain technology and its development platforms
are presented. Then an investigation into the current
market and the existing solutions using blockchain.
Based on these findings, a prototype ticketing system
was developed as a proof-of-concept to showcase the
feasibility of these systems.

ii

Blockchain-based Ticketing

Preface

We want to thank Øyvind Tangen and Olafur Trollebø at Innit for the interesting bachelor
thesis and for their continuous support during this period.
We also want to thank our supervisor Hao Wang for his input on the report; he helped
structure and proofread our report from day one.
We also want to thank Mariusz Nowostawski for his help during the development of
our prototype. He helped us with most of the questions we had about developing the
prototype on a blockchain.

iii

Blockchain-based Ticketing

Contents

Preface . iii

Contents . iv

List of Figures . vii

List of Tables . viii

Listings . ix

Abbreviations . x

1 Introduction . 1

1.1 Background . 1

1.2 Problem area . 1

1.3 Project description . 2

1.4 Delimitations . 2

1.5 Target audience . 2

1.6 Academic background . 2

1.7 Project organization . 3

1.8 Document structure . 3

2 Blockchain . 4

2.1 What is blockchain? . 4

2.1.1 Decentralization . 5

2.1.2 Different types . 5

2.1.3 Frameworks and platforms . 6

2.2 How it works . 6

2.2.1 Distributed ledger . 7

2.2.2 Smart contract . 7

2.2.3 Consensus protocol vs algorithms 8

2.3 Why blockchain in ticketing system? . 8

2.3.1 Benefits . 8

2.3.2 Challenges . 9

3 Existing services . 10

3.1 Services . 10

3.1.1 Evopass . 10

3.1.2 Blocktix . 10

3.1.3 GUTS . 11

3.2 Protocols . 11

3.2.1 Aventus . 11

3.2.2 GET . 11

iv

Blockchain-based Ticketing

3.3 Their solutions . 12

3.3.1 Platforms . 12

3.3.2 Smart tickets . 12

3.3.3 Security . 12

3.4 Market challenges . 12

4 Platforms and Protocols . 15

4.1 Ethereum vs Hyperledger Fabric . 15

4.1.1 Ethereum . 15

4.1.2 Hyperledger . 16

4.1.3 Comparing Ethereum and Hyperledger Fabric 17

4.2 Comparing GET and Ethereum . 18

4.3 Choice of platform . 19

5 Design . 20

5.1 Requirements . 20

5.2 Technical Design . 20

5.2.1 Use case model . 21

5.2.2 System structure . 24

5.2.3 GUI . 25

6 Implementation . 26

6.1 Development Environment . 26

6.1.1 Software . 26

6.1.2 Skyhigh server . 26

6.2 Development . 26

6.3 Finished Product . 31

6.3.1 Web interface . 31

6.3.2 Testing . 34

7 Discussion . 36

7.1 Discussion . 36

7.2 Group Evaluation . 37

7.2.1 Initially . 37

7.2.2 Distribution of work . 37

8 Conclusion . 38

8.1 Future work . 38

8.2 Conclusion . 38

Bibliography . 39

A Definitions . 44

B Source Code . 45

C Installation guide . 57

D Meeting Logs . 63

E Project Plan . 65

v

Blockchain-based Ticketing

F Project Agreement . 76

vi

Blockchain-based Ticketing

List of Figures

1 Example of how blockchain works . 6

2 Use Case Diagram . 21

3 Shows the system structure and dependencies 24

4 The proposed design for the web interface 25

5 Page to event organizer . 31

6 Page to user . 32

7 Page to game . 32

8 Page to ticket . 33

9 Page to log . 34

vii

Blockchain-based Ticketing

List of Tables

1 Comparing Ethereum and Hyperleger Fabric 17

2 Comparing GET and Ethereum . 18

viii

Blockchain-based Ticketing

Listings

6.1 global arrays . 27

6.2 createEventOrganizer function . 28

6.3 createGame function . 28

6.4 createTicket function . 29

6.5 buy function . 29

6.6 validateTicket function . 30

ix

Blockchain-based Ticketing

Abbreviations

P2P, peer-to-peer

DLT, distributed ledger technology

Geth, Go-Ethereum

PoW, Proof of Work

PoS, Proof of Stake

PBFT, Practical Byzantine Faul Tolerance

VM, Virtual Machine

EVM, Ethereum Virtual Machine

Dapp, Decentralized application

DAO, Decentralized Autonomous Organizations

MVP, Minimum Viable Product

x

Blockchain-based Ticketing

1 Introduction

Throughout the last decades, it has become more and more common to attend events
such as music concerts, festivals and sporting events [1]. Moreover, in recent years the
number and variety of events have grown tremendously, this has prompted the concept
of tickets to become ingrained in our modern society. However, despite tickets prevalence
in our modern lives, there have been relatively few technological advancements related
to them. In recent years tickets have been made digital, but that has been more related
to the digitization of paper. When someone purchases a ticket digitally, they might for
example receive a PDF of the ticket in a mail. Hence, a digital ticket is not much different
from a paper one. There is room for improvement in the ticket industry and blockchain
could be a way forward.

1.1 Background

Innit AS is a technology company located in the city of Hamar, Norway and functions as
the parent corporation for two child entities; Innit Utvikling AS and Innit Drift AS. Innit
Utvikling AS is a software development company with a wide range of products and
services, ranging from out-of-house client projects to in-house products. One of Innit’s
core products is a ticketing system used by several ice hockey clubs in Norway. Innit
has over two years of ticketing experience and on a theoretical level the blockchain
technology seems to have several properties that are potentially beneficial to a ticketing
system, such as traceability of transactions.

1.2 Problem area

In Innit’s existing system they sometimes experience a glitch, where a ticket will get
falsely marked as spent or invalid. This can cause confusion, not only for the person
whose ticket was randomly invalidated but also for Innit since they have yet to find
the cause of this issue. Blockchain should prevent issues like this, and this is one of the
reasons why Innit is interested in this technology. Innit is also interested in the logging
capabilities of blockchain, since it can make management and troubleshooting easier.

1

Blockchain-based Ticketing

1.3 Project description

The initial version of the project, as described to us, were to develop a prototype tick-
eting system based on blockchain technology. Where a web-based administration panel,
accompanying mobile applications; one for purchasing and one for validation of the tick-
ets would be developed. Additionally, a report discussing the pros, cons, and viability of
developing a blockchain-based ticketing system was to be provided. However, during the
planning phase, we agreed to shift the focus of the project and make it mainly about the
report. Innit has no plans of actually using any part of the prototype for future work, they
were only interested in learning about the potential of blockchain. They still wanted a
prototype, but mainly as a proof of concept, so the requirements list were cut down, and
the development phase delayed until after we finished the main bulk of the report.
For the report to make a compelling case, either for or against blockchain-based ticket-
ing, we first need to build an understanding of what a blockchain is, how it works and
what features are useful for this scenario. We then need to look at the market, are there
already existing systems based on blockchain out there and is the market ready for these
types of solutions. Once all this is clear, we will feel comfortable concluding whether or
not blockchain is a technology worth pursuing. Various development platforms will be
compared with each other in order to find the most suitable for our use-case and our
employer’s needs. After finishing the central part of the report, we shift our attention
to the prototype. However, the prototype now being so simplified will only serve as a
simulation of an actual system and serves only to demonstrate the core functionalities of
a real system.

1.4 Delimitations

For the report, the only delimitation is that we are only focusing on blockchain’s poten-
tial for ticket systems. However, for the prototype, there are multiple delimitations; in
general, the prototype will be entirely separate from any existing system, so there is no
compatibility issues to be had. We are only testing for one event, therefore only one set
of tickets. Finally, the system only needs the core functionality of a ticket system and only
needs to support the purchase and validation of a ticket.

1.5 Target audience

The report is meant to inform our employer, about blockchain technology and its poten-
tial use in the ticketing industry. The report is also targeting the academic community
here at NTNU and others with similar technical knowledge. We decided to write the
report in English with respect to a multilingual audience. Our supervisor being a non-
Norwegian speaker made this decision easy.

1.6 Academic background

We are three students that have studied computer engineering at NTNU in Gjøvik, and
during our three years, we have gone through mostly the same courses. We all have
experience with C++, Java and general system development, but neither of us has any
experience with blockchain development. This lack of knowledge meant that in order to
develop a prototype we had to dedicate a portion of the project period to learning the
basics.

2

Blockchain-based Ticketing

1.7 Project organization

Since the project had distinct phases, how we worked changed throughout the process,
and although we had assigned roles in our pre-project (see appendix E) these were not
set and did change throughout the project. In the beginning, there was a lot of research
to be done. The lack of proper working space at the school meant that we spent a good
portion of the time working from home, but still communicating digitally. We had regular
meetings at school to discuss and compare what each member had done since the last
meeting and to plan for what to do next. During the last weeks of the project, all days
were spent together at school; this was to discuss changes and make decisions as a group
more efficiently. As we were also still working on the prototype, sitting together when
developing helped to speed up the progress.
We had regular meetings with our supervisor, and continues contact through email. We
also talked with our employer as much as possible, these meetings were mostly to inform
them about our progress with the research, with us also sending them weekly drafts of
the report.
During the development phase, we started working with Marius Nowostawski, a teacher
at NTNU, since he had previous experience with blockchain development. He was able
to help us troubleshot more efficiently and was extremely helpful throughout the devel-
opment phase.

1.8 Document structure

This report is written in LATEX on overleaf.com with a template provided by NTNU. We
document all sources in Vancouver style at the end of the report. Afterwards are our
various attachments; Definitions A, Source Code B, Installation guide C, Meeting logs D,
Project Plan E and Project Agreement F.
This report is divided into seven main chapters:

1. Introduction 1: Contains an introduction to the thesis and the report, information
about the authors and their academic background, organization of the project, and
finally, the structure of the report.

2. Blockchain 2: Here we analyze blockchain technology, its history, functionalities
and use cases.

3. Existing Services 3: An exploration of existing ticket services based on blockchain
and how they benefit from using it.

4. Platforms and Protocols 4: A comparison and discussion of what platforms and
protocols are best suited for our use-case.

5. Design 5: The requirements and technical design for the prototype.
6. Implementation 6: Contains the development process and a showcase of the fin-

ished prototype.
7. Conclusion 8: Conclusion about the project and our findings.
8. Bibliography: A list of all sources.

3

Blockchain-based Ticketing

2 Blockchain

Towards the end of 2017, Bitcoin got extremely popular, peeking December 17th 2017,
with the price of one single bitcoin at $19,783.06 [2]. With the popularity of bitcoin
so high many actors started gaining interest in the technology behind it and its many
potential use cases. Despite the popularity of blockchain increasing, there are still many
within the technology industry that do not know how blockchains work.

2.1 What is blockchain?

In the simplest terms, blockchain is a growing list of records called blocks that get gener-
ated and linked using cryptographic hash functions [3]. Each new block gets generated
by hashing the current newest block in the chain and adding that hash as a header
in the proposed newest block. For this new block and its changes to be approved, a
mathematical puzzle involving the hash, has to be solved. Across the network, so-called
"miners" attempt to solve this puzzle. When a miner eventually comes up with a solution
all the nodes on the network has to check and confirm the change before updating the
blockchain [4].

The first blockchain was created in 1991, a Merkle Tree was used to create a “Secured
chain of blocks”, where each block contains data, a timestamp and a cryptographic hash
of the previous block. This is the “chain” in Blockchain [5]. A Merkle tree is a data struc-
ture where each non-leafe node is a hash of its child nodes, where the leaf nodes are the
lowest tier of nodes [6].

Late in 2008, an anonymous programmer or a group called Satoshi conceptualized the
design of the first blockchain [5]. Then in early 2009, Satoshi created and published
the distributed blockchain to be used as a public transaction ledger for a cryptocurrency
called Bitcoin [7]. This blockchain would contain a secure history of data exchanges,
timestamps and each exchange is verified by utilizing a peer-to-peer network. All of this
would be done without a central figure of authority, autonomously.
Later that same year, Satoshi Nakamoto released the open-source, decentralized cryp-
tocurrency, Bitcoin, the first cryptocurrency [7]. Since the release of Bitcoin, there have
been many so-called Altcoins, different cryptocurrencies with many different names, but
Bitcoin is still the most valuable and popular.
A cryptocurrency is a digital asset or virtual currency designed to be used for exchanges
in a blockchain network [7]. Cryptography is used to secure and verify transactions, and
control the creation of new units of a cryptocurrency.

Cryptography in blockchain technology is used for transactions, wallets, privacy and se-
curity [8]. Blockchain uses a Public-key cryptography system. This system uses a pair
of keys for interactions between users in the chain, a public key, and a private key. For
example, if Kimo wants to send Missy a message, he would need Missy’s public key to en-

4

Blockchain-based Ticketing

crypt the message and send it to her. Missy would then get an encrypted message which
she would be able to decrypt with her private key and then read the message.

Cryptographic hashing is another fundamental part of blockchain technology [8]. Hash-
ing takes a string as an input, for example, a password of any length, and turns it into a
fix length output. A cryptographic hash function has three properties [8]:

• Deterministic: A specific input will always have the same output.
• Irreversible: The output cannot be used to determine input.
• Collision resistance: Two different inputs will always have different outputs.

2.1.1 Decentralization

All blockchain networks are decentralized; this means no single entity owns the blockchain
[3]. A decentralized network of many nodes is similar to a supercomputer, but instead
of one computer doing all the computing, each computer on the network do a part of
a given task. This method is both faster and cheaper than a supercomputer. A User can
submit a task, like big data analysis, to the network, and the task will then be divided,
processed and reassembled after all the computers are done with their given task [9].

2.1.2 Different types

There are three different types of blockchain networks: Public, Private, and Federated/-
Consortium. All these types originated from the Bitcoin blockchain when people realized
that it could be used for any value transaction or agreement. Private institutions started
using the core idea of blockchain as a distributed ledger, which spawned the creation of
permissioned, private and federated blockchains [10].

Public Blockchain

The most common type of blockchain is a public network, which is based on a Proof
of Work (i.e.,PoW) consensus algorithm. The Public blockchain is open source and not
permissioned, meaning anyone can download the code and run a public node on their
local computer. Users can make, validate, and see transactions with the public block
explorer [10]. Every transaction is transparent, but every user is anonymous. Examples
of public blockchains are Bitcoin[11] and Ethereum[12].

Private Blockchain

In a private blockchain, write permissions are kept locally within an organization, while
read permissions may be public or restricted. Groups take advantage of blockchain tech-
nology by using it internally within, i.e. a company and use it to verify transactions.
Private blockchains are faster and more scalable [10]. Examples of private blockchains
are MONAX[13] and Multichain[14].

Federated/Consortium Blockchain

A Federated blockchain is controlled by a group of people. While public blockchains al-
low anyone with an internet connection to participate, Federated blockchains allow only
certain people to participate. These blockchains are faster and more private than public
blockchains [10]. A Consortium blockchain is used most often by banks. The consensus
process is controlled by a selected number of nodes, where a number of financial insti-
tutions must sign every block in order for the block to be valid [10]. An example of this

5

Blockchain-based Ticketing

type of blockchain is R3 Corda [15].

2.1.3 Frameworks and platforms

Framework and platforms are generally loosely defined in the blockchain community
[16]. Since they are often used interchangeably, it can lead to confusion about what a
framework and a platform is. In this bachelor thesis, we define them as: frameworks
are tools necessary to develop and deploy smart contracts, and platforms are where the
smart contracts get deployed. An example of a use of our definition: Ethereum is a plat-
form and Truffle is a framework [16].

Two of the most popular blockchain platforms currently are Ethereum and Hyperledger
Fabric [17]. These are examples of a public blockchain and an enterprise blockchain plat-
form respectively. Also, an example of a popular framework is Embark, which is used on
Ethereum [16].

2.2 How it works

To explain how blockchain works it is essential to know that it is a peer-to-peer (i.e.,P2P)
system and distributed ledger [3]. It allows participants to use a service, for example;
an online store, without involving a third-party, like a broker or a bank. It can reduce
cost and increases trust between participants. The increase of trust comes from it being
a decentralized, (see section 2.1.1), transparent and tamper-proof database. This means
that information is stored across all participants instead of in a single database. All par-
ticipants in a blockchain can see, change and take part in the decision of whether or not
to approve changes to the ledger, but ultimatly, it is down to the decision of the majority.

Figure 1: Example of how blockchain works

Figure 1 show a simplified illustration of how blocks and chains works. The first block in
the chain is the Genesis block, where gas limit, chain id, and more is determined. When
creating data, a second block containing the data is mined and added to the chain. This
process repeats for every additional block mined. These blocks are now holders of the
data in the system and cannot be changed. If a user wants to change the data, it will
create a new block that now holds the updated data.

An example of a simple transaction is, Missy wants to send money to Kimo. The trans-
action contains the address of the sender (Missy) and receiver (Kimo), the amount of
money to be traded and a unique hash. This data forms a block that will be added to the
chain if the majority approve it. Since blockchain is unchangeable, participants cannot
change the data of a block, so if Missy or Kimo wants to change the transaction, a new

6

Blockchain-based Ticketing

block will be created with the proposed changes.

2.2.1 Distributed ledger

The distributed ledger technology (i.e, DLT) is a vital component in the blockchain. It
provides a shared database where participants store their identical copy of the ledger
[18][19]. Unlike a traditional database, the ledger is stored across the participants, be-
cause of this, blockchain archives are decentralized. One of the benefits of DLT is that
without a centralized authority, the level of trust between participants is higher. It is
also crucial to understand that a blockchain ledger is a special kind of distributed ledger.
The difference is that a blockchain DLT stores the data in blocks that only exists on the
blockchain.

The append-only structure of blockchain means that every addition to the ledger is per-
manent [20]. Entries cannot be removed or altered; all changes are stored in history
logs, which makes managing and tracking records easy. These features make the ledger
tamper-proof, since nothing can be changed without other participants knowing.

An example of how the distributed ledger works; Missy, Kimo, and Peneline are par-
ticipants on a blockchain network and each have a copy of the distributed ledger. The
transaction for Missy’s purchase of Kimo’s bike needs to first be verified by Peneline
before it can be added to the distributed ledger. When the process is completed, the
blockchain network updates each participant’s copy permanently with the new block.

2.2.2 Smart contract

A smart contract is like a function in standard programming that only executes when the
system meets a predetermined set of conditions [21]. Since it is just a simple computer
code, it is crucial to get the logic right for correct operation. Smart contracts are imple-
mented into distributed ledgers to ensure correct operation [3], and mainly operate with
an "if this, then that" methodology.

Smart contracts are a transparent, conflict-free way to handle the purchasing of ser-
vices without third-party intervention [22]. Because of this, there is no need for a lawyer
or bank. The benefits of this: it amplifies the trust between the buyer and seller because
blockchain is transparent, and can reduce the cost of a transaction [23].

An example of how a smart contract with two participants work: Kimo wants to sell
his bike, and Missy wants to buy it[23]. Missy purchases the bike by signing the contract.
This is done by using her private key, but the exchange of money happens between her
and Kimo’s blockchain addresses. Then the smart contract is overseen by the participants
in the blockchain network. This system reduces the possibilities for scams, because if the
seller or buyer does not meet requirements of the contract, the exchange is not approved.
In this scenario, the smart contract is approved, Missy has transferred money to Kimo and
has access to the bike’s blockchain address.

7

Blockchain-based Ticketing

2.2.3 Consensus protocol vs algorithms

The term consensus is defined as; nodes on a network agreeing on the condition on a
block [24]. The terms consensus protocol and consensus algorithm are often used in-
terchangeably, but they are not the same [25]. The simplest explanation of the terms:
the protocol provides a set of rules the blockchain follows, and the algorithm determines
how the protocol follows these rules.

Consensus protocol keeps the participants synchronized on the network [24]. Partici-
pants do not need to trust each other when entering an agreement because they just
followed the rules provided by consensus protocol. The rules ensures that blocks don’t
break protocol when validating them.

Consensus algorithms are a method to make decisions within a group and are used to
create equality and fairness in the network [26]. It is essential to know that consensus
algorithms do not necessarily only agree with the majority, but also agree with what ben-
efits everyone. The blockchain in itself does not provide a decentralized environment,
but consensus algorithms make the system decentralized. Blockchain consensus models
are the primary way for participants in a blockchain network to reach agreements. There
are many different types of consensus algorithms: PoW, Proof-of-Stake (i.e., PoS) and
Practical Byzantine Faul Tolerance (i.e., PBFT).

2.3 Why blockchain in ticketing system?

Blockchain technology can contribute to a safer ticketing system by addressing the two
most prominent issues in today’s systems; ticket fraud and resale in the secondary mar-
ket [27]. These issues plague the ticketing market since it reduces the level of trust a
consumer has in the system.

2.3.1 Benefits

Blockchains keep a record of every transaction in the system; this makes it easy to iden-
tify resellers and, manage tickets and events [27]. Event organizers can benefit from this
because it can help increase revenue by removing the need for a broker or bank, by using
cryptocurrency. It can also benefit consumers by lowering fees and help mitigate ticket
fraud[28].

Cryptography make tickets more secure by having them contain a unique hash, which
cannot be changed. By using cryptography tickets become nearly impossible to repli-
cate or double-sell, which leads to a safer buying experience for consumers [28]. Iden-
tity management can also help prevent attempts to sell event tickets outside of the
blockchain.

A ticket can be programmed with a smart contract to enable specific rules and func-
tions [28]. An example of this would be to enable profit sharing on resales, this makes
sure that event organizers do not lose revenue from resellers in the secondary market
[29]. It can also link the consumer’s blockchain address to the tickets which provides a
way to identify the ticket owner.

8

Blockchain-based Ticketing

2.3.2 Challenges

Blockchain technology has the potential to solve many of the current problems in today’s
ticketing systems, but there are some challenges. Blockchains do not always scale well; it
will work great for some users, but at the scale that most ticketing services operate there
could be issues. When there are multiple users on a blockchain network, transactions can
take a long time to process. This issue can already be seen with Ethereum and Bitcoin,
where they are already having trouble solving this [30].

Privacy is another issue because most blockchains use a public ledger structure [30].
Privacy is a necessity in ticketing systems because they contain personal information
about users, like; credit card, name, ticket information and more. There are solutions to
this problem, but it is dependent on what blockchain platform the system is running on.

Another challenge for blockchain is the lack of awareness about the technology [30].
If the blockchain community wants more industries to adopt blockchain technology, it
needs more attention and acceptance from developers and consumers. Otherwise, a user
might not trust a system based on this technology, so for blockchain to become more
widespread, awareness needs to be raised to inform the average consumer.

9

Blockchain-based Ticketing

3 Existing services

Over the years the ticketing industry have been trying to optimize their systems for ef-
ficiency and security. The future of the ticket industry is headed towards an all digital
world [31]. Blockchain technology could provide the ticket industry with new ways to
adapt, and the use of smart contracts and other blockchain features could be the way.
There are multiple ways of using blockchain technology in this area, where the two main
approaches are stand-alone services and system protocols.

3.1 Services

Multiple blockchain-based ticketing services have started to appear lately. [32]. These
services focuses on being user-friendly both for event organizers and consumers, and
all have the goal of being simple and easy to use. These services, like most blockchain-
based systems, relay on smart contracts for their operations [31]. The benefits of smart
contracts are discussed in more details in section 2.3.1. Additionally, these services do
not need an intermediary broker or bank, since it is a decentralized system, see section
2.1.1 for more.
Although there are multiple services currently in development, this thesis will mainly
focus on two: Evopass [33] and Blocktix [29].

3.1.1 Evopass

Evopass was a ticketing service system that started in 2016 but shut down and ending all
operations in September 2018 [34]. Their application was designed to allow users to buy
and resell concert tickets. Evopass initially built their system with blockchain technology,
but after latency difficulties when scanning tickets; they concluded that ticketing services
were not a good use-case for blockchain technology [35]. On September 7, 2018, they
made the decision to shut down Evopass, since they were a small team and could not
compete against bigger companies in a growing market [36].

3.1.2 Blocktix

Blocktix started development in late 2016 to showcase the benefits of using blockchain
technology to develop a ticketing service [37]. The company aims to a decentralized
ticketing service as a counterfeit-resistant solution. By removing the infrastructure of
centralized servers, blocktix has fulfilled its goal to allows all parties to experience no
downtime and low fees [38].

It has fulfilled the solution by running their smart ticket on the Ethereum [29]. The
tickets are linked together and, its including cryptographic signatures and uniquely at-
tributed to preventing fraud and scalping [38]. Fraud is an obvious challenge to prevent,
while scalping is a trading strategy where trader profits off small price changes of stock.

The event organizer can use the benefits of the smart ticket by adding additional con-

10

Blockchain-based Ticketing

ditions to their tickets. For example, include giving a predefined percentage of the sales
income, to artists or event organizers [29]. The ticket is stored securely and using block-
tix ’s facial recognition for ID verification.

3.1.3 GUTS

GUTS is a PoW ticket selling application developed in the Netherlands and is the first
customer of the GET protocol [39]. GUTS smart tickets are sold via a blockchain network
at a fixed price in an attempt to make fraud and profiting impossible by linking each ticket
to a user via their phone number. The user can then either spend the ticket on the event
it is intended for, or sell it on to another user anonymously via the blockchain at the
same fixed price it was bought at. Another feature that makes profiting impossible is the
fact that the tickets use a non-fixed QR-code, which updates frequently, so a user cannot
send a screenshot of the QR-code and sell it on to someone for a profit [39]. GUTS finally
released on ios and android in 2018 after selling over 18,000 tickets on the GET testnet
[40].

3.2 Protocols

To be able to offer these types of services on a blockchain, a developer needs a set of
rules that allow for the correct operation of the application. In the case of blockchain
applications, these rules come in the form of smart contracts and are the core of all
functionality in these applications. For a ticket system to function correctly, a developer
needs to make sure that they have smart contracts that handle all possible scenarios. This
is where protocol providers come in. A protocol is a set of smart contracts designed for a
specific use-case. A developer can take a protocol and use it as a base for their application
without worrying if they have thought of everything.
For this thesis we have chosen to focus on two protocol providers that are relevant for
our use case, Aventus [41] and GET [42].

3.2.1 Aventus

The Aventus protocol started its jurney in late 2017 and is currently in the early stages of
development. It is a protocol specially designed to handle the requirements of an online
ticketing system. Aventus wants their protocol to help lower the barrier to entry for de-
velopers in the ticketing industry. The protocol itself is based entirely on ethereum smart
contracts and handles all the ins and outs of a ticketing system. All from the creation of a
ticket to the distribution of revenue between all involved parties. This complete control
of the lifecycle of a ticket allows a fairer and safer system [43].

3.2.2 GET

The GET protocol is explicitly made for developing ticket selling applications using blockchain
technology and is built upon the Ethereum blockchain [39]. GET offers an overview of
all tickets from the first ticket is sold until the last ticket is validated at any event. Every
smart ticket is unique, traceable on the blockchain and has its properties locked. The
protocol uses a cryptocurrency token, GET or Guaranteed Entrance Token as it stands
for, which acts as the main asset, holding a stable value. This is necessary for the ticket
platform since the tokens can be used to lock the value of a ticket, which adds security
and price stability to each event-cycle [39].

11

Blockchain-based Ticketing

3.3 Their solutions

All services mentioned in this chapter have one common goal; make today’s systems
safer and more efficient for consumers and event organizers. Protocols like Aventus and
GET provide tools for developers to more easily create their applications without facing
all the challenges with creating these systems. They address these challenges by using
the benefits of blockchain (see 2.3.1), with, for example, smart contracts which can be
integrated into a ticket element, and is often referred to as a smart ticket [39][43].
Solutions like these are meant to protect consumers and event organizers when they use
these ticket services.

3.3.1 Platforms

All services mentioned so far have all developed their solutions using the Ethereum
blockchain. Ethereum seems to be the platform of choice for most when developing ap-
plications with blockchain; this might be because of Ethereum’s focus on decentralized
application (i.e., dapps), which we talk more about in section 4.1.1.

3.3.2 Smart tickets

A smart ticket is a programmable ticket that is transferred via a blockchain [29]. Smart
tickets are programmed to, for example, have a fixed price which cannot be altered,
meaning that there is no profit in the resale of a ticket. By having all tickets linked to-
gether in the blockchain, they cannot be duplicated since there is only one copy of each
ticket during a transaction. All transactions are done P2P without any third party inter-
ference, which makes it easy to resell your ticket to another person, for the same price
you bought it for.

Depending on what the event organizer sees fit for their event, the smart tickets can
be customized. An example of this is Blocktix, who has personal information connected
with each ticket, see more in 3.1.2.

3.3.3 Security

When it comes to security, these solutions have some different security measures to pre-
vent certain misuses or theft. Event organizers that use Blocktix to distribute tickets,
stores the identities of attendees in the tickets. This information is stored and secured by
using facial recognition for ID verification (See section 3.1.2).
GUTS uses a non-static QR-code, which prevents users from selling their ticket by send-
ing a screenshot of the QR-code and charge a higher price. People can still sell their
tickets with GUTS, but the price is fixed, making it impossible to scam other users (see
section 3.1.3).
Since these solutions are developed on blockchain, they also inherit some of their core
security measures, like cryptography (see section 2.1). This increases security, since every
transaction is encrypted.

3.4 Market challenges

The most significant threat to the ticket selling industry is the secondary market [27].
Because of the third-party resale and fraud, the secondary market is a source of lost in-
come for event organizers and service providers.

12

Blockchain-based Ticketing

Before discussing the secondary market, it is essential to know about the primary market.
The primary market is mainly the event organizers and their partners, who sell tickets
to their events via ticket services, like Ticketmaster [44]. Event organizers often have a
difficult time accurately pricing the events, which can lead to underpricing [45]. Another
big challenge for the primary market is the use of bots to purchase a large number of
tickets to be resold at a higher price in the secondary market. This reduces the number of
tickets available legitimately and forces consumers to purchase from third-party sellers at
a higher price [39]. A challenge for blockchain-based ticket services in the primary mar-
ket can be convincing event organizers to switch to their services [39]. The relationship
between old ticketing services and event organizers can make it difficult for blockchain-
based ticketing services to gain traction.

The secondary market is fueled by supply and demand, which the primary market cannot
fulfilled [28][45]. For example, scammers resell tickets on sites like Facebook for a higher
price and in some cases list the same ticket on multiples sites. Scammers are a prominent
issue in the secondary market because they take advantage of the lack of transparency
in pricing and the limited amount of tickets. In Norway, resale of tickets at a higher price
is illegal, scammers are committing a crime in terms of the law [46]. According to GUTS
old ticket services, like Ticketmaster, is partially to blame for the issues surrounding the
secondary market [39]. The reason is that they have stakeholders in secondary market.

If these challenges are not addressed, it could lead to the downfall of ticket services. An
example of this scenario is Evopass who got ousted of the market (see 3.1.1). Evopass had
problems when it came to the secondary market, which was one of the main reasons for
them shutting down all development. The secondary market has grown to become stiff
competition, which is dangerous for the primary market. It is worth noting that Evopass
allowed resale of tickets, which made them direct competitors with the secondary mar-
ket. Since Evopass were early adopters of blockchain technology in this area; they also
had some issues optimizing their system [47].

Solving these challenges is something the industry is still struggling with. Eliminating
the secondary market could solve some of the challenges, if it was possible, but a ra-
tional macroeconomic perspective would conclude it is a bad idea [28]. The secondary
market is only getting stronger, and the ticket industry need to adapt and use the sec-
ondary market to their advantage. As mentioned in section 3.1.2, Blocktix uses smart
tickets in an attempt to control the secondary market [29]. When a reseller sells a ticket,
it can be programmed to make a certain percentage of the profits go to the artists and
event organizers. By using functionality like this, the ticket industry can turn a disadvan-
tage to an advantage.

A blockchain-based ticketing service that has used this technology to solve many of the
market challenges and provide a compelling alternative, is GUTS (see 3.2.2). GUTS de-
signed their system to eliminate fraud in the secondary market by using smart tickets
and locking the price, which prevents third-parties from profiting on resale [39]. A con-
sumer can still sell their ticket, but it is impossible to charge a higher price (see 3.2.2).

13

Blockchain-based Ticketing

GUTS have been able to convince event organizers to use their services instead of more
traditional ones, because of their competitive pricing.

Blockchain can solve many of the challenges ticket services faces in today’s market,
but it is still trying to build a reputation among event organizers and consumers. Most
blockchain-based ticket services are either in alpha or beta, like Aventus (see 3.2.1). The
fact that most services are still in development means there are not many usable alter-
natives to traditional ticket services available today, but GUTS and Blocktix show that
blockchain has the potential to change the industry.

14

Blockchain-based Ticketing

4 Platforms and Protocols

Developers first need to consider which platform to use before they can start develop-
ing blockchain-based applications. Different platforms have different features and tools,
making this decision important for developers. The application’s use-case is the most
significant factor when deciding on a platform, as most platforms are designed with a
particular purpose in mind. Protocols can be a convenient alternative to a platform if
one can find one that contains the feature set required for the application (see 3.2 for
more). In order to decide on what platform to use for our prototype, we need to compare
different platforms to see which fits our use-case the best. The GET protocol will also be
considered since it is made specifically for developing ticketing systems.

4.1 Ethereum vs Hyperledger Fabric

In order to determine which platform is better for our prototype, their different features
needs to be compared in order to find the best suited for our use case. The use-case is
vital since the platform needs to support features that are relevant for ticket services.
Considering our use case, platforms like R3 Corda [15] will not be considered since it
has a higher focus on the financial industry and lacks some of the more crucial features
we are interested in[48]. While R3 Corda is not suited for our application, Ethereum and
Hyperledger Fabric are, they focus more on the general development of applications,
which is more relevant for our use case.

4.1.1 Ethereum

Vitalik Butuerin proposed the white paper for the concept of Ethereum in late 2013[49].
He created Ethereum as a solution to the problem of developers having to expand the
functionalities of Bitcoin, or even design new platforms in order to develop applications
with blockchain [50]. Ethereum was a new way of approaching this problem and allowed
developers to create applications without having to expand on the Bitcoin platform.

"I thought [those in the Bitcoin community] weren’t approaching the problem in the
right way. I thought they were going after individual applications; they were trying to
kind of explicitly support each [use case] in a sort of Swiss Army knife protocol."

- Vitalik Buterin, inventor of Ethereum [50]

The Ethereum Virtual Machine (i.e., EVM) is the core of the Ethereum platform[50]. The
purpose of EVM is to make it easier for developers to develop applications on Ethereum,
instead of building a new blockchain-based platform for each application. EVM enables
any programs to run by using Turing-complete software to execute and store, for exam-
ple, smart contracts[49]. This allows developers on Ethereum to implement contracts
with more sophisticated logic.

EVM allows developers to build and deploy decentralized applications(i.e., dapp)[50].
Decentralized, as explained in section 2.1.1, means that no single person or entity con-
trols the Ethereum blockchain. Software runs on the Ethereum network instead of being

15

Blockchain-based Ticketing

stored in a single location. It can also be used to build Decentralized Autonomous Orga-
nizations (i.e., DAO). DAOs can with the help of smart contracts, eliminate the need for
people and centralized control within an organization.

Ethereum is a permissionless blockchain, which means that, although not highly con-
fidential it can be both public or private. Ethereum uses a PoW consensus algorithm (see
section 2.2.3). With PoW participants having access to every entry recorded and agree
on a shared ledger [48]. This is one of the benefits of Ethereum, as the PoW algorithm
makes it hard to tamper with the database without anybody noticing.

Ethereum can also be used to create other cryptocurrencies[50]. The ERC20 token is
a standard defined by the Ethereum foundation, where other developers can make their
own crypto based on an ERC20 token. Ethereum uses the ERC20 standard for their own
cryptocurrency, Ether, which is built-in crypto in Ethereum. Another standard token that
was recently created is the ERC721 token, which is used for tracking unique digital as-
sets. An example is CryptoKitties, a game built on the new ERC721 token by having
kitties as unique digital collectable assets.[51].

4.1.2 Hyperledger

Hyperledger is a global collaborative effort between companies in the finance, healthcare,
and supply chain industries. Founded in 2016 by The Linux Foundation, the goal of
Hyperledger is to create enterprise-grade, open-source, distributed ledger frameworks
designed for business transactions [52]. Hyperledger currently curates more than ten
different projects with varying use-cases, but all based on blockchain technology [53].
Two of the most popular Hyperledger projects currently are; Fabric and Sawtooth [54].
Fabric and Sawtooth, are fundamentally very similar but have some key differences;
Sawtooth can be configured as public, while Fabric is only permissioned [55]. Fabric is
more usefull for creating large industial networks [56]. For this thesis, we will be focusing
mainly on Fabric, as it matches our use-case more closely then Sawtooth.

Hyperledger Fabric

Fabric is a joint venture between IBM[57] and Digital Asset[58] and is a permissioned
DLT platform designed to handle more complex transactions than traditional platforms.
Fabric, like all Hyperledger projects, does not operate with any form of cryptocurrency.
It uses a highly modular and configurable architecture that allows more versatility and
optimization for industry use cases in sectors like; finance, insurance, healthcare, and
supply chain[59].

Fabric is one of the first DLT platforms to support smart contracts, or "chaincode" as
Fabric calls it, and are programmed in more traditional languages like Java, Go and
Node.js. By not having its own domain-specific language, like Ethereum with Solidity,
most enterprises can develop smart contracts without learning a new language [59].

As mentioned, Fabric operates on a private and permissioned network, but even on a
private network, all participants share a common ledger. To combat this, Fabric has Chan-
nels; channels function as a private subnet between two network participants, allowing

16

Blockchain-based Ticketing

them to communicate privately [59].

One of Fabrics most important features is that it supports pluggable consensus protocols.
Which allows developers to pick and choose what protocol they want, or even change it
midway. For example, starting with PBFT and then switching to Proof of Elapsed Time,
later on. This makes the platform more customizable for particular use cases and trust
models. With this flexibility, an enterprise can choose more appropriate consensus proto-
cols for their use case and potentially save on performance[59].

All the features mentioned above combined make Fabric one of the best performing plat-
forms that are available today. Both in terms of transaction processing and transaction
confirmation latency. Fabric also enables better privacy and confidentiality of transactions
and the smart contracts that implement them[59].

4.1.3 Comparing Ethereum and Hyperledger Fabric

When comparing Ethereum and Fabric, it is crucial to understand the platforms has a
different target audience. Ethereum focuses more on the general developers, while Fabric
focuses on the enterprise side of the market[60] . Both platforms have desired features
for the prototype; therefore, we have a review of features sorted by importance.

Table 1: Comparing Ethereum and Hyperleger Fabric

Feature Ethereum Hyperledger Fabric Importance

Use Case
General
applications [60]

Enterprice focused,
business to business
transactions [60]

High

Confidentiality Transparent [60] Highly private [60] High

Mode of
Operation

Permissionless,
public or private [60]

Permissioned,
private [60] Medium

Language
support

Solidity,
JavaScript [48] Go, Java [48] Medium

Governance Ethereum [48] The Linux Foundation [48] Low

Consensus
mechanism Proof of Work [60] Customizable [60] Low

Cryptocurrency Ether [48] None [48] Low

As seen in the table 1, Fabric concentrating use case for the enterprise by aiming to
be a private blockchain. It only allows participants who are part of the transaction to
partake. One downfall with Ethereum is transparent, that can be adverse to a company
when handling sensitive information. As shown in chapter, many services used Ethereum;
therefore, it can ensure privacy. Fabric uses more common language like Go and Java,
while Ethereum uses Solidity and Javascript. A developer may have to learn a new lan-
guage, but Solidity is language specific for a smart contract. Cryptocurrency and consen-
sus mechanism has low importance because of none relevance to the prototype.

17

Blockchain-based Ticketing

4.2 Comparing GET and Ethereum

There are already several existing solutions for blockchain-based ticket services, as men-
tioned in chapter 3. However, we will only be focusing on the GET protocol for this part,
as it is the only complete protocol and because it is in use at the moment (see section 3.2).

We assume that since the GET protocol is built on Ethereum and is not a stand-alone
platform, it will share most of its general attributes with Ethereum[39]. While Ethereum
is designed for general application development, GET is designed explicitly for develop-
ing ticket applications and does not require any knowledge of Ethereum to use.

Another big difference is the platform protocol comparison; since GET is a protocol and
not a platform; there is less flexibility when developing. It also means that a developer
will be reliant on the GET developers for future updates or even to continue to exist, as
GET shutting down would make systems based on them inoperative.
Table 2 makes it seem like GET is the optimal choice for our use-case. Given that it is cus-
tom made for ticketing systems and does not require any prior knowledge of Ethereum or
blockchain in general to use. However, a significant difference is who holds the copyright
for the system. Copyright is more important to our employer than how difficult it is to
develop, since they want to own their solution. Using GET would be more fitting if, for
example, an event organizer needed an application to sell tickets for their events.

Table 2: Comparing GET and Ethereum

Features GET Ethereum Importance

Use case

Only used to create
a ticket service
with already
finished protocol [39]

Can be used to develop
another application
bedside ticket services 4.1.1

High

Copyrights GET foundation [39] Developer High

Type Protocol Platform Medium

Usability
Easy, made not to
need dircet contact
with Ethereum [39]

Difficult, requires
programming-skills
on multiple languages 4.1.1

Medium

Tools

GET provided the
developer with
everthing them to
GET protocol [39]

Mostly blockchain
based platform which
requires extra tools 4.1.1

Low

18

Blockchain-based Ticketing

4.3 Choice of platform

When deciding on the most suitable development platform for this thesis, we focus on
our employer’s requirements and their use-case. Since they provide a service for multi-
ple different event organizers, we can quickly conclude that the GET protocol becomes
to narrowly focused and lacking in flexibility. The reason is that our employer can not
further develop the GET protocol. If they were an event organizer organizing an event,
the GET protocol could be a great solution. Additionally, our employer would like to own
and fully control their service; therefore by using a protocol made by a third party; they
lose this control and have no ownership, as shown in table 2 and mentioned in section
4.2.

With GET not begin an option; it is either between Ethereum or Fabric. When com-
paring the platforms, table 1 shows that Fabric is more focused on the enterprise market.
It has features that are more geared towards handling more massive and more crucial
business-to-business transactions. Thus Fabric was overly complicated for our use-case
since the prototype is a simple demonstration of a blockchain-based ticketing system.
Lastly, Ethereum, seems to be the best option in this scenario. Ethereum positions itself
as more of an all-purpose development platform, and we find that the flexibility, large
community, and the greater focus on application development (see section 4.1.1). It is
also a popular choice in blockchain-based ticketing services, as shown in the chapter.
Hence, Ethereum seems to be the most reasonable choice.

19

Blockchain-based Ticketing

5 Design

In the project description (see section 1.3), we mention that our employer wants a proto-
type to showcase blockchain technology in a ticketing system. When we made the choices
regarding the prototype’s design, we took into account the requirements, blockchain
technology, and our delimitations (see section 1.4).

5.1 Requirements

Our employer’s requirements are relatively simple. The system should be capable of as-
signing a ticket to a user when purchased. It is crucial that a ticket can be validated
only once when a user enters a game as it cannot be reused. Every ticket should have
a history, that includes time of purchase and validation, and who used it at which time
and at which event. The event organizer and our employer should be available to see the
history of each ticket.

The tickets need a unique id to make them identifiable. Optimally, it could include a
QR code, but this is optional for the prototype. Every ticket needs to connect to a user
when purchased, either by name or user id. Lastly, it needs a status, active, or used.
A simple web UI is required for testing, where the following is possible:

• Create a ticket
• Assign ticket to a user
• Validate the user’s ticket and change the status from active to used
• Withdraw the user’s ticket and show its history over assignments and its status

5.2 Technical Design

In the design phase for the prototype, we decide to add some additional functionality
besides the ones that already were in the requirements. The reason for this decision is
that we wanted the prototype to be more similar to a real-life ticketing system.

20

Blockchain-based Ticketing

5.2.1 Use case model

Figure 2 shows the use cases for the system. The system only contains the main func-
tionality of the prototype: create games, create tickets, purchase tickets, validate and
invalidate tickets and, starting and ending games. Thus there are only two actors: user
and event organizer. The use cases serve as a demonstration of the system flow between
the actors and the functionality and include detailed descriptions of scenarios.

Figure 2: Use Case Diagram

21

Blockchain-based Ticketing

Use case Create game

Actor(s) Event organizer

Description
Allow an event organizer to create a
game

Goal Create a game

Post-Conditon
Event Organizer has successfully
created a game

Use case Create tickets

Actor(s) Event Organizer

Description
Allow an event organizer to create
tickets to a game

Goal Create tickets to a game

Pre-condition A game must already exists

Post-condition
Event Organizer has successfully
created tickets to a game

Use case Buy ticket

Actor User

Description
A user buys ticket(s) to a game
from the event organizer

Goal The user can purchase ticket(s)

Pre-condition(s)
The game exists, and there are
ticket(s) available to purchase

Post-condition The user owns ticket(s) to the game

Use case Start game

Actor Event organizer

Description
The event organizer starts
a game

Goal
The event organizer has a successful
started a game

Pre-condition
The event organizer must be
organizing the game

Post-condition The game has started

22

Blockchain-based Ticketing

Use case End game

Actor Event Organizer

Description The event organizer can end a game

Goal
Allow an event organizer to
end a game

Pre-condition(s)
The event organizer must be
organizing the game, and the
game must be ongoing

Post-condition The game has ended

Use case Vaildate

Actor(s) Event organizer and user

Description
An event organizer validates
a user(s) ticket(s) for a game

Goal The ticket(s) was successful validated

Pre-condition
The user must own ticket(s) to the game,
and the game must be ongoing

Post-condition The user’s ticket(s) are validated

Use case Invaildate

Actor(s) Event Organizer and user

Description
The event organizer can invalidate
a user’s ticket(s)

Goal Invalidate a user’s ticket(s)

Pre-condition The user must own at least one ticket

Post-condition The user’s ticket(s) are invalidated

23

Blockchain-based Ticketing

5.2.2 System structure

As observed in figure 3, the system is relatively basic in its design. The system consists
of four structs: event organizer, game, ticket, and user. An event organizer can host
games; these games have a state derived from gameState and have tickets associated
with them. A user can purchase tickets from a game; this copies the ticket object from
the game to the user. The ticket derives its state from States, for example when it is
purchased.

Figure 3: Shows the system structure and dependencies

24

Blockchain-based Ticketing

5.2.3 GUI

Our employer’s requirements for the GUI were reasonably straightforward. They wanted
a website with buttons for each functionality listed in the requirements section 5.1. They
only requested one button for purchase, one for validation, and one for withdrawal of
the history of a ticket.

Figure 4 shows our proposed design for the website. Its a simple layout with a navi-
gation bar that help users navigate between the different parts of the system. The site is
divided into the three main parts of the system; the user tab, the game tab, and the buy
tab.

Figure 4: The proposed design for the web interface

25

Blockchain-based Ticketing

6 Implementation

6.1 Development Environment

6.1.1 Software

• IDE: Visual Studio Code [61]
• Language: Solidity, JavaScript, HTML and CSS
• Libraries: Web3 [62], Bootstrap [63]
• Framework: Truffle [64]
• Network Interface: Geth [65]
• Network Interface: Ganache [66]
• Server Environment Node.js [67]
• Version Control: Github [68]

When developing on Ethereum, we will be coding in their proprietary language solidity,
which is influenced by C++, Python, and Javascript but designed specifically for smart
contract development. Node.js and JavaScript are used to interface with the contracts
from the web UI and run scripts. HTML, CSS and Bootstrap were used to design the web
interface. Geth is a command line interface used for running a full Ethereum node and
is needed to connect to an Ethereum network. Ganache, on the other hand, creates a
personal blockchain that can be used for testing and developing without connecting to
an actual network and makes testing contracts more straightforward and user-friendly,
we used this for all of our development. To interface with the network created by Geth
or Ganache, we used Truffle. Truffle is a development framework for Ethereum that
supports among other things; smart contract compilation, automated testing, debugging
tools, script support, and network management, where compilation, testing and debug-
ging is most relevant for us. When it comes to writing the code, we decided to go with
Visual Studio Code, as it has support for both Solidity and JavaScript linting, and is also
a familiar IDE for everyone on the team.

6.1.2 Skyhigh server

NTNU has an internal server hosting service called Skyhigh, where students can borrow
server time to run their code. We got allocated a Linux VM where we configured Geth
and Truffle to host an Ethereum network that we can deploy our smart contracts on. A
setup like this is necessary to be able to test the system with more than one node. But,
due to time constraints and it being easier to develop locally with Ganache, we ended up
not using the server at all.

6.2 Development

In the development process, we used Ganache for testing the smart contract locally on
our computer, since Ganache allows us to see transactions and event logs while testing.
The reason for developing on a test network first is to not deploy anything on a main net
without testing to make sure everything works properly first.

26

Blockchain-based Ticketing

We decided to only have one smart contract because it was simpler to control functions
and variables. If we were to realize the prototype in a real-life scenario; tickets, users,
event organizers, and games would have their own smart contracts and inherit from each
other. The smart contract is the backend code, while the website is the frontend. We are
using the web3 library, which is a javascript library for communication between the back-
end and the ethereum network. We are also using Bootstrap for the design of the website.

Initially, in the development process, we first planned out the logic of the smart con-
tract. After that, we realized that we needed four actors: ticket, user, game and event
organizer. All actors have their own structs which includes their local variables. To make
sure each struct is unique, we used a uniqe id. Everything except ticket has an id; ticket
does not need id to be unique since it has the game id and tickets position in the map-
ping for that game, making the ticket unique. For example, if a ticket has game id 15 and
position 0; another ticket can still have position 0, but not in the same game. Therefore
a ticket is always unique by the combination of ticket position and game id.

All structs bedsides ticket are declared as global arrays. These are dynamic, not fixed,
which in theory, means that the system can hold as many games, event organizers and
users as needed. It also provides a more realistic scenario where the ticket system is not
limited by how much it can hold in the database.

1 //all Users
2 user[] Users;
3
4 //all Games
5 game[] Games;
6
7 //all event Organizer
8 eventOrganizer [] EventOrganizers;

Listing 6.1: global arrays

User and event organizer are independent, while games need an event organizer to exist,
which makes Games dependent on the event organizer. We did not make a global array
for tickets, but instead, we are mapping it in the game and user as a way to connect them
to the ticket. This is because a ticket should not exist without a game; therefore, it must
be connected. Users also have their own set of the tickets, which only includes tickets they
own. While the user can only see the tickets they own, games can see all tickets with the
same game_id. Each game is connected to an event organizer with the eventOrganizer_id
in both structs. We could have mapped the game in the event organizer’s struct but
decided it was not necessary since by not using mapping, it was easier to control the
different functions.

27

Blockchain-based Ticketing

1 function createEventOrganizer(string memory _name , address _addr , uint
_evnetOrganizerId , string memory _password) public returns(bool){

2
3 //check if event organizer already exits
4 if(checkEventOrganizer(_evnetOrganizerId) && checkAddr(_addr)){
5 eventOrganizer memory e = eventOrganizer(_evnetOrganizerId ,

_name , _addr , _password); // Create a temporary memory
of struct eventOrganizer

6 EventOrganizers.push(e);
7
8 emit CreateEventOrganizer(_evnetOrganizerId , _name , _addr ,

_password);
9

10 return (true);
11
12 } else{
13
14 return(false);
15 }
16 }

Listing 6.2: createEventOrganizer function

The code in 6.2 shows how the system creates an event organizer. The function receives
the required parameter for the event organizer. The address needs to be unique; we
therefore have to make sure there are no matching addresses in the system. This is done
trough the checkaddr(address_addr) function.

The code for createUser is similar to createEventOrganizer. This is because both are
treated the same way in the system. Another thing similar to createEventOrganizer is
the use of checkaddr(address_addr) function to make sure there are not any duplicates.

1 function createGame(uint _gameId , uint _evnetOrganizerId , string memory
_homeTeam ,

2 string memory _foreignTeam , uint _tickets , int _price)public returns(
bool){

3
4 //check if game already exists and event organizer exists
5 if(! checkEventOrganizer(_evnetOrganizerId) && checkGame(_gameId)){
6
7 game memory g = game(_gameId , _evnetOrganizerId , _homeTeam ,

_awayTeam , _tickets , GameStates.notStarted); // Create
a temporary memory of struct game

8 Games.push(g);
9

10 emit CreateGame(_gameId ,_evnetOrganizerId , _homeTeam ,
_foreignTeam , _tickets , GameStates.notStarted);

11
12 createTicket(_gameId , _tickets , _price);

//call the function
createTicket for creating the tickets in a game

13
14 return (true);
15
16 } else{
17 return(false);
18 }
19 }

Listing 6.3: createGame function

The function createGame 6.3 creates a game and then adds it to Games array. It requires
six parameters to run; gameId, event organizer Id, home team, foreign team, amount of
tickets and the price for each ticket. The function makes sure that the game id is unique

28

Blockchain-based Ticketing

and that the event organizer id exists in the system. If both the checks pass we create a
local game inside the function with all our parameters, and we set the game’s state to
notStarted. Then we push the local game to the Games array and emit the event, which
logs the creation in the blockchain. After that createTicket is called with game id, number
of tickets and price.

1 function createTicket(uint _gameId , uint _tickets , int _price)public
returns(bool){

2 uint pos = findPosGame(_gameId);
3
4 //check if the _gameId and _tickets is same in Games[_gameId]
5 if(Games[pos]. game_id == _gameId && Games[pos]. number_of_tickets ==

_tickets){
6 // creating the number of ticket in a game
7 for(uint i = 0; i < _tickets; i++){
8
9 Games[pos]. tickets[i] = ticket(i, 0, _gameId , _price ,

States.available); //add tickets for tickets in
struct game

10
11 emit CreateTicket(i, 0, _gameId , _price , States.

available);
12 }
13
14 return (true);
15
16 } else {
17
18 return (false);
19 }
20 }

Listing 6.4: createTicket function

createTicket in 6.4 uses the parameters sent from the createGame function. It starts by
finding the position of the game in the Games array, then checks if the game id and the
number of tickets match its parameters. Then it goes through and adds all the tickets to
the game with the state as available and the owner set to 0, since no one owns ticket yet.

1 function buy(uint _posU , uint _posG)public returns(bool){
2 uint posT = Users[_posU]. ticketOwns;
3
4 //go throught very ticket in the game
5 for(uint i = 0; i < Games[_posG]. number_of_tickets; i++){
6
7 //check if the ticket are available
8 if(Games[_posG]. tickets[i].state == States.available){
9

10 Games[_posG]. tickets[i]. user_id = Users[_posU]. user_id;
//Sett the user id

11
12 Games[_posG]. tickets[i].state = States.bought;

// change the state to bought
13
14 Users[_posU]. tickets[posT] = Games[_posG]. tickets[i];

//cop ticket to Users []. tickets []
15
16 emit BuyTicket(Users[_posU].user_id ,
17 Users[_posU]. tickets[posT].game_id ,
18 posT , Users[_posU]. tickets[posT].price ,
19 Users[_posU]. tickets[posT]. state);
20
21 Users[_posU]. ticketOwns ++;
22
23 return (true);

29

Blockchain-based Ticketing

24 }
25 }
26 return (false);
27 }

Listing 6.5: buy function

When a user purchases a ticket, the buyTickets function is called with the parame-
ters; _gameId, _userId and _tickets. This function checks if a game has enough available
tickets and then calls the buy function once for each ticket the user wants to purchase.
This function runs trough all tickets in a game and finds the first available one. It then
sets the user_id to the same as the buyer’s, sets the ticket’s state to bought and adds the
ticket to the buyer’s ticket mapping.

1 function vaildateTicket(uint _userId , uint _gameId) public returns(bool
){

2 uint posG = findPosGame(_gameId);
3 uint posU = findPosUser(_userId);
4
5 if(! checkGame(_gameId) && Games[posG]. gameState == GameStates.

ongoing){
6 for(uint i = 0; i < Users[posU]. ticketOwns; i++){
7 if(Users[posU]. tickets[i]. game_id == _gameId && Users[posU

]. tickets[i].state == States.bought){
8
9 uint tickPos = Users[posU]. tickets[i]. ticketPos;

10
11 Games[posG]. tickets[tickPos].state = States.spent;

// change state to spent
12
13 Users[posU]. tickets[i] = Games[posG]. tickets[tickPos];

//copy the ticket info to Games[]
14
15 emit TicketState(_userId , _gameId , i, Users[posU]. tickets[i

].state);
16 }
17 }
18 return (true);
19 }
20 return (false);

// return false
21 }

Listing 6.6: validateTicket function

ValidateTicket 6.6 takes two parameters, user Id and game Id. It uses these to find the
position of both the game and user in their respective arrays. Then it checks if the game
exists and that the game’s state is set to ongoing. Then a for loop runs through all the
tickets owned by a user and checks if they have a ticket with a matching game Id and
that the ticket’s state is set to bought. Then the ticket’s position is used to set the ticket’s
state to spent. Similarly, invalidateTicket is mostly the same as validateTicket.

30

Blockchain-based Ticketing

6.3 Finished Product

6.3.1 Web interface

For the web interface, we decided to make a simple layout that a user can easily navigate
(see section 5.2.3 for more). By using the web3.js library we could connect the frontend
to the backend, which allowed us to call functions in the smart contract from the web
interface. We also included a frontend component library, Bootstrap, to make the design
neater. Other assets like Innit’s logo were provided to us by them.

Figure 5: Page to event organizer

Figure 5 shows the event organizer page. Under "create event organizer" the necessary
fields needs to be filled out in order to create an event organizer. There is no way for
an organizer to select an ethereum address because when creating an event organizer,
the system will automatically give the event organizer one. As shown in listing 6.2, the
system does not accept an id that is already being used. If the event organizer wonders
what their ethereum address is or how many games they are organizing, they can get
that information under "get event organizer" by typing their id.

31

Blockchain-based Ticketing

Figure 6: Page to user

Figure 6 show the user page, which is similar to the event organizer’s page. The reason
is as mentioned in section 6.2, as the create functions are very similar, the interfaces
become too. The only difference in the web interface is "User ticket" which is used to
get information regarding the user’s tickets. In order for the function to get a ticket’s
information, the user’s id and the ticket’s number is needed as input. The ticket number
is the ticket’s position in the mapping which is connected to a user. For example, if a user
inputs ticket number 10, but only owns 5 tickets, he will receive an error.

Figure 7: Page to game

The game page again share some of the same features as the user and event organizer
pages. This page is meant for event organizers to create games, shown under "Create

32

Blockchain-based Ticketing

game", which needs an event organizer id. "Get game" is again similar to, for example,
event organizer’s "Get event organizer", and needs a valid id, if an invalid id is used, an
error message will be displayed. Another difference is the ability to change the game’s
state to ongoing or ended. Something worth noting is that when a game is created, it
will automatically have its state set to not started.

Figure 8: Page to ticket

The ticket’s page contains the most important functions in the prototype, the buy, validate
and invalidate ticket functions. "Buy ticket" needs a user id, game id and how many
tickets a user want to buy. The tickets bought will be added to the user’s ticket mapping.
In order to withdraw tickets in the user’s page, a user will first have to buy tickets. A
event organizer can validate or invalidate a user’s ticket using their respective functions.

33

Blockchain-based Ticketing

Figure 9: Page to log

The logs page does not include any specific functionality from the smart contract, but
is used to withdraw the logs from the blockchain. This is a way for an event organizer
to keep track of changes in the blockchain. This page uses the function getPastEvents
from the web3.js library, unlike the other pages, who call functions from the smart con-
tract.

The web interface is meant to illustrate how we wanted the prototype to work. It in-
cludes not only smart contract functionality but also web3’s functionalities in order to
communicate with the blockchain’s data. Generally, the web interface simply showcases
the prototype’s functionality; it does not showcase how the website should look, there is
room for improvement when it comes to a fully functional ticketing system.

6.3.2 Testing

To test the prototype, we made scripts that create a test scenario, to simulate how the
system would operate in reality. When running the scripts, they will create users, event
organizers, and games. They will allocate tickets to users, change games states and, val-
idate and invalidate user’s tickets. All scripts that change or add data to the system,
creates new blocks in the network.

We first run the scripts: createEventOrganizers.js, createUsers.js and createGames.js
to create the necessary data for the system. It is important to run createEventOrganizers.js
before createGames.js since a game requires an event organizer to exists.

After running the necessary scripts, we can run getEventOrganizers.js, getUsers.js
and getGames.js. None of these scripts will create any blocks since they only withdraw
and show data. These scripts are not required to run for the system to work, but allows
us to check if everything was added correctly.

34

Blockchain-based Ticketing

Users can now buy tickets to a game by running the user1Buys.js, user2Buys.js and
user3Buys.js scrpts. Since these scripts change the blockchain, they will create new
blocks of data that includes information about the transaction. These scripts can be run
multiple times until there are no more tickets available. After the user has bought a ticket,
they can run getUsersTickets.js to see the information about their tickets.

Before validating a user’s tickets, a game has to be ongoing, this can be done by running
startGames.js. An event organizer can then validate a ticket by running the vaildate.js
which will validate all tickets bought for that game. They can also end games by running
endedGames.js, preventing more tickets from being validated. If they need to invalidate
tickets, if for example, the game was canceled, they can run invalid.js which changes
the ticket’s state to "invalid".

35

Blockchain-based Ticketing

7 Discussion

7.1 Discussion

We initially set out to discover whether or not a blockchain-based ticketing system would
be feasible and a worthwhile investment for our employer. Now at the end of the project,
we are comfortable saying that blockchain-based ticketing systems are not only feasible
and practical but also relatively easy to develop compared to our initial expectations.
We have delivered to our employer, not only a report highlighting all of this but also a
prototype system that exceeds the initial requirements.
The main advantage of using blockchain is security. It is tamper-proof, therefore a com-
pany can be safe that their data would not be tampered with. Blockchain can also provide
logs of all the system changes which is practical when, for example, troubleshooting is-
sues in the system. Another thing is that a blockchain can be transparent; therefore if a
ticket changes, it would need the approval of all nodes in the blockchain network (see
section 2.2). The company can add features like facial verification or non-fixed QR (see
section 3.3.3), in order to make the system safe as possible for the consumer. The safety
in the prototype is the identity management to user’s and event organizer’s Ethereum
address as it is unique. This can be used as a way to identify.

There are however downsides to using blockchain technology for these types of appli-
cations. A traditional database have certain advantages over blockchain technology. It
can remove garbage data; meanwhile, on a blockchain, everything is permanent. There-
fore it cannot remove old data from the system as it is ever growing a list of records(see
section 2.1). For example, if the blockchain holds a ten-year backlog of tickets, removing
the oldest to free up space, is not possible. Hence, the blockchain multiplies in size, and
you have to account for an ever-expanding database. This was something we experienced
when testing the prototype, the list grew prominently and over-time started to include
garbage data. That means there were blocks that no longer held relevant data and could
have been removed. While this was not an issue with the scale of the prototype, in lager
systems, this could be an issue.
Scalability can also be a challenge with blockchain; for example, the prototype experi-
enced issues when redeploying our smart contracts where the system did not recognize
the updated contract. Additionally, when expanding a contract’s functionality, the net-
work will require more resources to run the expanded contract. This can lead to system
failure if not enough resources are available which experienced in the prototype. Issues
like this would be critical in an operational system.

Blockchain can be used as a ticketing system (see chapter 3). As mention in section
3.2.2, GUTS is a functional ticketing service powered by blockchain. Evopass was a com-
pany that decided to step away from blockchain because of latency issues caused by
blockchain. When comparing these, it shows that blockchain works as a ticketing system,
but challenges in the market and technical issues can provide a challenge.

36

Blockchain-based Ticketing

7.2 Group Evaluation

7.2.1 Initially

We have known each other for three years and had worked together numerous times
before, so we knew what to expect from each other. Daily discussions were held to make
sure we were on the same page when it came to the report and work to be done. There
were few internal problems during the project period, the only issue we had were a few
illnesses.

7.2.2 Distribution of work

We original split responsibility into three parts, but found during the project that it was
easier to work to together. We distributed the different sections between us and went
through everyone’s work weekly. Initially, we all started reading about blockchain, what
it is, how it works and its different uses. Then, we split up and began researching the dif-
ferent frameworks and protocols that we could use. One team member was later assigned
to the prototype, while the other two kept working on the report, but were available to
help with development.

37

Blockchain-based Ticketing

8 Conclusion

8.1 Future work

As this thesis is mostly a theoretical report, with a practical demonstration, it is meant to
inform our employer about the potential of blockchain technology in ticketing systems.
For future work, we would recommend looking more in-depth at security, and potentially
do some more market investigation, surveys could be run to see if there is consumer
interest in this technology, or contact one or more of the existing service providers and
talk with them about their experiences. When talking about the prototype, since it lacks
a lot of the more complex features of a production-ready system, we would recommend
using it for inspiration rather than building upon it. However, there are potential changes
that could be made to make the prototype more complete. The prototype should be
deployed on a server to allow multiple users to connect. There could also be a login
system, removing the need for users to remember their user_id.

8.2 Conclusion

In this thesis, we have researched blockchain technology in order to find out if a ticket-
ing system based on this technology is feasible and practical. We discovered that there
were already multiple existing solutions, not only applications but also protocols based
entirely on making ticketing systems. These solutions show there is interest in the tech-
nology, but as most of these are still in early development, it is hard to conclude whether
or not this is the future of ticketing.
Based on our research, we found that the Ethereum platform was the best choice for
our use-case. During development it became clear that these systems are not as hard
to develop as we initially expected. This lead to the prototype far exceeding the initial
requirements set by our employer.
Given the improved prototype and our research prior to development, we can conclude
that it is both feasible and straight forward to develop blockchain-based ticketing sys-
tems.

38

Blockchain-based Ticketing

Bibliography

[1] October. 5 2017. Live performance australia. http://members.liveperformance.
com.au/uploads/files/LPAMRTicketing%20SurveyOct2017%20(all%20media)
%20FINAL-1507074102.pdf.

[2] Morris, D. Z. 2017. Bitcoin hits a new record high, but stops short of $20,000.
http://fortune.com/2017/12/17/bitcoin-record-high-short-of-20000/.
(Visited March. 22 2019).

[3] 2017. What is blockchain technology? a step-by-step guide for beginners. https:
//blockgeeks.com/guides/what-is-blockchain-technology. (Visited March.
13 2019).

[4] 2015. The great chain of being sure about things. https://www.economist.com/
briefing/2015/10/31/the-great-chain-of-being-sure-about-things. (Vis-
ited March. 25 2019).

[5] Lafaille, C. 2018. What is blockchain technology? a beginner’s guide. https:
//www.investinblockchain.com/what-is-blockchain-technology/. (Visited
March. 18 2019).

[6] Curran, B. 2018. What is a merkle tree? beginner’s guide to this blockchain com-
ponent. https://blockonomi.com/merkle-tree/. (Visited May. 14 2019).

[7] What is cryptocurrency. guide for beginners. https://cointelegraph.
com/bitcoin-for-beginners/what-are-cryptocurrencies#history. (Visited
March. 18 2019).

[8] Lai, V. 2018. Introduction to cryptography in blockchain technology. https://
crushcrypto.com/cryptography-in-blockchain/. (Visited April. 24 2019).

[9] Decentralized computing & storage: Building a global supercomputer for all.
https://www.skalex.io/decentralized-computing/. (Visited April. 24 2019).

[10] Blockchains & distributed ledger technologies. https://blockchainhub.net/
blockchains-and-distributed-ledger-technologies-in-general/. (Visited
March. 18 2019).

[11] Bitcoin. https://www.bitcoin.com/. (Visited May. 19 2019).

[12] ethereum blockchain app platform. https://www.ethereum.org/. (Visited April.
17 2019).

[13] Monax helps businesses focus on value creation by simplifying paperwork. https:
//monax.io/. (Visited May. 14 2019).

39

Blockchain-based Ticketing

[14] Open platform for building blockchains. https://www.multichain.com/. (Visited
May. 14 2019).

[15] r3. 2018. The corda platform. https://www.r3.com/corda-platform/.

[16] Iyer, K. & Dannen, C. 2018. Building Games with Ethereum Smart Contracts. Apress,
(Visited April. 1 2019).

[17] 02.02.2019. Understanding blockchain frameworks: Ethereum
and hyperledger fabric. https://medium.com/coinmonks/
understanding-blockchain-frameworks-ethereum-and-hyperledger-fabric-48a57082903e.
(Visited March. 19 2019).

[18] Bauerle, N. What is a distributed ledger? https://www.coindesk.com/
information/what-is-a-distributed-ledger. (Visited March. 13 2019).

[19] Brakeville, S. & Perepa, B. 2018. Blockchain basics: Introduc-
tion to distributed ledgers. https://developer.ibm.com/tutorials/
cl-blockchain-basics-intro-bluemix-trs/. (Visited March. 15 2019).

[20] Ray, S. 2018. The difference between blockchains & dis-
tributed ledger technology. https://towardsdatascience.com/
the-difference-between-blockchains-distributed-ledger-technology-42715a0fa92.
(Visited March. 15 2019).

[21] Smart contracts & dapps. https://lisk.io/academy/blockchain-basics/
use-cases/smart-contracts-and-decentralized-platforms. (Visited March.
15 2019).

[22] 2017. Smart contracts: The blockchain technology that will replace lawyers.
https://blockgeeks.com/guides/smart-contracts/. (Visited March. 13 2019).

[23] Smart contracts. https://blockchainhub.net/smart-contracts/. (Visited
March. 18 2019).

[24] Consensus protocols. https://lisk.io/academy/blockchain-basics/
how-does-blockchain-work/consensus-protocols. (Visited March. 25 2019).

[25] 2018. What is a blockchain consensus algorithm? https://www.binance.vision/
blockchain/what-is-a-blockchain-consensus-algorithm. (Visited March. 25
2019).

[26] Anwar, H. 2018. Consensus algorithms: The root of the blockchain technol-
ogy. https://101blockchains.com/consensus-algorithms-blockchain/. (Vis-
ited March. 25 2019).

[27] Softjourn. 2018. Blockchain revolutionizes ticketing. https://softjourn.
com/blog/article/blockchain-revolutionizes-ticketing. (Visited March. 22
2019).

[28] Tirkakis, J. 2018. Solutions in event ticketing ac-
cording to hellosugoi. https://medium.com/hello-sugoi/
solutions-in-event-ticketing-according-to-hellosugoi-ef333395c724.
(Visited March. 25 2019).

40

Blockchain-based Ticketing

[29] 2017. A chain of custody ticketing system. https://blocktix.io/. (Visited April.
3 2019).

[30] Anwar, H. 2018. Top 10 blockchain adoption challenges. https://
101blockchains.com/blockchain-adoption-challenges/. (Visited April. 1
2019).

[31] 2017. The future of tickets. https://media.consensys.net/
the-future-of-tickets-a729ea4e9c95. (Visited April. 5 2019).

[32] Pandya, N. 2018. How blockchain can boost the
ticket booking industry. https://medium.com/coinmonks/
how-blockchain-can-boost-the-ticket-booking-industry-79ea56fbfab.
(Visited April. 8 2019).

[33] 2018. Secure fan-to-fan ticket resale. https://www.evopass.io/. (Visited April.
7 2019).

[34] 2019. Evopass, about us. https://www.evopass.io/about-us/.

[35] 2018. How blockchain can help musicians survive. https://www.longhash.com/
news/how-blockchain-can-help-musicians-survive. (Visited April. 3 2019).

[36] 2018. Evopass: End of the road. https://medium.com/evopass/
evopass-end-of-the-road-1ec62799cb74. (Visited April. 1 2019).

[37] Blocktix. 2019. Blocktix review of 2018 / 2019 q1. https://blog.blocktix.io/
blocktix-review-of-2018-2019-q1-24254cecc06d. (Visited Mai. 14 2019).

[38] Mathieu, F. & Mathee, R. 2017. Blocktix: Decentralized event host-
ing and ticket distributionnetwork. https://blog.blocktix.io/
blocktix-review-of-2018-2019-q1-24254cecc06d. (Visited Mai. 14 2019).

[39] Team, G. F. 2017. Guaranteed entrance token smart event ticketing pro-
tocol. https://guts.tickets/files/GET-Whitepaper-GUTS-Tickets-latest.
pdf. (Visited April. 4 2019).

[40] 2019. Our progress & roadmap. https://get-protocol.io/about/roadmap/.
(Visited April. 15 2019).

[41] Foundation, A. P. 2019. The aventus protocol. https://aventus.io/.

[42] Foundation, G. P. 2019. Honest ticketing. https://guts.tickets/.

[43] 2018. Aventus whitepaper. https://aventus.io/doc/whitepaper.pdf. (Pub-
lished June 2018, Version 4).

[44] 2019. Ticketmaster. https://www.ticketmaster.com/.

[45] Trikakis, J. 2018. Problems in event ticketing ac-
cording to hellosugoi. https://medium.com/hello-sugoi/
problems-in-event-ticketing-according-to-hellosugoi-8edbbce28815.
(Visited April. 1 2019).

41

Blockchain-based Ticketing

[46] 2007. Lov om forbud mot prispåslag ved videresalg av billetter til kultur- og
idrettsarrangementer. https://lovdata.no/dokument/NL/lov/2007-06-29-86.
(Visited April. 4 2019).

[47] Evopass. 2017. Introducing evopass. https://medium.com/evopass/
introducing-evopass-47e0ed574a50. (Visited April. 3 2019).

[48] Sandner, P. 2017. Comparison of ethereum, hyperledger
fabric and corda. https://medium.com/@philippsandner/
comparison-of-ethereum-hyperledger-fabric-and-corda-21c1bb9442f6.
(Visited April. 13 2019).

[49] Curran, B. 2018. What is ethereum? beginner’s guide to this decentralized com-
puting platform. https://blockonomi.com/ethereum-guide/. (Visited April. 15
2019).

[50] 2017. What is ethereum? the most comprehensive guide ever! https://
blockgeeks.com/guides/ethereum/. (Visited April. 15 2019).

[51] 2019. Cryptokitties: Collectible and breedable cats empowered by
blockchain technology. https://drive.google.com/file/d/1soo-eAaJHzhw_
XhFGMJp3VNcQoM43byS/view. (Visited May. 15 2019).

[52] 2018. About hyperledger. https://www.hyperledger.org/about. (Visited April
17 2019).

[53] 2019. Hyperledger projects. https://www.hyperledger.org/projects. (Visited
15.05.19).

[54] Maltseva, D. 26.07.18. 10 most popular& promis-
ing blockchain platforms. https://dev.to/dianamaltseva8/
10-most-popular--promising-blockchain-platforms-djo. (Visited 15.05.19).

[55] Sitoh, P. 04.12.18. What are the differences between ethereum, hyper-
ledger fabric and hyperledger sawtooth. https://medium.com/coinmonks/
what-are-the-differences-between-ethereum-hyperledger-fabric-and-hyperledger-sawtooth-5d0fc279d862.
(Visited 15.05.19).

[56] Suprunov, P. Sep 21, 2018. 5 hyperldeger projects in depth. https://medium.com/
practical-blockchain/5-hyperledger-projects-in-depth-3d14c41f902b.
(Visited 18.04.2019).

[57] 2019. Ibm. https://www.ibm.com.

[58] 2019. https://digitalasset.com/.

[59] 2019. Hyperledger fabric. https://hyperledger-fabric.readthedocs.io.

[60] Goyal, S. 2018. Hyperledger vs corda r3 vs ethereum: The ultimate guide.
https://101blockchains.com/hyperledger-vs-corda-r3-vs-ethereum/. (Vis-
ited April. 11 2019).

[61] 2019. Visual studio code. https://code.visualstudio.com/.

42

Blockchain-based Ticketing

[62] 2019. Web3 documentation. https://web3js.readthedocs.io/en/1.0/.

[63] 2018. Bootstrap. https://getbootstrap.com/.

[64] 2019. Truffle. https://truffleframework.com/truffle.

[65] 2019. Go ethereum. https://geth.ethereum.org/.

[66] 2019. Ganache. https://truffleframework.com/ganache.

[67] 2019. Node.js. https://nodejs.org.

[68] 2019. Github. https://github.com/.

43

Blockchain-based Ticketing

A Definitions

Node is a participant in the blockchain network. We defined all participants as limited to
one physical or virtual machine.

Miner is a node in charge of solving the cryptographic hashes that determine wether
a new block should be added to the chain or not.

Ledger is a record of all transactions in a system.

44

Blockchain-based Ticketing

B Source Code

Attached you will find the source code for the prototype.

45

1 pragma solidity >=0.4.22 <0.6.0;
2
3 contract Services{
4
5 struct ticket{
6 //the position of a ticket
7 uint ticketPos;
8 //the id of a user
9 uint user_id;

10 //the id of game to the ticket
11 uint game_id;
12 //the price of the ticket, inn kr
13 int price;
14 //What state the ticket is in
15 States state;
16 }
17
18 struct game{
19 //the id of game
20 uint game_id;
21 //the id of event organizer
22 uint evnetOrganizer_id;
23 //name of the home team
24 string homeTeam;
25 //the name of foreign team
26 string foreignTeam;
27 //the number of ticket in a game
28 uint number_of_tickets;
29 //the state of a Games
30 GameStates gameState;
31 //create a mapping to struct tickets
32 mapping(uint => ticket) tickets;
33 }
34
35 struct user{
36 //the id of the user
37 uint user_id;
38 //the name og onwer
39 string name;
40 //the addr of user in ethereum
41 address addr;
42 //mobile number to user
43 int mobile;
44 //number of ticket own
45 uint ticketOwns;
46 //password to the user
47 string password;
48 //which ticket the user owns
49 mapping(uint => ticket) tickets;
50 }
51
52 struct eventOrganizer{
53 //the id of event organizer
54 uint evnetOrganizer_id;
55 //the name of event
56 string name;
57 //the address of event organizer
58 address addr;
59 //password to the event organizer
60 string password;
61 }
62
63 //enum which state the ticket is in
64 enum States {available, bought, spent, invaild}
65
66 //enum for which state a game is
67 enum GameStates{notStarted, ongoing, ended}
68
69 //all Users
70 user[] Users;
71
72 //all Games
73 game[] Games;

74
75 //all event Organizer
76 eventOrganizer[] EventOrganizers;
77
78 //Create event for createGame
79 event CreateGame(uint _gameId, uint _evnetOrganizerId, string _homeTeam, string

_foreignTeam, uint _tickets, GameStates state);
80
81 //Create event for createTicket
82 event CreateTicket(uint _ticketPos, uint _userId, uint _gameId, int _price,

States state);
83
84 //Create event for createUser
85 event CreateUser(uint _userId, string _name, address _addr, int _mobile, uint

_ticketOwns, string _password);
86
87 //Create event for createEvent
88 event CreateEventOrganizer(uint _evnetOrganizerId, string _name, address _addr,

string _password);
89
90 //Create event for buyTickets
91 event BuyTickets(uint _userId, uint _gameId, uint _tickets);
92
93 //Create event for buyTicket
94 event BuyTicket(uint _userId, uint _gameId, uint _ticketpos, int _price, States

state);
95
96 //Create event for TicketState
97 event TicketState(uint _userId, uint _gameId, uint _ticketId, States state);
98
99 //Create event for change gameState

100 event GameSate(uint _gameId, uint _evnetOrganizerId, string _homeTeam, string
_foreignTeam, GameStates state);

101
102 //createEventOrganizer function create a event organizer in EventOrganizers[]
103 //@param string memory _name is the name of a event organizer
104 //@param address _addr is teh ethereum address to event organizer
105 //@return bool, true if was successfull created, false if failed
106 function createEventOrganizer(string memory _name, address _addr, uint

_evnetOrganizerId, string memory _password) public returns(bool){
107
108 //check if event organizer already exits
109 if(checkEventOrganizer(_evnetOrganizerId) && checkAddr(_addr)){
110 eventOrganizer memory e = eventOrganizer(_evnetOrganizerId, _name,

_addr, _password); //Create a temporary memory of struct
eventOrganizer

111 EventOrganizers.push(e);
112
113 emit CreateEventOrganizer(_evnetOrganizerId, _name, _addr, _password);
114
115 return (true);
116
117 } else{
118
119 return(false);
120 }
121 }
122
123 //checkEventOrganizer function makes sure that address aren't begin used more

then one time
124 //@param address _addr is the address begin check
125 //@returns bool, return true if not begin used, and false if are already used
126 function checkEventOrganizer(uint _evnetOrganizerId)public view returns(bool){
127
128 //check if EventOrganizers[] hold something
129 if(getCounterEventOrganizer() != 0){
130
131 //go throught all EventOrganizers
132 for(uint i = 0; i < getCounterEventOrganizer(); i ++){
133
134 //check if the address is used
135 if(EventOrganizers[i].evnetOrganizer_id == _evnetOrganizerId){
136

137 return(false);
138 }
139 }
140 }
141 return (true);
142 }
143
144 //checkAddr function makes sure that address aren't begin used more then one time
145 //@param address _addr is the address begin check
146 //@returns bool, return true if not begin used, and false if are already used
147 function checkAddr(address _addr)public view returns(bool){
148
149 //check if EventOrganizers[] hold something
150 if(getCounterEventOrganizer() != 0){
151
152 //go throught all EventOrganizers
153 for(uint i = 0; i < getCounterEventOrganizer(); i ++){
154
155 //check if the address is used
156 if(EventOrganizers[i].addr == _addr){
157
158 return(false);

//return false if address is already in used
159 }
160 }
161 }
162
163 //check if Users[] holds something
164 if(getCounterUsers() != 0){
165
166 //check every Users[]
167 for(uint i = 0; i < getCounterUsers(); i++){
168
169 //if address is the same
170 if(Users[i].addr == _addr){
171
172 return (false);

//return false, id and addr already begin used
173 }
174 }
175 }
176
177 return (true);

//return true if address is not begin used
178 }
179
180 //getCounterEventOrganizer function counts how many object is in the

EventOrganizers[]
181 //@return uint of how many object is in the EventOrganizers[]
182 function getCounterEventOrganizer() public view returns(uint){
183 return EventOrganizers.length;
184 }
185
186
187 //findPosEventOrganizer function finds the position of a event organizer
188 //@param uint _evnetOrganizerId is the the id of a event organizer
189 //@return uint of position to evnetOrganizerId in the EventOrganizers[]
190 function findPosEventOrganizer(uint _evnetOrganizerId) public view returns(uint){
191
192 //go through ever object in EventOrganizers[]
193 for(uint i = 0; i < getCounterEventOrganizer(); i++){
194
195 //check if the userId matches
196 if(EventOrganizers[i].evnetOrganizer_id == _evnetOrganizerId){
197 return (i); //return the

position
198 }
199 }
200 return 0; //return 0

if there are no object in EventOrganizers[]
201 }
202
203 //getEventOrganizer function gets all the information about a event organizer

204 //@param uint _evnetOrganizerId is the id of evnet organizer
205 //@return uint of the evnet Organizer Id, string of evnet Organizer name,

address of evnet Organizer and password
206 function getEventOrganizer(uint _evnetOrganizerId)public view returns(uint,

string memory, address, string memory){
207 uint pos = findPosEventOrganizer(_evnetOrganizerId);
208
209 return(EventOrganizers[pos].evnetOrganizer_id,
210 EventOrganizers[pos].name,
211 EventOrganizers[pos].addr,
212 EventOrganizers[pos].password);
213 }
214
215 //createUser function create a user in user[]
216 //@param uint _userId setting the id to user
217 //@param string memory _name setting full name
218 //@param address _addr is the ethereum address in the network to user
219 //@param int _mobile setting mobile number to user
220 //@returns bool, return true if the function was successfull
221 function createUser(uint _userId, string memory _name, address _addr, int

_mobile, string memory _password) public returns(bool){
222
223 //call the function checkUser to check _userId and _addr
224 if(checkUser(_userId) && checkAddr(_addr)){
225
226 user memory u = user(_userId, _name, _addr, _mobile, 0, _password);

//Create a temporary memory of struct user
227 Users.push(u);
228
229 emit CreateUser(_userId, _name, _addr, _mobile, 0, _password);
230
231 return (true);
232
233 } else {
234
235 return (false);
236 }
237
238 }
239
240 //checkUser function make sure that id and address aren't begin used more then

one time
241 //@param unit _userId is the id begin check
242 //@param address _addr is the address begin check
243 //@returns bool, return true if not begin used, and false if are already used
244 function checkUser(uint _userId) public view returns(bool){
245
246 //check if Users[] holds something
247 if(getCounterUsers() != 0){
248
249 //check every Users[]
250 for(uint i = 0; i < getCounterUsers(); i++){
251
252 //if userId is the same
253 if(Users[i].user_id == _userId){
254
255 return (false);
256 }
257 }
258 }
259
260 return (true);
261 }
262
263 //getCounterUser function counts how many object is in the Users[]
264 //@return uint of how many object is in the Users[]
265 function getCounterUsers() public view returns(uint){
266 return (Users.length);
267 }
268
269 //findPosUser function finds the position of a user
270 //@param uint _userId is the the id of a user
271 //@return uint of position to userId in the Users[]

272 function findPosUser(uint _userId) public view returns(uint){
273
274 //go through ever object in Users[]
275 for(uint i = 0; i < getCounterUsers(); i++){
276
277 //check if the userId matches
278 if(Users[i].user_id == _userId){
279 return (i); //return the

position
280 }
281 }
282 return 0; //return 0

if there are no object in Users[]
283 }
284
285 //Create a game and tickets in Game[]
286 //@param uint _gameId is the the id of a game
287 //@param string memory _homeTeam are the name of hometeam
288 //@param string memory _foreignTeam is the name of the foreignteam
289 //@param unit _ticket is the number of tickets in a game, it start on 0
290 //@param int _price is the price of a ticket
291 //@return true if function was successful
292 function createGame(uint _gameId, uint _evnetOrganizerId, string memory _homeTeam,
293 string memory _foreignTeam, uint _tickets, int _price)public returns(bool){
294
295 //check if game already exists and event organizer exists
296 if(!checkEventOrganizer(_evnetOrganizerId) && checkGame(_gameId)){
297
298 game memory g = game(_gameId, _evnetOrganizerId, _homeTeam,

_foreignTeam, _tickets, GameStates.notStarted); //Create a
temporary memory of struct game

299 Games.push(g);
300
301 emit CreateGame(_gameId,_evnetOrganizerId, _homeTeam, _foreignTeam,

_tickets, GameStates.notStarted);
302
303 createTicket(_gameId, _tickets, _price);

//call the function createTicket for creating the tickets in a game
304
305 return (true);
306
307 } else{
308 return(false);
309 }
310 }
311
312 //checkGame function check if gameId already exits
313 //@param uint _gameId is the id of a game
314 //@return bool, true if the gameId dont already exits and false if begin used
315 function checkGame(uint _gameId) public view returns(bool){
316
317 //check if Games[] hold something
318 if(getCountGame() != 0){
319
320 //go thought all the games
321 for(uint i = 0; i < getCountGame(); i++){
322
323 //check if gameId already exists
324 if(Games[i].game_id == _gameId){
325 return (false);
326 }
327 }
328 }
329 return (true);
330 }
331
332 //getCounterGame function counts how many object is in the Games[]
333 //@return uint of how many object is in the Games[]
334 function getCountGame() public view returns(uint){
335 return(Games.length);
336 }
337
338 //createTicket function create ticket to a game

339 //@param uint _gameId is the id of game we want create ticket for
340 //@param uint _tickets is the number of tickets creating
341 //@param int _price is the price of a ticket
342 //@return bool, true if tickets was successfull created, false if failed
343 function createTicket(uint _gameId, uint _tickets, int _price)public

returns(bool){
344 uint pos = findPosGame(_gameId);
345
346 //check if the _gameId and _tickets is same in Games[_gameId]
347 if(Games[pos].game_id == _gameId && Games[pos].number_of_tickets == _tickets){
348 //creating the number of ticket in a game
349 for(uint i = 0; i < _tickets; i++){
350
351 Games[pos].tickets[i] = ticket(i, 0, _gameId, _price,

States.available); //add tickets for tickets in struct game
352
353 emit CreateTicket(i, 0, _gameId, _price, States.available);
354 }
355
356 return (true);
357
358 } else {
359
360 return (false);
361 }
362 }
363
364 //findPosGames function finds the position of a game
365 //@param uint _gameId is the the id of a game
366 //@return uint of position to gameId in the Games[]
367 function findPosGame(uint _gameId) public view returns(uint){
368
369 //go through ever object in Games[]
370 for(uint i = 0; i < getCountGame(); i++){
371
372 //if gameId is the same
373 if(Games[i].game_id == _gameId){
374 return (i); //return uint of

the position
375 }
376 }
377 return 0; // retunr 0,

there are no object in Games[]
378 }
379
380 //getTicket function gets a ticket by it's gameId and ticketPos
381 //@param uint _gameId is the id of a game
382 //@param uint _ticketId is the id of ticket in the game
383 //@return gameId, ticketPos and state to a ticket
384 function getTicket(uint _gameId, uint _ticketPos) public view returns(uint,

uint, uint, States state){
385 uint pos = findPosGame(_gameId);
386
387 return(Games[pos].tickets[_ticketPos].ticketPos,
388 Games[pos].tickets[_ticketPos].game_id,
389 Games[pos].tickets[_ticketPos].user_id,
390 Games[pos].tickets[_ticketPos].state);
391 }
392
393 //getGame function gets all the information to a game
394 //@param uint _gameId is the id of a game
395 //@return gameId, eventOrganizersId, homeTeam, foreignTeam, number of ticket and

gameState
396 function getGame(uint _gameId) public view returns(uint, uint, string memory,

string memory, uint, GameStates state){
397 uint pos = findPosGame(_gameId);
398
399 return(Games[pos].game_id,
400 Games[pos].evnetOrganizer_id,
401 Games[pos].homeTeam,
402 Games[pos].foreignTeam,
403 Games[pos].number_of_tickets,
404 Games[pos].gameState);

405 }
406
407 //getEventOrganizerGame function gets all the information about game to evnt

organizer
408 //@param uint _eventOrganizerId is the id of a event organizer
409 //@param uint _gameId is the id of a game
410 //@return eventOrganizersId, name, gameId, homeTeam, foreignTeam, number of

ticket and gameState
411 function getEventOrganizerGame(uint _eventOrganizerId, uint _gameId) public view

returns
412 (uint,string memory, uint, string memory, string memory, uint, GameStates state){
413 uint posG = findPosGame(_gameId);
414 uint posU = findPosEventOrganizer(_eventOrganizerId);
415
416 if(EventOrganizers[posU].evnetOrganizer_id == Games[posG].evnetOrganizer_id){
417 return(EventOrganizers[posU].evnetOrganizer_id,
418 EventOrganizers[posU].name,
419 Games[posG].game_id,
420 Games[posG].homeTeam,
421 Games[posG].foreignTeam,
422 Games[posG].number_of_tickets,
423 Games[posG].gameState);
424 }
425 }
426
427 //countEventOrganizerGame function count how many game a evnet organizer is

organizing
428 //@param uint _eventOrganizerId is the id of a event organizer
429 //@param uint _gameId is the id of a game
430 //@return uint of many many game a event organizer is organizing
431 function countEventOrganizerGame(uint _eventOrganizerId) public view

returns(uint){
432 uint posU = findPosEventOrganizer(_eventOrganizerId);
433 uint counter = 0;
434
435 for(uint i = 0; i < getCountGame(); i++){
436
437 if(EventOrganizers[posU].evnetOrganizer_id == Games[i].evnetOrganizer_id){
438 counter++;
439 }
440 }
441 return(counter);
442 }
443
444 //getEventOrganizerAddr get the ethereum address to a event organizer
445 //@param uint _evnetOrganizerId is the id of event organizer
446 //@return address to event organizer
447 function getEventOrganizerAddr(uint _eventOrganizerId) public view

returns(address){
448 uint posU = findPosEventOrganizer(_eventOrganizerId);
449
450 if(EventOrganizers[posU].evnetOrganizer_id == _eventOrganizerId){
451 return(EventOrganizers[posU].addr);
452 }
453 }
454
455 //getTicketAvailable gets number of tickets available in a game
456 //@param uint _gameId is the id of a game
457 //@return uint of number available in a game
458 function getTicketAvailable(uint _gameId) public view returns(uint){
459 uint counter = 0;
460 uint pos = findPosGame(_gameId);
461
462 //check all tickets in a game
463 for(uint i = 0; i < Games[pos].number_of_tickets; i++){
464
465 //if is successful, will add to the counter
466 if(Games[pos].tickets[i].state == States.available &&

Games[pos].tickets[i].game_id == Games[pos].game_id){
467 counter++;
468 }
469 }
470 return (counter);

471 }
472
473 //buyTicket let a user buy several tickets in game
474 //@param uint _userId is the id of the user
475 //@param uint _gameId is the the id of game the user want buy ticket
476 //@return bool, true if ticket was buyed, false if no ticket available
477 function buyTickets(uint _userId, uint _gameId, uint _tickets) public

returns(bool){
478 uint posG = findPosGame(_gameId);
479 uint posU = findPosUser(_userId);
480
481
482 //check if there any ticket available
483 if(getTicketAvailable(_gameId) >= _tickets){
484
485 //go throught number of ticket user wish to buy
486 for(uint i = 0; i < _tickets; i++){
487
488 buy(posU, posG);
489
490 }
491
492 emit BuyTickets(_userId, _gameId, _tickets);
493
494 return(true);
495 }
496 return (false);
497 }
498
499 //buy functio is go through all ticket in game and sett user to a tciket (let

user buy it)
500 //@param uint _posU is the position of the user
501 //@param uint _posG is the position of the game
502 //@return bool, true if a ticket was successfull bought, false if no ticket

available
503 function buy(uint _posU, uint _posG)public returns(bool){
504 uint posT = Users[_posU].ticketOwns;
505
506 //go throught very ticket in the game
507 for(uint i = 0; i < Games[_posG].number_of_tickets; i++){
508
509 //check if the ticket are available
510 if(Games[_posG].tickets[i].state == States.available){
511
512 Games[_posG].tickets[i].user_id = Users[_posU].user_id; //Sett

the user id
513
514 Games[_posG].tickets[i].state = States.bought;

//change the state to bought
515
516 Users[_posU].tickets[posT] = Games[_posG].tickets[i]; //cop

ticket to Users[].tickets[]
517
518 emit BuyTicket(Users[_posU].user_id,
519 Users[_posU].tickets[posT].game_id,
520 posT, Users[_posU].tickets[posT].price,
521 Users[_posU].tickets[posT].state);
522
523 Users[_posU].ticketOwns++;
524
525 return (true);
526 }
527 }
528 return (false);
529 }
530
531 //getUser function gets a ticket from user
532 //@param uint _userId is the id of user
533 //@param uint _ticketId is the id of ticket
534 //@return uint and uint, the userId, ticketId and passord
535 function getUser(uint _userId) public view returns(uint, string memory, address,

int, uint, string memory){
536 uint pos = findPosUser(_userId);

537
538 return(Users[pos].user_id,
539 Users[pos].name,
540 Users[pos].addr,
541 Users[pos].mobile,
542 Users[pos].ticketOwns,
543 Users[pos].password);
544 }
545
546 //getUser_ticket function gets a ticket for user
547 //@param uint _userId is the id of user
548 //@param uint _ticket is the ticket we get
549 //@return uint of userId, string memory of user name, uint ticketId own
550 function getUser_ticket(uint _userId, uint _ticket) public view returns(uint,

string memory, uint, uint, States State){
551 uint pos = findPosUser(_userId);
552 return(Users[pos].user_id,
553 Users[pos].name,
554 Users[pos].tickets[_ticket].user_id,
555 Users[pos].tickets[_ticket].game_id,
556 Users[pos].tickets[_ticket].state);
557 }
558
559
560 //getTicketsOwn function check how many tickets user owns to a game
561 //@param uint _userId is the id of a user
562 //@param uint _gameId is the id of a game
563 //@return uint counter with how many ticket own to a game
564 function get_number_Of_ticket_own(uint _userId, uint _gameId) public view

returns(uint){
565 uint pos = findPosUser(_userId);
566 uint counter = 0;
567
568 //go throught ever own ticket
569 for(uint i = 0; i < Users[pos].ticketOwns; i++){
570
571 //check ticket gameId
572 if(Users[pos].tickets[i].game_id == _gameId){
573 counter++;

//add to counter if gamedId is same
574 }
575 }
576 return(counter);

//return counter of how many ticket own in a game
577 }
578
579 //gameStart function is the change the state of a game to ongoing
580 //@param uint _gameId is the id of a game
581 //@return bool, true if was successful, false if failed
582 function gameStart(uint _gameId) public returns(bool) {
583 uint pos = findPosGame(_gameId);
584
585 if(Games[pos].gameState == GameStates.notStarted){
586
587 Games[pos].gameState = GameStates.ongoing;
588
589 emit GameSate(Games[pos].game_id, Games[pos].evnetOrganizer_id,

Games[pos].homeTeam, Games[pos].foreignTeam, Games[pos].gameState);
590
591 return (true);
592 }
593 return (false);
594 }
595
596 //gameEnded function changes the state of a game to ënded
597 //@param uint _gameId is the id of a game
598 //@return bool, true if was successful, false if failed
599 function gameEnded(uint _gameId) public returns(bool) {
600 uint pos = findPosGame(_gameId);
601
602 if(Games[pos].gameState == GameStates.ongoing){
603
604 Games[pos].gameState = GameStates.ended;

605
606 emit GameSate(Games[pos].game_id, Games[pos].evnetOrganizer_id,

Games[pos].homeTeam, Games[pos].foreignTeam, Games[pos].gameState);
607
608 return (true);
609 }
610 return (false);
611 }
612
613 //vaildateTicket function changes the state of å ticket to spent
614 //@param uint _userId is the id of a user
615 //@param uint _gameId is the id of a game
616 //@return bool, true if ticket was successfull vaildate and change state spent,

false if failed
617 function vaildateTicket(uint _userId, uint _gameId) public returns(bool){
618 uint posG = findPosGame(_gameId);
619 uint posU = findPosUser(_userId);
620
621 if(!checkGame(_gameId) && Games[posG].gameState == GameStates.ongoing){
622 for(uint i = 0; i < Users[posU].ticketOwns; i++){
623 if(Users[posU].tickets[i].game_id == _gameId &&

Users[posU].tickets[i].state == States.bought){
624
625 uint tickPos = Users[posU].tickets[i].ticketPos;
626
627 Games[posG].tickets[tickPos].state =

States.spent; //change state to spent
628
629 Users[posU].tickets[i] = Games[posG].tickets[tickPos];

//copy the ticket info to Games[]
630
631 emit TicketState(_userId, _gameId, i, Users[posU].tickets[i].state);
632
633 }
634 }
635 return (true);
636 }
637 return

(false);
//return false

638
639 }
640
641 //invaildTicket function changes the state of å ticket to spent
642 //@param uint _userId is the id of a user
643 //@param uint _gameId is the id of a game
644 //@return bool, true if ticket was successfull invalid and change state invalid,

false if failed
645 function invalidTicket(uint _userId, uint _gameId) public returns(bool){
646 uint posG = findPosGame(_gameId);
647 uint posU = findPosUser(_userId);
648
649 if(!checkGame(_gameId)){
650 for(uint i = 0; i < Users[posU].ticketOwns; i++){
651 if(Users[posU].tickets[i].game_id == _gameId){
652
653 uint tickPos = Users[posU].tickets[i].ticketPos;
654
655 Games[posG].tickets[tickPos].state =

States.invaild; //change state to invalid
656
657 Users[posU].tickets[i] = Games[posG].tickets[tickPos];

//copy the ticket info to Games[]
658
659 emit TicketState(_userId, _gameId, i, Users[posU].tickets[i].state);
660
661 }
662 }
663 return (true);
664 }
665 return

(false);
//return false

666
667 }
668 }

Blockchain-based Ticketing

C Installation guide

Attached you will find an installation guide to get set up for blockchain development.

57

Guide

Visual Studio Code 2
Extension: 2
Extra: 2

Go 2
For Windows: 3
For Mac OS: 3
Testing go workings correct: 3

Geth 4
For Mac OS: 4
Testing go workings correct: 4

Ganache 5
Testing go workings correct: 5

Node.Js 5
For windows: 5
Package: 5

Visual Studio Code
The guide uses Visual Studio Code to write code files.

1. Download Visual code on ​https://code.visualstudio.com/
2. Install visual code on your computer

Extension:
The extensions must be download on Visual Studio Code

● Download ​solidity ​extension by Juan Blanco

Extra:
This is extra, setting and preferences the guide is using.

● Set spaces and tab to 4, this do by click on bar to down of Visual Studio Code
window.

● Open Preferences->setting, then open setting.json and put this code in:
{
 "editor.dragAndDrop": false,
 "editor.fontSize": 12,
 "editor.formatOnSave": true,
 "editor.formatOnType": true,
 "editor.formatOnPaste": true,
 "editor.wordWrap": "on",
 "editor.quickSuggestions": {
 "other": true,
 "comments": true,
 "strings": true
 },
 "explorer.confirmDragAndDrop": false,
 "explorer.confirmDelete": false,
 "files.autoSave": "onFocusChange",
 "workbench.colorTheme": "Default Light+",
 "solidity.enabledAsYouTypeCompilationErrorCheck": true,
 "solidity.linter": "solium",
 "solidity.packageDefaultDependenciesContractsDirectory": "",
 "solidity.packageDefaultDependenciesDirectory": "",
 "solidity.validationDelay": 1500
}

Go
First requirement to run Go-ethereum is to download Go.

1. Download Go version go1.12 on ​https://golang.org/dl/
2. Run download package

For Windows:
1. Create GOPATH in environment variables to your go working directory, for example

set ​GOPATH=c:\Users\%USERNAME%\go​ in command (i.e cmd) window or direct
in environment variables window

2. Then create GOPATH\bin by set ​PATH=%PATH%;%GOPATH%\bin​ in cmd window
or direct in environment variables window, if bin folders is not in go working directory,
create one

3. Create other necessary folders in your go working directory, pkg and src.
4. Structure for your go directory should look like:

○ C:\GOPATH\bin
○ C:\GOPATH\pkg
○ C:`GOPATH\src

For Mac OS:
1. Set GOPATH in environment variables to your go working directory, for example set

export GOPATH=$HOME/go​ in cmd window
2. Then create GOPATH\bin by set ​export PATH=$PATH:$GOPATH/bin​ in cmd

window, if bin folders is not in go working directory, create one
3. Create other necessary folders in your go working directory, pkg and src.
4. Structure for your go directory should look like:

a. C:\GOPATH\bin
b. C:\GOPATH\pkg
c. C:`GOPATH\src

Testing go workings correct:
● First test if version is correct, write​ go version ​in cmd window​ ​and output should be

package you download, for example go version go1.12 windows/amd64 for windows
● In src folder, create hello.go with the following code:

package main

import "fmt"

func main() {

fmt.Printf("hello, world\n")
}

after creating the file, build with go tool by writing ​go build ​in cmd window while being in the
path to GOPATH\src. It will build hello.exe in src folder which to run write simply​ hello ​in cmd
window and output should be:​ hello, world

Go’s own tutorial for install: ​https://nats.io/documentation/tutorials/go-install/

Geth

Download Go Ethereum (i.e geth):

● Download geth version 1.8.23 on ​https://geth.ethereum.org/downloads/
● Then run package

For Mac OS:
The easiest way and one describe in this guide, is to use Homebrew to install geth

● First download Hombrew by ​https://brew.sh/​ and paste ​-e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install​)"​ in cmd
window

● Then write these to lines for install geth:
○ brew tap ethereum/ethereum
○ brew install ethereum

Testing go workings correct:
● First test if version is correct, write​ geth version ​in cmd window​ ​and output should be

package you download, for example windows should get:
Geth
Version: 1.8.23-stable
Git Commit: c942700427557e3ff6de3aaf6b916e2f056c1ec2
Architecture: amd64
Protocol Versions: [63 62]
Network Id: 1
Go Version: go1.11.5
Operating System: windows
GOPATH=C:\Users\%USERNAME%\go
GOROOT=C:\Go\

Geth’s own tutorial for Mac OS x:
https://github.com/ethereum/go-ethereum/wiki/Installation-Instructions-for-Mac

Ganache
Download Ganache

● Download the installation package on ​https://truffleframework.com/ganache
● Then run the package

Testing go workings correct:
● Open ganache and create a test blockchain network

Node.Js
Node.Js is need to download other programs the guide uses.

● Download Node.Js on ​https://nodejs.org/en/
● Run the install

For windows:
● Write ​npm install -g windows-build-tools ​in cmd window for download the tools

Package:
This packages must be download

● Solidity is code smart contract uses. Download solidity on Node.js by writing ​npm
install -g solc ​in cmd window

● Truffle runs the code for programs in the geth network. Download Truffle by writing
npm install -g truffle ​in cmd window

● Web3 is to communicate with the blockchain. Download web3 by writing ​npm install
-g web3​ in cmd window

Blockchain-based Ticketing

D Meeting Logs

Since we have had constant communication with both our supervisor and employer,
keeping logs of all of this became difficult, but we have logs for most of the physical
meetings.

11.01.2019

First meeting with Hao Wang

• Introducing ourselves, talk about our background.
• Quick talk about the project.

28.01.2019

Meeting with Hao Wang

• Discussion about the project plan
• Talk about Gantt-scheme, risk analysis, Work Breakdown Structure

18.02.2019

Meeting with Hao Wang

• Discussed what we should focus on about frameworks
• The structure of the report
• What frameworks we should consider developing on

05.03.2019

Meeting with Hao Wang

• Asked for recommendations regarding setup for Ethereum and Fabric
• Discussed what we should talk to Innit about

20.03.2019

Meeting with Hao Wang

• Talked about structure of chapter 2 and 3

27.03.2019

Meeting with Hao Wang

• Talked about the prototype and what we needed from Innit to start developing
• Planned a meeting with Mariusz Nowostawski for help with developing

05.04.2019

Meeting with Mariusz Nowostawski

• Talked about using a testnet
• Discussed Sky-High and deploying there

63

Blockchain-based Ticketing

• Talked about the prototypes structure
• Talked about Solidity

24.04.2019

Short meeting with Mariusz Nowostawski

• Needed help to connect to Sky-High

02.05.2019

Meeting with Hao Wang

• Talked about report structure
• Discussed tables

14.05.19

Last meeting with Hao Wang

• Questions regarding the use-case diagram and chapter 5 i general
• CoDiscussed correct use of citation
•

64

Blockchain-based Ticketing

E Project Plan

Attached you will find the project plan from the planing period.

65

Project plan

Andrine Celine Flatby, Marius Lillevik and Ole Bjørn Gran

May 4, 2019

Contents

List of Figures 2

List of Tables 2

1 Goals and Boundaries 3

1.1 Background . 3

1.2 Project goals . 3

1.3 Boundaries . 3

2 Scope 3

2.1 Subject . 3

2.2 Delimitation . 4

2.3 Question . 4

3 Project organization 4

3.1 Responsibilities and roles . 4

3.2 Routines in the group . 5

4 Planning, follow-up and reporting 5

4.1 Main division of the project . 5

1

4.2 Plan for status meetings and decision points during the period 6

5 Organization of quality assurance 6

5.1 Documentation, standard use and source code 6

5.2 Tools and equipment . 6

5.3 Risk analysis . 7

6 Plan 8

6.1 Gantt . 8

6.2 Work Breakdown Structure . 9

7 References 10

List of Figures

1 Gantt diagram of project . 8

2 WBS model of project . 9

List of Tables

1 Risk analysis table . 7

2

1 Goals and Boundaries

1.1 Background

Innit is an IT consultant and hosting company. Innit have developed several ticket applications
for the Norwegian hockey league, but there are separate applications for each hockey team.
They are now interested in renewing this system and developing a common solution for all
types of events. Because of this they want to know if this could be developed using blockchain
technology and want us to explore this possibility. They want a detailed theoretical report of
the topic and a simple prototype as a proof of concept. They are interested in the feasibility of
such a system and if there are any existing solutions you could base the system on.

Blockchain is a database like technology consisting of two components[1]: ”blocks”, represent-
ing a number of transnational records and ”chain”, connecting the blocks together with hash
functions. It is best associated with bitcoin, but has been used in different frameworks like[2]:
Ripple[3], Ethereum[4], Corda[5] and Hyperledger[6].

1.2 Project goals

• Research Blockchain technology and discuss the feasibility of a ticket system based on
this technology.

• Develop a simple prototype to test the system.

1.3 Boundaries

• Time frame: 2.5 months for research and development.

• 3 people working 30 hours a week makes for approximately 1000 man hours.

• No resources for licensing software, will be relying on open source software and frame-
works.

• The group is responsible for their own equipment.

2 Scope

2.1 Subject

As shown in the the Work Breakdown Structure Figure 2 on page 9, this project consists of
two main goals. The first goal will be researching the blockchain technology, it’s capabilities,
pros and cons, and different frameworks. The second goal is to develop a prototype system
for handling tickets. The prototype consists of two core functionalities; purchase and validate
tickets.

3

2.2 Delimitation

• The solution will not be integrated with any of Innit’s existing systems.

• The system does not need to handle multiple events.

• The prototype only needs to include the core features of the system, purchase and vali-
dation of tickets.

• The prototype will be completely standalone, no connection to other systems or solutions.

2.3 Question

What is blockchain, how does it work and what can it be used for? How feasible is a ticket
system based on blockchain?

3 Project organization

3.1 Responsibilities and roles

Project leader
Marius Lillevik
The Project leader has the responsibility to oversee planed meetings and call for additional
meetings if needed. He also has the responsibility to keep the group motivated and help other
members who might be struggling throughout the project period.

Head of development
Ole Bjørn Gran
Head of development have the main responsibility to oversee the development phase of the
project. Make sure the development process keeps moving forward at all times, make sure that
tests are being made for every function and that all source code is being commented.

Head of research
Andrine Celine Flatby
Head of research have the main responsibility to oversee the research phase of project. Ensure
each member have a different topic to research and is progressing forward. Also check if the
source is credible and can be using in research.

Supervisor
Hao Wang
Supervisor’s tasks is to mentoring the group through project. He will also provide assistance
with bachelor’s thesis.

Employer
Innit
The Employer provides the task for the project. They will also assist our group if needed.

4

3.2 Routines in the group

Routines

• Regular weekly meetings with both the supervisor and Innit, especially Mondays and
Fridays.

• Transcript is to be written after every meeting with supervisor and Innit.

• All research is to be well documented, with detailed notes, links to the references and
time stamps for all information gathered.

• The team members will track their time using the free tool Toggl [7].

Rules

• Warn ahead of time if you are unable to meet on time or at all.

• Decisions will be determined as a group, if we’re not able to come to an agreement then
the Supervisor will be contacted to give his opinion on the issue, then the group will make
a final decision.

• The group members commit to finish tasks to agreed time. If a delay should arise, member
shall notify the rest of the group.

4 Planning, follow-up and reporting

4.1 Main division of the project

For the first part of the project, all resources will be dedicated to researching the blockchain
technology and experimenting with the different frameworks. After the research period we’ll
pick the framework we find most suitable for the project and start digging deeper into that
framework and it’s strengths and weaknesses. We’ll go into detail about the framework’s
functionality and capabilities and how it can be utilized as a base for a ticket system. Once the
initial technical report is almost finished, we’ll start developing a small prototype as a ”proof
of concept” for the system. The prototype’s main focus will be the back-end functionality, with
a very basic UI. The main goal of the prototype is just to show that this type of system would
work in practice. Once the prototype is finished, only the last touches on the report remains.

Since the majority of this project will focus on researching, and then testing out different
solutions, all team members will be actively involved in each step. Therefore we find that
applying the scrum model, with 1-2 week sprints will be the most effective. Since each member
will get to present their findings once per sprint, we can discuss how to further focus the research
based on each member’s findings. The prototype portion of the project is more likely to change
depending on what we find during the research period, but since the prototype only needs to

5

test the basic parts of the system, it is very likely that it won’t take very long to develop it.
There is also a good chance that we will find frameworks that we can build the prototype on.
As we are using scrum during the research period, and it is suitable for small projects, it will
be simplest to utilize scrum for developing the prototype as well. This choice might change
depending on what we discover during the research phase or what framework we decide upon,
but that is unlikely since scrum is so versatile.

4.2 Plan for status meetings and decision points during the period

Internal group status meeting once per sprint. Plan on meeting with supervisor and Innit once
per sprint also, but this might change depending on necessity.

5 Organization of quality assurance

5.1 Documentation, standard use and source code

During the research phase, all sources will be documented using Vancouver style referencing,
and for the prototype the code will be commented with a description of the functionality. We
will also follow universal standards within coding, since Innit had no standard requirements for
us to follow during the project. During development the code will be tracked using Bitbucket
[8].

5.2 Tools and equipment

We will be using our own private equipment for this project. This means we will be using the
OS that are accessible to us, most likely Windows and Linux. The framework we will been
using will be determined in the research phase of project as one of the topics to examine. This
also includes which blockchain we are going to been using, but that will be determined later in
the project.

Tools beside equipment and information provide in research phase are Bitbucket and Google
drive. Bitbucket is the repository we will be using for storing and backup the source code[8]
and Google drive will be used to store all of our findings during the research phase.

6

5.3 Risk analysis

Nr Issue Description Consequences Probability Actions

1
Loss of
Personnel

A team member
falls ill

High Low
Be prepared
for periods of
higher workloads

2
Failure to
find a viable
framework

Unable to find
a suitable
framework to base
the system on

Very high Very low
Change the scope
of the project

3
Unfinished
prototype

The prototype
is not finished
by the deadline

Medium Medium
Allocate more time
for development

4
Failure to
deliver within
deadlines

Unable to keep
deadlines can
lead to an
unfinished report

High Low
Work overtime if
we start to fall
behind schema

5 Loss of data
Valuable data
is lost

High Low
Take regular
backups

Table 1: Risk analysis table

7

6 Plan

6.1 Gantt

Figure 1: Gantt diagram of project

The gantt diagram, figure 1 shows how much time we have dedicated to the different steps of
the project.

8

6.2 Work Breakdown Structure

Figure 2: WBS model of project

In figure 2, we have broken down the elements of the report; research and prototype. These
topics is main elements of report, and the sub-elements are tasks/topics we need to do.

9

7 References

[1] Jon Martindale. What is a blockchain[Internett] 08.3.18 [Accessed 28.01.2019] Available
from: https://www.digitaltrends.com/computing/what-is-a-blockchain/

[2] Chaonian Guo, Shenglan Ma, Hao Wang, Shuhan Cheng, Tongsen Wang. LoC: Poverty
Alleviation Loan Management System based on Smart Contracts. Division of Sci. anf Tech,
Department of ICT and Natural Sci. [Accessed 28 January 2019]

[3] Ripple[Internett]. [Accessed 2 January 2019]. Available from: https://ripple.com/

[4] G. Wood, Ethereum: A secure decentralised generalised transaction ledger, ethereum
Project Yellow Paper.

[5] M. Hearn, Corda - a distributed ledger, corda Technical White Paper.

[6] Hyperledger[Internett].[Accessed 28. January 2019]
Available from: https://www.hyperledger.org/

[7] Toggl[Internett]. [22. January 2019] Available from: https://toggl.com/

[8] Bitbucket[Internett]. [28. January 2019] Available from: https://bitbucket.org

10

Blockchain-based Ticketing

F Project Agreement

Attached you will find the signed project agreement.

76

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Andrine Celine Flatby
Ole Bjørn Gran
Marius Lillevik

Blockchain-based Ticketing

Bachelor’s project in Bachelor of Science in Engineering -
Computer Science
Supervisor: Hao Wang

May 2019

