
A
. M

oen, A
. O

lsen, K
. A

rnesen
P

LED
 (P

entesting Lab Environm
ent D

atabase)

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Adrian Jacobsen Moen, Askil Amundøy Olsen,
Karoline Moe Arnesen

PLED (Pentesting Lab Environment
Database)

Bachelor’s project in IT-Operations and Information Security
and Programming [Games|Applications]
Supervisor: Erik Hjelmås

May 2019

Sammendrag av Bacheloroppgaven

Tittel: PLED (Pentesting Lab Environment Database)

Dato: 20.05.2019

Deltakere: Adrian Jacobsen Moen(BITSEC)
Askil Amundøy Olsen(BITSEC)
Karoline Moe Arnesen(BPROG)

Veiledere: Erik Hjelmås

Oppdragsgiver: Norwegian Cyber Range - Danny Lopez Murillo

Kontaktperson: Adrian J Moen, adrianjm@stud.ntnu.no, 45884608

Nøkkelord: Cyber sikkerhet, API, Applikasjoner, Sårbare systemer,
Sårbarehetsdatabase

Antall sider: 75
Antall vedlegg: 6
Tilgjengelighet: Åpen

Sammendrag: PLED er en database med en tilhørende REST API som
tilbyr virtuelle plattformer filer som er nødvendig å
starte cyber sikkerhets scenarioer igjennom PEMA (Pen-
testing Exercise Management Application). PLED kan la-
gre et mangold av forskjellige cyber sikkerhets relaterte
filer, og databasen kan ta imot spørringer via REST API-
en. I tillegg til fillagring tilbys et brukergrensesnitt mot
databasen hvor en administrator eller instruktør kan laste
opp, laste ned, slette og endre metadata på filer. Hov-
edformålet med PLED er å danne en støtte-plattform til
PEMA der PLED tilbyr applikasjoner og andre filer som
kan rulles ut i fullstendige lab øvelser via PEMA. Med et
såpass stort mangfold av filer som kan hentes av PEMA,
vil øvelsene kunne være med på å forberede studenter på
virkelighetsnære cyber sikkerhet scenarioer. I tillegg blir
det i stor grad utviklet sammen med studenter, i form av
bachelor oppgaver. PEMA er en modulær skalerbar vir-
tualiseringsplattform, der hensikten er å deploye virtuelle
cyber scenarioer for bruk i etisk hacking, penetrasjonstest-
ing, cyber-sikkerhetskonkurranser og liknende. PEMA er
ment å gi instruktører et grensesnitt for å generere, de-
ploye og overvåke cybersikkerhet-øvelser som studenter
skal dra nytte av. Grunnet størrelsen av PEMA prosjektet,
vil PLED bli utviklet til dels uavhengig av PEMA, det vil
derfor være vanskelig å fullstendig integrere tjenestene
med hverandre. Derfor vil PLED i tillegg lage en enkel
måte å rulle ut PLED infrastrukturen ved hjelp av Open-
Stack Heat. I fremtiden er planen å integrere prosjektene
til ett prosjekt.

i

Summary of Graduate Project

Title: PLED (Pentesting Lab Environment Database)

Date: 20.05.2019

Authors: Adrian Jacobsen Moen(BITSEC)
Askil Amundøy Olsen(BITSEC)
Karoline Moe Arnesen(BPROG)

Supervisor: Erik Hjelmås

Employer: Norwegian Cyber Range - Danny Lopez Murillo

Contact Person: Adrian J Moen, adrianjm@stud.ntnu.no, 45884608

Keywords: Cyber security, API, Applications, Vulnerable systems,
Vulnerability-database

Pages: 75
Attachments: 6
Availability: Open

Abstract: PLED is a database and a REST API intended to provide
educational platforms the files needed to launch educa-
tional cyber security scenarios through PEMA (Pentest-
ing Exercise Management Application). PLED is capable of
storing a wide range of cyber security related files, and
the database can be queried using a REST API. Addi-
tionally, to storing files, an interface to the database is
provided, where applications and files can be added, re-
trieved, modified, deleted and downloaded. PLEDs main
purpose is to supply PEMA with applications and other cy-
ber security related files for creation of fully functioning
lab exercise environments. With such a wide range of files
ready for retrieval via PEMA, these systems will help pre-
pare students for real life cyber security scenarios. It’s also
being developed by involving students and their bachelor
theses. PEMA is made out to be a modular scalable virtual-
ization platform, with its purpose to deploy virtual cyber
scenarios for use in ethical hacking, penetration testing
and cyber security competitions. It will provide instructors
an interface to create, deploy, log, and submit cyber secu-
rity exercises, readily available for students to utilize. Due
to the size of the PEMA project, PLED is independently de-
veloped side by side, and for that reason the PLED project
will also provide a way to deploy the PLED infrastructure
with OpenStack Heat. In the future the plan is to integrate
these projects to one project.

ii

Preface

This is a bachelor thesis written in 4 and a half months supervised by Norwegian Uni-
versity of Science and Technology and key individuals from the Norwegian Cyber Range.
PLED was an idea spawned from PEMA, and the assignment was adapted into an as-
signment that accounted for both the IT-Operations and Information Security bachelor
study and the Programming bachelor study. It became a very relevant assignment for all
included parties, and hopefully it will see the light of day when the project is handed
over to capable hands. It was a great learning experience and the group is thankful it
was made possible.

The group would like to extend our thanks to everyone that supported PLED and con-
tributed to is throughout the process. Especially our supervisor Erik Hjelmås, for being
almost always available, doing thorough reviews of our report, and keeping a keen eye
on the process made each week.

Additionally, a thanks to Danny Lopez who worked extremely hard in order to realize
PEMA and PLED with the help of the NCR.

Finally, special thanks to Basel Katt and Lars Erik Pedersen for very valuable inputs
and suggestions that was vitally important for the success of this project.

iii

Contents

Preface . iii

Contents . iv

List of Figures . viii

List of Tables . ix

Listings . xi

1 Introduction . 1

1.1 Background . 1

1.2 Assignment Definition . 1

1.3 Scope . 2

1.3.1 Assignment delineation . 2

1.3.2 Constraints . 2

1.4 Business Context . 2

1.5 Project organizing . 2

1.6 Project goals . 2

1.6.1 Project Effects . 2

1.6.2 Project Results . 3

1.7 High Level Use Cases . 3

1.8 Development framework/process . 3

1.8.1 Project modules . 3

1.8.2 Software development framework/process 4

1.8.3 Methods and approach . 4

1.8.4 Tools and technologies . 4

1.9 Organization of this paper . 5

2 Software requirements specification . 6

2.1 Introduction . 6

2.2 PLED Vulnerability Database . 7

2.2.1 Introduction . 7

2.2.2 PLED Vulnerability Database - Business Requirements 7

2.2.3 PLED Vulnerability Database - Non-functional Requirements 7

2.2.4 PLED Vulnerability Database - Functional Requirements 8

2.3 File Storage . 11

2.3.1 Introduction . 11

2.3.2 File storage - Business Requirements 11

2.3.3 PLED File storage - Non-functional Requirements 11

2.3.4 PLED File Storage - Functional Requirements 12

iv

2.4 PLED REST API . 13

2.4.1 Introduction . 13

2.4.2 PLED REST API - Business Requirements 13

2.4.3 PLED REST API - Non-functional Requirements 13

2.4.4 PLED REST API - Functional Requirements 14

2.5 PLED Database Web-Interface . 17

2.5.1 Database web-interface - Business Requirements 17

2.5.2 Database web-interface - Non-functional Requirements 17

2.5.3 Database web-interface - Functional Requirements 18

2.6 PLED Administrative Interface . 19

2.6.1 Introduction . 19

2.6.2 PLED Administrative Interface - Business Requirements 19

2.6.3 PLED Administrative Interface - Non-functional Requirements . . . 19

2.6.4 PLED Administrative Interface - Functional Requirements 19

3 Technical Design . 21

3.1 System Architecture . 21

3.1.1 Introduction . 21

3.1.2 Architectural design . 22

3.2 Database Design . 22

3.2.1 Preparation . 22

3.2.2 Design schema . 24

3.2.3 Secure Communication . 26

3.2.4 Backup and redundancy . 26

3.3 File storage . 26

3.3.1 Storing of Docker images . 28

3.4 REST API Design . 28

3.4.1 Documentation . 28

3.4.2 User management . 29

3.4.3 Domain semantics . 30

3.5 Database web-interface . 31

3.5.1 Features . 32

3.6 Vulnerable Application Retrieval . 32

4 Implementation . 34

4.1 Introduction . 34

4.2 File storage . 34

4.3 Docker Registry . 35

4.4 MongoDB . 36

4.5 DreamFactory . 37

4.5.1 Administrative interface . 37

4.5.2 Load balancing . 38

v

4.5.3 Server side scripting . 39

4.5.4 Retrieving stored files . 40

4.6 Database web-interface . 41

4.6.1 Authentication . 41

4.6.2 First Time Setup . 42

4.6.3 Front end . 43

4.6.4 Back end . 48

4.7 Vulnerable Application Retrieval . 53

4.7.1 Using ExploitDB search API . 53

4.7.2 Scraping exploitdb: vulnRetriever.py 54

5 Deployment . 56

5.1 Heat Template . 56

5.1.1 Source code . 56

5.1.2 infrastructure . 56

5.1.3 workers . 57

6 Security . 60

6.1 Introduction . 60

6.2 Vulnerable application storage . 60

6.3 CTF-challenge storage . 60

6.4 Malware storage . 60

6.5 Vulnerability Retriever . 60

6.6 REST API . 61

6.7 DreamFactory admin interface . 61

6.8 Database web-interface . 61

7 Operations . 62

7.1 Backup . 62

7.1.1 DreamFactory . 62

7.1.2 MongoDB . 62

7.2 Logging . 63

7.3 Monitoring . 64

7.4 Bug Tracking . 64

7.5 Upgrading software . 65

7.5.1 DreamFactory . 65

7.5.2 Vulnerability Retriever . 65

8 Testing . 66

8.1 vulnRetriever . 66

8.2 MongoDB search performance test . 66

8.3 Functional testing . 67

9 Discussion . 68

9.1 Evaluation of the result . 68

vi

9.1.1 Evaluation of Docker . 68

9.1.2 Evaluation of Vulnerability Retriever 68

9.1.3 Evaluation of DreamFactory REST API 68

9.1.4 Evaluation of Database web-interface 69

9.2 Evaluation of the group work . 69

9.2.1 Introduction . 69

9.2.2 Organizing . 69

9.2.3 Distributed workload . 69

9.2.4 Project as a form of study/work . 70

9.3 Evaluation of learning . 70

9.4 Evaluation of choices and technologies . 70

9.4.1 Phabricator . 70

9.4.2 Overleaf . 71

9.4.3 Discord . 71

9.5 Evaluation of Docker Swarm . 71

9.6 Future Work . 71

9.6.1 Database web-interface . 71

9.6.2 Vulnerability Retriever . 72

9.7 Assignment criticism . 72

10 Conclusion . 73

Bibliography . 74

Glossary . 76

Glossary . 76

A Meeting logs . 78

B Kanban Work Cards . 96

C Pre-project report . 100

D Group Agreement . 116

E Malware meta model . 120

F Wiki from Phabricator . 122

vii

List of Figures

1 Use cases of PLED . 3

2 PLED System architecture . 21

3 PLED database schema . 25

4 PLED storage diagram . 27

5 Snippet of API documentation . 29

6 API sequence diagram . 30

7 Sketch of database web-interface . 31

8 vulnRetriever sequence diagram . 33

9 Database web-interface forms for finding and viewing content 45

10 Database web-interface forms for adding content 47

11 Database web-interface modify content . 48

12 Bug and issue column in the workboard 64

viii

List of Tables

1 BR-1 - Vulnerability metadata storage . 7

2 NFR-1 - Database traffic encryption . 7

3 NFR-2- Recoverable database . 7

4 NFR-3 - External database configuration 8

5 NFR-4 - Database data is modifiable . 8

6 NFR-5 - Database remote access . 8

7 NFR-6 - Database authentication . 8

8 FR-1 - Encrypted database traffic with TLS/SSL 8

9 FR-2 - Replicated database service . 8

10 FR-3 - External database Configuration . 9

11 FR-4 - Remote database connection . 9

12 FR-5 - Add content to the database . 9

13 FR-6 - Update content(s) of the database 9

14 FR-7 - Delete content from the database 9

15 FR-8 - Database auditing . 9

16 FR-9 - Authenticated database sessions . 10

17 BR-2 - Storing files corresponding to database metadata 11

18 NFR-7 - Interactability with file storage service 11

19 NFR-8 - Adaptable storage . 11

20 NFR-9 - Scalable storage . 11

21 FR-10 Insert file . 12

22 FR-11 Retrieve file . 12

23 FR-12 Delete file . 12

24 FR-13 Object Storage . 12

25 BR-3 - Storage communication . 13

26 NFR-10 - Query request authentication . 13

27 NFR-11 - API traffic encryption . 13

28 NFR-12 - API documentation . 14

29 NFR-13 - Ensuring correct query results 14

30 NFR-14 - Remotely available API . 14

31 FR-14 - Query request authentication . 14

32 FR-15 - API traffic encryption . 14

33 FR-16 - API documentation . 15

34 FR-17 - Ensuring correct query results . 15

35 FR-18 API remote access . 15

ix

36 FR-19 Query vulnerability metadata documents 15

37 FR-20 Query vulnerability metadata document 15

38 FR-21 POST vulnerability metadata . 16

39 FR-22 PUT/PATCH vulnerability metadata 16

40 FR-23 DELETE vulnerability metadata . 16

41 BR-4 - Ease of Vulnerability Database modification 17

42 NFR-15 - Standardized views for database modification 17

43 NFR-16 - Access Control . 17

44 FR-24 - Add content to Vulnerability Database 18

45 FR-25 - Update content in the Vulnerability Database 18

46 FR-26 - Delete content in the Vulnerability Database 18

47 FR-27 - View content of the Vulnerability Database 18

48 FR-28 - Authenticate User . 18

49 BR-5 - Ease of administration . 19

50 NFR-17 - Encrypted communication with the API administrative interface 19

51 NFR-18 - Authentication for the administrative interface 19

52 FR-29 - Generate API keys . 19

53 FR-30 - Create user . 20

54 FR-31 - User management . 20

55 Denormalization . 24

56 Reference document . 24

57 Embedded document . 25

58 File server Pros/Cons . 26

59 Object Storage (Swift) Pros/Cons . 26

60 GridFS Pros/Cons . 27

61 API domain semantics . 30

x

Listings

4.1 Upload vulnerable file to swift container 34

4.2 Configuration of S3Client . 35

4.3 Create download link with s3Client . 35

4.4 Storage setting for Docker Registry . 36

4.5 Docker-compose file for MongoDB Replica Set 36

4.6 Docker Compose file for DreamFactory . 37

4.7 HAProxy configuration snippets . 39

4.8 Custom search script in dreamfactory . 40

4.9 Authenticate user . 42

4.10 Check if config file is set . 42

4.11 Generate the config file on first time setup 42

4.12 Twig for loop and collapsibles . 44

4.13 Display form given in dropdown . 46

4.14 Example of php config file . 48

4.15 API class usage example . 49

4.16 Sourcecode for search . 49

4.17 Upload content to MongoDB and Swift . 50

4.18 API class insert method . 52

4.19 Send patch request and check response . 52

4.20 API class patch method . 53

4.21 Check for vulnerable application and verification 54

4.22 Search for CVE data . 54

4.23 Example of configuration . 55

xi

Chapter 1 - Introduction

1 Introduction

In modern day computing everything is connected, easily accessible and it is relatively
easy to orchestrate infrastructure. This accessibility makes everything easier to manage,
and makes work and learning more efficient and often cheaper. With everything being
so easily accessible gives the opportunity for misuse. Having poorly segregated networks
and a multitude of services, increases the number of attack vectors to your systems and
data. Attacks get more and more complex, and there is more focus on elaborate phishing
attempts [1]. All of this increases the demand of cyber security and cyber security educa-
tion, therefore it is crucial to have a controlled environment where students can explore,
learn, and become experts in this ever demanding field.

1.1 Background

The Norwegian Cyber Range was created to educate in realistic and diverse cyber se-
curity scenarios. The best way to give truly realistic scenarios is to use applications and
vulnerabilities meant for real systems, and deploy them in a controlled environment. This
problem is what PEMA (Pentesting Exercise Management Application) and PLED (Pentest-
ing Lab Environment Database) is intended to solve. PEMA is a platform meant to give
instructors and students an interface to deploy, log and submit cyber security exercises
for use in ethical hacking, penetration testing and cyber security competitions. PLED will
provide a storage system where vulnerable applications, CTF-challenges, malware and
possibly other files with its corresponding properties can be retrieved or uploaded for
ease of use. PEMA can use this storage system to quickly create a wide range of different
cyber security tasks.

1.2 Assignment Definition

The assignment is to create a service that... :

• Stores vulnerable applications and other cyber security related files, with their re-
spective metadata.

• Makes it possible to retrieve, search, delete and add such files, along with their
metadata, through an API.

• Offers a database web-interface for an overview and user-interaction with the
database.

The vulnerable applications should be retrieved from differently available reposito-
ries. These applications aure usually linked with a CVE-ID, an ID that describes the
vulnerability. To help achieve this, a database web-interface should be available for an
administrator to upload files, modify metadata or otherwise interact with the database.

The database web-interface will be integrated in PEMA at a later stage, and PEMA
will primarily use the API created by PLED to do operations on the database. In PLEDs

1

https://www.ntnu.no/ncr

Chapter 1 - Introduction

case, the database web-interface will be created for ease of use, testing purposes and for
a better overview on what is stored in the database.

1.3 Scope

1.3.1 Assignment delineation

PLED is a sub project of the larger PEMA project and will not have direct a connection
with the development phase of PEMA, besides coordination and possible functional re-
quests for the API.

1.3.2 Constraints

The final result of this assignment is to be used for educational purposes only and is
meant to be a tool to be used in the course Ethical Hacking. It is meant to educate
students in fields of ethical hacking/white hat hacking, pen-testing and academic writing.
For use by the Norwegian Cyber Range primarily. PLEDs service will be provided by an
API interface and a database web-interface, and it will serve as a first fully functional
prototype release of a series of future improvements when the project is handed over to
the NCR.

1.4 Business Context

The NCR(Norwegian Cyber Range) is a newly established arena for testing, training and
practising cyber security. In this arena both users and systems are exposed to realistic
events in safe scenarios. The arena ensures efficient competence building based on real
life observations and is created as cyber security is a crucial prerequisite for the digitiza-
tion of the society.

1.5 Project organizing

PLED consists of three bachelor students, two from IT-Operations and Information Se-
curity and one from Programming - Applications. Several of the subjects are common
between the two courses, meaning we have both share knowledge in the same areas and
can supplement each other where knowledge lacks. Danny Lopez Murillo from NTNU
Norwegian Cyber Range is the project owner, while Erik Hjelmås is our coordinator.

• Adrian Jacobsen Moen (BITSEC) - Developer, communication responsible, secre-
tary and Security Champion.

• Askil Amundøy Olsen (BITSEC) - Developer and Security Champion.
• Karoline Moe Arnesen (BPROG) - Main API/backend developer, SQA engineer and

database engineer

1.6 Project goals

The project goals of PLED are the following:

1.6.1 Project Effects

The effects of the finished product:

• Instructor workload decreased on lab setup and usage
• Students gets a better experience when working with the lab setup

2

https://www.ntnu.no/studier/emner/IMT3004#tab=omEmnet

Chapter 1 - Introduction

• Realism and diversity in PEMA lab environments
• Better user experience for course instructors
• Ease of implementing vulnerable applications into other systems

1.6.2 Project Results

The results of PLED are the following:

• Provide a service capable of storing vulnerable applications and various other cyber
security relevant files.

• Provide a graphical interface for database management and API administration.
• Provide an API interface towards the database.
• Provide the vulnerable applications and other files using the API interface.

1.7 High Level Use Cases

Figure 1: High level use case overview of PLED and PEMA system.

PEMA

PLED

Instructor

PEMA Functionality

Database Web-Interface
(provided by PLED)

Get Vulnerable
applications/CTF

challenges/malwares

Add Vulnerable
application/CTF

challenge/malware

Update Vulnerable
application/CTF

challenge/malware

Delete Vulnerable
application/CTF

challenge/malware

Handle request

Rest API

Get Vulnerable
application/CTF

challenge/malware

Vulnerability
Database

Swift
storage

Vulnerability retriever

Retrieve Vulnerable
Applications

Add metadata

Figure [1] shows a high level use case of PEMA and PLED, this illustrates the different
interactions PEMA can do with PLED and the internal mechanisms of PLED.

1.8 Development framework/process

1.8.1 Project modules

The project is divided into the following modules to ease the development phase of PLED:

• Design database schema
• Deploy database(s)
• Defining the REST API

3

Chapter 1 - Introduction

• Implement REST API
• Create graphical interface
• Download and insert vulnerable applications into storage
• Deployment of PLED service
• Testing and Review

1.8.2 Software development framework/process

PLED have chosen the iterative and incremental method in agile development, as PLED
needs to be able to adapt to requirement changes down the line, and some requirements
are not yet established. Another reason for choosing incremental was that the assign-
ment was not defined at the starting date and was subject to change in the upcoming
weeks. Iterative delivery was chosen in order for our coordinator and project owner to
efficiently assess the work that has been done since previous meetings. This allows for
early feedback on components, and evaluation of how well the design choices worked
with what the project owner wished for.

Along with the chosen process, PLED will also use a Kanban board to distribute work-
load among the group and use it to keep track of pending tasks and prioritize accordingly.
Kanban also provides a visualization of the progress from start to finish. Kanban is often
used with Scrum, but in PLEDs case, scrum seems inefficient as a development process.
The level of organizing, planning and collaboration involved in Scrum is not needed
when all group members work from the same location.

The members of PLED have different technological backgrounds so when developing
the approach needs to be agile to allow several development processes to work in paral-
lel, this makes development more efficient because one member can work on something
only he/she has knowledge on, while another member works in parallel on something
else. In a waterfall approach this would be inefficient because one component would
have to be done before starting another, and when only one group member works on
that component a lot of time is wasted.

1.8.3 Methods and approach

Development and documentation will be carried out continuously, where everything that
is developed will be roughly documented and later improved on completion. PLED will be
implemented incrementally, using this, a component can be developed along side another
component, but when implementing into PLED one component needs to be complete for
the other to fully work. An example of this can be that for the database web interface to
be fully functional, the REST API and the database must be up and working.

1.8.4 Tools and technologies

Programming Languages

PLED has decided to use familiar tools and technologies in order to have a greater focus
on the task at hand. Programming will be done in PHP primarily. PHP is widely used in
NTNU’s courses, thus known by the students in PLED in addition to fulfill the criteria and
needs for this project, without having any considerable downsides.
Additionally other languages will be used for scripting to make the work more efficient
for the project and the completed system, these languages are Bash and Python. Open-
Stack Heat will be used for deployment of the PLED service.

4

Chapter 1 - Introduction

Version Control

Version control will be handled by Git [2], in NTNU NRC’s adaptation of Phabricator [3]
on https://project.ncr.ntnu.no/. Using NCR’s Phabricator allows NCR to keep tabs
on progress and have a better overview on the status of PEMA as a whole. Phabricator
has other features like a wiki which comes in handy for issue tracking, logging and doc-
umentation.

Server provisioning

PLED will use NTNUs SkyHigh service for deploying servers for testing and development.
SkyHigh gives a management interface for provisioning servers and networks and a CLI
interface for quick deployment and deletion of stacks with infrastructure.

Docker

Most of the systems running on the servers are started using Docker, this makes envi-
ronment and dependency handling easier as the service is shipped with all necessary
requirements included.

1.9 Organization of this paper

The report is based off NTNUs own "Bachelor thesis template (NTNU)" found on GitHub.

Summary of the chapters in the report:

1. Introduction - An introduction to the project, describing the assignment and its
scope.

2. Requirements - An overview on what requirements are set by the employer and the
group, to meet the expectations.

3. Technical Design - Describes the system architecture, the chosen design on the
services PLED will provide, and PLEDs features.

4. Implementation - Explains in greater detail how the group built core components
by showing code snippets and explanation on how it was implemented.

5. Deployment - Showcasing and describing how the PLED service is deployed services
to the infrastructure with OpenStack Heat.

6. Security - Explains security measures implemented in PLED.
7. Operations - Describes operational elements added to the infrastructure.
8. Testing - Lists what kind of tests and methods of testing was done to ensure a

working system.
9. Discussion - Discussions on what the group achieved, how the end product was

achieved.
10. Conclusion - Concluding the work that has been done and discussing future work.
11. Bibliography - Lists sources of information and citations used in the report.
12. Glossary - Explanation of perhaps unfamiliar words and technologies.

5

https://project.ncr.ntnu.no/
https://github.com/COPCSE-NTNU/bachelor-thesis-NTNU

Chapter 2 - Software requirements specification

2 Software requirements specification

2.1 Introduction

This section lists the requirements articulating the needed capabilities, functions, inno-
vations and constraints for the PLED software development project. These requirements
establish the basis agreement between the PLED-team and NCR on how the PLED projects
finished product should function. It includes requirements for PLEDs REST API, database,
database web-interface and other additional functionality included in the project. The
group has ranked these specifications using the following critically levels;

• Mandatory - Cannot be sacrificed.
• Desirable - Important, but could be sacrificed if necessary to uphold the schedule.
• Optional - May not be developed or implemented, but "nice to have".

The requirements section is divided by the project modules where business, non-
functional, functional and technical requirements are listed. The collection of require-
ments for each module defines the complete function, features and characteristics for
that specific module to satisfy stated needs in the project assignment. This means the
specification of behavior between outputs and inputs and their quality features. To be
of help for quality assurance (non-functional requirements), the Quality Assurance Model
described in the ISO/IEC 25010:2011 standard[4] is included.

ISO25010 was chosen to aid in the process of determining which quality characteris-
tics to use when evaluating the properties of the requirements. These are used in turn to
evaluate if the system that is developed satisfies the needs.

6

Chapter 2 - Software requirements specification

2.2 PLED Vulnerability Database

2.2.1 Introduction

One of the first issues for the group to figure out is how to store its vulnerable appli-
cations/files and associated metadata onto the system. Since the system is intended to
consist of a larger number of applications and files, the group do not want to store all
these files directly in the database. Instead the group needs to create a database for all
metadata and link to the different formats for storing the vulnerable applications/files.
To achieve this, the database needs to be able to retrieve, add, update and delete doc-
uments synchronous and relational with the file storage to achieve consistency in the
data.

2.2.2 PLED Vulnerability Database - Business Requirements

Table 1: BR-1 - Vulnerability metadata storage
Requirement Storage for metadata associated to vulnera-

ble applications.
Description The NCR is in need of a storage for metadata

associated to vulnerable applications to be
of use in the learning platform, PEMA.

Criticality Mandatory.

2.2.3 PLED Vulnerability Database - Non-functional Requirements

Table 2: NFR-1 - Database traffic encryption
Requirement Database traffic encryption.
Description Encrypt communication between database

and host to ensure confidentiality and in-
tegrity.

Criticality Mandatory.
Functional Requirement(s) FR-1
Quality Assurance Integrity, confidentiality.

Table 3: NFR-2- Recoverable database
Requirement Recoverable database.
Description If the database is corrupt, reverting to the

previous version is possible.
Criticality Mandatory.
Functional Requirement(s) FR-2
Quality Assurance Reliability.

7

Chapter 2 - Software requirements specification

Table 4: NFR-3 - External database configuration
Requirement External database configuration.
Description Configuration files are stored on a separate

location from the running database.
Criticality Desirable.
Functional Requirement(s) FR-3
Quality Assurance Portability, Maintainability.

Table 5: NFR-4 - Database data is modifiable
Requirement Database data is modifiable.
Description Data stored should be modified if needed.
Criticality Desirable.
Functional Requirement(s) FR-5, FR-6, FR-7
Quality Assurance Maintainability

Table 6: NFR-5 - Database remote access
Requirement Database remote access.
Description Database is available beyond local network
Criticality Mandatory.
Functional Requirement(s) FR-4
Quality Assurance Availability

Table 7: NFR-6 - Database authentication
Requirement Database authentication.
Description Authenticate use of database
Criticality Mandatory.
Functional Requirement(s) FR-9
Quality Assurance Authenticity

2.2.4 PLED Vulnerability Database - Functional Requirements

Table 8: FR-1 - Encrypted database traffic with TLS/SSL
Requirement Encrypted database traffic with TLS/SSL.
Description All traffic is encrypted using database con-

figuration for TLS/SSL.
Criticality Mandatory.
Dependencies with other requirements NFR-1

Table 9: FR-2 - Replicated database service
Requirement Replicated database service.
Description Database uses replica sets for recoverability

and redundancy.
Criticality Mandatory.
Dependencies with other requirements NFR-2

8

Chapter 2 - Software requirements specification

Table 10: FR-3 - External database Configuration
Requirement External database Configuration.
Description Using volumes to store the configuration

separately.
Criticality Desirable.
Dependencies with other requirements NFR-3

Table 11: FR-4 - Remote database connection
Requirement Remote database connection.
Description Establish a remote connection to the

database using an externally available IP.
Criticality Mandatory.
Dependencies with other requirements NFR-5

Table 12: FR-5 - Add content to the database
Requirement Add content to the database.
Description Content can be added to the database using

both database web-interface or REST API in-
terface.

Criticality Mandatory.
Dependencies with other requirements NFR-4, NFR-5

Table 13: FR-6 - Update content(s) of the database
Requirement Update content(s) of the database.
Description Any added content can be updated.
Criticality Desirable.
Dependencies with other requirements NFR-4, NFR-5

Table 14: FR-7 - Delete content from the database
Requirement Delete content from the database.
Description Any added content can also be deleted.
Criticality Mandatory.
Dependencies with other requirements NFR-4, NFR-5

Table 15: FR-8 - Database auditing
Requirement Database auditing.
Description All query actions are logged for auditing

purposes.
Criticality Optional.
Dependencies with other requirements None.

9

Chapter 2 - Software requirements specification

Table 16: FR-9 - Authenticated database sessions
Requirement Authenticated database sessions.
Description All sessions towards the database needs to

be authenticated before allowed access.
Criticality Mandatory.
Dependencies with other requirements NFR-6

10

Chapter 2 - Software requirements specification

2.3 File Storage

2.3.1 Introduction

When metadata is stored in the database, PLED needs a location to store files. These files
can be the actual applications, configuration files, CTF-challenges and more. The storage
solution will have the actual file stream, while the database store a reference to that file
stream. The stored files need to have unique identifiers and the storage solution must be
scalable.

2.3.2 File storage - Business Requirements

Table 17: BR-2 - Storing files corresponding to database metadata
Requirement Storing files corresponding to database

metadata
Description PLED needs a storage solution for the up-

loaded or retrieved files
Criticality Mandatory

2.3.3 PLED File storage - Non-functional Requirements

Table 18: NFR-7 - Interactability with file storage service
Requirement Interactability with file storage service.
Description The API should be able to interact with the

file storage.
Criticality Mandatory
Dependencies with other requirements FR-10, FR-11, FR-12
Quality Assurance Usability

Table 19: NFR-8 - Adaptable storage
Requirement Adaptable storage
Description The storage solution needs to adapt to what

kind of data is inserted.
Criticality Desirable
Dependencies with other requirements FR-13
Quality Assurance Adaptability

Table 20: NFR-9 - Scalable storage
Requirement Scalable storage
Description The storage solution needs to be able to

scale according to the current demand
Criticality Desirable
Dependencies with other requirements FR-13
Quality Assurance Capacity

11

Chapter 2 - Software requirements specification

2.3.4 PLED File Storage - Functional Requirements

Table 21: FR-10 Insert file
Requirement Insert file.
Description Insert a file into storage with a unique iden-

tifier.
Criticality Mandatory.
Dependencies with other requirements NFR-7

Table 22: FR-11 Retrieve file
Requirement Retrieve file.
Description Retrieve a file stored.
Criticality Mandatory.
Dependencies with other requirements NFR-7

Table 23: FR-12 Delete file
Requirement Delete file
Description Delete a file stored when the data is deleted

from the database
Criticality Mandatory
Dependencies with other requirements NFR-7

Table 24: FR-13 Object Storage
Requirement Object Storage
Description PLED should use object storage to provide

adaptable and scalable storage based on
key:value pairs

Criticality Desirable
Dependencies with other requirements NFR-8, NFR-9

12

Chapter 2 - Software requirements specification

2.4 PLED REST API

2.4.1 Introduction

The PLED REST API is created to handle all communication with the vulnerability database.
This way any project or individual can be granted access to the storage by simple be
given a user with customized access to the REST API. For the scope of this thesis, PLEDs
main goal is to satisfy user/instructor needs from the PEMA project on the storage. This
includes insertion, modification and deletion, in addition to retrieval with customized
filtering. The REST API need to retrieve all metadata in addition to the vulnerable appli-
cations/files or other media attached to the vulnerability, in a readable JSON format as
agreed and coordinated with the PEMA-team.

2.4.2 PLED REST API - Business Requirements

Table 25: BR-3 - Storage communication
Requirement Storage communication
Description In addition to having a way to store vulnera-

ble applications/files, the NCR is in need of
a way to communicate with this data stor-
age to be able to make use of it in PEMA.

Criticality Mandatory

2.4.3 PLED REST API - Non-functional Requirements

Table 26: NFR-10 - Query request authentication
Requirement Query request authentication
Description Since the API is deployed in an semi-open

environment, it needs a way to limit the ap-
plication access to permitted users.

Criticality Desirable
Dependencies with other requirements FR-14
Quality Assurance Security

Table 27: NFR-11 - API traffic encryption
Requirement API traffic encryption
Description Inbound and outbound API traffic should be

encrypted.
Criticality Desirable
Dependencies with other requirements FR-15
Quality Assurance Security

13

Chapter 2 - Software requirements specification

Table 28: NFR-12 - API documentation
Requirement API documentation
Description Thorough documentation allowing easy

maintainability and usage.
Criticality Mandatory
Dependencies with other requirements FR-16
Quality Assurance Usability

Table 29: NFR-13 - Ensuring correct query results
Requirement Ensuring correct query results
Description The results must correspond with the query

input, and satisfy the instruction set in the
documentation.

Criticality Desirable
Dependencies with other requirements FR-17
Quality Assurance Correctness

Table 30: NFR-14 - Remotely available API
Requirement Remotely available API.
Description The API should be available from other

servers and services.
Criticality Mandatory.
Dependencies with other requirements FR-18
Quality Assurance Availability.

2.4.4 PLED REST API - Functional Requirements

Table 31: FR-14 - Query request authentication
Requirement Query request authentication.
Description DreamFactory applies authentication and

role based permissions to the API, with API-
keys.

Criticality Desirable.
Dependencies with other requirements NFR-10

Table 32: FR-15 - API traffic encryption
Requirement API traffic encryption.
Description The API endpoint is configured to run over

HTTPS using TLS/SSL for encryption.
Criticality Desirable.
Dependencies with other requirements NFR-11

14

Chapter 2 - Software requirements specification

Table 33: FR-16 - API documentation
Requirement API documentation.
Description The API is thoroughly documented live

using DreamFactorys implementation of
Swagger.

Criticality Mandatory.
Dependencies with other requirements NFR-13

Table 34: FR-17 - Ensuring correct query results
Requirement Ensuring correct query results.
Description Using functional- and unit-testing to ensure

correct query results.
Criticality Desirable.
Dependencies with other requirements NFR-13

Table 35: FR-18 API remote access
Requirement API remote access
Description Establish a remote connection to the API us-

ing an externally available IP.
Criticality Optional
Dependencies with other requirements NFR-14

Table 36: FR-19 Query vulnerability metadata documents
Requirement Query vulnerability metadata documents
Description Return all available vulnerability metadata

documents currently stored in the PLED
database

Criticality Optional
Inputs _table/vuln_applications
Outputs JSON document with current available vul-

nerability metadata stored in the database.
Dependencies with other requirements NFR-14

Table 37: FR-20 Query vulnerability metadata document
Requirement Query vulnerability metadata document
Description Returns vulnerability metadata that

matches the input data.
Criticality Mandatory
Inputs Any key(s) existing in the collections.

Ex. Vulnerable application ExploitDB ID:
_table/vuln_applications?filter=
applications.exploitdb_id=’317’

Outputs JSON document where vulnerability meta-
data matched.

Dependencies with other requirements NFR-14

15

Chapter 2 - Software requirements specification

Table 38: FR-21 POST vulnerability metadata
Requirement POST vulnerability metadata
Description Add vulnerability metadata into the Vulner-

ability Database.
Criticality Mandatory
Inputs JSON Body of document to be inserted
Outputs None.
Dependencies with other requirements NFR-14

Table 39: FR-22 PUT/PATCH vulnerability metadata
Requirement PUT/PATCH vulnerability metadata
Description Updating vulnerability metadata in the Vul-

nerability Database.
Criticality Mandatory
Inputs JSON Body of document to be updated
Outputs None,
Dependencies with other requirements NFR-14

Table 40: FR-23 DELETE vulnerability metadata
Requirement DELETE vulnerability metadata
Description Deleting vulnerability metadata in the vul-

nerability database
Criticality Mandatory
Inputs Filter of what document to be deleted.
Outputs None.
Dependencies with other requirements NFR-14

16

Chapter 2 - Software requirements specification

2.5 PLED Database Web-Interface

The database web-interface is created to simplify how an instructor can modify data in
the database. In production the interface will be implemented and managed by the PEMA
project.
For the project and testing purposes, a version of the interface will be implemented
by the group, as it is closely related to modification of the database and knowledge
of the database design is mandatory. The interface will still be using the REST APIs
authenticated PEMA user and query requests to communicate with the database, but
represents a standardized method for the different modification methods that should be
available from PEMA.

2.5.1 Database web-interface - Business Requirements

Table 41: BR-4 - Ease of Vulnerability Database modification
Requirement Ease of Vulnerability database modification
Description NCR need a simple way to manually modify

the database in PEMA.
Criticality Mandatory

2.5.2 Database web-interface - Non-functional Requirements

Table 42: NFR-15 - Standardized views for database modification
Requirement Standardized views for database modifica-

tion
Description The Database web-interface should provide

different standardized methods for modifi-
cation on data in the Vulnerability Database.
This includes views for insertion, modifica-
tion and deletion.

Criticality Mandatory
Dependencies with other requirements FR-24, FR-25, FR-26, FR-27
Quality Assurance Usability

Table 43: NFR-16 - Access Control
Requirement Access Control
Description When a user tires to access the database in-

terface, a username and password must be
entered to authenticate the user before ac-
cessing the interface

Criticality Desireable
Dependencies with other requirements FR-28
Quality Assurance Security

17

Chapter 2 - Software requirements specification

2.5.3 Database web-interface - Functional Requirements

Table 44: FR-24 - Add content to Vulnerability Database
Requirement Add content to Vulnerability Database
Description Instructor can add content to the database

using forms in the database web-interface
Criticality Mandatory
Dependencies with other requirements NFR-15

Table 45: FR-25 - Update content in the Vulnerability Database
Requirement Update content in the Vulnerability

Database
Description Instructor can update content from the

database using the database web-interface.
Criticality Desirable
Dependencies with other requirements NFR-15

Table 46: FR-26 - Delete content in the Vulnerability Database
Requirement Delete content in the Vulnerability Database
Description Instructor can delete content from the

database using the database web-interface
Criticality Mandatory
Dependencies with other requirements NFR-15

Table 47: FR-27 - View content of the Vulnerability Database
Requirement View content of the Vulnerability Database
Description Instructor can view content from the

database using the database web-interface
Criticality Desirable
Dependencies with other requirements NFR-15

Table 48: FR-28 - Authenticate User
Requirement Authenticate User
Description Use a API query to authenticate a user, be-

fore allowing access to the interface
: Criticality Desirable
Dependencies with other requirements FR-14, NFR-16

18

Chapter 2 - Software requirements specification

2.6 PLED Administrative Interface

2.6.1 Introduction

The ensure authentication when using the API there must be a way of creating roles and
assigning roles to different functions of the API. PLED and NCR will need a management
interface where these roles can be created and administered.

2.6.2 PLED Administrative Interface - Business Requirements

Table 49: BR-5 - Ease of administration
Requirement Ease of administration
Description The NCR is in need of a simple way to be

able to administrate the API, its users and
user permissions.

Criticality Mandatory

2.6.3 PLED Administrative Interface - Non-functional Requirements

Table 50: NFR-17 - Encrypted communication with the API administrative interface
Requirement Encrypted administrative interface traffic.
Description Communication with the administrative in-

terface should be encrypted with TLS/SSL.
Criticality Desirable
Dependencies with other requirements None
Quality Assurance Security.

Table 51: NFR-18 - Authentication for the administrative interface
Requirement Authentication for the administrative inter-

face.
Description Users must be authenticated before getting

access to the administrative interface.
Criticality Mandatory
Dependencies with other requirements None
Quality Assurance Security.

2.6.4 PLED Administrative Interface - Functional Requirements

Table 52: FR-29 - Generate API keys
Requirement Generate API keys
Description Before an API can communicate with a ser-

vice, the instructor must generate an API
key for said service.

Criticality Mandatory
Dependencies with other requirements NFR-18
Quality Assurance Security.

19

Chapter 2 - Software requirements specification

Table 53: FR-30 - Create user
Requirement Create user
Description The interface should provide creation of

users to enable authentication and to assign
roles

Criticality Mandatory
Dependencies with other requirements NFR-18
Quality Assurance Security, usability

Table 54: FR-31 - User management
Requirement User management
Description Users can be assigned to roles with specific

permissions on what they are allowed and
not allowed to do.

Criticality Mandatory
Dependencies with other requirements NFR-18
Quality Assurance Security.

20

Chapter 3 - Technical Design

3 Technical Design

3.1 System Architecture

Figure 2: PLED System architecture

Users

Presentation
layer

REST API

Database
management UI

Business
layer

Dreamfactory Database
management UI

backendvulnRetriever

Dreamfactory UI

Business
layer

Dreamfactory Database management
UI backend

vulnRetriever

Business
layer

Dreamfactory Database
management UI

backendvulnRetriever

Data
Access
Layer MongoDBOpenStack swift

Docker Registry

Docker Registry
Frontend

3.1.1 Introduction

Figure [2] shows PLED services architectural design, this design is based on the re-
quirement to be a modular and loosely coupled system. where each component can be
changed and updated with minimal effect on the other components. Having a flexible
solution will help when joining PLED with PEMA or even other NCR projects. This is
also done for future work on the project, for example if it is decided that object storage

21

Chapter 3 - Technical Design

did not fit the requirements as expected, that component can be changed to something
different only the file location in the database would have to be updated.

Each section in this chapter will present the architecture of the segmented compo-
nents and how it is designed to satisfy the functional and non-functional requirements.

3.1.2 Architectural design

Because the group wants PLED to be modular and decoupled, a layered architecture will
be used. This architecture is based on horizontal layers that each have a separate role in
the system. Each layer is designed to be independent from the other layers, this way one
layer can be changed out with minimal effect on the other layers. The architecture used
consists of three layers:

Presentation Layer

This layer is the one users interact with. It is used to present data gathered from the
business layer. In PLED this is primarily the REST API and database web-interface, but
DreamFactory and the Docker Registry frontend is also included.

Business Layer

In this layer, all the business logic is carried out. Business logic is everything that is
concerning the processing of data such as calculating or formatting. In PLED, this layer
consists of the vulnerability retriever(retrieve vulnerable apps from ExploitDB), database
web-interface back end(PHP logic), Docker Registry (Docker image processing) and also
DreamFactory(processing data from database to the API endpoint).

Data Access Layer

This layer is all about the data storage itself. The business layer will insert or retrieve
data directly from this layer, to be processed. In PLED, this layer consists of MongoDB
and OpenStack Swift

3.2 Database Design

3.2.1 Preparation

To better understand the reasoning and background for decisions in the database design
phase, several aspects has been considered and assumptions has been made.

BASE

Starting with BASE, meaning Basic Availability, Soft-state and Eventual consistency.

Basic availability: Automatic population will happen once per week, if enabled. Man-
ual population will happen at random times. Meaning the database should be mostly
available, but it is not paramount that availability is ensured at all times[3.2.1].

Soft-state: State is not necessarily consistent, and the current state is not critical for
retrieving/using the provided service.

22

Chapter 3 - Technical Design

Eventual consistency: The database will not be constantly synchronized with ExploitDB,
it will be updated once per week, again, only if enabled. What is more important is that
the database is filled with a multitude of files and applications ready for retrieval through
the REST API. In the replica set, the replicated databases will eventually become consis-
tent with the master node. During this, the time gap whereas the database is inconsistent
is extremely small, as updating the database consists of few and small operations.

Usage pattern

Based on what is known at the time of writing the report, assumptions are made from
meetings and conversations with NCR, the supervisor and the employer. Meeting logs
can be found in appendix [A]. Roughly defined usage patterns have been made up to
create a scope for the database. During population of the database via the vulnerability
retriever, writes will happen consistently over a long period of time, approximately 12
hours, as the scraper needs a sleep interval in order not to be blocked by the site holding
the content [3.5.1].

The group assumes few, 1 - 10, users will interact with the database, at random times,
moderately few times per week (0-1000 requests). The reasoning behind this is that after
PEMA has deployed its lab environment, PLED will generally not see more usages until
the next lab environment needs to be deployed by PEMA.

Interactions from PEMA will more often than not consist of GET-requests, which
means searching documents for key-words, for example supported platforms and CVE-
ID. PEMA will to a lesser degree generate PUT requests to fill in custom content. Once per
week, a check will run to update the database in line with what’s available on ExploitDB.

Database content

The content of the database is divided into collections, where each collection holds doc-
uments containing metadata for the individual files in storage. The collection provided
are

• vuln_applications: Vulnerable applications, mostly automatically retrieved from scrap-
ing ExploitDB, other applications can be added manually

• ctf_challenges: All CTF-based challenges, these are all manually added by PEMA or
through the database web-interface.

• malicious_files: Malware and malicious files used for malware analysis and malware
lab projects

E.g. MongoDB offers a flexible data model, meaning that the document oriented
database is schema-less. Different documents can have very inconsistent schemas and
data content, unlike a relational schema where each tuple in a relation will have the
same attributes.

Other considerations

• Instructors should be able to add their own files that can be applied to a CTF-
challenge or lab environment, which not necessarily has the same metadata as
other documents present in the database. Files in this regard means it’s a lot of
varying file-types with different attributes, size and usages.

• Not knowing what kind of files and metadata will populate the database in future
development, is a major driver for going for a non-relational database.

23

Chapter 3 - Technical Design

• The data is not complex, large tree structures is not applicable in this scenario.

To ensure functionality with future changes in requirements, the group needs to take
this into consideration when choosing what type of database is best for the assignment.
Thus the group has decided to use a Document Oriented Database, a subset of a NoSQL
database. More specifically, the group went for MongoDB as their database-software,
utilizing the unstructured data support, high throughput, storage of potentially large
binary files and similar syntax compared to MySQL.

3.2.2 Design schema

Using the previously discussed topics will help the group choose between three different
database schemas.

Denomalization

Every file or application document is individual with no relation to any other document,
for example all applications have their own CVE-field.

Table 55: Denormalization
Pros Cons
When an application document is
deleted, so is the CVE

Duplicated data

Simple schema If a CVE changes, already existing CVE-
IDs in the database wont be consistent

Faster reads, as there are no joins Larger database
Easy to implement
Fits PLEDs usage pattern

Reference document

All file or application documents reference a document with the respective CVE describ-
ing the vulnerability.

Table 56: Reference document
Pros Cons
Documents remain small Need an application level to join docu-

ments
Difficult to view the referenced CVE
document in DreamFactory
If a CVE-ID is deleted, application doc-
uments references a non existent docu-
ment

Embedded document

Each file or application documents are embedded within a CVE document.

24

Chapter 3 - Technical Design

Table 57: Embedded document
Pros Cons
Reference fields directly with dotted
notation

Unbound growth of embedded docu-
ments

Retrieve subset of fields

Because of the estimated usage pattern and the way the database will be queried,
using embedded documents will create extra overhead when PEMA is searching for an
application. This is because the parent document, which in this case is the CVE document,
will always be returned with all its data when searching for an application. So all the
applications no matter the filter selected will be returned.

All things considered, the best way for us to structure the database is to denormalize
it where each document will have all the necessary data. This way will make the insertion
of documents and filtering of documents more efficient. The database will still remain
organized in the sense that the documents are divided into respective collections. Figure
[3] shows a detailed overview of the database structure.

Figure 3: PLED database schema

vulnerable application document

_id: ObjectID("1234")

application_name: "name"

exploitdb_id: "ID"

cve: "CVE-YYYY-XXXX"

cve_summary: "Summary of cve"

added_date: "yyyy-mm-dd"

platform: "Windows / Linux / PHP / ..."

type: "dos / local / remote /webapp"

cvss: "score"

cwe: "CWE-XXX"

file_path: "URL / UID"

Optional attributes

impact:

+ confidentiality: "rank"

+ integrity: "rank"

+ availability: "rank"

msbulletin: "bulletin id"

+ ms_kb: "knowledge base url/id"

solution: "how to exploit application"

exploitability: "ease of exploit"

malware document

_id: ObjectID("1234")

name: "name"

summary: "summary of malware"

platform: "Windows / Linux / PHP / ..."

type: "type of malware"

added_date: "date malware was added"

file_path: "UID"

challenge document

_id: ObjectID("1234")

category: "challenge category"

description: "summary of challenge

author: "name of author"

creation_date: "date of creation"

added_date: "date added to db"

type: "type of challenge"

+ docker-file: "Dockerfile"

++: port: "port"

difficulty: "difficulty of completion"

points: "points for completion"

write-up: "walkthrough"

flag: "flag"

deployments: "number of deployments"

solved-times: "number of times solved"

feedback: "participant feedback"

Collection:
vuln_applications

Collection:
malicious_files

Collection:
ctf_challenges

1..n

1..1

1..n

1..1

1..n

1..1

25

Chapter 3 - Technical Design

3.2.3 Secure Communication

All internal traffic to and from the database is to be encrypted using TLS/SSL, this is
to ensure authentication, confidentiality and integrity. TLS/SSL will be implemented in
MongoDB using a self-signed certificate, this is for testing and development purposes
only. A self-signed certificate encrypts communication, but has no way of validating the
server identity. Meaning, its susceptible to man-in-the-middle attacks, but traffic cannot
be eavesdropped.

For a production environment, it is therefore recommended to use an internally gen-
erated and signed certificate authority for proper implementation of TLS/SSL.

3.2.4 Backup and redundancy

For redundancy the database will run in a replication cluster so that the server it is
running on does not become a single point of failure. All the databases will also have
backups, both full database dumps and incremental backups for changes in the database.

3.3 File storage

There were several methods of storing files that appealed to PLEDs use cases, too many
to evaluate. But the main contenders are usage of GridFS, a MongoDB solution of storing
binary files above the max document size [5] in the database through sharding; a file
server with corresponding documents in the database in which a file path field is used
to retrieve the actual file; or the same of the previous suggestion, but storing the files in
OpenStack Object Storage through the Swift API [6].

File Server

Table 58: File server Pros/Cons
Pros Cons

• Storage of files is simple, as
files are not sharded into
smaller files.

• Much cheaper in terms of
processing and storage [7].

• Simple setup.

• A change in file structure
would be problematic, as all
metadata would potentially
need to be updated.

Object Storage (Swift)

Table 59: Object Storage (Swift) Pros/Cons
Pros Cons

• Infrastructure for Swift and
Object Storage is already
built and ready for use.

• API support.
• Authentication is imple-

mented.
• Supports up to 5GB files, and

larger files are segmented be-
fore upload.

• Can be complex to setup
• Dependent on 3rd party

software (boto3 for Python,
S3/Openstack client for PHP)

26

Chapter 3 - Technical Design

GridFS

Table 60: GridFS Pros/Cons
Pros Cons

• Easier to protect access to
files so only authorized users
can see them.

• File integrity ensured in a
greater degree.

• Files stored in the database
do not require a different
backup strategy. Files stored
on a file server do. In other
words, easier backup/restore.

• Easier portability and scala-
bility of the database.

• More processing is needed to
"unshard" the applications in
the database, aka heavy load
on db server.

• Database storage is usually
more expensive than file sys-
tem storage.

• Could potentially become a
massive database.

• GridFS is great for accessing
information from portions of
large files, like streaming. But
this is not in favour of the
groups case.

• Doesn’t really meet PLEDs in-
tended usage.

Based on these arguments the group chose Object Storage/Swift, storing applications
and files in OpenStack without metadata (other than an ID). The metadata is stored sep-
arately as documents in a MongoDB instance, referencing the application stored in Swift
in a field in the document. This way, searches are more optimized as the database is bet-
ter at handling advanced searches in documents, compared to the API searching through
a multitude of large files. Swift utilizes storage containers, containing both folders and
the actual files. The folders are named relative to the corresponding collection in the
database.

Figure 4: PLED storage diagram

Rest API vulnRetriever

Input

ctf_challenges vuln_applications malicious_files

pled_files

ctf_challenges vuln_applications malicious_files

pled

Submitted data

file

file metadata

27

Chapter 3 - Technical Design

Figure [4] show how the different storage mechanisms are laid out. A file will be
stored in the pled_files container in Swift, and its metadata are added as a document in
one of the three collections.

3.3.1 Storing of Docker images

In CTF-based challenges, those challenges requiring remote access will use Docker Con-
tainers. These containers will be created using a Dockerfile that is uploaded to PLED.
When uploading a Dockerfile the user specifies if it requires a port and any additional
files or metadata.

Docker Registry

Additional to the Dockerfile upload function, it will be deployed a Docker Registry that
users are able to upload built images to, this service is not intended to be the main Docker
storage, but will work as an additional tool that the NCR can use.
The Docker Registry will have an interface that users can browse images in, this will also
require basic authentication that is implemented when setting up the registry.

3.4 REST API Design

Initially the group intended to create their own REST API using GoLang since a member
of the team had knowledge on this from the course Cloud Computing. Creation of a
REST API with secure authentication and different users with different permission layers
would be a tedious and time consuming activity that would extend over larger parts
of the projects time schedule. It would be critical to consider several aspects such as
usability, security and efficiency. The group was recommended to look into platforms that
automates the REST API creation to both save time and to secure correct implementation,
in addition to supply other needed features.

For creation of the REST API, the group decided to use the recommended DreamFac-
tory Service Platform [8]. This platform developed by DreamFactory Software company
delivers complete automation of a REST API able to communicate with several services,
in this case on MongoDB. In addition the DreamFactory Service Platform supplies other
necessary features needed on the REST API such as user management and access con-
trol. The platform also includes live documentation generated through Swagger[9], and
plenty other functionality which could be useful for further development in the NCR. By
using this platform the group saves a lot of time and effort on design and implementation
that can instead be used to focus on the other goals and ideas for the project to further
expand the project scope.

Since the DreamFactory Service Platform automatically creates its own design and
structure for the REST API, its still necessary to understand how to use the platform and
create a use guide for further use also.

3.4.1 Documentation

The aforementioned documentation is live, meaning its automatically up to date depend-
ing on the database content. It can be interacted with for testing purposes in DreamFac-
tory’s own UI, all of which PEMA has access to. Figure [5] shows an example on how the
documentation looks like. Each of the rows can be expanded for further explanation on
how to use the commands available.

28

https://www.ntnu.edu/studies/courses/IMT2681#tab=omEmnet

Chapter 3 - Technical Design

Figure 5: DreamFactory API Documentation

Additional documentation is provided on PLEDs own wiki hosted on Phabricator, also
included in appendix [F]. This is meant to provide users with examples on how to use
the available filters and options in the DreamFactory provided REST API.

3.4.2 User management

Users are required to create a layer of access control when using the DreamFactory UI
or when querying the API. Users are manually created in DreamFactory and can be as-
signed roles. These roles determine what API queries a user can use through a token
generated, that is added to the request URL. A ’super admin’ needs to be created at first
so that that user later can create additional users. Each user created can also log into the
DreamFactory interface and view the documentation for the API.

29

https://project.ncr.ntnu.no/w/pled/description/

Chapter 3 - Technical Design

Figure 6: API sequence diagram

API
server Database

findApplication(filter)
findAll(filter)

result
collectionresult

collection

PEMA

Pled
Swift

getFile(UID)
swift/api/pled_files/folder/UID

file
file

Figure [6] show the how the user authentication is involved when querying the api.

3.4.3 Domain semantics

The instructor or PEMA can request the different applications, challanges and malware
stored in the database through the API using single or multiple filters of fields in a query.
The vulnerable applications contain metadata such as a CVE ID, a CVSS score, vulnera-
bility description, supported platform, version number of the application, type of vulner-
ability.

Table 61: API domain semantics
Operation Method Description
Retrieve GET Retrieve one or more records
Create POST Create one or more records
Update PUT Update (replace) one or more records
Update PATCH Update (patch) one or more records
Delete DELETE Delete one or more records

The DreamFactory Service Platform REST API provides the following ways for ap-
plications, challenges and malware to retrieve, create, update and delete data from the
collections. The collection name is always sent as a part of the URL, whilst the other
operations are sent as query parameters or as part of the posted data [10]. One query
parameter available on all request is the ’Field’ which dictates what fields to be returned
for the affected records of the operation. These can either be sent as comma-delimiter
string of field-names when passed as a query parameter, or an array of field names when
passed in posted data. In GET requests this parameter defaults to returning all fields,
while all other request types return only the identifying fields by default. This way the
client does not need to do a second query to get thing like updated or auto-filled field

30

Chapter 3 - Technical Design

values. The output will always reflect the input, meaning an array posted will result in
an array received.

Retrieving records

There are several ways that an application can retrieve data through the DreamFactory
REST API. In PLED, records are stored by unique identifiers created by MongoDB, these
identifiers can be used to retrieve single or multiple matching records. By a single record
identifier, the identifying field is passed as a part of the URL after the collection name.
When retrieving records with several identifiers we use the ’ids’ query parameter sent as
a comma-delimiter string of id values or an array of id values in posted data.

3.5 Database web-interface

For viewing, adding, updating and deleting vulnerable applications, challenges or mal-
ware in the database, a database web-interface will be provided as proof of concept. This
interface will allow an instructor or administrator to upload metadata documents to the
database and corresponding files to Swift, as well as updating or deleting documents.
Figure [7] displays the different views that is intended to be displayed in the database
web-interface. Since this part of the project will be integrated into PEMA at a later stage,
it is a bit uncertain what technologies and methods will be used. PEMA is looking into
having other students work on the front-end part of their service, but this would have to
be done at a later stage. For further use, it would be an idea that the group could deliver
the database web-interface as several components or plugins for different frameworks
such as angular, react or WordPress, but for the scope of the thesis it is chosen to create
a simple template that could easily be implemented into different frameworks.

Database management page

View Add Modify Delete

Search bar

upload type

Add file to database

Application

 Challenge

 Malware

Search bar

. . .

Name:

Summary:

. . .

Search bar

Edit Object #123456

Figure 7: Sketch of database web-interface

31

Chapter 3 - Technical Design

3.5.1 Features

View and Search contents of database

The first feature the instructor will be presented with, is the view of the last inserted
database contents. This view can than be used by the instructor to view all currently
available vulnerable applications, challenges and malware to be used in PEMA. In addi-
tion, the instructor is given a field for searching for contents. The contents and search
results needs to be presented in a organized and structured matter so that content can
be easily found and read.

Forms for adding content

The database web-interface will allow the instructor to submit vulnerable applications,
CTF-challenges or malware to the database. This will be done by having different forms
available according to the types of file the instructor wants to upload. The data will then
be processed by the back end according to type the instructor chose. The different types
of file are:

• CTF-challenge
• Vulnerable application
• Malware

The metadata of the file is inserted into the corresponding MongoDB collection (using
an API POST query), along with a ID corresponding to the file in OpenStack Swift.

For vulnerable applications, the instructor can include a CVE for the application to
be uploaded. When inserted and the instructor submits the form, the back end need to
check if the CVE is valid. If found, corresponding metadata for that CVE is appended to
the application metadata. PLED will use CIRCL API [11] to retrieve this information add
it to the MongoDB documents.

Forms for updating metadata

For modification and updating of metadata related to the different file types, the database
web-interface will provide a form to update the current data stored. This feature is added
to provide the instructor with a way to fix potential mistakes or update outdated sum-
maries etc.

Deletion of content

The database web-interface will also provide a way to delete contents of the database
and associated stored file.

3.6 Vulnerable Application Retrieval

As a part of the database, a way of automatically retrieving vulnerable applications and
inserting them into the database is preferred. This feature is not required and is not
viewed as a crucial component of PLED. Following the requirements of what is needed
from a vulnerable application, the source of the application needs to provide certain
properties for the application. This is to ease the user when searching for applications
and to make deployment of the application more efficient.

32

Chapter 3 - Technical Design

Figure 8: vulnRetriever sequence diagram

alt

getAppUrl

alt

getCVE

Exploitdb
Git Repo

getCsv

files_exploit.csv

manager

Remote
systems

vulnRetriever

normal scan with
verbose

scanExploit(id) mongodb

id
for id in csv

exploitdb circl cve API

insert application

if '/apps/' in
html

getCVEinfo

getExploitdbHTMLFromID

exploitdb html

inserted true

increase inserted by 1
inserted =

true

increase checked by 1display inserted
and

checked

CVE json

loop

Figure [8] show the sequence of the vulnerability retriever, this illustrates the different
components involved and how they cooperate to provide the required functionality.
The script will use the CSV file from the ExploitDB git repository to get the ID of each
exploit. It will use this ID to scan the corresponding exploits web page for a vulnerable
application. If an application is found, it will look for the CVE-id of the vulnerability and
store this along with other required metadata. When the data is collected, the script will
insert the data into the database and scan the next exploit.

33

Chapter 4 - Implementation

4 Implementation

4.1 Introduction

PLEDs services runs on MongoDB, DreamFactory and Docker with several other depen-
dencies, as Docker containers. Configuration files for each of the services in use are stored
on a separate volume defined in the docker-compose file, meaning that the configuration
is persistent even if a container is restarted/removed.

4.2 File storage

The file storage is integrated in SkyHigh as Swift Object Storage. By using Swift, PLED
will have a container for all the files added to storage and this container is called pled_files.
When a file is added, it is pushed to the container and added to the folder respective to
the file type, whether it is a vulnerable application, CTF-challenge or malware.

Listing 4.1: Upload vulnerable file to swift container

$content = file_get_contents($_FILES[’app_fileToUpload ’
][’tmp_name ’]);

$filename = hash(’md5’, $_FILES[’app_fileToUpload ’][’
name’]. date_timestamp_get(date_create ()));

array_push($files , $filename);

try{
$r = $s3 ->putObject ([

’Bucket ’ => ’pled_files/vulnerable_applications ’
,

’Key’ => $filename ,
’Body’ => $content

]);

The Swift container needs authentication to limit the access to the storage, this is
implemented using EC2 credentials for OpenStack. Using the openstack ec2 credentials
create command, an access key and a secret will be generated. The access key and secret
are used with the Amazon S3Client PHP SDK[12] to gain access and insert/retrieve files
in the storage container, also referred to as buckets.

34

Chapter 4 - Implementation

Listing 4.2: Configuration of S3Client

$s3 = new S3Client ([
’region ’ => ’SkyHiGh ’,
’endpoint ’ => ’https :// swift.skyhigh.iik.ntnu.no/swift/

v1/a056038438f14cd9b3b69744dc334774 ’,
’version ’ => ’latest ’,
’credentials ’ => [

’key’ => ’****************** ’,
’secret ’ => ’****************** ’,

],
’use_path_style_endpoint ’ => true ,

]);

To retrieve files, Swift has an API endpoint that can be accessed and the file can
be retrieved. The S3Client supports downloading files in PHP so for the database web-
interface this has been implemented by creating a pre-signed URL for the object. This
URL will download the file when accessed.

Listing 4.3: Create download link with s3Client

$cmd = $s3 ->getCommand(’GetObject ’, [
’Bucket ’ => ’pled_files ’,
’Key’ => ’ctf_challenges/’.$v[’file_path ’]

]);
$signed_url = $s3 ->createPresignedRequest($cmd , ’+1␣hour’)

;
$data[’searchres ’][$key][’file’] = $signed_url ->getUri ();

4.3 Docker Registry

The Docker container will be submitted through the database web-interface as a Dock-
erfile. Additionally to storing the Dockerfile, PLED will offer the Docker registry for easy
Docker image management. The registry for storing Docker containers requires some
persistent storage. A common way of implementing this is using persistent volumes in
Docker, when doing this there is little persistence when taking the host server down,
without using external volumes. Since PLED is already using the OpenStack Swift object
storage service, it was decided to use this for the registry as well, since it will keep the
registry storage persistent across server outages. The registry uses docker-compose for
setup, this creates a stack consisting of a HAProxy loadbalancer, the Docker Registry, and
a frontend where it’s possible to browse the available images. Using external configura-
tion, the registry is configured to store in an OpenStack Swift container. Listing 4.4 shows
the configuration of the registry, related to how it communicates with Swift storage.

35

Chapter 4 - Implementation

Listing 4.4: Storage setting for Docker Registry

storage:
cache:

blobdescriptor: inmemory
swift:

username: <OPENSTACK_USER >
password: <OPENSTACK_PASSWORD >
authurl: <OPENSTACK_AUTHURL >
domain: <OPENSTACK_DOMAIN >
tenantid: <OPENSTACK_TENTANT/PROJECT_ID >
insecureskipverify: true
region: <OPENSTACK_REGION >
container: <OPENSTACK__REGISTRY_CONTAINER >

4.4 MongoDB

The database runs in a MongoDB replica set consisting of a primary node, a secondary
node and an arbiter node. Each of these nodes run in separate Docker containers and
are launched via a docker-compose file. In the design phase it was mentioned that SS-
L/TLS encryption would be enabled for database communication [3.2.3], but this was
not integrated due to limited functionality in Bitnami’s Docker image.

This means that communication with the database wil not be encrypted, but the au-
thentication credentials exchanged within the replica set will be encrypted by default
[13]. As the database is only exposed to the API and if enabled, MongoExpress. Both
of these services are again protected with authentication, additionally will the front end
be encrypted with SSL/TLS via HAproxy and a self-signed certificate. This is explain in
further detail later in the report 4.5.2.

The dockef-compose file for starting the MongoDB replica set is depicted in the listing
below. The configurations and database data is stored in an external volume hosted on
OpenStack.

Listing 4.5: Docker-compose file for MongoDB Replica Set

version: ’3.1’

services:
mongodb -primary:

image: ’bitnami/mongodb:latest ’
environment:

- MONGODB_REPLICA_SET_MODE=primary
- MONGODB_ROOT_PASSWORD=****
- MONGODB_REPLICA_SET_KEY=****

volumes:
- mongodb -master -data:/bitnami

ports:
- "27017:27017"

mongodb -secondary:
image: ’bitnami/mongodb:latest ’
depends_on:

- mongodb -primary
environment:

36

Chapter 4 - Implementation

- MONGODB_REPLICA_SET_MODE=secondary
- MONGODB_PRIMARY_HOST=mongodb -primary
- MONGODB_PRIMARY_ROOT_PASSWORD=****
- MONGODB_REPLICA_SET_KEY=****
- MONGODB_PRIMARY_PORT_NUMBER =27017

mongodb -arbiter:
image: ’bitnami/mongodb:latest ’
depends_on:

- mongodb -primary
environment:

- MONGODB_REPLICA_SET_MODE=arbiter
- MONGODB_PRIMARY_HOST=mongodb -primary
- MONGODB_PRIMARY_ROOT_PASSWORD=****
- MONGODB_REPLICA_SET_KEY=****
- MONGODB_PRIMARY_PORT_NUMBER =27017

volumes:
mongodb -master -data:

external:
name: mongodb -master -data

PLED provides an additional tool for quick and easy database management, Mon-
goExpress which is a MongoDB interface for interaction with the database. This can be
enabled in the environment file for OpenStack Heat, by changing the mgoexpress variable
from false to true.

4.5 DreamFactory

4.5.1 Administrative interface

PLED uses the docker-compose file developed and maintained by Bitnami, as suggested
by DreamFactory on their Docker-Hub account [14]. The docker-compose file in listing
[4.5.1], implements all the dependencies (MongoDB, MariaDB and redis) for Dream-
Factory, and enables volume storage for the configuration files for all services, including
itself. For DreamFactory to be able to read the contents and modify files in the volumes,
each folder for each service needs to be created inside the volume, and chown-ed with
1001. This switches the user from the default root to 1001, making the folders not owned
by root as user 1001 is not a special user with special permissions. This is done with the
following command:

chown -R 1001:1001 /bitnami

DreamFactory and its services is started with docker-compose up. It exposes port 443 for
external access.

Listing 4.6: Docker Compose file for DreamFactory

dreamfactory:
image: ’bitnami/dreamfactory:latest ’
labels:

kompose.service.type: nodeport
ports:

- ’443:443 ’

37

https://hub.docker.com/_/mongo-express
https://hub.docker.com/_/mongo-express
https://hub.docker.com/r/dreamfactorysoftware/df-docker/
https://mariadb.org/
https://redis.io

Chapter 4 - Implementation

depends_on:
- mariadb
- redis
- mongodb

volumes:
- dreamfactory -persistence:/bitnami

networks:
- pled_net

volumes:
mariadb -persistence:

external:
name: mariadb -persistence

redis -persistence:
external:

name: redis -persistence
mongodb -persistence:

external:
name: mongodb -persistence

dreamfactory -persistence:
external:

name: dreamfactory -persistence

4.5.2 Load balancing

HAproxy is implemented in front of DreamFactory, and if configured properly, will load
balance traffic accross added nodes. At this point, its main purpose is to encrypt incom-
ing and outgoing traffic. TLS/SSL is implemented at the load balancing level, redirecting
every request to our DreamFactory service to a HTTPS request. A snippet of the configu-
ration of HAproxy is shown below in listing [4.7].

38

Chapter 4 - Implementation

Listing 4.7: HAProxy configuration snippets

frontend dfapi -https
bind *:80
bind *:443 ssl crt /etc/ssl/private/dfapi.pem
bind *:4444 ssl crt /etc/ssl/private/dbweb -intf.pem
Applies self signed certificate
redirect scheme https if !{ ssl_fc }
Redir HTTP req to HTTPS , makes DF HTTPS only.
mode http
acl a1 dst_port 4444
use_backend dbweb if a1

If request is on port 4444, use backend dbweb.
default_backend dfapi

backend dfapi
mode http
balance roundrobin
option forwardfor
option httpchk HEAD / HTTP /1.1\r\nHost:localhost
server web -api DFAPIIP :80 check
http -request set -header X-Forwarded -Port %[dst_port]
http -request add -header X-Forwarded -Proto https if {

ssl_fc }

backend dbweb
server db-web -interface WEBINTERFACEIP :4444 check

listen stats
bind *:1936
stats enable
stats uri /
stats hide -version
stats auth UNAME:PWD

In this project, a self-signed certificate is used to verify our service. It is not recom-
mended to use a self-signed certificate in production, but its viable in this case for show-
casing the functionality of our service. The certificate and key was generate by openssl
with this command:

openssl req -x509 -nodes -days 500 -newkey rsa :2048 -keyout
/etc/apache2/ssl/dfapiself.key -out /etc/apache2/ssl/
dfapiself.crt

Followed by concatenating the certificate file and key file into a .pem file, a format for
storing and sending cryptographic keys, certificates, and other data [15]. This file is used
by HAProxy on incoming connections on port 443, as a certificate to authenticate and
encrypt communication with DreamFactory.

4.5.3 Server side scripting

For some of the requirements from PEMA, a custom service in DreamFactory was needed.
This service gives an endpoint to PEMA for listing all available application platforms

39

Chapter 4 - Implementation

and types currently in the database. This was implemented using a scripting service in
DreamFactory.

Listing 4.8: Custom search script in dreamfactory

verb = event.request.method
if verb != ’GET’:

raise Exception(’Only HTTP GET is allowed on this
endpoint.’)

resource = event.resource

if resource =="":
result = {’resource ’:[’platform ’, ’type’]}

elif resource =="platform" or resource =="type":
url = ’mongodb/_table/vuln_applications ’
result = platform.api.get(url)
data = result.read()
jsonData = json.loads(data)
resultlist = []
for line in jsonData[’resource ’]:

if line[resource] not in resultlist:
resultlist.append(line[resource]. strip ())

result = {resource: resultlist}
else:

raise Exception(’Invalid or missing resource name.’)

return result

This gives and endpoint for searching for platforms and types at
<dreamfactoryip>/api/v2/customsearch/<parameter>
The script requires the Python module bunch, the only alteration done here was adding
a Dockerfile that installed this module when starting the DreamFactory service.

#DREAMFACTORY DOCKERFILE
from bitnami/dreamfactory:latest

RUN apt update -y && apt install python -pip -y && pip
install bunch

4.5.4 Retrieving stored files

Stored files can be downloaded in the database web-interface.
To access the files from another back end, a s3Client needs to be set up in order to access
the Object Storage. For temporary use, a cURL request can be sent to the Swift API with
the users auth-token. This is not recommended since the auth-token has short expiry
time and will have to be renewed often.

40

Chapter 4 - Implementation

4.6 Database web-interface

The database web-interface is implemented using PHP, Javascript and HTML. To render
the HTML from PHP, Twig is used as it is known by two of the group members from
the course Web Technology and will be of great use when retrieving database content
to be displayed. Twig is a template engine, meaning you can create static template files
in your project. At runtime, Twig replaces variables in the template files with actual
values and transforms the template into an HTML file sent to the client. The simple
structure and setup of Twig, in addition to being familiar, makes it preferable over other
solutions/frameworks as many of them have more advanced structures that would result
in more time spent learning and structuring instead of developing.

The web server for the database web-interface runs in a Docker container, the image
is built with the web documents needed and is started with docker-compose. When the
server is deployed, a script will pull down the git repository containing the web page
content, and run it with Docker.

Before running the container, a few dependencies has to be installed with Composer,
which is a tool for dependency management in PHP, shown below.

#Add environment variable for Composer and installs
dependencies with Composer

cd /home/ubuntu/pled/www && \
export COMPOSER_HOME="/home/ubuntu/pled/www" && \
composer install --ignore -platform -reqs

The command composer install will install all required dependencies listed in a .json
file.

4.6.1 Authentication

A requirement for the database web-interface is that it should have user authentication
when accessing it. This is implemented using HTTP basic authentication with the Dream-
Factory configured users. Basic is a very simple way of adding access control and since
the database web-interface will eventually be integrated into PEMA, the group consid-
ered developing a whole authentication system with NTNUs LDAP servers as out of scope.
When the user first tries to access the interface a prompt for username and password will
be presented, when the user enters the values and submits a request to the DreamFactory
API with the username and password, if the request is approved the user is authenticated
and can access the interface.
The code below illustrates how the HTTP basic authentication checks for a set username
and if not it will prompt for username and password

41

https://www.ntnu.edu/studies/courses/IMT2291#tab=omEmnet

Chapter 4 - Implementation

Listing 4.9: Authenticate user

if (!isset($_SERVER[’PHP_AUTH_USER ’])){
//User pressed cancel
header(’WWW -Authenticate:␣Basic␣realm="PLED"’);
header(’HTTP /1.0␣401␣Unauthorized ’);
die(’Unauthorized ’);

// Authenticate in Dreamfactory with username and password ,
die if false

} elseif (! aunthenticate($_SERVER[’PHP_AUTH_USER ’], $_SERVER
[’PHP_AUTH_PW ’], $ini_array[’ip’])) {

//User not authorized
unset($_SERVER[’PHP_AUTH_USER ’]);
unset($_SERVER[’PHP_AUTH_PW ’]);
die(’Unauthorized ’);

}

4.6.2 First Time Setup

When the database web-interface is first deployed, it will present a page where certain
values needs to be entered, these values are the DreamFactory API key and host, as well
as the AWS S3Client information such as key, secret, region and endpoint.
This configuration is required to use the interface and when entered will generate a
configuration file that the back end will use. Listing 4.10 shows how the back end checks
if the configuration file is generated.

Listing 4.10: Check if config file is set

if (file_exists($_SERVER[’DOCUMENT_ROOT ’]."/conf/phpconfig.
ini")) {

$ini_array = parse_ini_file("./conf/phpconfig.ini", true);
} else {

echo $twig ->render(’generateConfig.html’, array ());
die();

}

Listing 4.11 shows how the phpconfig.ini file is generated on first time setup

Listing 4.11: Generate the config file on first time setup

$data = ’api_key = ’.$_POST[’apikey ’]. PHP_EOL.
’ip = ’.$_POST[’apiurl ’]. PHP_EOL.
’s3_key = ’.$_POST[’s3key ’]. PHP_EOL.
’s3_secret = ’.$_POST[’s3secret ’]. PHP_EOL.
’s3_region = ’.$_POST[’s3region ’]. PHP_EOL.
’s3_endpoint = ’.$_POST[’s3endpoint ’]. PHP_EOL;

fwrite($file , $data);
fclose($file);

42

Chapter 4 - Implementation

4.6.3 Front end

As shown and discussed in the design chapter [3.5], the database web-interface consists
of several different pages for viewing and modifying contents of the database. The logical
index file for the database web-interface is the outermost file called index.php. This file is
responsible for creating and retrieving the variables to be displayed in the index HTML
page, databaseManagementPage.html, more on this in the back end section. This index
page displays a container with three tabs for each of the pages. One page for viewing,
adding and modifying content. The purpose of this page is simply to be of aid for an
instructor using the interface, and a third option to MongoExpress and the API Docs in
DreamFactory for finding and displaying content.

View/Find content

The first tab presents a search bar and the latest insertions into the database respectful
to its type (vulnerable application, CTF-challenge or malware) as shown in figure [9].
To use the search bar, you simply enter any value from any fields that could be stored
in the database and hits are displayed underneath the input field. Each hit acts a button
which displays a collapsible, more detailed view on its data stored in the database, when
clicked. Click again and the collapsible closes. This button and collapsible is also used
for displaying the contents of the latest insertions into the database. This is a form of the
Progressive Disclosure Design Pattern [16] where the goal is to reduce unnecessary data
displayed to the instructor upon opening the interface. In addition, a download button
is included in the collapsible that will download the file connected to the chosen object
displayed. Listing [9] shows the method for creating collapsibles for each element from
search and for the latest insertions. It also displays the method for looping through data
retrieved by Twig using for loops.

43

Chapter 4 - Implementation

Listing 4.12: Twig for loop and collapsibles

{% if vuln_applications %}
{% for application in vuln_applications %}

<button class="collapsible">
ID: {{ application._id }}

Name: {{ application.application_name }}<

br>
CVE: {{ application.cve }}

</button >
<div class="content" style="display: none; overflow:

hidden;">

ID: {{ application._id }}

{% if application.exploitdb_id %}
Exploitdb id:
{{ application.exploitdb_id }}

{% endif %}

Name: {{ application.application_name }}<
br>

{% if application.summary %}
Summary:
{{ application.summary }}

{% endif %}

...

</div>
{% endfor %}

{% else %}
No vulnerable applications currently in database.

{% endif %}
<script >

var coll = document.getElementsByClassName("collapsible"
);

var i;

for (i = 0; i < coll.length; i++) {
coll[i]. addEventListener("click", function () {

this.classList.toggle("active");
var content = this.nextElementSibling;
if (content.style.display === "block") {

content.style.display = "none";
} else {

content.style.display = "block";
}

});
}

</script >

44

Chapter 4 - Implementation

Figure 9: Database web-interface forms for finding and viewing content

Add content

In the second tab the instructor is presented with forms for adding content to the database.
A dropdown is presented for choosing what type is to be uploaded between vulnerable
applications, CTF-challenges and malware. When the instructor chooses a type, the re-
spective form is displayed using the JavaScript shown in listing [4.13]. Each form con-
tains the input fields for the values described in the meta model for each type, see figure
[3].

45

Chapter 4 - Implementation

Listing 4.13: Display form given in dropdown

<script >
if (localStorage.getItem(’form_frame ’)) {

$("#uploadtypeselector option").eq(localStorage.
getItem(’form_frame ’)).prop(’selected ’, true);
v = localStorage.getItem(’form_frame ’);
changeview(v);

}

$("#uploadtypeselector").change(function () {
val = $(this).val();
deleteview(v);
changeview(val);
v = val;

});

function changeview(val) {
console.log("changed to: " + val);
document.getElementById(val).style.display = "block"

;
document.getElementById(’uploadtypeselector ’).value

= val;
localStorage.setItem(’form_frame ’, val);

}

function deleteview(val) {
console.log("Deleted view: " + val);
document.getElementById(val).style.display = "none";

}
</script >

When adding a vulnerable application, it is possible to add CVE as metadata. If in-
cluded, it is checked that it is valid by CIRCLs CVE Search terms. If the response is empty,
we conclude it is an invalid/non-existing CVE and the instructor needs to either not in-
clude CVE or enter a valid one. In addition to a valid CVE, some input fields are manda-
tory such as "name" and "file". These fields are mandatory for all the types to upload and
will return a message to the instructor if empty on submit.

46

Chapter 4 - Implementation

Figure 10: Database web-interface forms for adding content

Modify/Delete content

The modify section presents the user with a search bar, previously explained in View/Find
content. Again, the user can search for any element present in the JSON document stored
in the database. The result is displayed as collapsible views which can be expanded by
clicking on them. When the element is expanded, the user is free to modify its content,
or add/remove values that has or hasn’t been set. Whether it’s a vulnerable application, a
malware or a CTF-challenge, different values can be modified or added/removed specific
to the type of element. When an element is modified, the change can be submitted to the
database. On the other hand, if an element is up for deletion, it is the same procedure

47

Chapter 4 - Implementation

as modify for finding the right element. But instead of modifying the element, one must
click the Delete object from database button. An example of the modify form can be shown
in figure 11.

Figure 11: Database web-interface modify content

4.6.4 Back end

The back end consists of a configuration file, an index page, an API class and several PHP
files for database actions. Before using the services offered through the web-interface, a
number of credentials and other values has to be inserted to the environment file prior to
accessing the services in order to authenticate yourself. Below is an example on how the
configuration file would look like. The S3 credentials are generated through OpenStack.

Listing 4.14: Example of php config file

api_key = YOUR -DREAMFACTORY -API -KEY -HERE
ip = DREAMFACTORY -IP-HERE
s3_key = OPENSTACK -S3-CREDENTIALS -KEY -HERE
s3_secret = OPENSTACK -S3 -CREDENTIALS -SECRET -KEY -HERE
s3_region = OPENSTACK -REGION
s3_endpoint = ENDPOINTURL

48

Chapter 4 - Implementation

The variables defined in the file above are used as an array wherever its needed, as for
example:

#Load the phpconfig.ini file containing credentials , IP’s
and more.

$ini_array = parse_ini_file("../ conf/phpconfig.ini", true);

// Vuln_applications
$json = file_get_contents(’http ://’.$ini_array["ip"].’/api/

v2/mongodb/_table/vuln_applications?limit =4& order=_id%20
DESC&api_key=’.$ini_array["api_key"]);

Index.php retrieves data from the database using the API class, that requests Dream-
Factory for data to be used in the rendered HTML file. It is responsible for collecting the
latest insertions which is the only data needed when the page is first loaded. The rest of
the back end will only be executed by an action of the instructor.

API Class

For accessing the API, the back end uses an API class, the class does all operations con-
cerning the API such as adding, searching, deleting and modifying content. The class is
created to make the code less repetitive and simplify the use of the API.
Listing 4.15 shows an example use of the API class in use:

Listing 4.15: API class usage example

// Create Api object , parameter is the php config created
during first time setup

$api = new Api($ini_array);
//For each collection , get data and render with Twig
foreach($collections as $collection){

$data[$collection] = $api ->getContents($collection);
}

This will retrieve the content of each collection and display on the web page.

Search

When an instructor searches for content in the database, search.php is responsible for
handling the action and returning the results to the frontend using Twig. It first needs
to find the value from the search input and then execute the search, for searching the
API method search() is used to filter the request for the specified search, the result of
the search uses the methods getVuln_applications, getCtf_challenges and getMalware to
format the data to be rendered with Twig. Listing 4.16 shows the creation of an object
with search-results when search input equals $_POST[’search’].

Listing 4.16: Sourcecode for search

$search = $_POST[’search ’];
$search = urlencode($search);
$data[’searchres ’] = [];
foreach($collections as $collection){

$data[’searchres ’][$collection] = $api ->search($search ,
$collection);

}

49

Chapter 4 - Implementation

//API search () method
public function search($search , $collection) {

$data = [];
if($this ->collectionExists($collection)){

switch ($collection) {
case ’vuln_applications ’:

$json = file_get_contents(<
DreamFactory_URL_WITH_FILTER_FOR_$SEARCH)
;

$data = $this ->getVuln_applications($json);
break;

case ’ctf_challenges ’:
$json = file_get_contents(<

DreamFactory_URL_WITH_FILTER_FOR_$SEARCH)
;

$data = $this ->getCtf_challenges($json);
break;

case ’malware ’:
$json = file_get_contents(<

DreamFactory_URL_WITH_FILTER_FOR_$SEARCH)
;

$data = $this ->getMalware($json);
break;

default:

}
}
return $data;

}

Download

When the data is retrieved in the back end, a pre-signed-URL [17] is generated for each
object, this URL is added as a download button in the collapsible of each element. When
clicked the file will download with file name corresponding to the key in Swift Storage.
A way of implementing this is shown in listing [4.2].

Upload

Each form has its corresponding PHP file to handle the upload action from the instructor.
It first check if mandatory fields are set using isset(). If they are empty, both a message
and the fields that are empty are returned to the frontend to let the user know what is
missing. In addition it also returns the values for any of the other inputs which was set
on the request so that the instructor do not need to re-fill the entire form a second time.
If everything that need to be entered is set, the metadata can be uploaded to MongoDB
through the API method insert() and the file is uploaded to Swift.

Listing 4.17: Upload content to MongoDB and Swift

$ini_array = parse_ini_file($_SERVER[’DOCUMENT_ROOT ’]."/conf
/phpconfig.ini", true);

$s3 = new S3Client ([
’region ’ => $ini_array[’s3_region ’],
’endpoint ’ => $ini_array[’s3_endpoint ’],

50

Chapter 4 - Implementation

’version ’ => ’latest ’,
’credentials ’ => [
’key’ => $ini_array[’s3_key ’],
’secret ’ => $ini_array[’s3_secret ’],
],
’use_path_style_endpoint ’ => true ,

]);

try{
$r = $s3 ->putObject ([

’Bucket ’ => ’pled_files/vuln_applications ’,
’Key’ => $filename ,
’Body’ => $content

]);

$resource = json_decode(’{}’);
$resurce ->resource = [];
$metadata = json_decode(’{}’);

// Add values from $_POST , repeat for all values
if (!empty($_POST[’someValue ’]) {

$metadata ->value = $_POST[’someValue ’];
}

// Create the request json body
$resource ->resource [0] = $metadata;
$body = json_encode($resource , true);
//API class call
$api = new Api($ini_array);
$res = $api ->insert($body , ’vuln_applications ’);
$obj = json_decode($res[’response ’], true);
// Check for errors
if($res[’response ’] === FALSE){

die($res[’error ’]);
$data[’error ’] = ’dferror ’;
echo $twig ->render(’databaseManagementPage.html’,

$data); // Render html
}

// Check for errors
if($response === FALSE){

die(curl_error($ch));
$data[’error ’] = ’dferror ’;
echo $twig ->render(’databaseManagementPage.html’,

$data); // Render html
}

if ($obj[’error’][’code’] != 200) {
$data[’uploaded ’] = ’false’;

} else {
$data[’uploaded ’] = ’true’;

}

51

Chapter 4 - Implementation

header(’Location: ../ index.php?uploaded=’ . $data[’
uploaded ’]);

} catch (S3Exception $e) {
echo $e->getMessage () . PHP_EOL; // Not to be used in

production
$data[’error ’] = ’s3Exeption ’;
echo $twig ->render(’databaseManagementPage.html’, $data)

; // Render html
}

Listing 4.18 shows the API method for inserting into a collection

Listing 4.18: API class insert method

public function insert($data , $collection) {
$ch = curl_init ();
$options = array(CURLOPT_URL => ’http ://’.$this ->

ini_array["ip"].’/api/v2/mongodb/_table/’.$collection
.’/’,

CURLOPT_HTTPHEADER => array(’X-DreamFactory -API -Key
:’.$this ->ini_array["api_key"],

’Content -Type: application/json’),
CURLOPT_POST => 1,
CURLOPT_POSTFIELDS => $data ,
CURLOPT_RETURNTRANSFER => 1

);

curl_setopt_array($ch , $options);

// Send the request
$response = curl_exec($ch);
$res[’response ’] = $response;
if($response === FALSE) {

Modify/Delete

When the back end is called to modify metadata for a vulnerable application, CTF-
challenge or malware, it first creates the request body with each value from the form
and then calls the function to send the PATCH-request with corresponding collection and
the created body as arguments. The function creates the cURL and sends the request
to DreamFactory via the API class. If everything goes as planned it changes the header
location to index.php.

Listing 4.19: Send patch request and check response

function sendPatchRequest($collection , $body , $apikey) {
$dfapikey = ’X-DreamFactory -API -Key:’.$ini_array;

//API class call
$api = new Api($ini_array);

$res = $api ->patch($body , ’vuln_applications ’);
// Decode response
$obj = json_decode($res[’response ’], true);

// Check for errors

52

Chapter 4 - Implementation

if($res[’response ’] === FALSE){
die($res[’error ’]);
$data[’response ’] = ’Something␣is␣wrong ,␣check␣

DreamFactory␣configurations ’;
echo $twig ->render(’databaseManagementPage.html’,

$data); // Render html
}

// Error handling for code != 200
if (!empty($obj[’error ’][’code’]) && ($obj[’error ’][’

code’] != 200)) {
$data[’updated ’] = ’false’;

} else {
$data[’updated ’] = ’true’;

}
header(’Location:␣../ index.php?updated=’ . $data[’

updated ’]);
}

Listing 4.20 shows the API method for patching a collection.

Listing 4.20: API class patch method

public function patch($data , $collection) {
$ch = curl_init ();

$options = array(CURLOPT_URL => ’http ://’.$this ->
ini_array["ip"].’/api/v2/mongodb/_table/’.$collection
.’?filter=_id=’.$_POST[’_id’],

CURLOPT_HTTPHEADER => array(’X-DreamFactory -API -Key
:’.$this ->ini_array["api_key"],

’Content -Type:␣application/json’),
CURLOPT_CUSTOMREQUEST => ’PATCH’,
CURLOPT_POSTFIELDS => $data ,
CURLOPT_RETURNTRANSFER => 1

);

curl_setopt_array($ch , $options);
// Send the request
$response = curl_exec($ch);
$res[’response ’] = $response;
if($response === FALSE) {

$res[’error’] = curl_error($ch);
}
return $res;

}

4.7 Vulnerable Application Retrieval

4.7.1 Using ExploitDB search API

ExploitDB provides a program for searching their database, called SearchSploit. This
program allows for search with parameters such as platform, type and id. SearchSploit
does not provide a method of searching for CVE or to check if an exploit has a vulnerable
application. So we needed something that could give us more data.

53

Chapter 4 - Implementation

4.7.2 Scraping exploitdb: vulnRetriever.py

Since the SearchSploit program is inadequate for PLEDs purposes, another way of getting
the data is required. Scraping the HTML of the ExploitDB website works by getting the
id from a CSV file located on ExploitDB Github repository. This id is used to create an
URL that is scanned for a vulnerable app and to see if it is verified

Listing 4.21: Check for vulnerable application and verification

url = EXPLOITURL + id
#Request the page with the selected headers
page = requests.get(url , headers=HEADER)
tree = html.fromstring(page.content)
hasapp = tree.xpath("//a[re:match(@href ,␣ ’/apps/’)]",

namespaces ={"re": "http :// exslt.org/regular -
expressions"})

#Checks if the exploit is verified , using the checkmark
class

isverified = tree.xpath("//i[contains(@class ,␣’mdi -check ’)
]")

If the app has an application URL and is verified, the CVE id is extracted from the page
and used with CVESearch to gather the required metadata of a vulnerability

Listing 4.22: Search for CVE data

#search for cve id
if ’CVE’ in link.attrib[’href’]:

vulnData[’cve’] = ’CVE -’ + link.text_content ().strip
()

cve_search = CVESearch ()
#lookup cve
data = cve_search.id(vulnData[’cve’])
#get data from returned json
if data:

if ’summary ’ in data:
vulnData[’cve_summary ’] = data.get(’summary ’)

if ’cvss’ in data:
vulnData[’cvss’] = data.get(’cvss’)

if ’cwe’ in data:
vulnData[’cwe’] = data.get(’cwe’)

if ’impact ’ in data:
vulnData[’impact ’] = data.get(’impact ’)

if ’msbulletin ’ in data:
vulnData[’msbulletin ’] = data.get(’msbulletin ’)

if ’vulnerable_configuration_cpe_2_2 ’ in data:
vulnData[’vulnerable_configuration ’] = data.get(

’vulnerable_configuration_cpe_2_2 ’)

When all the data is collected the application is inserted into the MongoDB collection

The scraper was originally written in PHP, but was instead exchanged for Python as
it requires less dependencies, it’s simpler to use and it’s more flexible.

54

Chapter 4 - Implementation

Configuration

vulnRetriever is configurable from the vulnRetriever.ini file, .INI format is preferred since
it is a well known format for configuration files and can divide the configuration into
sections that is parse-able by the Config-parser Python module[18], here the user can
specify the database configuration, the date from when to start searching (what date the
app was published) or other configurations related to the search that would not need to
be altered unless something in the exploit-db.com website is changed.

Listing 4.23: Example of configuration

[SETTINGS]
StartDate = <PUBLISHED_DATE_TO_START_FROM > #eks 2000 -01 -01
Checkfile = <NAME_OF_CHECKED_FILE > #eks checked.txt

[SCANNER]
Exploiturl = <EXPLOITDB_BASE_URL > #https ://www.exploit -db.

com/exploits/

[DATABASE]
Mongo_ip = <MONGODB_HOST > #eks 192.168.10.10 OR hostname
Mongo_user = <MONGODB_USER >
Mongo_pw = <MONGODB_PASSWORD >
Mongo_database = <DATABASE_TO_STORE_DATA >
Mongo_collection = <DATABASE_COLLECTION >

[CSV]
Csvurl = <EXPLOITDB_CSV_LOCATION > #https ://raw.

githubusercontent.com/offensive -security/exploitdb/master
/files_exploits.csv

vulnRetriever.py options

The scraper allows for some arguments to be added when running it:

• -q, –quick Scan and simultaneously store scanned ids in a file, so that if interrupted
the program can start from where is was saved

• -u, –update Run in update mode, checks PLED for the latest added exploit, by its
date. Only adds exploits from ExploitDB that was added after said date.

• -v, –verbose Run with verbose outputted to the console
• -l, –log Output in logging format, for when running automatically on a schedule
• -i, –id Scan a specific ExploitDB id for a vulnerable application

55

Chapter 5 - Deployment

5 Deployment

5.1 Heat Template

OpenStack takes care of networking, routing, servers and more, based on the applied
Heat template. Instead of building the whole infrastructure manually from the bottom
up, a Heat template from Erik Hjelmås’ GitHub was used as a basis for PLEDs infrastruc-
ture.

The top level Heat template, top_pled.yaml, defines two resources, one resource named
infrastructure and one named workers. The infrastructure resource invokes infrastruc-
ture.yaml, which builds the network and network components. The worker resource in-
vokes its own workers.yaml file, which is dependent on the previously mentioned in-
frastructure resource. This is because the network needs to be up and running before
assigning servers with IP addresses.

Before starting the stack, one must fill out the environment variables located in
pled_top_env.yaml. This defines parameters for the Swift username and password among
other things. The parameters are further piped into the needed resources, which sends
them as parameters into custom bash scripts. This is done with the intention of improving
security by having passwords and user names passed as variables at creation, instead of
storing them as clear text in the scripts executed on each server.

5.1.1 Source code

All the source code used for the workers are located in a public Git repo, this is because
it makes setup and configuration on the workers easy by cloning down the repository on
the respective instances. And the source code will always be up to date, making change
management more efficient.

5.1.2 infrastructure

This resource creates the network infrastructure consisting of a network, address pool,
a router with ports, a default gateway and a security group. The security group enlists
all necessary ports to enable services outside the LAN to communicate with PLED. Only
when the resource infrastructure is finished, the next resource workers is launched. Below
is an example on how the security group is built, specifically how the port for SSH, port
22, and the port for MongoDB, port 27017, is created:

security_group_linux:
type: OS::Neutron::SecurityGroup
properties:

description: Create a PLED security group
name: linux_PLED
rules:

- remote_ip_prefix: 0.0.0.0/0
protocol: tcp
port_range_min: 22
port_range_max: 22

56

https://github.com/githubgossin/IaC-heat-k8s

Chapter 5 - Deployment

- remote_ip_prefix: 0.0.0.0/0
protocol: tcp
port_range_min: 27017
port_range_max: 27017

5.1.3 workers

The workers resource invokes the workers.yaml file, which creates defined servers, and
each server executes their own bash script in order to configure server specific settings
not defined in the docker-compose files. The set of workers makes up the PLED service.
The Heat template can provide defined parameters to the bash script, e.g. an IP-address
of a specific instance. An example is provided below:

Manager

manager -server:
type: OS::Nova::Server
properties:

name: manager -server
image: { get_param: image_linux }
flavor: { get_param: flavor_manager }
key_name: { get_param: key_name }
networks:

- port: { get_resource: manager_port }
user_data:

str_replace:
template: { get_file: scripts/manager_boot.bash }
params:

df_ip: { get_attr: [web -api , networks ,
pled_admin_net , 0] }

db_ip: { get_attr: [dbreplica -t, networks ,
pled_admin_net , 0] }

pwd: { get_attr: [bkup_pw , value] }
mongodbrootpw: { get_attr: [mongodb_root_pw ,

value] }

bkup_pw:
type: OS::Heat::RandomString
properties:

length: 16

The resource named manager-server is launched with the appropriate settings. In the
property user_data, a custom bash script manager_boot.bash is invoked, and with it, some
important parameters. df_ip is the parameter containing the IP of the instance running
the DreamFactory service, and db_ip contains the IP address of the database. The param-
eter pwd is a randomly generated string. Similar to pwd, mongodbrootpw is the MongoDB
root password needed to run mongodump commands for backup.

The bash script manager_boot.bash uses the parameters db_ip and df_ip to automat-
ically insert the correct IP-addresses to the backup jobs in crontab. And the pwd param-
eter is used as a password to create the user backupbot. This allows the manager-server
to relay the public key through ssh-copy-id as a first-time operation with username and
password to establish a credential free login with SSH. The process is done on the servers

57

Chapter 5 - Deployment

meant to have a backup job. An example of this can be seen in the snippet below:

#Copy SSH -key to relevant machines , as the Ubuntu user
sudo -Hu ubuntu /usr/bin/sshpass -v -p pwd ssh -copy -id -i /

home/ubuntu /.ssh/bkup_key.pub -o StrictHostKeyChecking=no
backupbot@df_ip

sudo -Hu ubuntu /usr/bin/sshpass -v -p pwd ssh -copy -id -i /
home/ubuntu /.ssh/bkup_key.pub -o StrictHostKeyChecking=no
backupbot@db_ip

#Adding cronjob for backup of DreamFactory
crontab -l | { cat; echo "0 0 * * * /usr/bin/ssh -i /home/

ubuntu /.ssh/bkup_key backupbot@df_ip ’/bin/bash /home/
ubuntu/pled/misc/backup_dfvol.sh’"; } | crontab -

#Adding cronjob for backup of MongoDB
crontab -l | { cat; echo "0 0 * * * /usr/bin/mongodump --

username root --password mongodbrootpw --
authenticationDatabase admin --host db_ip --port 27017 --
db pled --forceTableScan -o /backup/mongodb_\$(date +\%Y_
\%m_\%d) --gzip

"; } | crontab -

Other servers

Furthermore, the following resources spawns these servers:

• balancer - Balancer server in front of the API and the database web-interface.
• web-api - The API, running on the DreamFactory framework.
• dbreplica - A replication enabled MongoDB server for storage of metadata.
• docker-registry - Private Docker Registry.
• database web-interface - The database web-interface for manual interaction with

the database, and consequently the file storage.

The file proceeds with creating three persistent volumes and attaches them to the
appropriate servers. One backup volume, one volume for the database and one volume
for the DreamFactory service.

Floating IP’s are assigned to:

• balancer - Expose the API and the database web-interface to services outside the
LAN.

• dbreplica - A floating IP is assigned to dbreplica, in case an administrator want to
use the MongoExpress tool along with database.

• docker-registry - Exposes the front-end of the Docker Registry service.
• manager-server - Externally reach the manager-server, for general management on

the infrastructure.
• web-api - Expose the DreamFactory admin panel and the API documentation.

Database server

In regards to the database server, the vulnRetriever has already been running and pre-
filled a database that is restored at the creation of the database server. By doing this, the
administrator(s) of PLED will not have to run the vulnRetriever, which can take up to
several hours. This is done by executing mongorestore, a tool for restoration of MongoDB

58

Chapter 5 - Deployment

dumps like in the snippet below:

#Dump exploitdb applications into database
mongorestore --username root --password mongodbrootpw --

authenticationDatabase admin --host localhost --port
27017 --collection vuln_applications --db pled /home/
ubuntu/pled/misc/vuln_applications_edb.bson

As previously mentioned in [4.4], if the environment variable mgoexpress is set to true,
this code will be executed. It uses the variable mongodbrootpw to set the root password
for the MongoDB server, and basic authentication is enabled with credentials added to
the Heat environment file.

#Start mongo express if specified
if [mgoexpress]; then

docker run -d --network docker_default -e
ME_CONFIG_MONGODB_SERVER=mongodb -primary -e
ME_CONFIG_MONGODB_ADMINUSERNAME=’root ’ -e
ME_CONFIG_MONGODB_ADMINPASSWORD=’mongodbrootpw ’ -e
ME_CONFIG_BASICAUTH_USERNAME=’basicuname ’ -e
ME_CONFIG_BASICAUTH_PASSWORD=’basicpw ’ -p 8088:8081
mongo -express

59

Chapter 6 - Security

6 Security

6.1 Introduction

When creating a vulnerability database and populating it with vulnerable systems and
applications, there are some security aspects to take into consideration. These aspects
need to be assessed and proper actions needs to be taken to ensure that all systems in
the network remain healthy when deploying and using the PLED system.

6.2 Vulnerable application storage

When storing vulnerable apps there are some risks to consider. One risk is that a vulner-
able application will be used in a production environment by some fault or misuse. This
risk is not very likely and with the access control for the database and the API, it will
be an accepted risk. When adding and retrieving files from the Swift container the user
must authenticate with EC2 credentials, this is to prevent unauthorized use of the file
storage.

6.3 CTF-challenge storage

Able students or participants of a CTF-challenge might be enticed to try to access the
database in order to get the flags. To minimize this risk we have implemented user au-
thentication on the database with a secure password generated by Heat.

6.4 Malware storage

The dormant malware does not pose a risk unless its executed, and how its executed in
lab environments is outside PLEDs scope. However, introducing malware to platform is
never completely safe. The human factor is always a risk, whether its intentional or not.
Someone might use one of these malwares on a outdated machine which is exposed to
the world wide web, and in a worst case scenario, infect parts of a network or similar.

To stop unintentional use and malicious acts, access control has been enabled for
the DreamFactory administrative interface, DreamFactory API, Database web interface
(through PEMA) and Swift with access via DreamFactory. By only allowing specific peo-
ple and services to access the repository, the risk introduced by storing malware is signif-
icantly reduced. To further reduce the residual risk, traffic to and from DreamFactory is
encrypted with SSL/TLS. The residual risk is at an acceptable level.

6.5 Vulnerability Retriever

The vulnRetriever is using HTML scraping for collecting the vulnerable applications, this
tends to put stress on the website being scraped. Because of this, the script should be ran
with caution and have a small delay between the individual searches in order to avoid
flooding the system, and resulting in blocking NTNUs IP range from accessing the site.
To make sure that the script won’t cause any problems some warnings are implemented

60

Chapter 6 - Security

when running the script to make sure it is not started by accident. When deploying the
solution the script will run fully automated.

6.6 REST API

As the API has access to both file storage and the MongoDB server, it is vital to ensure
that only the necessary services has access to it. DreamFactory takes care of API-key
generation with role based privileges, which in turn is provided to the services which
needs to communicate with the API.

6.7 DreamFactory admin interface

The DreamFactory service is open source, making its inner workings visible to anyone
with interest in doing code review, making it extremely unlikely for it to exist backdoors
or other maliciously intended code. None of the data flowing through DreamFactory is
sent to their servers, as the service runs locally at NTNUs SkyHigh platform. By using
this automated framework, complexity is reduced when multiple services interact with
each other, as its all from one provider, opposed to several different services combined
by students in the group.

These features combined, along with several others like the already mentioned user
management and role based access, the group is comfortable with using this framework
from a security perspective, and trusts the services provided by DreamFactory [19].

6.8 Database web-interface

The database interface deployed with PLED is created for testing purposes and proof of
concept, in a production environment proper access control should be implemented as
when the interface is accessed there is no as of now no limit to what a user is authorized
to do, this can be done with roles in DreamFactory since the database web-interface is
using the API endpoints to perform actions.

61

Chapter 7 - Operations

7 Operations

7.1 Backup

Data that needs to be backed up are located on two persistent storage volumes attached
to the respective machines, one for DreamFactory, and one for MongoDB. For both jobs, a
pull model is utilized for safety, in order to avoid multiple machines with write-access to
the manager server. For both jobs, a default backup rotation of 14 days is set in place and
anything older than 14 days is deleted. The find program is used to decide what files to
delete by looking at the files metadata, specifically its creation date. A cronjob starts the
process after previously executed backup-jobs are finished, and deletes files older than
14 days as seen below:

0 1 * * * /usr/bin/find /backup/dfbackup/ -mtime +14 -type f
-delete

The file names are appended with a date/time-stamp: YYYY_mm_dd for better human
readability.

The aforementioned backup plan in the design chapter [3.2.4], was adapted into a
better suited plan for PLED and its data. Incremental backup was dropped due to the
small file sizes, and the single point of failure still stands, but the backup data is stored
on an external volume. The server might fail, but the backup data is otherwise safe and
is fully recoverable.

7.1.1 DreamFactory

The volume attached to the machine which runs the DreamFactory service is backed
up once per day by compressing all files on the volume with tar, which is a tool for
compressing files or folders. These files are relatively small, and will remain small even
if the application grows, as the contents mainly consists of configuration files and user
management related files for a user database. A cronjob runs the tar script once per day:

0 0 * * * /usr/bin/ssh -i /home/ubuntu /.ssh/bkup_key
backupbot@df_ip ’/bin/bash /home/ubuntu/pled/misc/
backup_dfvol.sh ’

The manager runs rsync, which is more fault tolerant than SCP since it can for exam-
ple retry the execution in case of a network outage. Rsync is executed shortly after prior
backup jobs, in order to synchronize the backup folder on the server running DreamFac-
tory. The -e option is used in order to specify which SSH key is to be used:

10 0 * * * /usr/bin/rsync -a -e "/usr/bin/ssh -i /home/
ubuntu /.ssh/bkup_key" backupbot@df_ip :/ backup/dfbackup/ /
backup/dfbackup/

7.1.2 MongoDB

The manager server will dump the MongoDB database with all the application metadata.
This is stored on an external volume, the data is dumped using mongodump and each

62

Chapter 7 - Operations

collection is stored as a zipped file to take less space. To restore a dump, MongoDB has a
mongorestore function which takes in the path to the dump and will automatically restore
the database. The dump is run using the following command:

1 0 * * * /usr/bin/mongodump --username <MONGO_USER > --
password <MONGO_PW > --authenticationDatabase admin --host
<MONGO_HOST >--port 27017 --db <DB_NAME > --forceTableScan
-o /backup/mongodb_backup/mongodb_\$(date +\%Y_\%m_\%d)

--gzip

The backup is carried out once per day.

Restoring the database content

To restore the content from the dump into the database, the following command must
be run

mongorestore --username <MONGO_USER > --password <MONGO_PW >
--authenticationDatabase admin --host <MONGO_HOST > --port
27017 --db <DB_NAME > <BACKUPDUMP >

7.2 Logging

All services, except the vulnerability retriever, run in Docker containers. Docker offers
rich logging output functionality which supports a multitude of options, like to and from
date, only show the latest X entries, tailing with procedural output and more. More on
this can be read about on the wiki.

An example on how to output logs to a file, for the DreamFactory service would be:

docker -compose -f docker -compose -df.yml logs dreamfactory >>
output.log

To enable debugging for DreamFactory, uncomment the environment variable
APP_LOG_LEVEL in the docker-compose file for DreamFactory and set it to debug.

Logging in MongoDB is based on verbosity levels, these can be specified when starting
the Docker service, the levels goes from 0 to 5. The level is defined in an environment
variable in the docker-compose file called MONGODB_SYSTEM_LOG_VERBOSITY.

Vulnerability Retriever

For logging the Python script that extracts the vulnerable applications, PLED uses the
stdout from the script and concatenates it to a file, the script has a logging option that
can be set to print data that is useful for logging and error handling.
Below is an example of log file when the vulnerability retriever is running once per day
on update mode.

ubuntu@manager :~$ cat .vuln.log
Time: 2019 -05 -08 13:37:26.285440
Scan complete , 0 applications added
Time elapsed: 00:00:36

63

https://project.ncr.ntnu.no/w/pled/description/logging/

Chapter 7 - Operations

7.3 Monitoring

Monitoring is important in any system to see the status of all the services running at any
given time, it can be crucial when something unexpected happens that the monitoring
service alerts and shows what has caused an error. Monitoring can also be useful when
implementing new features, the service can be configured to check for the new feature
and see how the other systems react to it.

PLEDs monitoring has mainly been through Docker status checks like docker ps and
docker logs to check the container status, in a production environment a more automated
solution is recommended. This can be achieved through a wide range of already devel-
oped services. PLED has done some testing with the ELK stack service. The ELK stack is
a logging service consisting of a search engine Elasticsearch, log storage Logstash, and
a dashboard called Kibana. This has been run as a Docker stack, and by using Docker’s
log driver PLED got logs from the Apache server running the database web-interface and
displayed this in Kibana. Other services such as TICK stack or Docker Vizualiser can be
used, but requires more setup. These types of monitoring services are considered out of
scope for the PLED project. Below is an example of how logging was enabled to stream
log data to ELK in the database web-interface using the syslog driver.

docker run --log -driver=syslog --log -opt syslog -address=tcp
:// $logstaship :5000 --log -opt syslog -facility=daemon --
name $containername -d -v $wwwfolder :/var/www/html/ -p
$port :80 $registry/db-web -ui:latest

DreamFactory also supports integration with ELK stack, when running an enterprise
tier [20].

7.4 Bug Tracking

Any system will have bugs in one way or another, the group needs to ensure that the bugs
are properly organized and tracked. Therefore a bug tracker can be used to be able to
manage and prioritize these bugs, the bug tracker is present in NCRs Phabricator, in the
workboard. As we already use Phabricator for a number of other things, it was decided
to utilize the workboard for tracking problems and bugs. The bugs and issues has their
own section in the workboard, as to not be confused with the backlog or other columns
in the workboard.

Figure 12: Bug and issue column in the workboard

64

Chapter 7 - Operations

7.5 Upgrading software

7.5.1 DreamFactory

It is recommended to use tagging on Docker images to prevent automatically applied
updates from breaking the system. Bitnami (the provider of the currently used Docker
images) provides a simple guide for how to upgrade the services provided by them. It
boils down to stopping the service, snapshot it if the upgrade should fail, remove the
stopped container and at last rebuild it with docker-compose up. It’s the same proce-
dure with all other services from Bitnami, this includes the MongoDB service running
on PLEDs database server. For a more detailed explanation, see the document reference
from Bitnami. Before doing an upgrade, it is wise to check if the change log indicates
breaking changes. If this is the case, it is very important to ensure the snapshots/backups
are in working condition, before proceeding with the upgrade.

7.5.2 Vulnerability Retriever

When upgrading the vulnerability retrieving script you are working directly on the source
code, since this is an in house developed script with a limited scope. It is fairly straight
forward to upgrade if the developer is familiar with the script and the Python language.
the groups intention is that the script is well documented and commented so that a future
developer can easily upgrade or change the functions of the script.

65

https://github.com/bitnami/bitnami-docker-dreamfactory#upgrading-dreamfactory
https://github.com/bitnami/bitnami-docker-dreamfactory

Chapter 8 - Testing

8 Testing

8.1 vulnRetriever

The vulnerability retriever will be tested using Python linter and some unit testing to
check that different inputs to the scraper is treated as expected.

8.2 MongoDB search performance test

By creating dummy data with extensive JSON content, a small performance review was
done. An open source and free software called mgodatagen was used in order to generate
dummy data for the MongoDB server. The JSON documents was made to have similar
size to the documents used in PLED environments. Most of the content was random
strings of various lengths, to simulate the metadata documents in production.

The most realistic scenario ran first with a count of 100 000 documents, generated
various content. The size of the collection after generating the documents was 4 kB and
about 300 MB of RAM was used on the instance as a result of the process. Searches in the
database from the API was not affected at this point and queries returned results within
one second.

Increasing the document count to 1 000 000 impacted the instance by using about 2
GB of RAM as a result of the process, and the collection size was 28 MB. Searches done
by the API was slightly impacted, but still acceptable. A query with two filter options
(date and name) returned a result of 1003 documents in about 2 seconds.

At 10 000 000 documents, the instance ran out of RAM and stopped responding.

As the document database is never assumed reach a number of 1 million documents,
PLED is confident that database search performance wont be a problem.

66

https://github.com/feliixx/mgodatagen

Chapter 8 - Testing

8.3 Functional testing

After deploying a clean stack, functional testing was done manually by confirming that
services and functionality worked as intended. A checklist was created to help the group
systematically confirm everything. This uncovered several small errors in for example
scripts, PHP files and general configuration. In the bash scripts especially, special at-
tention was needed on using absolute paths, escaping special characters, and running
specific tasks as specific users. The test was executed multiple times by redeploying the
stack, and it was redone with fixes implemented from the last failed test.

Below is a check-list used in our testing.

• manager-server

◦ Cron jobs for backup.
◦ Add SSH keys to relevant machines for credential-less login over SSH.
◦ Volume attached and mounted.

• dbreplica - MongoDB

◦ vulnRetriever added to cron, if enabled in Heat.
◦ MongoExpress started with basic authentication, if enabled in Heat.
◦ Database restored at start-up.
◦ Volume attached and mounted.
◦ Create backupbot user, with home folder and sudo permissions.
◦ Password parameter passed to docker-compose file for MongoDB.
◦ Enabled password authentication in ssh_config.

• web-api - DreamFactory

◦ Volume attached and mounted.
◦ Create backupbot user, with home folder and sudo permissions.
◦ Enabled password authentication in ssh_config.
◦ Access DreamFactory over HTTPS.
◦ Create role and API-key in DreamFactory.
◦ DreamFactory can access MongoDB

• Database web-interface

◦ Access first time use configuration page.
◦ Connect to DreamFactory and Swift for retrieving database content.
◦ Authenticate with basic authentication using DreamFactory user.
◦ Add, modify, remove and view database content.
◦ Search for content.

• Docker Registry

◦ Log in to front end with basic authentication.
◦ Log in with docker login and pull/push images.
◦ Check if connected to Swift storage.

• Balancer - HAproxy

◦ Generate certificates and move them to the appropriate folder.
◦ Copy and supply configuration file with correct IP-addresses.

67

Chapter 9 - Discussion

9 Discussion

9.1 Evaluation of the result

A system ready for deployment and functioning out of the box is what PLED ended up
with. All of the project results have been met, as well as most of the requirements (includ-
ing criticalities below mandatory), with the additional operational functionality like for
example deployment with Heat. The project owner and PLEDs supervisor has through-
out the project been agreeing with most of the choices made and has been positive to the
results that has been achieved.

Project effects has yet to be measured to see if the desired effects of the finished
product have been fulfilled. To best accompany this fact, a handover-process will be
conducted upon delivery, in order to properly prepare the employer Danny L. Murillo
and NCR to take over further development and operations of PEMA/PLED.

The pre-project Gantt schema provided little guidelines for the group in the later
stages, as much of the requirements were developed during the first couple of months
of the project, making it somewhat obsolete. As development started, some tasks took
longer than expected, vice versa, but it did give some general sense of time consumption
and workload distribution at the least. Meaning it was not too far off to be completely
dismissed. At the end, the group was finished with a product ready for submission, and
a proper report.

All things considered, the group is pleased with the results, and is hoping for a smooth
transfer to NCR for further development and usage.

9.1.1 Evaluation of Docker

Using Docker for running the applications on PLED has made dependency handling easy
and the configuration through yaml files made the deployment efficient and easy. One
setback with using Docker is that not every application is available in Docker and not
every Docker application can be tailored to fit our needs, so some altering had to be
done.

9.1.2 Evaluation of Vulnerability Retriever

The vulnerability retriever uses methods that are hard to scale and is inefficient. Consid-
ering this service as non-critical the way it was implemented satisfies the needs for PLED.
The service was launched once and inserted over 3000 applications to the database. Us-
ing a collection dump from MongoDB it is not needed to run the full script again when
deploying the service. For this reason, the long time to finish when running the script
from scratch is accepted. In the future a more reliable way would be preferred, i.e an API
from ExploitDB.

9.1.3 Evaluation of DreamFactory REST API

Taking into account that the group had no previous experience using the software, it has
proved itself to be of great use for simply creating a REST API towards your storage.

68

Chapter 9 - Discussion

It was simple to connect to and featured most necessary operations towards MongoDB,
in addition to having appreciated features for user management and role-based access.
There was absence of some needed functionality, and some of these were behind a pay-
wall, but it was not a huge problem to either fix using custom scripting or to find ways
around in the back end.

9.1.4 Evaluation of Database web-interface

As a proof of concept, the database web-interface provides a structured overview of some
possibilities for uses of the DreamFactory REST API. All features mentioned in the re-
quirements are fulfilled and implemented. As the interface is later to be implemented
into PEMA, the results from this project can easily be used as a template or guide for the
coordination and implementation.

9.2 Evaluation of the group work

9.2.1 Introduction

All in all, members were satisfied with what’s been done and a mostly balanced work load
has been achieved. The evaluation has been done through feedback within the group,
discussions among group members and looking at the workboard maintained throughout
the project, as seen in appendix B.

9.2.2 Organizing

The group members are situated in the same house, thus making it easy to reach each
other and coordinate work. A dedicated room was established as a study room, where
most of the labor was done. The group had a flat organizational structure, but members
had some main responsibility areas, which made sense as different skill sets resides in
each of the group members.

A schedule for when to work with the project was used at first, but it quickly became
redundant as there was a general consensus between group members on how much time
had to be spent on the project. It was rather used as a calendar for when group members
were absent or busy with other courses, as it quickly became apparent that planning was
dependent on being aware of each other’s schedules.

9.2.3 Distributed workload

In the beginning, it was a known factor that some group members were more familiar
with certain technologies that others were not, making some tasks more suited for select
group members. Being already aware of this, it was an acceptable factor and the work
load was generally distributed evenly. There was always something else to be done, e.g.
filling out sections in the report, if other current tasks didn’t fit a group member.

Kanban worked in PLEDs favor of making tasks visible and keeping them somewhat
organized. As all members of the group lives together, the Kanban board was not used
in its full potential, both because it was feature lacking [9.4.1] and much of the coordi-
nation was done orally in addition to writing on a white board in the study room. But it
did come in handy for tracking progress and logging work to some degree.

69

Chapter 9 - Discussion

9.2.4 Project as a form of study/work

While traditional education is structured and follows a set path with a lower risk of
getting stuck or going down the wrong path, a project such as this is often more mo-
tivating than traditional education. It introduces elements that are relevant to both the
Programming course and IT-Operations. Having the chance to help sculpt the assignment
increased motivation as relevant technologies could be introduced.

A project such as this is more similar to a real-life scenario one would encounter at
a future workplace, and can be used better face new challenges in a potential future
workplace.

9.3 Evaluation of learning

For this project the group learned that when a problem occurs, reaching out might not
always provide the project group with an answer, if any, that satisfies as an answer, thus
finding alternatives and evaluating them has been an important process. For example
when trying to find what storage technologies should be used, see reference [3.3].
Not everything can go as planned from the start, in the start of the development phase
some features had to be altered to work with the expected functionality. An example
can be the vulnerability retrieving script, where it first was intended to use an API from
ExploitDB, but this API was not available and PLED had to evaluate the need for such an
API and explore other alternatives
Learning how to structure the building of a service has been valuable for this project.
In the beginning some of the sub services of PLED was intended to be developed before
others, but while working and planning it was realized that a different approach was
needed to be able to get the components working.

9.4 Evaluation of choices and technologies

9.4.1 Phabricator

As previously mentioned in [1.8.4], Phabricator has extensive functionality and an adap-
tation of Phabricator is currently being built by NTNU. PLED used several of the available
services offered by Phabricator like the Kanban workboard, git repository, the wiki which
was used for both meeting logs and describing PLED functionality and additional guide-
lines. It worked out well enough in this project and it did not prevent PLED from working
efficiently with the assignment.

Although the workboard was somewhat lacking and at times tedious in regard to
default options when creating new tasks, which had to be changed at every new task.
Sub tasks was also not implemented well enough for us to properly utilize them, com-
pared a much better solution from e.g. Jira. The markup language for the git repository
in Phabricator was, again, lacking compared to other more commonly known service
providers like BitBucket or GitLab, but it was more of an annoyance than a problem. It
would also have been useful to have template functionality when creating meeting logs
in the wiki section.

Other functionality like the chat, issue tracker or a file upload section was not used.
Either because the services offered by Phabricator was lacking in terms of functionality or

70

https://confluence.atlassian.com/jiracorecloud/working-with-boards-800712866.html
https://secure.phabricator.com/book/phabricator/article/remarkup/
https://confluence.atlassian.com/bitbucketserver/markdown-syntax-guide-776639995.html
https://docs.gitlab.com/ee/user/markdown.html

Chapter 9 - Discussion

was redundant compared with existing solutions already in use by PLED or the product
owner.

9.4.2 Overleaf

Using Overleaf to write the report has made it easy to collaborate on the project, while
some features are harder to implement, when using the ready-made template from NTNU
minimal adjustments was needed.

9.4.3 Discord

Discord provided PLED with quick and easy communication with the other bachelor
groups working on related projects, as well as communication with the project owner.

9.5 Evaluation of Docker Swarm

Initially it was intended to use Docker Swarm to run the DreamFactory service to accom-
modate for availability and redundancy by utilizing multiple nodes in the swarm. Turns
out however it was problematic to get persistence storage with volumes, together with
the Docker image provided by Bitnami. The default Docker volume driver caused prob-
lems regarding availability across the swarm. This is because a volume is only attached
to one node, while the swarm consists of several nodes which is supposed to utilize
the same volume. A another volume driver called Rexray was tried out, but also ended
up causing problems regarding permissions. The services launched by docker-compose
could not write to the attached and mounted volumes, even though permissions were ex-
plicitly set by chowning the folder on which the volume was mounted to. Thus when the
services tried to create new folders/files, it failed. Several days in, with little progress, it
was decided to use a single larger machine with Docker compose and the default volume
driver.

Unfortunately the same problem was identified later on the database server nodes.
MongoDB replica was difficult to implement in a Docker Swarm, again as Bitnami’s
Docker image was primarily meant to be run on a single server. The group could not
figure out how to get around this within a reasonable time frame. The group were able to
place the primary, secondary and arbiter on the separate labeled nodes (servers) named
dbreplica-1, dbreplica-2 and dbreplica-3, but there was a problem when secondary and
arbiter nodes tried to communicate with the primary node. It was believed that the prob-
lem was the same as the previous one, shared volume across the swarm. Rather than hav-
ing to deal with this problem, a single server running with an external storage seemed
like a lot less time-consuming alternative.

9.6 Future Work

9.6.1 Database web-interface

There was not sufficient time to implement the database web-interface to PEMA. The
conveyed impression from PEMA was that importing a website to WordPress was not
difficult, if one had some WordPress experience.

71

https://github.com/rexray/rexray

Chapter 9 - Discussion

Filter

A feature that would come in handy is a filter search, filtering content based on pre-
defined values. For example, without searching for a specific word in the search bar,
one would be able to filter CTF-challenges of the type attack-defense with difficulty level
adept. A more granulated searching functionality would lead to a better user experience
as it will lead to more meaningful and substantial results when searching for files.

Metadata

To ensure best use of the Database web-interface in the future, the metadata options
through the insertion and modification forms should be revisited to ensure all necessary
data is stored. Both for use in all the different scenarios the vulnerability database can
be of use to the NCR, but also for logging and monitoring of data modification.

Malware

The malware documents inserted as of now have limited metadata as the group was
unsure of what a malware were to contain, further work on this was postponed until a
more certain structure was determined. Such a structure has been added as future work,
a figure showing the wished metadata can be viewed in appendix E.

9.6.2 Vulnerability Retriever

The vulnerability retriever relies on the HTML of the ExploitDB website, this is subject
to change. Because of this the vulnRetriever is designed to be as adaptive as possible to
the change in HTML. In the future a more reliable method of collecting applications is
preferred e.g. an API from ExploitDB.
When running in update mode, the script checks with the published date, therefore when
no new applications are found the published date is not updated and the next time the
updater runs it will check the same ones as last time and the new ones. This causes it to
take a few seconds longer to run each time. This is not a serious issue since the retriever
runs in the background and does not take up much resources. If it finds an application,
it will update the published date.

9.7 Assignment criticism

The assignment was originally just PEMA, but in order to be of more relevance to the
group members, meaning an assignment fitting both a programming course and an IT-
Operation oriented course, it was spawned as an adapted version of PEMA. While it
would take a few days to come up with a new assignment, it made more sense to the
group as a whole.

The project owner was very flexible and valued input from the group members when
it was requested. It gave PLED a sense of purpose of producing something that would be
used for what is was meant for.

What was difficult at times, was understanding PLEDs purpose in the midst of PEMA
and the DSL. The different roles of each project were confusing, and the line separating
the different assignments was occasionally unclear. Additionally, while waiting for the
requirements from the project owner, limited work could be done, prolonging the start of
the project. That said, this didn’t come as a surprise since it was a branching assignment
from the already existing assignment PEMA.

72

Chapter 10 - Conclusion

10 Conclusion

This project has proven to become more and more demanding as we progressed, obsta-
cles were encountered along the way that first was not considered. Overcoming these
obstacles has given valuable knowledge when it comes to thinking outside the box and
develop creative solutions. Having a frequent dialog with the project owner made it pos-
sible to tweak the solution to fit their demands and the requirements became somewhat
flexible.
The group created a service for storing vulnerable applications, CTF-challenges and mal-
ware where data can be added, retrieved or modified using both a database web-interface
and a REST API.
The way the applications are stored makes it a very adaptable solution that can be used
for a wide range of metadata and file types. The PLED service will make organizing of
files and applications trivial for the NCR and help with the deployment of realistic cyber
security scenarios. The product that was delivered is believed to be of use in further cyber
security scenarios, as well as being improved upon in future projects by the Norwegian
Cyber Range.

73

Chapter 10 - Conclusion

Bibliography

[1] NSM. Nsms årlige risikorapport 2018. https://www.nsm.stat.no/globalassets/
rapporter/rapport-om-sikkerhetstilstanden/nsm_risiko_2018_web.pdf.
(Visited March 2019).

[2] Git-scm. Git. https://git-scm.com/. (Visited February 2019).

[3] Phacility. Phabricator. https://www.phacility.com/. (Visited February 2019).

[4] 2011. Iso/iec 25010:2011. ISO/IEC 25010:2011, 4. URL: https://www.
standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/
?ProductID=474621.

[5] Mongodb limits and thresholds. URL: https://docs.mongodb.com/manual/
reference/limits/.

[6]

[7] Cloud storage pricing | s3 pricing by region | amazon simple storage service. URL:
https://aws.amazon.com/s3/pricing/.

[8] Dreamfactory api management. URL: https://dreamfactory.com/.

[9] Swagger. Swagger api documentation. https://swagger.io/. (Visited February
2019).

[10] DreamFactory. Dreamfactory. https://blog.dreamfactory.com/
nosql-no-problem-operation-specifics/. (Visited February 2019).

[11] Api documentation - cve-search. URL: https://cve.circl.lu/api/.

[12] Class s3client. URL: https://docs.aws.amazon.com/aws-sdk-php/v3/api/
class-Aws.S3.S3Client.html.

[13] MongoDB. Faq: Replication and replica sets.
https://docs.mongodb.com/manual/faq/replica-sets/
#what-information-do-arbiters-exchange-with-the-rest-of-the-replica-set.
(Visited February 2019).

[14] DreamFactorySoftware. dreamfactorysoftware/df-docker. https://hub.docker.
com/r/dreamfactorysoftware/df-docker/. (Visited April 2019).

[15] Linn, N. W. G. J. Rfc1421 - privacy enhanced mail. https://tools.ietf.org/
html/rfc1421. (Visited April 2019).

[16] Toxboe, A. Progressive disclosure design pattern. http://ui-patterns.com/
patterns/ProgressiveDisclosure. (Visited May 2019).

74

https://www.nsm.stat.no/globalassets/rapporter/rapport-om-sikkerhetstilstanden/nsm_risiko_2018_web.pdf
https://www.nsm.stat.no/globalassets/rapporter/rapport-om-sikkerhetstilstanden/nsm_risiko_2018_web.pdf
https://git-scm.com/
https://www.phacility.com/
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=474621
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=474621
https://www.standard.no/no/Nettbutikk/produktkatalogen/Produktpresentasjon/?ProductID=474621
https://docs.mongodb.com/manual/reference/limits/
https://docs.mongodb.com/manual/reference/limits/
https://aws.amazon.com/s3/pricing/
https://dreamfactory.com/
https://swagger.io/
https://blog.dreamfactory.com/nosql-no-problem-operation-specifics/
https://blog.dreamfactory.com/nosql-no-problem-operation-specifics/
https://cve.circl.lu/api/
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.S3.S3Client.html
https://docs.mongodb.com/manual/faq/replica-sets/#what-information-do-arbiters-exchange-with-the-rest-of-the-replica-set
https://docs.mongodb.com/manual/faq/replica-sets/#what-information-do-arbiters-exchange-with-the-rest-of-the-replica-set
https://hub.docker.com/r/dreamfactorysoftware/df-docker/
https://hub.docker.com/r/dreamfactorysoftware/df-docker/
https://tools.ietf.org/html/rfc1421
https://tools.ietf.org/html/rfc1421
http://ui-patterns.com/patterns/ProgressiveDisclosure
http://ui-patterns.com/patterns/ProgressiveDisclosure

Chapter 10 - Conclusion

[17] Amazon. Amazon s3 pre-signed url with aws sdk for php version 3. https://docs.
aws.amazon.com/sdk-for-php/v3/developer-guide/s3-presigned-url.html.
(Visited May 2019).

[18] python. Python configparser. https://docs.python.org/3/library/
configparser.html. (Visited May 2019).

[19] DreamFactory. Dreamfactory security guide whitepaper. https://blog.
dreamfactory.com/security_whitepaper/. (Visited April 2019).

[20] DreamFactory. How to integrate elk with dreamfactory. https://blog.
dreamfactory.com/configure-an-elk-stack-with-dreamfactory/. (Visited
April 2019).

[21] W3. Token based authentication. https://www.w3.org/2001/sw/Europe/events/
foaf-galway/papers/fp/token_based_authentication/. (Visited May 2019).

75

https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/s3-presigned-url.html
https://docs.aws.amazon.com/sdk-for-php/v3/developer-guide/s3-presigned-url.html
https://docs.python.org/3/library/configparser.html
https://docs.python.org/3/library/configparser.html
https://blog.dreamfactory.com/security_whitepaper/
https://blog.dreamfactory.com/security_whitepaper/
https://blog.dreamfactory.com/configure-an-elk-stack-with-dreamfactory/
https://blog.dreamfactory.com/configure-an-elk-stack-with-dreamfactory/
https://www.w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/token_based_authentication/
https://www.w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/token_based_authentication/

Chapter 10 - Conclusion

Glossary

auth-token Allow users to enter their username and password in order to obtain a token
which allows them to fetch a specific resource - without using their username and
password. Once their to ken has been obtained, the user can offer the token - which
offers access to a specific resource for a time period - to the remote site [21]. 40

CVE-ID Common Vulnerabilities and Exposures is a list of common identifiers for pub-
licly known cyber security vulnerabilities. 1

CVSS Common Vulnerability Scoring System is a metric for reflecting the severity of a
vulnerability. 30

Document Oriented Database A nonrelational DB designed to store semistructured data
as documents, often represented in JSON. 24

ethical hacking An act of trying to penetrate systems/networks with the intent of find-
ing and reporting vulnerabilities and flaws in said systems. The goal is to improve
the security of the system/network. All of this is done after signing an agreement
with the owner of the system. 1

HAProxy HAProxy is a free load balancing, and proxying service for TCP and HTTP-
based applications 1. 35

heat Implements an orchestration engine to launch multiple composite cloud applica-
tions based on templates in the form of text files that can be treated like code. 37,
56

NoSQL Storage/Retrieval of data that uses other relations than tabular relations (which
would be a relational database). 24

object storage Storing data as containers, referred to as objects, as opposed to single
files in a hierarchy. The objects has a globally unique identifier instead of a file
name and a file path, and the objects includes the data itself as well as its associated
metadata. 21

openssl A toolkit for the Transport Layer Security (TLS) and Secure Sockets Layer (SSL)
protocols. It is also a general-purpose cryptography library 2. 39

Security Champion Security Champions are active members of a team that acts as the
"voice" of security for the given product or team.3. 2

1http://www.haproxy.org/
2https://www.openssl.org/
3https://www.owasp.org/index.php/Security_Champions

76

http://www.haproxy.org/
https://www.openssl.org/
https://www.owasp.org/index.php/Security_Champions

Chapter 10 - Conclusion

SkyHigh NTNUs adaptation of OpenStack. It’s a private cloud platform which runs on
NTNU servers using OpenStack 4. 5

SQA Means of monitoring the software engineering processes and methods used to en-
sure quality in the developed software. 2

unshard Sharding is a database partitioning technique that splits large databases or
objects in to smaller ones. Unsharding is the joining of these shards. 27

vulnerability Vulnerability is a term that refers to a weakness or flaw in a system/appli-
cation that can leave it open to an attack. 1

4https://www.openstack.org/software/

77

https://www.openstack.org/software/

Chapter A - Meeting logs

A Meeting logs

78

5/6/2019 ⚡ Meeting150119

https://project.ncr.ntnu.no/w/pled/meetingsummaries/jan/meeting150119/?__print__=1 1/1

 This document was moved from /w/pled/meetingsummaries/meeting150119/jan/.

Meeting summary
Attendees: Adrian, Askil, Karoline

Agenda: Questions for Erik and other attendees

Questions:

Put the assignment on paper?

What are the requirements?

What technologies should be used?(mandatory)

What bachelor Theses would you recommend for us to read?

Jungle

Previous PEMA theses/documents

Read PEMA task by Vetle and Adrian

What are we not supposed to do? 

Any news on exploit.db?

Make structure for future meetings?

Notes from meeting:

Meeting with PEMA and Mikal next week

Other thesis's to read: Configuration management system, Audun

Tools based on the certificate transparency concept

Pre-project less important

Internal and external sensor (grading)

Clear assessment of our choices

RESTAPI

Meeting150119

5/6/2019 ⚡ Meeting220119

https://project.ncr.ntnu.no/w/pled/meetingsummaries/jan/meeting220119/?__print__=1 1/1

 This document was moved from /w/pled/meetingsummaries/meeting220119/.

Meeting summary
Attendees: Adrian, Askil, Karoline, PEMA, Basel, Erik, Danny

Agenda: Ask quesitons

Questions:

Notes from meeting:

Remove the API?(Danny) - only query the db directly, OR API that would connect the registry with the repo of

vuln(Basel) Regestry and vuln app as two dbs.

Metadata ontology around object will be provided by Danny and Mikael?

Owal language

Begin with the API functions and interface

For collaboration with PEMA

Basel optinion: separate PLED into a separate components

Categories, binaries, text files, know what object it is

Using labels perhaps

Send project report before Monday 28 to Erik

Meeting220119

5/6/2019 ⚡ Meeting290119

https://project.ncr.ntnu.no/w/pled/meetingsummaries/jan/meeting290119/?__print__=1 1/1

 This document was moved from /w/pled/meetingsummaries/meeting290119/.

Meeting summary
Attendees: Adrian, Askil, Karoline

Agenda:

Questions:

Notes from meeting:

Pre-prosjekt: Security champion og sikkerhet i hvert ledd

Docker container applications

TOSCA, Cloudify og Open TOSCA

Skriv i rapporten: Definer hva som er en god API, evt hva som utgjør en dårlig API.

Faglig utfylling rettet mot vårt prosjekt, ikke for generelt. Skriv kort om alternative valg av teknologier.

https://docs.docker.com/registry/spec/api/

Meeting290119

5/6/2019 ⚡ Meeting080219

https://project.ncr.ntnu.no/w/pled/meetingsummaries/feb/meeting080219/?__print__=1 1/1

 This document was moved from /w/pled/meetingsummaries/meeting080219/.

Meeting summary
Attendees: Adrian, Askil, Karoline, PEMA

Agenda: Discuss API

Questions:

Notes from meeting:

Autentisering:

PEMA should have an API key

A manual way of adding keys

Type of info available through GET: CVSS, CVE, name, platform, type/category...

Meeting080219

5/6/2019 ⚡ Meeting120219

https://project.ncr.ntnu.no/w/pled/meetingsummaries/feb/meeting120219/?__print__=1 1/1

 This document was moved from /w/pled/meetingsummaries/meeting120219/.

Meeting summary
Attendees: Adrian, Askil, Danny, Erik, Karoline was in another meeting

Agenda: Questions

Questions:

How to get the vuln applications: docker hub, exploitdb, vulnhub, ctf repos

OpenStack project

Notes from meeting:

Figure out how to store the cyber weapons,

Email basel CC danny om exploit DB.

OpenStack api is useful resource for writing API

Meeting120219

5/6/2019 ⚡ Meeting190219

https://project.ncr.ntnu.no/w/pled/meetingsummaries/feb/meeting190219/?__print__=1 1/1

 This document was moved from /w/pled/meetingsummaries/meeting190219/.

Meeting summary
Attendees: Adrian, Askil, Karoline

Agenda:

Display the requirements documents and use cases.

Danny and Erik can approve the requirements so that we could start the development.

Started implementing configurations for Dreamfactory and mongodb in openStack.

Questions:

Status exploit db(Basel)

Integrate with LDAP(to authenticate agains teachers/students)

In addition to using API-keys

Notes from meeting:

Meeting190219

5/6/2019 ⚡ Meeting050319

https://project.ncr.ntnu.no/w/pled/meetingsummaries/3mar/meeting05032019/?__print__=1 1/1

 This document was moved from /w/pled/meetingsummaries/meeting05032019/.

Meeting summary
Attendees: Adrian, Askil, Karoline, Erik

Agenda: General questions and status update.

Questions:

To store dockerfile or build and store image in registry ?

ExploitDB API status

Alternatives to exploit db for vuln retrieval

Notes from meeting:

We have developed the database web interface where one can: upload an application with metadata, metadata

can be manually filled or supply a CVE-id to autofill the form. Application is stored in Swift, metadata is stored

in MongoDB.

Not sure how to retrieve applications from exploitdb and populate our database with it, automatically.

Erik asks us if we have a plan for if we can't get access to an API towards ExploitDB. Our plan is to combine

several methods in order to fill our DB: do it manually (database web interface); use Docker-Hub to search for

Docker Images with the docker command "docker search vaas cve-id"; try out a search engine for exploitDB

MDEOUS/exploitdb (git).

Meeting050319

5/6/2019 ⚡ Meeting120319

https://project.ncr.ntnu.no/w/pled/meetingsummaries/3mar/meeting120319/?__print__=1 1/2

 This document was moved from /w/pled/meetingsummaries/meeting120319/.

Meeting summary
Attendees: Adrian, Askil, Karoline

Agenda:

Questions:

Vulnerability retriever: is in alpha, working for testing purposes. Is written in PHP but want to rewrite to python

since it doesnt need to be in php and python has less dependencies.

Scrapes exploitdb for vulnerable applications, uses quite a long time so not to get blocked, thoughts on this

approach ?

Server layout: comments ?

PEMA: How does PEMA handle login, should it use the same database for login as PLED? How does PEMA

want the application/files delivered?

Erik: In regards to the MongoDB containing documents with metadata, should this be placed in a Docker Swarm

with 3 servers for availability? Or is it enough with just one DB server, as there is few writes per day, just one

large initial write?

When we want to load balance the API (DreamFactory), do this in a separate Docker Swarm cluster?

Meeting120319

5/6/2019 ⚡ Meeting120319

https://project.ncr.ntnu.no/w/pled/meetingsummaries/3mar/meeting120319/?__print__=1 2/2

Notes from meeting:

5/6/2019 ⚡ Meeting190319

https://project.ncr.ntnu.no/w/pled/meetingsummaries/3mar/meeting190319/?__print__=1 1/1

Had meeting the previous day about PEMA, PLED and the DSL project.

Test out API, try to combine PLED and PEMA to see how the API is used

Scarping works for now

Meeting with Erik

Try to develop the scraper with future change in mind

Make change as easy as possible

First draft of bachelor report due 11.04.19

Try to deploy a vulnerable app to see the steps necessary

Talk with DSL developers about metadata needed

Meeting190319

5/6/2019 ⚡ Meeting250319

https://project.ncr.ntnu.no/w/pled/meetingsummaries/3mar/250319/?__print__=1 1/1

Meeting summary
Attendees: Adrian, Askil, Karoline, Rune

Agenda: Database

Questions:

Situasjonen vår - cve dokument med embedded document som inneholder applikasjoner.

Er det et problem at embedded documents kan gro uhemmet? Skal vi derfor bruke document refrences i stedet?

Vurdere bruk av relational fremfor document oriented database?

Notes from meeting:

BASE > ACID

Flexible Data Model

Consistency

Fokuser på hvordan vi kom frem til valget (ta til betraktning det vi vet i dag)

Beskrive bruken av databasen (brukere, størrelse, bruksmønster), ytelse er i mindre grad interessant i vårt

bruksområde(?)

Vurdere simulering av database-brukt, python script fyller db med 100k docs o.l. og monitorer ytelse; oppfører

parametere seg annerledes ved feks 500 documenter og 500k documenter.

Meeting250319

5/6/2019 ⚡ Meeting260319

https://project.ncr.ntnu.no/w/pled/meetingsummaries/3mar/meeting260319/?__print__=1 1/1

Meeting summary
Attendees: Adrian, Askil, Karoline, (Lars Erik), Mihkal

Agenda:

API key Swift

Metadata for vulnerabilities

Questions:

Notes from meeting:

Ansible role for vulnerable applications (ikke dockerfiles). - github.com/geerlingguy/ansible-role-ntp

Installer ansible - fort gjort å lage skjellet til rolle, Ansible Role NTP

Tasks mappe og default

Vi legger til at det kan legges til roller i vårt interface, zip file eller github repo, (med dependencies)

Docker registry

Mihkal kan teste deployment fra de

Meeting260319

5/6/2019 ⚡ Meeting290319

https://project.ncr.ntnu.no/w/pled/meetingsummaries/3mar/meeting290319/?__print__=1 1/1

Meeting summary
Attendees: Adrian, Askil, Karoline, PEMA, Michael, Danny and Basel

Agenda: UML Drawing session, general discussion

Questions:

Notes from meeting:

Include malware-collection.

5. april - Geir Olav supplies Basel with info for NCR meeting

6. april - Geir Olav shows up on NCR meeting

Sequence diagram (dynamic) a general overview, UML focus on one component.

Meeting290319

5/6/2019 ⚡ Meeting020319

https://project.ncr.ntnu.no/w/pled/meetingsummaries/04apr/meeting020319/?__print__=1 1/1

Meeting summary
Attendees: Adrian, Askil, Karoline, Erik

Agenda: Weekly progress meeting

Questions:

What we have done so far:

Renewed schema for easier searching/filtering, and other API operations on our database.

Reviewed report chapters, like requirements/design/introduction.

Created more models: high level use case diagram of PLED and more specific sequence diagrams to better

explain our components.

Reviewed Danny's notes on our report and changed it accordingly.

Updated Wiki for API usage.

Had a meeting with Rune to get better argumentation for our choice of database.

Meeting with PEMA and Mikael to coordinate high level information, expectations and so on.

Talked with Lars Erik about usage of credentials when using the API towards OpenStack Swift.

What we want to ask:

Security chapter related questions...

Notes from meeting:

Meeting020319

5/6/2019 ⚡ Meeting090419

https://project.ncr.ntnu.no/w/pled/meetingsummaries/04apr/meeting090419/?__print__=1 1/1

Meeting summary
Attendees: Adrian, Askil, Karoline, Erik, Danny(?)

Agenda: General questions, progress

Questions:

What should be in deployment and what should be in implementation?

For example, DreamFactory is currently under implementation, but it also describes how its deployed in PLED,

at the same time.

Same goes with MongoDB, we use someone else's Docker Image.

Notes from meeting:

Need to read report, will get from report feedback

Meeting090419

5/6/2019 ⚡ Meeting300419

https://project.ncr.ntnu.no/w/pled/meetingsummaries/04apr/meeting300419/?__print__=1 1/1

Meeting summary
Attendees: Adrian, Askil, Karoline, Erik

Agenda: General question, progress

Questions:

Heat Template, how to handle SSH keys on new instances when pulling from Phabricator:

Move project to GitHub public repo?

Use same private key across all instances? 😟

Some ninja method we dont know about? 😏

To what degree must the project be complete when we deliver the project, in regards to finishing touches?

Worked on the Heat template (creates instances, network, installs docker/docker-compose, adds cronjobs,

creates/attaches/mounts volumes).

Reviewed report regarding the feedback from Erik, e.g. added an Operations chapter to the report. It contains

the subjects backup, logging, monitoring, upgrading and bug tracking.

GUI is coming along.

Retrieving files is now possible, custom CURL in DreamFactory.

We are now using a service user in OpenStack, instead of our own accounts, for communication with Swift.

Notes from meeting:

Arugmenter for valgene tatt i utvikling av GUI, mtp fargevalg, biblioteker, verktøy.

Malware

Meeting300419

5/7/2019 ⚡ Meeting070519

https://project.ncr.ntnu.no/w/pled/meetingsummaries/05may/meeting070519/?__print__=1 1/1

Meeting summary
Attendees: Adrian, Askil, Karoline, Erik

Agenda: Questions about Heat, Puppet, Consul, progress

Questions:

Enable communication between machines using ssh_authorized _keys, manager is booted before the

workers.

Eks: Backup needs to communicate over SSH with web-api server for pulling the files for backup

Use puppets authorized key resouce for this ?

If puppet we need hostnames, best way to do this ?

Use consul for service discovery / DNS ?

Notes from meeting:

Gå over intro igjen, må være god. A scrutiny of an abstract?

Generere brukere på maskinene, og kjøre ssh-copy-id uname@host med brukernavn/passord.

Volum images som backup?

Noe som ikke skal driftes kontinuerlig over lang tid. Burde være tilpasset å kunne tas opp og ned "ofte", fremfor

at feks puppet skal vedlikeholde systemet.

Vurdere å lage backup server på utsiden av stack, evt volumene på utsiden av stacken?

Puppet, alle andre enn master må ha master i etc/host.

Prøv

Meeting070519

Chapter B - Kanban Work Cards

B Kanban Work Cards

96

Chapter C - Pre-project report

C Pre-project report

100

Pre-project
Bachelor assignment 2019

PLED

February 11, 2019

Contents

1 Project information 1

2 Goals and limits 1

2.1 Background . 1

2.2 Project goals . 1

2.3 Limitations . 2

3 Scope 2

3.1 Subject area . 2

3.2 Problem scope . 2

3.3 Problem description . 3

4 Project organization 3

4.1 Assigned responsibilities and roles . 3

4.2 Internal policies and routines . 3

5 Planning, follow-up and report 4

5.1 Project modules . 4

5.1.1 Software development framework/process 4

5.1.2 Methods and approach . 4

5.2 Planning of project status meetings . 4

6 Quality Assurance organization 5

6.1 Documentation, standards and source code 5

6.2 Configuration management . 5

6.3 Risk assessment . 6

6.3.1 Technology . 6

6.3.2 Business . 7

6.3.3 Project group . 8

i

7 Progress management 8

7.1 GANTT . 8

7.2 Work Breakdown Structure . 10

7.3 Milestones . 12

7.4 Time and resource scheduling . 12

ii

1 Project information

Title: PLED (Pentesting Lab Environment Deployment)

Projectnr: 47
Participants: Adrian Jacobsen Moen (BITSEC), Askil Amundøy Olsen (BITSEC),

Karoline Moe Arnesen (BPROG)
Project owner: NTNU, Norwegian Cyber Range w/Danny Lopez Murillo
Coordinator: Erik Hjelmås
Contact person: Adrian Moen

2 Goals and limits

2.1 Background

The PLED(Pentesting Lab Environment Deployment) project is a subproject of the PEMA
(Pentesting Exercise Management Application). PEMA is a modular scalable virtualiza-
tion platform, its purpose is to deploy virtual cyber scenarios for use in ethical hacking,
penetration testing and cyber security competitions. PEMA is meant to give instructors
and students an interface to deploy, log and submit cyber security exercises.
PLEDs purpose is to create a platform that collects and stores vulnerable applications
and systems, that can be deployed by the instructor at will. PLED will provide a graph-
ical interface where an instructor can select vulnerable systems to be deployed, as well
as a RESTapi that will be used by the PEMA project. Additionally the instructor should
be able to give the vulnerable machines a token or flag that is ment to be submitted
when the user has completed the exercise.
Since the PEMA project is developed along side the PLED project it will be difficult to
integrate properly, for that reason the PLED project will additionally create a service to
deploy machines and configure a lab environment using Openstack and Puppet, inde-
pendently from the PEMA project. In the future the plan is to integrate these projects to
one project.
The collected systems and applications should be stored in a database or fileserver
along with all metadata for each vulnerability e.g. CVE and CVSS score.

2.2 Project goals

The goals of this assignment is to create a solution for the Norwegian Cyber Range to
store vulnerable applications and a method to receive and return vulnerable applica-
tions through a API to be used in the PEMA project.
The main goals to achieve are the following:

1

• Create a vulnerability database
Translate the given vulnerability description ontology into a database schema,
design and deploy it.

• Categorize the vulnerable applications
Capture The flag, Penetration Testing, Attack and Defence etc.

• Provide a graphical interface
Allows instructor to manually add vulnerable applications with its corresponding
metadata.

• API interface to the database.
(From graphical interface)Add vulnerable applications.
Query database for available vulnerable applications with/without information.
Return specific vulnerable applications meeting given criteria.

• Deploy the vulnerable application using the API interface.

2.3 Limitations

The final result of this assignment is to be used for educational purposes only and is
meant to be a tool to be used in the course Ethical hacking. It’s meant to educate stu-
dents in fields of ethical hacking/white hat hacking, pen-testing and academic writing.
For use by the Norwegian Cyber Range primarily.

3 Scope

3.1 Subject area

This project is a part of the Norwegian Cyber Range project from NTNU. The goal of
this project is to educate within the subjects of cybersecurity both offensive and defen-
sive.

3.2 Problem scope

PLED is only a part of PEMA, and will be developed independently. There will be some
coordination between PLED and PEMA, in order to avoid overlapping, but also to work
towards the same goal of completing a fully working PEMA.

2

3.3 Problem description

The PEMA project needs a platform for storing vulnerable systems and applications as
well as deploying them in a safe environment. PLED should be able to collect vulnera-
ble systems from sites such as exploit-db and seebug.org, and store the needed metadata
to a corresponding database.

4 Project organization

4.1 Assigned responsibilities and roles

Our group (PLED) consists of three bachelor students, two from IT-Operations and
Information Security and one from Programming - Applications. Danny Lopez Murillo
from NTNU Norwegian Cyber Range is the project owner, while Erik Hjelmås is our
coordinator.

• Adrian Jacobsen Moen (BITSEC) - Developer, Communication and secretary, Se-
curity Champion.

• Askil Amundøy Olsen (BITSEC) - Developer, Security Champion.

• Karoline Moe Arnesen (BPROG) - Main API/backend developer, Database engi-
neer.

4.2 Internal policies and routines

Routines: Each Tuesday PLED will meet with our coordinator for evaluation and gen-
eral discussion about the progress on our work. A meeting summary is written each
meeting, using the template in OneNote. All group members are to write up how many
hours spent working on the project each day.

3

5 Planning, follow-up and report

5.1 Project modules

The project is divided into the following modules:

• Defining the API

• Design and deploy database(s)

• Download and insert vulnerable applications into database

• Create Database API

• Create graphical interface

• Deployment of vulnerable applications

5.1.1 Software development framework/process

We have chosen the iterative and incremental method in agile development, PLED
needs to be able to adapt to requirement changes down the line, plus some require-
ments are not yet established. Iterative delivery was chosen in order for our coordinator
and project owner to efficiently assess the work that has been done since our previous
meeting. This allows for early feedback on our components. Along with our chosen
process, PLED will also use Kanban board to distribute workload among the group
and use it to keep track of pending tasks and prioritize accordingly. Kanban also pro-
vides us with a visualization of our progress from start to finish. The members of PLED
have used agile and Kanban in previous projects, making it a preferred method.

5.1.2 Methods and approach

The method used will be to develop and document continuously, where everything that
is done is roughly documented, so that it can be further improved when completed. The
development will be done incrementally so that one part that can be completed before
going to the next component. This will only work if every part of the development is
carefully planned on beforehand. The actual development and testing should be trivial
when basing it upon the plans already made. This also counts for the documentation
as it should be done alongside in each process.

5.2 Planning of project status meetings

The weekly status meetings will be used to assess work done, whats planned for the
rest of the week(s) and general questions from PLED.

4

6 Quality Assurance organization

6.1 Documentation, standards and source code

The system will be documented using the wiki on Gitlab, where a repository will also
be created to store and version the source code. PLED will use standard documenta-
tion methods where each code-module will be visualized and explained in the wiki
by a standardized format. All source code will be documented using its appropriate
Programming Language Documentation.

6.2 Configuration management

The project will be version controlled with the use of Git. The report will be written in a
shared LaTex document on Overleaf. This allows for reverting to older versions and see
changes made in real time. In Git there will be a testing branch and production branch,
this way all the development and testing will be done in testing and when all tests are
passed it can be merged into production.
PLEDs goal is to integrate all software through a CI/CD pipeline to make development
as consistent and repeatable as possible, this also helps PLED automate the process as
much as possible.
The goal for change in the project is that it is seamless and efficient.

5

6.3 Risk assessment

6.3.1 Technology

Risk Analysis Treatment
Not being able to ex-
tract data from vulner-
able repositories

This means PLED will not
be able to deploy the so-
lution to its full extent, as
there wont be any appli-
cations to deploy from the
database.

Implement the surrounding tech-
nology, excluding the database
content (vulnerable applications),
could populate database with
dummy-applications.

Not be able to integrate
with PEMA

The solution may work
separately but if the appli-
cation cannot be integrated
with PEMA it will be diffi-
cult to use it for what was
originally intended.

Clearly defined interfaces on the
API that both groups have agreed
upon

Improper database de-
sign

If the database is inefficient
or the badly designed, it
will cause problems when
using the API

To save future hassle and have
more efficient API calls, the design
of the database will be thoroughly
considered before implementing

6

6.3.2 Business

Risk Analysis Treatment
Downloading vulner-
able applications to
NTNU servers

If the vulnerable applica-
tions are not quarantined
in a secure environment,
the vulnerabilities might
cause issues for the outside
network.

Hardening, make sure incoming
connections are only from trusted
sources. When the systems is live,
consider if network connectivity is
needed

Application delivered
not as requested

If the projects requirements
is not clearly established
and communication with
project owner is scarce,
then the delivery may not
be as expected from the
clients perspective

Clearly defined goals and require-
ments, open communication with
project owner and coordinator.
Continuous review of require-
ments

Application not fin-
ished in time

If the time is not managed
properly or the project be-
comes larger than planned,
the application might not
be complete when the
deadline is due

Follow GANTT schedule, clearly
define the work to be done, define
scope

7

6.3.3 Project group

Risk Analysis Treatment
Not being able to keep
up with the set time
frame because of un-
foreseen problems with
the development.

Lagging behind on work
and not being able to de-
liver components in time
creates more problems
down the line because of
work-buildup.

Reach out for help when problems
occur, pivot if problems can’t be
solved.

Illness in PLED, leav-
ing one or more group
member(s) unable to
work for an extended
period of time (1 week
or more).

If a member of the group
is unable to work, progress
will be slowed down. The
situation gets worse if the
group member is working
on technology that the rest
of the group is less familiar
with.

Prioritize tasks, or evaluate the sit-
uation and consider leaving out
functionality.

Uncoordinated work Members of the group
work separately on the
same modules with out
knowing. This results in
duplicated work and lost
efficiency.

Use Kanban board cards to dele-
gate tasks between the members,
and keep to given tasks. Check Git
to see what other members are cur-
rently working on.

7 Progress management

7.1 GANTT

8

7.2 Work Breakdown Structure

10

PLED Project

API Vulnerability
Database DocumentationRetrieve Vuln

Applications Deployment GUI

Define API Develop API

Plan API interfaces

Decide language

Get from API

Post to API

Test

Design Database Implement Database

Determine database
solution

Design databsae
schema

Coordinate API with
database

Setup solution

Insert schema

connect with API

Test

Establish
Technologies

Integrate with
database

Determine
requirements

Research solutions

Determine metadata

Retrieve vulnerable
applications

Insert into selected
database schema

Insert needed
metadata

test

Provision and
configure Run with DSL

Determine
provisioning and
configuring tool

Implement with API

Test

Determine if solution
is viable

Implement with API

Test

Design Develop

Define modules

Define framework

Implement modules

Test with API and
Database

Test with deployment
solution

Continous
Documentation

Sources

Review

7.3 Milestones

Following is our defined milestones, these may change, when the project is defined
further.

• Define API interfaces

• Complete database

• Retrieve vulnerable systems successfully

• Complete GUI

• Deploy in test environment

• Integrate with PEMA

7.4 Time and resource scheduling

Our time scheduling is illustrated in the gantt diagram. The members of the PLED
project is using a shared calendar, where all other tasks are scheduled, this is to know
when to set off time for project work. For task and resource distribution Trello is used
along with a Kanban template to help manage tasks to be done.

12

Chapter D - Group Agreement

D Group Agreement

116

Chapter E - Malware meta model

E Malware meta model

120

Malware

File size *

Notes

Uploaded to Virus Total? *

Payload *

Non-destructive

Destructive

Author *

Description *

Creation date

Source (where from)

Organized course
material

BookChapter

Workshop

Tutorial

Independent

Is source code available?

Hash *

Difficulty level *

File name(s) *

Deployment times

File type

Capabilities

Anti-Behavioral Analysis

Debuggger evation

debugger obstruction

Debugger prevention

Emuation evation

Emuation prevention

Memory dump
obstruction

Sandbox evation

Sandbox obstruction

Sandbox prevention

VM evasion

Anti-static analysis

Obfuscation

Packing

linear disassembler
prevention

Encryption

Anti-patching

Self-mutating

Metamorphic

Polymorphic

Category *

Virus

Worm

Backdoor

Exploit

Trojan

Rootkit

HackTool

Spyware

Dropper

Downloader

Ransomware

Adware

BrowserModifier

Joke

Keylogger

Rogue

Spammer

Other

Platform *

Mobile

iPhoneOS

Android

Desktop

Windows

Win32

Win64

Linux

MacOS

MacOS

MacOS_X

210

Chapter F - Wiki from Phabricator

F Wiki from Phabricator

122

5/17/2019 ⚡ DreamFactory Setup

https://project.ncr.ntnu.no/w/pled/howtos/dfhowto/?__print__=1 1/2

DreamFactory setup guide

This is a manual approach of starting the DreamFactory service with docker-compose. Skip to step 4 if the

OpenStack Heat template is used, provided in the repository PLED_deployment.

Note, a user in this case could be a service, like PEMA. Remember to enable "Active" on users and apps or

whenever it shows up.

1. Clone PLED repository.

2. cd into folder /pled/docker

3. Start the docker-compose file 'docker-compose-df.yml' with:

sudo docker-compose -f docker-compose-df.yml up -d

4. Enter the public IP-address of the instance running in your web browser to access the DreamFactory admin

panel.

5. Create the admin user on the "first time setup page".

6. Go to Services and configure the 'mongodb' service.

Set host, port, databasename, username and password. If you have set up a replication set on different servers,

use the "Connection String" to accommodate for the replicated servers.

NB: MongoDB username is root and the required password can be outputted by the administrator by running
openstack stack show <STACKNAME> .

7. Create a Role, under Roles, and define permissions for each service the role is supposed to have.

8. Create a User under Users and assign role(s) to the user. E.g. if a user is supposed to have access to the

API, it would be a good idea to grant permissions to also read the documentation.

A. In DreamFactory you can either import users from xml, json or csv files or create new users with the

forms presented in the GUI. You can find both methods in the Users tab

(/dreamfactory/dist/index.html#/users), where create is on the top-left side and import on the top-

right. Exapmle of json user:

 {

 "id":123,

 "name":"name",

 "username":"username",

 "first_name":"firstname",

 "last_name":"lastname",

 "last_login_date":"yy-mm-dd hh:mm:ss",

 "email":"email@email.com",

 "is_active":true,

 "phone":"phone",

 "security_question":"securityquestion",

 "confirm_code":"y",

 "default_app_id":null,

DreamFactory Setup

5/17/2019 ⚡ DreamFactory Setup

https://project.ncr.ntnu.no/w/pled/howtos/dfhowto/?__print__=1 2/2

 "oauth_provider":null,

 "created_date":"yyyy-mm-dd hh:mm:ss",

 "last_modified_date":"yyyy-mm-dd hh:mm:ss",

 "created_by_id":"id",

 "last_modified_by_id":"id",

 "confirmed":true,

 "expired":false

 }

9. In order to generate an API key, go to Apps and create a new app. Give it a name, description and a role.

Leave "App location" on "No storage required". This key is required in the first time setup of the database

web-interface.

10. Enable CORS under Config. Fill in the following fields:

Path: /api/v2/api_docs/mongodb/_table/*

Description: PEMA CORS

Origins: * (this allows any origin, alternatively use a comma delimited list for allowing

specific hosts to access the API)

Headers: * (defines allowed HEAD-ers)

Exposed Headers:

Max Age: 0

Methods: All

For further reading, visit:

https://guide.dreamfactory.com/docs/

http://wiki.dreamfactory.com/DreamFactory/Tutorials/Using_the_REST_API

5/17/2019 ⚡ Exploitdb Application Retriever

https://project.ncr.ntnu.no/w/pled/howtos/exploitdb_application_retriver/?__print__=1 1/2

vulnRetriever.py setup

NB: The script is for scraping exploitdb for applications and can take up to 11 hours to finish

Automatic setup
If PLED is launched from the HEAT template (the recommended way), the database will have a sizeable amount

of Exploitdb applciations already inserted (3000+ in time of writing).

If you have inserted applications and wish to run in update mode go to Manual setup

With automatic setup the script will be cloned down to the manager instance and is ready to use

A setting for enabling the script in Update mode with Crontab can be set in the pled_top_env.yaml file

Manual Setup
To manually setup the vulnRetriever script you need to clone down the PLED repository

In the vulnRetriever folder:

Run:

./install.sh

This will install the required python modules.

now you can run the script with:

python3 vulnRetriever.py

This will launch the script in normal mode, there are in total 4 different modes:

Mode Argument Description

Normal none Runs the script from start and inserts every application found into the database, if

cancelled and restarted it will start from scratch

Quickscan -q, --quick Run in "quick" mode. Will store every exploitdb-id scanned in a file, so that if

interupted it can start from last scanned it in the file.

ID scan -i, --id Requires an INT as parameter, will scan a given exploitdb-id to check if there is a

vulnerable application available.

Update -u, --

update

Run in "update" mode. Will get the last published date from the database and only

scan exploits that have been published after the given date.

If you previosuly ran the script in Update mode, and want to start from scratch you need to empty the
checked.txt file (delete and remake)

Configuration

Exploitdb Application Retriever

5/17/2019 ⚡ Exploitdb Application Retriever

https://project.ncr.ntnu.no/w/pled/howtos/exploitdb_application_retriver/?__print__=1 2/2

When starting the script manually, the following values needs to be set in vulnRetriever/config/vulnRetriver.ini:

Mongo_ip: the ip of your mongodb host

Mongo_user: Mongodb username (default: root)

Mongo_pw: Mongodb password accosiated with username

Other settings:

StartDate: Published date of applcations to start searching from (Default 2000-01-01)

Checkfile: filename to be used when storing its when running in "Quickmode"

Exploiturl: Baseurl of exploitd on exploit-db.com (Only change if exploit-db layout has changed)

Mongo_database: Database to store applcations (Default: pled)

Mongo_collection: Collection in database to store application documents (Default: vuln_application)

Csvurl: Url to find all exploits on exploit-db.com in CSV format (Only change if layout has changed)

Logging
The script does not write to a log, but by default will print out data.

To get a log when running on a schedule, output all the data from the script to a file

python3 vulnRetriever >> <LOGFILE> 2>&1

Examples
Example of the script running in Crontab with logs to the home folder:

0 0 * * 0 cd /home/ubuntu/pled/vulnRetriever/ && /usr/bin/python3

/home/ubuntu/pled/vulnRetriever/vulnRetriever.py -u >>/home/ubuntu/.vuln.log 2>&1

This will run the script in Update mode every sunday at midnight

Example of running with exploit-db id specified:

python3 vulnRetriever.py -i <EDB_ID>

This will return if the id was found and if it was inserted

Example of running in quickscan mode:

python3 vulnRetriever.py -q

This will write each id checked to the checked file specified in config/vulnRetriever.ini

If interupted you can start again with same command and it will start of where it was interupted

5/17/2019 ⚡ OpenStack Heat deployment

https://project.ncr.ntnu.no/w/pled/howtos/heat/?__print__=1 1/2

How to deploy PLED

Prerequisites
Some knowledge of OpenStack

An OpenStack project with enough allocated resources. Estimated 32 GB RAM and 8 VCPUs, but this

depends on flavors used in the Heat template.

OpenStack CLI (sourced with the API access file from your OpenStack project)

A security group called default

Deployment
First download the PLED Deployment repo.

Generate a key-pair in OpenStack and put the key in the root folder of the repository. Put the key-pair name in

pled_top_env.yaml file (without the .pem extension). Other environment variables will need to be filled out as

well, see below for further explanation.

Navigate to the root folder of the repository /PLED_deployment and run the command:

openstack stack create NAMEOFSTACK -t pled_top.yaml -e pled_top_env.yaml

Errors or status of the stack can be seen by running. This also reveals the password for MongoDB, which is

required in the setup process.

openstack stack show NAMEOFSTACK

To se the event list during the stack creation, run the command

openstack stack event list NAMEOFSTACK

Environment file:

pled_top_env.yaml

parameters:

 key_name: #Private key name.

 mgoexpress: #Whether you want MongoExpress included or not.

 vulnRetrieverUpdateMode: #Wheteher you want vulnRetriever activated in UpdateMode or not.

 basic_auth_pw: #Password for Docker Registry and MongoExpress.

 basic_auth_uname: #Username for Docker Registry and MongoExpress.

 # For Docker Registry storage in Swift

 swift_username: #Username for your OpenStack account with Swift accessibility,

possible a service user.

 swift_password: #Password for said account.

 swift_domain: Default #Default is for service users, NTNU would be used for a regular

OpenStack Heat deployment

5/17/2019 ⚡ OpenStack Heat deployment

https://project.ncr.ntnu.no/w/pled/howtos/heat/?__print__=1 2/2

user.

 swift_tenantid: #Tenant ID for the user/service user.

 swift_container: #Name for the storage container in Swift.

Services

Service Running on
instance

Manual setup required

PLED database dbreplica username / password for mongodb in env file

Rest API web-api Setup in DreamFactory interface see DreamFactory Setup and

Dreamfactory Additional Services for setup guides

vulnRetriever dbreplica see Exploitdb Application Retriever for setup and usage

Database

management

interface

db-web-

interface

First time config required.

Docker Registry docker-

registry

username / password for basic auth in env file

5/17/2019 ⚡ Access logs - Docker services

https://project.ncr.ntnu.no/w/pled/howtos/logging/?__print__=1 1/1

To access Docker logs, use common logging commands together with docker logs.

docker-compose -f docker-compose-filename.yml logs [options] [servicename] >> output.log

Leave out [servicename] to output logs from all services in the compose file.

Some useful options:

--follow, -f #stream output

--timestamps , -t

--until #RFC 3339 date, a UNIX timestamp, or a Go duration string

--since #RFC 3339 date, a UNIX timestamp, or a Go duration string

--tail 5 #output the last 5 lines from the log

See references for date/time syntax.

Docker log reference

Docker compose log reference

Access logs - Docker services

5/17/2019 ⚡ Database Setup

https://project.ncr.ntnu.no/w/pled/howtos/database_setup/?__print__=1 1/3

MongoDB Automatic setup and install

To automatically deploy and configure the database, refer to OpenStack Heat deployment

MongoDB Manual setup and install

Prerequisites

docker

docker-compose

The docker files used for Mongodb are from bitnami

The docker files used for Mongo Express are from Mongo-Express

This is a manual setup, if OpenStack Heat is used, found at our PLED Deployment repository, these steps are

automated.

Setup
Clone the PLED repository

git clone ssh://git@git.ncr.ntnu.no/source/pled.git

Enter the docker folder.

The docker compose file for the Mongodb setup is called docker-compose-mongorep.yml

Configuration
Open up docker-compose-mongorep.yml in your favorite text editor (vim of course)

Edit the environment variables to your values

Username and password will be used for DreamFactory and general access to the database.

Replicaset key is used to authenticate the nodes in the replicaset.

Port number must be consistent across the replicaset.

For data persistence a volume is needed:

In PLED this data is stored on an external volume.

To configure this you will need an attached volume to the server you wish to run the database on.

Create volume:

sudo mkfs -t ext4 /path/to/volume

Mount volume with docker:

Database Setup

5/17/2019 ⚡ Database Setup

https://project.ncr.ntnu.no/w/pled/howtos/database_setup/?__print__=1 2/3

sudo docker volume create --driver local --opt type=ext4 --opt device=/path/to/volume

mongodb-master-data

Run install
If all is configured, the only thing needed to run is:

sudo docker-compose -f docker-compose-mongorep.yml -d

This will run the service in detached mode

The database should now be accessible on <SERVER-IP>:27017

To access the database you need to add the port to your security group in OpenStack

Mongo Express (optional)
Mongo Express gives a easy to use web interface to the database.

Run:

sudo docker run -d --network ubuntu_default -e ME_CONFIG_MONGODB_SERVER=<MONGODB-ADDRESS> -

e ME_CONFIG_MONGODB_ADMINUSERNAME=<MONGODB-USERNAME> -e ME_CONFIG_MONGODB_ADMINPASSWORD=

<MONGODB-PASSWORD> -p <PORT>:8081 mongo-express

With the serverip, username, password and prefered port.

Specified port must be added in the security group in OpenStack

If another network was specified in the docker-compose-mongorep.yml then change out ubuntu_default when

running the above command.

If successfull the interface will be available at <SERVER-IP>:<SPECIFIED-PORT>

Backup and Restore
When deploying the service automatically with HEAT a cronjob is added to the backupserver to run dump of

the database once per week.

To perform backups manually you can use mongodump the command for this is:

mongodump --username USERNAME --password PASSWORD --authenticationDatabase admin --

host MONGODBIP --portMONGODBPORT --db DATABASE --forceTableScan /destination/folder

This will create one bson file for each collection in the database

with this its also possible to backup single collections with :

--collection COLLECTION

If not destination is given the dump will go in a folder called dump in the working directory

5/17/2019 ⚡ Database Setup

https://project.ncr.ntnu.no/w/pled/howtos/database_setup/?__print__=1 3/3

Restoring from dump

To restore from a dump you can use mongorestore :

mongorestore --username ROOT --password PASSWORD --authenticationDatabase admin --host

MONGODBIP --port MONGODBPORT --db DATABASE /dump/folder

General info
At a minimum 3 different types of nodes are requires:

Primary node

Secondary node

Arbiter node

To read more about mongodb replicaset refer to mongodb docs

5/17/2019 ⚡ Database Web Interface Setup

https://project.ncr.ntnu.no/w/pled/howtos/database_web_interface_setup/?__print__=1 1/1

Get config values for first time setup

Prerequisites:
Access to the OpenStack project where PLED is deployed

Values:
API key:

Refer to DreamFactory Setup step 9

API URL

Floating ip of DreamFactory server or balancer server, check SkyHigh interface or run openstack

server list

S3 Key and S3 secret

run openstack ec2 credentials create

Key is field: access

Secret is field: secret

S3 Region

Region where OpenStack swift is running, default is SkyHiGh

S3 Endpoint URL

URL where Swift container can be accessed

Usually something like https://swift.skyhigh.iik.ntnu.no/swift/v1/<PROJECT-ID>

Database Web Interface Setup

5/17/2019 ⚡ Docker Registry

https://project.ncr.ntnu.no/w/pled/howtos/docker_registry/?__print__=1 1/2

prerequisites

docker

docker-compose

Automatic Setup

The Docker Registry is automatically deployed with the heat deployment.

Username and password for logging into the registry and the registry frontend will be specified in the env file

for deployment.

The registry is available on <docker-registry-ip>:5000

the registry frontend is available on <docker-registry-ip>:80

Manual Setup

clone the PLED repository

move into the docker-registry folder

cd pled/docker/docker-registry

edit the config.yml file with your values, only values like <OPENSTACK_USER> are required to be changed.

For the automatic setup PLED used a service account fo SkyHiGh, contact system administrator to get this.

The full documentation for Swift Docker Storage driver is available at https://docs.docker.com/registry/storage-

drivers/swift/

When the config is ready you must create the username and password for the basic authentication

First create a directory for the htpassw backup

mkdir -p /home/ubuntu/htpasswd_backup

Then make sure that you can write to the folder.

Then run the following docker command:

docker run --rm --entrypoint htpasswd registry:2 -Bbn <USERNAME> "<PASSWORD>"

>/home/ubuntu/htpasswd_backup/htpasswd

This will create the basic auth data for the registry.

Now you are ready to start the registry:

run:

docker-compose -f /home/ubuntu/pled/docker/docker-registry/docker-compose.yml -f

/home/ubuntu/pled/docker/docker-registry/docker-compose.auth.yml up -d --build

If successfull:

The registry is available on <docker-registry-ip>:5000

the registry frontend is available on <docker-registry-ip>:80

Docker Registry

5/17/2019 ⚡ Docker Registry

https://project.ncr.ntnu.no/w/pled/howtos/docker_registry/?__print__=1 2/2

How to use

To use this registry you need to enable it as an insecure registry in your docker config.

The documentation for this is available at https://docs.docker.com/registry/insecure/

From the documentation

Edit the daemon.json file, whose default location is /etc/docker/daemon.json

If the daemon.json file does not exist, create it. Assuming there are no other settings in the file, it should

have the following contents:

 { "insecure-registries" : ["<REGISTRY-IP>:5000"] }

Save the file.

Now you need to login with the username and password you configured earlier

sudo docker login -u <USERNAME> <REGISTRY-IP>:5000

A prompt for the password will appear, enter what you configured.

Will display Login successfull if successfull

Now you can pull or push images.

To see available images browse the registry frontend on <docker-registry-ip>:80

Pull image

docker pull <REGISTRY-IP>:5000/<IMAGE>

Push image

Tag image:

sudo docker tag <IMAGE> <REGISTRY-IP>:5000/<IMAGE>

Push image:

sudo docker push <REGISTRY-IP>:5000/<IMAGE>

5/17/2019 ⚡ Dreamfactory Additional Services

https://project.ncr.ntnu.no/w/pled/howtos/dreamfactory_additional_services/?__print__=1 1/1

Configure scripts and external services in Dreamfactory

Two types of services will be explained in this guide:

Python Scripts

Remote CURL service

Python Scripts
To create a service in DreamFactory select the Services tab.

Select Create

Select Script>Python

Give the script a name (this will be used in the api endpoint)

Enter label and description.

Under the Config tab:

Upload a script or enter the source code in text field.

An example of a script install is provided below.

NB: any additional modules needed for python must be installed on the server

Customsearch service install
To install the customsearch service provided by PLED first download the customsearch.py script from

https://project.ncr.ntnu.no/source/pled/browse/master/misc/customsearch.py

In info tab:

Name: customsearch

Label : Customsearch

Description: Customsearch for retrieving all platforms and types from vuln_applications collection

in Config tab

Upload script file or manually paste inn source code

Press save.

Customsearch is now accessible <dreamfactory-ip>/api/v2/customsearch/<platformORtype>

Dreamfactory Additional Services

5/17/2019 ⚡ DreamFactory REST API usage

https://project.ncr.ntnu.no/w/pled/howtos/how-to-use/?__print__=1 1/2

Short guide on how to use the PLED Rest API. It is assumed you have knowledge about NTNUs adaptation of

OpenStack and basic knowledge around how a REST API works.

1. Get an API-key for you application in the DreamFactory admin panel.

A. Query PLED system owners or an instructor with administrative access to generate an API-key for your

application.

B. Specific roles/privileges can be assigned to applications wishing to make use of PLED. Depending on

what permissions you get, you can use API calls like GET, PUT, DELETE and so on. You as a system

owner should have access to the API documentation (Swagger.io) on what you can do with the API.

2. Interact with the API, either through the API Docs page (for testing and getting to know how it works), a

web browser, or our GUI implementation found on the database web-interface.

A. You will be presented with a JSON (default) or XML format request, similar to the following example:

{

 "_id": ObjectID("5ca321d14a71d03012a9c76f"),

 "cve_summary": "The lreply function in wu-ftpd 2.6.0 and earlier does not properly

cleanse an untrusted format string, which allows remote attackers to execute arbitrary

commands via the SITE EXEC command.",

 "cvss": "10.0",

 "cve": "CVE-2000-0573",

 "exploitdb_id": "20030",

 "application_name": "WU-FTPD 2.4.2/2.5 .0/2.6.0 - Remote Format String Stack Overwrite

(1)",

 "date": "1999-10-15",

 "type": "remote",

 "platform": "unix",

 "app_url": "https://www.exploit-db.com/apps/652cfe4b59e0468eded736e7c281d16f-wu-ftpd-

2.6.0.tar.gz"

}

In the above example, a response with the CVE-ID 2006-0006 is provided by PLED. There is a CVE-document

with the CVE description, a CVSS score and an array with embedded documents containing metadata and a link

on all applications related to this CVE.

Searching for applications:

Use the API Docs in DreamFactory to get familiar on how the API works, and what the requests looks like. Use

SQL-like syntax for filtering what you want to search for, in this example we're searching for all vulnerable

applications that can run on the "platform" Windows. And since the "platform" field is inside the embedded

document "applications", we have to take this into consideration and use dot(.) notation.

http://IPADDRESS/api/v2/mongodb/_table/vuln_applications?filter=platform=windows

The code below is a curl example, supplied with an API-key which is needed for authentication.

DreamFactory REST API usage

5/17/2019 ⚡ DreamFactory REST API usage

https://project.ncr.ntnu.no/w/pled/howtos/how-to-use/?__print__=1 2/2

curl -X GET "http://10.212.137.85/api/v2/mongodb/_table/vuln_applications?

filter=platform=windows" -H "accept: application/json" -H "X-DreamFactory-API-Key:

AVERYLONGKEY12345678901337"

A
. M

oen, A
. O

lsen, K
. A

rnesen
P

LED
 (P

entesting Lab Environm
ent D

atabase)

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

B
ac

he
lo

r’
s

pr
oj

ec
t

Adrian Jacobsen Moen, Askil Amundøy Olsen,
Karoline Moe Arnesen

PLED (Pentesting Lab Environment
Database)

Bachelor’s project in IT-Operations and Information Security
and Programming [Games|Applications]
Supervisor: Erik Hjelmås

May 2019

	Preface
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Background
	Assignment Definition
	Scope
	Assignment delineation
	Constraints

	Business Context
	Project organizing
	Project goals
	Project Effects
	Project Results

	High Level Use Cases
	Development framework/process
	Project modules
	Software development framework/process
	Methods and approach
	Tools and technologies

	Organization of this paper

	Software requirements specification
	Introduction
	PLED Vulnerability Database
	Introduction
	PLED Vulnerability Database - Business Requirements
	PLED Vulnerability Database - Non-functional Requirements
	PLED Vulnerability Database - Functional Requirements

	File Storage
	Introduction
	File storage - Business Requirements
	PLED File storage - Non-functional Requirements
	PLED File Storage - Functional Requirements

	PLED REST API
	Introduction
	PLED REST API - Business Requirements
	PLED REST API - Non-functional Requirements
	PLED REST API - Functional Requirements

	PLED Database Web-Interface
	Database web-interface - Business Requirements
	Database web-interface - Non-functional Requirements
	Database web-interface - Functional Requirements

	PLED Administrative Interface
	Introduction
	PLED Administrative Interface - Business Requirements
	PLED Administrative Interface - Non-functional Requirements
	PLED Administrative Interface - Functional Requirements

	Technical Design
	System Architecture
	Introduction
	Architectural design

	Database Design
	Preparation
	Design schema
	Secure Communication
	Backup and redundancy

	File storage
	Storing of Docker images

	REST API Design
	Documentation
	User management
	Domain semantics

	Database web-interface
	Features

	Vulnerable Application Retrieval

	Implementation
	Introduction
	File storage
	Docker Registry
	MongoDB
	DreamFactory
	Administrative interface
	Load balancing
	Server side scripting
	Retrieving stored files

	Database web-interface
	Authentication
	First Time Setup
	Front end
	Back end

	Vulnerable Application Retrieval
	Using ExploitDB search API
	Scraping exploitdb: vulnRetriever.py

	Deployment
	Heat Template
	Source code
	infrastructure
	workers

	Security
	Introduction
	Vulnerable application storage
	CTF-challenge storage
	Malware storage
	Vulnerability Retriever
	REST API
	DreamFactory admin interface
	Database web-interface

	Operations
	Backup
	DreamFactory
	MongoDB

	Logging
	Monitoring
	Bug Tracking
	Upgrading software
	DreamFactory
	Vulnerability Retriever

	Testing
	vulnRetriever
	MongoDB search performance test
	Functional testing

	Discussion
	Evaluation of the result
	Evaluation of Docker
	Evaluation of Vulnerability Retriever
	Evaluation of DreamFactory REST API
	Evaluation of Database web-interface

	Evaluation of the group work
	Introduction
	Organizing
	Distributed workload
	Project as a form of study/work

	Evaluation of learning
	Evaluation of choices and technologies
	Phabricator
	Overleaf
	Discord

	Evaluation of Docker Swarm
	Future Work
	Database web-interface
	Vulnerability Retriever

	Assignment criticism

	Conclusion
	Bibliography
	Glossary
	Glossary
	Meeting logs
	Kanban Work Cards
	Pre-project report
	Group Agreement
	Malware meta model
	Wiki from Phabricator

