
Similarity-based Intelligent
Malware Type Detection through
Multiple Sources of Dynamic
Characteristics

June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Thilo Denzer

2019
Thilo Denzer

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f I

nf
or

m
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Similarity-based Intelligent Malware Type
Detection through Multiple Sources of
Dynamic Characteristics

Information Security
Submission date: June 2019
Supervisor: Assoc. Prof. Dr. Geir Olav Dyrkolbotn
Co-supervisor: Dr. Andrii Shalaginov

Norwegian University of Science and Technology
Department of Information Security and Communication
Technology

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Preface

The following work deals with multinomial malware classification of ten malware families with ma-
chine learning algorithms. It is carried out in the context of a Master’s thesis in MIS (Information
Security) at NTNU. It was conducted during the spring semester 2019. The broad idea of the topic
was brought up by my supervisors, Geir Olav Dyrkolbotn and Andrii Shalaginov, before it was spec-
ified in more detail and finalised in a direct discussion between us. It is still a relevant topic today
since the malware landscape is constantly growing and evolving and therefore, further research has
to be conducted in the area of this topic. Nonetheless, the thesis is targeted at an audience from the
field of information technology with the focus on forensics. However, no expert knowledge of the
malware landscape is needed to understand the elaboration since all used terms and methods are
explained.

01-06-2019

i

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Acknowledgements

I want to give my sincere gratitude to my supervisors Geir Olav Dyrkolbotn and Andrii Shalaginov
for giving me the opportunity to write my Master’s thesis. Throughout the whole work they always
provided extensive support and guidance, professional advice and constant feedback. In addition,
they provided me with the malware samples and the static features used in the experiment. I want to
thank NTNU for the provision of the resources for my research. I want to acknowledge my parents,
Michael and Nikola Denzer, for the financial support and therefore, the opportunity to study in
Norway as well as the personal encouragement. A big thanks goes to my sister, Vera Denzer, for
proofreading my thesis report. Moreover, I want to thank my friend Mahesh Thapa for providing
me with additional hardware for testing purposes.

T.D.

iii

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Abstract

Malware analysts face challenges related to increasing number of malware variants emerging every
year. Conventional classification of Windows PE32 executables into benign and malicious is no
longer sufficient and needs refinement when it comes to detecting similar functionality malware
samples belonging to the same category. Thus, it is important to explore sources of multiple dynamic
characteristics that can substantially improve similarity-based malware detection through indicators
of compromise from disk, network and memory. The goal of this thesis is to explore a way to
improve multinomial malware classification by exploiting available dynamic characteristics.

In this work dynamic features were extracted with the help of the automated malware analysis
system Cuckoo Sandbox and classified into their ten respective families with the machine learning
library Weka. It has been analysed which dynamic features contribute the most for multinomial
malware classification and what the performance gain is compared to static feature-based malware
classification. An overall classification result of 87.5% could be achieved with the best performing
dynamic features being the modified and opened registry keys, the created and modified files, the
loaded DLLs and the resolved hosts. The best performing classifier was Random Forest. This result,
however, can be improved by adding more dynamic features or combine them with selected static
features in the future.

Keywords: Malware classification, Malware Family, Machine Learning, Random Forest, Dynamic
Features, Static Features, Performance Comparison

v

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Contents

Preface . i
Acknowledgements . iii
Abstract . v
Contents . vii
List of Figures . ix
List of Tables . xi
List of Algorithms . xiii
Acronyms . xv
1 Introduction . 1

1.1 Motivation . 1
1.2 Problem Description . 2
1.3 Research Questions . 3
1.4 Proposed Contribution . 3
1.5 Structural Outline . 4

2 Related Work . 5
3 Background Literature Study and State of the Art in Malware Analysis 13

3.1 Static vs. Dynamic . 13
3.2 Malware Classification . 14
3.3 Malware Landscape . 14

3.3.1 Malware Types . 15
3.3.2 Malware Families . 15
3.3.3 Malware Platforms . 15

3.4 Evasion Techniques . 15
3.4.1 Obfuscation . 16
3.4.2 Anti-* . 16
3.4.3 Polymorphic & Metamorphic Malware . 17

3.5 Malware Naming Issue . 17
3.6 Machine Learning . 18

4 Methodology . 21
4.1 Data Set . 21
4.2 Data Set processing and analysis . 22
4.3 Feature Extraction . 23
4.4 Feature Selection . 24
4.5 ML-aided Malware Classification . 25

vii

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

5 Experimental Setup . 27
5.1 Data Set Collection . 27
5.2 Software Versions . 27
5.3 Hardware Specifications . 27
5.4 Experimental Design and Implementation . 27

5.4.1 Malware Pre-processing . 28
5.4.2 Sandbox-related Configuration Details . 29
5.4.3 Dynamic Malware Analysis and Feature Extraction 31
5.4.4 Feature preparation for Weka . 34
5.4.5 Application of Machine Learning . 37

6 Results & Analysis . 39
7 Discussion . 47

7.1 Implications . 52
7.1.1 Theoretical Implications . 52
7.1.2 Practical Implications . 52

7.2 Limitations of the Study . 52
8 Conclusion . 55
Bibliography . 57
A Appendix . 1

A.1 PEframe Python code . 1
A.2 Powershell script to extract CPU usage and memory usage during malware execution 1
A.3 Python code for pre-processing task. Find errors, copy memory features into report

and group all reports based on family. 2
A.4 Python code to extract all dynamic features and create Weka file 3
A.5 Python code to extract all entries from static feature dataset 5
A.6 Confusion Matrix for Random Forest Classifier and oneR-based Feature Selection . . 6

viii

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

List of Figures

1 Statistic for the total amount of malware and the amount of new malware in the last
ten years [1, 2] . 2

2 Screenshot from VirusTotal on the hash value of the WannaCry Decryptor [3] 3
3 Malware analysis pyramid based on Pektaş [4] . 14
4 Computer Antivirus Research Organization malware naming scheme used by Mi-

crosoft [5] . 18
5 Process flowchart of the malware analysis process during the experiment based on

Banin et al. [6] . 23
6 Different Steps of the Experimental Setup . 28
7 Cuckoo’s main architecture [7] . 31
8 Correlation between the dynamic features and the three used feature selection meth-

ods. Colour key: green = 1-10; orange = 11-20; red = 21-31 41
9 Detailed performance evaluation of each malware family for Random Forest classifier

and Correlation-based feature selection of dynamic features 43
10 Confusion matrix for Random Forest classifier and Correlation-based feature selec-

tion of dynamic features . 43
11 Confusion matrix for Random Forest classifier of the seven best performing families

of dynamic features . 44
12 Comparison of TP rates from Correlation-based feature selection of static against

dynamic features by class . 46
13 Data distribution of the worst performing dynamic features 49
14 Data distribution of the best performing dynamic features 49
15 Data distribution of static features with obfuscator as red 52

ix

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

List of Tables

1 Most important references of multinomial malware classification regarding RQ2 and
RQ3 . 10

2 Software used in the Experiment . 28
3 In the experiment used malware families with accurate amount distribution 34
4 All extracted dynamic features . 35
5 Used feature selection methods with connection to Weka module names for repro-

ducibility . 37
6 Weighted average of different classifiers with binary approach classification of dy-

namic features . 40
7 Weighted average of different classifiers with amount-based approach classification

of dynamic features . 40
8 Feature selection methods of dynamic features . 42
9 Feature selection methods of static features . 45
10 Data points of the peak of the curve based on Fig. 13 and Fig. 14 50

xi

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

List of Algorithms

1 Pseudocode for static analysis of malware samples with PEframe 29
2 Modified default Python script for analysing Windows executables used by Cuckoo . 30
3 Pseudocode to remove errors, copy memory features into report and group all reports

based on family . 33
4 Pseudocode to extract all dynamic features and create Weka file 36

xiii

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Acronyms

ANN Artificial Neural Network. 19

API Application Programming Interface. 5–9, 13, 16, 51, 55

ARFF Attribute-Relation File Format. 34

AUC Area under the Curve. 9, 55

AV Antivirus. 13

BIOS Basic Input/Output System. 7

CARO Computer Antivirus Research Organization. 17, 22

CPU Central Processing Unit. 24, 27, 29, 31, 35

CSV Comma-separated Values. 34, 36

DAME Dark Avenger Mutation Engine. 17

DLL Dynamic-link Library. 24, 48, 55

DNS Domain Name System. 8, 24

FP False Positive. 39

FS Feature Selection. 24

FTP File Transfer Protocol. 8

HMM Hidden Markov Model. 9

HTTP Hypertext Transfer Protocol. 8, 24

HTTPS Hypertext Transfer Protocol Secure. 24, 30

ID Identification. 31, 32

IP Internet Protocol. 24, 48

xv

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

IRC Internet Relay Chat. 24

JSON JavaScript Object Notation. 31, 32, 34

kNN k-nearest Neighbours. 19

LCS Longest Common Subsequence. 5, 6

LR Logistic Regression. 19

MAC Media Access Control. 7, 16

MD5 Message-Digest Algorithm 5. 2, 36

ML Machine Learning. 18

NB Naive Bayes. 18

NOP No Operation. 16

OS Operating System. 15, 24, 29

pcap packet capture. 8, 24

PDF Portable Document Format. 53

PE32 Portable Executable - 32bit. 2, 3, 9, 27, 55

PUP Potentially Unwanted Program. 9, 50

RAM Random-Access Memory. 27, 31, 35

RAT Remote Access Tool. 21

RF Random Forest. 19, 40, 47

ROC Receiver Operating Characteristic. 9, 39

ROP Return-oriented Programming. 7

SCADA Supervisory Control and Data Acquisition. 1

SMTP Simple Mail Transfer Protocol. 8, 24

SRM Structural Risk Minimization. 19

xvi

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

SSL Secure Sockets Layer. 24, 29

SVM Support Vector Machine. 7, 9, 18

TCP Transmission Control Protocol. 8

TLS Transport Layer Security. 24

TP True Positive. 39, 41, 44, 55

TPE TridenT Polymorphic Engine. 17

UDP User Datagram Protocol. 8

UPX Ultimate Packer for Executables. 7, 16

URL Uniform Resource Locator. 13

VM Virtual Machine. 7, 16, 22, 29, 30, 53, 55

WMI Windows Management Instrumentation. 48, 55

XMLRPC Extensible Markup Language Remote Procedure Call. 31

xvii

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

1 Introduction1

Today’s society is more and more connected. Technology is ubiquitous and we are depending on
a working IT infrastructure like never before. Malfunctioning of some parts of this infrastructure
could be devastating and would lead to considerable damage. A big proportion of our daily activ-
ities are based on the internet and similar network-based technology. Working from home, buying
necessities online or just sharing information on social media, the internet is not as secure as it
used to be [2]. Malware, short for malicious software, makes up a huge amount of the internet
traffic and it is pretty easy to infect oneself. A malware is considered to be a sequence of instructions
that performs malicious activity on a computer [8]. The extend of the malicious activity depends on
various factors but mostly on the intent of the malware author and the level of protection of the
victim system. Usually, such activities include but are not limited to stealing credentials or other
useful data, downloading the actual malware payload, disrupting the system, installing a backdoor,
elevating existing privileges and more. Nowadays it becomes almost trivial to attack systems with
pre-crafted malware from the internet. With do-it-yourself malware development kits, novices with
little to none coding skills or technical know-how can create their own powerful malware. The
amount of those tool kits is growing rapidly. However, malware is not just found on private users
but also on company systems and even more severe on critical infrastructure or governmental sys-
tems as shown in the past by well known malware like Stuxnet or cases in which authorities got
compromised. Stuxnet was a malware attacking SCADA systems from the manufacturer Siemens -
Simatic S7 - heavily deployed in the Iranian nuclear power program causing substantial physical
damage.

1.1 Motivation

With the rise of the internet the distribution of malware is simpler as ever before. Thus, the malware
landscape is constantly evolving and malware analysts face the challenge of increasing number
of malware every year. The statistics diverge from source to source but they have an increase in
numbers in common as summarised in Fig. 1 for the total amount of malware and the amount of
new malware in the last ten years by the independent IT-Security institute AV-TEST [1]. According
to the statistics from AV-TEST, there has been 121.67 million new malware samples found from a
total amount of 719.15 million in 2017. This means that 16.9% of the malware found in 2017 are
considered to be new malware samples. The number of new malicious files processed by Kaspersky
Lab’s in-lab detection technologies reached 360,000 a day in 2017, which is 11.5% more than the

1Disclaimer: The thesis is built upon the course - ’IMT4205 Research Project Planning’, submitted in December 2018,
since it is meant to be a continuation of the work done from this course. Therefore, some parts from this chapter might show
strong similarities to the work done in the course.

1

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

previous year [9]. As the malicious data increases, it is only natural that malware analysts are
overwhelmed with the sheer amount of malware samples at some point. It is too cumbersome to
analyse every single malware. Therefore, there is a big demand for automatic solutions which don’t
require the analysts to go through every single malware manually.

Figure 1: Statistic for the total amount of malware and the amount of new malware in the last ten years [1, 2]

1.2 Problem Description

A signature-based detection approach is the main technique used for malware detection by anti-
virus programs [10, 11] with a conventional classification of Windows PE32 executables into mali-
cious and benign. Binary classification is usually done with signatures, partial matching, regular ex-
pressions or heuristics [12]. This clustering approach is no longer sufficient because e.g. of malware
diversification [12] which focuses on avoiding similarity-based matching of malware by randomly
diversifying code and data regions to reduce the similarity between malware mutants. Therefore,
malware classification needs refinement when it comes to detecting similar functionality malware
samples belonging to the same category. Moreover, static signature-based detection of malware is
obsolete and becomes less relevant every year with growing malware threats. Multinomial mal-
ware detection and classification based on dynamic indicators of compromise from memory, disk
and network, which could substantially improve anti-malware solutions, need to be explored and
enhanced. Another challenge for the anti-malware infrastructure is the absence of agreement be-
tween anti-virus vendors on how the malware should be named. E.g. uploading a hash value from
the WannaCry Decryptor (MD5: 7bf2b57f2a205768755c07f238fb32cc) to the online scan engine

2

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

VirusTotal, which combines many anti-virus products, results in many different naming conven-
tions of the various anti-virus software as seen in Fig. 2.

Figure 2: Screenshot from VirusTotal on the hash value of the WannaCry Decryptor [3]

1.3 Research Questions

To summarise the explained issues in a more scientific manner the following research questions
have been developed:

RQ1: What are the cases and particular scenarios, in which conventional signature-based malware
detection and ML-aided detection with the help of static features may fail?

RQ2: What are the dynamic behavioural features in contemporary Windows malware analysis that
can be successfully used in multinomial classification?

RQ3: What is the performance gain of comprehensive dynamic features used for intelligent malware
category detection in relation to static features extracted from PE32 headers?

1.4 Proposed Contribution

This project will cover an important aspect of this problem by addressing the issue of malware
classification. The goal of this thesis is to explore a way to improve multi-class malware classification
by exploiting available dynamic characteristics. Instead of doing a binary malware classification into
malicious and benign, malware is classified by its respective group based on its functionality. An

3

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

experiment based on existing open source tools will be conducted throughout this thesis in which
malware is dynamically analysed and based on dynamic features from memory, disk and network
classified into its respective family.

1.5 Structural Outline

The whole thesis is divided into eight chapters. In Chapter 2 an overview of the current state-of-
the-art is given with the most important literature for multinomial malware classification which
functions as foundation for this thesis. Chapter 3 sums up all necessary background information
and definitions concerning malware analysis to explain the used terms, techniques and methods
within this paper. Afterwards, Chapter 4 introduces the methodology on which the experiment,
presented in Chapter 5, is being build on. The experiment lists all practical work conducted during
the thesis, explaining what has been done, which algorithms, software and hardware has been used
and how it was performed. In Chapter 6 the results of the experiment from the previous chapter are
presented. Afterwards, those results are analysed, interpreted and evaluated in Chapter 7 alongside
an insight into the limitations of the overall employed methodology. Lastly, Chapter 8 concludes the
elaboration and mentions what has to be done in the near future to improve multinomial malware
classification with dynamic features.

4

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

2 Related Work1

Static malware analysis is mostly used for common malware detection like in anti virus software.
Although this is a quick and easy way to identify malware, it is also pretty unreliable. Malware au-
thors often obfuscate or dynamically change their malware so that signature-based or static analysis
as a whole is no longer sufficient. This is shown by Payer et al. [12] and their proposed approach of
malware diversification, which randomly diversifies code and data regions. It reduces the similarity
between the same instances of malware enough to aggravate or even disable direct, similarity-based
matching. This makes static similarity-based matching no longer effective. However, a lot of recent
research deals with the topic of finding similarities between malware based on dynamic methods.
The approach by Park et al. [13] is about similarity-based malware detection by analysing assembly
instruction sequences in executables found on the hard disk. Yi et al. [14] are proposing an ap-
proach using DepSim to find semantic matches between malicious software based on control and
data dependency graphs achieved by identifying the maximum common subgraph. DepSim, therefore,
uses dynamic taint analysis and backtracking techniques. The experiment showed that DepSim can
successfully find semantic similarities and can even deal with obfuscated or packed malware. Liu et
al. [10] are calculating the level of similarity by analysing function-call graphs based on the graph
similarity flooding algorithm. Alkhateeb [11] is detecting malware using similarities in API calls.

Moreover, clustering malware into the two categories benign and malicious is no longer suffi-
cient as well. A new approach is to classify malware based on its functionality, meaning the type of
malware family they are derived from. An approach of malware classification is proposed by Han et
al. [15] and is based on sequence characteristics of API calls. Another approach is based on dynamic
API call counts in which Kim et al. [16] make a similarity analysis on the results of a frequency API
call investigation. The authors are utilising the open source tool Cuckoo Sandbox to extract the API
calls and align them based on the count of calls. The API calls are then classified into nine types
based on the malware variant. The ten APIs with the highest frequencies of calls are used to define
the malware type. In a different paper Kim et al. [17] present an approach of malware detection
and classification based on API call sequence alignment and visualisation. The authors propose a
system which is composed of five functional steps: (1) Data collection and Sequence extraction; (2)
Feature extraction and preprocessing; (3) Clustering; (4) Behavioural sequence chain extraction; and
(5) Detection and classification. 1790 malware samples and 1138 benign API call sequences were
used to produce a F-measure of 94.3% with the similarity-LCS (longest common subsequence)
method. An approach that is not based on static nor on dynamic malware analysis is presented by

1Disclaimer: The thesis is built upon the course - ’IMT4205 Research Project Planning’, submitted in December 2018,
since it is meant to be a continuation of the work done from this course. Therefore, some parts from this chapter might show
strong similarities to the work done in the course.

5

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Narayanan et al. [18]. The malware is visualised as a binary pattern, re-shaped as 2D matrix and
then visualised as image. The authors state that visualizing the malware programs as images opens up
the path for broader spectrum analysis. Chia-mei and Gu-hsin [19] present an approach of malware
classification based on content similarity and directory structure similarity. The authors are captur-
ing malware with the help of a honeypot system and a decompressor to extract file structure and
content in the feature extraction phase. During their work they only focus on source code files and
will ignore all binary files. Lastly, in the Cluster system the malware will be clustered and classified
into a database. The accuracy of the proposed system is stated to be 96.25%. Grégio et al. [20]
present an approach in which the Longest Common Subsequence between two malware traces is
calculated based on appearing bigrams. Two same malware variants should share specific features
or attributes particular to its malware family. The authors can then make assumptions about which
malware code generated similar memory content. Based on this malware trace similarity technique
they built a clustering application on top to group similar malware samples and another application
to find cases of code reuse. They analysed 16,248 malware samples in their system and produced
an average precision value of 0.843 to the reference clustering sets (static and dynamic). Liu et al.
[21] are using Opcode n-gram, grey-scale images and the import function to extract malware features.
In the decision-making phase classifiers are trained with machine learning algorithms in order to
group the suspicious malware samples in its corresponding family within the clustering phase. The
authors are doing the malware classification by using Python’s machine learning module SCikit-
learn containing the classification algorithms. 21,740 malware samples from nine families are used
for their experiment, which achieved a best accuracy for clustering malware of 0.853 when n is
equal to 3 and all seven classifiers are combined. In terms of detecting new malware, the authors
used 900 malware samples, 810 from known samples and 90 from new ones. 78 of the 90 were
correctly assigned to its category while 12 were assigned wrongly to different categories which re-
sults in an accuracy of 0.867. Lee et al. [22] are using the Cuckoo Sandbox as a dynamic method to
extract the API behaviour data, group them using an n-gram model and calculate the similarities to
group the malware mutants in a database. The extracted API sequences are then compared by the
means of the cosine similarity method and with the local cluster coefficient the malware codes are
categorised into groups. The experiment showed the following results; as the similarity threshold
increases the number of members in each group decreases, but the accuracy of the members of the mal-
ware group increases. E.g. for the threshold of 95% 213 groups with 2065 members were created,
which means that 78.25% of malicious codes could be grouped by a total number of 2639 analysed
malware samples. Islam et al. [23] propose an integrated method of static and dynamic features
for malware classification. They use the trace tool HookMe to analyse API functions and a collec-
tion of machine learning algorithms called Weka library to classify the malware. They achieved an
accuracy of 97.055% while also providing a list of similar existing techniques for comparison.

Concerning the research questions stated above in Chapter 1, there is some literature dealing
specifically with those issues. The already mentioned work from Payer et al. [12] addresses the
issue of malware diversification which is a particular method of malware authors to avoid con-
ventional signature-based malware detection. Sathyanarayan et al. [24] are using static analysis to

6

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

extract API calls to construct malware class signatures. To detect malicious programs the authors
statistically compare the API calls of the malware with the class signatures. However, there are
cases in which their approach fails, as stated by the authors: a limitation of our approach is that it
does not work for packed malware. Another case in which conventional malware detection with the
help of static features might fail is presented by Biondi et al. [25] and their tutorial for malware
detection and evasion techniques. The authors introduce malware obfuscation techniques used to
hide information with the example of XOR-obfuscated strings to avoid string-based detection and a
complete code obfuscation by statically compiling the binary and packing it with UPX to change
the structure of the binary. Static-feature-based malware detection can easily be bypassed by the
means of obfuscation methods [26]. Even more obfuscation techniques are displayed by Preda et
al. [27] who divide it into two areas, conservative and non-conservative obfuscation techniques.
Moreover, anti-sandboxing techniques are presented in the white paper of lastline [28], an Amer-
ican cyber security company. The authors state that advanced malware can detect the presence
of a VM by the means of registry keys, special VM tools, particular processes and services, iden-
tifying the BIOS serial number or MAC address of the virtual network adapt, specific structure of
system memory or certain hardware parameters. All those techniques might indicate the malware
being executed in a VM, which then usually either hides its malicious intent or deletes itself [25].
Lastline also elaborates advanced evasion techniques in detail. They present six particular mal-
ware evasion techniques for which malware detection might fail. They cover Stalling Delays, User
Action Required Delays, Intelligent Suspension of Malicious Activity, Fragmentation, Return-Oriented
Programming (ROP) Evasion and Rootkits. Sharma [29] expounds that machine learning approaches
are computational demanding which is not suited for ordinary end users. Islam and Altas [26] are
using a comparative approach of malware classification by using string information as static fea-
tures, API calls and parameters as dynamic features and machine learning techniques. The authors
conclude that dynamic features are a necessary complement to static techniques and that their ap-
proach works better for old malware samples instead of the latest ones. Consequently, the used
features are not good enough to properly classify malware. Griffin et al. [30] propose an automatic
system for malware detection using string signatures but the system fails for packed or metamor-
phosed malware. Their system is also limited if it cannot generate good signatures which happens
when the average number of malware family variants is too low. Mohamed and Ithnin [31] present
major drawbacks of traditional signature-based malware detection systems based on data mining,
machine learning, SVM and API call graph techniques. The requirement of an up-to-date and main-
tained signature database, the impossibility of detecting new attacks, so called zero-day attacks,
and the fact that simple obfuscation techniques can evade detection are listed. Nataraj et al. [32]
mention that visualisation techniques to detect and classify malware has its limitations. Malware
binaries are visualised as grey-scale images and a k-nearest neighbour approach with the Euclidean
distance is used. They state that malware authors could relocate sections or add redundant data
in a binary to avoid detection. Furthermore, machine learning techniques can easily produce many
false positives diminishing users’ trust into the machine-learning-based approaches [33]. Regard-
ing dynamic behavioural features used for successful multinomial classification, it has been proven

7

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

that memory access patterns can not only be used to successfully detect malware [6] but also to
classify malware into ten malware families respectively types as shown by Banin and Dyrkolbotn
[34]. In their work they extracted 29 best features to create relatively accurate models with the
emphasis on a less accurate but more understandable model. They achieved an accuracy between
0.56 to 0.99 for malware families and 0.43 to 0.86 for malware types. A popular dynamic feature
for malware classification are API calls [15, 16, 17, 22, 23] as listed in detail above. Bounouh et al.
[35] are using a hybrid approach by taking static and dynamic features in considerations to improve
classification accuracy. Files (create, modify, read, delete, memory-mapped), registries (create key,
delete key, monitor key, modify value, read value, delete value), processes (create process, delete
process, create thread, read shared memory, write shared memory) and network features (TCP,
SMTP, UDP, HTTP, FTP, ping requests, DNS queries, data) are used as dynamic features. Ying et
al. [36] are capturing malware variants execution traces. From those dynamic execution traces, API
calls, return value[s] and module name[s] are extracted as features and their number of occurrences
are saved in a trace frequency information table. Tian et al. [37] are extracting behavioural features
from API system calls by collecting run-time trace reports with the help of the trace tool ’HookMe’.
They then use the collection of machine learning algorithms from the Weka library to classify the
malware. Shalaginov and Franke [38] use dynamic characteristics and machine learning for their
approach of multinomial malware classification. They analyse disk activities with two sub-domains
low-level access by the application that includes modification, deletion and writing to the file on a disk
storage and registry modifications. Moreover, network traffic is analysed as malware usually try to
download payloads, communicate with the attacker or upload sensitive user information over the
network. Last, the authors mention memory footprints as possible option for dynamic characteris-
tics in multinomial malware classification. However, they do not elaborate it any further since the
collection process hardly yields any acceptable results and is significantly more cumbersome than
the other two methods. Rieck et al. [39] propose a malware instruction set approach in which they
extract dynamic behavioural features as sequence of instructions. Therefore, individual execution
flows of threads and processes are sequentially appended to a single report to perform multinomial
classification with machine learning techniques. The authors achieve an F-measure of over 0.96%
for their method of multinomial malware classification. Nari et al. [40] propose a multinomial mal-
ware classification system based on network behaviour of the malware. The malware are classified
into their respective family by extracting network flows from network traces gathered in pcap files
during malware execution. A behaviour graph to represent network activity and dependencies be-
tween network flows is generated. Last, important features are extracted such as graph size, root
out-degree, average out-degree, maximum out-degree [and] number of specific nodes [41] from the
behaviour graphs in order to classify the malware with machine learning algorithms from the Weka
library. Pirscoveanu et al. [42] are conducting an experiment on classifying malware by their re-
spective type. The authors use Cuckoo Sandbox to execute the malware and derive behavioural
features from it and machine learning algorithm Random Forest from the Weka library. DNS re-
quests, accessed files, mutexes, registry keys but mainly API calls from a total sample size of 42,000
malware are used as dynamic features. Random Forest is then classifying the malware into the four

8

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

groups of Trojan, PUP, Adware and Rootkit. A weighted average AUC value of 0.98 is achieved.
Dynamic analysis is more effective as compared to static analysis and does not require the executable

to be disassembled [41]. The following literature presents performance gains of dynamic features in
relation to static features for malware category detection. In the above mentioned work from Banin
and Dyrkolbotn [34] the authors compare their own results with the results of Shalaginov et al.
[43], who are using a static feature extraction method including features from PE32 headers to ex-
tract 35 total features from ’PEframe’ and ’VirusTotal’ as well as a Neuro-Fuzzy method for malware
classification. Banin and Dyrkolbotn [34] were able to achieve an overall classification accuracy
of 78.4% by using dynamic analysis of memory access patterns while Shalaginov et al. [43] could
only reach 39.6% with static features. In the above mentioned paper from Tian et al. [37] they
compare their model against other existing work based on a static feature extraction method. For
malware detection they achieved an overall accuracy of 97.3% while the compared works only ob-
tain an accuracy of 88%, 93.71% and 95%. In terms of malware classification the authors attained
an accuracy of 97.4% compared to similar existing techniques with only 87% and 97% accuracy.
Damodaran et al. [44] present a comparison approach based on static and dynamic features as
well as a hybrid analysis for multinomial malware family classification. The authors extract opcode
sequences and API calls by using a static and a dynamic method. They then train a Hidden Markov
Model (HMM) to classify the analysed malware into six families. The resulting scores are plotted as
ROC curves and the values of the area under the ROC curve (AUC) are compared. Regarding API
calls, the authors achieve an average result of 0.9847 for the dynamic features and 0.924 with their
static approach. In terms of opcodes, they obtain average results of 0.905 with dynamic features
and 0.7067 by using a static extraction method. The values are AUC-ROC results, which means
that the True Positive Rate is plotted against the False Positive Rate and the area under the curve is
considered. The higher the value, the higher the True Positive Rate and the lower the False Positive
Rate and vice versa. However, the authors mention that it has to be taken into account that obfus-
cation techniques could have influenced the static feature extraction method. Shijo and Salim [45]
examine three different methods for malware classification; static, dynamic and an integrated ap-
proach of both. In doing so, they used the two machine learning techniques Support Vector Machine
(SVM) and Random Forest to classify the malware into malicious and benign. As static features they
extracted printable string information and eliminated the meaningless strings identified by a low
occurrence frequency. API call sequences are used as dynamic features and analysed by the n-gram
method. The authors analysed 997 malware and 490 clean files for their experiment. Both SVM and
Random Forest achieved similar results for its respective feature extraction method which is why
the average from both will be presented here. Obtained results with the static approach are 0.9535
True Positive Rate, 0.114 False Positive Rate and an accuracy of 95.36% while dynamic features
reached an average accuracy of 96.905% with a True Positive Rate of 0.969 and a False Positive
Rate of 0,0995.

To summarise this chapter, Table 1 has been created. It lists the most relevant references for
multinomial malware classification with the used features and their extraction technique, the utilised
sample size, the applied classification method and the obtained performance.

9

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

R
ef

er
en

ce
Fe

at
u

re
Ex

tr
ac

ti
on

Sa
m

pl
e

Si
ze

Fe
at

u
re

s
C

la
ss

ifi
ca

ti
on

M
et

ho
d

Pe
rf

or
m

an
ce

Sh
al

ag
in

ov
et

al
.

[4
3]

st
at

ic
40

0
St

at
ic

PE
32

in
fo

rm
at

io
n

N
eu

ro
-F

uz
zy

A
cc

ur
ac

y:
39

.6
%

Li
u

et
al

.[
21

]
st

at
ic

21
,7

40
O

pc
od

e
n-

gr
am

,
gr

ey
-s

ca
le

im
-

ag
es

,i
m

po
rt

fu
nc

ti
on

M
ac

hi
ne

le
ar

ni
ng

A
cc

ur
ac

y:
85

.3
%

Ti
an

et
al

.[
46

]
st

at
ic

1,
36

7
Pr

in
ta

bl
e

st
ri

ng
s

M
ac

hi
ne

le
ar

ni
ng

A
cc

ur
ac

y:
97

%

Ti
an

et
al

.[
47

]
st

at
ic

72
1

Fu
nc

ti
on

le
ng

th
pa

tt
er

ns
M

ac
hi

ne
le

ar
ni

ng
A

cc
ur

ac
y:

87
%

K
im

et
al

.[
17

]
dy

na
m

ic
2,

92
8

A
PI

ca
ll

se
qu

en
ce

al
ig

nm
en

t
an

d
vi

su
al

is
at

io
n

M
ul

ti
pl

e
se

qu
en

ce
al

ig
nm

en
t

F-
m

ea
su

re
:0

.9
4

G
ré

gi
o

et
al

.[
20

]
dy

na
m

ic
16

,2
48

In
st

ru
ct

io
n

se
qu

en
ce

s
Lo

ng
es

t
co

m
m

on
su

bs
eq

ue
nc

e
Pr

ec
is

io
n:

0.
84

3

Le
e

et
al

.[
22

]
dy

na
m

ic
2,

63
9

A
PI

be
ha

vi
ou

r
da

ta
C

os
in

e
si

m
ila

ri
ty

m
et

ho
d,

n-
gr

am
m

od
el

A
cc

ur
ac

y:
78

.2
5%

R
ie

ck
et

al
.[

39
]

dy
na

m
ic

3,
13

3
In

st
ru

ct
io

n
se

qu
en

ce
s

M
ac

hi
ne

le
ar

ni
ng

F-
m

ea
su

re
:0

.9
6

B
an

in
an

d
D

yr
ko

l-
bo

tn
[3

4]
dy

na
m

ic
98

3
M

em
or

y
ac

ce
ss

pa
tt

er
ns

M
ac

hi
ne

le
ar

ni
ng

A
cc

ur
ac

y:
78

.4
%

Ti
an

et
al

.[
37

]
dy

na
m

ic
1,

82
4

A
PI

ca
ll

se
qu

en
ce

s
D

at
a

m
in

in
g,

m
a-

ch
in

e
le

ar
ni

ng
A

cc
ur

ac
y:

97
.4

%

Zh
ao

et
.a

l.
[4

8]
dy

na
m

ic
13

,2
23

A
PI

ca
lls

M
ac

hi
ne

le
ar

ni
ng

A
cc

ur
ac

y:
83

.3
%

A
hm

ed
et

al
.[

49
]

dy
na

m
ic

51
6

Sp
at

io
te

m
po

ra
l

in
fo

rm
at

io
n

in
A

PI
ca

lls
M

ac
hi

ne
le

ar
ni

ng
A

cc
ur

ac
y:

96
.3

%

Pi
rs

co
ve

an
u

et
al

.
[4

2]
dy

na
m

ic
42

,0
00

D
N

S
re

qu
es

ts
,a

cc
es

se
d

fil
es

,m
u-

te
xe

s,
re

gi
st

ry
ke

ye
s,

A
PI

ca
lls

M
ac

hi
ne

le
ar

ni
ng

A
U

C
-R

O
C

:0
.9

8

H
an

se
n

an
d

La
rs

en
[2

]
dy

na
m

ic
31

,2
95

A
PI

ca
lls

M
ac

hi
ne

le
ar

ni
ng

F-
m

ea
su

re
:

0.
86

4;
A

U
C

:0
.9

78

Ta
bl

e
1:

M
os

t
im

po
rt

an
t

re
fe

re
nc

es
of

m
ul

ti
no

m
ia

lm
al

w
ar

e
cl

as
si

fic
at

io
n

re
ga

rd
in

g
R

Q
2

an
d

R
Q

3

10

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

In conclusion, most of the recent literature deals with either static features, which can fail (RQ1),
or dynamic features from disk and network. Memory features are often not included in multinomial
malware classification due to their volatile nature which makes them difficult to obtain. There is also
no distinct clarification of which dynamic features are useful for multi-class malware classification
(RQ2). Moreover, there is no clear assessment of the performance difference between static and
dynamic features (RQ3). This paper works towards a possible solution of those issues in the future.
Specific dynamic features, including some selected memory-based features, are extracted and used
for classification purposes while static features from the same malware samples are used for a
reliable performance comparison.

11

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

3 Background Literature Study and State of the Art in Malware
Analysis

For the following paper it is important that there is a clear understanding of the idea of malware
analysis being the foundation of knowledge. Therefore, in this chapter, the most important terms,
techniques and methods used in this work are explained in detail including all necessary back-
ground information and definitions concerning malware analysis.

3.1 Static vs. Dynamic

Current literature describes two approaches to perform malware analysis, static and dynamic [34,
50, 51]. Both types roughly accomplish the same goal of describing how the analysed malware
works as well as the needed time and skill. However, the analysing tools used to achieve this goal
are quite different from each other [51]. Static malware analysis is an examination method for
malicious software without any execution [50]. To accomplish this, static properties are collected
such as bytes, opcodes and API n-grams frequencies, properties of Portable Executable header [and]
strings (e.g. commandline commands, URLs etc) [34]. Moreover, a code analysis can be performed by
actually viewing the malicious code with the help of disassemblers and decompilers to gain a bet-
ter comprehension of the malware functionalities [51]. Static malware analysis is often commonly
referred to as signature-based malware detection in which a cryptographic hash value or checksum
is calculated and compared to existing data, an approach used by AV-vendors [2]. Dynamic analy-
sis, also called behavioural analysis, describes the process of executing the malware in a safe and
controlled environment, like a virtual machine or a specialised sandbox such as Cuckoo. While exe-
cuting the malware, the malicious activities are being captured which include patterns of a registry,
network and disk usage, monitoring of API-calls, tracing of executed instructions, investigation of mem-
ory layout and so on [34]. Thus, any addition, deletion and modification of files, services, processes,
registries and system settings can be identified as well as unusual network traffic. Furthermore, the
lab environment should never be connected to any other network during dynamic malware analysis
and files should be transferred with read-only access [51].

In real life scenarios static and dynamic malware analysis are often both used in combination,
a so-called hybrid technique [41]. However, static and dynamic analysis can also be done fully
automatic to generate information about the analysed malware. In real case scenarios a human
analyst will use the automatically gathered data to perform a manual analysis on top. This method
and some example tools are shown in Fig. 3. [4]

13

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Figure 3: Malware analysis pyramid based on Pektaş [4]

3.2 Malware Classification

Malware evolves and increases in number each year of both new malware and variants of already
known malware. This makes former state-of-the-art binary classification method, in which malware
is classified into benign and malicious, obsolete. Moreover, the large variety of cyberthreats also
increases the number of complex and encapsulated malware. To cope with the challenge of growing
and more complex and demanding malware, multinomial malware classification is presently used.
Malware is classified in more than two categories, often malware types and malware families are
used as reference model. [38]

3.3 Malware Landscape

In order to provide better understanding of malware capabilities, describe vulnerabilities of systems and
operations as well as to use appropriate protection and post-attack actions [34], it is important to not
only detect malware but also to classify them based on their functionalities. In past research articles
malware classification has often been an issue for the authors due to wrongly used terminology.
Commonly in use are two widely accepted malware categorisation approaches; malware types and
malware families. However, proper definitions are rarely provided by authors as literature studies

14

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

indicate. This can lead to the various misunderstandings and non-valid comparisons [34]. Banin and
Dyrkolbotn [34] present three scientific papers from 2008, 2009 and 2013 in which the authors
either wrongly or inconsistently use the terminologies as well as making a non-valid comparison as
stated above by comparing malware types to malware families and vice versa. In this work Banin’s
and Dyrkolbotn’s [34] definition of malware types and malware families is used. It is based on well
known vendors such as Microsoft and Symantec and their description of malware categories.

3.3.1 Malware Types

Malware types, also called malware categories in some literature, can be seen as the generic term.
It describes the general functionality of a malware or simply explains what malware does and what
goals it pursues. Worms, viruses, trojans, backdoors, and ransomware are some of the most common
types of malware [5].

3.3.2 Malware Families

Malware families is a grouping based on its particular functionality and their common character-
istics or simply described how malware acts and which methods are used to achieve its goals. For
example, a malware could be of type backdoor, which means that the overall goal of the malware
is to create a backdoor in the target system. The way it achieves that goal, the actual code it uses to
do that, is considered in the malware family. This can be similar across different malware because
either code snippets are being reused by malware authors but also as malware evolves, some seman-
tics of the original malware are preserved as these semantics are necessary for the effectiveness of the
malware [24].

3.3.3 Malware Platforms

Malware can be written in different scripting/programming languages for various operating systems
[5]. The most common operating system malware is produced for, is the Windows 32-bit platform.
Windows is the most widespread OS and with implemented backwards compatibility it is a familiar
target for malware authors to attack.

3.4 Evasion Techniques

Even the most powerful malware in terms of functionality is useless if it gets detected the very first
moment it executes its malicious actions or even before it can copy itself to the system. Therefore,
malware authors try to make their malware as unnoticeable to the victim as possible. Thus, the
malware can perform its malicious behaviour undetected for a long period of time. Such a method
is called evasion technique because the malware tries to evade detection. For automated malware
detection and classification systems it can be a great challenge to cope with such evasion techniques.
Especially because it is also possible for malware to use different evasion techniques concurrently
[27]. The specific techniques used to hide the malicious nature of a malware to avoid detection can
differ depending on the malware author and his intentions, the victim’s system and the malware
functionalities.

15

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

3.4.1 Obfuscation

Obfuscation techniques aim to change the malware code in a way that its either not possible any-
more to determine a correlation to other malware or to make conventional detection methods
unable to find malicious indicators. There are a lot of different obfuscation techniques which can
not all be covered in this chapter but amongst the most known ones are approaches to change the
order of instructions, insert garbage code like NOP-commands or fake instructions, replace com-
mands with equivalent ones or rename variables and registers [27, 28, 52] in order to make basic
signature-based detection nearly impossible or to increase analysis time. A static feature approach
can be easily bypassed by obfuscation methods [26]. Alternate approaches of obfuscation are the
usage of encryption, encoding or compressing/packing techniques with examples such as XOR en-
cryption, base64 encoding and the use of packers like UPX. Thereby, the intention of the authors
isn’t long term security but rather to remain undetected [25] through transmutation of the code by
removing any readable strings.

3.4.2 Anti-*

As already stated in Section 3.1, dynamic analysis is done by executing the malicious files in a con-
trolled environment like a virtual machine. Moreover, malware analysts use particularly designed
tools and software to work with. This is of course a commonly known fact, also to malware authors.
Special evasion techniques have been developed to detect such proof of ongoing analysis. The mal-
ware checks for certain indicators which suggest that the malware is being examined by an analyst.
The malware then tries to either hide its malicious behaviour by not executing the particular code
or even erases itself from the hard disk. Anti-VM techniques are used to detect registry keys, in-
stalled tools, processes and services, serial numbers or MAC addresses, system memory structure
and hardware parameter related to virtual environments indicating that the malware is being exe-
cuted in a sandbox [28, 53]. The malware could also try to crash [25] or infect [54] the sandbox
once recognised. This, however, is not realistic because a malware’s goal is to remain hidden [25].
Another popular evasion technique among malware authors is anti-tools. The malware checks for
indication that commonly used analysis software such as the monitoring tools Wireshark or Pro-
cess Explorer are installed on the system or running as process [53]. The ransomware/cryptominer
Rakhni for instance, has a list of more that [sic] 150 names of tools used for process monitoring and
analysis; if one of the running processes is in that list, Rakhni will hide its malicious behavior [25];
[Supposed to be "than"]. Anti-Debugging techniques are used for detecting present Debuggers, a
software to diagnose and locate errors in computer systems, used to give full control to the malware
analyst over the run-time behaviour of the analysed malware. Malware can detect if it is executed in
debug-mode in different ways. An easy approach is to check if the Windows API IsDebuggerPresent()
is invoked [55]. Malware can also detect set flags in the Process Environment Block fields or the
Heap fields to detect debuggers [56]. A third commonly used method is to check for execution time
[56]. While being debugged the malware reaches certain functions much later than expected.

16

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

3.4.3 Polymorphic & Metamorphic Malware

As already stated in Subsection 3.4.1, encryption is a viable evasion technique used by malware au-
thors to avoid detection. The malware typically consists of the encrypted payload and the decryptor
recovering the payload during run time. By using a different key for each infection, the malware
ensures a different payload signature. However, the constant decryptor makes this approach un-
suitable on the long run. Polymorphic malware, on the contrary, uses the obfuscation techniques
mentioned above in Subsection 3.4.1 to create innumerable amount of various decryptors. Thus, it
addresses the issue of the encryption approach being unable to avoid signature-based detection be-
cause of its constant decryptor. Moreover, tools such as The Mutation Engine, DAME and TPE [57]
exist to help malware authors to transform a non-obfuscated malware into a polymorph without
any considerable expenditure. [52, 58]

Metamorphic malware uses obfuscation techniques to mutate itself in order to produce malware
variants [59] without sacrificing functionality [58]. While Polymorphic malware have similar mem-
ory indicators and use traditional malware elements for encryption, metamorphic malware vary in
memory for each variant and use different encryption elements [58].

3.5 Malware Naming Issue

A huge challenge concerning protection against malware is the absence of an agreement on naming
conventions for malware between different anti-virus vendors, analysts and researchers. This issue
can lead to confusion as well as causing some major difficulties when security analysts have to rely
on them to simply compare or correlate viruses or to build reference datasets [60, 61]. Kelchner
[62] declares historical reasons and vendor-specific policies [as causes why] malware naming has never
followed any conventions [60]. Although there have been approaches of proposing standardised
naming conventions, they mostly failed to be widely adopted among groups of interest in the past
[60, 61, 63].

CARO, which is short for Computer Antivirus Research Organization, is a group of individuals to
study malware since 1990 [63]. In 1991, CARO published their first approach of a malware naming
convention to reduce the naming confusion [64]. This first approach by Fridrik Skulason (Virus
Bulletin’s technical editor), Alan Solomon (S&S International) and Vesselin Bontchev (University
of Hamburg) was ignored by the malware community and anti-virus vendors until it got some sub-
sequent revisions over time [65]. This concept recently gained an increase in popularity as it is
used by companies such as Microsoft [5] and Trend Micro [66] as shown in Fig. 4. The Type and
Family attributes are used to describe malware functionalities as described in previous sections. The
Platform attribute indicates the operating system, the programming language and the file formats.
The Variant letter is used sequentially for every distinct version of a malware family and the Suffixes
provide optional information about the malware [5]. However, the delimiters can be selected indi-
vidually from the set of available symbols: [!#.@/:] [65] and can therefore differ between different
practitioners.

17

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Figure 4: Computer Antivirus Research Organization malware naming scheme used by Microsoft [5]

3.6 Machine Learning

Machine learning (ML) is used today in many different scientific areas. It can be seen as small
subset of artificial intelligence. It is the generic term for artificial generation of knowledge from
experience. ML algorithms are used to learn from examples of sample data, also known as training
data, to build a mathematical model. After completion of the training phase the model can make
predictions or decisions on the test set by recognising patterns and regularities without ever learning
the sample data by heart. This allows the system to also evaluate previously unknown data. The
types of machine learning algorithms differ in their approach, the type of data they input and output,
and the type of task or problem that they are intended to solve. The most common ones are supervised
and unsupervised learning and the main difference is that unsupervised learning algorithms learn
from unlabelled, unclassified or uncategorised test data, data that contains only inputs. In contrast,
supervised learning uses data that contains both the inputs and the desired outputs. Moreover, various
classifiers can be applied to machine learning algorithms to build a classification model. [67]

The most common classifiers, indicated by Wikipedia [67] and used by Banin and Dyrkolbotn
[34], for malware classification are:

• Naive Bayes (NB) is a probabilistic classifier inspired by the Bayes theorem under a simple
assumption which is the attributes are conditionally independent [68]. The Bayes’s theorem is a
mathematical proposition from probability theory that describes the calculation of conditional
probabilities [69]. Naive Bayes is a rather simple algorithm but since it takes linear time, it
can be scalable to large datasets as well. However, it can not give valid prediction when the
conditional probability is zero [68].

• Support Vector Machine (SVM) is a powerful classifier based on Vapnik’s theory, which be-
longs to the computational learning theory trying to explain the learning process with statis-

18

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

tics [70]. It has strong data regularisation properties and can handle big data sets. It is based
on the Structural Risk Minimization (SRM) principle, to find an optimal hyperplane by maxi-
mizing the margins that can guarantee the lowest true error due to increasing the generalization
capabilities. [46]

• Artificial Neural Networks (ANN) is a set of connected input/output units where each connec-
tion has a weight associated with it [...]. During the learning phase, the network learns by adjust-
ing the weights so as to be able to predict the correct class label of the input tuples [68]. There are
different network architectures available such as Feed-forward, Recurrent and Convolutional.
Which architecture to use depends on the model. There can be several hidden layers in the
model which will increase the mapped complexity but also the time performance. ANN are
tolerant of noisy data and can classify untrained patterns. [68]

• k-Nearest Neighbours (kNN) belongs to the lazy learning algorithms. All instances corre-
sponding to training data points are stored in a n-dimensional space. When an unknown dis-
crete data is received, it analyzes the closest k number of instances saved (nearest neighbors) and
returns the most common class as the prediction and for real-valued data it returns the mean of
k nearest neighbors [68]. kNN is usually resistant to noisy data because of the averaging of
k-nearest neighbours. [68]

• Logistic Regression (LR) is a classifier from the field of statistics and is commonly used for
binary classification. At the core of Logistic Regression it is based on the logistic function
which is used to describe the properties of population growth (f(x) = 1

1+e−x). Input values
are linearly combined by the usage of coefficient values or weights. The output value is then
being modeled as binary value. [71]

• J48 is a java implementation of the C4.5 algorithm in Weka used to build decision trees from
a set of training data by using the concept on information entropy. At each node of the tree,
C4.5 chooses the attribute of the data that most effectively splits its set of samples into subsets
enriched in one class or the other [72]. The normalised information gain is used as splitting
criterion. The decision is made by choosing the attribute possessing the highest normalised
information gain. [72]

• Random Forest (RF) is based on a combination of many decision tree predictors such that
each tree depends on the values of a random vector sampled independently and with the same
distribution for all trees in the forest [46]. It is efficient for large data sets and it maintains
accuracy even if data is missing. It generates estimations of errors during the forest building
process and of the important variables for the classification. Random Forest is also known to
have a good accuracy among the current classifiers. [46]

19

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

4 Methodology

In the following chapter the used methods of the experiment are described in detail. As shown by
the references in Chapter 2 concerning RQ1 there are cases, in which conventional signature-based
malware detection and ML-aided detection with the help of static features fail. Thus, dynamic fea-
tures from disk, memory and network are used to overcome some of those limitations of static
malware analysis. As long as the overall functionalities of the malware stay the same, the dynamic
indicators of compromise observed on the system and network are highly alike. This means that
dynamic features are resistant to evasion techniques, presented in Section 3.4, to a certain point.
As long as the malware can be executed in a sandbox, most of the known obfuscation and meta-
morphism techniques do not hinder the analysis because the behaviour of malware will be nearly
consistent even if the source code is obfuscated.

4.1 Data Set

To have a useful data set is one of the most important aspects in the experiment. If the data set
is too small or not distinct enough the outcome of the experiment will not be valid. In order to
test the classification algorithms later on, the malware samples already have to be classified in
their respective families. The top 10 most frequent labelled malware categories, as indicated by
Shalaginov and Franke [38], are being used. This includes malware from the following families:

• Agent is a large malware family usually associated with the installation of Adware but it can
also download additional malware and even change some Windows configuration settings.
[73]

• Hupigon is a malware family commonly known as Remote Access Tool (RAT) opening a
backdoor, by registering itself as a service, the perpetrator can use to control the compromised
machine. [2]

• Obfuscator is a generic term for malware trying to obfuscate itself to avoid detection as
explained in Subsection 3.4.1.

• Onlinegames belongs to the publicly known Trojans family. It usually downloads and drops
additional malware on the infected machine as well as collects online game key strokes. [2]

• Renos is a malware family that mostly shows fake security warnings to trick a computer user
to download third-party cleaning utilities [73].

• Small is a malware family also of the Trojan-type connecting to servers to download addi-
tional unwanted software without the users consent. [2]

• Vb is a generic term for malware written in Visual Basic. [73]
• Vbinject is a malware family also written in Visual Basic but it conceals malware inside.
• Vundo is another family of Trojans also associated with Adware but especially for pop-up

21

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

advertisements. [73]
• Zlob includes multiple components such as modification of Internet Explorer’s settings, altering

of the user’s default Internet search page and home page and also tries to download and run other
malicious programs [2].

4.2 Data Set processing and analysis

A lot of recent research concerning malware classification are doing a binary classification into
malicious and benign to detect malware [2, 17, 22] before actual conducting a multi-class classi-
fication approach. Such a malware detection approach will not be done in this work because the
scope of this elaboration is multinomial malware classification. Therefore, every analysed malware
is assumed to already be identified as malware by some kind of detection system. The family labels
mentioned above in Section 4.1 were retrieved from Microsoft using the CARO naming scheme,
explained in Subsection 3.5, for malware which were positively identified by VirusTotal. Moreover,
malware with anti-VM or anti-debug features will be removed from the actual dynamic analysis in
a pre-processing phase because those samples could heavily skew the outcome of the experiment.

Behavioural indicators of compromise are extracted, generated by a dynamic malware analysis.
Based on those characteristics, the malware samples are being classified into groups concerning
to their similarities. The experiment will be conducted with the help of the existing open source
tools Cuckoo Sandbox as dynamic analysis system and machine learning algorithms from Weka li-
brary. Cuckoo Sandbox offers a controlled environment, also referred to as sandbox, in which the
malware can safely be executed. After each execution of malware the features will be extracted,
as explained in more detail in Section 4.3, and the virtual machine will get reverted to a clean
state, a snapshot. According to this methodology, every malware sample will be analysed and all
the features mentioned in Section 4.3 will be extracted. Afterwards, the results have to be prepared
for the classification. In this phase, the malware will be classified based on the extracted charac-
teristics with the help of machine learning algorithms. To achieve this, the machine learning model
is trained with a part of the behavioural features obtained from the dynamic analysis. Afterwards,
the remaining data is used to test the accuracy of the algorithm. More detailed information about
the classification method and machine learning algorithms are found in Section 4.5. A basic process
flowchart of the method of the experiment is visualised in Fig. 5.

In addition to the actual dynamic experiment, a second experiment is performed concerning
RQ3. It has to be analysed if the dynamic features actually achieve better results and if so, the
performance gain of the dynamic features compared to the static features has to be examined.
Therefore, static features, extracted from PEframe and Linux tools, are used for classification with
the same machine learning algorithms. The used static features are:

pe_api , pe_debug , pe_packer , pe_library , pe_autogen , pe_object ,
pe_executable , pe_text , pe_binary , pe_temporary , pe_database ,
pe_log , pe_webpage , pe_backup , pe_cabinet , pe_data , pe_registry ,
pe_directories , pe_dll , pe_detected , size_TEXT , size_DATA ,
size_OBJ , size_TOT , filesize

22

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Figure 5: Process flowchart of the malware analysis process during the experiment based on Banin et al. [6]

The detailed description of those static features is given by Shalaginov et al. [43] and Grini et
al. [74]. In their study the authors used features from PEframe and Linux-based command line
tools but also static-based features extracted from VirusTotal. Since it can not be ruled out that the
features from VirusTotal might have been created with additional intelligent pre-processing, they
are excluded from the dataset used in the second experiment. This is done in order to guarantee an
unbiased comparison between static and dynamic features extracted in an experiment of the same
tool-based level.

4.3 Feature Extraction

The extracted features will influence the outcome of the experiment the most. Thus, the fact about
which feature to extract is one of the most important question to answer. This work will only look at
behavioural malware features extracted by dynamic analysis. This is done in order to mitigate code
obfuscation and other static-based evasion techniques as presented in Section 3.4 and because dy-
namic features provide a complete picture of the whole execution process of a malware. Therefore,
dynamic features from disk activities and network traffic as well as memory footprints are obtained.
Which individual features and which combinations of features will produce the best results will be
analysed in the experiment. The reasons behind the chosen features are the already implemented
support of extraction by the used malware analysis system, the fact that they are based on mal-
ware functionality and also previous literature successfully conducting experiments based on those
features. However, in contrary to what was planned at the beginning, it was not further pursued

23

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

to extract full memory dumps of the analysis machine. Even though it would produce more reli-
able results, the results would also be more vague and the analysis itself would take much longer.
The following dynamic behavioural features are extracted in a contemporary Windows malware
analysis in order to answer the question of which features can be successfully used in multinomial
classification (RQ2):

• Disk activities are probably the largest category but also the easiest obtainable features.
Low-level file operations are extracted, which includes any kind of file modification on the
accessible disk storage such as reading, writing, deletion or other modifying actions done by
the malware. This also involves new files dropped to the system by the malware. Furthermore,
registry patterns, describing changes of the operating system (OS) configuration database
[38], are examined. This includes access of specific registries, registry keys read, modified or
deleted and new keys or values added to the registry. Moreover, dynamic-link libraries (DLL),
loaded by the malware processes, are extracted. In addition, mutexes on the file system are
analysed and recorded since this is a common approach by malware to lock access on specific
resources but also to avoid reinfecting the same host again.

• Network traffic includes all data flowwing through the network. The whole network traffic
produced by the malware is monitored, stored as pcap file and the relevant network informa-
tion, such as DNS traffic, IRC and SMTP traffic, domains, IPs and HTTP as well as SSL/TLS
encrypted HTTPS requests are extracted. [7].

• Memory footprints are the hardest to obtain and to analyse because of their volatile nature.
Moreover, a lot of literature indicates that memory analysis is not very trustworthy without
ground-truth and it often shows reduced accuracy, as indicated by Shalaginov and Franke
[38], which makes memory patterns a possibly unreliable feature for malware classification.
To examine whether memory footprints can still be used as dynamic feature for multinomial
malware classification they are included in this work nonetheless. Therefore, behavioural
metrics, such as average CPU and memory usage as well as the peak usage of those resources,
are measured.

4.4 Feature Selection

All the behavioural features extracted in Section 4.3 are then used to classify the malware into their
respective families. Therefore, the extracted features are fed to machine learning algorithms. The
main work of the classification is done by such machine learning algorithms and will be conducted
with the library called Weka providing machine learning implementation. But Weka also provides
the ability to rank features and find feature combinations. The most common metrics for feature
selection (FS) methods are:

• Correlation calculates a correlation between each attribute and the output variable.
• Information Gain, typically referred to as Entropy, calculates the information gain for each

attribute for the output variable.
• Learner calculates the feature subset producing the best performance which is then taken as

24

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

subset.

With feature selection it can be determined which features and which feature combinations are the
most suitable for multinomial malware classification, discussed on the basis of RQ2. [75]

4.5 ML-aided Malware Classification

After the feature selection is completed, different classifiers suitable for malware classification can
be tested with Weka. The commonly used classifiers for malware analysis are listed in detail in Sec-
tion 3.6. Those six classifiers will also be used in the experimental setup of this thesis. As mentioned
in Section 4.1, the malware was already pre-classified. Therefore, supervised learning can be used
to conveniently classify the malware samples. As test method of the data, a 10 fold cross-validation
approach is utilised. With cross-validation the original sample size is divided into k subsamples of
equal size, referred to as folds. From those randomly partitioned subsamples one subsample will
be used as testing data, while k-1 samples are taken to train the machine learning algorithm. This
process is then repeated k times with a different subsample as test data each iteration. With this
method the whole data set is being used for both training and validation and each subsample is
used exactly once for testing. The k results can then be averaged to produce a single estimation.
Moreover, the outcome of the dynamic feature classification can be examined against the results of
the static feature classification. This provides the ability of testing the performance gain of compre-
hensive dynamic features (RQ3) for each classifier.

25

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

5 Experimental Setup

The following chapter introduces the actual implementation of the experiment based on the method-
ology presented in Chapter 4. The collection of the data set, the software versions, the hardware
specifications and the used algorithms during the experiment are presented as well as the exper-
imental design and the technical implementation. It demonstrates the technical execution of the
methodology for reproducibility of the use case.

5.1 Data Set Collection

For the experiment a data set of a total number of 9,823 Windows PE32 malware samples from the
top 10 most frequent labelled malware categories, as listed in Section 4.1, are being used. The data
set was provided by the NTNU Malwarelab but originally they were retrieved by Maltrieve [76]
crawling seven different sources and collected from VirusShare [77] and VxHeaven [78].

5.2 Software Versions

Open source software has been used in order to conduct the experiment. Table 2 lists all the im-
portant software with the specific used version during the experiment. However, software which is
already included in Cuckoo Sandbox or provided by the system as internal tools are not listed.

5.3 Hardware Specifications

Dynamic malware analysis can be very resource demanding, especially when a lot of samples are
analysed in a short period of time. To be able to compete with the massive amount of malware each
day, a suitable amount of resources has to be available. The host system used for the experiment
consisted of the Intel® Xeon® CPU E5-2630 with 2.4GHz and four cores, as well as 16GB of RAM
and disk space of 500GB. The invoked guest system for the dynamic analysis of the malware con-
sisted of 8GB of RAM, 100GB disk space and one core from the host system since the experimental
setup, which was implemented as nested virtualisation, didn’t allow for more cores.

5.4 Experimental Design and Implementation

The experiment starts with the initial pre-processing of the malware with the PEframe tool. The
remaining malware samples are then analysed with Cuckoo Sandbox but before that, the automated
analysing system has to be configured accordingly. During the analysis the dynamic features of
each malware sample is extracted and afterwards, prepared for processing of the machine learning
library Weka. There, the malware samples are classified in their respective families with the help of
machine learning applications. Fig. 6 visualises the different steps of the experimental setup

27

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Software Version Release Date Description

Ubuntu 18.04.1 LTS July, 2018 Operating System
Windows 7 Ultimate x86 February, 2011 Operating System
Cuckoo Sandbox 2.0.6 June, 2018 Malware Analysis System
Oracle VM VirtualBox 6.0.4 January, 2019 Virtualisation Software
INetSim 1.2.8 June, 2018 Fake Internet Services
Python 2.7.15 May, 2018 Programming Language
Tcpdump 4.9.2 September, 2017 Packet Analyser
PEframe 5.0.1 Not Defined Static Analyser for PEs
mitmproxy v4.0 May, 2018 HTTPS proxy
Microsoft Office 2013 January, 2013 Productivity Software
Adobe Acrobat Reader DC 2019.010.20098 February, 2019 PDF Reader

Table 2: Software used in the Experiment

Figure 6: Different Steps of the Experimental Setup

5.4.1 Malware Pre-processing

As first step every malware sample has been analysed with the static analysis tool PEframe. As
already mentioned in Subsection 3.4.2, more sophisticated malware are using features to identify
the act of being analysed. For example, indications of a debugger or execution inside a virtual
machine can be recognised by such malware. However, since malware with such features would
skew the analysis results, they will be excluded beforehand. A simple Python script in combination

28

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

with ’PEframe’ statically analysed every malware sample and the ones with anti-debug and anti-VM
features have been removed. An excerpt of the used Python script can be seen in Algorithm 1 sown
as pseudocode. The full Python code is listed in Appendix A.1.

Algorithm 1 Pseudocode for static analysis of malware samples with PEframe

for f← files do
PEframe(f)

if (key = "antivm" OR key = "antidbg") AND value 6= 0 then
delete(f)

end

end

5.4.2 Sandbox-related Configuration Details

As experimental environment a cloud-based virtual machine running the Ubuntu operating sys-
tem has been set up. Its hardware specifications can be seen in Section 5.3. The aforementioned
Cuckoo Sandbox was installed onto that system alongside other tools. A full list of all used tools
can be found in Table 2. Cuckoo Sandbox has to be configured according to its documentation [7]
alongside some small customisations. Thus, a Windows 7 virtual machine with the virtualisation
software VirtualBox from Oracle is set up and configured. Windows 7 was chosen, because it is the
best supported operating system by Cuckoo Sandbox as recommended by their manual [7]. A vir-
tual network, attached to the host OS as ’Host-only Adapter’, between host and guest system is used
in order to make it as hard as possible for the malware to escape its controlled environment. Conse-
quently, no tools, such as ’VirtualBox Guest Additions’, are installed that could allow the malware to
leak potentially harmful code to the host system. Apart from the network configuration, the guest
has to be prepared in different aspects. The programming language Python has to be installed and
some noise [79] produced by default Windows processes need to be removed. Moreover, built-in
Windows security features, such as the Windows firewall, anti-virus scanners and automatic up-
dates, have to be switched off to make the system as vulnerable as possible. Furthermore, in case
of malware having different embedded files, Microsoft Office and Adobe Acrobat Reader have been
installed to provide the ability of executing such file types. In addition, a powershell script, listed in
Appendix A.2, is saved on the guest machine which is being used to extract memory features such
as CPU and memory usage during the malware execution. Lastly, a snapshot of the machine state
must be created. On the host system there are several tools to provide additional functionality for
the malware analysis such as INetSim, Tcpdump and mitmproxy. Malware often requires an Inter-
net connection to function properly and will therefore mostly not run when disconnected. To cope
with this, a fake internet connection with INetSim is set up on the host system communicating with
the malware during execution by providing simulation of common internet services. Tcpdump is
then used to dump such network behaviour of the malware. In case of a malware performing SSL

29

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

encrypted requests over HTTPS, the tool mitmproxy is used. This proxy pretends to the server and
client to be its counterpart in the form of a Man-in-the-Middle. Furthermore, as already mentioned
above, Cuckoo was customised to run the above mentioned powershell script, listed in Appendix
A.2, together with every malware execution. Therefore, the default package for analysing Windows
executables [7] has been modified with the following lines of code:

Algorithm 2 Modified default Python script for analysing Windows executables used by
Cuckoo
def start(self, path):

args = ["-ExecutionPolicy", "ByPass", "-File",
"C:\Users\Win7\Downloads\CpuMemUsage.ps1"]↪→

self.execute("powershell.exe", args=args, trigger="file:%s" %
"C:\Users\Win7\Downloads\CpuMemUsage.ps1")↪→

def finish(self):
self.send("C:\Users\Win7\Desktop\usage.txt")

Although every malware with anti-debug and anti-VM features has been preemptively removed
in the pre-processing phase (see Subsection 5.4.1), Cuckoo Sandbox has some built-in features
to cope with different, more unusual approaches of malware recognising the fact of being in an
automated analysing system. For example is Cuckoo, amongst others, mimicking human activity
with random mouse movements and clicks.

Fig. 7 shows a simplified model of the Cuckoo architecture used in the experiment with the small
adaption that the Cuckoo host is running on a cloud service and only one analysis guest machine is
used.

30

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Figure 7: Cuckoo’s main architecture [7]

5.4.3 Dynamic Malware Analysis and Feature Extraction

The remaining 8,305 pre-processed malware samples are then submitted to cuckoo for the dynamic
analysis. Cuckoo assigns every sample with a unique task ID and then invokes the guest machine for
the analysis over the configured virtual network and reverts it to the previously created snapshot.
A Cuckoo agent, programmed in Python, that works over the network is used to transfer data
between host and guest by using the XMLRPC protocol. A malware sample is transferred to the guest
machine. In this controlled environment the sample is executed alongside the powershell script.
During the execution, Cuckoo examines all changes made to the system or connection attempts to
the outside world while the powershell analysis the CPU and RAM usage. Once the initial malware
process and every process invoked by the malware is terminated, the analysis is considered to be
finished. In case a malware tries to stay active and never terminates its processes, Cuckoo has a
built-in 60 seconds timer. If this timer is reached, the analysis is being forced to terminate. Once
Cuckoo is done analysing a sample, the results are being extracted to the host system with the
Cuckoo agent and reported by different reporting modules. Various logs, reports and dumps are
generated and combined in a JSON-format report. The usage.txt file, created by the powershell
script, is also transferred to the host system. Cuckoo creates a directory structure with one folder

31

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

for each analysed malware sample on the host system.
Since 8,305 malware samples have been dynamically analysed, some minor errors are to be

expected. Therefore, all report files are checked for errors produced by Cuckoo during the analysis
and for a missing ’summary’ field in the report. Cuckoo uses a ’debug’ array with an ’errors’ field,
which is either empty or not, inside the JSON-structure. If this ’errors’ field has any value inside or
the ’summary’ field is missing, the report is being deleted since it could skew the outcome of the
experiment. Moreover, the results from the powershell script have to be appended to the Cuckoo
report file in order to be easily extractable afterwards. A Python script takes over the work of
iterating through the whole directory structure made by Cuckoo, finding and deleting the reports
with errors or missing ’summary’ field, copying the powershell results into the JSON-report structure
and grouping all reports by their malware family based on the task IDs previously given by Cuckoo.
The pseudocode of Algorithm 3 shows the basic functionality of the Python script while the full
code can be found in Appendix A.3. Table 3 lists the exact distribution of the individual families
before and after PEframe processing and error removal.

32

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Algorithm 3 Pseudocode to remove errors, copy memory features into report and group

all reports based on family

for i← 1 to 8306 do

if len("errors") 6= 0 or len("summary") = 0 then
delete(report(i))

next(i)

end

for f← files do

if f.endswidth("usage.txt") then

for l← lines do

if l.startswidth("Memory:") then
ram.append(l[8:])

end

if l.startswidth("CPU:") then
cpu.append(l[5:])

end

end

newDict← {peakCPU, peakRAM, averageCPU, averageRAM}

report[’summary’].update(newDict)

save(report(i))

end

end

for x← 1 to 10 do

if i ≥ folder[x][startTaskID] and i < folder[x][endTaskID] then
copy(report(i), folder[x][familyName])

end

end

end

33

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Familie Original Amount after PEframe (1) after Error Removal (3)

agent 1,000 866 600
hupigon 1,000 307 260
obfuscator 1,000 458 417
onlinegames 1,000 989 928
renos 1,000 986 775
small 1,000 983 869
vb 1,000 983 940
vbinject 1,000 949 921
vundo 823 784 323
zlob 1,000 1,000 976

total 9,823 8,305 7,009

Table 3: In the experiment used malware families with accurate amount distribution

5.4.4 Feature preparation for Weka

The JSON-reports created by Cuckoo are not readable for Weka without further modifications. Weka
expects a specific file structure, such as ARFF, JSON, or CSV, consisting of an attribute section and
a data section. The attribute section contains one entry for each feature, the data section contains
one entry for each malware sample and one value linked to each attribute. To check which features
were found, all disk and network feature names detected by Cuckoo, listed in Table 4, as well as
the appended memory feature from the powershell script, are extracted. To handle duplicates, only
new found feature names are recorded.

34

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Disk Features Network Features Memory Features

command_line connects_host averageCPU
directory_created connects_ip averageRAM
directory_enumerated downloads_file peakCPU
directory_removed fetches_url peakRAM
dll_loaded resolves_host
regkey_deleted
regkey_opened
regkey_read
regkey_written
file_copied
file_created
file_deleted
file_exists
file_failed
file_moved
file_opened
file_read
file_recreated
file_written
guid
mutex
wmi_query

Table 4: All extracted dynamic features

A Python script creates the specific file format by writing the dynamic feature names into the
attribute section and the values into the data section. The values of the data section concerning
the memory features are the actual percentage of CPU and RAM usage during malware execution.
Concerning disk and network features, two possible approaches were examined. The first approach
was using a binary technique for the data section. This would specify a "1" or a "0" for the malware
either possessing that feature or not. The other approach was an amount-based method in which
the quantity of values of each feature was appended to the data section. Therefore, an example of
a data section entry could either look like this:

"values" : ["1","1" , "1", "1", "1", "0", "1", "1", "1", "1", "0",
"1", "1", "1", "0", "1", "1", "1", "1", "1", "0", "1", "1", "0",
"0", "0", "0", "1", "1", "1", "1", "agent"]

or the equivalent line for the amount-based approach like this:

"values" : ["47" ,"1" , "527", "92", "48", "0", "72", "48", "76", "4",
"0", "10", "33", "9", "0", "1606" , "42", "1", "1", "6", "0",

"7", "1", "0", "0", "0", "0", "17", "20", "64", "19", "agent"]

Each value between quotation marks represents one of the 31 features plus the malware family

35

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

name listed in the attribute section. The Pseudocode is presented in Algorithm 4 and the full Python
code is listed in Appendix A.4.

Algorithm 4 Pseudocode to extract all dynamic features and create Weka file

for f← files do

for key = "summary" do

if key /∈ features then
features.append(key)

end

end

end

create(files) for f← features do
file.append(f)

end

for f← files do

for key = "summary" do

for f← features do

if key = f then

if key = memoryFeature then
file.append(key.value)

end

if key = diskFeature or key = networkFeature then
file.append(len(key))

end

end

end

end

end

For the second experiment the static features have already been extracted and stored as dataset.
This dataset contained 328,350 entries and was provided by Andrii Shalaginov, the co-supervisor of
this thesis. The dataset was already stored in a specific CSV-format which Weka can read. Therefore,
the only thing left to do was extracting the same 7,009 samples used in the dynamic analysis, iden-
tified by their MD5 hash value. The created Python code to do this task can be found in Appendix

36

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

A.5. The dataset still holds the features from VirusTotal. However, they can easily be removed in
Weka itself, since Weka lists all included attributes which can be excluded from the classification at
the push of a button.

5.4.5 Application of Machine Learning

The created file can then be fed to Weka, where the features are ranked, selected and classified
in their respective families. To find the best classifier and combination of features, Weka has some
built-in functions for attribute selection and functionalities for feature ranking and correlation.
The various metrics for feature selection methods are presented in Section 4.4. After importing
the file containing all features, filters can be applied. To include the appropriate feature selection
method the supervised filter ’AttributeSelection’ is added to the dataset. Then, the specific attribute
evaluator and the search method are added. The attribute evaluator defines the metric for feature
selection. It is the technique to evaluate each attribute in context of the output variable. The search
method is the technique on how to rank or navigate different combinations of attributes [75]. Table
5 lists the used feature selection metrics and connects them to the corresponding module name
and the necessary search method in Weka. The commonly used classifiers presented in Section 3.6
are used for the classification alongside a 10 fold cross-validation approach as test option. Cross-
validation is deployed because the data, used for training and testing a machine learning algorithm,
should never be derived from the same sample set. The detailed functionality of cross-validation is
explained in Section 4.5.

Feature Selection Metric Attribute Evaluator in Weka Search Method in Weka

Correlation CorrelationAttributeEval Ranker
Information Gain InfoGainAttributeEval Ranker
Learner WrapperSubsetEval GreedyStepwise or BestFirst

Table 5: Used feature selection methods with connection to Weka module names for reproducibility

37

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

6 Results & Analysis

In this chapter the results of both experiments, introduced in Chapter 5, are presented and critically
analysed.

Table 6 and Table 7 show the most commonly used classifiers for malware classification with
machine learning, derived from Section 3.6, their true positive (TP) and false positive (FP) rate, the
F-measure

2× precision× recall

precision+ recall
(6.1)

which is the harmonic mean between precision (TP
TP+FP) and recall (TP

TP+FN), and the area under
the ROC curve. Table 6 displays the result of the binary classification while Table 7 lists the out-
come of the amount-based classification. All values in both tables represent the calculated weighted
average to combine the individual results per class with the amount of samples used by each class.
It is calculated as followed:

WeightedAverage =

10∑
i=1

vi × ni

N
(6.2)

The weighted average is calculated as the sum of the value per class (vi) times the amount of
samples per class (ni) for all ten classes divided by the total amount of samples (N). This means
that the weighted average takes the amount of samples per class into account. Therefore, a class
with more malware samples influences the weighted average more than a class with less samples.
Consequently, the overall accuracy is not being listed because in case of multi-class classification it is
not reliable since it’s not considering unbalanced sample distribution. Thus, the TP rate, calculated
as weighted average, is considered as performance indication of the model. Moreover, 10-fold cross-
validation was used as test option. For the k-nearest neighbours classifier only the k producing the
best result is listed. To get a broad view of the results, initially no feature selection methods were
applied.

It can be easily seen that the Random Forest classifier achieves the best results in both the binary
and the amount-based classification approach. In case of multi-class classification it is important to
highlight the TP rate per class, which is:

agent: 0.56; hupigon: 0.6; obfuscator: 0.61; onlinegames: 0.93;
renos: 0.95; small: 0.83; vb: 0.76; vbinject: 0.81; vundo: 0.87;
zlob: 0.95

for the binary classification approach and:

agent: 0.64; hupigon: 0.69; obfuscator: 0.7; onlinegames: 0.95;
renos: 0.97; small: 0.87; vb: 0.84; vbinject: 0.9; vundo: 0.94;
zlob: 0.98

39

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Classifier TP Rate FP Rate F-Measure ROC Area

Naive Bayes 0.575 0.057 0.555 0.884
SVM 0.77 0.027 0.771 0.927
ANN 0.779 0.025 0.78 0.923
5-nearest Neighbours 0.8 0.023 0.8 0.955
Logistic Regression 0.74 0.033 0.732 0.943
J48 0.804 0.023 0.804 0.934
Random Forest 0.818 0.022 0.817 0.970

Table 6: Weighted average of different classifiers with binary approach classification of dynamic features

Classifier TP Rate FP Rate F-Measure ROC Area

Naive Bayes 0.338 0.079 0.303 0.767
SVM 0.525 0.073 0.494 0.787
ANN 0.641 0.047 0.635 0.871
1-nearest Neighbours 0.677 0.04 0.676 0.817
Logistic Regression 0.691 0.042 0.677 0.921
J48 0.842 0.018 0.841 0.932
Random Forest 0.873 0.015 0.872 0.984

Table 7: Weighted average of different classifiers with amount-based approach classification of dynamic fea-
tures

for the amount-based approach. Since Random Forest seems to achieve the best results for the
constructed experiment in this work, only the RF classifier is being considered from this point on.
Moreover, it can be seen that the amount-based classification approach obtains better results in
combination with Random Forest than the binary approach with the same classifier. Therefore, the
commonly used feature selection methods, presented in Section 4.4, are applied to the amount-
based classification approach. Table 8 presents the results for Correlation-based, Information Gain-
based and Learner-based feature selection method and their overall classification performance in
the last row in form of the true positive rate calculated as weighted average. In the column for
Correlation-based feature selection the features are ranked by descending order and the values
represent the correlation between each feature and the output variable. In the Information Gain
column the values indicate the information, also called entropy, the features contribute for the
output variable. The feature with the highest information contribution at top descending to the
lowest. The third column presents the subset of attributes producing the best results. [75] The
goal with finding the best subset is to simplify and to speed up the classification process. Fig. 8
visualises those results. Green indicates the first ten ranked features, orange is used to display the
second ten features and red lists all features ranked as last eleven. The two features dll_loaded and
regkey_written have a green label for all three metrics of feature selection. The features file_created
and file_written are highly ranked in Correlation and Information Gain feature selection but are

40

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

not part of the best subset of features. Regkey_opened performs quite good with a green label for
Learner and Information Gain and an orange label for Correlation, as well as resolves_host with
two green labels and the orange label for Information Gain. Directory_enumerated, regkey_read,
file_exists and download_file have two green and one red label indicating a decent performance as
well. Directory_removed, file_copied, wmi_query and connects_ip perform the worst with two red
labels for Correlation and Information Gain while also not being part of the best subset. PreakRam,
averageRam and regkey_deleted make up the second worst group with one orange and one red
label while also not being part of the best subset of features. Table 5 in Subsection 5.4.5 links the
used feature selection metrics with the specific attribute evaluator and the search method in Weka.

Figure 8: Correlation between the dynamic features and the three used feature selection methods. Colour key:
green = 1-10; orange = 11-20; red = 21-31

Since the Correlation-based feature selection for the amount-based classification approach with
the Random Forest classifier achieves the best overall results, the detailed values of each malware
family is presented in Fig. 9 and its confusion matrix in Fig 10. The confusion matrix visualises
the true labels against the predicted labels from the machine learning algorithm for each malware
family. The Python code used to create the confusion matrix can be found in Appendix A.6. It can be
seen that the three families agent, hupigon and obfuscator perform the worst with a true positive
rate of 0.7 and below. The confusion matrix shows a high false negative and false positive rate
between those three mentioned families. Moreover, malware samples from the agent family are
mistakenly predicted as a member of the small, vb and vbinject family, as well as samples from the
small family predicted to be of the agent family. In addition, the vb and vbinject families have some
confusion worth mentioning.

Examining the performance of each malware family presented in the confusion matrix (Fig. 10)
identifies that not all malware families perform the same. Some families are apparently easier to
classify and some aren’t. The threshold is set to discard classes on 80% TP rate. The vb family will
still be considered since its performance is just over the necessary threshold. However, the three
worst performing malware families agent, hupigon, obfuscator, which all are located below the
threshold, will be removed for this selection. Removing those three classes from the classification
leads to a weighted average true positive rate of 0.94 with a false positive rate of 0.012. Fig. 11
presents the confusion matrix of the seven best families classified with Random Forest. It can be

41

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Correlation Information Gain Best Subset (Learner)

resolves_host (0.17) regkey_read (1.342) regkey_written
downloads_file (0.121) regkey_opened (1.205) dll_loaded
dll_loaded (0.116) file_exists (1.076) regkey_opened
guid (0.108) dll_loaded (0.984) file_exists
peakCPU (0.107) regkey_written (0.897) file_failed
file_created (0.09) directory_enumerated (0.846) regkey_read
directory_created (0.088) file_opened (0.702) directory_enumerated
command_line (0.087) file_created (0.674) resolves_host
file_written (0.085) file_read (0.626) downloads_file
regkey_written (0.077) file_written (0.521) averageCPU
averageCPU (0.077) file_failed (0.488)
regkey_opened (0.077) file_deleted (0.466)
fetches_url (0.071) mutex (0.455)
mutex (0.071) regkey_deleted (0.453)
file_deleted (0.069) resolves_host (0.446)
connects_host (0.066) averageCPU (0.418)
file_recreated (0.065) file_recreated (0.405)
file_failed (0.061) command_line (0.385)
file_moved (0.06) peakRAM (0.341)
file_opened (0.055) averageRAM (0.316)
file_exists (0.053) guid (0.288)
regkey_read(0.047) downloads_file (0.227)
averageRAM (0.042) directory_created (0.205)
peakRAM (0.041) peakCPU (0.185)
directory_removed (0.039) connects_ip (0.167)
file_read (0.039) file_copied (0.128)
directory_enumerated (0.037) fetches_url (0.104)
regkey_deleted (0.033) connects_host (0.067)
wmi_query (0.025) directory_removed (0.048)
file_copied (0.017) wmi_query (0.04)
connects_ip (0.009) file_moved (0.032)

0.875 0.874 0.858

Table 8: Feature selection methods of dynamic features

42

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Figure 9: Detailed performance evaluation of each malware family for Random Forest classifier and
Correlation-based feature selection of dynamic features

Figure 10: Confusion matrix for Random Forest classifier and Correlation-based feature selection of dynamic
features

43

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

seen that the only noteworthy falsely identified families are vb and vbinject which get mistakenly
predicted as the other class with a rate of around 0.1.

Figure 11: Confusion matrix for Random Forest classifier of the seven best performing families of dynamic
features

In addition, the second experiment with the static features mentioned in Subsection 5.4.4
achieves an overall performance of 86.7% without any feature selection methods applied. The TP
rates per class are:

agent: 0.63; hupigon: 0.63; obfuscator: 0.84; onlinegames: 0.94;
renos: 0.97; small: 0.84; vb: 0.79; vbinject: 0.9; vundo: 0.93;
zlob: 0.98

To analyse the static features even further, the best eight features, provided by Correlation and
Information Gain feature selection, and the best subset of features are presented in Table 9. The
values denote the same as in Table 8 listed above.

To get a better and simpler comparison of the performance of static and dynamic features, the

44

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Correlation Information Gain Learner

pe_detected (0.21) filesize (1.75) pe_api
pe_packer (0.20) size_TOT (1.47) pe_library
filesize (0.14) size_TEXT (1.41) pe_detected
pe_api (0.13) size_DATA (1.3) size_DATA
pe_library (0.12) pe_api (0.92) size_TOT
size_TOT (0.10) pe_library (0.7) filesize
size_DATA (0.09) pe_packer (0.61)
size_TEXT (0.07) pe_detected (0.34)

0.870 0.870 0.866

Table 9: Feature selection methods of static features

true positive rates are visualised in Fig. 12. It compares the dynamic and the static features by class
against each other based on their true positive rates from the Correlation-based feature selection
method. It can be seen that the dynamic features are either on the same level or better than the
static features for all families except for the obfuscator family which performs far better with static
features.

Table 9 shows that from the best performing static features only the feature pe_dll is used in
the dynamic approach. This means that the static features could add another level of abstraction
to the classification results of the dynamic features. Therefore, merging the dynamic with the static
features results in an even higher true positive rate of 0.923. Looking at the best eleven performing
features based on the three metrics for feature selection, it can be seen that the features are ranked
by a combination of their individual ranking from Table 8 and Table 9 which are:

resolves_host , pe_detected , pe_packer , downloads_file , pe_api ,
dll_loaded , guid , peakCPU , pe_library , filesize , file_created

for Correlation,

regkey_read , filesize , regkey_opened , file_exists , size_TOT ,
dll_loaded , size_TEXT , regkey_written , directory_enumerated ,
size_DATA , file_opened

for Information Gain and

pe_api , pe_detected , size_DATA , size_TOT , filesize , regkey_written ,
regkey_opened , file_exists , regkey_read , directory_enumerated ,
resolves_host

as best subset of features.

45

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Figure 12: Comparison of TP rates from Correlation-based feature selection of static against dynamic features
by class

46

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

7 Discussion

In the following chapter the results, presented in Chapter 6, are interpreted, explained and dis-
cussed in detail.

First, two major findings have to be explained; Random Forest as best performing classifier with
amount-based classification achieving the best results. As stated by Tian et al., RF has excellent
accuracy among current classifier algorithms [46], who also achieve their best results with Random
Forest. The RF classifier is a combination of decision trees. For a classification every tree is allowed
to make a decision and the class with the most votes determines the final classification. Therefore,
the evaluation process can be parallelised, which makes Random Forest an efficient classifier also for
big datasets. Random Forest is also very robust in respect to noise. RF can also better handle a high-
dimensional feature space compared to other classifiers, which applies to the conducted experiment
of this thesis with 31 different features. Even removing the worst performing features from the
experiment, based on Information Gain and Correlation, will decrease the overall classification
result of Random Forest. Some classifiers, such as Logistic Regression or Naive Bayes for example,
are rather used for binary classification while others, such as Artificial Neural Networks, increase
in time complexity up to an unmanageable processing time by adding hidden layers to increase the
mapped complexity. Furthermore, the two methods of mapping the data to the attributes, binary
and amount-based, achieve different results. For all classifiers, except J48 and Random Forest, the
binary approach performs better than the amount-based. However, the two decision tree classifiers,
which perform the best for both classification methods, achieve better results for the amount-based
approach. Using the exact amount of occurrences of each feature instead of a binary indication
adds another level of abstraction to the dataset. Therefore, RF benefits from it since it can handle a
high-dimensional feature space.

Concerning the features selection methods, it can be seen which feature performs the best and
contributes the most towards the overall classification accuracy. Table 8 lists the individual fea-
tures with the exact values as contribution to the total performance. Fig. 8 visualises those re-
sults in a comprehensible manner. On the one hand, some features, such as directory_removed,
file_copied, wmi_query, connects_ip, file_moved, connects_host, averageRAM and peakRAM, per-
form worse than others. On the other hand, some features contribute more to the overall per-
formance. Those features are dll_loaded, regkey_written, regkey_opened, file_created, file_written
and resolves_host. To interpret these results more information about the individual distribution
of the data points of each feature is needed. Weka supports such a possibility by visualising the
distribution of data points for each feature. Fig. 13 shows the data distribution of the worst per-
forming features while Fig. 14 visualises the data distribution of the best performing features. Table
10 summarises the values of the highest point of the curve for each feature. If those values are

47

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

high, this means that the particular feature has many malware samples corresponding to the same
data points. Therefore, the more similar data points a feature has, the less distinctive the feature
is. Based on the table it can be seen that the features contributing less to the overall classification
performance are also less distinctive than the features with a high contribution. For example, all
disk and network features from the worst performing group of features have a range of zero or
close to it. This means that most of the malware samples do not remove directories, move files,
connect to hosts or query WMIs and they copy files and connect to IPs only a little. Concerning
memory features, most of the malware samples use around 20 to 21 % of the RAM in average and
as peak. Regarding the best performing features, around half the malware samples write to registry
keys, create files, write to files and resolve hosts little to none. In conclusion, features with a low
Correlation and Information Gain, as well as not being part of the best subset of features, have
high values in the same range making them less distinctive. Furthermore, the two best perform-
ing features dll_loaded and regkey_written, which can be seen in Fig. 8, are two very distinctive
features heavily affecting the functionality of the malware. DLLs are loaded by the malware to use
different functions and registry keys are written in order to manipulate system values. Therefore,
those two features contribute the most to the overall malware classification because each malware
family has a different functionality which influences the use of DLLs and the writing of registry
keys. Moreover, from the group of the worst features there are some, such as directory_removed
and file_copied, which are not often supported by malware, especially the ten malware families
used in this experiment. If the intention of the malware is not explicitly removing directories or
copying files, then those two functions are usually not implemented since they are not common
functionalities for malware. Besides, RAM is also not adding much to the overall performance. This
could be a result of the 8GB of RAM available for the guest machine. Since the average RAM and
peak RAM usage was calculated by the percentage of occupied RAM during the execution of the
malware, it wasn’t influenced a lot by the rather small malware invoking only a couple of processes.
If the total RAM would have been 1-2GB of RAM, the malware execution would have influenced
the total percentage much more. Moreover, an attempt to rank the three groups of features is done.
Analysing Fig. 8 and adding values to the different ranks; let green have the value of 1, orange of
2 and red counts as 3 while no colour (white) is calculated as 2.5. This leads to an average value
of 5.9 for disk, 6.5 for network and 6.6 for memory features. Therefore, disk features contribute
the most to the overall classification in this experiment. This is because disk features influence the
malware functionality the most and they are easy to extract, evaluate and classify. Network traffic is
not used by every malware and therefore not represented by the common malware samples. Mem-
ory features are the hardest to extract due to their volatile nature but they carry a lot of potential
for the future of multinomial malware classification.

Furthermore, looking at Fig. 10 it can be seen that not all families are equally predictive. Es-
pecially the three classes agent, hupigon and obfuscator are wrongly predicted for one another
quite often. While agent is predicted as hupigon and obfuscator in an average of 4.5% of the times,
hupigon is predicted as agent and obfuscator in 10 to 11% of the cases and obfuscator is predicted
as agent and hupigon with a rate of 8 to 9%. Fig. 11 shows the result of removing those three

48

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Figure 13: Data distribution of the worst performing dynamic features

Figure 14: Data distribution of the best performing dynamic features

49

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Feature Value Range

Worst Features

directory_removed 6757 0
file_copied 6881 0-7
wmi_query 6848 0
connects_ip 7006 0-4
file_moved 6873 0
connects_host 6546 0
averageRAM 6009 20-21
peakRAM 5902 20-21

Best Features

dll_loaded 1490 13-16
regkey_written 5764 0-7
regkey_opened 5465 0-34
file_created 4115 0-1
file_written 3953 0-1
resolves_host 4778 0

Table 10: Data points of the peak of the curve based on Fig. 13 and Fig. 14

families from the classification process, which leads to an overall classification accuracy of 94%.
This proves that the performance of malware classification is highly dependent on the different
malware families used in the process. Not all families are easy to detect. However, comparing the
individual classification rates of each malware family from Fig. 10 with the detailed description
listed in Section 4.1, it can be seen that agent and hupigon are rather powerful malware families.
In terms of functionality they offer a lot of variety like installing Adware, downloading additional
malware, changing Windows configurations, opening backdoors, starting services and communicat-
ing with the attacker. The same with the obfuscator family, it is a broader malware family in terms of
functionality. It rather can be seen as collective name for malware with obfuscation techniques but
therefore, can have any kind of functionality. In contrary, malware families, such as onlinegames,
renos, small, vundo and zlob, are more specific in their functions. Malware from the onlinegames
family focus on online game key strokes, renos mostly shows fake security warnings, small down-
loads PUPs, vundo deals with pop-up advertisement and zlob focuses on internet explorer. Those
malware families are rather unique and distinctive in their actions. Moreover, the two families vb
and vbinject are also mistakenly predicted as one another. This is due to the fact that they show
strong similarities in their programming since both are based on Visual Basic. Besides, it can be
seen that the malware samples from the agent family are 7 to 8% of the times wrongly predicted
as member of the small family and vice versa. This could be related to the fact that both have the
functionality of downloading additional malware. In addition, malware from the agent family are
also mistakenly predicted to be a sample from the vb family in 10% of the cases. This occurs be-
cause malware of the agent family is not quite distinctive with their functionalities and vb is more
of a generic, Visual Basic-based term for malware unclear about the exact functions.

In addition, the second experiment dealt with static feature classification in order to provide a

50

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

comparison functionality of static against dynamic features. The achieved performance of the clas-
sification with the static features is, even though it is lower than the performance of the dynamic
features, quite impressive. It was unexpected for the static features to achieve such a high accuracy.
Especially the performance of the obfuscator malware family was surprising, since obfuscated mal-
ware samples were suspected to perform bad with static features, but the contrary happened. This is
because the obfuscator family has a set of distinct static characteristics describing specific properties
of this class. Fig. 15 shows the data distribution of the best performing static features, based in Table
9, with distinct characteristics of malware samples from obfuscator. Red depicting the obfuscator
family and blue the combination of all other nine families. It can be seen that the obfuscator family,
for example, has a bigger file size and file size regions than the other families in average. Moreover,
the amount of packers in obfuscated malware tends to be larger. However, the best performing
static features were pe_detected, pe_packer, pe_api, pe_library, filesize, size_TOT, size_DATA and
size_TEXT. From those features only pe_library, which can be resembled by dll_loaded, is also used
in the dynamic feature classification. This means that the classification accuracy of the dynamic
features can be further improved by adding more features, as the results of merging the dynamic
with the static features indicates. The combination of both groups improves the classification ac-
curacy from 87.5% (dynamic features) to 92.3% (combination of static and dynamic). Therefore,
dynamic features can be further improved by increasing the feature space to a higher dimension.
Especially the features concerning the file size were contributing much to the overall performance.
A process of dynamically extracting the actual file size and the individual file size regions of the mal-
ware samples could increase the classification accuracy by decreasing the influence of obfuscation
simultaneously.

Now the research questions stated in Chapter 1 can be answered. Even though static features
perform an overall decent classification result, they could be easily manipulated by obfuscation
techniques. As seen in Table 9, which shows the best performing static features, file sizes were quite
important for the classification of static features. Unfortunately, file sizes can easily be changed
without changing the overall functionality by adding unnecessary code fragments, for example, or
slightly transforming parts of the code. Moreover, statically extracted strings could be obfuscated by
the use of encryption techniques which would make nearly all PEframe features invalid. Therefore,
it is important to focus more on dynamic features, useful for multinomial malware classification,
such as dll_loaded, regkey_written, regkey_opened, file_created, file_written and resolves_host.
Even though the performance gain is, with an increase of 0.5%, not exceptionally high, the result
is less prone to obfuscation. Moreover, the performance of dynamic features can be increased by
adding API calls, for example. Since technical difficulties in the beginning of the experiment pre-
vented the extraction of API calls, it was decided to not include them in the experiment. However,
adding the statically extracted pe_api feature to get a glimpse of the possible performance, results
in a classification accuracy of 89.7%, which would be a performance increase of 2.7% compared to
the static features.

51

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Figure 15: Data distribution of static features with obfuscator as red

7.1 Implications

The following two subsections describe the long-term impact of this study and how the achieved
results can be applied in future works.

7.1.1 Theoretical Implications

Based on RQ1 and RQ3, the limitations of the static features and the performance gain of the
dynamic features have been analysed. The achieved results show that the future of malware detec-
tion/classification will be based on dynamic malware analysis. Therefore, further research in this
area needs to be done.

7.1.2 Practical Implications

Regarding RQ2, the best dynamic features for multinomial malware classification needed to be
found. Table 10 lists the best and the worst performing features of this study. Based on this knowl-
edge, it can be avoided to use the worst performing features in future works. Instead, the focus can
be put on the best performing features with the attempt to improve the use of those features in a
different structure as elaborated further in Chapter 8.

7.2 Limitations of the Study

Despite the valuable results in general, there are some limitations to the experiment. First, it has
to be mentioned that the conducted experiment works only for malware samples which are unable

52

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

to detect their own execution in a sandbox environment. In the beginning of the experiment all
malware samples with anti-VM and anti-debug features have been removed beforehand. Malware
with those kind of abilities are unable to be classified by this work. Second, only Windows PE32
malware samples have been analysed in the experiment. Malware written for different operating
systems, such as macOS or Android, can not be examined with this approach. Moreover, in the
experiment, it was taken care of embedded Word documents and PDF files, since those are the most
common embedded file formats in malware. However, other file formats embedded in a malware
sample are not recognised and therefore, were not executed during dynamic analysis. Furthermore,
since the performance of the analysis was not considered to be a requirement of the work, it is
rather not suitable for real-time analysis. Last, the concept of reliability has to be considered. The
number of malware samples is not equally distributed among the ten families, which makes the
experiment not completely reliable.

53

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

8 Conclusion

The following chapter summarises and concludes the content of the experiment conducted through-
out this thesis.

9,823 Windows PE32 malware samples were originally received for malware classification. Af-
ter a pre-processing phase 8,305 samples remained. With the automated malware analysis system
Cuckoo Sandbox the remaining samples were executed inside a controlled environment, a virtual
machine. For each malware sample the dynamic features were extracted and stored in a report.
After the error removal phase 7,009 reports of malware samples remained for classification. The
extracted features were put together in a single file, readable for the machine learning library Weka.
Therefore, the name of the features were stored in the attribute section while the number of indi-
vidual occurrences was saved as data points. Selected metrics of feature selection methods were
used to rank the features and to analyse the individual contribution of each feature. Moreover,
static features of the same 7,009 malware samples were used to compare their results to the perfor-
mance of the dynamic features. While the static features achieved an overall classification accuracy
of 87% TP, an F-measure value of 0.869 and an AUC of 0.985, the dynamic features accomplished
a performance of 87.5% (RQ3) in terms of true positive rate, a F-measure value of 0.875 and an
AUC of 0.985. Even though this performance gain seems small, it has to be considered that dynamic
features, unlike static features, are not susceptible to obfuscation techniques (RQ1). Hence, the best
performing dynamic features for multinomial malware classification are the modified and opened
registry keys, the created and modified files, the loaded DLLs and the resolved hosts (RQ2).

As mentioned in Section 7.2, malware samples with anti-VM and anti-debug features are not
included in the experiment. This is a common approach for dynamic malware classification also in
other literature. However, this is not an appropriated method in the long run for malware analysts
to exclude malware samples with such features. Therefore, more research towards automated mal-
ware analysis systems with the ability to run such malware samples has to be done in the future. For
example, the software VMCloak, programmed and maintained by one of the developer of Cuckoo
Sandbox, aims to target this issue. Amongst other things it tries to make the set up virtual machine
more difficult to detect with conventional ways. Moreover, the used dynamic features for multi-
nomial malware classification achieved a good performance, however, they could have been used
in a different structure, as suggested by multiple recent literature. For example, the exact value of
the called APIs, the modified registry keys or the queried WMIs could have been taken instead of
the total amount as single value. Another approach could involve certain sequences of API calls
or loaded DLLs instead of the overall number of occurrences or a different weighting of features,
since some API calls, for example, are more relevant than others, as stated by Kolosnjaji et al. [80].
Furthermore, the used memory features can be improved in precision and extraction. Instead of just

55

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

considering the first ten seconds of the running malware process, a different or longer time frame
could have been analysed as well as another extraction method instead of a powershell module.
In addition, other memory features have to be analysed on their performance towards multinomial
malware classification. Such features could be, for example, the number of spawned processes by
the malware. Cuckoo’s monitor could be used for this since it follows the malware through all pro-
cesses either generated or taken over by it. Another approach could be to extract and analyse full
machine or process memory dumps. However, this would heavily increase the time performance of
the analysis.

56

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Bibliography

[1] AV-TEST. 2018. Malware. https://www.av-test.org/en/statistics/malware/. Accessed:
2018-11-12.

[2] Hansen, S. S. & Larsen, T. M. T. Dynamic malware analysis: Detection and family classification
using machine learning. Master’s thesis, Aalborg University, 2015.

[3] VirusTotal. Virustotal. https://www.virustotal.com/. Accessed: 2018-11-12.

[4] Pektaş, A. Classification des logiciels malveillants basée sur le comportement à l’aide de
l’apprentissage automatique en ligne. PhD thesis, Université Grenoble Alpes, 12 2015.

[5] Levin, B. & Simpson, D. 2018. Malware names. https://docs.microsoft.
com/en-us/windows/security/threat-protection/intelligence/malware-naming#
variant-letter. Accessed: 2019-01-03.

[6] Banin, S., Shalaginov, A., & Franke, K. 2016. Memory access patterns for malware detection,
norsk informasjonssikkerhetskonferanse (nisk). Norsk Informasjonssikkerhetskonferanse, 96–
107.

[7] Guarnieri, C., Tanasi, A., Bremer, J., & Schloesser, M. 2010. Cuckoo Sandbox Book. Read the
Docs, 2.0.6 edition.

[8] Ravula, R. R. Classification of malware using reverse engineering and data mining techniques.
Master’s thesis, University of Akron, 2011.

[9] Kaspersky Lab. 2017. Kaspersky lab detects 360,000 new malicious files daily
– up 11.5% from 2016. https://www.kaspersky.com/about/press-releases/2017_
kaspersky-lab-detects-360000-new-malicious-files-daily. Accessed: 2018-11-12.

[10] Liu, J., Wang, Y., Xie, P., Wang, Y., & Huang, Z. 2015. Malware similarity analysis based on
graph similarity flooding algorithm. In Advances in Computer Science and Ubiquitous Comput-
ing, Park, D.-S., Chao, H.-C., Jeong, Y.-S., & Park, J. J. J. H., eds, 31–37, Singapore. Springer
Singapore. doi:10.1007/978-981-10-0281-6_5.

[11] Alkhateeb, E. M. S. August 2017. Dynamic malware detection using api similarity. In 2017
IEEE International Conference on Computer and Information Technology (CIT), 297–301. doi:
10.1109/CIT.2017.14.

57

https://www.av-test.org/en/statistics/malware/
https://www.virustotal.com/
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/malware-naming#variant-letter
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/malware-naming#variant-letter
https://docs.microsoft.com/en-us/windows/security/threat-protection/intelligence/malware-naming#variant-letter
https://www.kaspersky.com/about/press-releases/2017_kaspersky-lab-detects-360000-new-malicious-files-daily
https://www.kaspersky.com/about/press-releases/2017_kaspersky-lab-detects-360000-new-malicious-files-daily
http://dx.doi.org/10.1007/978-981-10-0281-6_5
http://dx.doi.org/10.1109/CIT.2017.14
http://dx.doi.org/10.1109/CIT.2017.14

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

[12] Payer, M., Crane, S., Larsen, P., Brunthaler, S., Wartell, R., & Franz, M. 2014. Similarity-based
matching meets malware diversity. CoRR, abs/1409.7760.

[13] Park, J., Kim, M., Noh, B., & Joshi, J. B. D. September 2006. A similarity based technique
for detecting malicious executable files for computer forensics. In 2006 IEEE International
Conference on Information Reuse Integration, 188–193. doi:10.1109/IRI.2006.252411.

[14] Yi, Y., Lingyun, Y., Rui, W., Purui, S., & Dengguo, F. 2011. Depsim: A dependency-based
malware similarity comparison system. In Information Security and Cryptology, Lai, X., Yung,
M., & Lin, D., eds, 503–522, Berlin, Heidelberg. Springer Berlin Heidelberg. doi:10.1007/
978-3-642-21518-6_35.

[15] Han, K.-S., Kim, I.-K., & Im, E. G. 2012. Malware classification methods using api sequence
characteristics. In Proceedings of the International Conference on IT Convergence and Security
2011, Kim, K. J. & Ahn, S. J., eds, 613–626, Dordrecht. Springer Netherlands. doi:10.1007/
978-94-007-2911-7_60.

[16] Kim, J., Lee, S., Youn, J. M., & Choi, H. 2017. A study of simple classification of malware based
on the dynamic api call counts. In Advances in Computer Science and Ubiquitous Computing,
Park, J. J. J. H., Pan, Y., Yi, G., & Loia, V., eds, 944–949, Singapore. Springer Singapore.

[17] Kim, H., Kim, J., Kim, Y., Kim, I., Kim, K. J., & Kim, H. September 2017. Improvement
of malware detection and classification using api call sequence alignment and visualization.
Cluster Computing. doi:10.1007/s10586-017-1110-2.

[18] Narayanan, B. N., Djaneye-Boundjou, O., & Kebede, T. M. July 2016. Performance analysis of
machine learning and pattern recognition algorithms for malware classification. In 2016 IEEE
National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS),
338–342. doi:10.1109/NAECON.2016.7856826.

[19] Chia-mei, C. & Gu-hsin, L. August 2014. Research on classification of malware source
code. Journal of Shanghai Jiaotong University (Science), 19(4), 425–430. doi:10.1007/
s12204-014-1519-1.

[20] Grégio, A. R. A., de Geus, P. L., Kruegel, C., & Vigna, G. 2013. Tracking memory writes for
malware classification and code reuse identification. In Detection of Intrusions and Malware,
and Vulnerability Assessment, Flegel, U., Markatos, E., & Robertson, W., eds, 134–143, Berlin,
Heidelberg. Springer Berlin Heidelberg. doi:10.1007/978-3-642-37300-8_8.

[21] Liu, L., Wang, B.-s., Yu, B., & Zhong, Q.-x. September 2017. Automatic malware classification
and new malware detection using machine learning. Frontiers of Information Technology &
Electronic Engineering, 18(9), 1336–1347. doi:10.1631/FITEE.1601325.

58

http://dx.doi.org/10.1109/IRI.2006.252411
http://dx.doi.org/10.1007/978-3-642-21518-6_35
http://dx.doi.org/10.1007/978-3-642-21518-6_35
http://dx.doi.org/10.1007/978-94-007-2911-7_60
http://dx.doi.org/10.1007/978-94-007-2911-7_60
http://dx.doi.org/10.1007/s10586-017-1110-2
http://dx.doi.org/10.1109/NAECON.2016.7856826
http://dx.doi.org/10.1007/s12204-014-1519-1
http://dx.doi.org/10.1007/s12204-014-1519-1
http://dx.doi.org/10.1007/978-3-642-37300-8_8
http://dx.doi.org/10.1631/FITEE.1601325

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

[22] Lee, T., Choi, B., Shin, Y., & Kwak, J. August 2018. Automatic malware mutant detection and
group classification based on the n-gram and clustering coefficient. The Journal of Supercom-
puting, 74(8), 3489–3503. doi:10.1007/s11227-015-1594-6.

[23] Islam, R., Tian, R., Batten, L. M., & Versteeg, S. 2013. Classification of malware based on
integrated static and dynamic features. Journal of Network and Computer Applications, 36(2),
646 – 656. doi:https://doi.org/10.1016/j.jnca.2012.10.004.

[24] Sathyanarayan, V. S., Kohli, P., & Bruhadeshwar, B. 2008. Signature generation and de-
tection of malware families. In Information Security and Privacy, Mu, Y., Susilo, W., &
Seberry, J., eds, 336–349, Berlin, Heidelberg. Springer Berlin Heidelberg. doi:10.1007/
978-3-540-70500-0_25.

[25] Biondi, F., Given-Wilson, T., Legay, A., Puodzius, C., & Quilbeuf, J. 2018. Tutorial: An overview
of malware detection and evasion techniques. In Leveraging Applications of Formal Methods,
Verification and Validation. Modeling, Margaria, T. & Steffen, B., eds, 565–586, Cham. Springer
International Publishing. doi:10.1007/978-3-030-03418-4_34.

[26] Islam, R. & Altas, I. 2012. A comparative study of malware family classification. In Information
and Communications Security, Chim, T. W. & Yuen, T. H., eds, 488–496, Berlin, Heidelberg.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-34129-8_48.

[27] Preda, M. D., Christodorescu, M., Jha, S., & Debray, S. January 2007. A semantics-based
approach to malware detection. SIGPLAN Not., 42(1), 377–388. doi:10.1145/1190215.
1190270.

[28] lastline. 2017. An introduction to advanced malware and how it avoids detection. https:
//www.infosecurityeurope.com/__novadocuments/357216?v=636295318428200000. Ac-
cessed: 2018-11-23.

[29] Sharma, A. October 2015. Evolution and detection of polymorphic and metamorphic mal-
wares: A survey. International Journal of Computer Applications. doi:10.13140/RG.2.1.
5104.1763.

[30] Griffin, K., Schneider, S., Hu, X., & Chiueh, T.-c. 2009. Automatic generation of string
signatures for malware detection. In Recent Advances in Intrusion Detection, Kirda, E., Jha,
S., & Balzarotti, D., eds, 101–120, Berlin, Heidelberg. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-04342-0_6.

[31] Mohamed, G. A. N. & Ithnin, N. B. 2018. Sbrt: Api signature behaviour based repre-
sentation technique for improving metamorphic malware detection. In Recent Trends in
Information and Communication Technology, Saeed, F., Gazem, N., Patnaik, S., Saed Bal-
aid, A. S., & Mohammed, F., eds, 767–777, Cham. Springer International Publishing. doi:
10.1007/978-3-319-59427-9_79.

59

http://dx.doi.org/10.1007/s11227-015-1594-6
http://dx.doi.org/https://doi.org/10.1016/j.jnca.2012.10.004
http://dx.doi.org/10.1007/978-3-540-70500-0_25
http://dx.doi.org/10.1007/978-3-540-70500-0_25
http://dx.doi.org/10.1007/978-3-030-03418-4_34
http://dx.doi.org/10.1007/978-3-642-34129-8_48
http://dx.doi.org/10.1145/1190215.1190270
http://dx.doi.org/10.1145/1190215.1190270
https://www.infosecurityeurope.com/__novadocuments/357216?v=636295318428200000
https://www.infosecurityeurope.com/__novadocuments/357216?v=636295318428200000
http://dx.doi.org/10.13140/RG.2.1.5104.1763
http://dx.doi.org/10.13140/RG.2.1.5104.1763
http://dx.doi.org/10.1007/978-3-642-04342-0_6
http://dx.doi.org/10.1007/978-3-642-04342-0_6
http://dx.doi.org/10.1007/978-3-319-59427-9_79
http://dx.doi.org/10.1007/978-3-319-59427-9_79

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

[32] Nataraj, L., Karthikeyan, S., Jacob, G., & Manjunath, B. S. 2011. Malware images: visualiza-
tion and automatic classification. In VizSEC. doi:10.1145/2016904.2016908.

[33] Islam, N., Das, S., & Chen, Y. April 2017. On-device mobile phone security exploits machine
learning. IEEE Pervasive Computing, 16(2), 92–96. doi:10.1109/MPRV.2017.26.

[34] Banin, S. & Dyrkolbotn, G. O. 2018. Multinomial malware classification via low-level features.
Digital Investigation, 26, 107–117. doi:10.1016/j.diin.2018.04.019.

[35] Bounouh, T., Brahimi, Z., Al-Nemrat, A., & Benzaid, C. 2016. A scalable malware classification
based on integrated static and dynamic features. In Global Security, Safety and Sustainabil-
ity - The Security Challenges of the Connected World, Jahankhani, H., Carlile, A., Emm, D.,
Hosseinian-Far, A., Brown, G., Sexton, G., & Jamal, A., eds, 113–124, Cham. Springer Inter-
national Publishing. doi:10.1007/978-3-319-51064-4_10.

[36] Fang, Y., Yu, B., Tang, Y., Liu, L., Lu, Z., Wang, Y., & Yang, Q. 2017. A new malware
classification approach based on malware dynamic analysis. In Information Security and
Privacy, Pieprzyk, J. & Suriadi, S., eds, 173–189, Cham. Springer International Publishing.
doi:10.1007/978-3-319-59870-3_10.

[37] Tian, R., Islam, R., Batten, L., & Versteeg, S. Oct 2010. Differentiating malware from clean-
ware using behavioural analysis. In 2010 5th International Conference on Malicious and Un-
wanted Software, 23–30. doi:10.1109/MALWARE.2010.5665796.

[38] Shalaginov, A. & Franke, K. Dec 2016. Automated intelligent multinomial classification of
malware species using dynamic behavioural analysis. In 2016 14th Annual Conference on
Privacy, Security and Trust (PST), 70–77.

[39] Rieck, K., Trinius, P., Willems, C., & Holz, T. December 2011. Automatic analysis of malware
behavior using machine learning. J. Comput. Secur., 19(4), 639–668.

[40] Nari, S. & Ghorbani, A. A. Jan 2013. Automated malware classification based on network
behavior. In 2013 International Conference on Computing, Networking and Communications
(ICNC), 642–647. doi:10.1109/ICCNC.2013.6504162.

[41] Gandotra, E., Bansal, D., & Sofat, S. 01 2014. Malware analysis and classification: A survey.
Journal of Information Security, 05, 56–64. doi:10.4236/jis.2014.52006.

[42] Pirscoveanu, R. S., Hansen, S. S., Larsen, T. M. T., Stevanovic, M., Pedersen, J. M., & Czech,
A. June 2015. Analysis of malware behavior: Type classification using machine learning. In
2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment
(CyberSA), 1–7. doi:10.1109/CyberSA.2015.7166115.

[43] Shalaginov, A., Grini, L. S., & Franke, K. July 2016. Understanding neuro-fuzzy on a class of
multinomial malware detection problems. In 2016 International Joint Conference on Neural
Networks (IJCNN), 684–691. doi:10.1109/IJCNN.2016.7727266.

60

http://dx.doi.org/10.1145/2016904.2016908
http://dx.doi.org/10.1109/MPRV.2017.26
http://dx.doi.org/10.1016/j.diin.2018.04.019
http://dx.doi.org/10.1007/978-3-319-51064-4_10
http://dx.doi.org/10.1007/978-3-319-59870-3_10
http://dx.doi.org/10.1109/MALWARE.2010.5665796
http://dx.doi.org/10.1109/ICCNC.2013.6504162
http://dx.doi.org/10.4236/jis.2014.52006
http://dx.doi.org/10.1109/CyberSA.2015.7166115
http://dx.doi.org/10.1109/IJCNN.2016.7727266

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

[44] Damodaran, A., Troia, F. D., Visaggio, C. A., Austin, T. H., & Stamp, M. 2015. A comparison
of static, dynamic, and hybrid analysis for malware detection. Journal of Computer Virology
and Hacking Techniques, 13, 1–12.

[45] Shijo, P. & Salim, A. 2015. Integrated static and dynamic analysis for malware detection.
Procedia Computer Science, 46, 804 – 811. doi:10.1016/j.procs.2015.02.149.

[46] Tian, R., Batten, L., Islam, R., & Versteeg, S. Oct 2009. An automated classification system
based on the strings of trojan and virus families. In 2009 4th International Conference on Ma-
licious and Unwanted Software (MALWARE), 23–30. doi:10.1109/MALWARE.2009.5403021.

[47] Tian, R., Batten, L. M., & Versteeg, S. C. Oct 2008. Function length as a tool for malware
classification. In 2008 3rd International Conference on Malicious and Unwanted Software (MAL-
WARE), 69–76. doi:10.1109/MALWARE.2008.4690860.

[48] Zhao, H., Xu, M., Zheng, N., Yao, J., & Ho, Q. Jan 2010. Malicious executables classifica-
tion based on behavioral factor analysis. In 2010 International Conference on e-Education,
e-Business, e-Management and e-Learning, 502–506. doi:10.1109/IC4E.2010.78.

[49] Ahmed, F., Hameed, H., Shafiq, M. Z., & Farooq, M. 2009. Using spatio-temporal information
in api calls with machine learning algorithms for malware detection. In Proceedings of the
2Nd ACM Workshop on Security and Artificial Intelligence, 55–62, New York, NY, USA. ACM.
doi:10.1145/1654988.1655003.

[50] Uppal, D., Sinha, R., Mehra, V., & Jain, V. Sep. 2014. Malware detection and classification
based on extraction of api sequences. In 2014 International Conference on Advances in Com-
puting, Communications and Informatics (ICACCI), 2337–2342. doi:10.1109/ICACCI.2014.
6968547.

[51] Distler, D. & Hornat, C. 2007. Malware analysis: An introduction. SANS Institute, InfoSec
Reading Room.

[52] You, I. & Yim, K. 11 2010. Malware obfuscation techniques: A brief survey. Proceedings - 2010
International Conference on Broadband, Wireless Computing Communication and Applications,
BWCCA 2010, 297–300. doi:10.1109/BWCCA.2010.85.

[53] Sinay, Y. 2017. Common malware evasion techniques. http://blogs.microsoft.co.il/
yuval14/2017/06/20/common-malware-evasion-techniques/. Accessed: 2019-01-11.

[54] Wojtczuk, R. & Rutkowska, J. 2011. Following the white rabbit: Software attacks against
intel(r) vt-d technology. https://invisiblethingslab.com/resources/2011/Software%
20Attacks%20on%20Intel%20VT-d.pdf. Accessed: 2019-01-11.

[55] Xie, P., Lu, X., Wang, Y., Su, J., & Li, M. 2013. An automatic approach to detect anti-
debugging in malware analysis. In Trustworthy Computing and Services, Yuan, Y., Wu, X.,

61

http://dx.doi.org/10.1016/j.procs.2015.02.149
http://dx.doi.org/10.1109/MALWARE.2009.5403021
http://dx.doi.org/10.1109/MALWARE.2008.4690860
http://dx.doi.org/10.1109/IC4E.2010.78
http://dx.doi.org/10.1145/1654988.1655003
http://dx.doi.org/10.1109/ICACCI.2014.6968547
http://dx.doi.org/10.1109/ICACCI.2014.6968547
http://dx.doi.org/10.1109/BWCCA.2010.85
http://blogs.microsoft.co.il/yuval14/2017/06/20/common-malware-evasion-techniques/
http://blogs.microsoft.co.il/yuval14/2017/06/20/common-malware-evasion-techniques/
https://invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf
https://invisiblethingslab.com/resources/2011/Software%20Attacks%20on%20Intel%20VT-d.pdf

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

& Lu, Y., eds, 436–442, Berlin, Heidelberg. Springer Berlin Heidelberg. doi:10.1007/
978-3-642-35795-4_55.

[56] Chen, P., Huygens, C., Desmet, L., & Joosen, W. 2016. Advanced or not? a comparative study
of the use of anti-debugging and anti-vm techniques in generic and targeted malware. In ICT
Systems Security and Privacy Protection, Hoepman, J.-H. & Katzenbeisser, S., eds, 323–336,
Cham. Springer International Publishing. doi:10.1007/978-3-319-33630-5_22.

[57] Schiffman, M. 2010. A brief history of malware obfuscation: Part 1 of
2. https://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_
part_1_of_2. Accessed: 2019-01-17.

[58] Gragido, W. & Elisan, C. 2012. Polymorphic and metaphoric threats
and your cyber future. https://www.blackhat.com/docs/webcast/
polymorphis-and-metaphoric-threats-and-your-cyber-future.pdf. Accessed: 2019-
01-17.

[59] Natani, P. & Vidyarthi, D. 2014. An overview of detection techniques for metamorphic mal-
ware. In Intelligent Computing, Networking, and Informatics, Mohapatra, D. P. & Patnaik, S.,
eds, 637–643, New Delhi. Springer India. doi:10.1007/978-81-322-1665-0_63.

[60] Maggi, F., Bellini, A., Salvaneschi, G., & Zanero, S. 2011. Finding non-trivial malware naming
inconsistencies. In Information Systems Security, Jajodia, S. & Mazumdar, C., eds, 144–159,
Berlin, Heidelberg. Springer Berlin Heidelberg. doi:10.1007/978-3-642-25560-1_10.

[61] Sebastián, M., Rivera, R., Kotzias, P., & Caballero, J. 2016. Avclass: A tool for massive malware
labeling. In Research in Attacks, Intrusions, and Defenses, Monrose, F., Dacier, M., Blanc, G.,
& Garcia-Alfaro, J., eds, 230–253, Cham. Springer International Publishing. doi:10.1007/
978-3-319-45719-2_11.

[62] Kelchner, T. 02 2010. The (in)consistent naming of malcode. Computer Fraud & Security,
2010, 5–7. doi:10.1016/S1361-3723(10)70007-5.

[63] CARO. Welcome to the caro website. http://www.caro.org/index.html. Accessed: 2019-
01-04;.

[64] CARO. 1991. A new virus naming convention. http://www.caro.org/articles/naming.
html. Accessed: 2019-01-04.

[65] CARO. 1991. A virus by any other name - virus naming updated. http://www.caro.org/
articles/namingupdated.html. Accessed: 2019-01-04; First publication 1991 with subse-
quent revisions later on.

[66] Trend Micro. 2018. New threat detection naming scheme in trend micro. https://success.
trendmicro.com/solution/1119738. Accessed: 2019-01-04.

62

http://dx.doi.org/10.1007/978-3-642-35795-4_55
http://dx.doi.org/10.1007/978-3-642-35795-4_55
http://dx.doi.org/10.1007/978-3-319-33630-5_22
https://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_1_of_2
https://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_1_of_2
https://www.blackhat.com/docs/webcast/polymorphis-and-metaphoric-threats-and-your-cyber-future.pdf
https://www.blackhat.com/docs/webcast/polymorphis-and-metaphoric-threats-and-your-cyber-future.pdf
http://dx.doi.org/10.1007/978-81-322-1665-0_63
http://dx.doi.org/10.1007/978-3-642-25560-1_10
http://dx.doi.org/10.1007/978-3-319-45719-2_11
http://dx.doi.org/10.1007/978-3-319-45719-2_11
http://dx.doi.org/10.1016/S1361-3723(10)70007-5
http://www.caro.org/index.html
http://www.caro.org/articles/naming.html
http://www.caro.org/articles/naming.html
http://www.caro.org/articles/namingupdated.html
http://www.caro.org/articles/namingupdated.html
https://success.trendmicro.com/solution/1119738
https://success.trendmicro.com/solution/1119738

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

[67] Wikipedia. 2019. Machine learning. https://en.wikipedia.org/wiki/Machine_learning.
Accessed: 2019-03-20.

[68] Asiri, S. 2018. Machine learning classifiers. https://towardsdatascience.com/
machine-learning-classifiers-a5cc4e1b0623. Accessed: 2019-04-09.

[69] Wikipedia. Bayes’ theorem. https://en.wikipedia.org/wiki/Bayes%27_theorem. Ac-
cessed: 2019-04-09.

[70] Wikipedia. Vapnik–chervonenkis theory. https://en.wikipedia.org/wiki/Vapnik%E2%80%
93Chervonenkis_theory. Accessed: 2019-04-08.

[71] Brownlee, J. 2016. Logistic regression for machine learning. https://
machinelearningmastery.com/logistic-regression-for-machine-learning/. Ac-
cessed: 2019-04-09.

[72] Wikipedia. C4.5 algorithm. https://en.wikipedia.org/wiki/C4.5_algorithm. Accessed:
2019-04-09.

[73] F-Secure. Threat descriptions. https://www.f-secure.com/en/web/labs_global/
threat-descriptions. Accessed: 2019-03-14.

[74] Grini, L. S., Shalaginov, A., & Franke, K. 2018. Study of soft computing methods for large-
scale multinomial malware types and families detection. In Recent Developments and the New
Direction in Soft-Computing Foundations and Applications: Selected Papers from the 6th World
Conference on Soft Computing, May 22-25, 2016, Berkeley, USA, Zadeh, L. A., Yager, R. R.,
Shahbazova, S. N., Reformat, M. Z., & Kreinovich, V., eds, 337–350, Cham. Springer Interna-
tional Publishing. doi:10.1007/978-3-319-75408-6_26.

[75] Brownlee, J. 2016. How to perform feature selection with ma-
chine learning data in weka. https://machinelearningmastery.com/
perform-feature-selection-machine-learning-data-weka/. Accessed: 2019-04-02.

[76] krmaxwell. 2015. Maltrieve. https://github.com/krmaxwell/maltrieve. Accessed: 2019-
02-13.

[77] Roberts, J.-M. 2012. Virusshare. https://virusshare.com/. Accessed: 2019-02-13.

[78] No author given. 1999. Vx heaven. http://83.133.184.251/virensimulation.org/. Ac-
cessed: 2019-02-13.

[79] doomedraven. 2019. disable win7noise.bat. https://github.com/doomedraven/Tools/
blob/master/Windows/disable_win7noise.bat. Accessed: 2019-02-14.

63

https://en.wikipedia.org/wiki/Machine_learning
https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623
https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Vapnik%E2%80%93Chervonenkis_theory
https://en.wikipedia.org/wiki/Vapnik%E2%80%93Chervonenkis_theory
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://en.wikipedia.org/wiki/C4.5_algorithm
https://www.f-secure.com/en/web/labs_global/threat-descriptions
https://www.f-secure.com/en/web/labs_global/threat-descriptions
http://dx.doi.org/10.1007/978-3-319-75408-6_26
https://machinelearningmastery.com/perform-feature-selection-machine-learning-data-weka/
https://machinelearningmastery.com/perform-feature-selection-machine-learning-data-weka/
https://github.com/krmaxwell/maltrieve
https://virusshare.com/
http://83.133.184.251/virensimulation.org/
https://github.com/doomedraven/Tools/blob/master/Windows/disable_win7noise.bat
https://github.com/doomedraven/Tools/blob/master/Windows/disable_win7noise.bat

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

[80] Kolosnjaji, B., Zarras, A., Lengyel, T., Webster, G., & Eckert, C. 2016. Adaptive semantics-
aware malware classification. In Detection of Intrusions and Malware, and Vulnerability Assess-
ment, Caballero, J., Zurutuza, U., & Rodríguez, R. J., eds, 419–439, Cham. Springer Interna-
tional Publishing.

64

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

A Appendix

The following chapter contains the complete raw data used for the experiment.

A.1 PEframe Python code

import os,sys
import json

rootdir = "~/Desktop/experiment/malware/IJCNN_10000files"

for subdir, dirs, files in os.walk(rootdir): #move through directories
for file_name in files: #move through files

os.system('peframe --json ' + os.path.join(subdir, file_name) + ' >
temp_file.json') #call 'peframe' on current file↪→

with open('temp_file.json', 'r') as f:
data = json.load(f) #load json data

for key, value in dict.items(data["pe_info"]): #search array pe_info
if key == "antivm_info" or key == "antidbg_info":

if len(value) != 0: #antidbg/antivm features found
os.system('rm ' + os.path.join(subdir, file_name)) #remove

file↪→

A.2 Powershell script to extract CPU usage and memory usage during mal-
ware execution

For($a=1;$a -lt 21;$a++){
$os = Get-WmiObject Win32_OperatingSystem
$pctFree =

[math]::Round(($os.FreePhysicalMemory/$os.TotalVisibleMemorySize)*100,2)↪→

$memUsage = 100 - $pctFree #used memory space in percent

$proc = get-counter -Counter "\Processor(_Total)\% Processor Time"
$cpu=($proc.readings -split ":")[-1] #CPU usage in percent

"CPU: " + [string]$cpu | Add-Content C:\Users\Win7\Desktop\usage.txt #write cpu
usage to file↪→

"Memory: " + [string]$memUsage | Add-Content C:\Users\Win7\Desktop\usage.txt
#write memory usage to file↪→

1

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

Start-Sleep -Milliseconds 500 #sleep for 0.5s
}

A.3 Python code for pre-processing task. Find errors, copy memory features
into report and group all reports based on family.

import json
import os,sys

rootdir = '~/.cuckoo/storage/analyses/'

#create folder
folder = [('agent',2,868), ('hupigon',868,1175), ('obfuscator',1175,1633),

('onlinegames',1633,2622), ('renos',2622,3608), ('small',3608,4501),
('vb',4501,5574), ('vbinject',5574,6523), ('vundo',6523,7307),
('zlob',7307,8307)] #list of tuples (family_name,start_taskID,end_taskID)

↪→

↪→

↪→

os.system('mkdir ~/Desktop/malwareFamiliesReports/')
for i in range(0,10):

os.system('mkdir ~/Desktop/malwareFamiliesReports/' + folder[i][0]) #create
folder for malware family↪→

for i in range(2,8307):
#delete errors
report_dir = rootdir + str(i) + "/reports/report.json"
summary_exists = False
error_found = False
with open(report_dir, 'r') as f:

data = json.load(f)

for key, value in dict.items(data["debug"]):
if key == "errors":

if len(value) != 0:
error_found = True

if error_found == True:
os.system('rm ' + report_dir)
continue

for key, value in dict.items(data["behavior"]):
if key == "summary":

if len(value) != 0:
summary_exists = True

if summary_exists == False:
os.system('rm ' + report_dir)
continue

2

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

#memory features into report.json
for subdir, dirs, files in os.walk(rootdir + str(i) + "/files/"):

for file_name in files:
if file_name[-9:] == "usage.txt":

with open(os.path.join(subdir, file_name), 'r') as uf:
ram = []
cpu = []
for ln in uf:

if ln.startswith("Memory:"):
ram.append(float(ln[8:-2]))

if ln[0].isdigit() == True:
cpu.append(float(ln[:-1]))

uf.close()
if len(ram) == 0 or len(cpu) == 0:

break
peakCPU = max(cpu)
peakRAM = max(ram)
averageCPU = sum(cpu)/len(cpu)
averageRAM = sum(ram)/len(ram)
new_dic = {'peakCPU':peakCPU, 'peakRAM':peakRAM,

'averageCPU':averageCPU, 'averageRAM':averageRAM}↪→

with open(report_dir, 'r+') as rf:
data = json.load(rf)
data["behavior"]["summary"].update(new_dic)

with open(report_dir, 'w') as rf_out:
json.dump(data, rf_out, indent=4)

break

#move to directory
for x in range (0,10): #start_taskID to end_taskID

if i >= folder[x][1] and i < folder[x][2]:
os.system('cp ' + report_dir + ' ~/Desktop/malwareFamiliesReports/' +

folder[x][0] + '/report_' + str(i) + '.json') #copy report to
folder

↪→

↪→

break

A.4 Python code to extract all dynamic features and create Weka file

import json
import os,sys

rootdir = '~/Desktop/reports/'

features = []

for subdir, dirs, files in os.walk(rootdir):

3

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

for file_name in files:
with open(os.path.join(subdir, file_name), 'r') as f:

data = json.load(f)

for key, value in dict.items(data["behavior"]):
if key == "summary":

for key, val in dict.items(value):
if str(key) not in features:

features.append(str(key))
s.close()

k = open('~/Desktop/malware_classification.json', 'a')
k.write('{"header" : {"relation" : "malware","attributes" : [\n')

for y in features:
k.write(',{"name" : "'+str(y)+'","type" : "numeric","class" : false,"weight"

: 1.0}\n') #attributes↪→

k.write(',{"name" : "family","type" : "nominal","class" : false,"weight" :
1.0,"labels"
:["agent","hupigon","obfuscator","onlinegames","renos","small","vb","vbinject","vundo","zlob"]}]},"data"
: [\n\n')

↪→

↪→

↪→

for subdir, dirs, files in os.walk(rootdir):
for file_name in files:

k.write(',{"sparse" : false,"weight" : 1.0,"values" : [')
with open(os.path.join(subdir, file_name), 'r') as f:

data = json.load(f)

for key, value in dict.items(data["behavior"]):
if key == "summary":

for x in features:
if x == "averageCPU" or x == "averageRAM" or x == "peakCPU"

or x == "peakRAM":↪→

feature_found = False
for key, val in dict.items(value):

if key == x:
k.write('"' + str(val) + '",')
feature_found = True

if feature_found != True:
k.write('"?",')

else:
feature_found = False
for key, val in dict.items(value):

if key == x:
k.write('"' + str(len(val)) + '",')

4

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

feature_found = True
if feature_found != True:

k.write('"0",')
k.write('"' + str(os.path.basename(subdir)) + '"')
k.write(']}\n')

k.write(']}')
k.close()

A.5 Python code to extract all entries from static feature dataset

import csv, pickle
import json,os,sys

rootdir = '~/Desktop/reports_1/'

#extract all MD5 hash values of the used 7,009 malware samples
for subdir, dirs, files in os.walk(rootdir):

for file_name in files:
s = open('/home/thilod/Desktop/md5.txt', 'a')
with open(os.path.join(subdir, file_name), 'r') as f:

data = json.load(f)

for key, value in dict.items(data["target"]):
if key == "file":

for key, val in dict.items(value):
if str(key) == "md5":

s.write(str(val) + "\n")
break

s.close()

#extract static feature entries based on md5 hash value
path = "/home/thilod/Desktop/md5.txt" #file with all 7,009 md5 hash values

with open("~/Desktop/data_raw-no_header.csv") as csvfile: #plain dataset file
data = list(csv.reader(csvfile))

lines = []
final = []

with open(path, "r") as f:
for line in f:

lines.append(line.strip())

for i in lines:
for x in data:

if i == x[0][2:]:
final.append(x)

5

Similarity-based Intelligent Malware Type Detection through Multiple Sources of Dynamic Characteristics

break

with open("/home/thilod/Desktop/static_features.txt", "w") as sf: #txt file has
to be saved as csv file afterwards↪→

for item in final:
out = ','.join(item)
sf.write(out)
sf.write("\n")

A.6 Confusion Matrix for Random Forest Classifier and oneR-based Feature
Selection

from mlxtend.plotting import plot_confusion_matrix
import matplotlob.pyplot as plt
import numpy as np

multiclass = np.array([
[390,19,34,9,2,46,57,35,3,5],
[29,184,26,0,3,3,7,4,3,1],
[39,33,291,0,3,15,19,16,1,0],
[15,2,4,886,0,5,6,5,1,4],
[6,1,3,0,750,1,2,3,8,1],
[62,6,11,4,1,753,20,9,0,3],
[25,0,11,4,1,16,787,95,1,0],
[13,0,6,0,0,3,59,835,2,0],
[4,1,3,0,7,1,3,2,302,0],
[5,3,0,5,0,2,5,0,2,954]])

labels = ['agent', 'hupigon', 'obfuscator', 'onlinegames', 'renos', 'small',
'vb', 'vbinject', 'vundo', 'zlob']↪→

fig, ax = plot_confusion_matrix(conf_mat=multiclass,
colorbar=True,show_absolute=False,show_normed=True)↪→

plt.ylabel("True label")
plt.xlabel("Predicted label")
tick_marks = np.arrange(len(labels))
plt.xticks(tick_marks,labels,rotation=45)
plt.yticks(tick_marks,labels)

plt.show()

6

