
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Øyvind Aasen

Using Bi-directional Data Diodes to
Limit Propagation of Network Attacks

Master’s thesis in Information Security
Supervisor: Prof. Slobodan Petrovic

July 2019

Using Bi-directional Data Diodes
to Limit Propagation of Network

Attacks
Øyvind Aasen

01-06-2019

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Information Security and Communication Technology

Norwegian University of Science and Technology,

Supervisor: Prof. Slobodan Petrovic

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Preface

This Master’s thesis at the Department of Information Security and Communication Technology at
NTNU Gjøvik was carried out during the spring semester of 2019.

We assume that the reader of the thesis is knowledgeable about computer science with an inter-
est in cyber security and networking.

01-06-2019

i

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Acknowledgment

I would like to thank my family and friends for their support during the work on this thesis. A
special huge thanks to my father for helping me improve the writing and fixing my ’many’ spelling
mistakes and grammar faults in the thesis. Any remaining errors are my own. I would also like to
thank my Supervisor Slobodan Petrovic for helping me with the thesis by helping me figure out
what I should focus on when during my work as well as pushing me in a more scientific direction
when I often moved towards a more technical direction. And for the help with finding a better title
for the thesis in addition to providing feedback on what I have written and what I should improve
in this report as well as grammar and spell checking.

Ø.Aa.

ii

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Abstract

Most networks are vulnerable to many kinds of attacks on different devices. When an attacker gains
access to one of the devices in a network he can then use it to attack other devices in the network.
WannaCry and NotPetya are well known attacks that caused much damage. Compartmentalisation
of the network is often used to minimise the number of reachable devices that are vulnerable against
such attacks.

In this thesis a novel use of data diodes called a bi-directional data diode is introduced. A bi-
directional data diode replaces one traditional bi-directional Ethernet link with two data diodes.
The data diodes are connected in opposite directions. This configuration provides bi-directional
traffic across the bi-directional data diode while guaranteeing uni-directional traffic across each
data diode.

A data diode is a network link that has been modified to send data only in one direction, thereby
creating a uni-directional link.

The impact bi-directional data diodes might have on an IDS detection performance has been
analysed.

In addition to looking into how network segmentation and compartmentalisation can be done
with bi-directional data diodes we have compared it with traditional security mechanisms such
as firewalls and Access-Control Lists (ACLs). It is shown that we can achieve similar results with
regard to segmenting the network with both bi-directional data-diodes and traditional security
mechanisms.

iii

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Contents

Preface . i
Acknowledgment . ii
Abstract . iii
Contents . iv
List of Figures . vii
List of Tables . viii
Listings . ix
1 Introduction . 1

1.1 Topic covered by the project . 1
1.2 Keywords . 1
1.3 Brief explanation of data diodes . 1

1.3.1 Bi-directional data diodes . 1
1.4 Problem description . 2
1.5 Justification, motivation and benefits . 2
1.6 Research questions . 2
1.7 Planned contributions . 3

2 Choice of methods . 4
2.1 Network testing . 4

2.1.1 Real hardware . 4
2.1.2 Simulation . 5
2.1.3 Combination . 5
2.1.4 Conclusion . 6

2.2 Scientific methodologies . 6
3 Related work . 8

3.1 Data diodes . 8
3.2 Data diode use cases . 9
3.3 Bidirectional communication with data diodes . 9

4 Theory . 11
4.1 Data diodes . 11
4.2 Data diode properties . 12
4.3 Common use cases . 13

4.3.1 Prohibit leaking of classified information . 13
4.3.2 Prohibit infiltration . 13

4.4 Data diode implementations . 14

iv

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

4.4.1 Optical Ethernet . 14
4.4.2 Electrical Ethernet . 14

4.5 IDS . 16
4.5.1 IDS evaluation . 17

5 Hypothesis . 18
6 Implementation . 19

6.1 Selection of tools . 19
6.1.1 Network simulation . 19
6.1.2 Description of ns-3 . 19
6.1.3 Intrusion Detection System (IDS) . 19

6.2 Test environment . 19
6.3 Test description . 21
6.4 ns-3 environment . 22

6.4.1 Creating a data diode in ns-3 . 22
6.5 Creating a bi-directional data diode in ns-3 . 23
6.6 Explanation of CreateDiode function . 24
6.7 Running Snort . 26

7 Results . 27
7.1 Networking and routing . 27

7.1.1 Understanding ns-3 simulation output . 29
7.1.2 No default route . 29
7.1.3 Blackholing . 30

7.2 IDS performance . 30
7.2.1 Understanding the Snort results . 30
7.2.2 Snort detection performance . 31
7.2.3 Snort performance . 31

8 Discussion . 36
8.1 Network design and routing . 36

8.1.1 Limitiations on network segmenting . 38
8.1.2 Design 1 . 38
8.1.3 Design 2 . 39
8.1.4 Design 3 . 40
8.1.5 Design 4 . 41
8.1.6 Design 5 . 43
8.1.7 Design 6 . 44
8.1.8 Outside interaction and classical prevention methods 45

8.2 IDS performance . 47
8.2.1 Detection performance . 47
8.2.2 IDS resource usage . 49

9 Conclusion . 50

v

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

9.1 Network design . 50
9.2 IDS performance . 50
9.3 Future works . 50

10 Acronyms and Definitions . 51
10.1 Acronyms . 51
10.2 Definitions . 52

Bibliography . 53
A ns-3 output . 56
B Code . 58
C Snort configuration and rules . 75
D Alternative network designs . 79

vi

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

List of Figures

1 An ideal diode . 11
2 Data diode . 12
3 Common data diode use cases . 13
4 Implementation of a optical Ethernet Data Diode[1] 15
5 Ethernet connectors . 16
6 Simulated test network . 20
7 Simulated test network in traditional mode . 20
8 A simple network with two data diodes . 23
9 Graph of the results shown in Table 8 . 34
10 Base network design . 36
11 Design 1: Replacing normal links with data diode links 38
12 Design 2: Replacing the single middle router with separate ingress and egress routers 39
13 Design 3: Two normal connections and one bi-directional diode to two core routers . 41
14 Design 4: All segments behind diodes . 42
15 Design 5: All segments behind diodes and diodes inside the segments 43
16 Design 6: Data diode in a load-balancing scenario . 44
17 Alternative design of Figure 12 . 79
18 Alternative design of Figure 14 . 80

vii

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

List of Tables

1 Simulation environment used . 22
2 Packet loss from ns-3 . 24
3 Results of connection testing . 28
4 Overview of each nodes interfaces and IP-addresses 28
5 Initial results from testing Snort . 31
6 Results from running Snort on nR1 and nR2 . 32
7 Results from running Snort on nR1d and nR2d using the diode recieve pcap 32
8 Snort packet processing time . 34
9 Baseline for our test network as shown in Figure 10 37
10 Design 1: Replacing normal links with data diode links, as shown in Figure 11 39
11 Design 2: Second network design, data diodes and dual core routers shown in Figure 12 40
12 Design 2: Alternate version of the second network design, shown in Figure 17 40
13 Design 3: Two normal connections and one bi-directional diode to two core routers,

as shown in Figure 13 . 41
14 Design 4: All segments behind diodes, as shown in Figure 14 42
15 Design 5: All segments behind diodes and diodes inside the segments, as shown in

Figure 15 . 43
16 Design 6: Data diode in a load-balancing scenario, as shown in Figure 16 44

viii

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Listings

1 Example Snort rule . 17
2 CreateDiode function part 1 . 24
3 CreateDiode function part 2 . 25
4 CreateDiode function part 3 . 25
5 ns-3 example output . 29
6 No default route . 29
7 Black holing . 30
8 Snort run time 1 . 33
9 Snort run time 2 . 33
10 Snort rule for nR1 . 48
11 ns-3 default route output . 56
12 ns-3 no default route output . 56
13 ns-3 blackhole nR2 on nR1d output . 57
14 ns-3 blackhole nR1 on nR2d output . 57
15 test-network.cc . 58
16 test-network-no-diodes.cc . 67
17 snort-nR1.conf . 75
18 snort-nR1.rules . 76
19 snort-nR2.conf . 76
20 snort-nR2.rules . 77

ix

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

1 Introduction

1.1 Topic covered by the project

Most networks are vulnerable to many kinds of attacks on different devices. After an attacker gains
a foothold into one of the devices there are two primary ways forwards. The first one is to gain
more control of the compromised device through attacks such as privilege escalation, sandbox and
VM escape. The second way forward is to gain access to other devices through the network. This
thesis looks at how the attackers reach across the network can be limited by compartmentalisation
of the network with bi-directional data diodes.

Network based data diodes are network links that have been modified to only send traffic in
one direction. One way to achieve this is by using fiber-optic connections where the cable is only
connected to the sender on one side and the receiver on the other side [2, 3, 4, 5].

We also look at how the detection rate and performance of an IDS is impacted by the use of data
diodes in the network.

1.2 Keywords

bi-directional data diode, data diode, networking, network simulation, network design, intrusion
detection system, IDS

1.3 Brief explanation of data diodes

A data diode is a physical device that only allows the transmission of data in one direction from
one device to another. This can be done purely in hardware or by a combination of hardware and
software. The name comes from the world of electronics where a diode is an electronic component
that only allows the current to travel in one direction.

We know of two types of data diodes that are in use today. The first one is a write blocker
which is used to make a forensic image or copy of a hard drive or a USB stick. The second one is
a network data diode. Network based data diodes are the focus of this thesis and we explain them
more thoroughly in Chapter 4.

1.3.1 Bi-directional data diodes

In this thesis we suggest supporting bi-directional traffic on links that are protected by data diodes.
This is achieved by adding an additional data diode with the opposite orientation, thus providing
two uni-directional links between two nodes. We call the aggregated link with two data diodes a
bi-directional data diode.

1

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

1.4 Problem description

How can we improve network containment and isolation of attacks in data centers and corporate
networks? There exist multiple different tools and solutions to provide containment and isolation
on the hosts in the data centers such as sandboxes, containers and virtual machines. To contain
attacks to a specific host or network segment, we can use network tools such as ACLs, firewalls,
and Intrusion Prevention Systems (IPSes). A major limitation with all of these solutions is that they
are realised in software in computers or embedded devices and will therefore have some bugs.
Some of these bugs may create vulnerabilities that defeat the protection offered by the network
tool. An attacker can exploit these bugs to access the protected parts of the network. In addition,
misconfiguration of the network tool can add vulnerabilities to the networks.

There exist industrial control systems and high security network segments that use data diodes
to ensure uni-directional traffic. Data centers or corporate networks require bi-directional network
traffic. Is it possible to replace a traditional bi-directional link in a network with a bi-directional
data diode? The goal is to design networks that ensure containment of attacks.

An Intrusion Detection System (IDS) is used to detect attacks and intrusions into different sys-
tems such as networks. Are there any performance impact on detection rate or system resource
usage for an IDS in a network that uses bi-directional data diodes?

1.5 Justification, motivation and benefits

Attacks such as NotPetya and WannaCry used bugs in Windows R© to quickly spread through entire
companies and encrypt files or destroy hard drives. These attacks show the importance of network
containment and isolation [6, 7] both in the corporate world and in data centers.

Data diodes are traditionally used to create a uni-directional link between network segments.
This ensures that traffic can only travel in one direction across that link and creates segmentation
that is not vulnerable to software bugs or software misconfiguration. One drawback is that special
software is needed to support bi-directional protocols such as Transmission Control Protocol/Inter-
net Protocol (TCP/IP).

Most applications use bi-directional communication. A data diode prohibits this and is therefore
rarely used in networks that do not have very strict security requirements. Is it possible to add
additional data diodes to the network and thus provide bi-directional communication between
network segment, and still keep some network segments isolated from each other with the very
high security data diodes provide?

1.6 Research questions

For this thesis there are two main groups of research questions. The first group looks at how bi-
directional data diodes interact with the use of IDSes. The second group of research questions
considers how bi-directional data diodes can be used to contain attacks or malware.

The research questions for this thesis are:

1. What is the impact of bi-directional data diodes on IDS performance?

2

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

1. What is the impact on false/true positive/negative rate in networks with bi-directional
data diodes?

2. What is the impact on packet processing time or resources based on IDS location in a
network with bi-directional data diodes?

2. How can we limit the propagation of attacks by means of bi-directional data diodes?

1. Prevent sideways movement of attackers(movement from server to server etc.)?

3. What is the benefit of using bi-directional data diodes over traditional solutions when con-
taining an attack or malware?

1.7 Planned contributions

The planned contribution for this thesis is knowledge about how bi-directional data diodes can be
used in a network. This includes information about probable common mistakes and issues, such
as how stateful firewalls or intrusion detection systems can be placed and configured to work in a
network with data diodes.

In addition, we look at how different network designs with bi-directional data diodes provide
different strengths and weaknesses such as general performance, ease of configuration, and security.
This allows others to implement networks with data diodes to hopefully improve their network
security.

During the work with the thesis we will look at how we can simulate data diodes using network
simulation tools, and provide instructions on how other people can simulate data diodes using the
same tools that we used.

3

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

2 Choice of methods

To answer our research questions it is necessary to test the IDS performance and the ability of
different network designs to contain attacks. We also need to select the scientific methods we use
for our experiments. The selection is based on textbooks describing criteria for selecting scientific
methods. This chapter therefore consist of two parts; first a discussion on how we can test different
network topologies and a conclusion on which method that we have selected, second a discussion
about the scientific methodologies.

2.1 Network testing

To test different network topologies with data diodes there are three different methods that we can
use. The first one is to build the networks using physical hardware. The second one is to simulate
everything on a computer and the third one is a combination of the two, where parts of the network
are simulated and other parts of it are created with physical hardware. Each method has its own
strengths and weaknesses that we discuss in the following sections.

We also need to decide whether to use live traffic or simulated traffic in the experiments.

2.1.1 Real hardware

It is not uncommon to use physical hardware when performing experiments on data diodes. These
experiments concern the use of a single data diode and the communication between a single re-
ceiver and transmitter [2, 3].

For our experiments we would require at a minimum two data diode links, but having more data
diodes would increase the number of network topologies that we can test. A physical data diode
might be either a modified link or a commercial data diode. The main pros and cons of using real
network hardware are:

4

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Pros:

• Ensures that we can create data diodes
• Supports real-time testing

Cons:

• Supports only a limited set of network de-
signs based on the number of data diode
links that we have available

• Cost

◦ we might need to buy hardware to
create the networks

◦ commercially available data diodes
are expensive

• Not easily repeatable
• Potential ethical and legal issues such as

GDPR if we use live traffic

2.1.2 Simulation

Network simulations can be done in multiple different tools to simulate both network designs and
network traffic. These tools allow the test to be repeated and give the researcher full control over
the network. It is also easy to scale the simulated networks.

Researchers have used purpose built network simulators such as ns-2 [8] used by Chen et. al to
determine the best placement for IDSes in a large network [9]. Other researches have used virtual
machines and hypervisors such as the study by Aryachandra et. al [10] who looked at the best
placement for IDSes in environments with many virtual machines where they used the Proxmox
framework. Proxmox is a custom Linux distribution designed to by run as a hypervisor [11]. This
shows us that there are at least two different methods of simulating networks. The main pros and
cons of using simulations are:

Pros:

• Repeatability of the experiment
• Cheap - there exists open source and free

network simulation tools
• Flexibility - we are not limited by available

hardware when we design the networks

Cons:

• Might need to add support for data diodes

2.1.3 Combination

The last method is to combine the first and the second method where parts of the network are re-
alised in hardware while the remaining parts are simulated. This should be cheaper than pure hard-
ware testing and has most of the flexibility of simulated solutions at the cost of higher complexity
when configuring the network. The main pros and cons of combining hardware and simulation are:

5

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Pros:

• Cheaper than using only real hardware
• Ensures some data diode links in the net-

work

Cons:

• Not easily repeatable
• Increased complexity
• Potential ethical and legal issues such as

GDPR if using live traffic

2.1.4 Conclusion

We have shown that all three methods can be used to test how we can use data diodes in a network,
but we need to select one method that we shall use for the thesis. The deciding factor when selecting
the method is cost and flexibility. Both real hardware and combination might require us to buy the
necessary equipment and limits the number of different network designs that we can test, based
on the available hardware. This leaves simulation with network simulation tools as the preferred
method to perform the experiments for this thesis.

One additional question that we need to answer is what type of simulation to use, a pure net-
work simulator, virtual machines or a combination of both? Using only virtual machines is not a
good solution for us since we need to modify the network connections between the Virtual Ma-
chines (VMs) and the hypervisor provided router to create data diodes. The networking code in the
hypervisor will need to be modified. This is assumed to be too much work to finish in the timeframe
of this thesis.

Using a network simulation tool should give us access to modify any aspects of the network and
thereby make it easier to create data diodes in the network. The potential issue with this solution
is that it might not support generation of every type of network traffic that we might want to test.

A combination of both virtual machines and network simulation is the best solution as it gives
us full control over the simulated networks and it allows us to test the network with live traffic
from applications and servers. The main disadvantage with this solution is that it is expected to be
harder to set up as it requires both the network simulation tool and VMs to be configured to work
together. We have therefore selected to start with only a network simulation tool and if we get time
we will use the combination of VMs and network simulation tools.

If we use live traffic, we will take care to use traffic that cannot cause any GDPR issues or other
legal or ethical issues.

2.2 Scientific methodologies

As shown earlier in this chapter, we base our research on simulating network designs. The question
is then which scientific method should we use to answer our research questions. The two main
categories of research methodologies are quantitative and qualitative research.

Quantitative research focuses on comparing metrics that can be quantified down to numbers
such as network performance [12].

Qualitative research, on the other hand, is research that focuses on real life scenarios without
simplifying them down to numbers. One type of qualitative research is case studies [12].

6

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Robert Yin mentions in [13] that how and why questions often lead to the use of a case study,
while what questions often leads to either exploratory studies or surveys studies. According to Yin
in [13] case studies are preferred when we do not control all the variables and the exact same
experiment cannot be repeated.

Based on this information we can choose the appropriate research method for our research ques-
tions. Our first research question is a what performance impact question. A quntitative methodology
is appropriate and a number of IDS performance related experiments will be performed to measure
the processing time, resource usage and detection performance of an IDS.

Our second research question is formulated as a how question. There is nothing in the wording
that indicates comparisons of numbers. A qualitative methodology is applicable, and we have cho-
sen to perform a case study where we look at how different network designs using bi-directional
data diodes can be used to enforce segmentation and limit the propagation of attacks and/or mal-
ware in a network.

The third research question is a what benefit type of question. A qualitative methodology is
appropriate and we have chosen to use an exploratory study. We discuss the security related benefits
and drawbacks of the solutions we compare.

7

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

3 Related work

Academic studies of a data diode generally falls into one of two categories. The first category is
papers on how a data diode works and can be created and how data diodes impact transfer per-
formance. The second category is papers that look at how a data-diode can be used to protect and
secure a network segment or a single device. The use cases that they often presents are industrial
control systems.

The closest that we have got to find scientific papers that address bi-directional data diodes are
papers that presents a data diode with a limited return channel. The return channel is often used
to ensure the integrity of the transferred data or to increase the transfer speed.

This chapter presents the literature that we have found to be related to the thesis. The first
section present literature that explains key concept of data diodes. The two following sections will
present the literature that describes how data diodes can be used in industrial control systems and
data diodes with a limited return channel.

3.1 Data diodes

Kehe, Fei and Wenchao present in [14] how a data diode can be implemented in a real-time fashion
with a single bit being sent back to the transmitter to allow the transmitter to resend the packets if
any errors are detected during the transmission. The fact that they claim that the data diode does
not add any performance penalty is important when considering the use in data centers with lots
of traffic. Two last things worth mentioning from this paper are the use of custom protocols for the
transmission over the data diode and that the use of a data diode is a way to transmit data between
different security layers without the risk of anything being transmitted the other way [14].

Kim and Na present in [3] how data diodes communication can be improved in terms of both
speed and reliability by using modified device drivers. This is however not that part that is inter-
esting for our use. We are interested in how they designed the data diode and any pitfalls that
they mention might happen during the process. Their data diode uses a fiber-optical connection
where only one of the connectors is connected at each end. The transmitting end is connected to
the Tx port while the receiving end is connected to the Rx port, which appears to be the common
method of creating data diodes [2, 3, 4, 5]. The primary pitfall that they mention is that people by
mistake might connect both of the connectors, thereby removing the physical separation provided
by data diodes. Their solution is to modify the driver to discard any received traffic at the transmit-
ting end [3]. In our case firewalls or other network tools can be used to protect against physical
misconfiguration.

It is also possible to virtualize a data diode as de Freitas et. al. present in [15]. Their main focus,
as with most of the other papers in this category, is how well the data diode performs regarding

8

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

packet loss and bandwidth. In addition, they look at the deployment time of the virtual data diode.
The most relevant point from this paper is that at is that they emulate a diode virtually and provide
proof of concept that it works. It might have been an interesting method to use for our experiments.
The paper was however released after we already had started to implement our chosen method
presented in Chapters 2 and 6.

3.2 Data diode use cases

Okhravi, Sheldon, and Haines [4] presents how a data diode can be used to ensure one way com-
munication from a protected process control network to the less protected enterprise network. This
is one of the three relevant pieces of information from this paper. The second one is that one needs
to consider where one places the data diode as they are incompatible with many existing protocols
that require bi-directional communication such as TCP/IP, and that a data diode in itself does not
provide any protection. In their own words [4]:

It is sometimes claimed that data diodes protect the high network against cyber attacks. This, in
fact, is not correct. Many cyber exploits do not require a session or bidirectional communication.
Often fast propagating worms or malware need just one packet of data to infect a machine. Self
expanding malware or quine programs [16] even limits the number of bytes required in the
packet [17].

This shows us that it is important to use other tools as well, such as firewalls, and figure out how
they might be used together with data diodes to provide better protection.

Barker and Cheese present in [18] different network designs to safely connect a nuclear power
plants safety systems to the corporate IT network. They describe how different placement of a
single or multiple data diode(s) impacts the reach of an attacker. The big difference between this
paper and what we want to do is that they focused on industrial control systems, while we focus on
how this might be achieved in normal networks where bi-directional communication is necessary.
This might remove some of the problems they faced such as supported protocols, but it could also
introduce completely new issues.

U.S. Department of Homeland Security recommend in [19] to use data diodes both to minimise
the available attack surface and to compartmentalise the network to stop malware from spreading
through the entire industrial control system network.

Schlicher present in [20] how a software data diode can be used to prevent data exfiltration.
The interesting part for us is not the software data diode, but that the use case is how a data diode
is used in a corporate network. The data diode allows transfer of data into a high security network
segment, but does not allow any information to leave the segment. This is a similar use case to the
one used in this thesis.

3.3 Bidirectional communication with data diodes

In [5] Yum et. al present how one might add a limited reverse connection to improve the user
experience of a data diode by allowing a limited set of information to be transmitted back to the

9

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

sender from the receiver. This is done in a similar manner as in [14]. This allows for, amongst other
things, simple diagnostics of the data diode.

During our work on this thesis we have found two companies that create and sell bi-directional
data diodes. One of the products was released last year. We believe the other product was released
this spring while we worked on this thesis. As far as we can tell, these products are two of their
single data diode products assembled in one enclosure [21, 22]. The main use case proposed by
the vendors is to use the bi-directional diodes in a critical infrastructure. One data diode provides
the traditional monitoring of the infrastructure. The second data diode provides a return channel
where an operator can control the infrastructure. Native support of bi-directional protocols is not
supported [21].

10

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

4 Theory

In this chapter we look at how data diodes can be created, and the theoretical strengths and weak-
nesses regarding the security of the different designs. This will be an indepth look at the different
methods to create data diodes. In addition to explain how data diodes work and can be created we
will also provide a brief explanation on IDSes and their terminology that we use in this thesis.

4.1 Data diodes

Data diodes can mainly be split into two different groups. Group one is data diodes without any sort
of return channel. The second group is data diodes with return channels that allows for a limited
set of information to be sent back over the diode link, such as if a packet is successfully received or
not.

In our use-case there are no security reasons to select either group of data diodes above the
other as we want and need full bi-directional communication. There may be performance reasons
to chose one over the other but that is outside the scope of this thesis.

So what is a data diode? Let’s start by explaining what an ideal electrical diode is as that is
where data diodes have got their name from.

(a) The symbol for an electrical diode (b) Resistance of an ideal electrical diode

Figure 1: An ideal diode

An ideal electrical diode with ports A and B, shown in Figure 1a, is a two-port component that
allows current to flow from port A to B, but prohibits any current flowing from B to A. This can also
be stated: an ideal diode has zero resistance in the direction from A to B and infinite resistance in
direction from B to A, Figure 1b. For a formal definition of an electrical diode, see [23].

11

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

(a) The symbol for a data diode (b) Use of a data diode in a network

Figure 2: Data diode

This can easily be translated to a data network where a data diode, shown in Figure 2a, has the
same graphical representation as an electrical diode. It is used to isolate two network segments. In
Figure 2b the data diode will allow network traffic to flow from Net A to Net B, but no network
traffic can flow from Net B to Net A.

One important thing to note is that it is also possible to implement these traffic regulations by
network tools such as firewall and routing rules etc in Net A and Net B. We will discuss and compare
the benefits and drawbacks of bi-directional data diodes and network tools in Section 8.1.8.

4.2 Data diode properties

The key property of a data diode is that it is uni-directional. This is both its biggest strength and
biggest weakness as any bi-directional protocol will not work over a data diode link. This includes
TCP/IP, one of the most used Internet protocols, as it is bi-directional. This means that no TCP/IP
connections can be established across a link where a data diode is placed.

It is possible to work around this limiting factor by using a proxy on each side of the diode
link. The transmitting proxy terminates the Transmission Control Protocol (TCP) session with the
transmitter before converting payload and the necessary protocol information to a format suitable
to send over the data diode such as User Datagram Protocol (UDP). The receiving proxy converts it
back to TCP and terminates the TCP session with the receiver. This also means that the TCP/IP (or
other bi-directional protocols) end-to-end data guarantee and flow-control is broken. Data packets
that are lost across the data diode link will not be detected by the TCP/IP protocol and will not be
re-transmitted since the proxy in the transmitter will acknowledge the packet before it reaches the
ultimate destination.

These proxy solutions give the user great control over the data transmitted through the data
diode and can be used as an additional layer of protection. A potential weakness with the proxy
solution is that the proxy might provide UDP pass through without filtering which then can be used
by attackers as a potential entry point into the network [24].

Regardless of whether a data diode is used with a proxy or not, it ensures that no information
from the network behind the data diode is transmittable out from that network. This includes
information such as IP addresses, OS and program versions and any other data stored in that
network.

An important thing to note is that we have not looked at data diode networks that use the proxy
solution in this thesis.

12

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

4.3 Common use cases

There are two common traditional use cases for data diodes. While our focus is on alternative use
cases. We present them as they show the strengths and weaknesses of data diodes. The two use
cases are closely related and the primary difference between them is the direction of the diode as
shown in Figure 3. The two use cases are:

• Prohibit leaking of classified information as seen in Figure 3a.
• Prohibit infiltration of a protected network as seen in Figure 3b.

(a) A data diode prohibiting leaking of classified
information

(b) A data diode prohibiting infiltration of a pro-
tected network

Figure 3: Common data diode use cases

4.3.1 Prohibit leaking of classified information

This use case is applicable when one wants to keep all the information and data inside a network.
A common example is a classified network. The main users are military nets and governmental
nets. The data diode is placed between a network containing data with high classification and a
network containing data with lower classification. It is oriented such that data can flow from the
lower classified net to the higher classified net.

The data diode provides a guarantee that no data can flow from the higher classifed network to
the lower classified network across the link proteced by the data diode.

An important thing to note with this use case is that it does not block any malware or attacks
that use unidirectional protocols such as UDP to infect machines from entering the classified net-
work [4]. It does however stop the potential malware control server or attacker from receiving any
information or files from the classified network.

4.3.2 Prohibit infiltration

This use case is applicable in networks that need a high guarantee that an attack from the Internet
cannot reach the protected network. At the same time, the user for example requires the ability to

13

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

monitor the network and/or equipment connected to the network. Such networks includes critical
infrastructure. The data diode is placed before the gateway to the protected network and is oriented
such that no data can flow from the Internet to the protected network.

4.4 Data diode implementations

In this section we will first present the main principle behind data diode creation, before looking at
how that might be implemented over optical and electrical Ethernet.

The main principle behind how a data diode is created is the same regardless of the technology
used in the diode link. It is to physically remove the ability to send data in both direction across a
link. There are two main methods of doing this. The first one is to modify the Network Interface
Controller (NIC) by removing the receiver or transmitter part of the NIC (depending on which end
of the connection the NIC is placed). The second, and simpler, method, at least if you make the
data diode yourself, is to modify the cable by disconnecting all wires of fibres sending data in one
direction. A simple illustration of this is to disconnect either the Tx or Rx fiber over a fiber optic
connection. One important thing to note is that as long as we deal with Ethernet it is necessary to
manually fill the ARP-table of the NICs that are a part of the link since the response to the Address
Resolution Protocol (ARP)-request is either not sent or not received depending on which end of the
diode you consider.

4.4.1 Optical Ethernet

One of the conceptually simplest methods of creating a data diode is to use an optical Ethernet
cable where only one fiber is connected from transmit on one side to receive on the other, thus
ensuring that traffic only can flow in one direction.

This is a very simple solution, but not fool-proof, since both fibers can be connected later. This is
analogous to a faulty configuration in a router or firewall. Bespoke hardware, where only the trans-
mitter or reciever is present in the assembly, will mitigate this problem and ensure that connecting
both fibres will not disable the data diode function of the link.

When using 10 Mbit (10-BaseF, [25] clause 15) or 100 Mbit (100-BaseX, [25] clause 24) optical
Ethernet, the transmitter needs to get a carrier detect signal before transmitting data. In a data
diode application, the receiver is not connected to the other side, and another source must provide
the carrier signal to the transmitter. Malcolm W. Stevens [1] solves this by adding an additional
10Mbit or 100 Mbit Ethernet transmitter that is connected directly to the receiver of the transmitter,
as shown in Figure 4

When using Gigabit optical Ethernet (1000-BaseX, [25] clause 36) the additional transmitter
does not seem to be needed. Heo and Na describes in [2] how a data diode for Gigabit Optical
Ethernet was created by using two NICs and a single fiber.

4.4.2 Electrical Ethernet

An electrical Ethernet can also implement the same uni-directional connection by only connecting
the transmitter in one end to the receiver in the other. This requires an unique connection between

14

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Figure 4: Implementation of a optical Ethernet Data Diode[1]

the transmitter in one end of the cable and the receiver on the other. Electrical Ethernet supports
a large number of physical interfaces. The most commonly used is Unshielded Twisted Pair (UTP)
cat5 cable with four pairs.

10 Mbit (10-BaseT [25], clause 14) and 100Mbit (100-BaseT4 [25], clause 23) electrical Ether-
net uses two of the four pairs in the cat5 cable, one for transmit and one for receive. Auto-MDI-X is
a process where the NICs detects if a cross-over or straight cable is used. Autonegotiation may also
be used to resolve speed and duplex mode.

To create a cable that creates a data diode with 10-BaseT or 100-BaseT Ethernet, only one pair
must be connected in the connectors. The NICs must be configured to neither use autonegotiation
nor auto-MDI-X, and with the same speed and with the correct selection of connector pins for
receiver and transmitter.

This solution has the same drawback as a single-fiber solution. The cable may be replaced by a
fully configured cable, thus providing a fully functioning duplex link. It might however be harder
to see this issue with electrical Ethernet then optical Ethernet as fibers might have two separate
connectors while electrical Ethernet has a single connector as shown in Figure 5. Using bespoke
NICs with either only transmitter or reciever connected is a mitigation for this problem.

1000-BaseT or faster variant of electrical Ethernet over UTP cable sends and receives simul-
taneously on all four pairs in the cable, thus making it impossible to implement a data diode by
disconnecting some of the pairs in the cable. In addition, IEEE 802.3 [25], requires that the au-
tonegotiation process must be used to decide which end of the link shall be the clock master.
Autonegotiation requires a bi-directional connection to work.

15

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

(a) Two types of optical Ethernet connectors - LC
and SC [26] (b) Electrical Ethernet connector - RJ45 [27]

Figure 5: Ethernet connectors

4.5 IDS

IDS stands for Intrusion Detection System and is a device or application that monitors the system
for intrusions and/or attacks. IDSes can be classified by the system they monitor and how they
detect intrusions and/or attacks. The different types of systems that an IDS monitors includes hosts
("single computers"), networks, and applications. The two primary detection models are misuse and
anomaly detection. Misuse detection uses rules or signatures to detect intrusions and/or attacks,
while anomaly detection generates alerts if the traffic deviates too much from the normal traffic
pattern. The normal traffic pattern may be either manually or automatically updated.

Due to the nature of the experiments performed in this thesis, where we simulate small networks
over short periods of times, we are focusing on network based misuse detection IDSes.

There exists different misuse detection IDSes that each operates in a slightly different manner
from each other. We focus on the primary underlying principle instead of the different nuances in
how they work. That incoming traffic or activity, in our case packets, is analysed and compared
against a set of rules. If the packet matches a rule, then an alert is generated. The rules can instruct
the IDS to do other things than generating an alert if a match occurs. These actions include log,
pass, drop, and reject. If the latter two are used, the IDS will work as an IPS. Both IDSes and IPSes
often includes functionality to look at session streams in addition to single packets. They also often
include functionality to detect attacks or attack indicators that it is hard to write rules for, such as
port scanning. The IDS needs to look at more than one session or one packet to detect this type of
activities.

For this thesis have we chosen to use Snort [28] as our IDS. For more information about this
choice see Section 6.1. An example of a Snort rule used in this thesis is shown in Listing 1.

16

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

1 alert udp [10.0.3.0/24] any -> any any (msg: "Connection from:
10.0.3.0/24 detected "; sid :1;)

Listing 1: Example Snort rule

This rule generates an alert for each UDP packet received from any port in the 10.0.3.0/24
IP-address range to any port in any IP-address, and outputs the following message to the log:
Connection from: 10.0.3.0/24 detected.

This rule is designed to generate an alert for any UDP packet detected from the 10.0.3.0/24
network. This type of rule is only usable for the cases where no communication from a certain
network segment is allowed. This is not a typical Snort rule since it does not use variables for the
IP-addresses and uses the keyword any in a very liberal manner.

4.5.1 IDS evaluation

When evaluating how good an IDS or a single IDS rule is at correctly classifying and detecting
attacks, we use the indicators True Positive Rate (TPR), False Positive Rate (FPR), True Negative
Rate (TNR) and False Negative Rate (FNR). True positive, false negative etc. are defined in Sec-
tion 10.2. TPR and FPR are calculated using

TPR =
TP

TP + FN
= 1− FNR

FPR =
FP

FP + TN
= 1− TNR

where TP = True Positives, FN = False Negatives, FP = false positives, and TN = True Negatives.
The TPR is the fraction of the positives that is detected as positive. Similarily, the FPR is the

fraction of the negatives that is detected as positive.
The best IDS and IDS rule has as large a TPR as possible and as small a FPR as possible.
The resource utilisation is also a relevant metric for us when evaluating hypothesis 2.

17

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

5 Hypothesis

The research questions from Section 1.6 can be split into two groups, the first one focuses on
IDS detection performance in a network that uses data diodes while the second group focuses on
network design of networks with data diodes.

We have two hypotheses regarding the detection performance for an IDS depending on the
relative placement of IDS and bi-directional data diode.

Hypothesis 1: There is little or no difference on the detection performance of an IDS placed in a
part of the network behind a bi-directional data diode as it needs to process the same amount
of packets as in a traditional network.

Hypothesis 2: An IDS monitoring the traffic over one of the links comprising a bi-directional data
diode should have improved detection performance or reduced resource usage compared to
an IDS monitoring a traditional link. The IDS only needs to monitor approximately half the
traffic since it only monitors one direction of the connection instead of both directions.

We have opted to not create any hypotheses for our second group of research questions which
focuses on network design. The reasoning behind this is that we are performing a case study to
answer these research questions. We look at and discuss the benefits and drawbacks of different
network designs where bi-directional data diodes are a main feature. The results of these test can-
not be simplified down to simple yes/no answer or a comparison of numbers that tells us if our
hypotheses are correct.

18

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

6 Implementation

This chapter describes the rationale for selecting the tools used, how we implemented data diodes
in ns-3, the problems that we encountered and how we solved them. We also describe the tests that
were performed.

6.1 Selection of tools

We have selected both a network simulator and IDS to use for our experiments. The process and
rationale for the selection is presented below.

6.1.1 Network simulation

We have looked for a network simulation tool that has support for data diodes or the support for
data diodes should easily be added. In Chapter 3, [8] used ns-2, while in our report for IMT4205,
[29], we found a project that added support for fiber optic connections to ns-3. We also discovered
that ns-3 has support for disabling the transmitter or receiver individually in a CSMA interface. This
allowed us to emulate a data diode. ns-3 was therefore chosen as our network simulation tool for
this thesis.

6.1.2 Description of ns-3

ns-3 is a discrete event network simulator that is created to allow researchers to simulate networks
for network research [30]. ns-3 is a complete rewrite of ns-2 and focuses on improving certain
aspects of ns-2 such as the core architecture, software integration, models, and educational com-
ponents. It should be noted that ns-3 is not backward compatible with ns-2 [31]. The goal of ns-3
is:

The goal of the ns-3 project is to develop a preferred, open simulation environment for networking
research: it should be aligned with the simulation needs of modern networking research and
should encourage community contribution, peer review, and validation of the software [30].

6.1.3 Intrusion Detection System (IDS)

The selection of an IDS was a simple process. We wanted to use an IDS that we were familiar with
from earlier projects and courses. This left us with two choices: Snort [28] and Suricata [32]. We
chose Snort since we have slightly more experience with using it.

6.2 Test environment

To test our first research question for this thesis we have created two very similar networks in ns-3.
The only difference is that one network, shown in Figure 6, uses data diodes to connect the different
parts of the network while the other one, shown in Figure 7, uses traditional connections.

19

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Figure 6: Simulated test network

Figure 7: Simulated test network in traditional mode

20

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

The nets consists of following nodes:

nT representing the Internet and everything outside the test network..

nTd representing the edge router and gateway to our test network.

nR1d representing routers for the nR1 networks.

nR2d representing routers for the nR2 networks.

nR1 representing computers in the nR1 networks.

nR2 representing computers in the nR2 networks.

The test uses the ns-3 UdoEcho application to generate test traffic in the network. The UdpEchoClient
sends UDP packets and logs both when a packet is sent and when a reply is received. The UdpEchoServer
receives UDP packets and echoes them back to the sender. It also logs when packets are sent and
received.

nT has two UdpEchoClient instances to send traffic both to nR1 and nR2. nR1 has one UdpEchoClient
instance to send traffic to nR2 and vica versa for nR2. Both nR1 and nR2 have an UdpEchoServer
instance as well. This configuration allows us to test if the various leaf nodes can send and receive
packets to each other and provides traffic that can be captured to test the IDS performance.

The baseline routing environment is:

• nR1: Static route for local network to nR1d and default route to nR1d.
• nR2: Static route for local network to nR2d and default route to nR2d.
• nT: Static route to nR1 and nR2 networks to nTd.
• nR1d: Static routing via transmit diode to nTd for packets to the nT network, and default

route via the same interface for packets to other networks.
• nR2d: Static routing via transmit diode to nTd for packets to the nT network, and default

route via the same interface for packets to other networks.
• nTd: Static routing via transmit diode to nR1d and nR2d.

The routing environment is changed in some of the experiments.
In Chapter 2 we mentioned the possibility of combining network simulations with VMs. ns-3

supports this through the TapBridge interface [33, 34]. We tried to get this to work but ran out of
time before we got it working. We therefore only use traffic generated from the simulation.

6.3 Test description

The research questions are answered by two different tests.
The first test forms the basis to answer our second and third research question. The results

are used in our case when discussing the case studies and comparison of traditional protection
methods against network designs with bi-directional data diodes. The test is performed by having
each UdpEchoClient send one UDP packet to nR1 and nR2. The terminal output from the simulator

21

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

item description

ns-3 Version 3.29
CPU Intel Xeon E5-1650 V3
RAM 16 GB

Table 1: Simulation environment used

is analysed to show which leaf nodes can receive and/or transmit packages to each other. The clients
are started with one second intervals to make it easier to parse the results of the test. The routing
rules are changed between tests to see how that impacts the results.

The second test provides data to answer our first research question. We need large amounts of
traffic to evaluate the IDS performance. The simulation can be configured from the commandline to
send more packets per UdpEchoClient and to instantiate multiple instances of the UdpEchoClient
per leaf node.

The simulation generates packet captures in pcap format for all links to nR1d and nR2d. The
packet captures are then evaluated by Snort with some simple rules. The detection results are stored
and analysed to determine the true or false positive and negative rate for the different simulations.
We also recorded and analysed the Run time for packet processing and some of the packet
processing rates of Snort to use as indicators of Snort resource usage on the system.

6.4 ns-3 environment

For our experiments we used version 3.29 of ns-3. This is the most recent version at the start of our
experiment. It is run directly on the host.

The simulation environment and hardware used for our test is listed in Table 1

6.4.1 Creating a data diode in ns-3

Creating a data diode in ns-3 proved to be both easier and harder than first expected. The easy part
is that the Carrier-sense multiple access (CSMA) network device in ns-3 has configuration options
that allow the user to disable either the send or receive part of any CSMA interface in effect creating
a data diode

The harder part is that this conversion from a normal link to a diode link breaks the underlying
ARP protocol used to map Internet Protocol (IP) addresses to Media Access Control (MAC) ad-
dresses. Our first tests, with only one data diode from nTd to nRd in Figure 8, were unsucsessfull as
the ARP reply from nRd to nTd was blocked by our data diode. This proves that our simulated data
diode works as we were able to transmit packets from nTd to nRd but not the other way around.
The solution for this is to pre-populate the ARP-table for the transmitter diode. ns-3 supports this
and once we managed implement this in our code were we able to successfully transmit packets
across an uni-directional data diode.

These issues are not unique to simulations in ns-3. We expect that both the routing table and
ARP-table needs to be manually configured when using custom data diodes. This is expected as

22

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Figure 8: A simple network with two data diodes

ARP is a bi-directional protocol and many routing protocols need bi-directional communication to
work and would therefore not work over a data diode as shown in Chapter 4. Buying commercially
available data diodes is expected to take care of these issues for the user of the system.

6.5 Creating a bi-directional data diode in ns-3

Most of the issues encountered when creating bi-directional data diodes in ns-3 were caused by
limitations in the network simulation tools. Event if they are created by limitations inside ns-3, it is
not improbable that one might hit similar issues when creating a bi-directional data diode.

We created a function to automate the creation of bi-directional data diodes in ns-3. All of these
issues are not directly related to that function, although we chose to solve some of them in the
function. These issues ranged from limitations with some of the functions provided by ns-3, to
misunderstandings regarding the order method calls need to be performed in ns-3.

The first issue that we encountered when we tried to create bi-directional data diodes as illus-
trated in Figure 8 was that we could not use the ns-3 method,
Ipv4GlobalRoutingHelper::PopulateRoutingTables() to auto-populate the routing tables. This
method in ns-3 does not work when there are loops in the network. A bi-directional data diode does
not really create a loop, but the ns-3 code does not understand this subtlety. The work around for
this is to change from automatic routing to static routing. Note that when we created uni-directional
data diode links, described in Section 6.4.1,
Ipv4GlobalRoutingHelper::PopulateRoutingTables() worked.

Another issue that we ran into is that CsmaNetDevice, the network device and interface from ns-
3 that we use for our network connection, does not support full duplex mode. The communication
happens in half duplex mode [35]. This causes packet drops as shown in Table 2. It should be noted
that the packet drop is larger in the columns labelled ’normal’, i.e. when the bi-directional data
diode is replaced by a normal bi-directional link. This is expected since the packet drop is caused by
collisions when both sides simultaneously transmit a packet across the link, and since a single data
diode link can only transmit data in one direction avoids any collisions. An interesting thing to note
is that the number of lost packets is the same regardless of how many packets that we originally

23

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

nR1 - nR2 nR1 - nR2 nR2 - nR1 nR2 - nR1
data diode normal data diode normal

transmitted packets: 100 100 100 100
received packets: 95 82 96 85
lost packets: 5 18 4 15

transmitted packets: 10000 10000 10000 10000
received packets: 9995 9982 9996 9985
lost packets: 5 18 4 15

transmitted packets: 100000 100000 100000 100000
received packets: 99995 99982 99996 99985
lost packets: 5 18 4 15

transmitted packets: 100000 100000 100000 100000
received packets: 100000 100000 100000 100000
lost packets: 5 18 4 15

Table 2: Packet loss from ns-3

sent. We tentatively conclude that the packet loss happens at the beginning of the simulation. The
packet loss does not impact the performance result from our IDS testing as we know how many
packets that actually arrived at the intended location and should generate an alert in our IDS

6.6 Explanation of CreateDiode function

In this section we present how our CreateDiode function works by looking at three excerpts of the
code and explain the purpose of the code segments. The full source code for the test-network
program including the complete CreateDiode function can be found in Appendix B.

1 // A function to create a diode connection
2 void
3 CreateDiode (Ptr <Node > sender ,
4 Ptr <Node > receiver ,
5 char const* adress ,
6 char const* subnetMask ,
7 char const* baseAdr ,
8 Ipv4StaticRoutingHelper* ipv4RoutingHelper ,
9 Ipv4Address destAdr ,

10 Ipv4Mask destMask ,
11 bool pcap=false
12)
13 {
14 // Create the network link
15 CsmaHelper csma;
16
17 NodeContainer nodes = NodeContainer (sender , receiver);

24

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

18
19 // Create the "network interfaces" and add them to the appropriate nodes
20 NetDeviceContainer diodes;
21 diodes = csma.Install(nodes);
22
23 // Configure the interfaces as diodes
24 Ptr <CsmaNetDevice > diodeS = DynamicCast <CsmaNetDevice > (diodes.Get (0));
25 diodeS ->SetReceiveEnable (false);
26 diodeS ->SetSendEnable (true);
27
28 Ptr <CsmaNetDevice > diodeR = DynamicCast <CsmaNetDevice > (diodes.Get (1));
29 diodeR ->SetReceiveEnable (true);
30 diodeR ->SetSendEnable (false);

Listing 2: CreateDiode function part 1

The first part of the function creates the network interface on the sender and receiver node
and creates the media or channel that the communication happens over. This is shown on line 13
to 21 in Listing 2. Line 24 to 30 show the conversion from a normal network interface to a data
diode interface. The receiver is disabled on the sending node and the transmitter is disabled on the
receiving node.

1 // Variables used for static routing
2 Ipv4Address destIntAdress = interfacesDiodes.GetAddress (1);
3 uint32_t numInterface = diodeS ->GetIfIndex ();
4
5 Ptr <Ipv4 > ipv4S = sender ->GetObject <Ipv4 > ();
6
7 // Use static routing for the diodes hopefully allowing for "loops"
8 Ptr <Ipv4StaticRouting > staticRouteT = ipv4RoutingHelper ->GetStaticRouting (ipv4S);
9 staticRouteT ->AddNetworkRouteTo (destAdr , destMask , destIntAdress , numInterface);

10 // Comment out to disable deafult routes
11 staticRouteT ->SetDefaultRoute (destIntAdress , numInterface);

Listing 3: CreateDiode function part 2

The second part of the code, Listing 3, adds a static route to the receiver node and a default
route entry, also to the receiver node, to the routing table in the sender node. This is only neces-
sary if we have more than one direct route between two nodes in ns-3 as discussed in Section 6.5.
This might also be necessary if there are more complex loops between nodes in ns-3, but we did
not test that.

The reason we add both a static route entry and default route is that we want to be able to test
what happens when we disable the default route. When the code includes both entries, it is simple
to disable one of them by commenting out the relevant line in the code before running a specific
test.

1 // Manually fill the ARP cache of the transmit node Ptr <ArpCache >

25

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

2 arpT = CreateObject <ArpCache > (); arpT ->SetAliveTimeout (Seconds
3 (3600 * 24)); // Keep the ARP table entry for one day ...
4
5 ArpCache :: Entry * entry = arpT ->Add (interfacesDiodes.GetAddress (1));
6 entry ->SetMacAddress(Mac48Address :: ConvertFrom(diodeR ->GetAddress ()));
7 entry ->MarkPermanent ();
8
9 // Add the cache to the transmit node

10 std::pair <Ptr <Ipv4 >, uint32_t > returnValue = interfacesDiodes.Get (0);
11 Ptr <Ipv4 > ipv4 = returnValue.first;
12 uint32_t index = returnValue.second;
13 Ptr <Ipv4Interface > diodeT = ipv4 ->GetObject <Ipv4L3Protocol > ()->GetInterface (index);
14 arpT ->SetDevice(diodeS , diodeT);
15 diodeT ->SetAttribute("ArpCache", PointerValue(arpT));

Listing 4: CreateDiode function part 3

The third part shows how the arp-cache is manually filled. This is necessary since the data diode
link prevents the ARP response to reach its destination. Line 1 to 7 in Listing 4 adds the MAC adress
of the receiving node to the ARP cache while line 9 to 16 adds the cache to the transmitter node.

6.7 Running Snort

The command we use when we run Snort is:
snort -A console -k none -c <snort-config file> -r <pcap file>,
where -A tells Snort which alert-mode it should use, -k none tells Snort to ignore the checksum in
the pcap, -c and -r tells Snort which configuration file and pcap file that it should use.

The -k none is needed since ns-3 does not include valid checksums in the pcap files according
to Snort and Wireshark.

26

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

7 Results

We have performed two primary tests, the first one looks at how changes to routing tables and
network design impacts the ability of the network to route traffic between different parts of the
network. The second test focuses on IDS performance with regards to runtime and TPR and FPR.

7.1 Networking and routing

This section presents our findings on how changes to the routing table on the network nodes with
the diode links changes the behavior of the network. The focus is on preventing communication be-
tween sections of the network that have no need for intercommunication with each other. Network
design is also an important part of this discussion that we will continue with in Chapter 8.

The testing was performed on the network described in Section 6.2 and illustrated in Figure 6.
We performed three tests where we changed the routing table of nR1d and nR2d to test the follow-
ing scenarios:

Default route No changes to the routing table shown in Section 6.2

No default route Removed the default route from nR1d and nR2d

Black holing Added a static entry to the routing table of nR1d and nR2d where traffic to the nR2
and nR1 network is routed to the receiving diode instead of the transmitting diode

How these changes were performed is described later in this section.
The results of these experiments are presented in Table 3, where each marked field indicates

successful communication from nX to nY. These results are derivied from the simulation logs as
described in Section 7.1.1.

For all the tests nT is able to both transmit and receive packets to/from nR1 and nR2. For
the default route test nR1 and nR2 are able to transmit and receive packets to/from each other.
The no default route tests makes them unable to transmit or receive packets to/from each other.
Blackholing nR2 on the nR1d router allows nR2 to transmit packets to nR1, but nR2 is, however,
unable to receive any packets from nR1. In other words nR1 is able to receive packets from nR2,
but unable to transmit any packets to nR2. Blackholing nR1 on the nR2d router gets similar results.
nR1 is able to transmit packets to nR2 while nR2 is unable to transmit packets to nR1.

The output from ns-3 that we base Table 3 on can be found in Appendix A.

27

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Configuration nT – nR1 nR1 – nT nT – nR2 nR2 – nT nR1 – nR2 nR2 – nR1

Default route x x x x x x
No default route x x x x
Blackhole nR1 on nR2d x x x x x
Blackhole nR2 on nR1d x x x x x

Table 3: Results of connection testing

Node Interface IP-address

nT 1 10.0.1.2

nTd 1 10.0.1.1
2 192.168.0.1
3 192.168.0.4
4 192.168.0.5
5 192.168.0.8

nR1 1 10.0.2.2

nR1d 1 10.0.2.1
2 192.168.0.2
3 192.168.0.3

nR2 1 10.0.3.2

nR2d 1 10.0.3.1
2 192.168.0.6
3 192.168.0.7

Table 4: Overview of each nodes interfaces and IP-addresses

28

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

7.1.1 Understanding ns-3 simulation output

1 At time 1s client sent 1024 bytes to 10.0.2.2 port 9
2 At time 1.00101s server received 1024 bytes from 10.0.1.2 port 49153
3 At time 1.00101s server sent 1024 bytes to 10.0.1.2 port 49153
4 At time 1.01202s client received 1024 bytes from 10.0.2.2 port 9
5 At time 2s client sent 1024 bytes to 10.0.3.2 port 9
6 At time 2.00101s server received 1024 bytes from 10.0.1.2 port 49154
7 At time 2.00101s server sent 1024 bytes to 10.0.1.2 port 49154
8 At time 2.00602s client received 1024 bytes from 10.0.3.2 port 9
9 At time 3s client sent 1024 bytes to 10.0.3.2 port 9

10 At time 4s client sent 1024 bytes to 10.0.2.2 port 9
11 At time 4.00001s server received 1024 bytes from 10.0.3.2 port 49153
12 At time 4.00001s server sent 1024 bytes to 10.0.3.2 port 49153

Listing 5: ns-3 example output

Listing 5 shows the output from our blackhole nR2 on R1d output run of ns-3, and we will use
it to explain how we got to the results shown inTable 3.

For the routing tests we have delayed the start of each UdpEchoServer with one second and
only one UDP packet is sent to each destination. This configuration produces small logs that are
easy to understand. Both UdpEchoServer and UdpEchoClient outputs a timestamped message with
information about destination IP address when it sends a packet and source IP-address when it
receives a packet. An overview of which IP-address that corresponds to which node is found in
Table 4. The output can be split into the following sections:

• 1 to 2 seconds: Communication between nT and nR1. The log shows bi-directional communi-
cation.

• 2 to 3 seconds: Communication between nT and nR2. The log shows bi-directional communi-
cation.

• 3 to 4 seconds: Communication between nR1 and nR2. The log shows no communication
from nR1 to nR2.

• 4 to 5 seconds: Communication between nR2 and nR1. The log shows communication from
nR2 to nR1 but no communication from nR1 to nR2.

A similar analysis of the remaining logs in Appendix A results in Table 3.

7.1.2 No default route

To disable the default route of the diode link it is enough to comment out line 118 in Listing 15
from the CreateDiode function:

117 // Comment out to disable default routes
118 staticRouteT ->SetDefaultRoute (destIntAdress , numInterface);

Listing 6: No default route

This changes the behavior of the router to only transmit data that has a destination address that
matches the static route table entry added when creating the diode link.

29

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

7.1.3 Blackholing

To blackhole nR2 on nR1d it is necessary to comment in line 248 in Listing 7.

246 Ptr <Ipv4StaticRouting > staticRoutenR1d = ipv4RoutingHelper.
GetStaticRouting (ipv4nR1d);

247 // Comment in to enable blackholing of nR2 on nR1d
248 // staticRoutenR1d ->AddNetworkRouteTo (Ipv4Address ("10.0.3.0") ,

Ipv4Mask ("/24") , 2);
249
250 Ptr <Ipv4StaticRouting > staticRoutenR2d = ipv4RoutingHelper.

GetStaticRouting (ipv4nR2d);
251 // Comment in to enable blackholing of nR1 on nR2d
252 // staticRoutenR2d ->AddNetworkRouteTo (Ipv4Address ("10.0.2.0") ,

Ipv4Mask ("/24") , 2);

Listing 7: Black holing

The modification routes the traffic that goes from nR1d to nR2 to the receiving diode instead of
the transmitting diode thereby sending it to nowhere.

The modification is similar when nR1 is blackholded on nR2d. Line 252 in Listing 7 must be
commented in.

7.2 IDS performance

To answer our hypotheses we ran two different sets of tests. The first one focuses on detection
performance while the second one focuses on the resource usage of Snort.

We start by describing how to read the results before we explain potential outliers or other
strange things in our results.

7.2.1 Understanding the Snort results

Tables 5 to 7 are used to show how well Snort detects our attacks. Each column represents both one
capture location and one UdpEchoClient. One example is that the columns labelled with nR1 or
nR1d show the numbers reported from the UdpEchoClient on nR1 and the columns labelled with
nR1d diode reports the results of Snort running on the packet capture from the receive diode link
on nR1d from the nTd. The columns labelled with diode are from simulations using the network
configuration with bi-directional data diodes as shown in Figure 6. The columns labelled with
normal are from simulations that are not using any data diodes as shown in Figure 7.

The rows are divided into groups of four for each run that we performed. The first line, labelled
tx nPackets, is the number of packets the corresponding UdpEchoClient generates. The second
line, labelled rx nPackets, is the number of packets the corresponding UdpEchoClient recieves. The
third line is the number of alerts reported by Snort. The fourth line is the total number of packets
analysed by Snort in that run.

30

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Table 5: Initial results from testing Snort

nR1 diode nR1 normal nR2 diode nR2 normal

tx nPackets 100 100 100 100
rx nPackets 95 82 96 85
Snort Alerts 95 82 96 85
Total packets: 578 507 578 529

tx nPackets: 1 000 1 000 1 000 1 000
rx nPackets 995 982 996 985
Snort Alerts: 995 982 996 985
Total packets: 5 978 5 907 5 978 5 929

tx nPackets: 10 000 10 000 10 000 10 000
rx nPackets 9 995 9 982 9 996 9 985
Snort Alerts: 9 995 9 982 9 996 9 985
Total packets: 59 978 59 907 59 978 59 929

tx nPackets: 100 000 100 000 100 000 100 000
rx nPackets 99 995 99 982 99 996 99 985
Snort Alerts: 99 995 99 982 99 996 99 985
Total packets: 599 978 599 907 599 978 599 929

7.2.2 Snort detection performance

The tests shown in Table 5 show less than half the number of Snort alerts compared to Table 6. This
is because we changed the Snort rule to also detect return traffic.

Another difference is seen in the rx nPackets rows. The initial tests had trouble with packet drop,
as explained in Section 6.5. When we in test 2 and forward replaced the random interval between
packets sent from the UdpEchoClient instances with a fixed interval, dropped packets is no longer
observed in Tables 6 and 7.

When we increase the number of packets enough, packet drop caused by half duplex CSMA was
again observed. One example is shown in Listing 9. In this test 106 000 packets are sent towards
the link where the capture occurs. 94 packets are lost and the remaining 105 906 packets were
captured and subsequently analysed by Snort.

7.2.3 Snort performance

To get a better understanding of the Snort performance we analysed the Snort packet processing
time and packet processing rate, as reported by Snort.

When processing data read from a packet dump file (.pcap), Snort does not use the embedded
timing information to delay the internal processing. A 13 second long packet dump is processed by
Snort in less than two seconds. We have not been able to create a test that produces more packets
per seconds that the reported packet rate from Snort. That Snort does not use the embedded timing
information to delay packets, indicates that Snort also will not drop packets if packets arrive ’faster’

31

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Table 6: Results from running Snort on nR1 and nR2

nR1 diode nR1 normal nR2 diode nR2 normal

tx nPackets 100 100 100 100
rx nPackets 100 100 100 100
Snort Alerts 200 200 200 200
Total packets: 604 604 604 604

tx nPackets 1 000 1 000 1 000 1 000
rx nPackets 1 000 1 000 1 000 1 000
Snort Alerts 2 000 2 000 2 000 2 000
Total packets: 6 004 6 004 6 004 6 004

tx nPackets 10 000 10 000 10 000 10 000
rx nPackets 10 000 10 000 10 000 10 000
Snort Alerts 20 000 20 000 20 000 20 000
Total packets: 60 004 60 004 60 004 60 004

tx nPackets 100 000 100 000 100 000 100 000
rx nPackets 100 000 100 000 100 000 100 000
Snort Alerts 200 000 200 000 200 000 200 000
Total packets: 600 004 600 004 600 004 600 004

Table 7: Results from running Snort on nR1d and nR2d using the diode recieve pcap

nR1d diode nR1d normal nR2d diode nR2d normal

tx nPackets 100 100 100 100
rx nPackets 100 100 100 100
Snort Alerts 200 200 200 200
Total packets: 300 604 300 604

tx nPackets: 1 000 1 000 1 000 1 000
rx nPackets 1 000 1 000 1 000 1 000
Snort Alerts: 2 000 2 000 2 000 2 000
Total packets: 3 000 6 004 3 000 6 004

tx nPackets: 10 000 10 000 10 000 10 000
rx nPackets 10 000 10 000 10 000 10 000
Snort Alerts: 20 000 20 000 20 000 20 000
Total packets: 30 000 60 004 30 000 60 004

tx nPackets: 100 000 100 000 100 000 100 000
rx nPackets 100 000 100 000 100 000 100 000
Snort Alerts: 200 000 200 000 200 000 200 000
Total packets: 300 000 600 004 300 000 600 004

32

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

than Snort can process packets.
The first metric that we look at when measuring the Snort performance is Pkts/sec. which we

might use to calculate a theoretical FPR as we were unable to get Snort to drop packets when
analysing pcaps.

1 ==
2 Run time for packet processing was 1.333 seconds
3 Snort processed 604 packets.
4 Snort ran for 0 days 0 hours 0 minutes 1 seconds
5 Pkts/sec: 604
6 ==

Listing 8: Snort run time 1

Listing 9 shows that Snort analysed 105 906 packets in 1.322 s. Listing 8 shows shows that
Snort analysed 604 packets in 1.333 s. This indicates that the run time reported by Snort is not
very reliable when the number of packets is small, i.e. below 100 000 packets. Other reasons for
inaccuracies in the reported run-time might be different system load when we ran Snort, and that
we did not run it on a dedicated system.

While the number of packets analysed per second is less important than the FPR/TPR and
FNR/TNR of the system, it is still an important indicator as it gives us information about how many
packets the system can analyse per second before it starts to drop packets, which then might influ-
ence the FPR/TPR and FNR/TNR of the system. Snort dropping packets can however be mitigated
by running Snort on a more powerful system or by splitting it across multiple machines.

1 ==
2 Run time for packet processing was 1.322 seconds
3 Snort processed 105906 packets.
4 Snort ran for 0 days 0 hours 0 minutes 1 seconds
5 Pkts/sec: 105906
6 ==

Listing 9: Snort run time 2

In addition to look at the number of analysed packets and Pkts/sec, we also look at the total
Snort packet processing time to help us answer our second hypothesis. These results are shown in
Table 8 and Figure 9. The format of Table 8 is as follows: the first column shows us the number of
packets transmitted from each UdpEchoClient while the second to fifth column shows us how long
it took Snort to process all the packets captured at the indicated link.

The reported packet processing time from the runs where each UdpEchoClient transmits less
than 10 000 packets is close to identical. The reason for this seems to be that Snort has a minimum
reported packet processing time of around 1.3 second for our test system.

Our results for the runs where each UdpEchoClient transmits 50 00 to 100 000 packets, shows
us that when Snort monitors a link in a bi-directional data diode uses approximately two seconds
less to analyse all the packets when compared to monitoring a traditional link.

33

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Table 8: Snort packet processing time

sent packets nR1d diode nR1d normal nR2d diode nR2d normal

100 1.1523 1.399 1.339 1.387
1 000 1.313 1.387 1.375 1.417

10 000 1.273 1.427 1.300 1.432
50 000 2.403 4.507 2.246 5.557
60 000 2.384 7.671 3.463 7.587
70 000 3.455 2.470 3.526 6.664
80 000 4.653 6.548 4.507 6.712
90 000 5.612 7.812 4.489 7.685

100 000 5.523 8.844 5.531 11.1169

Figure 9: Graph of the results shown in Table 8

34

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

The big outlier of the results is the datapoint of the 70 000 packets run of nR1d normal where
the reported packet processing time is below three seconds. This is less than the reported packet
processing time for both the diode links for the same amount of transmitted packets. We were
unable to figure out the reason for this. The results are repeatable. Re-running this pcap multiple
times in Snort and recreating it in ns-3 provides similar results, all around 2 and a half second.

35

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

8 Discussion

In this chapter we explain, analyse and discuss the results from Chapter 7. We apply the results to
a number of network designs. The IDS performance is also analysed.

8.1 Network design and routing

In this section we look at how the use of bi-directional data diode links in different network designs
limits the connectivity within the network. The goal is to find network designs that can reduce the
possible movement of an attacker inside a network. The same designs will also limit the spreading of
malware through the entire network. We also discuss the possibility of recreating the same designs
using traditional tools such as firewalls, ACL and routing configuration, and look at the strength
and weaknesses of the different solutions.

Figure 10: Base network design

To simplify our task we use a simplified network design based on the network shown in Fig-
ure 10. We add and remove data diodes between the different segments in the network to discuss
how the changes affect the network traffic. If necessary, we replace our single router with one
ingress router and one egress router to provide extra separation of the network traffic.

36

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Transmit\Receive Segment A Segment B Segment C Internet

Segment A X X X X
Segment B X X X X
Segment C X X X X
Internet X X X X

Table 9: Baseline for our test network as shown in Figure 10

The network design in Figure 10 is illustrated with three network segments with three devices
in each segment. This is sufficiently complex to answer our questions. The answers will be equally
valid for a more complex network designs with more segments and more devices per segment.
The network design of the different network segments are not relevant for our discussion unless
they have one or more data diodes in the segment. Regarding the use of wireless access points
in the different networks segments, there is nothing that prohibits that. The use of Wi-Fi or other
wireless communication solutions on a network segment or machine that is protected by an uni-
or bi-directional data diode opens up a new entry point into that machine or network segment
and the point of using a data diode is to limit the possible entry points to the network segment
or machine. We do therefore not recommend the use of Wi-Fi or other wireless communication
systems on networks that is protected by an uni- or bi-directional data diode.

For each network design that we present and discuss we use the results from the default route
test presented in Table 3 to answer the following questions:

• Which network segments are network segment X able to transmit packets to?
• Which network segments are network segment X able to receive packets from?
• Which machines in a network segment are unreachable from outside the network segment?
• Which machines in a network segment are unreachable from inside the network segment?

The last two questions are only applicable when a data diode is placed inside a network segment
and are therefore only answered in these cases. To help us visualise the answer we populate Table 9
where the rows represent transmitting network segments and the columns represent receiving net-
work segments. The X’es are placed where it is possible to transmit packets from the transmitter
network segment to the receiver network segment.

Some of our network design have alternate designs with small changes from the primary design.
These versions are shown in Appendix D.

One thing that is important to note is that we look at what probably would happen if we replace
any network link with two uni-directional links with one data diode each, creating a bi-directional
link that supports bi-directional protocols such as TCP. We are not discussing the effects of re-
placing a link with an uni-directional link using only one data diode. As noted in Section 4.2 a
uni-directional data diode link needs to use a proxy that terminates the TCP session translating it
to a protocol suitable for data diodes such as UDP and transmits it across the data diode where
another proxy translates it back and starts a new session. The proxy solution limits the number of

37

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

protocols that can be transmitted across the data diode, as the proxy software needs to support the
protocols transmitted across the data diode.

8.1.1 Limitiations on network segmenting

It is important to remember that any compromised node in a network segment that has access to the
Internet can attack any other network segment with access to the Internet by transmitting packets
through a proxy located somewhere on the Internet. This bypasses security arrangements such as
bi-directional data diodes and firewalls but gives the attacker no additional benefits over attacking
the other segment directly through the proxy.

8.1.2 Design 1

For our first custom network design we replace the links from the core router to segment A and
segment C with diode links while the link to segment B remains the same as before as shown in
Figure 11. It should also be noted that this is basically the same network design we used to test the
detection performance of an IDS.

Figure 11: Design 1: Replacing normal links with data diode links

This network design allows for all three network segments to transmit and receive packets from
each other as well as the Internet as shown in Table 10. This is the same as in our baseline design.
This is expected as we replace one bi-directional link with two uni-directional links – one in each
direction, without any other changes to the network design.

This design is more expensive and complex than our baseline design. One of the few things that
we can argue is better for this design is that the network administrators have to manually enter

38

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Table 10: Design 1: Replacing normal links with data diode links, as shown in Figure 11

Transmit\Receive Segment A Segment B Segment C Internet

Segment A X X X X
Segment B X X X X
Segment C X X X X
Internet X X X X

routing information at the endpoints of the diodes. Therefore the network administrator is forced
to consider how routing should be applied in the network and can apply more limiting routing rules
than only providing a default route, i.e. use variants of blackholing or no default route. One can
also argue that manual configuration is a bad thing prone to misconfiguration.

We do therefore not recommend any network design based on this design.

8.1.3 Design 2

For our second network design, shown in Figure 12, we split the core router from Figure 11 into
two separate routers where one of them is dedicated to incoming traffic (ingress) and the other is
dedicated to outgoing traffic (egress). Segments A and C are connected to both routers with the
ingress and egress diode connected to the corresponding router, while segment B is connected to
the egress router only through a traditional bi-directional link. There is also a diode that allows
traffic to pass from the ingress to the egress router.

Figure 12: Design 2: Replacing the single middle router with separate ingress and egress routers

39

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Table 11: Design 2: Second network design, data diodes and dual core routers shown in Figure 12

Transmit\Receive Segment A Segment B Segment C Internet

Segment A X X X
Segment B X X
Segment C X X X
Internet X X X X

Table 12: Design 2: Alternate version of the second network design, shown in Figure 17

Transmit\Receive Segment A Segment B Segment C Internet

Segment A X X
Segment B X X X X
Segment C X X
Internet X X X X

We have also created an alternative version of this design where we move the link to segment B
from the egress router to the ingress router as shown in Figure 17 in Appendix D.

It is important to notice that we assume that the egress router routes traffic to segments behind
diodes to the interfaces that they are connected to. For instance, if segment A tries to transmit a
packet to segment C, the egress router is assumed to be configured to route that packet to the
interface connected to segment C. This packet will not reach segment C, since that link is the
receiving end of the data diode from segment C While this is not strictly blackholing, as we do not
route traffic to nowhere, the effect is the same, since the traffic routed to certain interfaces cannot
reach its destination.

Table 12 shows the connectivity for the main design and Table 11 shows the connectivity for the
alternative design. In both cases, segments A and C cannot transmit packets to or receive packets
from each other. The difference between the two designs is the connectivity for segment B. In the
main design, segment B can receive packets from segment A and B, but cannot transmit packets to
segments A and C. In the alternative design, segment B cannot receive packets from segment A and
B, but can transmit packets to those two segments.

Both the main and alternative design will contain attacks within some of the segments, and is
therefore recommended when there are two or more network segments that do not require any
interconnectivity, while other segments are allowed to either transmit or receive data from any
network segment.

8.1.4 Design 3

For our third design we are slightly simplifying design two. In this design segment B is connected
by diodes while segment A is connected to the ingress router and segment C to the egress router as
shown in Figure 13.

40

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Figure 13: Design 3: Two normal connections and one bi-directional diode to two core routers

Table 13: Design 3: Two normal connections and one bi-directional diode to two core routers, as
shown in Figure 13

Transmit\Receive Segment A Segment B Segment C Internet

Segment A X X X X
Segment B X X X
Segment C X X
Internet X X X X

This network design allows segment A to transmit packets to all the other network segments
while it is unable to receive any packets from segment B and C. Segment C on the other hand can
receive packets from all the other network segments but cannot transmit packets to segment A and
B. Segment B can transmit packets to segment C and receive packets from segment A. All this is
shown in Table 13.

This design prevents attackers that have breached segment B or C from reaching segment A, and
is therefore recommended when there is at least one network segment that needs to be protected
from attacks spreading from other network segments.

8.1.5 Design 4

For our fourth network design shown in Figure 14 we have placed bi-directional diodes on all of
our segments while still using two separate core routers for egress and ingress.

41

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Figure 14: Design 4: All segments behind diodes

Table 14: Design 4: All segments behind diodes, as shown in Figure 14

Transmit\Receive Segment A Segment B Segment C Internet

Segment A X X
Segment B X X
Segment C X X
Internet X X X X

This network design does not allow any of the segments to transmit or receive packets from
each other as shown in Table 14. The big question with this network design is why one would use
this instead of three independent connections to the Internet as shown in Figure 18 in Appendix D?
The only reason we could think of why someone would want to use this design is that they want to
ensure that the different segments cannot transmit packets to each other. It is however possible to
configure the router or a firewall in each segment to drop packets to the other segments and thereby
achieve the same goal. When looking at the cost and complexity of configuring these two alternative
solutions, the second alternative where each segment is directly connected to the Internet is simpler
to configure and we have therefore assumed that it has fewer errors. The cost of our first alternative
shown in Figure 14 is probably higher if we look at the initial cost as it needs more equipment then
the second alternative. It might however be cheaper in the long term as we only have to pay for
one connection instead of three separate connections.

We do not recommend this network design as it is more complex than having a separate connec-

42

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

tion to the internet which achieves the same level of protection of attacks spreading between the
segments as this design.

8.1.6 Design 5

Our fifth design is an evolution of our fourth design where we have placed a bi-directional diode
inside one of the network segments. In this case segment A, as show in Figure 15. This is the only
network design where we show data diodes both inside the segments and between the different seg-
ments. For our last design we only show the internals of one segment because the interaction of the
machines inside a network segment remains the same regardless of the segment interconnection.

Figure 15: Design 5: All segments behind diodes and diodes inside the segments

Table 15: Design 5: All segments behind diodes and diodes inside the segments, as shown in Fig-
ure 15

Transmit \Receive Machine 1 Machine 2 Machine 3 Internet

Machine 1 X X X
Machine 2 X X X X
Machine 3 X X
Internet X X X X

For this network design we have chosen to focus on which machines in segment A that are
reachable from inside and outside the network segment, since the inter segment connectivity is the
same as for network design 4 shown in Table 14. We are using the same table with a couple of

43

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

changes as seen here in Table 15. The biggest change is that segment A, B and C is replaced with
machine 1, 2 and 3. The other small change is that Internet also means that the other segments can
access that machine.

In this design machine 1 is unable to transmit packets to machine 3, while it can receive packets
from machine 2. Machine 2 can transmit packets to both machine 1 and 2, but it can not receive
packets from any of them. Machine 3, on the other hand, is able to receive packets from both
machine 1 and 2, but unable to transmit packets to them. All of the machines can transmit and
receive packets from any external segment and the Internet as shown in Table 15.

As this is basically a repetition of design 4 and 3 we do recommend the network design inside
segment A for the same reason we recommend design 3. We do not recommend the design between
the segments for the same reasons as in design 4.

8.1.7 Design 6

For our sixth design we have implemented a load-balancing or proxy scenario with data diodes.
All the incoming traffic is routed through machine 1 that may either forward it to machine 2 or 3
or return with a response. Machine 2 or 3 then responds to the incoming traffic. This is our only
design that only focuses on traffic inside a network segment as the results from our previous five
designs are the same if applied to machines inside a network segment. We have therefore selected
to not recreate them inside a network segment. It is also possible to use this kind of network design
between different network segments.

Figure 16: Design 6: Data diode in a load-balancing scenario

Table 16: Design 6: Data diode in a load-balancing scenario, as shown in Figure 16

Transmit \Receive Machine 1 Machine 2 Machine 3 Internet

Machine 1 X X X X
Machine 2 X X X
Machine 3 X X X
Internet X ? ? X

One unique feature in this design is that there is no direct connection between the ingress
and egress router, thereby forcing all the traffic through machine 1, regardless of if it is the final

44

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

destination of the traffic or not.
Table 16 shows the possible connection in this network segment. Machine 1 is able to transmit

packets to machines 2 and 3 but unable to receive any packets from machines 2 and 3. Machines
2 and 3 can receive packets from machine 1 as well as each other, they are however only able to
transmit packets between themselves and out to the Internet. The Internet can only directly transmit
packets to machine 1, it should however be able to indirectly transmit packets to machines 2 and 3
which therefore have gotten a ? symbol as that depends on the configuration of machine 1. All the
machines are however able to transmit packets out on the Internet.

We recommend this design for users that uses a proxy or a load-balancer that does not need to
communicate with the other servers that it functions as a proxy or load-balancer for.

8.1.8 Outside interaction and classical prevention methods

This section answers the third research question by comparing the network designs using bi-
directional data diodes with classical prevention methods.

We previously mentioned that a machine that is connected to the Internet is vulnerable to attacks
from the Internet. The question that we need to answer is if it is easier to attack a machine inside
a network from the inside that network than from outside that network? For instance is it easier
to attack segment C from segment A than to attack segment C from the Internet? For the use cases
that we have described where no additional protection such as firewalls, ACL, Network Address
Translation (NAT) etc. the answer is no. It is as easy to attack any segment or machine from the
Internet as it is from inside the network. We know that NAT is not designed to work as a security
measure even if it prevents attackers direct access to all the machines in a network behind a router
or modem using NAT

However, any data center or company network and even most home networks have at least one
firewall present in the network. In addition, many Internet Service Providers (ISPs) blocks certain
ports that are often abused by hackers. Thereby making it generally easier to attack a network from
the inside than from the Internet.

Because of this, attackers often attack less secured devices in the network to gain an entry point
into the network or network segment, which they then use to attack other machines. Malware
might also work in a similar manner. Our goals is therefore to minimize the attack surface from
within our network and more specifically the attack surface between network segments. We have
shown in designs 2 to 5 that bi-directional data diodes combined with separate ingress and egress
routers limits the access between network segments, thereby limiting the attack surface between
the network segments.

Routing tables

We start by discussing routing tables, since that is something that we have modified in our tests. As
shown in Table 3 in Chapter 7 it is possible to prohibit communication from one network to another
with changes to the routing table such as blackholing. And thereby limit the reach of an attacker or
malware in the network.

The reason to use data diodes over blackholing or other changes to the routing table is that a

45

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

data diode guarantees that communications can only travel in one direction regardless of what the
user does. More benefits and drawbacks to each solution is mentioned later in this subsection.

Firewalls and ACL

We have chosen to group firewalls and ACL together as they primarily work the same way. While
ACLs are often included in routers and switches, firewalls are often separate devices monitoring
the network traffic. Both use packet inspection to decide if a packet shall be forwarded, dropped or
rejected. This allows the user to block parts of the traffic between segments while it still allows the
rest of it. Both firewalls and ACLs can be configured to drop or block all traffic from one segment
to another.

Stateful firewalls and firewalls that perform deep packet inspection works slightly different than
ACLs as they can decide to reject, drop or allow packets based on the packet content or current
active connections through the firewall.

As with the routing tables, the reason to use data diodes is that they ensure that communication
can only travel in one direction regardless of what the user does. There is, however, no reason to
not use a firewall or ACL together with a data diode to provide more layers of protection. The data
diode guarantees the uni-directional network link. While the firewall or ACL can forward only the
traffic that is needed by the services behind the data diode

Placing a stateful firewall on one of the links creating a bi-directional data diode link does
not make sense. It needs to monitor the traffic flowing both ways to detect when sessions are
established. It is therefore recommended to place stateful firewalls on a normal bi-directional link.

Pros and Cons

Since most of the benefits and drawbacks are the same for firewalls, ACLs, and routing tables when
compared with data diodes, we have selected to present one common list instead of two very similar
lists.

Firewalls and ACLs one benefit over both routing tables and data diodes. That is that they can
block or pass through only certain parts of the network traffic. Except for this, they have the same
benefits and drawbacks over a data diode as routing table changes.

46

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Pros data diodes

• Unhackable
• Reduced attack surface
• Software misconfiguration can not en-

able bi-directional comunication across the
data diode

Cons data diodes

• Expensive
• More complex configuration

Pros traditional solutions

• Cheaper
• Simpler to configure

Cons traditional solutions

• Can be hacked
• Larger attack surface
• Misconfiguration can remove the assumed

security of the configuration

It should be noted that anyone with physical access can bypass any security mechanisms by
changing the physical connection such as directly connecting two networks together instead of
running it through a data diode, or a firewall etc.

So should one use traditional solutions or bi-directional data diodes? There is no simple answer
to this question as it all depends on what is most important for the users of the network: security,
money and/or ease of configuration.

Using data diodes provides better security than using the traditional methods mentioned in this
chapter. A cost/benefit analysis should be performed to evaluate if the improved security from using
data diodes is worth the cost.

The best solution from a security standpoint is to combine the traditional methods with bi-
directional data diodes to create multiple layers of security.

8.2 IDS performance

The metrics we have used to measure IDS performance are detection rate and total packet process-
ing time as shown in Section 4.5.1 and Chapter 7. We first evaluate and discuss the results relevant
to hypothesis 1, where we look at the detection performance. Then we move on to evaluate and
discuss the results for hypothesis 2 where we look at the resource usage.

8.2.1 Detection performance

The tests for hypothesis 1 assume that the IDS when placed in Figure 6 shall generate alarms for
all UDP traffic between nR1 and nR2. The Snort rules for nR1 is shown in line 1 of Listing 1 and
explained in Section 4.5. Similar rules are used for nR2. The second line of the rule was used to
verify our results as it generates an alert for the rest of the UDP packets.

47

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

1 alert udp [10.0.3.0/24] any -> any any (msg: "Connection from:
10.0.3.0/24 detected "; sid :1;)

2 #alert udp ![10.0.3.0/24] any -> any any (msg: "Normal traffic
detected "; sid :2;)

Listing 10: Snort rule for nR1

The expected detection performance result for a rule like this in our setting where we only
generate UDP packets are a TPR of 100 %, a FPR of 0 % as well as a TNR of 100 % and a FNR of 0.
Since we do not have any TCP/IP sources of traffic or edge cases where some packets from nR1 or
nR2 should be allowed to be transmitted between the networks, which then might results in a few
false positive detections or false negative detections.

The results shown in Chapter 7 indicates TPR of 100 %, a FPR of 0 % as well as a TNR of 100
% and a FNR of 0 % in both networks. Since Snort generates the same amount of alerts as packets
from nR1 being received at nR2 and the other way around. This was verified by comparing the
output from a tcpdump command that gave us an output of all the packets in the pcap file with the
output of Snort where line two in Listing 10 generates an alert for all detected UDP packets.

We were unable to get Snort to drop any packets in our test. It is, nevertheless, interesting to
look at the impact dropped packets might have on our detection results. This can be done by first
calculating the expected dropped packet rate and then calculate an estimated FNR. This can be
done as long as we know the Snort packet processing rate, the packet rate of the monitored link, the
total number of attack packets and the total number of packets. The calculations necessary to do this
is shown down bellow:

dropped packet rate = packet rate − Snort packet processing rate

false negative rate ≈ dropped packet rate ∗ total number of attack packets
total number of packets

To estimate the FNR of our tests do we have the following numbers from our tests:

• packet rate = 600 Pkts/second
• Snort packet processing rate = 105906 Pkts/second (taken from Listing 9)

Which gives us a dropped packet rate of 0:

600− 105906 = 0

The calculations gives us a negative number, any number bellow 0 is regarded as 0 as it is impossible
to have less than 0 dropped packets.

The estimated FNR is then 0:
0 ∗ 200000

600004
= 0

48

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

There is therefore no change to the detection performance due to any potential dropped packets in
our tests.

How important dropped packets are when looking at detection performance can be discussed,
as it is possible to mitigate the dropped packets either by increasing the power of the system that
runs Snort or by splitting the workload out across multiple computers. This increases the cost and
the complexity of the IDS.

Based on our results we conclude that Hypothesis 1 is true, since we have shown that the
detection performance and number of packets analysed is consistent between our two networks
when we uses Snort to monitor a network segment behind data diodes.

8.2.2 IDS resource usage

Regarding hypothesis 2: where we look at IDS detection performance when we compare IDS mon-
itoring a data diode link compared to an IDS monitoring a traditional link our results are supportive
of our hypothesis. While the number of alerts and transmitted/received packets is the same for both
the traditional and data diode networks, the total number of analysed packets for the data diode
network are halved compared to the traditional network, if we disregard the four ARP requests and
responses that are a part of the traditional network but not a part of the data diode networks. The
difference between the total number of packets are going to be smaller and larger in a real-life sce-
nario where one for instance requests some information from the server instead of ping which we
used. The reason for this is that many responses to a request contains more data than the request
itself and either needs to use more or larger packets to transmit the data back to the user, thereby
leaving the IDS with a fraction of the traffic to monitor. While this might look like the biggest advan-
tage for monitoring data diode links it is at also its greatest weakness, since it only allows the IDS
to monitor traffic either entering or leaving the network, not both at the same time. This however
depends on the rules and configuration of the IDS. If the goal is to only detect incoming attacks or
someone receiving data, they should then be fine with one IDS monitoring the corresponding link.

In addition to processing fewer packets there is a difference in packet processing time between
our two tests where the IDSes monitoring a link in a bi-directional data diode processes packets for
approximately two seconds less than the IDSes monitoring a traditional link. While this is no direct
measurement of computer resource usage of an IDS is it an indicator together with the packet
processing rate of how powerful the system running the IDS needs to be to not bottleneck the
connection.

Based on our results we conclude that Hypothesis 2 is true, as we there is no difference in the
detection performance, while the packet processing time and thereby the computer resource usage
is lower for the IDS monitoring a link in a bi-directional data diode connection.

49

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

9 Conclusion

This thesis introduces a novel use of data diodes to create what we call a bi-directional data diode. A
bi-directional data diode replaces one traditional bi-directional Ethernet link with two data diodes.
The data diodes are connected in opposite directions. This configuration provides bi-directional
traffic across the bi-directional data diode while guaranteeing uni-directional traffic across each
data diode.

9.1 Network design

We have shown that introducing a single bi-directional data diode does not improve security or help
to contain an attack.

Security is improved by enforcing segmentation of a network if a bi-directional data diodes uni-
directional links are connected to separate ingress and egress routers. This segmentation will limit
the reach of an attacker that has successfully attacked parts of the network.

A number of network designs using multiple bi-directional data diodes have been proposed.
Most of these designs prevent access between at least two networks segments or machines.

9.2 IDS performance

The use of bi-directional data diodes have little or no impact on IDS detection performance. We
have shown that the TPR, FPR, TNR and FNR is the same regardless of an IDS being placed in
a network with bi-directional data diodes or without bi-directional data diodes. Using an IDS to
monitor a single link in a bi-directional data diode might decrease the resource usage as the number
of packets the IDS needs to process is lower than for the same link in a traditional network.

9.3 Future works

The following future works are suggested:

• Rerun our experiments with TCP/IP packets instead of UDP packets
• Rerun our experiments with physical hardware
• Rerun our tests in a newer version of ns-3 when full-duplex CSMA links are implemented [35]

50

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

10 Acronyms and Definitions

10.1 Acronyms

ARP Address Resolution Protocol

ACL Access-Control List

CSMA Carrier-sense multiple access

ISP Internet Service Provider

MAC Media Access Control

NAT Network Address Translation

NIC Network Interface Controller

IDS Intrusion Detection System

IP Internet Protocol

IPS Intrusion Prevention System

OS Operating System

TCP/IP Transmission Control Protocol/Internet Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

UTP Unshielded Twisted Pair

FPR False Positive Rate

TPR True Positive Rate

FNR False Negative Rate

TNR True Negative Rate

VM Virtual Machine

51

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

10.2 Definitions

Data diode A network link that has been modified to send traffic only in one direction thereby
creating a uni-directional link.

Bi-directional Data diode A bi-directional data diode replaces one traditional bi-directional Eth-
ernet link with two data diodes. The data diodes are connected in opposite directions.

True positive A test result that correctly indicates the presence of a condition or characteristic
[36].

False positive A test result which wrongly indicates that a particular condition or attribute is
present [37].

True negative A test result that correctly indicates the absence of a condition or characteristic [38].

False negative A test result which wrongly indicates that a particular condition or attribute is
absent [39].

52

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Bibliography

[1] Stevens, M. W., Science, D., (Australia), T. O., Electronics, & (Australia), S. R. L. 1999.
An Implementation of an optical data diode / Malcolm W. Stevens. DSTO Electronics and
Surveillance Research Laboratory Salisbury, S. Aust. URL: http://www.dsto.defence.gov.
au/corporate/reports/DSTO-TR-0785.pdf.

[2] Heo, Y. & Na, J. Oct 2016. Development of unidirectional security gateway appliance using
intel 82580eb nic interface. In 2016 International Conference on Information and Communica-
tion Technology Convergence (ICTC), 1194–1196. doi:10.1109/ICTC.2016.7763404.

[3] Kim, J. & Na, J. Feb 2017. A study on one-way communication using pf_ring zc. In 2017 19th
International Conference on Advanced Communication Technology (ICACT), 301–304. doi:
10.23919/ICACT.2017.7890102.

[4] Okhravi, H., Sheldon, F. T., & Haines, J. Data Diodes in Support of Trustworthy Cyber In-
frastructure and Net-Centric Cyber Decision Support, 203–216. Springer, 2013. URL: http:
//dx.doi.org/10.1007/978-3-642-38134-8_10, doi:10.1007/978-3-642-38134-8_10.

[5] Yun, J.-H., Chang, Y., Kim, K.-H., & Kim, W. 2017. Security validation for data diode with
reverse channel. In Critical Information Infrastructures Security, 271–282. Springer. doi:
10.1007/978-3-319-71368-7_23.

[6] Greenberg, A. 2018. The untold story of notpetya, the most devastating cyberattack in history.
Wired, August.

[7] Lee, M., Mercer, W., Rascagneres, P., & Williams., C. Player 3 has entered the game: Say hello
to ’wannacry’. https://blog.talosintelligence.com/2017/05/wannacry.html. Visited
12.12.18.

[8] Issariyakul, T. & Hossain, E. 2012. Introduction to network simulator 2 (ns2). In Introduction
to Network Simulator NS2, 21–40. Springer.

[9] Chen, H., Clark, J. A., Shaikh, S. A., Chivers, H., & Nobles, P. Feb 2010. Optimising ids sensor
placement. In 2010 International Conference on Availability, Reliability and Security, 315–320.
doi:10.1109/ARES.2010.92.

[10] Aryachandra, A. A., Arif, Y. F., & Anggis, S. N. May 2016. Intrusion detection system (ids)
server placement analysis in cloud computing. In 2016 4th International Conference on Infor-
mation and Communication Technology (ICoICT), 1–5. doi:10.1109/ICoICT.2016.7571954.

53

http://www.dsto.defence.gov.au/corporate/reports/DSTO-TR-0785.pdf
http://www.dsto.defence.gov.au/corporate/reports/DSTO-TR-0785.pdf
http://dx.doi.org/10.1109/ICTC.2016.7763404
http://dx.doi.org/10.23919/ICACT.2017.7890102
http://dx.doi.org/10.23919/ICACT.2017.7890102
http://dx.doi.org/10.1007/978-3-642-38134-8_10
http://dx.doi.org/10.1007/978-3-642-38134-8_10
http://dx.doi.org/10.1007/978-3-642-38134-8_10
http://dx.doi.org/10.1007/978-3-319-71368-7_23
http://dx.doi.org/10.1007/978-3-319-71368-7_23
https://blog.talosintelligence.com/2017/05/wannacry.html
http://dx.doi.org/10.1109/ARES.2010.92
http://dx.doi.org/10.1109/ICoICT.2016.7571954

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

[11] Proxmox. Proxmox wiki main page. https://pve.proxmox.com/wiki/Main_Page. Visited
12.12.18.

[12] Leedy, P. D. 2015. Practical research : planning and design.

[13] Yin, R. 2017. Case Study Research and Applications: Design and Methods. SAGE Publications.
URL: https://books.google.no/books?id=6DwmDwAAQBAJ.

[14] Kehe, W., Fei, C., & Wenchao, C. 2009. The technique of network diode. In 2009 First
International Conference on Information Science and Engineering.

[15] de Freitas, M. B., Rosa, L., Cruz, T., & Simões, P. 2019. Sdn-enabled virtual data diode. In
Computer Security, Katsikas, S. K., Cuppens, F., Cuppens, N., Lambrinoudakis, C., Antón, A.,
Gritzalis, S., Mylopoulos, J., & Kalloniatis, C., eds, 102–118, Cham. Springer International
Publishing.

[16] Hofstadter, D. R. 1979. Gödel, Escher, Bach: An Eternal Golden Braid. New York: Basic Books.

[17] Rieback, M. R., Crispo, B., & Tanenbaum, A. S. 2006. Is your cat infected with a computer
virus? In Pervasive Computing and Communications, 2006. PerCom 2006. Fourth Annual IEEE
International Conference on, 10–pp. IEEE.

[18] Barker, R. T. & Cheese, C. J. Oct 2012. The application of data diodes for securely connecting
nuclear power plant safety systems to the corporate it network. In 7th IET International
Conference on System Safety, incorporating the Cyber Security Conference 2012, 1–6. doi:
10.1049/cp.2012.1514.

[19] U.S. Department Homeland of Security and NCCIC. Seven steps to effectively defend indus-
trial control systems. https://ics-cert.us-cert.gov/sites/default/files/documents/
Seven%20Steps%20to%20Effectively%20Defend%20Industrial%20Control%20Systems_
S508C.pdf. Visited 30.05.19.

[20] Schlicher, B. G., MacIntyre, L. P., & Abercrombie, R. K. Jan 2016. Towards reducing the data
exfiltration surface for the insider threat. In 2016 49th Hawaii International Conference on
System Sciences (HICSS), 2749–2758. doi:10.1109/HICSS.2016.345.

[21] Fibersystem AB. Data diode bidirectional 1 gbit tempest level a/em-
sec/rös u1 datasheet. https://www.fibersystem.com/wp-content/uploads/
FS19189-Datasheet-Data-Diode-Bidirectional-1-Gbit-Tempest-R1.pdf. Visited
23.5.19.

[22] Owl cyber defense. Immediate release owl cyber defense unveils “recon” bidirectional
data diode-based cybersecurity solution. http://library.owlcyberdefense.com/press_
2018-may-31/page/1, May 2018. Visited 23.5.19.

54

https://pve.proxmox.com/wiki/Main_Page
https://books.google.no/books?id=6DwmDwAAQBAJ
http://dx.doi.org/10.1049/cp.2012.1514
http://dx.doi.org/10.1049/cp.2012.1514
https://ics-cert.us-cert.gov/sites/default/files/documents/Seven%20Steps%20to%20Effectively%20Defend%20Industrial%20Control%20Systems_S508C.pdf
https://ics-cert.us-cert.gov/sites/default/files/documents/Seven%20Steps%20to%20Effectively%20Defend%20Industrial%20Control%20Systems_S508C.pdf
https://ics-cert.us-cert.gov/sites/default/files/documents/Seven%20Steps%20to%20Effectively%20Defend%20Industrial%20Control%20Systems_S508C.pdf
http://dx.doi.org/10.1109/HICSS.2016.345
https://www.fibersystem.com/wp-content/uploads/FS19189-Datasheet-Data-Diode-Bidirectional-1-Gbit-Tempest-R1.pdf
https://www.fibersystem.com/wp-content/uploads/FS19189-Datasheet-Data-Diode-Bidirectional-1-Gbit-Tempest-R1.pdf
http://library.owlcyberdefense.com/press_2018-may-31/page/1
http://library.owlcyberdefense.com/press_2018-may-31/page/1

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

[23] diode. https://en.oxforddictionaries.com/definition/diode. Visited 02.05.19.

[24] Fibersystem AB. Data diode middleware datasheet. https://www.fibersystem.com/
wp-content/uploads/FS17101-Datadiode-Middleware-DDMW-Datasheet-1.pdf. Visited
22.5.19.

[25] IEEE 802.3 Working Group. Aug 2018. Ieee standard for ethernet. IEEE Std 802.3-2018
(Revision of IEEE Std 802.3-2015), 1–5600. doi:10.1109/IEEESTD.2018.8457469.

[26] Lc-sc-fiber-connectors. https://commons.wikimedia.org/wiki/File:
Lc-sc-fiber-connectors.jpg. Visited 23.5.19.

[27] Mike1024. Close-up photo of an uncrimped, transparent rj-45 plug. https:
//en.wikipedia.org/wiki/Modular_connector#/media/File:Uncrimped_rj-45_
connector_close-up.jpg. Visited 23.5.19.

[28] Snort community. Snort - Network Intrusion Detection & Prevention System. https://www.
snort.org. Visited 13.12.18.

[29] øyvind Aasen. Using network diodes to contain malicious network traffic. 2018.

[30] nsam. What is ns-3. https://www.nsnam.org/about/. Visited 10.04.19.

[31] nsam. The difference between ns-2 and ns-3. https://www.nsnam.org/support/faq/
ns2-ns3/. Visited 10.04.19.

[32] Open Information Security Foundation. suricata open source ids / ips / nsm engine. https:
//suricata-ids.org/. Visited 30.05.19.

[33] ns3 wiki. Howto make ns-3 interact with the real world. https://www.nsnam.org/wiki/
HOWTO_make_ns-3_interact_with_the_real_world. Visited 01.06.19.

[34] ns3 wiki. Howto use linux containers to set up virtual networks. https://www.nsnam.org/
wiki/HOWTO_Use_Linux_Containers_to_set_up_virtual_networks. Visited 01.06.19.

[35] Henderson, T. Bug 2354 - code review: full duplex csma. https://www.nsnam.org/
bugzilla/show_bug.cgi?id=2354. Visited 02.05.19.

[36] true positive. https://en.oxforddictionaries.com/definition/true_positive. Visited
29.05.19.

[37] false positive. https://en.oxforddictionaries.com/definition/false_positive. Visited
29.05.19.

[38] true negative. https://en.oxforddictionaries.com/definition/true_positive. Visited
29.05.19.

[39] false negative. https://en.oxforddictionaries.com/definition/false_negative. Vis-
ited 29.05.19.

55

https://en.oxforddictionaries.com/definition/diode
https://www.fibersystem.com/wp-content/uploads/FS17101-Datadiode-Middleware-DDMW-Datasheet-1.pdf
https://www.fibersystem.com/wp-content/uploads/FS17101-Datadiode-Middleware-DDMW-Datasheet-1.pdf
http://dx.doi.org/10.1109/IEEESTD.2018.8457469
https://commons.wikimedia.org/wiki/File:Lc-sc-fiber-connectors.jpg
https://commons.wikimedia.org/wiki/File:Lc-sc-fiber-connectors.jpg
https://en.wikipedia.org/wiki/Modular_connector#/media/File:Uncrimped_rj-45_connector_close-up.jpg
https://en.wikipedia.org/wiki/Modular_connector#/media/File:Uncrimped_rj-45_connector_close-up.jpg
https://en.wikipedia.org/wiki/Modular_connector#/media/File:Uncrimped_rj-45_connector_close-up.jpg
https://www.snort.org
https://www.snort.org
https://www.nsnam.org/about/
https://www.nsnam.org/support/faq/ns2-ns3/
https://www.nsnam.org/support/faq/ns2-ns3/
https://suricata-ids.org/
https://suricata-ids.org/
https://www.nsnam.org/wiki/HOWTO_make_ns-3_interact_with_the_real_world
https://www.nsnam.org/wiki/HOWTO_make_ns-3_interact_with_the_real_world
https://www.nsnam.org/wiki/HOWTO_Use_Linux_Containers_to_set_up_virtual_networks
https://www.nsnam.org/wiki/HOWTO_Use_Linux_Containers_to_set_up_virtual_networks
https://www.nsnam.org/bugzilla/show_bug.cgi?id=2354
https://www.nsnam.org/bugzilla/show_bug.cgi?id=2354
https://en.oxforddictionaries.com/definition/true_positive
https://en.oxforddictionaries.com/definition/false_positive
https://en.oxforddictionaries.com/definition/true_positive
https://en.oxforddictionaries.com/definition/false_negative

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

A ns-3 output

This is the results of test 1 used to populate Table 3 in Section 7.1.

1 At time 1s client sent 1024 bytes to 10.0.2.2 port 9
2 At time 1.00101s server received 1024 bytes from 10.0.1.2 port 49153
3 At time 1.00101s server sent 1024 bytes to 10.0.1.2 port 49153
4 At time 1.01202s client received 1024 bytes from 10.0.2.2 port 9
5 At time 2s client sent 1024 bytes to 10.0.3.2 port 9
6 At time 2.00101s server received 1024 bytes from 10.0.1.2 port 49154
7 At time 2.00101s server sent 1024 bytes to 10.0.1.2 port 49154
8 At time 2.00602s client received 1024 bytes from 10.0.3.2 port 9
9 At time 3s client sent 1024 bytes to 10.0.3.2 port 9

10 At time 3.00001s server received 1024 bytes from 10.0.2.2 port 49153
11 At time 3.00001s server sent 1024 bytes to 10.0.2.2 port 49153
12 At time 3.00002s client received 1024 bytes from 10.0.3.2 port 9
13 At time 4s client sent 1024 bytes to 10.0.2.2 port 9
14 At time 4.00001s server received 1024 bytes from 10.0.3.2 port 49153
15 At time 4.00001s server sent 1024 bytes to 10.0.3.2 port 49153
16 At time 4.00002s client received 1024 bytes from 10.0.2.2 port 9

Listing 11: ns-3 default route output

1 At time 1s client sent 1024 bytes to 10.0.2.2 port 9
2 At time 1.00101s server received 1024 bytes from 10.0.1.2 port 49153
3 At time 1.00101s server sent 1024 bytes to 10.0.1.2 port 49153
4 At time 1.01202s client received 1024 bytes from 10.0.2.2 port 9
5 At time 2s client sent 1024 bytes to 10.0.3.2 port 9
6 At time 2.00101s server received 1024 bytes from 10.0.1.2 port 49154
7 At time 2.00101s server sent 1024 bytes to 10.0.1.2 port 49154
8 At time 2.00602s client received 1024 bytes from 10.0.3.2 port 9
9 At time 3s client sent 1024 bytes to 10.0.3.2 port 9

10 At time 4s client sent 1024 bytes to 10.0.2.2 port 9

Listing 12: ns-3 no default route output

56

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

1 At time 1s client sent 1024 bytes to 10.0.2.2 port 9
2 At time 1.00101s server received 1024 bytes from 10.0.1.2 port 49153
3 At time 1.00101s server sent 1024 bytes to 10.0.1.2 port 49153
4 At time 1.01202s client received 1024 bytes from 10.0.2.2 port 9
5 At time 2s client sent 1024 bytes to 10.0.3.2 port 9
6 At time 2.00101s server received 1024 bytes from 10.0.1.2 port 49154
7 At time 2.00101s server sent 1024 bytes to 10.0.1.2 port 49154
8 At time 2.00602s client received 1024 bytes from 10.0.3.2 port 9
9 At time 3s client sent 1024 bytes to 10.0.3.2 port 9

10 At time 4s client sent 1024 bytes to 10.0.2.2 port 9
11 At time 4.00001s server received 1024 bytes from 10.0.3.2 port 49153
12 At time 4.00001s server sent 1024 bytes to 10.0.3.2 port 49153

Listing 13: ns-3 blackhole nR2 on nR1d output

1 At time 1s client sent 1024 bytes to 10.0.2.2 port 9
2 At time 1.00101s server received 1024 bytes from 10.0.1.2 port 49153
3 At time 1.00101s server sent 1024 bytes to 10.0.1.2 port 49153
4 At time 1.01202s client received 1024 bytes from 10.0.2.2 port 9
5 At time 2s client sent 1024 bytes to 10.0.3.2 port 9
6 At time 2.00101s server received 1024 bytes from 10.0.1.2 port 49154
7 At time 2.00101s server sent 1024 bytes to 10.0.1.2 port 49154
8 At time 2.00602s client received 1024 bytes from 10.0.3.2 port 9
9 At time 3s client sent 1024 bytes to 10.0.3.2 port 9

10 At time 3.00001s server received 1024 bytes from 10.0.2.2 port 49153
11 At time 3.00001s server sent 1024 bytes to 10.0.2.2 port 49153
12 At time 4s client sent 1024 bytes to 10.0.2.2 port 9

Listing 14: ns-3 blackhole nR1 on nR2d output

57

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

B Code

1 /* -*- Mode:C++; c-file -style:"gnu"; indent -tabs -mode:nil; -*- */
2 /*
3 * This program is free software; you can redistribute it and/or

modify
4 * it under the terms of the GNU General Public License version 2 as
5 * published by the Free Software Foundation;
6 *
7 * This program is distributed in the hope that it will be useful ,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not , write to the Free Software
14 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA

02111 -1307 USA
15 */
16
17
18 /* Overview of the network
19 *
20 * nT
21 * -<- | -<-
22 * / \ | / \
23 * nR1 -nR1d nTd nR2d -nR2
24 * \ / \ /
25 * ->- ->-
26 */
27
28 #include "ns3/core -module.h"
29 #include "ns3/network -module.h"
30 #include "ns3/internet -module.h"
31 #include "ns3/point -to -point -module.h"
32 #include "ns3/applications -module.h"
33 #include "ns3/csma -module.h"
34 #include "ns3/arp -cache.h"
35 #include "ns3/ipv4 -static -routing -helper.h"
36 #include "ns3/netanim -module.h"
37 #include "ns3/flow -monitor -helper.h"

58

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

38
39
40 // Normal C++ stuff
41 #include <iostream >
42 #include <fstream >
43 #include <string >
44
45 using namespace ns3;
46 using std::cout;
47
48 NS_LOG_COMPONENT_DEFINE ("NetworkDiodeTest");
49
50
51 // A function to create a data diode connection
52 void
53 CreateDiode (Ptr <Node > sender ,
54 Ptr <Node > receiver ,
55 char const* adress ,
56 char const* subnetMask ,
57 char const* baseAdr ,
58 Ipv4StaticRoutingHelper* ipv4RoutingHelper ,
59 Ipv4Address destAdr ,
60 Ipv4Mask destMask ,
61 bool pcap=false
62)
63 {
64 // Create the network link
65 CsmaHelper csma;
66
67 NodeContainer nodes = NodeContainer (sender , receiver);
68
69 // Create the "network interfaces" and add them to the appropriate

nodes
70 NetDeviceContainer diodes;
71 diodes = csma.Install(nodes);
72
73 // Configure the interfaces as data diodes
74 Ptr <CsmaNetDevice > diodeS = DynamicCast <CsmaNetDevice > (diodes.Get

(0));
75 diodeS ->SetReceiveEnable (false);
76 diodeS ->SetSendEnable (true);
77
78 Ptr <CsmaNetDevice > diodeR = DynamicCast <CsmaNetDevice > (diodes.Get

(1));
79 diodeR ->SetReceiveEnable (true);
80 diodeR ->SetSendEnable (false);

59

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

81
82 // Initalize Internet if needed
83 InternetStackHelper stack;
84 // Ensure that the node does not already have an initialized IP

stack
85 if (sender ->GetObject <Ipv4 > () != 0)
86 {
87 NS_LOG_INFO ("Sender already has an initialized IP stack");
88 }
89 else
90 {
91 stack.Install(sender);
92 }
93 if (receiver ->GetObject <Ipv4 > () != 0)
94 {
95 NS_LOG_INFO ("Receiver already has an initialized IP stack");
96 }
97 else
98 {
99 stack.Install(receiver);

100 }
101
102 // Set IP addresses
103 Ipv4AddressHelper address;
104 address.SetBase (adress , subnetMask , baseAdr);
105 Ipv4InterfaceContainer interfacesDiodes;
106 interfacesDiodes = address.Assign (diodes);
107
108 // Variables used for static routing
109 Ipv4Address destIntAdress = interfacesDiodes.GetAddress (1);
110 uint32_t numInterface = diodeS ->GetIfIndex ();
111
112 Ptr <Ipv4 > ipv4S = sender ->GetObject <Ipv4 > ();
113
114 // Use static routing for the diodes , hopefully allowing for "

loops"
115 Ptr <Ipv4StaticRouting > staticRouteT = ipv4RoutingHelper ->

GetStaticRouting (ipv4S);
116 staticRouteT ->AddNetworkRouteTo (destAdr , destMask , destIntAdress ,

numInterface);
117 // Comment out to disable default routes
118 staticRouteT ->SetDefaultRoute (destIntAdress , numInterface);
119
120 // Manually fill the ARP cache of the transmit node
121 Ptr <ArpCache > arpT = CreateObject <ArpCache > ();
122 arpT ->SetAliveTimeout (Seconds (3600 * 24)); // Keep the ARP table

60

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

entry for one day...
123
124 ArpCache :: Entry * entry = arpT ->Add (interfacesDiodes.GetAddress

(1));
125 entry ->SetMacAddress(Mac48Address :: ConvertFrom(diodeR ->GetAddress

()));
126 entry ->MarkPermanent ();
127
128 // Add the cache to the transmit node
129 std::pair <Ptr <Ipv4 >, uint32_t > returnValue = interfacesDiodes.Get

(0);
130 Ptr <Ipv4 > ipv4 = returnValue.first;
131 uint32_t index = returnValue.second;
132 Ptr <Ipv4Interface > diodeT = ipv4 ->GetObject <Ipv4L3Protocol > ()->

GetInterface (index);
133 arpT ->SetDevice(diodeS , diodeT);
134 diodeT ->SetAttribute("ArpCache", PointerValue(arpT));
135
136 // Enable packet trace on diode interfaces
137 if (pcap)
138 {
139 csma.EnablePcap ("diode -send", diodeS , true);
140 csma.EnablePcap ("diode -receive", diodeR , true);
141 }
142 }
143
144 int
145 main (int argc , char *argv [])
146 {
147 uint32_t nPackets = 100;
148 uint32_t nClients = 10;
149
150 CommandLine cmd;
151 cmd.AddValue("nPackets", "Number of packets to echo", nPackets);
152 cmd.AddValue("nClients", "Number of extra clients to run",

nClients);
153 cmd.Parse (argc , argv);
154
155 Time:: SetResolution (Time::NS);
156 LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_INFO);
157 LogComponentEnable ("UdpEchoServerApplication", LOG_LEVEL_INFO);
158
159 // Create the nodes
160 Ptr <Node > nT = CreateObject <Node > (); // node tramsittor
161 Ptr <Node > nT2 = CreateObject <Node > (); // node tramsittor
162 Ptr <Node > nR1 = CreateObject <Node > (); // first node receiver

61

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

163 Ptr <Node > nR2 = CreateObject <Node > (); // second node receiver
164 Ptr <Node > nTd = CreateObject <Node > (); // "transmitting" diode
165 Ptr <Node > nR1d = CreateObject <Node > (); // first "receiving" diode
166 Ptr <Node > nR2d = CreateObject <Node > (); // second "receiving"

diode
167
168 Names::Add("nT", nT);
169 Names::Add("nT2", nT2);
170 Names::Add("nR1", nR1);
171 Names::Add("nR2", nR2);
172 Names::Add("nTd", nTd);
173 Names::Add("nR1d", nR1d);
174 Names::Add("nR2d", nR2d);
175
176 NodeContainer nodesT = NodeContainer (nTd , nT);
177 NodeContainer nodesR1 = NodeContainer (nR1d , nR1);
178 NodeContainer nodesR2 = NodeContainer (nR2d , nR2);
179
180 // Create the network link
181 CsmaHelper csma;
182
183 // Create the "network interfaces" and add them to the appropriate

nodes
184 NetDeviceContainer sendNet;
185 sendNet = csma.Install(nodesT);
186 NetDeviceContainer reciveNet1;
187 reciveNet1 = csma.Install(nodesR1);
188 NetDeviceContainer reciveNet2;
189 reciveNet2 = csma.Install(nodesR2);
190
191 InternetStackHelper stack;
192 stack.Install(nodesT);
193 stack.Install(nodesR1);
194 stack.Install(nodesR2);
195
196 // Assign fixed IP-adresses to the networks
197 Ipv4AddressHelper address;
198 // Transmitt network
199 address.SetBase ("10.0.1.0" , "255.255.255.0");
200 Ipv4InterfaceContainer interfaceT;
201 interfaceT = address.Assign (sendNet);
202
203 // Receive network
204 address.SetBase ("10.0.2.0" , "255.255.255.0");
205 Ipv4InterfaceContainer interfaceR1;
206 interfaceR1 = address.Assign (reciveNet1);

62

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

207
208 // Second Receive network
209 address.SetBase ("10.0.3.0" , "255.255.255.0");
210 Ipv4InterfaceContainer interfaceR2;
211 interfaceR2 = address.Assign (reciveNet2);
212
213 // Enable static routing
214 Ipv4StaticRoutingHelper ipv4RoutingHelper;
215
216 // Configure nTd , nR1d , and nR2d to function as diodes
217 CreateDiode(nTd , nR1d , "192.168.0.0", "255.255.255.0", "0.0.0.1",

&ipv4RoutingHelper , "10.0.2.0", "/24", true);
218 CreateDiode(nR1d , nTd , "192.168.0.0", "255.255.255.0", "0.0.0.3",

&ipv4RoutingHelper , "10.0.1.0", "/24", true);
219 CreateDiode(nTd , nR2d , "192.168.0.0", "255.255.255.0", "0.0.0.5",

&ipv4RoutingHelper , "10.0.3.0", "/24", true);
220 CreateDiode(nR2d , nTd , "192.168.0.0", "255.255.255.0", "0.0.0.7",

&ipv4RoutingHelper , "10.0.1.0", "/24", true);
221
222 // Static routing
223 Ptr <Ipv4 > ipv4nT = nT->GetObject <Ipv4 > ();
224 Ptr <Ipv4 > ipv4nR1 = nR1 ->GetObject <Ipv4 > ();
225 Ptr <Ipv4 > ipv4nR2 = nR2 ->GetObject <Ipv4 > ();
226 Ptr <Ipv4 > ipv4nTd = nTd ->GetObject <Ipv4 > ();
227 Ptr <Ipv4 > ipv4nR1d = nR1d ->GetObject <Ipv4 > ();
228 Ptr <Ipv4 > ipv4nR2d = nR2d ->GetObject <Ipv4 > ();
229
230 // Use static routing for the diodes hopefully allowing for "loops

"
231 // The primary goal is to populate the adress of the other side of

the diode
232 Ptr <Ipv4StaticRouting > staticRoutenT = ipv4RoutingHelper.

GetStaticRouting (ipv4nT);
233 staticRoutenT ->AddNetworkRouteTo (Ipv4Address ("10.0.2.0"),

Ipv4Mask ("/24"), Ipv4Address ("10.0.1.1"), 1);
234 staticRoutenT ->AddNetworkRouteTo (Ipv4Address ("10.0.3.0"),

Ipv4Mask ("/24"), Ipv4Address ("10.0.1.1"), 1);
235
236 Ptr <Ipv4StaticRouting > staticRoutenR1 = ipv4RoutingHelper.

GetStaticRouting (ipv4nR1);
237 staticRoutenR1 ->AddNetworkRouteTo (Ipv4Address ("10.0.1.0"),

Ipv4Mask ("/24"), Ipv4Address("10.0.2.1"), 1);
238 staticRoutenR1 ->SetDefaultRoute (Ipv4Address("10.0.2.1"), 1);
239
240 Ptr <Ipv4StaticRouting > staticRoutenR2 = ipv4RoutingHelper.

GetStaticRouting (ipv4nR2);

63

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

241 staticRoutenR2 ->AddNetworkRouteTo (Ipv4Address ("10.0.1.0"),
Ipv4Mask ("/24"), Ipv4Address("10.0.3.1"), 1);

242 staticRoutenR2 ->SetDefaultRoute (Ipv4Address("10.0.3.1"), 1);
243
244 Ptr <Ipv4StaticRouting > staticRoutenTd = ipv4RoutingHelper.

GetStaticRouting (ipv4nTd);
245
246 Ptr <Ipv4StaticRouting > staticRoutenR1d = ipv4RoutingHelper.

GetStaticRouting (ipv4nR1d);
247 // Comment in to enable blackholing of nR2 on nR1d
248 // staticRoutenR1d ->AddNetworkRouteTo (Ipv4Address ("10.0.3.0") ,

Ipv4Mask ("/24") , 2);
249
250 Ptr <Ipv4StaticRouting > staticRoutenR2d = ipv4RoutingHelper.

GetStaticRouting (ipv4nR2d);
251 // Comment in to enable blackholing of nR1 on nR2d
252 // staticRoutenR2d ->AddNetworkRouteTo (Ipv4Address ("10.0.2.0") ,

Ipv4Mask ("/24") , 2);
253
254 // Set variables that is used by the "services"
255 float cStart = 1.0;
256 float cStop = nPackets * 0.1 + 10; // Add ten seconds buffer to

ensure everything is transmitted
257 float sStop = cStop;
258 float pInterval = 0.01;
259 uint32_t pSize = 1024;
260
261 // Add randomnes to the inter -packet interval to prevent each node
262 // from transmitting at the same time
263 RngSeedManager :: SetSeed (3); // Changes seed from default of 1 to

3
264 RngSeedManager :: SetRun (7); // Changes run number from default

of 1 to 7
265 Ptr <UniformRandomVariable > randPtr = CreateObject <

UniformRandomVariable > ();
266
267 // Configuration of the "test" application
268 UdpEchoServerHelper echoServer (9);
269
270 ApplicationContainer serverApps1 = echoServer.Install (nR1);
271 serverApps1.Start (Seconds (cStart));
272 serverApps1.Stop (Seconds (cStop));
273
274 ApplicationContainer serverApps2 = echoServer.Install (nR2);
275 serverApps2.Start (Seconds (cStart));
276 serverApps2.Stop (Seconds (cStop));

64

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

277
278 // Packets from nT to nR1 and nR2
279 UdpEchoClientHelper echoClient1 (interfaceR1.GetAddress (1), 9);
280 echoClient1.SetAttribute ("MaxPackets", UintegerValue (nPackets));
281 echoClient1.SetAttribute ("Interval", TimeValue (Seconds (

pInterval)));
282 echoClient1.SetAttribute ("PacketSize", UintegerValue (pSize));
283
284 UdpEchoClientHelper echoClient2 (interfaceR2.GetAddress (1), 9);
285 echoClient2.SetAttribute ("MaxPackets", UintegerValue (nPackets));
286 echoClient2.SetAttribute ("Interval", TimeValue (Seconds (

pInterval)));
287 echoClient2.SetAttribute ("PacketSize", UintegerValue (pSize));
288
289 ApplicationContainer clientApps1 = echoClient1.Install (nT);
290 clientApps1.Start (Seconds (cStart));
291 clientApps1.Stop (Seconds (cStop));
292
293 ApplicationContainer clientApps2 = echoClient2.Install (nT);
294 clientApps2.Start (Seconds (cStart));
295 clientApps2.Stop (Seconds (cStop));
296
297 // Packets from nR1 to nR2
298 UdpEchoClientHelper echoClient3 (interfaceR2.GetAddress (1), 9);
299 echoClient3.SetAttribute ("MaxPackets", UintegerValue (nPackets));
300 echoClient3.SetAttribute ("Interval", TimeValue (Seconds (

pInterval)));
301 echoClient3.SetAttribute ("PacketSize", UintegerValue (pSize));
302
303 ApplicationContainer clientApps3 = echoClient3.Install (nR1);
304 clientApps3.Start (Seconds (cStart));
305 clientApps3.Stop (Seconds (cStop));
306
307 // Traffic form nR2 to nR1
308 UdpEchoClientHelper echoClient4 (interfaceR1.GetAddress (1), 9);
309 echoClient4.SetAttribute ("MaxPackets", UintegerValue (nPackets));
310 echoClient4.SetAttribute ("Interval", TimeValue (Seconds (

pInterval)));
311 echoClient4.SetAttribute ("PacketSize", UintegerValue (pSize));
312
313 ApplicationContainer clientApps4 = echoClient4.Install (nR2);
314 clientApps4.Start (Seconds (cStart));
315 clientApps4.Stop (Seconds (cStop));
316
317 ApplicationContainer extraTrafic [nClients * 4]; // Adding an

aditional client at all nodes

65

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

318
319 // Additional traffic between the nodes
320 for(uint32_t round = 0; round < nClients; round += 1){
321 UdpEchoClientHelper traficClient1 (interfaceR1.GetAddress (1), 9)

;
322 traficClient1.SetAttribute ("MaxPackets", UintegerValue (

nPackets));
323 traficClient1.SetAttribute ("Interval", TimeValue (Seconds (

pInterval)));
324 traficClient1.SetAttribute ("PacketSize", UintegerValue (pSize))

;
325
326 extraTrafic[round] = traficClient1.Install (nT);
327 extraTrafic[round].Start (Seconds (cStart));
328 extraTrafic[round].Stop (Seconds (cStop));
329
330 UdpEchoClientHelper traficClient2 (interfaceR2.GetAddress (1), 9)

;
331 traficClient2.SetAttribute ("MaxPackets", UintegerValue (

nPackets));
332 traficClient2.SetAttribute ("Interval", TimeValue (Seconds (

pInterval)));
333 traficClient2.SetAttribute ("PacketSize", UintegerValue (pSize))

;
334
335 extraTrafic[round + 1] = traficClient2.Install (nT);
336 extraTrafic[round + 1]. Start (Seconds (cStart));
337 extraTrafic[round + 1]. Stop (Seconds (cStop));
338
339 UdpEchoClientHelper traficClient3 (interfaceR1.GetAddress (1), 9)

;
340 traficClient3.SetAttribute ("MaxPackets", UintegerValue (

nPackets));
341 traficClient3.SetAttribute ("Interval", TimeValue (Seconds (

pInterval)));
342 traficClient3.SetAttribute ("PacketSize", UintegerValue (pSize))

;
343
344 extraTrafic[round + 2] = traficClient3.Install (nR2);
345 extraTrafic[round + 2]. Start (Seconds (cStart));
346 extraTrafic[round + 2]. Stop (Seconds (cStop));
347
348 UdpEchoClientHelper traficClient4 (interfaceR2.GetAddress (1), 9)

;
349 traficClient4.SetAttribute ("MaxPackets", UintegerValue (

nPackets));

66

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

350 traficClient4.SetAttribute ("Interval", TimeValue (Seconds (
pInterval)));

351 traficClient4.SetAttribute ("PacketSize", UintegerValue (pSize))
;

352
353 extraTrafic[round + 3] = traficClient2.Install (nR1);
354 extraTrafic[round + 3]. Start (Seconds (cStart));
355 extraTrafic[round + 3]. Stop (Seconds (cStop));
356 }
357
358
359
360 // Print all the routing tables for debugging
361 Ipv4GlobalRoutingHelper printRouting;
362 Ptr <OutputStreamWrapper > routingStream = Create <

OutputStreamWrapper > ("test -network.routes", std::ios::out);
363 printRouting.PrintRoutingTableAllAt (Seconds (2), routingStream);
364
365 // Packet dump of receive network
366 csma.EnablePcap ("test -network", reciveNet1.Get (1), true);
367 csma.EnablePcap ("test -network", reciveNet2.Get (1), true);
368 // Flow monitor
369 Ptr <FlowMonitor > flowMonitor;
370 FlowMonitorHelper flowHelper;
371 flowMonitor = flowHelper.InstallAll ();
372
373 Simulator ::Stop (Seconds (sStop));
374 Simulator ::Run ();
375 Simulator :: Destroy ();
376
377 flowMonitor ->SerializeToXmlFile("test -network.xml", true , true);
378 return 0;
379 }

Listing 15: test-network.cc

1 /* -*- Mode:C++; c-file -style:"gnu"; indent -tabs -mode:nil; -*- */
2 /*
3 * This program is free software; you can redistribute it and/or

modify
4 * it under the terms of the GNU General Public License version 2 as
5 * published by the Free Software Foundation;
6 *
7 * This program is distributed in the hope that it will be useful ,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

10 * GNU General Public License for more details.

67

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not , write to the Free Software
14 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA

02111 -1307 USA
15 */
16
17
18 /* Overveiw of the network TODO update
19 * nT
20 * |
21 *nR1 -nR1d -nTd -nR2d -nR2
22 *
23 */
24
25 #include "ns3/core -module.h"
26 #include "ns3/network -module.h"
27 #include "ns3/internet -module.h"
28 #include "ns3/point -to -point -module.h"
29 #include "ns3/applications -module.h"
30 #include "ns3/csma -module.h"
31 #include "ns3/arp -cache.h"
32 #include "ns3/ipv4 -static -routing -helper.h"
33 #include "ns3/netanim -module.h"
34 #include "ns3/flow -monitor -helper.h"
35
36 // Normal C++ stuff
37 #include <iostream >
38 #include <fstream >
39 #include <string >
40
41 using namespace ns3;
42 using std::cout;
43
44 NS_LOG_COMPONENT_DEFINE ("NetworkDiodeTest");
45
46 int
47 main (int argc , char *argv [])
48 {
49 uint32_t nPackets = 100;
50 uint32_t nClients = 10;
51
52 CommandLine cmd;
53 cmd.AddValue("nPackets", "Number of packets to echo", nPackets);
54 cmd.AddValue("nClients", "Number of extra clients to run",

nClients);

68

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

55 cmd.Parse (argc , argv);
56
57 Time:: SetResolution (Time::NS);
58 LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_INFO);
59 LogComponentEnable ("UdpEchoServerApplication", LOG_LEVEL_INFO);
60
61 // Create the nodes
62 Ptr <Node > nT = CreateObject <Node > (); // node tramsittor
63 Ptr <Node > nR1 = CreateObject <Node > (); // first node receiver
64 Ptr <Node > nR2 = CreateObject <Node > (); // second node receiver
65 Ptr <Node > nTd = CreateObject <Node > (); // "transmitting" diode
66 Ptr <Node > nR1d = CreateObject <Node > (); // first "receiving" diode
67 Ptr <Node > nR2d = CreateObject <Node > (); // second "receiving"

diode
68
69 Names::Add("nT", nT);
70 Names::Add("nR1", nR1);
71 Names::Add("nR2", nR2);
72 Names::Add("nTd", nTd);
73 Names::Add("nR1d", nR1d);
74 Names::Add("nR2d", nR2d);
75
76 NodeContainer nodesT = NodeContainer (nTd , nT);
77 NodeContainer nodesR1 = NodeContainer (nR1d , nR1);
78 NodeContainer nodesR2 = NodeContainer (nR2d , nR2);
79 NodeContainer nTdnR1d = NodeContainer (nTd , nR1d);
80 NodeContainer nTdnR2d = NodeContainer (nTd , nR2d);
81
82 // Create the network link
83 CsmaHelper csma;
84
85 // Create the "netwrok interfaces" and add them to the appropriate

nodes
86 NetDeviceContainer sendNet;
87 sendNet = csma.Install(nodesT);
88 NetDeviceContainer reciveNet1;
89 reciveNet1 = csma.Install(nodesR1);
90 NetDeviceContainer reciveNet2;
91 reciveNet2 = csma.Install(nodesR2);
92 NetDeviceContainer netnTdnR1d;
93 netnTdnR1d = csma.Install(nTdnR1d);
94 NetDeviceContainer netnTdnR2d;
95 netnTdnR2d = csma.Install(nTdnR2d);
96
97 InternetStackHelper stack;
98 stack.Install(nodesT);

69

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

99 stack.Install(nodesR1);
100 stack.Install(nodesR2);
101
102 // Give the different networks IP -adresses
103 Ipv4AddressHelper address;
104 // Transmitt network
105 address.SetBase ("10.0.1.0" , "255.255.255.0");
106 Ipv4InterfaceContainer interfaceT;
107 interfaceT = address.Assign (sendNet);
108
109 // Receive network
110 address.SetBase ("10.0.2.0" , "255.255.255.0");
111 Ipv4InterfaceContainer interfaceR1;
112 interfaceR1 = address.Assign (reciveNet1);
113
114 // Second Receive network
115 address.SetBase ("10.0.3.0" , "255.255.255.0");
116 Ipv4InterfaceContainer interfaceR2;
117 interfaceR2 = address.Assign (reciveNet2);
118
119 // Network to transmit from nT to nR1
120 address.SetBase ("192.168.0.0", "255.255.255.252");
121 Ipv4InterfaceContainer intnTdnR1d;
122 intnTdnR1d = address.Assign (netnTdnR1d);
123
124 // Network to transmit from nT to nR2
125 address.SetBase ("192.168.0.4", "255.255.255.252");
126 Ipv4InterfaceContainer intnTdnR2d;
127 intnTdnR2d = address.Assign (netnTdnR2d);
128
129 // Autopopulate and generate routing tables
130 Ipv4GlobalRoutingHelper :: PopulateRoutingTables ();
131
132 // Set variables that is used by the "services"
133 float cStart = 1.0;
134 float cStop = nPackets * 0.1 + 10; // Add ten seconds buffer to

ensure everything is transmitted
135 float sStop = cStop;
136 float pInterval = 0.1;
137 uint32_t pSize = 1024;
138
139 // Add randomnes to the interval so not everything is sent at the

same time
140 RngSeedManager :: SetSeed (3); // Changes seed from default of 1 to

3
141 RngSeedManager :: SetRun (7); // Changes run number from default

70

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

of 1 to 7
142 Ptr <UniformRandomVariable > randPtr = CreateObject <

UniformRandomVariable > ();
143
144 // Configuration of the "test" application
145 UdpEchoServerHelper echoServer (9);
146
147 ApplicationContainer serverApps1 = echoServer.Install (nR1);
148 serverApps1.Start (Seconds (cStart));
149 serverApps1.Stop (Seconds (cStop));
150
151 ApplicationContainer serverApps2 = echoServer.Install (nR2);
152 serverApps2.Start (Seconds (cStart));
153 serverApps2.Stop (Seconds (cStop));
154
155 // Packets from nT to nR1 and nR2
156 UdpEchoClientHelper echoClient1 (interfaceR1.GetAddress (1), 9);
157 echoClient1.SetAttribute ("MaxPackets", UintegerValue (nPackets));
158 echoClient1.SetAttribute ("Interval", TimeValue (Seconds (

pInterval)));
159 echoClient1.SetAttribute ("PacketSize", UintegerValue (pSize));
160
161 UdpEchoClientHelper echoClient2 (interfaceR2.GetAddress (1), 9);
162 echoClient2.SetAttribute ("MaxPackets", UintegerValue (nPackets));
163 echoClient2.SetAttribute ("Interval", TimeValue (Seconds (

pInterval)));
164 echoClient2.SetAttribute ("PacketSize", UintegerValue (pSize));
165
166 ApplicationContainer clientApps1 = echoClient1.Install (nT);
167 clientApps1.Start (Seconds (cStart));
168 clientApps1.Stop (Seconds (cStop));
169
170 ApplicationContainer clientApps2 = echoClient2.Install (nT);
171 clientApps2.Start (Seconds (cStart));
172 clientApps2.Stop (Seconds (cStop));
173
174 // Packets from nR1 to nR2
175 UdpEchoClientHelper echoClient3 (interfaceR2.GetAddress (1), 9);
176 echoClient3.SetAttribute ("MaxPackets", UintegerValue (nPackets));
177 echoClient3.SetAttribute ("Interval", TimeValue (Seconds (

pInterval)));
178 echoClient3.SetAttribute ("PacketSize", UintegerValue (pSize));
179
180 ApplicationContainer clientApps3 = echoClient3.Install (nR1);
181 clientApps3.Start (Seconds (cStart));
182 clientApps3.Stop (Seconds (cStop));

71

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

183
184 // Traffic form nR2 to nR1
185 UdpEchoClientHelper echoClient4 (interfaceR1.GetAddress (1), 9);
186 echoClient4.SetAttribute ("MaxPackets", UintegerValue (nPackets));
187 echoClient4.SetAttribute ("Interval", TimeValue (Seconds (

pInterval)));
188 echoClient4.SetAttribute ("PacketSize", UintegerValue (pSize));
189
190 ApplicationContainer clientApps4 = echoClient4.Install (nR2);
191 clientApps4.Start (Seconds (cStart));
192 clientApps4.Stop (Seconds (cStop));
193
194 ApplicationContainer extraTrafic [nClients * 4]; // Adding an

aditional client at all nodes
195
196 // Additional Packets from nT to nR1 and nR2
197 for(uint32_t round = 0; round < nClients; round += 1){
198 UdpEchoClientHelper traficClient1 (interfaceR1.GetAddress (1), 9)

;
199 traficClient1.SetAttribute ("MaxPackets", UintegerValue (

nPackets));
200 // echoClient1.SetAttribute (" Interval", TimeValue (Seconds (

randPtr ->GetValue (0.0006 , 0.001))));
201 traficClient1.SetAttribute ("Interval", TimeValue (Seconds (

pInterval)));
202 traficClient1.SetAttribute ("PacketSize", UintegerValue (pSize))

;
203
204 extraTrafic[round] = traficClient1.Install (nT);
205 extraTrafic[round].Start (Seconds (cStart));
206 extraTrafic[round].Stop (Seconds (cStop));
207
208 UdpEchoClientHelper traficClient2 (interfaceR2.GetAddress (1), 9)

;
209 traficClient2.SetAttribute ("MaxPackets", UintegerValue (

nPackets));
210 // echoClient2.SetAttribute (" Interval", TimeValue (Seconds (

randPtr ->GetValue (0.0006 , 0.001))));
211 traficClient2.SetAttribute ("Interval", TimeValue (Seconds (

pInterval)));
212 traficClient2.SetAttribute ("PacketSize", UintegerValue (pSize))

;
213
214 extraTrafic[round + 1] = traficClient2.Install (nT);
215 extraTrafic[round + 1]. Start (Seconds (cStart));
216 extraTrafic[round + 1]. Stop (Seconds (cStop));

72

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

217
218 UdpEchoClientHelper traficClient3 (interfaceR1.GetAddress (1), 9)

;
219 traficClient3.SetAttribute ("MaxPackets", UintegerValue (

nPackets));
220 traficClient3.SetAttribute ("Interval", TimeValue (Seconds (

pInterval)));
221 traficClient3.SetAttribute ("PacketSize", UintegerValue (pSize))

;
222
223 extraTrafic[round + 2] = traficClient3.Install (nR2);
224 extraTrafic[round + 2]. Start (Seconds (cStart));
225 extraTrafic[round + 2]. Stop (Seconds (cStop));
226
227 UdpEchoClientHelper traficClient4 (interfaceR2.GetAddress (1), 9)

;
228 traficClient4.SetAttribute ("MaxPackets", UintegerValue (

nPackets));
229 traficClient4.SetAttribute ("Interval", TimeValue (Seconds (

pInterval)));
230 traficClient4.SetAttribute ("PacketSize", UintegerValue (pSize))

;
231
232 extraTrafic[round + 3] = traficClient2.Install (nR1);
233 extraTrafic[round + 3]. Start (Seconds (cStart));
234 extraTrafic[round + 3]. Stop (Seconds (cStop));
235 }
236
237 // Print all the routing tables for debugging
238 Ipv4GlobalRoutingHelper printRouting;
239 Ptr <OutputStreamWrapper > routingStream = Create <

OutputStreamWrapper > ("test -network -no -diodes.routes", std::ios
::out);

240 printRouting.PrintRoutingTableAllAt (Seconds (2), routingStream);
241
242 // Packet dump of send network
243 csma.EnablePcap ("test -network -no -diodes", sendNet.Get (1), true);
244 csma.EnablePcap ("test -network -no -diodes", sendNet.Get (0), true);
245 // Packet dump of receive network
246 csma.EnablePcap ("test -network -no -diodes", reciveNet1.Get (0),

true);
247 csma.EnablePcap ("test -network -no -diodes", reciveNet1.Get (1),

true);
248 csma.EnablePcap ("test -network -no -diodes", reciveNet2.Get (0),

true);
249 csma.EnablePcap ("test -network -no -diodes", reciveNet2.Get (1),

73

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

true);
250 csma.EnablePcap ("test -network -no -diodes", netnTdnR1d.Get (0),

true);
251 csma.EnablePcap ("test -network -no -diodes", netnTdnR1d.Get (1),

true);
252 csma.EnablePcap ("test -network -no -diodes", netnTdnR2d.Get (0),

true);
253 csma.EnablePcap ("test -network -no -diodes", netnTdnR2d.Get (1),

true);
254
255 // Flow monitor
256 Ptr <FlowMonitor > flowMonitor;
257 FlowMonitorHelper flowHelper;
258 flowMonitor = flowHelper.InstallAll ();
259
260 Simulator ::Stop (Seconds (sStop));
261 Simulator ::Run ();
262 Simulator :: Destroy ();
263
264 flowMonitor ->SerializeToXmlFile("test -network -no-diodes.xml"

, true , true);
265 return 0;
266 }

Listing 16: test-network-no-diodes.cc

74

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

C Snort configuration and rules

1 include ./rules/snort -nR1.rules
2
3 config daq_dir: /usr/lib/daq
4 config daq_mode: read -file
5 config daq: pcap
6
7
8 ###
9 # Step #5: Configure preprocessors

10 # For more information , see the Snort Manual , Configuring Snort -
Preprocessors

11 ###
12
13 # GTP Control Channle Preprocessor. For more information , see README

.GTP
14 # preprocessor gtp: ports { 2123 3386 2152 }
15
16 # Inline packet normalization. For more information , see README.

normalize
17 # Does nothing in IDS mode
18 preprocessor normalize_ip4
19 preprocessor normalize_tcp: ips ecn stream
20 preprocessor normalize_icmp4
21 preprocessor normalize_ip6
22 preprocessor normalize_icmp6
23
24 # Target -Based stateful inspection/stream reassembly. For more

inforation , see README.stream5
25 preprocessor stream5_global: track_tcp yes , \
26 track_udp yes , \
27 track_icmp no, \
28 max_tcp 262144 , \
29 max_udp 131072 , \
30 max_active_responses 2, \
31 min_response_seconds 5
32 preprocessor stream5_tcp: log_asymmetric_traffic no, policy windows ,

\
33 detect_anomalies , require_3whs 180, \
34 overlap_limit 10, small_segments 3 bytes 150, timeout 180, \

75

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

35 ports client 21 22 23 25 42 53 79 109 110 111 113 119 135 136
137 139 143 \

36 161 445 513 514 587 593 691 1433 1521 1741 2100 3306 6070
6665 6666 6667 6668 6669 \

37 7000 8181 32770 32771 32772 32773 32774 32775 32776 32777
32778 32779, \

38 ports both 80 81 311 383 443 465 563 591 593 636 901 989 992 993
994 995 1220 1414 1830 2301 2381 2809 3037 3128 3702 4343

4848 5250 6988 7907 7000 7001 7144 7145 7510 7802 7777 7779 \
39 7801 7900 7901 7902 7903 7904 7905 7906 7908 7909 7910 7911

7912 7913 7914 7915 7916 \
40 7917 7918 7919 7920 8000 8008 8014 8028 8080 8085 8088 8090

8118 8123 8180 8243 8280 8300 8800 8888 8899 9000 9060
9080 9090 9091 9443 9999 11371 34443 34444 41080 50002
55555

41 preprocessor stream5_udp: timeout 180
42
43 # Preprocessor for snort perfomance
44 preprocessor perfmonitor: console
45 config profile_rules
46 config profile_preprocs

Listing 17: snort-nR1.conf

1 alert udp [10.0.3.0/24] any -> any any (msg: "Connection from:
10.0.3.0/24 detected "; sid :1;)

2 #alert udp ![10.0.3.0/24] any -> any any (msg: "Normal traffic
detected "; sid :2;)

Listing 18: snort-nR1.rules

1 include ./rules/snort -nR2.rules
2
3 config daq_dir: /usr/lib/daq
4 config daq_mode: read -file
5 config daq: pcap
6
7 ###
8 # Step #5: Configure preprocessors
9 # For more information , see the Snort Manual , Configuring Snort -

Preprocessors
10 ###
11
12 # GTP Control Channle Preprocessor. For more information , see README

.GTP
13 # preprocessor gtp: ports { 2123 3386 2152 }
14

76

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

15 # Inline packet normalization. For more information , see README.
normalize

16 # Does nothing in IDS mode
17 preprocessor normalize_ip4
18 preprocessor normalize_tcp: ips ecn stream
19 preprocessor normalize_icmp4
20 preprocessor normalize_ip6
21 preprocessor normalize_icmp6
22
23 # Target -Based stateful inspection/stream reassembly. For more

inforation , see README.stream5
24 preprocessor stream5_global: track_tcp yes , \
25 track_udp yes , \
26 track_icmp no, \
27 max_tcp 262144 , \
28 max_udp 131072 , \
29 max_active_responses 2, \
30 min_response_seconds 5
31 preprocessor stream5_tcp: log_asymmetric_traffic no, policy windows ,

\
32 detect_anomalies , require_3whs 180, \
33 overlap_limit 10, small_segments 3 bytes 150, timeout 180, \
34 ports client 21 22 23 25 42 53 79 109 110 111 113 119 135 136

137 139 143 \
35 161 445 513 514 587 593 691 1433 1521 1741 2100 3306 6070

6665 6666 6667 6668 6669 \
36 7000 8181 32770 32771 32772 32773 32774 32775 32776 32777

32778 32779, \
37 ports both 80 81 311 383 443 465 563 591 593 636 901 989 992 993

994 995 1220 1414 1830 2301 2381 2809 3037 3128 3702 4343
4848 5250 6988 7907 7000 7001 7144 7145 7510 7802 7777 7779 \

38 7801 7900 7901 7902 7903 7904 7905 7906 7908 7909 7910 7911
7912 7913 7914 7915 7916 \

39 7917 7918 7919 7920 8000 8008 8014 8028 8080 8085 8088 8090
8118 8123 8180 8243 8280 8300 8800 8888 8899 9000 9060
9080 9090 9091 9443 9999 11371 34443 34444 41080 50002
55555

40 preprocessor stream5_udp: timeout 180
41
42 # Preprocessor for snort perfomance
43 preprocessor perfmonitor

Listing 19: snort-nR2.conf

1 alert udp [10.0.2.0/24] any -> any any (msg: "Connection from:
10.0.2.0/24 detected "; sid :1;)

2 #alert udp ![10.0.2.0/24] any -> any any (msg: "Normal traffic

77

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

detected "; sid :2;)

Listing 20: snort-nR2.rules

78

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

D Alternative network designs

Figure 17: Alternative design of Figure 12

79

Using Bi-directional Data Diodes to Limit Propagation of Network Attacks

Figure 18: Alternative design of Figure 14

80

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Øyvind Aasen

Using Bi-directional Data Diodes to
Limit Propagation of Network Attacks

Master’s thesis in Information Security
Supervisor: Prof. Slobodan Petrovic

July 2019

	Preface
	Acknowledgment
	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Topic covered by the project
	Keywords
	Brief explanation of data diodes
	Bi-directional data diodes

	Problem description
	Justification, motivation and benefits
	Research questions
	Planned contributions

	Choice of methods
	Network testing
	Real hardware
	Simulation
	Combination
	Conclusion

	Scientific methodologies

	Related work
	Data diodes
	Data diode use cases
	Bidirectional communication with data diodes

	Theory
	Data diodes
	Data diode properties
	Common use cases
	Prohibit leaking of classified information
	Prohibit infiltration

	Data diode implementations
	Optical Ethernet
	Electrical Ethernet

	IDS
	IDS evaluation

	Hypothesis
	Implementation
	Selection of tools
	Network simulation
	Description of ns-3
	Intrusion Detection System (IDS)

	Test environment
	Test description
	ns-3 environment
	Creating a data diode in ns-3

	Creating a bi-directional data diode in ns-3
	Explanation of CreateDiode function
	Running Snort

	Results
	Networking and routing
	Understanding ns-3 simulation output
	No default route
	Blackholing

	IDS performance
	Understanding the Snort results
	Snort detection performance
	Snort performance

	Discussion
	Network design and routing
	Limitiations on network segmenting
	Design 1
	Design 2
	Design 3
	Design 4
	Design 5
	Design 6
	Outside interaction and classical prevention methods

	IDS performance
	Detection performance
	IDS resource usage

	Conclusion
	Network design
	IDS performance
	Future works

	Acronyms and Definitions
	Acronyms
	Definitions

	Bibliography
	ns-3 output
	Code
	Snort configuration and rules
	Alternative network designs

