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Abstract

Millions of malicious Android applications are detected every year. These applications are disguised
as goodware applications in Android marketplaces in order to trick users. When the malicious
application (malware) is installed on an Android device it can display advertisement, steal banking
credentials, register to premium SMS services, encrypt and hold files for ransom or install additional
applications. While it is critical to detect and remove malicious applications from the marketplaces
before these applications are installed by users, it is also important to categorize these threats.
Categorizing these threats can aid a security analyst in threat assessment, identifying appropriate
mitigation strategies and removal techniques.

It is common practise in the industry to group malware into families based on similarity in code,
behavior and author attribution. The malware threat is continuously evolving to avoid detection,
exploit new vulnerabilities and adapt different monetization strategies in order to generate rev-
enue. As a result new variants will be added to a family as the threat is evolving over time. Given
the increasing number of malware variants, manual analysis is not practical and automated mea-
sures are required to assists security analysts. Machine learning based classifiers in the literature
have shown great performance in both malware detection and malware family identification (cate-
gorization). However, the timeline of the malware samples, and thereby the evolution of malware,
is often neglected when these classifiers are evaluated.

In this study we investigate the performance implications of the malware evolution on a machine
learning based Android malware family classifier. We use a dataset of 14582 malware samples
from the 54 most common malware families found in the markets during 2014-2016. Static and
dynamic (hybrid) malware analysis methods are used to a extract features that have shown promise
in the literature for distinguishing between malware families. We compare the results of classifiers
evaluated in settings where samples in the training set are dated before samples in testing set (time-
aware) with classifiers evaluated using k-fold cross validation (time-unaware). A 15.45% decrease
in accuracy was found for the best classifier in the time-unaware setting. We therefore conclude
that the performance of classifiers evaluated in a time-unaware setting introduces significant bias
to the result. The set of features that performed best in all settings includes feature related to:
Android API calls, permissions, intents, receivers, services, opcodes, system commands, native code,
and finally strings that are longer than 5000 characters. We also compared the results that could
be produced with different feature subsets, static, dynamic and hybrid features. However, due to
a considerable amount of applications crashing during the dynamic analysis, the results of this
comparison is inconclusive. Finally we measured the time required to extract the features used in
the study to shed some light on the cost affiliated with the feature extraction process and how this
affects identification of malware samples.
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Sammendrag

Flere millioner ondsinnede Android applikasjoner (skadevare) detekteres hvert år. Disse applikasjonene
skjuler seg i Android-markedsplasser ved utgi seg for å være godsinnede applikasjoner. Når en
bruker installerer skadavaren på enheten sin kan den vise reklame, stjele bankopplysninger, reg-
istrere seg til Premium SMS-tjenester, kryptere og holde filer for løsepenger eller installere flere
applikasjoner. Det er kritisk at skadevaren blir detektere og fjernet fra markedsplassene før de blir
installert av brukere. Men det er også viktig å kategorisere truslene skadevaren utgjør. Kategoriser-
ing av trusler kan hjelpe sikkerhetsanalytikere med å gjøre trusselvurdering, velge riktige mitigering
strategier og framgangsmåter for fjerning.

Det er vanlig praksis i bransjen å gruppere skadevare inn i skadevare-familier basert på likheter
i kode, oppførsel og attribusjon til trussel aktør. Skadevare trusselen utvikler seg kontinuerlig for å
unngå deteksjon, utnytte nye sårbarheter og for endre inntektsstrategier. Som et resultat blir nye
varianter lagt til i skadevare familiene ettersom de utvikler seg. På grunn av den økende mengden
med skadevare varianter er ikke manuell analyse praktisk mulig, og automatiserte løsninger er der-
for nødvendig. Maskinlærings-baserte klassifiserere presentert i forsknings-litteraturen har oppnådd
gode resultater for både detektering og familie-klassifisering av Android skadevare. En svakhet ved
resultatene til disse klassifisererene er at tidslinjen til skadevaren blir ignorert under evaluering, og
dermed blir ikke skadevare-utviklingen tatt med i betraktningen.

I dette prosjektet undersøker vi resultat implikasjonene for en maskinlærings-basert klassifiserer
når skadevare-utviklingen blir tatt med i betraktningen. Vi bruker et datasett med 14582 skadevare
applikasjoner fra de 54 mest vanlige skadevare-familiene funnet i markedene mellom 2014-2016.
Statiske og dynamiske (hybride) skadevare analyse metoder blir benyttet til å hente ut egenskaper
som har produsert gode resultater for skille mellom skadevare-familier. Vi sammenligner resultater
produsert av klassifiserere der skadevare i trening settet er datert tidligere enn skadevare i test-
ing settet (tids-bevisst), med klassifiserere evaluert med k-fold cross validation (tids-ubevisst). Vi
fant en 15.45% reduksjon i accuracy for den beste klassifisereren i den tids-bevisste situasjonen.
Vi konkluderer derfor med at resultatene av en klassifiserer evaluert i en tids-ubevisst situasjon
introduserer betydelig bias. Egenskapene som produserte best resultater for klassifisererene våre
inkluderer egenskaper relatert til: Android API kall, permissions, intents, receivers, services, system
kommandoer, native code, og strenger som er lengre enn 5000 karakterer. Vi sammenlignet også
hvilke resultater som kunne produseres med egenskap-sett som inkluderte statiske, dynamiske og
hybride egenskaper. Men på grunn av at en betydelig mengde av skadavaren krasjet under dy-
namiske analyse, kan vi ikke konkludere basert på resultatene. Til slutt målte vi tiden som kreves
for å hente ut egenskapene som ble brukt i prosjektet for å gi et grunnlag for kostnaden av å hente
ut egenskaper og hvordan dette kan påvirke klassifisering av Android skadevare-familier.
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1 Introduction

1.1 Topics covered by project

Anti-virus companies group similar malware into malware families based on author attribution,
similarities in source-code and behavior[1]. Machine learning methods can be utilized to automate
the process of classifying new (unseen) malware samples into malware families that are known
beforehand. A machine learning model can learn to recognize which family a new sample belongs
to based on characteristics from malware samples in the same family, such as Android API usage,
requested permissions, network traffic, file-system usage, system calls, etc. Static and dynamic (hy-
brid) malware analysis methods can be used to extract these characteristics from malware sample.
Static analysis involves techniques that can be used to examine a sample without running it. While
in dynamic analysis the sample is executed and monitored in a controlled environment.

This project will investigate to what extent a machine learning based classification system can
classify new (unseen) Android malware samples into known malware families in a time-aware
setting.

1.2 Keywords

Android malware, Machine learning, classification, identification, malware family, security, static
analysis, dynamic analysis

1.3 Problem description

The number of mobile malware attacks has increased rapidly over the years, and in 2018 Kaspersky[2]
detected 5,3 million mobile malware installation packages. Android phones have the vast majority
of the mobile market share[3], and is therefore the most lucrative mobile OS to target for malware
authors. Android malware are known to steal banking credentials, send premium SMS-messages,
click on advertisement, encrypt and hold files for ransom. These malicious applications are mostly
distributed on third-party markets where the security of users is not a priority. While Google has im-
plemented security measures for the official Android market place, malware is still found in Google
play [4]. Malware is therefore posing a serious threat to any Android user.

Existing machine learning based classifiers has mostly been focused towards binary classification
of malware and goodware. Simply detecting that an application is malicious and removing it does
not address the capabilities of the malware sample, and the damages that might have occurred. Fur-
thermore, these approaches often does not take the timeline of the malware samples into account
when evaluating their proposed classifiers. In a real world setting a classifier relies on knowledge
obtained from malware samples in the past to classify samples that are detected in the future. Mal-
ware samples in the training set should therefore be dated prior to the samples in the validation
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set. Having malware samples from "the future" in the training set will lead to considerably biased
results [5]. Allix et al [5] states that state-of-the-art malware detection systems from research that
does not take history constraint1 intro consideration will not be powerful in a real-world setting.

1.4 Justification, motivation and benefits

The sheer amount of Android malware detected today is far too large to be manually analyzed. A
machine learning based classification system can help the analyst by classifying new (unseen) mal-
ware into malware families that are known beforehand. Knowing which malware family a sample
belongs to can have several benefits for a security analyst. Information about the capability mal-
ware sample can quickly be identified by looking up the malware family. Removal techniques can
be reused. If manual analysis is to be performed, having a basic idea about the malware can speed
up the the process [6].

1.5 Research Questions

• RQ1: What level of accuracy can be achieved for Android malware family classification in a
time-aware and time-unaware setting, and how do the results of these settings compare?

• RQ2: Can the performance of the classifiers be improved by combining features extracted with
static analysis and features extracted with dynamic analysis?

• RQ3: What set of Android malware characteristics/features can produce the best results for a
machine learning classifier?

• RQ4: How much time is required to extract the optimal set of features and classify a new malware
sample?

1.6 Contributions

The main contribution of this master thesis will be to answer the previously stated research ques-
tions. Providing new knowledge to the Android malware research community, and thereby aiding
further research into the topic. To the best of the authors knowledge the impact of the history
constraint have not been studied for a multinomial classifier that classifies malware samples into
malware families. It is important to determine the capabilities of such a system if it were to be
deployed in a real-world setting [5]

1.7 Thesis outline

• Chapter 2 will provide necessary background information to give the reader a better under-
standing of the problem area and topics covered by the project. The following topics will be
described: Android OS fundamentals, Android malware and naming of malware, finally an
introduction to static and dynamic Android malware analysis will be given.

• Chapter 3 discusses literature related to the research questions, and gives a description of the
state-of-the-art for machine learning based Android malware family classification.

1History constraint: In a real-word setting a classifier cannot be trained on knowledge from the future.
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• Chapter 4 provides and overview over the methodology used to investigate the research ques-
tions. It includes detailed descriptions of malware sample collection, dataset construction,
feature extraction, feature extraction time, the machine learning methods that was used, and
finally how we evaluated the classifiers.

• Chapter 5 describes the experimental setup, machine specification, tools and work flow used
to conduct the experiment. Finally the thresholds and parameters used for the machine learn-
ing algorithms will be discussed.

• Chapter 6 discusses the validity of the study, present the results and discuss the important
findings. First threats to validity of the study is discussed, followed by results and discussions
for each research question.

• Chapter 7 provides a summary of the thesis and findings related to the research questions.
Followed by a discussion of theoretical implications and Reproducibility of the study. Finally
we discuss future work.
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2 Background

2.1 Android OS fundamentals

Android applications are written in the Kotlin, Java and/or C++ programming languages. The An-
droid Application Programming Interface (API) is utilized to access the functionality of the Android
Operating System (OS). The source-code, resources and data of the application is compiled into an
Android Package (APK) file using the Android-SDK. APK files are archive files used to distribute and
install Android applications [7].

The Android operating system (OS) is a multi-user linux system, where each application is a
user. The Android OS sets permissions on all files of an application, such that the files can only be
accessed by that particular application. Each process has it’s own Virtual machine, and application
code is isolated from other applications when executed. The principle of least privilege is imple-
mented in the Android OS. An application can only access system resources that are absolutely
essential to run. The application must request specific permissions from the user of the Android
device to gain access to additional system resources [7].

Android applications are built on four following components: Activities, Services, Broadcast Re-
ceivers and Content providers. An activity is the window of an application providing a user inter-
face, and it’s the component that the user interacts with. Services are for any kind of work an appli-
cation can accomplish in the background (e.g. downloading updates). There are two sub-categories
of services: Started services and bound services. Started services are used when an application has
some unfinished work and needs to keep running until it is completed. Bound services provides
an API for other processes, and is run when the system or another application needs it. Broadcast
Receivers are the component that enables an application to receive to system wide broadcasts.
Broadcasts are received by the Broadcast receiver even if the application is not currently running,
which enables the application to start up and perform some action. Broadcasts can be initiated
by applications and the system, and is mostly used as a gateway to communicate with other com-
ponents. Content Providers manages a shared set of application data that is stored in a location
accessible by the application. The application data can for example be stored in the file system, a
database or in the cloud. The content provider enables an application to publish data items named
using an URI scheme. The application maps data items to the URI namespace, and other entities can
access the data items using these URIs. As an example the Android OS manages a content provider
to share access to the device contact information. Application can access the contact information
through the content provider given that it has the proper permission to do so. Content providers
can also be used to read/write data that is private to the application [7].

Activities, services and broadcast receivers are activated by sending an Intent (an asynchronous
message). Because applications run in isolated environments, they must send an Intent to inform
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the system to start a particular component. An application can send an intent to start it’s own
component, or the component of another app. Content providers are activated by something called
content resolvers [7].

As mentioned previously Android applications are installed using APK files. The APK files con-
tains the compiled source code, resources and data. The typical structure of an APK file looks
something like this:

Application.APK/
assets/
lib/

armeabi/
libfoo.so

x86/
libfoo.so

META-INF/
res/
AndroidManifest.xml
classes.dex
resources.arsc

The assets folder contains files that the application can retrieve using the AssetManager API
[8]. The lib directory contains native code files, that is c/c++ code compiled for specific ABIs1

(armeabi and x86 in the example above). The Java Native Interface (JNI) is used to call functions
in the native code files [10]. The META-INF directory contains application certificates and SHA1-
digests for all files in the APK. The res folder holds application resources (e.g. images) that are not
compiled into resources.arsc [8]. AndroidManifest.xml declares all components of the application,
any permission that the application requires, SDK versions2, Android API libraries the app needs to
be linked against and finally hardware and software features required by the app[7]. Classes.dex
contains the Dalvik bytecode, and is used to execute the application using Android runtime (ART)
[11]. A list of the bytecodes can be found here3.

1ABIs: Android devices use different CPUs, which support different instruction sets. All combinations of CPUs and in-
struction sets has an Application Binary Interface (ABI) that defines how the machine code is supposed to interact with the
system at runtime. An application must select which ABI it wishes to support [9].

2SDK versions: Different Android devices runs different Android platform versions (SDK version or API levels). An
application must specify the targeted SDK version, as well as the minimum SDK version where it can be run.

3https://source.android.com/devices/tech/dalvik/dalvik-bytecode
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2.2 Android malware

2.2.1 Construction

Three different methods are commonly used to create Android malware [12]:

• Standalone: The malware is written from scratch.
• Repacking or piggybacking: A goodware application is decompiled, and a malicious pay-

load is inserted before the application is recompiled. Malware authors are known to use two
different forms of repackaging, Isolated repackaging and integrated repacking. In isolated
repacking the malicious code is included in to the application, but is no way connected with
the applications original functionality. The malicious code will have its own event handler as
activation component. In Integrated repackaging the malware author modifies the original
code to insert the malicious payload, making it more stealthy and less likely to be detected.

• Library: The malicious code is contained within a library of an otherwise benign application.
The library is included by the original author of the application, who may be unaware of the
malicious code. This method is common for advertising malware (adware).

In a study of 24,650 malicious applications collected from 2010-2016, Wei et al [12] found
that 35% were created from scratch, 7% were repacked and, 58% of the applications contained a
malicious library.

2.2.2 Distribution

Android applications are commonly distributed in marketplaces such as Google Play4 and Ap-
pchina5. These marketplaces are also used by malware authors to distribute malware disguised as
legitimate applications. The malicious payload may be hidden within the malware, or downloaded
by the malware at a later time.

Malware are also distributed through different websites, using a method called drive-by-download.
A Drive-by-download can be defined as "(1) Downloads which a person authorized but with-
out understanding the consequences; and (2) Any download that happens without a person’s
knowledge."[13]. For instance the user may be prompted to download Flash player while visiting a
website [12].

2.2.3 Activation

The malicious payload may not be triggered when the application is started. The most common
activation methods are described in the following list:

• By-host-app: The malicious payload is activated alongside the code of the host application.
This activation method is used for malware that is constructed by integrated repackaging
[12].

• Time-based: The malicious payload is activated after a certain time after the application is
started [12]

4https://play.google.com/store
5http://www.appchina.com/
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• Event-based: Payload is activated based on an Android related events, such as when the
user comes into presence, device connectivity changes or when an application is installed or
deleted [12].

2.2.4 Command and Control (C2) server

Malware communicates with C2 servers in order to increase functionality and to better adapt to the
environment. By communicating with a C2 server, the malware can receive instructions, updates
and send information to the threat actor. Android malware are known to use both SMS and HTTP
for communication with the C2 [12].

2.2.5 Information Stealing

Wei et al [12] observed that more than 87% of the malware samples in their study collected various
information about the infected device. Information such as IMEI6, IMSI7, installed applications, OS
version and language. The IMEI and IMSI are unique to the device, and can be used as an identifier
with the C2. While the other information may be used by the C2 to decide further actions on the
device.

2.2.6 Persistence

Persistence techniques are utilized by malware in order to remain on the infected device after
installation. More time on the device equals more revenue. Persistence can be achieved by [12]:

• Being stealthy: The malware can hide it’s presence on the device by cleaning up logs, running
in the background, and by hiding SMS and call notifications.

• Preventing removal: Hiding itself from the device admin list, killing Anti virus software and
locking the device.

2.2.7 Privilege escalation

By obtaining admin privileges, the malware can achieve persistence, and access privileged function-
ality (e.g. changing lockscreen PIN, locking the device and deleting data). Malware must trick the
user into granting admin privileges. Rooting exploits has become less popular due to the increased
security of the Android OS [12].

2.2.8 Types

The most common Android malware types are listed below [2]. Keep in mind that these types are
not mutually exclusive, and that malware may be categorized into one or more of these types.

• Trojan: Malware that seems to be legitimate, but contains a malicious payload. Usually
require user interaction for installation.

• Premium Service Subscription The malware subscribes to premium SMS services in order
to generate revenue, while hiding this activity from the user [12].

• Banking Trojan: Will detect if there are a banking application installed on the device. Some

6IMEI: international mobile station equipment identity.
7IMSI: international mobile subscriber identity

7



Hybrid analysis for Android malware family classification in a time-aware setting

banking trojans will replace the original banking application with itself. Other banking trojans
are known to create screen overlays while the real bank application is being used, tricking the
user into thinking that he/she is still using the banking application [12].

• Dropper: Droppers are used as a means to hide a malicious payload, while evading detection.
The payload can be packed8 or hidden in the APK-file.

• Downloader: Similar to the dropper type, but the payload is downloaded from a server.
• Ransomware: Locks the users device by making it unresponsive or encrypts files. Demands

a ransom to unlock the device or to decrypt files [12].
• Adware: steals personal data, displays unwanted advertisement in an aggressive manner,

and tempts the used to download potentially harmful applications [12].
• Spyware: Spyware monitors the activity of the user to collect information such as location,

usernames and passwords [14].
• RiskTool: Programs that includes functionalists such as hiding files in the system, hiding

the window of running applications, or terminating active processes. These programs are not
necessarily malicious by themselves. One example is cryptocurrency miners9.

• Backdoor: Programs that allows undetected and unauthorized access to the device.
• Worm: Programs that makes copies of itself and spreads to other devices.

2.3 Malware naming

The common practise in the industry is the categorize malware into malware families. A malware
family name can indicate author attribution, malware campaign, or other characteristics, such as
similarities in the source-code or assets [1, 12, 15]. Malware families can be further categorized
into variants. An example is the Zen family which is a grouping of malware based on author at-
tribution. The Zen authors utilized different monetization strategies in order to generate revenue.
The simplest variant of the malware family inserts an advertising library into a trojan, while another
variant escalated the tactics to click fraud10 [15].

Antivirus engines commonly assigns a label to each malware sample. Labels given to a malware
sample by 8 different Antivirus engines are shown in table 1. From the labels we can extract in-
formation about the platform that the malware is targeting, as well as malware type, family and
variant. As shown in the table, there are several inconsistencies in the malware labels: Antivitus
enginies tends to disagrees on which family the sample belongs to, no common naming scheme is
used (e.g. PLATFORM.TYPE.FAMILY.VARIANT) and different names are assigned to the same family
(aliases). There exists effort towards creating common naming scheme for malware labels, CARO11

and CME12, but unfortunately these are not widely used [17].
In research on malware, samples are often collected from various sources, and the malware

samples may not already have assigned labels. A common approach in the literature for labeling
8Packed: encrypted or compressed so that the payload cannot be identified.
9https://encyclopedia.kaspersky.com/knowledge/risktool/

10Click fraud: automated means are used to click on pay-per-click online advertisement [16]
11http://www.caro.org/articles/naming.html
12https://cme.mitre.org/about/docs.html
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AntiVirus Label Type Platform Family Variant
Sophos AV Android Dowgin (PUA) pua android dowgin n/a
Tencent a.gray.floatgame.t n/a n/a n/a n/a
F-Secure Android.Adware.GingerMaster adware android gingermaster n/a
BitDefender Android.Adware.GingerMaster.MP adware android gingermaster MP

ESET-NOD32
Android/AdDisplay.Kuguo.AA
potentially unwanted adware android kuguo AA

GData Android.Adware.GingerMaster.MP adware android gingermaster MP
Avira ADWARE/ANDR.Kuguo.AF.Gen adware android kuguo AF
Fortinet Android/Generic.Z.2ECE44!tr genric android n/a n/a

Table 1: Malware family label example

malware samples is to use VirusTotal13 reports [12, 18, 6]. These reports contains decisions and
labels given by 55 or more anti-virus engines for each of the samples. A report can be retrieved
through the VirusTotal API14 by uploaded a sample, or query the API with the hash of a sample
(given that the sample has previously been analyzed in VirusTotal). Reliably selecting a malware
family name from a report is a challenge. Wei et al [12] used a dominant keyword algorithm to
select a malware family name for each sample based on VirusTotal reports. Efforts have been made
to develop tools that can automate the labeling process based VirusTotal reports in a reproducible
manner. Euphony [19] uses clustering to infer malware family names based on VirusTotal reports.
AVClass [17] implements plurality voting to select a malware family name. The Antivirus labels are
normalized, generic tokens are removed (e.g. android, adware etc.), and aliases are detected. To
do so, AVClass relies on a list of previously known generic tokens and aliases derived from a large
reference set. The tool also includes functionality to generate these lists based on a large set of
malware samples.

During their study, Sebastian et al [17] observed that the labels given by Antivirus engines are
not fine-grained enough to separate the families into variants. Wei et al [12] used clustering within
each family to detect variants after the labels had been assigned.

13https://www.virustotal.com/#/file/ffed6ab3b997d28fa008fbf6f1b264c47b3c7c2a63a435194ca5f19bf04475e4/
detection

14https://developers.virustotal.com/reference
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2.4 Android Malware analysis

There generally exists three types of malware analysis techniques, static analysis, dynamic analysis
and hybrid analysis. Static analysis consists of all techniques that can be used to analyze a malware
sample without having to execute it. Dynamic analysis are techniques that can be used to analyze
the behavior of a malware sample during execution. Hybrid analysis is a combination of the two
previous techniques.

An extensive list of Android analysis tools and resources can be found in this15 Github repository.
In the three following subsection we will give a brief introduction to the techniques and tools that
can be used in static, dynamic and hybrid Android malware analysis:

Static analysis

As mentioned in the Android OS fundamentals section, the main artifacts for static analysis are
classes.dex, AndroidManifext.xml and native code files.

The classes.dex file can be disassembled into smali files using smali/backsmali [20], which is a
disassembler/assembler for the DEX format used by dalvik, the (discontinued) Android java VM im-
plementation. The smali files are human readable text files containing dalvik opcodes [21]. These
files can be parsed to extract information such as API calls, opcodes and strings. Alternatively a DEX
files can be converted to a JAR file using the dex-2-jar [22] tool. JAR files are achieves that contains
the java source-code. However, parsing java-source code to extract information using automated
tools is more complicated, and smali files are more commonly used for this purpose. APKTool16 is a
reverse engineering tool that is capable of disassembling the classes.dex, resources.arsc, and inflat-
ing AndroidManifest.xml into a human readable format. Dex-2-jar [22] also include a standalone
tool, d2j-samli, that can be used to disassemble DEX files. AndroGuard [23] is a python library for
reversing engineering an APK-file.

FlowDroid [24] does taint analysis of an APK-file. The tool performs data-flow analysis that
identifies multiple source and sinks in the source code.

Native code files are ELF-files compiled for different architectures. These files can be disassem-
bled into assembly code using any disassembler that supports the respective architecture (e.g. x86
or arm).

Dynamic analysis

Dynamic analysis can be used to extract information about the malware’s behaviour during execu-
tion. Interesting artifacts in dynamic analysis are network activity, sms/phone activity, cpu usage,
memory and file system operations. It is imported that dynamic analysis is conducted in a safe en-
vironment to ensure that the malware is properly isolated. Malware are known to use propagation
tactics in order to infect additional devices.

DroidBox [25] a dynamic analysis tool that monitors an application using an Android Emulator.
DroidBox retrieves information about file operations, network traffic, sms/phone activity, crypto

15https://github.com/ashishb/android-security-awesome
16https://ibotpeaches.github.io/Apktool/
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usage, started services and dynamically loaded files.

Hybrid analysis

AndroPyTool [26] is a hybrid analysis tool that incorporates different tools in a modular fashion. An-
droPyTool consists of the following analysis modules: Dynamic analysis modul based on DroidBox
and Strace17, Taint analysis module using FlowDroid, Static analysis module that extracts informa-
tion about API calls, permissions, Android components and intents, strings, system commands and
opcodes.

CuckooDroid [27], an automated Android malware analysis tool based on the Cuckoo sand-
box18. CuckooDroid does both static analysis and dynamic analysis. AndroGuard[23] is used for
the static analysis. Dynamic analysis is based on dynamic API inspection by hooking API calls.

MobSF [28] is a mobile pentesting framework that performs both static and dynamic analysis.
Both MobSF and CuckooDroid are capable of evading certain VM detection techniques. DroidBox[25]
and CuckooDroid [27] both supports API level 16, while MobSF [28] offers different analysis VMs
up to API level 19 (released in 2013).

2.4.1 Anti-analysis techniques

The most common anti-analysis techniques specifically targets static analysis, and dynamic analysis
might therefore have an advantage over static analysis. However, there are also anti-analysis tech-
niques that targets dynamic analysis. Using a combination of the two can make malware analysis
very difficult. This section will discuss the most common anti-analysis techniques found in Android
malware.

Renaming

Renaming is one of the most used obfuscation techniques. Packages, classes, methods, fields and
parameters are renamed into meaningless words. Making manual analysis19 significantly more dif-
ficult. However, API calls cannot be renamed, and this method does not affect automated static
analysis [12].

Reflection

According to Garcia et al [18] malware authors are increasingly utilizing java reflection as an anti-
analysis technique to hide the malicious behavior of malware. Reflection provides an application
with the capability to inspect and modify itself during run-time. Benign applications use reflection to
apply updates and bug-fixes without having to re-install the application. Malware can use reflection
to obfuscate sensitive API calls and libraries [29].

String encoding/encryption

Strings such as C2 domain, intent actions, JSON/XML key values, components names and java re-
flection strings can help anti-virus identify malware. Malware encrypt/encodes strings using meth-
ods such as base64, DES/AES to make analysis more difficult [12].

17Strace: Linux tool that tracks low level system calls
18https://cuckoosandbox.org/
19Manual analysis: manually inspecting the malware
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Native code

Native code libraries are used by games, and other applications for optimization purposes. These
files are often overlooked during static analysis, and malware are known to hide malicious payloads
and sensitive strings in native code files [18, 12].

Dynamic loading

Dynamically loading DEX files is becoming increasingly popular. Additional DEX files may be stored
among the assets, or downloaded from a C2 server. These DEX files can also be encrypted[12].

Code hiding

Malware are known to hide malicious code within the APK file. For instance Root exploits hidden in
innocent looking files like install.png. Some malware are known to go further and use steganogra-
phy to hide malicious scripts within real image files. [29] Additional APK-files hidden in the original
APK can be installed at run-time using the package manager. Requires confirmation from user [6].

Evading dynamic analysis

Evading dynamic analysis is achieved by verifying that the malware is not being run in an anal-
ysis environment. The malware will compare certain device information (e.g. IMEI, MODEL, FIN-
GERPRINT, MANUFACTURER, BRAND and DEVICE) with known values of emulators and analysis
environments. If the malware detects that it is being analyzed it will not conduct any malicious
behavior, and stop running [12].
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3 Related Work

This chapter will discuss literature related to the research questions which guides the efforts of this
study. In order to build a classifier, a set of Android malware characteristics (features) that can be
used to distinguish malware families from each other is required. As discussed in the background
chapter 2.4, different analysis techniques can be used to extract features that describe the malware.
We will therefore start off by discussing which features has performed well in other studies, and
which machine learning algorithms were used to build the classifiers. Followed by a discussion
of what has been previously done to evaluate Android malware family classifiers in a time-aware
setting. Finally we will discuss the time used for extraction of features and classification in these
studies.

3.1 Features, analysis and machine learning classifiers

As described in the 2.4, static and dynamic analysis are two different techniques that can be used to
extract features from Android malware samples. Static analysis are the techniques that can be used
to examine a sample without running it. In dynamic analysis the sample is executed and monitored
in a controlled environment. Hybrid analysis is an alternative that combines these two methods. In
this section we will discuss state-of-the-art classifiers built on features that was extracted with each
of these analysis methods. A comparison of the proposed classifiers is shown in table 2.

Classifier Static dynamic Machine learning algorithm
k-fold
cross val.

RevealDroid[18] yes no CART, SVM 10
FalDroid[30] yes no SVM, DT, k-NN, RF 10
Kang et al[31] yes no NB, SVM, PART, RF 10

DroidSieve[29] yes no ExtraTrees
hold-out
validation

Massrelli et al[32] no yes SVM 20
DroidScribe[33] no yes SVM 20

EC2[34] yes yes

Unsupervised: DBSCAN, k-means,
Affinity clustering,
Hierarchical clustering and
MeanShift.

Supervised: RF, DT, k-NN, SVM, NB, LR

2, 5

UpDroid[6] yes yes k-NN, RF, DT 20

Table 2: Classifier comparison
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3.1.1 Static analysis

Garcia et al [18] presents RevealDroid, a machine learning based approach that achieves promising
results for both Android malware detection and family identification. Classification and Regression
Trees (CART), a batch-learning based machine learning algorithm was used for family identification.
RevealDroid leverages the four following types of static features for the classifier: package-level
Android-API usage, method-level Android-API usage, APIs invoked using reflection and function
calls of native binaries within the Android applications.

Fan et al [30] developed FalDroid a multinomial familial classifier that uses fregraphs, a novel
graph based feature. The fregraphs are extracted from function call graphs, and sensitive API calls
are weighted according to the within family frequency.

Kang et al [31] evaluated the performance of n-gram opcodes for binary and multinomial classi-
fication of Android malware. They found that n-gram opcodes can achieve satisfactory performance
by itself. n-grams up to a size of 10 was tested, and they found that the performance started to sta-
bilize at a size of 4. Two types of n-gram opcode features was tested, frequency n-grams and binary
n-grams. Binary n-grams is a boolean feature that is set to 0 or 1 based on the presence of the n-
gram in an application. While frequency n-gram counts the number of occurrences of the n-gram in
the application. Binary n-grams were observed to be more accurate. The advantage of this feature
is that no expert knowledge is required to specify the feature set beforehand [31].

Suarez-Tangil et al [29] presented DroidSieve an Extra trees classifier that relies on a wide
range of static features. DroidSieve uses features related to API calls, Android components, intents,
permissions, anti-analysis techniques, certificates, native code and more. Including a set of novel
features. For instance, a feature that checks the difference in time between the date when the
certificate was issued and the date when the app was signed. If the difference is less than a day,
it is likely the app was signed when the malware repackaged with automated tools. A complete
overview of the features can be found in figure 1 in their paper [29].

3.1.2 Dynamic analysis

Massarelli et al [32] extracted dynamic features related to resource consumption over time, and
built a multinomial classifier using SVM. Samples were run in an emulated environment, and a time-
series of 26 different metrics were collected from the proc file. System-wide and application specific
metrics such as CPU, memory and network usage was monitored. The time-series of metrics were
processed into a feature vector that was used for classification. The advantage of their apporach is
that it does not require any modification to the android emulated environemnt, and can be used on
real devices.

Dash et al [33] developed DroidScribe, the first approach to multinomial classification of An-
droid malware that relies exclusively on dynamic features. They used CopperDroid [35], a dynamic
analysis tool that extract high-level behavior features from samples. These features are related to
network access, file access, binder methods1, and file execution.

1Binder methods are used for inter-process/inter-component communication, and are the interface to Android system
services and app-to-app interaction [33].
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Dash et al [33] highlights two challenges in dynamic Android analysis: Firstly only limited in-
formation towards classification can be learned from tracking low-level events (system calls). The
second challenge is that dynamic analysis has imperfect coverage. A single path is shown for each
execution, and one path only covers a limited portion of the source code. Android applications are
highly interactive, and simulation can be used to improve code coverage [8]. Additionally com-
mand and control servers that the malware attempt to communicate with might be inactive during
the analysis [33].

3.1.3 Hybrid analysis

Chakraborty el al [34] presented EC2, Ensemble Clustering and Classification, a novel algorithm
for discovering malware families. EC2 is an early warning system that achieves good classification
performance for both seen (known) and unseen (unknown) malware families. EC2 is also capable of
classifying malware families with very few samples (samples < 10). They found that the following
feature set was most important for malware family classification: re-using signatures for signing
malware, requested permissions related to network and SMS, use of encryption. EC2 relies on
DroidBox[25] for dynamic feature extraction. Chakraborty el al [34] found that some malware
families can be better described with static features, and others with dynamic analysis. For instance,
dynamic features performs better for malware families that decrypts strings at runtime.

Aktas and Sen [6] extracted features using both dynamic and static analysis. Features related
to permissions, Android components, APK size, and a broad range of dynamic features (extracted
and constructed based on the analysis output of DroidBox[25]) was used. Android malware fam-
ily classifiers were built and evaluated using three different machine learning algorithms, k-NN,
Random Forest and J48. In their experiments k-NN procured the best results. Aktas and Sen [6]
compared their results with other state-of-the-art to Android malware family classification on the
Android Malware Genome Project2 dataset. The best accuracies was achieved by DroidSieve[29]
(97.79%), UpDroid[6] (97.32%), FalDroid[30] (97.2%), RevealDroid[18] (95%), in that order.

3.2 Time-aware setting

Allix et al [5] highlights the importance of considering the timeline for malware detection systems.
No paper that investigates the performance implications of Android family classification in a time-
aware setting was identified in the literature study. As shown in figure 2, k-fold cross validation is
the most common method used to evaluate classifiers. k-fold validation randomly splits the dataset
into k groups. k-1 group are used for training and 1 group is used for testing. A classifier is trained
k times so that each group is used for testing. The final evaluation is the average of the k tests.

The performance of RevealDroid [18] for malware detection (goodware vs malware) was tested
in a time-aware and time-unaware setting. High accuracy was achieved for both settings, but there
was a significant decrease for the time-aware setting. The malware family classification in Reveal-
Droid was evaluated in a time-unaware setting, and the performance impact of taking the timeline
into consideration is unclear.

2http://www.malgenomeproject.org/
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3.3 Feature extraction and classification time

Symantec detected 24,000 mobile malware samples every day in 2017 [36]. Meaning that a mal-
ware classification system should potentially be capable of extracting features and classifying a
large number of samples each day.

Garcia et al [18] developed their own tool for feature extraction. Requiring 90 seconds on av-
erage to extract features from an application. FalDroid the tool developed by Fan et al [30], uses
on average 4,6 seconds to classify a new malware sample into a family. DroidSieve [29] has an
impressive median feature extraction time of only 2,53 seconds.

In dynamic analysis malware samples are usually run for a fixed duration in a sandbox in order
to monitor behavior. Aktas and Sen [6] used 15 minutes to analyze the behavior of a sample in
DroidBox. While Chakraborty used [34] 120 seconds to monitor the behavior of a sample.
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4 Methodology

This chapter will discuss the methods that was used to investigate the research questions:

• RQ1: What level of accuracy can be achieved for Android malware family classification in a
time-aware and time-unaware setting, and how do the results of these settings compare?

• RQ2: Can the performance of the classifiers be improved by combining features extracted with
static analysis and features extracted with dynamic analysis?

• RQ3: What set of Android malware characteristics/features can produce the best results for a
machine learning classifier?

• RQ4: How much time is required to extract the optimal set of features and classify a new malware
sample?

We used Quantitative research methods1 to answer these request questions. A wide range of
machine learning classifiers are evaluated in different settings and the results are compared. We
evaluate the classifiers in time-unaware and two time-unaware settings to answer research ques-
tion 1. The classifiers in each of these settings are evaluated with different feature sets (dynamic,
static and hybrid), and the results are compared to investigate research question 2. We consider
Research question 3 based on the results of all the different classifiers. While Research question 4
is based on the time required to perform hybrid analysis, extract features and classify a samples. An
overview of the methodology is shown in figure 1. The green field represents all the steps required
to prepare features for classification, the blue field describes how the features was split to create
different evaluation sets, and the red field represents the classification step.

The remainder of this chapter is structured as follows: Section 1 describes the collection of mal-
ware samples, section 2 discusses dataset construction by selecting a representative sample, section
3 discusses extraction of features and dataset analysis, sections 4 discusses how we measured the
time required to extract features, section 5 described the different machine learning methods used
for feature selection and classification, lastly, section 6 discusses how we evaluated classifiers in
time-unaware and time-aware settings.

1Quantitative research methods revolves around quantification of observations within a representative sample, using
statistical methods and mainly deductive reasoning to draw logical conclusions about the population of interest[37].
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Figure 1: Methodology overview

4.1 Malware sample collection

To be able to investigate the research questions stated in 1.5, a dataset of malicious Android appli-
cations that meet certain criteria is required: (1) First of all the dataset should include wide verity
of malware families, and must at least cover the most common malware families; (2) Secondly, the
samples must be dated over at least two years, and should be as recent as possible. The malware
population is continuously evolving and the android malware threat landscape has changed over
time. The results are likely to be more relevant for dealing with the threat landscape we are facing
today if the dataset is recent.

Different datasets targeting a variety of problem areas have been proposed and shared with the
research community. These datasets can be categorized into two main types. Raw datasets contain-
ing Android APK files, and datasets that provides analysis logs or already extracted features. The
latter type is good for benchmarking different machine learning approaches, but the feature space
is limited to only the features provided in the dataset. One such dataset is the OmniDroid dataset
[38] created with a wide verity features extracted using the AndroPyTool[26]. Unlike this study,
the OmniDroid targets the malware detection problem of distinguishing malware from goodware
applications.

Because we did not want to restrict the feature extraction process to a predefined set of features,
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a dataset of raw Android APK files were preferable. Out of these, the most notable dataset in the
literature are the Android Malware Genome Project2 and Drebin [39]. The Android Malware
Genome Project contains 1260 samples from 49 different families. The project was discontinued
in the end of 2015, and the dataset is no longer shared. Drebin contains 5560 samples from 179
malware families, that was collected from 2010 to 20123. The Android Malware Genome Project
and Drebin are often used as a benchmark-datasets to compare state of the art approaches to
Android malware classification.

A more recent dataset is the Android Malware Dataset (AMD), that contains 24,650 samples
from 71 families dated between 2010-2016 [12]. Another recent dataset is the UpDroid dataset
containing 2479 samples from 21 families, dated from 2015 and later [6]. The UpDroid dataset
targets the update attack4 problem area, and includes malware families known to conduct such
attacks.

There also exists various online repositories of Android applications. Goodware applications can
be downloaded from Android marketplaces such as Google Play5 and Appchina 6. Android mal-
ware can be downloaded with limited downloads or special permissions from VirusTotal7, Hybrid-
analysis 8 or Koodous 9. VirusShare 10 is a repository of all kinds of malware shared in zip archives
to aid the research community. However the VirusShare repository provides little to no information
about the contents of the zip archives.

In [4] Allix et al presents AndroZoo, a large repository of Android malware and benign applica-
tions. At the time of writing the repository contains more than 8,5 million Android applications col-
lected from marketplaces and other sources. A large portion of the applications have been scanned
using VirusTotal. Out of these, more than 1,8 million applications was flagged as malicious by one
or more anti-virus engines.

The AndroZoo repository was selected for this project because it provides the freedom to con-
struct a dataset that is tailored for the problem area. AndroZoo shares a csv file containing DEX
date11, VirusTotal detects and other metadata for each application in the dataset. A json file con-
taining malware family labels derived using the Euphony tool[19] is also provided (see Euphony
2). Having prior knowledge of the dataset time distribution and the malware family labels made it
possible to verify that the dataset satisfies the first and second criterion.

2http://www.malgenomeproject.org/
3https://www.sec.cs.tu-bs.de/~danarp/drebin/
4Update attacks Evasion techniques that updates the application at run-time by loading a malicious payload. The payload

may be stored in the application as data (not code) or downloaded from a C2 server [6]. Malware in this category typically
belongs to the dropper and downloaded type discussed in the background chapter 2.1.

5https://play.google.com/store
6http://www.appchina.com/
7https://www.virustotal.com/
8https://www.hybrid-analysis.com/
9https://koodous.com/

10https://virusshare.com/
11DEX date: Android applications are installed and distributed using APK-files. APK-files are zip-archives that contains the

binary executable classes.dex file, and various other resources. Zip-archives holds a last-modified date for each file contained
in the archive. Based on literature review the last-modified date of the classes.dex file is commonly used to assign a date to
a samples [4, 18].
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4.2 Dataset construction

To complete the project in a timely manner a representative subset had to be selected from the
AndroZoo repository [4]. In order to answer research question 1 1.5, families in the dataset should
have samples dated over a longer time period. Families that had fewer than 50 samples were there-
fore removed from the dataset. To keep the dataset as recent as possible, only samples dated after
the first three quarters of 2014 was included. Based on the distribution of the samples in AndroZoo,
there were a sufficient amount of samples from the third quarter of 2014 until the third quarter of
2016. Giving us a dataset with samples dated over at least two years.

Because we are investigating the multinomial classification problem of Android malware fami-
lies, only the malicious samples were of interest. A common method of determining if a sample is
malicious is to set a threshold of the number of anti-virus engines flagging a sample as malicious
in the VirusTotal report. wei et al [12] required that at least 50% of the anti-virus engines flagged
a sample as malicious when they constructed the AMD dataset. Aktas et al [6] set the threshold to
20 when the UpDroid dataset was constructed. To put the problem into perspective, the impact of
such a threshold for the AndroZoo dataset is shown in table 3. There is a significant reduction of
the number of samples and families in the dataset as the threshold increases. The threshold can be
considered as a trade-off between having more certainty in whether the samples are malicious or
not and the bias of removing the samples that are possibly more difficult to detect. In order to keep
the experiment more realistic while having some level of certainty a threshold of 5 was selected.

VirusTotal detections Samples Families
1 435,163 287
5 194,285 113
10 99,079 79
15 44,077 51
20 14,236 29
25 2,889 11

Table 3: The impact of VT detection rate threshold on the dataset size

The following table 4 displays the number of samples in the 10 most populated families after
time interval and VT detection rate threshold was set.

As mentioned earlier, Euphony was used to give malware family labels to the AndroZoo dataset.
Euphony is capable of labeling samples that is only detected by a single anti-virus engine, but does
not exclude generic family labels [19]. Generic labels was filtered from the dataset manually. We
searched for each family name on Google (e.g. "FAMILY android malware"). If no information could
be found, the family would be removed from the dataset. For instance "artemis", rank 4 in table 4
is used by MacAfee for any sample that is put in quarantine or blocked 12. The label "genpua", rank
10 is likely the short name for "generic PUA". To identify aliases the list13 constructed by AVClass

12https://service.mcafee.com/webcenter/portal/cp/home/articleview?articleId=TS100414
13https://github.com/malicialab/avclass/blob/master/data/default.aliases
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[17] was used.

Rank Family Samples
1 dowgin 39,702
2 kuguo 34,074
3 revmob 17,592
4 artemis 16,685
5 airpush 15,257
6 smspay 6,666
7 feiwo 6,393
8 jiagu 6,388
9 eldorado 4,650
10 genpua 3,741

Table 4: Top 10 families

In table 4 we can see that there is a clear class imbalance. The largest family has 10 times more
samples than the 10th largest family, and the smallest families only has around 50 samples. In order
to balance the dataset a fixed subset of the larger families were selected. It was also necessary to
reduce the total number of samples in the dataset to finish the project in a timely manner. The
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following algorithm describes how subsets was selected from the families:

Algorithm 1: Select samples from families
Result: Selects representative samples from each family with respect to the date distribution

of samples within the family. Prioritize samples with a higher VirusTotal detect rate.
Input: families: list of lists containing malware family metadata.
Output: dataset: list of selected samples.

dataset←empty list
foreach family ∈ families do

len←Length of family
if len ≥ 20,000 then

select←2000
else if len ≥ 10,000 then

select←1000
else if len ≥ 3,000 then

select←500
else if len ≥ 1,000 then

select←300
else if len ≥ 150 then

select←150
else

select← len
end
family ←sort family on date
chunks←split family into 50 chunks
select← select/50
foreach chunk ∈ chunks do

chunk ← sort chunk on VirusTotal detects, descending
for i = 0; i < select; i++ do

dataset← append chunk[i] to dataset
end

end
end
return dataset
To increase the quality of the malware family labels, the dataset was re-labeled with new VT

reports. AndroZoo is labeled using VT reports dating up to several years back, and some of the
reports might contain outdated information. The vt_report.py A.2 script was used to fetch updated
reports from the VirusTotal API. One must register a free user on VirusTotal to obtain an API key,
and the key is limited to only 4 requests per minute. Which is also the reason for why dataset
was relabeled after and not before a subset was selected. AVClass [17] was used parse the new VT
reports and to assign new labels to the samples. The manual family filtering process was repeated
for any new family names occurring.

Finally some samples had to be excluded during the feature extraction process. 13 samples
was considered as invalid by AndroGuard14. The emulator used in dynamic analysis only support

14https://github.com/androguard/androguard
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applications up to Android API level 16, and 216 samples with a minimum SDK level of higher than
16 was removed15. Lastly, 175 samples could not run in the emulator.

The final dataset consists of 14582 samples from 54 families. A histogram of the date distri-
bution of samples for each quarter is shown in figure 2. The number of samples in each family is
displayed in table 5. The dataset construction process is mostly automated, and can be recreated us-
ing construct_dataset.py found in appendix A.6. get_dataset.py A.7 was used to query the AndroZoo
API16 and download the dataset.

Figure 2: Dataset Histogram

4.3 Feature Extraction and dataset analysis

A broad range of features was extracted in order to find an optimal set of features (research question
3 1.5). Most of the features were chosen to be extracted based on their success in the literature (see
related work chapter 3). While other features was chosen in a more or less experimental fashion.
The efforts required to extract additional features are minimal, and features with no merit will be
removed in the feature selection step.

Some of the feature extraction tools used was designed to count various statistical properties
in the dataset while extracting features. All the statistical data is parsed and analyzed by the
apk_statistics.py script to output tables and figures used in the remainder of this section.

The feature extraction section is structured as follows: The first subsection will discuss statistics
related to file types and extensions in the dataset; the remainder of the subsections will describe
the different features that was extracted. Note that the native and hidden code features belong to
the static feature category. Hidden and native code features are discussed in individual subsections
because different tools were used to extract these features.

15The get_min_sdk.py A.5 python script was used to find the min sdk level for each sample.
16https://androzoo.uni.lu/api_doc
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Family Samples Family Samples Family Samples
kuguo 1,933 mecor 223 hypay 100
dowgin 1,190 kyview 211 adcolony 97
revmob 1,004 fictus 174 ramnit 95
airpush 989 admogo 172 mobidash 93
secapk 775 xinhua 156 xynyin 82
jiagu 645 domob 149 ginmaster 76
smsreg 615 inmobi 147 morepaks 75
baiduprotect 519 igexin 144 silverpush 73
feiwo 497 cimsci 144 systemmonitor 71
leadbolt 488 dianjin 129 cauly 69
gappusin 289 kirko 129 xinyinhe 67
smspay 284 skymobi 127 pircob 64
plankton 283 tachi 123 appflood 59
anydown 260 adflex 121 nineap 52
youmi 257 pandaad 117 wiyun 51
adwo 243 autoins 106 glooken 51
ewind 236 minimob 104 clevernet 50
tencentprotect 225 mobeleader 103 wateh 46

Table 5: Families in the final dataset

A tables enumerating all features of each type can be found in the respective subsections: dy-
namic features in table 8, static features in table 9, native code features in table 10, hidden code
features in table 12 and metadata features in table 14. Features are named to keep track of which
category they belong to, starting with D for dynamic, S for static or M for metadata. The second
word indicates what sub-category the feature belongs to. Some of the features have a wildcard as
part of the feature name, this indicates that there are multiple features of this specific type. For
instance the D_Strace_<"sys call"> feature (sys call being the wildcard) represents many different
features (e.g. write, read, ioctl, etc). The rightmost column "N", is also used to indicate that there
is one or many such features.

4.3.1 APK statistics

APK files are zip archives, and can potentially contain all sorts of files. When extracting features
from a dataset of APK files it can be helpful to have an overview over what sorts of file-types that
will be encountered during the analysis. If there is a large number of a certain file-type, it might
be interesting to included this file-type in the analysis and feature extraction process. Moreover, it
was highlighted by suarez-Tangil et al [29] that inconsistencies in file type and file extensions may
indicate malicious intent. Statistics about file-types and extensions in the dataset was therefore
extracted.

Table 6 shows a ranking of the number of files per file type. File types with a file count that is
less than 1500 is excluded. While traversing the dataset, zip archives are unzipped to look for files
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Filetype short Count Filetype
PNG 4,599,408 PNG image data
Android 1,873,378 Android binary XML
data 798,519 data
ASCII 361,703 ASCII text
compiled 249,611 compiled Java class data
JPEG 210,084 JPEG image data
XML 108,146 XML 1.0 document
ELF 77,954 ELF 32-bit LSB shared object
Ogg 76,259 Ogg data
HTML 66,457 HTML document
UTF-8 58,143 UTF-8 Unicode text
MPEG 44,483 MPEG ADTS
Audio 39,397 Audio file with ID3 version 2.3.0
RIFF 30,787 RIFF
Targa 28,512 Targa image data - RLE 208 x 65536 x 10 +1 +28 ""
exported 27,334 exported SGML document
Dalvik 24,113 Dalvik dex file version 035
Java 24,046 Java serialization data
PE32 23,376 PE32 executable
Standard 21,666 Standard MIDI data
ISO-8859 18,802 ISO-8859 text
C 15,688 C source
GIF 15,221 GIF image data
Zip 14,487 Zip archive data
TrueType 8,243 TrueType Font data
Lua 6,852 Lua bytecode
gzip 6,542 gzip compressed data
ISO 6,411 ISO-8859 text
AppleDouble 5,909 AppleDouble encoded Macintosh file
empty 5,103 empty
SQLite 4,263 SQLite 3.x database
Macromedia 3,878 Macromedia Flash data
SVG 3,339 SVG Scalable Vector Graphics image
PGP\011Secret 3,277 PGP\011Secret Key -
Apple 2,399 AppleDouble encoded Macintosh file
LZMA 2,042 LZMA compressed data
DOS 1,983 DOS executable
Microsoft 1,933 Microsoft OOXML
Non-ISO 1,670 Non-ISO extended-ASCII text

Table 6: File type statistics
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within the archives as well. The Python library, "Python-magic"17 was used to identify the file type
of each file. "Filetype short" is the first word in the filetype, and "Filetype" is the largest count of a
specific file type starting with the "Filetype short" word. Multiple file types may start with the same
word, especially considering that file type information can contain detailed information.

From the file type ranking we can see that the APK files in the dataset contains a wide range
of different file types. Commonly the focus of Android malware feature extraction is limited to the
AndroidManifest.XML and Dalvik executable files. Additionally features extracted from ELF files, or
"Native code" files have shown promising results in[29, 18]. From the ranking we can see several
executable binary files where malicious code potentially could be hidden (e.g. Lua, DOS or PE32).

The number of file extensions for some of the more curious extensions is shown in 7. We can
see that ".png" is the most common extension. However, if we compare the two tables we can see
there are about 24000 more ".png" extensions than there are PNG files. We can also see that there
are more ELF files that there are .so (Shared Object) extensions. This extension is commonly used
for Native code libraries.

Extension Count
png 4,623,367
zip 10,582
dex 24,384
bin 15,871
dll 24,474
so 70,619
jar 6,205
lua 23,752
js 38,952
apk 2,437

Table 7: File extension statistics

The data about file types and extensions was extracted using the extract_native_code.py A.10
tool.

4.3.2 Dynamic features

The dockerized version of AndroPyTool [26] was used to dynamically analyze the dataset and
monitor the behavior of each sample. AndroPyTool has integrated a slightly modified version of
DroidBox, which is used for the dynamic analysis part.

Droidbox [25] is a sandbox that performs dynamic analysis of Android applications. DroidBox
runs applications in an Android emulator to monitor events such as file access, network traffic,
SMS/phone activity, crypto usage, started services and dynamically loaded dex files. DroidBox is
implemented for an Android Virtual Device (AVD) targeting Android 4.1.2. Meaning that only ap-
plications with a minimum SDK level of 16 or lower can be run in DroidBox18. DroidBox uses the

17https://github.com/ahupp/python-magic
18216 samples has a minimum SDK level higher than 16, and had to be removed during this step

26



Hybrid analysis for Android malware family classification in a time-aware setting

Monkey tool19 to generate pseudo random user events at run-time such as clicks and touches. These
events can be used to stress test an application, or to trigger the malicious payload. The modifica-
tions made to DroidBox by Garcia et al [38] includes: scaling up the number of user events, allowing
samples to be run in non GUI mode (enabling parallization) and including the Strace tool inside
the AVD used by DroidBox. Strace enables tracking of system calls performed during run-time at
the Linux level [38].

Id AndroPyTool (Strace) Example Type N
1 D_Strace_<"sys call"> write Numeric *
2 D_Strace_Pid36_<"sys call">) ioctl Numeric *
Id AndroPyTool (DroidBox) Example Type N
3 D_Network_UniqueOpenedConnections Numeric 1
4 D_Network_UniqueClosedConnections Numeric 1
5 D_Network_SizePackets Numeric 1
6 D_Network_SizePackets_recv Numeric 1
7 D_Network_SizePackets_sent Numeric 1
8 D_Network_OpenedConnections Numeric 1
9 D_Network_ClosedConnections Numeric 1
10 D_Network_SentPackets Numeric 1
11 D_Network_ReceivedPackets Numeric 1
12 D_Crypto_Uasage Numeric 1
13 D_CryptoOperation_<"operation"> encryption Numeric *
14 D_Cryptoalgorithm_<"algorithm"> AES Numeric *
15 D_Dataleak_Type_<"type"> netwrite Numeric *
16 D_Dataleak_Size Numeric 1
17 D_Dataleak Numeric 1
18 D_Receivers Numeric 1
19 D_Filesystem_AccessedFiles Numeric 1
20 D_Filesystem_<"operation"> read Numeric *
21 D_Filesystem_Fileaccess_<"path">(numbers

are excluded from path because of different
PIDs)

/proc/version Numeric *

22 D_SMS_sent Numeric 1
23 D_Phonecalls Numeric 1
24 D_DexClassUsage_<"type"> dexload Numeric *
25 D_DexClassUsage Numeric 1
26 D_StartedServices Numeric 1
27 D_EnforcedPermissions Numeric 1
28 D_EnforcedPermission_<"permission"> FLASHLIGHT Boolean *

Table 8: List of dynamic features

AndroidPyTool has hard-coded the run-time for applications in DroidBox to 300 seconds. Con-

19https://developer.android.com/studio/test/monkey
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sidering the large amount of samples in the dataset, the run-time was reduces to 120 seconds to
finish the feature extraction in a timely manner20. The cost of reducing the analysis time is that the
malicious payload might not be triggered for families using a time-based triggering mechanism. An-
droPyTool outputs formatted analysis logs for each sample. preprocessing.pyA.1 was used to parse
these logs and construct dynamic features.

The complete list of dynamic features extracted is shown in table 8. The occurrence of each
unique system call was counted for all process IDs (PIDs) and used as features. Additionally, system
calls made from PID 36 is counted individually (the Strace tool is run for the PID 36, and parameter
to include forks are set). The DroidBox related features are mostly constructed based on the count
of various events and their type/operation. UpDroid [6] also uses DroidBox for dynamic feature
extraction, and several of the features was constructed based on their success in UpDroid. The list
of features used by Aktas and Sen for UpDroid can be found in table 2 in [6].

4.3.3 Static features

The AndroPyTool [26] docker image was used to extract the static features that are most commonly
used in the literature. These features include Permissions, API calls, Opcodes, Intents, Receivers,
Services, Activities, Strings and System commands.

AndroPyTool uses the APKtool21 to decompress the AndroidManifest.xml file and to disassemble
the Dalvik executable files into Smali files. Smali files are text files containing Dalvik Opcodes. A
complete list of the Opcodes and their descriptions can be found here [21]. AndroPyTool parses
smali files to count the occurrence of API calls, opcodes and Strings. The system command feature
are the count of any string that is equal to a system command (e.g. ls, chmod or su). The complete
list of system calls can be found in the AndroPyTool Github repository22. Permissions are obtained
using the Androguard23 python tool. The remaining features are extracted from the decompressed
AndroidManifest.xml file [26].

For each sample, AndroPyTool outputs a json file with the previously described features. pre-
processing.pyA.1 was used to construct some additional features based on the json files. The total
number of strings, and strings of certain lengths were counted. The string lengths were selected
in an experimental fashion. The use of strings with a certain length may indicate use of encrypted
strings. The total number of permissions defined in the Android permissions and other permissions
were counted and used as features. Each individual Permission was used as a boolean feature. Fi-
nally the number of activities, services and receivers were simply counted. A complete list of these
features are shown in 9.

20This value can be altered by the following steps: (1) Run the AndroPyTool docker image with "/bin/bash" as entry-
point (the default entry-point is the androPyTool.py script). (2) Replace the value "300" in androPyTool.py with the desired
run-time (e.g. sed -i ’s/300/120/g’ androPyTool.py)". (3) Run androPyTool.py with the desired parameters

21https://ibotpeaches.github.io/Apktool/
22https://github.com/alexMyG/AndroPyTool/blob/master/info/system_commands.txt
23https://github.com/androguard/androguard
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Id AndroPyTool (Static) Example Type N
1 S_Permission_<"permission"> android.permission.SEND_SMS Boolean *
2 S_Permission_NumAndroidPermissions Numeric 1
3 S_Permission_NumCustomPermissions Numeric 1
4 S_Opcode_<"opcode"> xor-long Numeric *

5 S_ApiCall_<"apicall">
android.telephony.-

TelephonyManager.getImei Numeric *

6 S_ApiPackage_<"api package"> android.telephony Numeric *

7
S_String_len_<"len">
(100,200,300,400,500,100,2500,5000,
10000,15000,20000)

5000 Numeric *

8 S_Strings Numeric 1
9 S_SystemCmd_<"cmd"> su Numeric *
10 S_Intent_<"intent"> com.manager.msg Numeric *
11 S_Intents Numeric 1
12 S_Activities Numeric 1
13 S_Services Numeric 1
14 S_Receivers Numeric 1

Table 9: Static features extracted with AndroPyTool

4.3.4 Native code features

Native code is used in Android application for optimization purposes, but can also be used by mal-
ware authors to hide malicious code[18] (See description in 2.1). Native code files are written in
c++ and compiled into Executable and Linkable Format (ELF) files for the Android Linux envi-
ronment. Features extracted from native code files has shown merit in both RevealDroid [18] and
DroidSieve [29], and was therefore chosen to be included in the feature-set for this project. ex-
tract_native_code.py was used to extract native code features and statistics about the native code
usage in the dataset.

Suarez-Tangil et al [29] used features extracted from the ELF header and individual sections.
These features includes: number of entries in the program header, program header size, number
and size of section headers and boolean features based on which flags were set for individual
sections (e.g. Read, Write and execute). Suarez-Tangil et al [29] also constructed features based on
inconsistencies between file type and file extension. In addition to the features used in DroidSieve,
the size of each section was extracted.

Garcia et al [18] used the number of calls made to individual functions in the Procedure Linkage
Table (PLT) as features. The PLT is used to determine the address of an external functions that is
unknown at linking time, and is therefore more difficult to obfuscate[18]. The external call features
used by RevealDroid was included in the feature set.

Other feature that was used is the number of files found in the APK for each architecture, and
the combined size of the native code files compiled for ARM (ARM is the most used architecture
11, discussion will follow). The complete list of features can be found in table 10
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Id NativeCode Example Type N
1 S_NC_<"arch"> ARM Numeric *
2 S_NC_ProgramHeaders Numeric 1
3 S_NC_ProgramHeader_Size Numeric 1
4 S_NC_Sections Numeric 1
5 S_NC_SectionHeader_Size Numeric 1
6 S_NC_Section_<"name">_size .text Numeric *

7
S_NC_Section_<"name">_Flag_<"flag">
(Flags: [R,W,A,X etc]) .text Boolean *

8 S_NC_<"arch">_pltCall_<"call"> fputs Numeric 1
9 S_NC_IncorrectExtensions Numeric 1
10 S_NC_IncorrectExtension_<"ext"> png Boolean *
11 S_NC_ARM_Size Numeric 1

Table 10: List of native code features

In order to find all native code files, the extract_native_code.py A.10 tool traverses the APK-file,
and any nested APK-files or other archives within the APK-file. The python-magic library [40] was
used to identify file types.

Native code features were only extracted from ELF files compiled for the ARM architecture. The
vast majority of the ELF files in the dataset was compiled for ARM, and most of the ELF files that
weren’t compiled for ARM was simply the same code compiled to support additional architectures
(See table 11).

The ELF files was disassembled using the objdump Linux tool compiled for ARM. The dissemble
was parsed, and external calls referencing the PLT section were counted. In order to extract header
and section features from the ELF files, the Pyelftools library was used. Pyelftools [41] is a python
tool for parsing and analyzing ELF files.

Statistics about the native code usage in the dataset were extracted alongside the features. Figure
3 displays the usage of native code over time. From the figure we can see that the use of native
code increased in the start of 2015.

Native code architecture related information were counted, as shown in table 11. Approximately
2/3 of the samples in the dataset contains native code files. The average a sample contains several
native code files. The majority of native code files are compiled for ARM, and more than 3/4 of the
samples that are compiled for another architecture has the same name as the ones compiled for
ARM. This is common for applications that support multiple architectures ( see example in 2.1).

4.3.5 Hidden code features

Features relating to API calls, system commands, strings, file size and extensions were extracted
from "hidden code files". In this project "hidden code files" is used as a term to describe any JAR,
APK or none-standard DEX files found within the APK file being analyzed. As described in the
background chapter 2.1, APK files must contain a dex file named classes.dex. In case the source
code of the application is too large to be contained within a single dex file, an additional file named

30



Hybrid analysis for Android malware family classification in a time-aware setting

Figure 3: Native Code usage

Samples 14582
Samples with NC 9668
NC files 76751
Architecture ARM 55414
Failed to analyse ARM 1675
Not Arm same name 16400
Not Arm different name 4937

Table 11: Native code architecture stats

classes2.dex may be used. Any other dex file is considered a hidden code file, including classes.dex
files found in nested APK files24. The tool used by AndroPyTool to disassemble DEX files (APKTool)
only disassembles the standard dex files. Any none-standard DEX files are therefore not included in
the static analysis of AndroPyTool. The complete list of hidden code features are displayed in table
12.

These features were inspired by DroidSieve, where Suarez-Tangil et al [29] extracted features
from what they called "incognito apps". Incognito apps are any APK or additional DEX files found
within the original APK file. Furthermore Suarez-Tangil et al [29] highlights that malicious payloads
can be disguised within the assets of an APK file.

The extract_hidden_code.py A.9 script was used for feature extraction. Similar to the native code
extraction tool described in the previous section, a function is used to recursively traverse an APK
file to look for hidden code files. The dex2jar tools [22] are used to convert JAR files to DEX files,
and to disassemble DEX files into smali. The smali files are then parsed to count API calls, system
commands, the total number of strings, and strings of certain lengths (the parsing algorithm is
inspired by AndroPyTool[26]). The same list of known system commands used by AndroPyTool are

24Nested APK files: any APK file found within the APK file being analyzed
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Id Hidden Dex/Jar files Example Type N
1 S_H_File_Apk_size Numeric 1
2 S_H_File_Jar_size Numeric 1
3 S_H_File_Dex_size Numeric 1
4 S_H_incorrectExtension Numeric 1
5 S_H_incorrectExtension_<"ext"> png Boolean *
6 S_H_NumAndroidApiCalls Numeric 1
7 S_H_NumOtherApiCalls Numeric 1
8 S_H_Strings Numeric 1
8 S_H_String_len_<"len"> 5000 Numeric *

9
S_H_String_<"string">
(Only strings containing the word "invoke-") Numeric *

10 S_H_SystemCmd_<"cmd"> su Numeric *

11 S_H_Dex_ApiCalls_<"api call">
android.telephony.-

TelephonyManager.getImei Numeric *

12 S_H_Jar_ApiCalls_<"api call"> android.telephony Numeric *

Table 12: List of hidden code features

loaded from file, and strings that match any entry in the list are counted. API calls can be identified
in the smali code by looking for the "invoke-" opcode. The API calls are compared to a list25 of
known Android API calls loaded from file. The total number of Android and not Android API calls
were counted. If the API call match an entry in the list, a feature for each part of the API call is
incremented. For instance if the API call is "android.telephony.TelephonyManager.getImei", the 4
following features will be incremented:

• "S_H_Dex_ApiCalls_android"
• "S_H_Dex_ApiCalls_android.telephony"
• "S_H_Dex_ApiCalls_android.telephony.TelephonyManager"
• "S_H_Dex_ApiCalls_android.telephony.TelephonyManager.getImei"

Android API calls extracted from DEX and JAR files were counted individually.
During the implementation and testing of the extract_hidden_code.py tool, some strings contain-

ing "invoke-" (the opcode used to invoke API calls) were identified. These strings were counted and
added to the feature set. Finally, features related to incorrect extensions and total size of APK, JAR
and DEX files were added.

Hidden code statistics were extracted alongside the features. The usage of hidden code has
increased over the timeline in the dataset as shown in figure 4.

The different hidden code files and their extensions were counted as shown in 13. Only about
1/5 of the samples contains hidden code files. Most of these files are DEX files, and only a very small
amount of JAR files was found. The extensions used for DEX and JAR files were mostly consistent,
but only about 1/3 of the APK files had the ".apk" extension.

25The list of known Android API calls are scraped from the Android API reference[42] using the scrape_android_api.py A.3
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Figure 4: Hidden Code usage

Samples 14582
Samples with HC 3191
Dex files 7351
Dex correct extensions 7345
Dex cannot disassemble 0
APK files 4304
APK correct extensions 1510
Jar files 319
Jar correct extensions 289
Jar cannot disassemble 0

Table 13: Hidden code file and extension stats

4.3.6 Metadata features

The APK and DEX size from the AndroZoo metadata was used as features 14. Out of these, APK size
has already shown merit for familial classification in UpDroid [6].

Id Metadata Type N
1 M_Metadata_APKSize Numeric 1
2 M_Metadata_DEXSize Numeric 1

Table 14: List of metadata features

4.4 Feature extraction time

For real-world implementations it is important to understand the complexity affiliated with feature
extraction and how this affects identification of malware samples. In order to answer research ques-
tion 4 1.5, the feature extraction time for each of the methods described in the previous section 4.3
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must be measured.
Due to the size of the dataset, the feature extraction process had to be run in parallel on different

machine with different resources. The dataset was split in an arbitrary manner to distribute the
load. Resulting in splits that are not likely to be representative for the dataset. The results from the
feature extraction process is therefore not suitable to answer the research question.

Instead a subset of 100 samples was selected to measure the mean feature extraction time for a
sample. Samples was selected based on the assumption that APK file size is correlated with feature
extraction time. The larger the APK file the more time is required to extract features. The subset
should therefore have a similar APK size distribution to the dataset. The same methodology and
assumption is made in [18], where Garcia et al measures the feature extraction time of RevealDroid.

The following algorithm is used to extract a representative subset from the dataset:

Algorithm 2: Select samples from families
Result: Selects a representative subset of 100 samples with respect to the APK size

distribution in the dataset.
Input: dataset: list of dataset metadata
Output: subset: list of hashes

subset←empty list
dataset← sort dataset on APK size
chunks← split dataset into 100 chunks
foreach chunk ∈ chunks do

len← Length of chunk
i←random int in range [0, len]
subset← append chunk[i] to subset

end
return subset
To make the results comparable, all the feature extraction methods were run in the same system,

with the same resources available.

4.5 Machine learning methods

The Weka data mining software [43] was used for all machine learning methods in the project. Weka
offers a large collection machine learning algorithms, and is a very popular tool in the literature.

The remained of the section will discuss the machine learning algorithms we used for classifica-
tion, and feature selection.

4.5.1 Classification

We cannot assume that one machine learning algorithm will perform best for an untested dataset.
As show in table 2, different machine learning classifiers have shown promise in the literature. SVM
and CART had similar accuracy in RevealDroid, although Garcia et al [18] found that CART had a
performance advantage over SVM for family classification. J48, Random Forest and k-NN with stan-
dard Weka parameters was used in UpDroid [6]. DroidSieve [29] used the ExtraTrees algorithm.
We therefore chose to evaluate a wide range of classifiers on the dataset. Also, having a basis for

34



Hybrid analysis for Android malware family classification in a time-aware setting

what level of accuracies can be achieved with the different algorithms can lay the groundwork in
case of future work.

The remainder of the section will give a brief description of each machine learning classifier
used in the project.

Classification And Regression Trees (CART)

CART is a decision tree algorithm that can construct trees for regression or classification. Each node
in the tree corresponds to an attribute, and the branches corresponds to the results of a condition
for splitting (e.g. x > 5). The leaf nodes corresponds to class predictions. Gini Index is used to
measure the purity of leaf nodes, and determine which splits to take in the learning phase.

Random Forest

Random forest generates an ensemble of decision trees. The votes of each tree is used to classify a
new sample [44].

Extra Trees

Extra-trees is a tree based ensemble method similar to Random Forest. Using a top-down approach,
the algorithm generates unpruned decision or regression trees. The choice of attribute and cut-point
is strongly randomized during the splitting of tree nodes. One of the big advantage of the ExtraTrees
algorithm is the computational efficiency [45].

Extra Tree

A single extra tree.

Rotation Forest

Rotation Forest is method used to build an ensemble classifier based feature extraction. The feature
set is randomly split into K subsets, and Principle Component Analysis (PCA) is used on each subset.
The principle components are arranged in a rotation matrix. K axis rotations are made to create a
new training set for a tree based classifier [46].

Support Vector Machine (SVM)

Support Vector Machine is a discriminant classifier that uses hyper-planes in the attribute space to
separate the classes. The learning examples nearest the hyper-plane is called support vectors. The
optimal hyper-plane has an equal (and thereby maximal) distance to support vectors of the two
classes it is separating. For non linear problems the attribute space is transformed into a higher
dimension with the help of kernel functions [44]. The Weka implementation of SVM is a wrapper
for LIBSVM, a well known library for Support Vector Machines [47].

Multi-Layer Perceptron (MLP)

Multi-layer Perceptron is an artificial neural network algorithm used to mimic a biological neural
network with the help of abstraction. In the abstraction neurons are nodes that can summarize input
and normalize output. The neurons are interconnected to create a neural network. MLP consists of
multiple layers: An input layer of nodes representing the attributes, one or more hidden layers,
and a output layer representing the classes. The attribute values are sent to the input nodes, and
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the weight on the connections between the nodes determine the output value, and thereby the
class prediction. In the learning phase the weights on the connections are updated according to
classification error [44].

K-nearest neighbors (k-NN)

K-nearest neighbours is considered a lazy classifier because it simply uses the learning set as it’s
knowledge base. In order to classify a new example, k-NN finds k learning examples that are most
similar to the new example based on some distant metric. The new example is labeled with the
class that is prevalent among it’s neighbors [44].

Bayesian Network

A Bayesian classifier calculates the conditional probabilities for all the classes. The Bayesian network
uses directed acyclic graphs to model the dependencies between attributes and class. Conditional
independence is assumed between nodes that are not directly connected [44].

Naive Bayesian

The Naive Bayesian classifier assumes independence between attributes, and is therefore considered
to be "naive" or simple.

4.5.2 Feature selection

Feature selection are methods used to reduce the feature space. Features with good qualities for
distinguishing classes are selected, and irrelevant and redundant features are removed. Reducing
the feature space (also known as dimensionality reduction) can have several benefits such as: giving
a better understanding of the Android malware domain by finding features useful for identifying
malware families, more efficient time and space complexity for the classification algorithm, can lead
to more accurate classification results, but can also be considered as a trade-off between accuracy
and model complexity. Feature selection may also help avoid the curse of dimensionality26 and
overfitting27 the model.

Feature selection methods can generally be categorized as filter28 and wrapper29 methods. Filter
methods are fast but does not always fit the classifier, while wrapper methods are slow but always
fit the classifier. Because we are using a wide range of different classifier algorithms as discussed
in the previous section, we relied exclusively on filter method to finish the experiment in a timely
manner.

The selected feature subsets that produces the best results between the classifiers will be used
to answer research question 3.

26Curse of dimensionality Phenomena that is used to describe problems that can arise when having to deal with a
high-dimensional feature space (data points times number of features)[44]

27Overfitting: Overfitting occurs when the classifier fits the training data too closely. The classifier will have good perfor-
mance for the training data, and bad performance for future observations (testing data). Overfitting is likely in cases where
the training set is too small and the model is adjusted to random features that have no correlation with the target classes.

28Filter methods: Filter methods that ranks features independently of the machine learning algorithm that will be used
for classification

29Wrapper methods Wrapper methods evaluates a subset of the features using the same machine learning algorithm that
will be used for classification.
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The following subsections will give a brief description of the feature selection methods that was
used in the experiment.

Information Gain

Information Gain measures the amount of information an individual attribute provides about a
class [44]. Information gain uses entropy as an impurity measure. A decrease in impurity results in
information gain.

ReliefF

ReliefF is an extension of the RELIEF algorithm, designed to handle multi-class problems. RELIEF
takes the context of other attributes into account when measuring the merit of an attribute. For
each learning example in a random subset, RELIEF finds the nearest examples of the same class and
the nearest example of the opposite class. The quality of the Attributes are then updated by their
undesired and desired properties. The undesired property is an attributes ability to differentiate the
two examples of the same class, and desired property is the attributes ability to differentiate the
two examples from opposite classes. Thereby evaluating an attributes local ability to differentiate
between classes, and by using locality, the context is implicitly taken into account. In order to
evaluate attributes in multi-class problems reliefF searches for the k nearest examples from each
class. Prior probabilities are used to weight the contributions of the different classes [44].

Correlation-based Feature Subset Selection (CFSSubsetEval)

CFSSubsetEval selects a subset of attributes that have high correlation with the different classes,
while having low intercorrelation. The quality of the subset is evaluated by the attributes individual
predictive ability, and their degree of redundancy [48].

Search methods

The ranker method in Weka was used to select attributes evaluated by information gain and reliefF.
The ranker method ranks features bases on their individual merit, and enables subset selection by
setting a threshold or selecting the top n features [43]. A subset was selected by setting a lower
threshold for merit of each attribute. Different thresholds was tested with different classifiers in
order to find an optimal threshold.

CFSSubsetEval does not evaluate attributes individually, and a search method must be used to
identify an optimal subset of attributes. The BestFirst search method in Weka with recommended
parameters was used to find a optimal subset. The BestFirst search uses greedy hillclimbing aug-
mented with a backtracking facility to search the attribute space for a subset [43].

4.6 Evaluation

To investigate research question (RQ) 1 and 2, the classifiers must be evaluated in different settings.
RQ1 requires that classifiers are evaluated in a time-aware and time-unaware setting, while RQ2
requires that these classifiers are evaluated using different feature subsets (dynamic30, static and

30Note: The two metadata features were not part of the static and dynamic analysis process, and was used in the dynamic
feature set (see 6.1).
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hybrid).
To evaluate the performance difference between a classifier in a time-aware and time-unaware

setting, the dataset should be split into training and testing sets in a similar manner.
A common approach to evaluate the performance of a classifier in a time-unaware setting is to

use k-fold cross validation (k is usually 10) [44]. In k-fold cross validation the dataset is split into
k chunks. k-1 chunks are used for training and 1 chunk are used for testing. A classifier is trained
k times so that each chunk is used for testing. The final evaluation is the average of the k tests. For
classification the splits for k-fold cross validation is usually made in a stratified manner. Meaning
that the original class distribution is preserved in the training and testing set [44].

If 10-fold cross validation is used for the time-unaware setting, the training/testing distribution
should be the same for the time-aware setting. Meaning that 9/10 of the dataset should be used
for training, and 1/10 of the dataset should be used for testing. In order to have a more substantial
testing set that increases the impact of time, 5-fold cross validation was selected.

Splitting the dataset in a stratified manner for the time-aware setting will create an unrealis-
tic scenario, but will be more comparable to the time-unaware setting. Two different time-aware
splits were therefore made. Time-aware split 1: the dataset is split using hold-out validation in a
stratified manner. Time-aware split 2: the dataset is split on a certain date on the timeline. The pre-
processing.py script A.1 was used to construct training and testing sets for all the different settings.
Details about the time-aware splits are described in the following subsections.

4.6.1 Time-aware split 1

The following algorithm was used for time-aware split 1:

Algorithm 3: Time-aware Split 1
Result: Splits the dataset into training and testing sets with properties similar to stratified

5-fold cross validation. The split is only time-aware within the families.
Input: families: list of lists containing malware family metadata.
Output: trainingset; testingset

trainingset←empty list
testingsett←empty list
foreach family ∈ families do

family ←sort family on date
split←split family into 5 chunks
trainingset←first four chunks in split
testingset←last chunk in split

end
return trainingset, testingset

The properties of the split made by the algorithm is similar to the properties of the splits made
in stratified 5-fold cross validation. A stratified distribution is maintained in the training and testing
set, and the size of the training and testing set is equal to that of 5-fold cross validation. The earliest,
latest and split date for each family is displayed in figure 6. As shown in the figure the split is only
"time-aware" within the families, and not for the dataset as a whole. An abstract version of the split
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is shown in figure 5

Figure 5: Time-aware split 1

4.6.2 Time-aware split 2

A more realistic setting would be to split the entire dataset on a certain date, lets call it the "split
date". All samples that are dated earlier than the split date will be used for training, and all samples
dated after will be used for testing. An illustrative example is shown in figure 7. Splitting the dataset
in such a manner results in some families only having samples in the training set (family 3), and
other families only having samples in the testing set (family 1). These scenarios are also true in the
real world. Some families will go inactive or die out, and new families will be introduced.

Figure 7: Time-line split 2

The classifiers used in this project have no way of handling samples from unknown families,
and any such sample will directly attribute to decrease in accuracy. Families with no samples in the
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training set were therefore removed.
The first day of 2016 was selected as the split date, resulting in the split shown in table 15. 62%

of the samples in the dataset are used to training and, the remaining 38% is used for testing. Only
2 families and 325 samples had to be removed from the testing set (the tencentprotect and hpay
family).

Family training testing Family training testing Family training testing
admogo 92 80 mecor 222 1 morepaks 25 50
jiagu 82 563 gappusin 253 36 xynyin 81 1
secapk 506 269 ginmaster 52 24 smspay 84 200
feiwo 401 96 mobidash 28 65 autoins 63 43
revmob 894 110 baiduprotect 189 330 adflex 94 27
kuguo 978 955 ramnit 28 67 inmobi 14 133
cimsci 45 99 systemmonitor 47 24 silverpush 62 11
leadbolt 414 74 hypay 0 100 domob 129 20
cauly 63 6 clevernet 30 20 tachi 100 23
youmi 195 62 kyview 72 139 kirko 124 5
dowgin 1015 175 glooken 51 0 pircob 50 14
minimob 88 16 skymobi 99 28 dianjin 52 77
adwo 129 114 xinhua 95 61 appflood 56 3
ewind 212 24 igexin 97 47 adcolony 97 0
plankton 232 51 anydown 242 18 wiyun 35 16
smsreg 369 246 wateh 37 9 mobeleader 103 0
airpush 386 603 fictus 51 123 pandaad 63 54
tencentprotect 0 225 nineap 46 6 xinyinhe 67 0
Total 9039 5543

Table 15: Time-aware split 2
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Figure 6: Time-aware split 1
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5 Experimental Setup

This chapter will discuss the experimental setup and work flow used to accomplish the practical
part of the project. First the computational resources will be described. Next the dynamic analysis
environment will be explained. Followed by a description of the work-flow and tools that was used.
Finally the parameters and thresholds used for the machine learning algorithms will be discussed.

Many of the tasks in this project requires a considerable amount of computer processing time due
to the large size of the dataset. Based on initial estimations, the feature extraction alone would have
to run for more than 38 days1 straight, even without taking errors and crashes into consideration.
Fortunately most of the tasks can be parallelized to the extent of CPU cores and memory in the
project environment. Running the feature extraction in two processes would then only require 19
days, and 9.5 days for 4 processes, etc. Parallelization was therefore used as much as possible to
complete the project in a timely manner. The authors personal computer and a VM provided by the
university was used for the experiment. The machine specifications are shown in table 16.

PC specs PC-VM specs
OS Windows 10 educational 64-bit Ubuntu 18.04 LTS 64-bit
CPU Ryzen 2700X, 8-Core, 16-Thread, 4.35GHz, 20MB cache 8-Cores
RAM HyperX Fury DDR4 2666MHZ, 16GB 12GB
SSD Samsung 970 EVO 500GB, 3500/3200 MB/s read/write 200GB

Uni-VM specs Nested VM
OS Ubuntu 18.04 LTS 64-bit Ubuntu 18.04 LTS 64-bit
CPU CPU E5-2630 v3 @ 2.40GHz, 16-Cores 8-Cores
RAM 32GB 12GB
HDD 3TB 500GB

Table 16: Machine specifications

5.1 Dynamic analysis environment

In order to avoid any unnecessary risks, it is important that malware analysis is conducted in a
safe environment. Running the samples in an isolated virtual machine (VM) is consider as best
practise to prevent infecting the host [49]. The virtual machines used for this purpose is show in
the rightmost column of table 16. The VM should not be connected to the internet to ensure that
it is not used for malicious activity, such network propagation, spamming or being a node in a

1Estimation based on pilot run of feature extraction tools: 200 seconds per sample for dynamic analysis, and 20
seconds per sample for static analysis. Resulting in about (15000*220/60/60/24) 38 days. In dynamic analysis 120 seconds
was used for analysis, and 80 seconds were used to reset the environment
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distributed denial of service attack. Moreover, malware often communicate with a Command and
Control (C2) server to receive updates and instructions. Having the VM connected to the internet
may therefore inform threat actors that you are analyzing their malware, given that the C2 server
are still active [49]. Because of the previously stated reasons, network analysis is a very import
aspect of malware analysis, and should be included in the process. To be able to conduct network
analysis, the analysis VM was placed in a host-only network. A host-only network is a private LAN
isolated from the host machine and the internet [49]. An additional VM running Remnux2 was
placed inside the host-only network to act as the default gateway for the analysis VM. Remnux is
a lightweight Linux distribution that incorporates malware analysis tools to make it easier forensic
investigators to set up an analysis environment. One of these tools is INetSim3, a tool designed to
simulate the most common internet services. The dynamic analysis setup is shown in figure 8. The
dataset was split into 7 parts, 4 parts was analyzed on the Uni-VM, and 3 parts was analyzed on the
authors PC.

As discussed in the methodology chapter 4.3, the AndroPyTool [26] running inside a docker
container was used to conduct the dynamic analysis. Using docker had several advantages: the
dynamic analysis processing running inside the same VM was isolated from each other; docker
provides another level of isolation; and running docker in parallel is almost effortless.

5.2 Tools and workflow

The overall work-flow is shown in figure 9. Python scrips was created to automate several of the
steps. The following subsections will a give a brief description for each of the steps in the work-flow.

5.2.1 Dataset construction

All the malware samples used in the project was collected from AndroZoo [4]. construct_dataset.py
was used to select a dataset targeting the problem area of the project, and write the dataset meta-
data to file. The Metadata was collected from AndroZoo. get_dataset.py queries the AndroZoo API
to download the selected dataset. vt_report.py queries the VirusTotal API4 for each sample in the
dataset to obtain updated reports. AVClass [17] uses these reports to assign new malware family
label to each sample. re_label.py uses the output from AVClass to update the dataset metadata
file. get_min_sdk.py gets the min SDK level of each application. As discussed in the methodology
chapter 4.3, DroidBox[25], the dynamic analysis tool integrated in AndroPyTool, only supports up
to SDK level 16. Samples with a higher SDK level are removed from the dataset.

5.2.2 Feature extraction/preprocessing

scrape_android_api.py was used to get a list of all Android API calls (the list is used in ex-
tract_hidden_code.py). extract_hidden_code.py is responsible for extracting the hidden code fea-
tures. extract_native_code.py extracts features related to native code files. AndroPyTool [26] ex-
tracts all the dynamic features used in this project, as well as a wide range of static features. All

2https://remnux.org/
3https://www.inetsim.org/
4https://www.virustotal.com/nb/documentation/public-api/

43

https://remnux.org/
https://www.inetsim.org/
https://www.virustotal.com/nb/documentation/public-api/


Hybrid analysis for Android malware family classification in a time-aware setting

Figure 8: Dynamic analysis setup

the above feature extraction tools extracts features from a single sample at a time. Resulting in 5
feature files per sample in the dataset (droidbox, strace, andropytool-static, native code and hidden
code). The benefit of keeping everything separate is that if a feature extraction tool crashes the
progress will not be lost.

The preprocessing.py tool takes the features files as input, and outputs all the different datasets
(training and testing sets) in ARFF5 format for Weka. The tool also screens irrelevant features to
reduce the size of the datasets. if a feature is present in less than 3% of the samples within a family
it is removed. For instance, if hidden code files are present in 3 out of 100 samples within a family,
hidden code features are not really useful for describing this family.

The size of the raw feature files were more than 35GB, which is more than the memory in
the VMs 16. preprocessing.py was therefore designed to keep only the necessary information in

5https://www.cs.waikato.ac.nz/~ml/weka/arff.html
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Figure 9: Workflow for the experiment

memory at any time. First all the feature files are parsed to determine the feature set. Feature
occurrence within each family is counted, and features with less than 3% occurrence is removed.
Next the scripts start to incrementally write the dataset to file, one sample at a time. The features
files of a sample will be parsed again. The features that are in the feature set will be written to file,
and the value of missing features are set to 0. This approach is very scalable with respect to memory
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restrictions, but is slower due to more I/O. The SSD of the PC is very fast, and the time required to
create the datasets for Weka was negligible.

5.2.3 Feature selection

All the different training sets created in the previous step was manually run through feature selec-
tion methods in Weka. Resulting in three new training sets for each of the original training sets.

5.2.4 Classification

Different classifiers were trained and evaluated in the Weka. This process was done manually.

5.3 Feature selection and classification parameters and thresholds

This section will cover the parameters and thresholds used for machine learning methods in Weka
[43].

5.3.1 Feature selection parameters and thresholds

As explained in the methodology section 4, the ReliefF and Information gain method ranks features
based on individual merit towards predicting the class. To select a feature subset a lower threshold
must be selected, and testing is required to find a optimal threshold. Different thresholds was tested
in a time-unaware setting, using 5-fold cross validation to evaluate the classifiers. The Random
Forest and SVM methods were chosen based on success in the literature[18, 6], and due to the fact
that these methods are fundamentally different. Relying on a single classifier type (e.g. decision
trees) may result in a threshold that has a bias towards this type.

Figure 10 shows classifier accuracy for feature subsets selected based on different information
gain thresholds. We can see SVM has the best performance for the 0.4 and 0.2 threshold, with
slightly better performance for 0.2. Random Forest performed best for thresholds in between 0.3
and 0.8, with a peak at 0.4. The 0.4 threshold was selected as a compromise to avoid having bias
towards a single method. A higher threshold also reduces the size of the feature space, in this case
from 6665 (0.2 threshold) to 3017 (0.4 threshold). Another information gain threshold was used
for the feature subsets consisting of only dynamic features. The dynamic features were ranked with
very low individual merit, and a threshold of 0.05 was used.

ReliefF threshold RandomForest SVM
ReliefF 0.05 80.78% 81.65%
ReliefF 0.1 79.61% 67.73%

Table 17: Accuracy for ReliefF thresholds

Table 17 displays the results for the different ReliefF thresholds that was tested. Due to ReliefF
requiring significantly more computational time, only two thresholds were tested (about 3 days per
run). The 0.05 threshold performed best for both methods and were therefore selected.

The parameters for the feature selection methods in Weka are shown in figure 11.
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Figure 10: Classification accuracy for different Information Gain threshold

Figure 11: Feature selection parameters

5.3.2 Classifier parameters

The parameters used for the different classifiers in Weka are shown in figure 12. The default param-
eters was used where possible, and no efforts were made to optimize the classifier parameters. 10
different classifiers was tested for all settings and feature subsets, and there was simply no time for
optimization within the time-frame of the project. Nevertheless, using default parameters makes it
easier to compare the results to other studies. For instance, default Weka parameters was used by
Aktas and Sen in UpDroid [6].

Non-default parameters was used for SVM, MLP and ExtraTrees. SVM uses the "redial basis func-
tion" as the default kernel function. Kernel function was changed to "linear" because of a significant
performance increase during initial testing. MLP uses a default wildcard parameter "a" for the num-
ber of hidden layers. The wildcard parameter is calculated based on the number of features and
classes in dataset (features + classes)/2. Using the wildcard parameter required too much time to
finish the practical part in a timely manner. A single test could take up to several days using the
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Figure 12: Classifier parameters

wildcard parameter, as opposed to other classifiers that were able to finish the test within seconds
or minutes. The parameter was reduced to "3", in order to run MLP with a computational time
similar to that of the other classifiers. The RandomCommittee implementation was used to build an
ensemble of ExtraTrees (as was suggested in the notes of the ExtraTree implementation). Random-
Committee builds an ensemble of 10 trees by default, and the number of trees was changed to 100
[43].

Normalization

SVM, MLP and k-NN requires that numeric features are normalized within a fixed range in order
to work properly. For simplicity all feature subsets were therefore normalized after the feature
selection step. The Weka Normalize implementation was used for this purpose [43].
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6 Results and Discussion

This chapter will discuss the validity of the study and present the results and discuss the important
findings.

6.1 Threats to validity

This section will discuss different threats to validity of the study and the reliability of the measure-
ment instruments.

6.1.1 Internal validity

Leedy and Ormrod defines internal validity of a research study as "the extent to which its design
and the data it yields allow the researcher to draw accurate conclusions about the cause-and-effect
and other relationship in the data"[37].

With respect to internal validity we would like to highlight that the two metadata features
was placed in the dynamic feature set during the generation of subsets. Although the metadata
features was not part of the malware analysis process, they belong to the static feature category as
no execution is required for extraction. Unfortunately there was no time to redo the classification
process when this issue was discovered. Which resulted in a dynamic feature set that does not
entirely consists of dynamic features. Thereby some unnecessary bias was introduced for research
question 2, where we investigate if the performance of the classifier can be increased by combining
static and dynamic features, as opposed to using either or.

6.1.2 External validity

External validity is the extent to which the results can be generalized to other contexts such as the
entire population and a real-life setting [37]. In this study we collected a subset from the AndroZoo
repository consisting of more than 8.5 million applications. Samples in the subset was collected from
the end of 2014 to the end of 2016. Due to massive size of the AndroZoo repository, we consider the
subset used in this experiment to be representative for the most common malware threats that could
be found in the markets during that period. During the selection we excluded malware families
that had not been flagged by at least 5 anti-virus engines (VirusTotal detect threshold), and families
that had less than 50 samples. As discussed in the methodology chapter 4.2, the threshold can be
considered as a trade-off between having more certainty in whether the samples are malicious or
not and the bias of removing the samples that are possibly more difficult to detect. By doing so we
created a lab setting that does not entirely reflect a real-life setting. A decrease in performance is
therefore expected for a real-life setting.
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6.1.3 Reliability of measurement instruments

Leedy and Ormrod defines reliability of a measurement instruments as "the consistency with which a
measurement instrument yields a certain, consistent result when the entity being measured hasn’t
changed"[37]. The measurement instruments in this context refers to the malware analysis tools
used in the experiment. In essence the question is then, if we repeat the feature extraction process,
will we obtain the same results?

The tools used for static analysis are deterministic, and will yield the exact same results on each
run. DroidBox[25] on the other hand, relies on the Monkey tool1 to generate a random sequence of
simulated user input. Choudhary et al [50] found that random exploration strategies, such as the
one implemented in monkey tool, achieves higher code coverage than more sophisticated strategies
in other tools. However, the code execution is not deterministic, and the result may not be identical
for each run. A seed value could therefore be used to ensure that the same sequence of random
generated events are used, and that the code execution is deterministic [34].

We also experienced that a considerable amount of the samples would crash and/or stop running
at some point during the dynamic analysis. The exact cause is unknown, but it was highlighted
by Chakraborty et al [34] that malware applications crash often during analysis based on input
simulators. Alternatively some malware may stop running if it detects a sandbox.

6.2 Classification

6.2.1 Results

All the classification results are shown in table 13. The table is divided into three sections. The first
section show the results for the time-unaware setting, the second and third section shows the results
for the time-aware setting. Section two for time-aware split 1, and section three for time-aware split
2. The first column shows what feature selection method and threshold that was used. The second
column displays the number of features that remains after feature selection (class excluded). The
remaining columns shows the result for the different machine learning classifiers. The background
colors are used to describe the type of features that was used: green is for dynamic features (the
first four columns in each section), blue is for static features (the three next columns in each
section), orange is for hybrid features (the three last columns in each section). Gray background
color indicates that the results were obtained without the use of feature normalization. The best
results in each section, for each machine learning algorithm, for each feature type is highlighted
with a darker color shade. The best results in each section, for each feature type is highlighted with
bold text, and an even darker color shade.

A malware family F-Measure2 comparison between the best result in the time-unaware setting,
and in time-aware split 1 is shown in 14. Malware family labels are plotted on the y-axis. The
blue bars represent F-measures in the time-aware setting, and orange bars represents F-measures in

1https://developer.android.com/studio/test/monkey
2The F-Measure, F-Score or F1 score is defined as the harmonic mean of precision and recall. Precision is measured as

(True Positives/ True positives + False positives) for individual classes. Recall is measures as (True positives/ True positives
+ False negatives) for individual classes [51].
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time-aware split 1. The best results in the time-unaware setting is for ExtraTrees with a subset of
static features selected using CsfSubsetEval. The best result in time-aware split 1 is for ExtraTrees
with a subset of hybrid features selected with CsfSubsetEval.
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Figure 13: Classification results. (Green=dynamic features, Blue=static features, Orange=hybrid features)

52



Hybrid analysis for Android malware family classification in a time-aware setting

Figure 14: Malware family F-Measure comparison between the best result in the time-unaware setting, and in
the time-aware split 1
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6.2.2 Discussion

A lot of information can be extracted from the classification results in figure 13. We can see that the
Extra Trees method provided the best results for all settings. Closely followed by Random Forest
and SVM. The best results were obtained using feature subsets selected with the CsfSubsetEval
feature selection method. Hybrid features performed better in the time-aware setting, while static
features performed slightly better in the time-unaware setting. Although the results between static
and hybrid features sets were very close. Dynamic features performed significantly worse than
static and hybrid features for all settings. Comparing the results between the time-unaware setting
and time-aware split 1, we can see a significant performance decrease when time is taken into
consideration. While the results for time-aware split 2 were surprisingly similar to that of time-
aware split 1. A summary of the best results is displayed in figure 15

Figure 15: Summary of best classification results

The F-Measure comparison in figure 14 shows how the classifier performs with respect to the
individual families. We can see that 28 families has a F-measure score higher than 0.9 in the time-
unaware setting. The time-aware setting (split 1) has a decrease in F-measure for all families except
for 5. The Wateh, Gloken and Mecor family has a F-measure of 1 for both settings, while Morepaks
and Tachi has a slight increase in F-measure. No samples from the Ginmaster and Appflood families
were correctly classified in the time-aware setting. As shown in the methodology section 4, Appflood
has 56 samples in the training set and 3 in the testing set for time-aware split 1. Meaning that the
low F-measure for Appflood is the result of only 3 misclassifications. Ginmaster on the other hand
has 52 samples in the training set and 24 in the testing set. Further analysis is required to determine
what exactly is causing the classifier to struggle with the Ginmaster family. Some likely causes may
be obfuscation or different variants within the family (see discussion in background 2).
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RQ1: What level of accuracy can be achieved for Android malware family classification in a time-
aware and time-unaware setting, and how do the results of these settings compare?
Findings: For a dataset of 14582 samples from 54 different families, a classification accuracy of 89.1%
was achieved in a time-unaware setting. In a time-aware setting constructed to be comparable to the
time-unaware setting, a classification accuracy of 73.65% was achieved. The best result for a time-
aware setting constructed to be more realistic was 74.19% classification accuracy. Taking time into
consideration significantly decrease the accuracy for a classifier, in this case a decrease 15.45% classi-
fication accuracy (time-unaware vs time-aware setting 1). An overall decrease in F-measure was found
for individual families, some families were impacted considerably more than others.

RQ2: Can the performance of the classifiers be improved by combining features extracted with static
analysis and features extracted with dynamic analysis?
Findings: A small increase in classification accuracy could be achieved by using a combination of static
and dynamic features in the time-aware setting, as opposed to using only static features. The best results
for the time-unaware setting was obtained using static features. Dynamic features performed consider-
ably worse than static features for all three settings, with a 15-20% decrease in classification accuracy.
Considering the feature extraction time discussed in 6, it is hard to justify the use of dynamic features
with respect to scalability. Although no conclusions can be made regarding this research question due
to the issues discussed in 6.1

6.3 Optimal feature set

6.3.1 Results

In order to find an optimal feature set, we must consider the best results from each of the classifier
settings. The best results for each of the settings are shown in figure 13:

• Time-unaware setting: Static feature subset selected with CfsSubsetEval.
• Time-aware split 1: Hybrid feature subset selected with CfsSubsetEval.
• Time-aware split 2: Hybrid feature subset selected with CfsSubsetEval.

The following subsections will list all of the features used in the feature subsets that produced
the best results. The first subsection will list the intersection of the best features from each setting.
Features that were not present in all three settings will be listed in their own subsection. Notice that
a prefix is used for all features to dictate feature category (S=Static, D=Dynamic, M=Metadata),
followed by a word to describe the sub-category that the feature belongs to (e.g. Opcode or ApiCall).

Intersection between settings

Android API related features are listed in table 18, and the remaining features are listed in table
19.
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Android API related features
1 S_ApiCall_android.app.Activity.onConfigurationChanged
2 S_ApiCall_android.app.Activity.onKeyDown
3 S_ApiCall_android.app.Activity.onUserLeaveHint
4 S_ApiCall_android.app.AlarmManager
5 S_ApiCall_android.app.Application
6 S_ApiCall_android.app.Service.onStart
7 S_ApiCall_android.content.Context.getDir
8 S_ApiCall_android.content.Context.getFileStreamPath
9 S_ApiCall_android.content.res.AssetManager
10 S_ApiCall_android.hardware.Sensor
11 S_ApiCall_android.hardware.SensorManager
12 S_ApiCall_android.hardware.SensorManager.unregisterListener
13 S_ApiCall_android.media.AudioManager
14 S_ApiCall_android.net.NetworkInfo.getState
15 S_ApiCall_android.net.NetworkInfo.isAvailable
16 S_ApiCall_android.telephony.SmsManager
17 S_ApiCall_android.util.Base64
18 S_ApiCall_android.view.ViewGroup.invalidate
19 S_ApiCall_android.view.animation.AnimationSet.setInterpolator
20 S_ApiCall_android.webkit.WebChromeClient.onJsConfirm
21 S_ApiCall_android.webkit.WebSettings.getUserAgentString
22 S_ApiCall_android.webkit.WebSettings.setJavaScriptCanOpenWindowsAutomatically
23 S_ApiCall_android.webkit.WebView.setId
24 S_ApiCall_android.webkit.WebView.setOnTouchListener
25 S_ApiCall_android.webkit.WebView.setScrollBarStyle
26 S_ApiCall_android.widget.Button.setPadding
27 S_ApiCall_android.widget.LinearLayout.clearAnimation
28 S_ApiCall_android.widget.RelativeLayout.removeView
29 S_ApiCall_android.widget.RemoteViews
30 S_ApiCall_android.widget.VideoView
31 S_ApiCall_java.io.BufferedInputStream
32 S_ApiCall_java.io.BufferedInputStream.close
33 S_ApiCall_java.io.BufferedReader
34 S_ApiCall_java.io.BufferedWriter
35 S_ApiCall_java.io.File.mkdir
36 S_ApiCall_java.io.FileReader
37 S_ApiCall_java.lang.Boolean
38 S_ApiCall_java.lang.Exception
39 S_ApiCall_java.lang.Process
40 S_ApiCall_java.lang.System.exit
41 S_ApiCall_java.util.zip.ZipEntry.getTime
42 S_ApiCall_javax.crypto.SecretKeyFactory
43 S_ApiCall_org.apache.http.params.HttpParams
44 S_ApiCall_org.json.JSONObject.isNull
45 S_ApiCall_org.xmlpull.v1.XmlPullParserFactory.newInstance
46 S_ApiPackage_android.os

Table 18: Intersection of API features between settings
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Other Features
1 S_Intent_android.intent.action.PACKAGE_ADDED
2 S_Intent_android.intent.action.PACKAGE_REMOVED
3 S_Intent_android.intent.action.USER_PRESENT
4 S_Intent_android.net.conn.CONNECTIVITY_CHANGE
5 S_Intent_android.net.wifi.WIFI_STATE_CHANGED
6 S_Intents
7 S_Receivers
8 S_Services
9 S_SystemCmd_chmod
10 S_SystemCmd_getprop
11 S_Opcode_rem-int/2addr
12 S_Opcode_aget-byte
13 S_Permission_NumAndroidPermissions
14 S_Permission_NumCustomPermissions
15 S_Permission_android.permission.ACCESS_COARSE_LOCATION
16 S_Permission_android.permission.GET_ACCOUNTS
17 S_Permission_android.permission.GET_TASKS
18 S_Permission_android.permission.SEND_SMS
19 S_Permission_android.permission.SYSTEM_ALERT_WINDOW
20 S_Permission_com.android.launcher.permission.INSTALL_SHORTCUT
21 S_NC_arm_ProgramHeaders
22 S_NC_arm_Section_.interp_Flag_A
23 S_String_len5000

Table 19: Intersection of features between settings

Time-unaware setting

Features are listed in table 20
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Features unique to Time-unaware setting
1 S_ApiCall_android.app.Activity.finishActivity
2 S_ApiCall_android.app.Application.attachBaseContext
3 S_ApiCall_android.app.Application.onCreate
4 S_ApiCall_android.app.ProgressDialog.dismiss
5 S_ApiCall_android.app.Service.onStartCommand
6 S_ApiCall_android.content.ContentResolver.insert
7 S_ApiCall_android.content.Intent.setFlags
8 S_ApiCall_android.graphics.Matrix.preRotate
9 S_ApiCall_android.telephony.TelephonyManager.getDeviceSoftwareVersion
10 S_ApiCall_android.telephony.TelephonyManager.getSubscriberId
11 S_ApiCall_android.util.FloatMath
12 S_ApiCall_android.view.animation.AnimationSet
13 S_ApiCall_android.webkit.WebView.removeAllViews
14 S_ApiCall_android.widget.Button
15 S_ApiCall_android.widget.CheckBox.setId
16 S_ApiCall_android.widget.ViewFlipper.showPrevious
17 S_ApiCall_dalvik.system.DexClassLoader
18 S_ApiCall_java.io.BufferedReader.readLine
19 S_ApiCall_java.io.DataInputStream.close
20 S_ApiCall_java.io.DataInputStream.readByte
21 S_ApiCall_java.io.IOException
22 S_ApiCall_java.lang.ClassLoader
23 S_ApiCall_java.lang.Object.equals
24 S_ApiCall_java.lang.reflect.AccessibleObject.isAccessible
25 S_ApiCall_java.lang.reflect.Method
26 S_ApiCall_java.util.Properties.load
27 S_ApiCall_java.util.zip.ZipFile
28 S_ApiCall_java.util.zip.ZipInputStream
29 S_ApiCall_java.util.zip.ZipInputStream.read
30 S_ApiCall_org.xmlpull.v1.XmlPullParser
31 S_H_Dex_ApiCalls_android.content.Intent.setClassName
32 S_H_Dex_ApiCalls_android.content.pm.ApplicationInfo
33 S_H_Dex_ApiCalls_android.telephony.TelephonyManager.getSubscriberId
34 S_NC_ARM_Size
35 S_NC_arm_Sections
36 S_Opcode_aput-byte
37 S_Opcode_move-result
38 S_Opcode_move/from16
39 S_Opcode_neg-int
40 S_Opcode_or-int/lit16
41 S_Permission_android.permission.ACCESS_GPS
42 S_Permission_android.permission.MOUNT_UNMOUNT_FILESYSTEMS

Table 20: Time-unaware setting - features

Time-aware setting 1

Android API related features are listed in table 21, and the remaining features are listed in table
22.
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Android API related features - Time-aware setting 1
1 S_ApiCall_android.app.Application.attachBaseContext
2 S_ApiCall_android.app.Application.onCreate
3 S_ApiCall_android.app.ProgressDialog
4 S_ApiCall_android.app.Service
5 S_ApiCall_android.content.ActivityNotFoundException
6 S_ApiCall_android.content.Context.checkCallingOrSelfPermission
7 S_ApiCall_android.content.Context.getAssets
8 S_ApiCall_android.content.Intent.setFlags
9 S_ApiCall_android.content.pm.ApplicationInfo
10 S_ApiCall_android.location.LocationManager
11 S_ApiCall_android.media.MediaPlayer
12 S_ApiCall_android.os.Handler.postDelayed
13 S_ApiCall_android.telephony.TelephonyManager.getDeviceSoftwareVersion
14 S_ApiCall_android.telephony.TelephonyManager.getSimState
15 S_ApiCall_android.telephony.TelephonyManager.getSubscriberId
16 S_ApiCall_android.webkit.WebSettings.setPluginsEnabled
17 S_ApiCall_android.webkit.WebView.removeAllViews
18 S_ApiCall_android.widget.CheckBox.setId
19 S_ApiCall_android.widget.LinearLayout.setLayoutParams
20 S_ApiCall_android.widget.Scroller.getCurrVelocity
21 S_ApiCall_java.io.BufferedReader.ready
22 S_ApiCall_java.io.DataInputStream.close
23 S_ApiCall_java.io.FileOutputStream.flush
24 S_ApiCall_java.io.IOException
25 S_ApiCall_java.io.RandomAccessFile
26 S_ApiCall_java.lang.ClassLoader
27 S_ApiCall_java.lang.reflect.Method
28 S_ApiCall_java.nio.channels.SelectionKey.selector
29 S_ApiCall_java.util.StringTokenizer
30 S_ApiCall_java.util.zip.ZipFile
31 S_ApiCall_java.util.zip.ZipInputStream.read
32 S_ApiCall_org.xmlpull.v1.XmlPullParser.nextText
33 S_ApiPackage_android.view
34 S_ApiPackage_dalvik.system

Table 21: Time-aware split 1 - API features

59



Hybrid analysis for Android malware family classification in a time-aware setting

Features - Time-aware setting 1
1 D_CryptoOperation_keyalgo
2 D_Cryptoalgorithm_DES
3 D_Filesystem_AccessedFiles
4 D_Filesystem_write
5 D_Strace_epoll_wait
6 D_Strace_execve
7 D_Strace_fgetxattr
8 D_Strace_fstat64
9 D_Strace_lseek
10 D_Strace_mkdir
11 D_Strace_pipe
12 D_Strace_pread
13 D_Strace_pwrite
14 D_Strace_readlink
15 D_Strace_stat64
16 D_Strace_unlink
17 D_Strace_write
18 S_H_Dex_ApiCalls_android.content.pm.ApplicationInfo
19 S_H_Dex_ApiCalls_android.telephony.TelephonyManager.getSubscriberId
20 S_H_incorrectExtension
21 M_Metadata_APKSize
22 S_NC_arm_
23 S_Opcode_int-to-char
24 S_Opcode_iput-short
25 S_Opcode_move/from16
26 S_Opcode_neg-int
27 S_Opcode_or-int/lit16
28 S_Permission_android.permission.ACCESS_FINE_LOCATION
29 S_Permission_android.permission.CALL_PHONE
30 S_Permission_android.permission.MOUNT_UNMOUNT_FILESYSTEMS
31 S_Permission_android.permission.READ_PHONE_STATE
32 S_Permission_android.permission.WRITE_SETTINGS

Table 22: Time-aware split 1 - features

Time-aware setting 2

Android API related features are listed in table 23, and the remaining features are listed in table
24.
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Android API related features - Time-aware setting 2
1 S_ApiCall_android.app.Activity.finish
2 S_ApiCall_android.app.Activity.runOnUiThread
3 S_ApiCall_android.app.ProgressDialog
4 S_ApiCall_android.app.Service
5 S_ApiCall_android.app.Service.onStartCommand
6 S_ApiCall_android.content.ContentResolver.insert
7 S_ApiCall_android.content.Context.checkCallingOrSelfPermission
8 S_ApiCall_android.content.Context.getApplicationInfo
9 S_ApiCall_android.content.Context.getAssets
10 S_ApiCall_android.content.Context.getSharedPreferences
11 S_ApiCall_android.content.IntentFilter.setPriority
12 S_ApiCall_android.content.SharedPreferences.getLong
13 S_ApiCall_android.content.pm.ApplicationInfo
14 S_ApiCall_android.content.pm.PackageManager.getInstalledApplications
15 S_ApiCall_android.net.NetworkInfo.getExtraInfo
16 S_ApiCall_android.os.Vibrator
17 S_ApiCall_android.preference.PreferenceManager
18 S_ApiCall_android.telephony.TelephonyManager.getLine1Number
19 S_ApiCall_android.telephony.TelephonyManager.getSimOperatorName
20 S_ApiCall_android.telephony.TelephonyManager.getSimState
21 S_ApiCall_android.view.animation.AnimationSet
22 S_ApiCall_android.webkit.WebSettings.setLoadsImagesAutomatically
23 S_ApiCall_android.webkit.WebView.loadUrl
24 S_ApiCall_android.webkit.WebView.setClickable
25 S_ApiCall_android.widget.Button.setTypeface
26 S_ApiCall_android.widget.ImageButton.setLayoutParams
27 S_ApiCall_android.widget.LinearLayout.setLayoutParams
28 S_ApiCall_android.widget.RelativeLayout.onAttachedToWindow
29 S_ApiCall_android.widget.RelativeLayout.removeAllViews
30 S_ApiCall_android.widget.RelativeLayout.setGravity
31 S_ApiCall_android.widget.RelativeLayout.setPadding
32 S_ApiCall_android.widget.Scroller.getCurrVelocity
33 S_ApiCall_android.widget.Toast
34 S_ApiCall_android.widget.ViewFlipper.setInAnimation
35 S_ApiCall_java.io.DataInputStream.readShort
36 S_ApiCall_java.io.FileOutputStream.flush
37 S_ApiCall_java.lang.ClassLoader.getSystemClassLoader
38 S_ApiCall_java.lang.reflect.AccessibleObject
39 S_ApiCall_java.net.InetAddress.getHostAddress
40 S_ApiCall_java.security.NoSuchAlgorithmException
41 S_ApiCall_java.util.Properties
42 S_ApiCall_java.util.regex.Matcher.group
43 S_ApiCall_java.util.zip.ZipInputStream
44 S_ApiCall_org.xmlpull.v1.XmlPullParser
45 S_ApiPackage_dalvik.system
46 S_ApiPackage_javax.crypto
47 S_ApiPackage_javax.net.ssl

Table 23: Time-aware split 2 - API features
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Features - Time-aware setting 2
1 D_CryptoOperation_keyalgo
2 D_Filesystem_write
3 D_Strace__llseek
4 D_Strace_execve
5 D_Strace_fstat64
6 D_Strace_lseek
7 D_Strace_pipe
8 D_Strace_pread
9 D_Strace_pwrite
10 D_Strace_readlink
11 D_Strace_stat64
12 D_Strace_unlink
13 D_Strace_write
14 S_H_Dex_ApiCalls_android.app.ActivityManager.getRunningAppProcesses
15 S_H_Dex_ApiCalls_java.util.Collection
16 S_Intent_com.google.android.c2dm.intent.REGISTRATION
17 M_Metadata_APKSize
18 S_NC_arm_pltCall_scandir
19 S_Opcode_aput-byte
20 S_Permission_android.permission.ACCESS_FINE_LOCATION
21 S_Permission_android.permission.CALL_PHONE
22 S_Permission_android.permission.READ_PHONE_STATE
23 S_Permission_android.permission.SET_WALLPAPER
24 S_Permission_android.permission.WAKE_LOCK
25 S_Permission_android.permission.WRITE_SETTINGS

Table 24: Time-aware split 2 - features

6.3.2 Discussion

Features from a wide variety of categories were considered and evaluated in different classifier
settings to find optimal feature subsets. An overview of the number features found in each feature
category for the optimal subsets are shown in Table 25. The "ALL" column shows the total number
of features from each category that was included in the feature selection step. The overview shows
that features from all categories except for Activities were part of the subsets. A clear majority of
these features are static features related to the Android API. An interesting observation is that the
feature subsets that consisted of fewer number of features produced the best results. The number
of features in the optimal feature sets ranged from only 111-141 features. Dynamic features were
only selected as part of the subsets used for the time-aware setting. The majority of the dynamic
features was related to the occurrences of certain system calls in the strace category.
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Feature TU TA1 TA2 ALL
S_ApiCall 75 77 89 19231
S_ApiPackage 1 3 4 159
S_Permission 10 13 14 254
S_Opcode 7 7 3 216
S_Intent 6 6 7 734
S_Receivers 1 1 1 1
S_Services 1 1 1 1
S_Activities 0 0 0 1
S_SystemCmd 2 2 2 52
S_String 1 1 1 12
S_H (Hidden Code) 3 3 2 20322
S_NC (Native Code) 4 3 3 8606
M_Metadata 0 1 1 2
D_(DroidBox) 0 6 4 528
D_Strace 0 13 11 131
TOTAL 111 135 141 50250

Table 25: Summary of the optimal feature sets

It is important to note that these features were only tested for the most common families found
in the AndroZoo [4] repository. Most of these families belong to the adware and riskware types,
and can be categorized as possible unwanted applications (PUA).

RQ3: What set of Android malware characteristics/features can produce the best results for a
machine learning classifier?
Findings: The sets of features that produced the best results for classifying the most common Android
families consisted of 111-141 features. These feature were from a wide verity of feature categories, with
the majority being from the Android API category. Features that was part of the subsets for both the
time-aware and the time-unaware setting includes: Android API related features; the number of certain
intents; the number of different intents, receivers and services; The number of certain Opcodes and
system commands; certain permissions, and the count of Android permissions and other permissions;
the number of native code program headers, and section flags; and finally the number of strings that
are longer than 5000 characters.

6.4 Feature extraction time

6.4.1 Results

The APK size distribution for the entire dataset is shown in figure 16, and the APK size distribution
for the subset used in the experiment is shown in figure 17. A comparison between the native code
usage in subset and dataset is shown in table 26. A similar comparison for the hidden code usage
is shown in figure 27. Finally the time to extract each time of feature is shown in table 28. The
feature extraction process of AndroPyTool is broken down into several tasks. The time required by
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each task is displayed in the table.

Figure 16: Dataset APK size histogram

Figure 17: Subset APK size histogram

6.4.2 Discussion

A subset of the dataset was used to measure the feature extraction time for each tool. The subset
was selected based on the assumption that feature extraction time is highly correlated with APK
size. As shown in the result section, the APK size distribution for the subset is representative for the
APK size distribution found in the dataset. As discussed in the methodology chapter 4.3, native code
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Samples 100 14582
Samples with NC 60 9668
Native code ARM files 334 55414
Failed to analyze 8 1575

Table 26: Subset native code file comparison

Samples 100 14582
Samples with HC 18 3191
Dex files 30 7351
Dex cannot disassemble 0 0
APK files 21 4304
Jar files 2 319
Jar cannot disassemble 0 0

Table 27: Subset hidden code file comparison

Feature extraction tool Features Task Time per sample Time total

AndroPyTool
Static and
dynamic All 3m 33.1s 5h 55m 12.7s

Filter invalid
apk files 0.127s 12.7s

Dynamic All 201.5s 5h 35m 5s
Dynamic Analysis 201.37s 5h 35m 37s

Dynamic
Parse
logcat logs 0.13s 13s

Static All 11.46s 19m 6s
extract_native_code.py Native code All 2.98s 4m 58s
extract_hidden_code.py Hidden code All 0.33s 33s

Table 28: Time to extract features for each tool

features are only extracted from the files that are compiled for the ARM architecture. On average
there are 3.8 such files per sample in the dataset, and 3.3 files per sample in the subset. The failure
rate for native code feature extraction is 0.02 for the subset, and 0.03 for the dataset. The hidden
code feature extraction tool analyses DEX and JAR files found in the original and nested APK files.
The tool therefore had to analyze 0.3 files per sample in the subset, and 0.5 files per sample in the
dataset. Without taking the file sizes of hidden and native code files into consideration, the feature
extraction time for these tool will be slightly less for the subset.

The feature extraction tools used in the project can easily be run in parallel. Feature extraction
time per sample can therefore be considered as the time required by the tool taking the most time
to run. Each of the tools are designed to extract a large set of features, such that an optimal feature
subset can be found. Once the optimal feature subset is known, the tools that extracts static features
can be modified to extract only the relevant features, reducing the feature extraction time. Contrar-
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ily, the dynamic analysis tool runs for a fixed amount of time, and the time required to parse the
analysis logs is negligible compared with the time required to analyze a sample. As discussed in the
methodology section 4.3, each sample is analyzed for 120 seconds. Meaning that approximately 80
seconds of the time used to extract dynamic features from a sample is used to extract longs, reset
and prepare the analysis environment. DroidBox [25] is an old tool that has not been updated in
several years, and there is likely room for optimization or improvements.

RQ4: How much time is required to extract the optimal set of features and classify a new malware
sample?

Finding: The time required to extract the optimal set of features are: 12 seconds per sample for
static features and 203 seconds per sample for dynamic features. Because feature extraction can easily
be run in parallel, the feature extraction time for hybrid features are 203 seconds per sample. The time
required to classify a new sample is negligible after the classifier has been trained.
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7 Conclusion

This chapter will give a brief summary of the thesis, and discuss the theoretical implications of the
results and the reproducibility of study.

In this thesis we have investigated several aspects of a machine learning based Android mal-
ware family classification. We have shown that evaluating such a system in a time-unaware setting
will yield significantly biased results. In a real-world setting, a classification system have to rely on
knowledge learned from the past (training set) in order to classify malware samples in the future
(testing set). In the experiment we found that our best time-unaware classifier (89.10%) outper-
formed the best time-aware (setting 1) classifier (73.65%) with 15.45% classification accuracy.

A dataset of 14,582 malware samples dated from the last quarter of 2014 to the last quarter of
2016 was used in the experiment. Samples from the 54 most common malware families during this
period were collected from AndroZoo [4], a repository of more than 8 million Android malware
and goodware applications that were primarily collected by crawling Android market places.

Classifiers were evaluated in the time-unaware setting by using 5-fold cross validation. Two
different time-aware settings were created and evaluated: Time-aware setting 1 was constructed
with properties similar to that of 5-fold cross validation so that the results could be compared to the
time-unaware setting. Training and testing sets were split in a stratified manner maintaining the
malware family distribution in both sets. Like in 5-fold cross validation, the training set consists of
4/5th of the dataset, while the testing set consists of the remaining 1/5th. Time-aware setting 1 was
only time-aware within each family, such that all samples from individual families in the training
set are dated earlier than in the testing set. Time-aware setting 2 were constructed to include a
more realistic setting, and the dataset was split into training and testing set on a certain date.

A broad range of features were extracted from the samples and evaluated in order to find the
feature sets that produced the best results for the classifiers. We extracted features from both static
and dynamic analysis, and compared the results that could be produced with only static features,
(almost) only dynamic features and a combination of the two (hybrid features). In our experiment,
we found that features extracted with static analysis significantly outperformed the features ex-
tracted from dynamic analysis, with an approximate 15-20% increase in classification accuracy.
By using the hybrid features we were able to obtain around 2% increase in classification accuracy
for the time-aware setting. Considering the runtime of the feature extraction tools, it is difficult
to justify the use of dynamic features. However, due to some issues during the dynamic analysis
process, where a considerable amount of the applications would stop running, the results relating
to dynamic features is inconclusive (see 6.1).

The mean feature extraction time per sample were 12 seconds for static features and 203 sec-
onds for dynamic features. In the dynamic analysis, samples were run in an isolated environment
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for 120 seconds to cover different execution paths. The remainder of the 203 seconds were used to
install and start the application, extract analysis logs and reset the environment. These are feature
extraction time calculated based on extracting the full feature set, which leaves room for optimiza-
tion by only extracting the features that produces the best results for the classifiers. However, this
essentially only applies to static feature extraction, as dynamic features extraction runs for a fixed
amount of time.

The sets of features that produced the best results for classifying the most common Android
malware families consisted of 111-141 features. These feature were from a wide verity of feature
categories, with the majority being from the Android API category. Features that was part of opti-
mal subsets for both the time-aware and the time-unaware setting includes: Android API related
features; the number of certain intents; the number of different intents, receivers and services; The
number of certain Opcodes and system commands; certain permissions, and the count of Android
permissions and other permissions; the number of native code program headers, and section flags;
and finally the number of strings that are longer than 5000 characters.

7.1 Theoretical implications

We have shown the importance of taking the timeline into consideration when evaluating an An-
droid malware family classifier. A classifier evaluated in a time-unaware setting will produce consid-
erably biased results. The same can be said for machine learning based Android malware detection
systems (binary classifiers) [5]. k-fold cross validation is the common approach to classifier evalua-
tion in the literature. The evaluation method is considered to reduce bias and generalize the results
by running k different tests. However, by design, this method cannot be used to evaluate a classifier
in a time-aware setting. Other evaluation methods for machine-learning based Android malware
classifiers should therefore be considered.

Based on the classification results in our experiment, we observed that the ExtraTree algorithm
produced the best results for the all classifier settings. A considerable advantage of the ExtraTrees
algorithm is the computational efficiency [45]. However, similar to other machine learning algo-
rithms (e.g. SVM, MLP and other tree-based ensemble classifiers) it is difficult to explain the pre-
dictions made by the classifier. Decision trees can be converted to decision rules that explains any
prediction. But it becomes significantly more difficult to interpret predictions that are a result of
100 different decision rules.

As mentioned in the methodology chapter 4.6, the classifiers have no way of dealing with sam-
ples from malware families that were not part of the training set. Any such samples will directly
result in a misclassification. Efforts are therefore required to update the model as new malware
families are detected. Batch-learning algorithms are by far the most common methods used for bi-
nary and multinomial malware classification in the literature, and is also exclusively used in our
experiments. These methods assumes a stationary population and can not by themselves adapt to
population and concept drift1. A solution is therefore to continuously re-train the model using a

1Population drift is a phenomena that occurs when a population changes over time. This can be said for the malware
population, because it is continuously evolving for various reasons. For instance, malware is known to utilize new techniques
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updated training set. Alternatively one can utilize on-line machine learning methods. These are
methods that are designed to be continuously updated without having the re-train the entire model
[52].

We also do not know which of the samples are classified correctly and which are not. Based on
the F-Measures 14 for individual families we can say that predictions for some families are much
more certain than for other families.

7.2 Reproducibility of study

Apart from the challenges of dynamic analysis discussed in 6.1, there are no considerable challenges
in reproducing the experiment. All tools used in the experiment are both free and publicly available.
Most of the practical part can also be automated with the python scripts found in the appendix A.
The experiment can however be time consuming if only restricted resources are available. The
feature extraction and selection process would require almost two months of computational time
without running multiple processes in parallel. These processes can be run in parallel to the extent
of cores and memory available. For instance, Running the feature extraction and selection in 6
process would only require about 10 days.

The malware samples used in the experiment was collected from the AndroZoo repository [4].
Access to the dataset must be applied for, and access conditions can be found here 2.

to avoid detection, and to exploit new vulnerabilities[52]. The population drift will in time lead to statistical changes in the
features used to describe the concept of malware. New features may emerge, and others may become less significant. This
phenomena is named concept drift [5, 52].

2https://androzoo.uni.lu/access
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8 Future work

This chapter will discuss potential future work and possible improvements.

8.0.1 Updating model

As discussed in the conclusion chapter 7, the classifier needs to be continuously updated to account
for new malware families appearing and concept drift within the families that are already in the
training set.

Generally there are two approaches to this problem, on-line learning or re-training with a batch-
learning algorithm. In case of a batch-learning classifier, one must determine how long samples
should be kept in the training set. As new samples are added to the training set, the size will
quickly grow and the time required to train the model will increase. Moreover as samples get older
they might become less representative for the current threat landscape. Narayanan et al [52] found
that batch-learning systems should be re-trained daily, with a batch size of at least a year for the
binary malware detection problem. They argue that this process is computationally expensive with
respect to time and resources, and that on-line learning is better suited for the Android malware
detection problem.

Allix et al [5] states that the training set must be historically close to the testing set. The training
set should be recent to represent the current malware threat landscape. A challenge in a practical
setting is then to obtain new samples that already has a correct malware family label. Further allix
et al [5] states that the performance of a classifier can’t be maintained by simply updating the
training set with samples labeled by the classifier itself. Further work is required to determine how
the training set of a classifier should be updated in a sustainable manner.

8.0.2 Certainty of classifier predictions

As mentioned in the conclusion we can use the overall accuracy for individual families to say some-
thing about the certainty of the classifier predictions. For instance the Wateh, Gloken and mecor
families achieved a perfect F-Measure of 1 as show in 14. If a new samples is classified into one of
these families we can be more certain the prediction is correct, than if the sample is classified into
Ginmaster, which has the lowest F-measure in both the time-aware and time-unaware settings.

It would be interesting to investigate if the certainty for individual predictions can be used to
increase the performance of a classifier. The ExtraTrees algorithm uses the decision of 100 deci-
sion trees in order to make a prediction. If we set a lower threshold for the number of trees that
needs to agree on a family, and classify samples with uncertain predictions as "uncertain". Will the
performance of the classifier increase significantly compared to the number of samples labeled as
"uncertain"? It may be beneficial to have more certainty in the prediction at the cost of being unable
to classify some percentage of the samples.

70



Hybrid analysis for Android malware family classification in a time-aware setting

8.0.3 File-type analysis

During the experiment, we extracted statistics related to file-type occurrences within all the APK-
files in the dataset as a whole. We have shown that a wide range of file-types are found within
the APK-files in the dataset. The file-types that are most commonly included in the analysis are the
Android manifest, DEX files and in some studies native code files. Which means that a large portion
of the file-types are left out during analysis.

Malware authors will come up with creative ways to evade detection, and it is not unlikely
that files not considered by common malware detection systems will be utilized to hide malicious
payloads. Doing an extensive within malware family file-type analysis may help to identify new
trends and evasion techniques. As a result new features that can be used to describe malware
family behavior can be identified.

8.0.4 Dynamic analysis tool

In the background chapter 2.4 we discussed existing dynamic analysis tools. As highlighted by
Garcia et al [38], the weakness of these tools are that they were developed for older versions of the
Android platform. DroidBox[25] and CuckooDroid [27] both supports API level 16, while MobSF
[28] offers different analysis VMs up to API level 19 (released in 2013). The newest Android API
level at the time of writing is Android 9 Pie (API 28). An updated tool designed for large-scale
dynamic analysis and feature extraction for machine learning could greatly benefit the Android
malware research community.
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A Scripts

This chapter lists all the essential python script used in the project.

A.1 preprocessing.py

1 import os
2 import json
3 import numpy as np
4 from datetime import datetime
5

6 #Paths
7 PATH_CWD = os.getcwd() + "/"
8 PATH_METADATA = PATH_CWD + "new_dataset.csv"
9 PATH_DATASET = PATH_CWD + "datasets/"

10 PATH_STATIC_FEATURES = PATH_CWD + "static/"
11 PATH_STATIC_NATIVECODE = PATH_CWD + "nativecode/"
12 PATH_STATIC_HIDDENCODE = PATH_CWD + "hidden_dex/"
13 PATH_DYNAMC_DROIDBOX = PATH_CWD + "dynamic/droidbox/"
14 PATH_DYNAMC_STRACE = PATH_CWD + "dynamic/Strace/"
15 PATH_SPLIT1_DATA = PATH_CWD + "split1.csv"
16 PATH_SPLIT2_DATA = PATH_CWD + "split2.csv"
17

18 #Metadata indexes
19 FAMILY = 0
20 TYPE = 1
21 DEX_DATE = 2
22 APK_SIZE = 3
23 DEX_SIZE = 4
24

25 #globals
26 metadata = {}
27 family_hashes = {} # {"family": [hash1..n], ...}
28 families = [] # list of families in the dataset
29 errors = [] # list of hashes for samples that failed at some point
30 feature_set = [] # List of all features
31

32 #file extenstions
33 DBOX_EXT = ".json"
34 STATIC_EXT = "-analysis.json"
35 STRACE_EXT = ".csv"
36 NC_EXT = "-nc.json"
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37 HIDDEN_EXT = "-hidden.json"
38

39 #Combine api calls extracted from jar and dex files
40 COMBINE_JAR_DEX = False
41

42 #feature selection - features that occur in less
43 # than 3% of samples within family are removed
44 MIN_FEATURE_OCCURANCE = 3
45

46 """
47 Modify globals under this comment to modify
48 -features to be included in dataset
49 -change title of dataset file accoring
50 to features included
51 -if the dataset should be split into
52 training and testing
53 """
54

55 #features to include in dataset
56

57 #number of unique strings (too many to be loaded in Weka)
58 STRINGS = False
59

60 #Static
61 HIDDEN = True
62 STATIC = True
63 NATIVE = True
64

65 #Dynamic
66 DBOX = False
67 STRACE = False
68

69 #Metadata
70 METADATA = False
71

72 #Dataset filename: hybrid, dynamic, static
73 FEATURE_TITLE = "dynamic"
74

75 #How to split into training/testing (0,1,2). Split 0 is no split
76 SPLIT = 1
77 #For split 2
78 TIMELINE_SPLIT_DATE = datetime(2016, 1, 1, 0, 0, 0)
79

80

81 def dump_featureset(title):
82 with open(PATH_DATASET + title, "w+") as f:
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83 out = ""
84 for i in feature_set:
85 out += i + ","
86 f.write(out[:-1])
87

88 def load_featureset(title):
89 with open(PATH_DATASET + title, "r") as f:
90 return f.read().rsplit(",")
91

92 def read_metadata(selected_dataset):
93 """
94 Reads metadata from a csv file.
95 Expected format of csvfile:

hash,family,type,date,apksize,vtdetect,dexsize,markets+"\n"↪→

96

97 loads following globals:
98 metadata, families, family_hashes, errors
99 """

100 with open(PATH_METADATA, "r") as f:
101 for row in f:
102 s = row.replace("\n", "").rsplit(",")
103 hash = s[0]
104 if hash in selected_dataset:
105 try:
106 family = s[1]
107 type = s[2]
108 dexdate = datetime.strptime(s[3], "%Y-%m-%d %H:%M:%S")
109 apksize = int(s[4])
110 dexsize = int(s[6])
111

112 metadata[hash] = [family, type, dexdate, apksize, dexsize]
113 if family in families:
114 family_hashes[family].append(hash)
115 else:
116 family_hashes[family] = [hash]
117 families.append(family)
118 except:
119 errors.append(hash)
120 print("errors: ", errors)
121

122 def normalize_path(str):
123 """remove all numbers from path
124 e.g. /proc/23/cmdline = /proc//cmdline
125 """
126 return ''.join(i for i in str if not i.isdigit())
127
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128 def normalize_syscall(str):
129 '''
130 -Remove syscall parameters
131 -Returns "_excluded_" for system info that is not a syscall:
132 e.g. <... futex resumed>
133 '''
134 if str.startswith("<") or str.startswith("-") or str.startswith("+"):
135 return "_excluded_"
136 if "(" in str:
137 str = str.rsplit("(")[0]
138 return str
139

140 def preprocess_strings(hash):
141 filepath = PATH_STATIC_FEATURES + hash + STATIC_EXT
142 feature_dict = {}
143

144 with open(filepath, "r") as f:
145 json_data = json.load(f)
146

147 analysis = json_data["Static_analysis"]
148 strings = analysis["Strings"]
149

150 for k, v in strings.items():
151 feature_dict["S_String_" + k ] = v
152

153 return feature_dict
154

155 def preprocess_static(hash):
156 filepath = PATH_STATIC_FEATURES + hash + STATIC_EXT
157 feature_dict = {}
158

159 with open(filepath, "r") as f:
160 json_data = json.load(f)
161 analysis = json_data["Static_analysis"]
162 packagename = analysis["Package name"]
163 permissions = analysis["Permissions"]
164 opcodes = analysis["Opcodes"]
165 mainactivity = analysis["Main activity"]
166 apicalls = analysis["API calls"]
167 strings = analysis["Strings"]
168 apipackages = analysis["API packages"]
169 systemcmds = analysis["System commands"]
170 intents = analysis["Intents"]
171 activities = analysis["Activities"]
172 services = analysis["Services"]
173 receivers = analysis["Receivers"]
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174

175 #package name - Excluded
176 # feature = "S_PackageName_" + packagename
177 # feature_dict[feature] = 1
178

179 #Permissions
180 android_permissions = 0
181 custom_permissions = 0
182 for p in permissions:
183 if p.startswith("android"):
184 android_permissions += 1
185 else:
186 custom_permissions += 1
187 feature = "S_Permission_" + p
188 feature_dict["S_Permission_" + p ] = 1
189 feature_dict["S_Permission_NumAndroidPermissions"] = android_permissions
190 feature_dict["S_Permission_NumCustomPermissions"] = custom_permissions
191

192 #opcodes
193 for k, v in opcodes.items():
194 feature_dict["S_Opcode_" + k] = v
195

196 #mainactivity name - Exluded
197 # try:
198 # feature = "S_MainActivity_" + mainactivity
199 # feature_dict[feature] = 1
200 # except:
201 # pass
202 #api calls
203 for k, v in apicalls.items():
204 feature_dict["S_ApiCall_" + k] = v
205

206 #strings
207 len_100 = 0
208 len_200 = 0
209 len_300 = 0
210 len_400 = 0
211 len_500 = 0
212 len_1000 = 0
213 len_2500 = 0
214 len_5000 = 0
215 len_10000 = 0
216 len_15000 = 0
217 len_20000 = 0
218 num_strings = 0
219 for k, v in strings.items():
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220 num_strings += 1
221 if len(k) > 100:
222 len_100 += 1
223 if len(k) > 200:
224 len_200 += 1
225 if len(k) > 300:
226 len_300 += 1
227 if len(k) > 400:
228 len_400 += 1
229 if len(k) > 500:
230 len_500 += 1
231 if len(k) > 1000:
232 len_1000 += 1
233 if len(k) > 2500:
234 len_2500 += 1
235 if len(k) > 5000:
236 len_5000 += 1
237 if len(k) > 10000:
238 len_10000 += 1
239 if len(k) > 15000:
240 len_15000 += 1
241 if len(k) > 20000:
242 len_20000 += 1
243 feature_dict["S_String_len100"] = len_100
244 feature_dict["S_String_len200"] = len_200
245 feature_dict["S_String_len300"] = len_300
246 feature_dict["S_String_len400"] = len_400
247 feature_dict["S_String_len500"] = len_500
248 feature_dict["S_String_len1000"] = len_1000
249 feature_dict["S_String_len2500"] = len_2500
250 feature_dict["S_String_len5000"] = len_5000
251 feature_dict["S_String_len10000"] = len_10000
252 feature_dict["S_String_len15000"] = len_15000
253 feature_dict["S_String_len20000"] = len_20000
254 feature_dict["S_Strings"] = num_strings
255

256 #api packages
257 for k, v in apipackages.items():
258 feature_dict["S_ApiPackage_" + k] = v
259

260 #system commands
261 for k, v in systemcmds.items():
262 feature_dict["S_SystemCmd_" + k] = v
263

264 #intents
265 count = 0
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266 for k, v in intents.items():
267 feature_dict["S_Intent_" + k] = v
268 count += 1
269 feature_dict["S_Intents"] = count
270

271

272 #activities
273 count = 0
274 for k, v in activities.items():
275 count += 1
276 feature_dict["S_Activities"] = count
277

278 #services
279 count = 0
280 for k, v in services.items():
281 count += 1
282 feature_dict["S_Services"] = count
283

284 #receivers
285 count = 0
286 for k, v in receivers.items():
287 count += 1
288 feature_dict["S_Receivers"] = count
289

290 return feature_dict
291

292 def preprocess_dynamic_dbox(hash):
293 feature_dict = {}
294 filepath = PATH_DYNAMC_DROIDBOX + hash + DBOX_EXT
295

296 with open(filepath, "r") as f:
297 json_data = json.load(f)
298 accessedfiles = json_data["accessedfiles"]
299 closenet = json_data["closenet"]
300 cryptousage = json_data["cryptousage"]
301 dataleaks = json_data["dataleaks"]
302 dexclass = json_data["dexclass"]
303 enfperm = json_data["enfperm"]
304 fdaccess = json_data["fdaccess"]
305 opennet = json_data["opennet"]
306 phonecalls = json_data["phonecalls"]
307 recvnet = json_data["recvnet"]
308 recvsaction = json_data["recvsaction"]
309 sendnet = json_data["sendnet"]
310 sendsms = json_data["sendsms"]
311 servicestart = json_data["servicestart"]
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312

313 #Network
314 uniq_open_cons = []
315 for k, v in opennet.items():
316 con = v["desthost"] + ":" + v["destport"]
317 if con not in uniq_open_cons:
318 uniq_open_cons.append(con)
319 feature_dict["D_Network_UniqueOpenedConnections"] = len(uniq_open_cons)
320 uniq_closed_cons = []
321 for k, v in closenet.items():
322 """TODO VERIFY THAT THESE EXIST IN CLOSENET"""
323 con = v["desthost"] + ":" + v["destport"]
324 if con not in uniq_closed_cons:
325 uniq_closed_cons.append(con)
326 feature_dict["D_Network_UniqueClosedConnections"] = len(uniq_closed_cons)
327

328 size_pcts = 0
329 size_recv_pcts = 0
330 size_sent_pcts = 0
331 for k, v in recvnet.items():
332 len_data = len(v["data"])
333 size_pcts += len_data
334 size_recv_pcts += len_data
335 for k, v in sendnet.items():
336 len_data = len(v["data"])
337 size_pcts += len_data
338 size_sent_pcts += len_data
339 feature_dict["D_Network_SizePackets"] = size_pcts
340 feature_dict["D_Network_SizePackets_recv"] = size_recv_pcts
341 feature_dict["D_Network_SizePackets_sent"] = size_sent_pcts
342 feature_dict["D_Network_OpenedConnections"] = len(opennet)
343 feature_dict["D_Network_ClosedConnections"] = len(closenet)
344 feature_dict["D_Network_SentPackets"] = len(sendnet)
345 feature_dict["D_Network_ReceivedPackets"] = len(recvnet)
346

347 #Crypto
348 feature_dict["D_Crypto_Uasage"] = len(cryptousage)
349 cryptalg = []
350 cryptoop = {}
351 for k, v in cryptousage.items():
352 try:
353 alg = v["algorithm"]
354 if alg not in cryptalg:
355 cryptalg.append(alg)
356 except:
357 #algorithm is not always present for cryptooperations

84



Hybrid analysis for Android malware family classification in a time-aware setting

358 pass
359 op = v["operation"]
360 if op in cryptoop:
361 cryptoop[op] += 1
362 else:
363 cryptoop[op] = 1
364 for k,v in cryptoop.items():
365 feature_dict["D_CryptoOperation_" + k] = v
366 for alg in cryptalg:
367 feature_dict["D_Cryptoalgorithm_" + alg] = 1
368

369 #Dataleakage
370 types = []
371 size = 0
372 for k, v in dataleaks.items():
373 type = v["type"].replace(" ", "")
374 if type not in types:
375 size += len(v["data"])
376 types.append(type)
377 for t in types:
378 feature_dict["D_Dataleak_Type_" + t] = 1
379 feature_dict["D_Dataleak_Size"] = size
380 # Number of data leakage for each way numeric 3
381 feature_dict["D_Dataleak"] = len(dataleaks)
382

383 #Receivers
384 feature_dict["D_Receivers"] = len(recvsaction)
385

386 #Filesystem
387 feature_dict["D_Filesystem_AccessedFiles"] = len(accessedfiles)
388 operation = {}
389 paths = {}
390 for k, v in fdaccess.items():
391 op = v["operation"]
392 path = v["path"]
393 path = normalize_path(path)
394 if path in paths:
395 paths[path] += 1
396 else:
397 paths[path] = 1
398 if op in operation:
399 operation[op] += 1
400 else:
401 operation[op] = 1
402 for k, v in operation.items():
403 feature_dict["D_Filesystem_" + k ] = v
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404 for k, v in paths.items():
405 feature_dict["D_Filesystem_Fileaccess_" + k ] = v
406

407 #SMS/Phone
408 feature_dict["D_SMS_sent"] = len(sendsms)
409 feature_dict["D_Phonecalls"] = len(phonecalls)
410

411 #Dexclass usage
412 dexclassusage = {}
413 for k,v in dexclass.items():
414 if v["type"] in dexclassusage:
415 dexclassusage[v["type"]] +=1
416 else:
417 dexclassusage[v["type"]] = 1
418 for k, v in dexclassusage.items():
419 feature_dict["D_DexClassUsage_" + k] = v
420 feature_dict["D_DexClassUsage"] = len(dexclass)
421

422 #Services
423 feature_dict["D_StartedServices"] = len(servicestart)
424

425 #EnfPerm
426 feature_dict["D_EnforcedPermissions"] = len(enfperm)
427 for p in enfperm:
428 feature_dict["D_EnforcedPermission_" + p] = 1
429 p = p.rsplit(".")[-1]
430 feature_dict["D_EnforcedPermission_" + p] = 1
431

432 return feature_dict
433

434 def preprocess_dynamic_strace(hash):
435 feature_dict = {}
436 filepath = PATH_DYNAMC_STRACE + hash + STRACE_EXT
437

438 with open(filepath, "r") as csv:
439 for row in csv:
440 row = row.rsplit(",")
441 pid = row[1]
442 syscall = row[2]
443 syscall = normalize_syscall(syscall)
444 feature = "D_Strace_" + syscall
445 if feature in feature_dict:
446 feature_dict[feature] += 1
447 else:
448 feature_dict[feature] = 1
449 #Strace is run for pid 36, but forks are included
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450 if pid == "36":
451 syscall = "Pid36" + "_" + syscall
452 feature = "D_Strace_" + syscall
453 if feature in feature_dict:
454 feature_dict[feature] += 1
455 else:
456 feature_dict[feature] = 1
457 if "_excluded_" in feature_dict:
458 # returned by normalize_syscall() if row contains sysinfo and not

syscall↪→

459 feature_dict.pop("_excluded_")
460 return feature_dict
461

462 def preprocess_nativecode(hash):
463 feature_dict = {}
464 filepath = PATH_STATIC_NATIVECODE + hash + NC_EXT
465 with open(filepath, "r") as f:
466 feature_dict = json.load(f)
467 return feature_dict
468

469 def preprocess_hiddencode(hash):
470 feature_dict = {}
471 filepath = PATH_STATIC_HIDDENCODE + hash + HIDDEN_EXT
472 with open(filepath, "r") as f:
473 tmp_dict = json.load(f)
474

475 if COMBINE_JAR_DEX:
476 for k, v in tmp_dict.items():
477 if "S_H_Jar_ApiCalls_" in k:
478 k = k.replace("S_H_Jar_ApiCalls_", "S_H_Dex_ApiCalls_")
479

480 if k in feature_dict:
481 feature_dict[k] += v
482 else:
483 feature_dict[k] = v
484 else:
485 feature_dict = tmp_dict
486

487 return feature_dict
488

489 def preprocess_feature(hash):
490

491 sample_features = {}
492

493 if METADATA:
494 sample_features["M_Metadata_DEXSize"] = metadata[hash][DEX_SIZE]
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495 sample_features["M_Metadata_APKSize"] = metadata[hash][APK_SIZE]
496

497 if STATIC:
498 static = preprocess_static(hash)
499 sample_features.update(static)
500 if NATIVE:
501 nativecode = preprocess_nativecode(hash)
502 sample_features.update(nativecode)
503 if STRINGS:
504 strings = preprocess_strings(hash)
505 sample_features.update(strings)
506 if DBOX:
507 droidbox = preprocess_dynamic_dbox(hash)
508 sample_features.update(droidbox)
509 if STRACE:
510 strace = preprocess_dynamic_strace(hash)
511 sample_features.update(strace)
512

513 if HIDDEN:
514 hidden = preprocess_hiddencode(hash)
515 sample_features.update(hidden)
516

517 return sample_features
518

519 def select_features():
520 counter = 0
521 print(len(feature_set))
522 for family, hashes in family_hashes.items():
523 feature_counter = {}
524 percent_cut = round(len(hashes)/100*MIN_FEATURE_OCCURANCE)
525 for hash in hashes:
526 counter += 1
527 sample_features = preprocess_feature(hash)
528 for k, v in sample_features.items():
529 if k in feature_counter:
530 feature_counter[k] += 1
531 else:
532 feature_counter[k] = 1
533 if counter % 100 == 0:
534 print(counter)
535 for k, v in feature_counter.items():
536 if v > percent_cut:
537 if k not in feature_set:
538 feature_set.append(k)
539 print("len features: ", len(feature_set))
540 print(family)
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541

542 def fix_sample_features(sample_features):
543 #Only use selected features and fill missing with o
544 updated_features = {}
545 for feature in feature_set:
546 if feature in sample_features:
547 updated_features[feature] = sample_features[feature]
548 else:
549 updated_features[feature] = 0
550 return updated_features
551

552 def write_arff_header(title):
553 classes = ""
554 for fam in families:
555 classes += fam + ","
556 classes = classes[:-1]
557 with open(PATH_DATASET + title, "w") as f:
558 f.write("@RELATION \"" + "dataset" + "\"\n\n")
559 for feature in feature_set:
560 f.write("@ATTRIBUTE \"" + feature + "\" " + "NUMERIC" + "\n")
561 # f.write("@ATTRIBUTE \"" + "date" + "\" DATE \"yyyyMMdd\" \n")
562 f.write("@ATTRIBUTE class {" + classes + "}\n\n")
563 f.write("@DATA\n")
564

565 def write_dataset(title, dataset):
566 write_arff_header(title)
567 with open(PATH_DATASET + title, "a") as f:
568 for hash in dataset:
569 sample_features = preprocess_feature(hash)
570 sample_features = fix_sample_features(sample_features)
571 output = ""
572 for feature in feature_set:
573 output += str(sample_features[feature]) + ","
574 output += metadata[hash][FAMILY] + "\n"
575 f.write(output)
576

577 def split1():
578 training_set = []
579 testing_set = []
580 family_split_date = {}
581

582 for k, v in family_hashes.items():
583 hash_date = []
584 for hash in v:
585 date = metadata[hash][DEX_DATE]
586 hash_date.append([hash, date])
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587 hash_date = sorted(hash_date,key=lambda l:l[1])
588

589 num_samples = len(v)
590 part = int(num_samples/5)
591 training = hash_date[:part*4]
592 testing = hash_date[part*4:]
593

594 # statistics
595 first_date = training[0][1]
596 last_date = testing[-1][1]
597 split_date = training[-1][1]
598 family_split_date[k] = [first_date, split_date, last_date]
599

600 for i in training:
601 training_set.append(i[0])
602 for i in testing:
603 testing_set.append(i[0])
604

605 # Write split statistics
606 with open(PATH_SPLIT1_DATA, "w+") as f:
607 f.write("Family,Split date\n")
608 for k, v in family_split_date.items():
609 out = k
610 for d in v:
611 out += "," + str(d)
612 out += "\n"
613 f.write(out)
614

615 return training_set, testing_set
616

617 def split2(dataset):
618 training = []
619 testing = []
620 family_split_data = {}
621

622 #Split based on date
623 for hash in dataset:
624 date = metadata[hash][DEX_DATE]
625 family = metadata[hash][FAMILY]
626

627 if family not in family_split_data:
628 family_split_data[family] = [0,0]
629

630 if date > TIMELINE_SPLIT_DATE:
631 testing.append(hash)
632 family_split_data[family][1] += 1
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633 else:
634 training.append(hash)
635 family_split_data[family][0] += 1
636

637 # Write split statistics
638 with open(PATH_SPLIT2_DATA, "w+") as f:
639 f.write("Family,training,testing\n")
640 for k, v in family_split_data.items():
641 out = k + "," + str(v[0]) + "," + str(v[1]) + "\n"
642 f.write(out)
643

644 #Filter families with zero samples in the trainingset
645 for k, v in family_split_data.items():
646 remove = []
647 if v[0] == 0:
648 for hash in family_hashes[k]:
649 testing.remove(hash)
650

651 return training, testing
652

653 def main():
654 dataset = os.listdir(PATH_CWD + "download/done/")
655 for i in range(len(dataset)):
656 dataset[i] = dataset[i].replace(".apk", "")
657

658 read_metadata(dataset)
659 select_features()
660

661 if SPLIT == 1:
662 training, testing = split1()
663 write_dataset("ta1_training_" + FEATURE_TITLE + ".arff", training)
664 write_dataset("ta1_testing_" + FEATURE_TITLE + ".arff", testing)
665 elif SPLIT == 2:
666 training, testing = split2(dataset)
667 write_dataset("ta2_training_" + FEATURE_TITLE + ".arff", training)
668 write_dataset("ta2_testing_" + FEATURE_TITLE + ".arff", testing)
669 else:
670 write_dataset("tu_" + FEATURE_TITLE + ".arff", dataset)
671

672 main()

A.2 vt_report.py

1 #vt_report.py
2 '''
3 Requires a VirusTotal api key.
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4

5 Sends hashes to the VT API and recieves json reports containing
6 anti-virus decisions for each hash.
7 Write the reports to files named with the hash of the samples.
8 '''
9

10 import requests
11 import os
12 import numpy as np
13 import time
14

15 api_key = "INSERT_KEY_HERE"
16 url="https://www.virustotal.com/vtapi/v2/file/report"
17

18 #File containing hashes of all samples in dataset
19 PATH_DATASET = os.getcwd() + "/hashes"
20 PATH_LABELS = os.getcwd() + "/labels/"
21

22 def make_label_dir():
23 if not os.path.exists(PATH_LABELS):
24 os.makedirs(PATH_LABELS)
25

26 def get_dataset():
27 dataset = []
28 with open(PATH_DATASET, "r") as f:
29 for hash in f:
30 dataset.append(hash.replace("\n", ""))
31 #remove already downloaded
32 alrdy_found = os.listdir(PATH_LABELS)
33 for h in alrdy_found:
34 if h in dataset:
35 dataset.remove(h)
36 return dataset
37

38 def get_vt_reports(hashes, api_key, path):
39 print("[+] Started making requests to VirusTotal API")
40 counter = 1
41 for hash in hashes:
42 if counter%4 == 0:
43 time.sleep(60)
44

45 params = {'apikey': api_key, 'resource': hash}
46

47 try:
48 response = requests.get(url, params=params)
49 with open(path + hash, "w") as f:
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50 f.write(str(response.json()))
51 except:
52 print(hash)
53 counter += 1
54

55 def main():
56 print("[+] starting")
57 make_label_dir()
58 dataset = get_dataset()
59 get_vt_reports(dataset, api_key, PATH_LABELS)
60

61 if __name__ == "__main__":
62 main()

A.3 scrape_android_api.py

1 #scrape_android_api.py
2 import requests
3 import os
4 import re
5

6 PATH_LIB = os.getcwd() + "/lib/"
7 PATH_CLASS_LIST = PATH_LIB + "class_list.txt"
8 PATH_PACKAGE_LIST = PATH_LIB + "package_list.txt"
9

10

11 page = requests.get('https://developer.android.com/reference/packages')
12 html = str(page.text.encode(encoding='UTF-8'))
13

14 ## All packages can be found in this format:
15 # <a href="/reference/android/package-summary" class="devsite-nav-title">
16 raw_packages =

re.findall(r"/reference/\w+/*\w*/*\w*/*\w*/*\w*/*\w*/package-summary", html)↪→

17 for i, p in enumerate(raw_packages):
18 raw_packages[i] = p.replace("/reference", "").replace("package-summary", "")
19

20 package_dict = {}
21 for p in raw_packages:
22 p = p.replace("/", ".")[1:-1]
23 # p = p.rsplit(".")
24 if p in package_dict.items():
25 package_dict[p] += 1
26 else:
27 package_dict[p] = 1
28 print(len(package_dict))
29
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30 fin_pack = []
31 for k, v in package_dict.items():
32 words = k.rsplit(".")
33 part = ""
34 for w in words:
35 part += w + "."
36 if part[:-1] not in fin_pack:
37 fin_pack.append(part[:-1])
38

39 print(len(fin_pack))
40

41 with open(PATH_PACKAGE_LIST, "w+") as f:
42 for p in fin_pack:
43 f.write(p + "\n")
44

45 raw_classes = []
46 regex1 = r'reference'
47 regex2 = r'\w+\.*\w*\.*\w*\.*\w*\.*\w*'
48 for package in raw_packages:
49 raw_classes += re.findall(regex1 + re.escape(package) + regex2, html)
50

51

52 classes = []
53 for cl in raw_classes:
54 cl = cl.rsplit("/")
55 for c in cl:
56 if c[0].isupper():
57 classes.append(c)
58

59 fin_classes = []
60 class_dict = {}
61 for c in classes:
62 if c in class_dict:
63 class_dict[c] += 1
64 else:
65 class_dict[c] = 1
66

67

68 for k, v in class_dict.items():
69 words = k.rsplit(".")
70 part = ""
71 for w in words:
72 part += w + "."
73 if part[:-1] not in fin_classes:
74 fin_classes.append(part[:-1])
75
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76 with open(PATH_CLASS_LIST, "w+") as f:
77 for k, v in class_dict.items():
78 f.write(k + "\n")

A.4 select_samples_runtime_experiment.py

1 #select_samples_runtime_experiment.py
2 import os
3 import operator
4 import numpy as np
5 import random
6 import matplotlib.pyplot as plt
7

8 random.seed(23)
9

10 #Paths
11 PATH_CWD = os.getcwd() + "/"
12 PATH_HISTOGRAMS = PATH_CWD + "histograms/"
13 PATH_METADATA = PATH_CWD + "final_dataset.csv"
14 PATH_SELECTED_SAMPLES = PATH_CWD + "runtime_experiment_hashes.txt"
15

16 def write_selected_samples(selected_samples):
17 with open(PATH_SELECTED_SAMPLES, "w+") as f:
18 out = ""
19 for hash in selected_samples:
20 out += hash + "\n"
21 f.write(out)
22

23 def to_mb(bytes):
24 mb = bytes/(10**6)
25 div = int(mb/5)
26 return div*5 + 5
27

28 def create_histogram(data, title):
29 sorted_data = sorted(data.items(), key=operator.itemgetter(0))
30 index = []
31 labels = []
32 values = []
33

34 for i, d in enumerate(sorted_data):
35 index.append(i)
36 labels.append(str(d[0]))
37 values.append(d[1])
38

39 plt.close(1)
40 font = {'size' : 18}

95



Hybrid analysis for Android malware family classification in a time-aware setting

41 plt.rc('font', **font)
42 plt.figure(figsize=(12,6))
43 plt.bar(index, values)
44 plt.xticks(index, labels)
45 plt.ylabel("Number of samples")
46 plt.title(title)
47 plt.savefig(PATH_HISTOGRAMS + title + ".png")
48

49 def read_sample_sizes():
50 """
51 Reads apk size for hash from csv file.
52 Expected format of csvfile:

hash,family,type,date,apksize,vtdetect,dexsize,markets+"\n"↪→

53 """
54

55 sample_size = []
56 sizes = {}
57 with open(PATH_METADATA, "r") as f:
58 for row in f:
59 s = row.replace("\n", "").rsplit(",")
60 hash = s[0]
61 apksize = to_mb(int(s[4]))
62 if apksize in sizes:
63 sizes[apksize] += 1
64 else:
65 sizes[apksize] = 1
66

67 sample_size.append([hash, apksize])
68 return sample_size, sizes
69

70 def select_samples(sample_size):
71 selected_sizes = {}
72 selected_samples = []
73 sample_size = sorted(sample_size, key=operator.itemgetter(1))
74 split = np.array_split(sample_size, 100)
75 for array in split:
76 i = random.randint(0, len(array)-1)
77 selected_samples.append(array[i][0])
78 apksize = array[i][1]
79 apksize = int(apksize)
80 if apksize in selected_sizes:
81 selected_sizes[apksize] += 1
82 else:
83 selected_sizes[apksize] = 1
84 return selected_samples, selected_sizes
85
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86 sample_size, sizes = read_sample_sizes()
87 selected_samples, selected_sizes = select_samples(sample_size)
88 write_selected_samples(selected_samples)
89 create_histogram(sizes, "Dataset APK sizes")
90 create_histogram(selected_sizes, "Subset APK sizes")

A.5 get_min_sdk.py

1 from zipfile import ZipFile
2 import os
3 import androguard.core.bytecodes.apk as apk
4

5 PATH_SAMPLES = os.getcwd() + "/download/"
6

7 def get_minsdk(apk_path):
8 min_sdk = "999"
9 try:

10 app = apk.APK(apk_path)
11 min_sdk = app.get_min_sdk_version()
12 except:
13 pass
14 if min_sdk == None:
15 min_sdk = "999"
16 return min_sdk
17

18 def write_midsdk_for_samples():
19 samples = {}
20 counter = {}
21 for fn in os.listdir(PATH_SAMPLES):
22 fp = PATH_SAMPLES + fn
23 min_sdk = get_apk_info(fp)
24 samples[fn] = min_sdk
25 if min_sdk in counter:
26 counter[min_sdk] += 1
27 else:
28 counter[min_sdk] = 1
29

30 with open(os.getcwd() + "/minsdk", "w+") as f:
31 for k, v in samples.items():
32 if int(v) > 16:
33 f.write(k + "," + v + "\n")
34 print(counter)
35

36 def unzip(fn):
37 with ZipFile(PATH_SAMPLES + fn, "r") as zf:
38 hash = fn.replace(".apk", "")
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39 dir = PATH_SAMPLES + hash
40 zf.extractall(dir)
41

42 write_midsdk_for_samples()

A.6 construct_dataset.py

1 #construct_dataset.py
2 import json
3 import os
4 from datetime import datetime
5 import numpy as np
6 import matplotlib.pyplot as plt
7 from operator import itemgetter
8

9 start_time = datetime.now()
10

11 #Parameters
12 START_DATE = datetime(2014, 9, 1, 0, 0, 0)
13 END_DATE = datetime(2017, 1, 1, 0, 0, 0)
14 MIN_NUM_OF_SAMPLES = 50
15 MIN_DETECTED = 5
16

17 #Path to data
18 PATH_TO_LABELS = os.getcwd() + "/labels/names/proposed.json"
19 PATH_TO_TYPES = os.getcwd() + "/labels/types/proposed.json"
20 PATH_TO_RANKING = os.getcwd() + "/ranking_fams_" + str(MIN_DETECTED) + ".csv"
21 PATH_TO_ALIAS = os.getcwd() + "/alias"
22 PATH_TO_METADATA = os.getcwd() + "/latest.csv"
23 PATH_TO_EXTRACTED_METADATA = os.getcwd() + "/metadata.csv"
24 PATH_TO_DATASET = os.getcwd() + "/dataset.csv"
25 PATH_TO_HISTOGRAMS = os.getcwd() + "/histograms/"
26 PATH_TO_WHITELIST = os.getcwd() + "/whitelist"
27

28 #lastest.csv indexes (will be updated to metadata indexes after loaded)
29 SHA256 = 0
30 DEX_DATE = 3
31 APK_SIZE = 4
32 VT_DETECTION = 7
33 DEX_SIZE = 9
34 MARKETS = 10
35 FAMILY = None
36 TYPE = None
37

38 #Globals
39 metadata = {} # metadata pre-selection of samples
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40 families = {} #[hash, date, vt_detect]
41 selected = {} # {fam:[hash1...n]}
42 dataset = {} # metadata post-selection of samples
43

44 def update_indexes():
45 #update index variables
46 global FAMILY
47 global TYPE
48 global DEX_DATE
49 global APK_SIZE
50 global VT_DETECTION
51 global DEX_SIZE
52 global MARKETS
53 FAMILY = 0
54 TYPE = 1
55 DEX_DATE = 2
56 APK_SIZE = 3
57 VT_DETECTION = 4
58 DEX_SIZE = 5
59 MARKETS = 6
60

61 def remove_families_with_few_samples():
62 rem = []
63 for k, v in families.items():
64 if len(v) < MIN_NUM_OF_SAMPLES:
65 rem.append(k)
66 for fam in rem:
67 del families[fam]
68 remove = []
69 for k, v in metadata.items():
70 if v[FAMILY] in rem:
71 remove.append(k)
72 for hash in remove:
73 del metadata[hash]
74

75 def remove_aliases():
76 num_aliases = 0
77 aliases = []
78 with open(PATH_TO_ALIAS, "r") as f:
79 for line in f:
80 line = line.rsplit(" ")
81 aliases.append(line[0])
82

83 for alias in aliases:
84 if alias in families:
85 print(alias)
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86 del families[alias]
87 num_aliases += 1
88 remove = []
89 for k, v in metadata.items():
90 if v[FAMILY] in aliases:
91 remove.append(k)
92 for hash in remove:
93 del metadata[hash]
94 print("Number of aliases: ", num_aliases)
95

96 def load_androzoo_metadata():
97 num_missing_dates = 0
98 #load labels
99 with open(PATH_TO_LABELS, "r") as f:

100 labels = json.load(f)
101 #load types
102 with open(PATH_TO_TYPES, "r") as f:
103 types = json.load(f)
104 #read AndroZoo metadata
105 with open(PATH_TO_METADATA, "r") as f:
106 for row in f:
107 row = row.rsplit(",")
108 hash = row[SHA256].lower()
109 try:
110 detect = int(row[VT_DETECTION])
111 except:
112 detect = 0
113 # if date format invalid or missing the following if statement is

false↪→

114 try:
115 date = datetime.strptime(row[DEX_DATE], "%Y-%m-%d %H:%M:%S")
116 except:
117 num_missing_dates += 1
118 date = END_DATE
119 if hash in labels and date > START_DATE and date < END_DATE and

detect >= MIN_DETECTED:↪→

120 family = labels[hash]
121 try:
122 type = types[hash]
123 except:
124 type = ""
125 mdata = [family,
126 type,
127 date,
128 row[APK_SIZE],
129 row[VT_DETECTION],
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130 row[DEX_SIZE],
131 row[MARKETS]]
132 metadata[row[SHA256].lower()] = mdata
133 #load families dict
134 fdata = [hash, date, row[VT_DETECTION]]
135 if family in families:
136 families[family].append(fdata)
137 else:
138 families[family] = [fdata]
139 print("Number of missing dates:", num_missing_dates)
140

141 def extract_metadata():
142 load_androzoo_metadata()
143 update_indexes()
144 remove_families_with_few_samples()
145 #list of aliases from AVClass github repository
146 remove_aliases()
147

148 def select_samples():
149 global selected
150 global dataset
151 t1 = None
152 t2 = None
153

154 #List of manually confirmed malware families
155 whitelist = get_whitelist()
156

157 for k, v in families.items():
158 if k in whitelist:
159 num_to_select = get_num_to_select(len(v))
160 selected[k] = []
161 if num_to_select >= 150:
162 v = sorted(v, key=itemgetter(1))
163 v = np.array_split(v, MIN_NUM_OF_SAMPLES)
164 select = int(num_to_select/MIN_NUM_OF_SAMPLES)
165 for samples in v:
166 samples = sorted(samples, key=itemgetter(2), reverse=True)
167 for i in range(select):
168 selected[k].append(samples[i][0])
169 else:
170 for sample in v:
171 selected[k].append(sample[0])
172 #generate metadata for selected dataset
173 for k, v in selected.items():
174 print(k, len(v))
175 for hash in v:
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176 dataset[hash] = metadata[hash]
177

178 def write_metadata(metadata, path):
179 with open(path, "w+") as f:
180 for k, v in metadata.items():
181 out = str(k)
182 for i in v:
183 out += "," + str(i)
184 f.write(out)
185

186 def write_ranking(families, filepath):
187 ranking = []
188 for k, v in families.items():
189 ranking.append([k, len(v)])
190 ranking = sorted(ranking, key=itemgetter(1), reverse=True)
191 with open(filepath, "w+") as f:
192 for r in ranking:
193 f.write(str(r[0]) + "," + str(r[1]) + "\n")
194

195 def get_num_to_select(n):
196 if n >= 20000:
197 return 2000
198 elif n >= 10000:
199 return 1000
200 elif n >= 3000:
201 return 500
202 elif n >= 1000:
203 return 300
204 elif n >= 150:
205 return 150
206 else:
207 return n
208

209 def get_whitelist():
210 whitelist = []
211 with open(PATH_TO_WHITELIST, "r") as f:
212 whitelist = f.read().rsplit(",")
213 return whitelist
214

215 extract_metadata()
216 select_samples()
217 write_metadata(dataset, PATH_TO_DATASET)
218 write_ranking(families, PATH_TO_RANKING)
219

220 #print runtime
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221 print(datetime.now() - start_time)

A.7 get_dataset.py

1 import urllib.request as ur
2 import os
3 import numpy as np
4 import argparse
5

6 PATH_TO_DATASET = os.getcwd() + "/dataset.csv"
7 PATH_TO_DOWNLOADS = os.getcwd() + "/download/"
8 PATH_TO_EXCLUDE = os.getcwd() + "/downloaded"
9 PATH_TO_SPLIT = os.getcwd() + "/split"

10 API_KEY = "INSERT_API_KEY_HERE"
11 url = "https://androzoo.uni.lu/api/download?apikey=" + API_KEY + "&sha256="
12

13 download = {}
14

15 def get_arguments():
16 parser = argparse.ArgumentParser()
17 parser.add_argument("-p", "--part", default=0, type=int, help="Part of

dataset to download 0,1,2, 4")↪→

18 return parser.parse_args()
19

20 def make_down_dir():
21 if not os.path.exists("download"):
22 os.makedirs("download")
23

24 def get_dataset_hashes():
25 with open(PATH_TO_DATASET, "r") as f:
26 for l in f:
27 hash = l.rsplit(",")[0]
28 download[hash] = None
29

30 def filter_already_downloaded():
31 already_downloaded = os.listdir(PATH_TO_DOWNLOADS)
32 for apk in already_downloaded:
33 hash = apk.replace(".apk", "")
34 if hash in download:
35 del download[hash]
36

37 def split_download(n = 4):
38 make_down_dir()
39 get_dataset_hashes()
40 filter_already_downloaded()
41 hashes = []
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42 for hash, v in download.items():
43 hashes.append(hash)
44 div = np.array_split(hashes, n)
45 for i, d in enumerate(div):
46 with open(PATH_TO_SPLIT + str(i), "w+") as f:
47 for h in d:
48 f.write(h + "\n")
49

50 def download_part(part):
51 make_down_dir()
52 with open(PATH_TO_SPLIT + part, "r") as f:
53 for i, hash in enumerate(f):
54 hash = hash.replace("\n", "")
55 try:
56 ur.urlretrieve(url + hash, PATH_TO_DOWNLOADS + hash)
57 except:
58 print(hash)
59

60 args = get_arguments()
61 download_part(str(args.part))

A.8 re_label.py

1 #re_label.py
2 import os
3 import json
4

5 #Path labels
6 PATH_CWD = os.getcwd() + "/"
7 # PATH_OLD_LABELS = PATH_CWD + "/labels/names/proposed.json"
8 # PATH_NEW_EUPHONY_LABELS = PATH_CWD + "/output/proposed.json"
9 PATH_NEW_AVCLASS_LABELS = PATH_CWD + "/output/avclass.verbose"

10 PATH_DATASET = PATH_CWD + "/dataset.csv"
11 PATH_NEW_DATASET = PATH_CWD + "/final_dataset.csv"
12 PATH_RANKING = PATH_CWD + "/final_ranking.csv"
13 PATH_FILTER_MINSDK = PATH_CWD + "/minsdk.filter"
14 PATH_FILTER_INVALID = PATH_CWD + "/invalid.filter"
15 PATH_FILTER_CANNOTRUN = PATH_CWD + "/cannotrun.filter"
16

17 #Metadata indexes
18 HASH = 0
19 FAMILY = 1
20 TYPE = 2
21 DATE = 3
22 APK_SIZE = 4
23 DETECT = 5
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24 DEX_SIZE = 6
25 MARKET = 7
26

27 MIN_NUM_OF_SAMPLES = 50
28

29 avclass = {}
30 avclass_fams = {}
31 dataset = {}
32

33 def load_filter(filepath):
34 filter = []
35 with open(filepath, "r") as f:
36 for line in f:
37 filter.append(line.replace("\n", ""))
38 return filter
39

40 def load_avclass_labels():
41 with open(PATH_NEW_AVCLASS_LABELS, "r") as f:
42 for l in f:
43 tmp = l.rsplit("\t")
44 if tmp[1] != "[]\n":
45 fam = tmp[1].rsplit("',")[0].replace("[('", "")
46 hash = tmp[0]
47 avclass[hash] = fam
48 if fam in avclass_fams:
49 avclass_fams[fam] += 1
50 else:
51 avclass_fams[fam] = 1
52

53 def remove_families_with_few_samples(families):
54 rem = []
55 for k, v in families.items():
56 if v < MIN_NUM_OF_SAMPLES:
57 rem.append(k)
58 for fam in rem:
59 del families[fam]
60 remove = []
61 for k, v in avclass.items():
62 if v in rem:
63 remove.append(k)
64 for hash in remove:
65 del avclass[hash]
66

67 def relabel():
68 with open(PATH_DATASET, "r") as f:
69 for s in f:
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70 s = s.rsplit(",")
71 hash = s[HASH]
72 if hash in avclass:
73 dataset[hash] = [avclass[hash], s[TYPE], s[DATE], s[APK_SIZE],

s[DETECT], s[DEX_SIZE], s[MARKET]]↪→

74

75 def write_dataset():
76 with open(PATH_NEW_DATASET, "w+") as f:
77 for k, v in dataset.items():
78 out = str(k)
79 for i in v:
80 out += "," + str(i)
81 f.write(out)
82

83 def apply_filters():
84 # Features could not be extracted from some of the samples
85 # These are removed from the final dataset
86 filter = load_filter(PATH_FILTER_MINSDK)
87 filter += load_filter(PATH_FILTER_INVALID)
88 filter += load_filter(PATH_FILTER_CANNOTRUN)
89

90 print(len(filter))
91

92 for apk in filter:
93 hash = apk.replace(".apk", "")
94 if hash in dataset:
95 del dataset[hash]
96

97 def write_ranking():
98 ranking = {}
99 for k, v in dataset.items():

100 fam = v[0]
101 if fam in ranking:
102 ranking[fam] += 1
103 else:
104 ranking[fam] = 1
105

106 with open(PATH_RANKING, "w+") as f:
107 for k, v in ranking.items():
108 out = str(k) + "," + str(v) + "\n"
109 f.write(out)
110

111 load_avclass_labels()
112 remove_families_with_few_samples(avclass_fams)
113 relabel()
114 apply_filters()
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115 write_dataset()
116 write_ranking()

A.9 extract_hidden_code.py

1 #extract_hidden_code.py
2

3 """
4 Requires dex2jar:
5 -Download: https://github.com/pxb1988/dex2jar
6 -Unzip
7 -set environment path to folder
8 """
9

10 import subprocess
11 import re
12 import shutil
13 from zipfile import ZipFile
14 import os
15 # pip install python-magic
16 import magic
17 import json
18 import time
19 import argparse
20 #pip install numpy
21 import numpy as np
22 from datetime import datetime
23 start = datetime.now()
24

25 PATH_CWD = os.getcwd() + "/"
26 PATH_SAMPLES = PATH_CWD + "download/done/"
27 PATH_HIDDEN_FILES = PATH_CWD + "hidden_dex/"
28 PATH_SMALI_DIR = PATH_CWD + "smali/"
29 PATH_LIB = PATH_CWD + "lib/"
30 PATH_TMP = PATH_CWD + "tmp_dex/"
31 PATH_JAR_TO_DEX = PATH_TMP + "jar.dex"
32

33 # loaded when looking for native code...
34 stat = {} # [num_dex, dex_ext, cannot disasemble, num_apk, ext_apk, num_jar,

jar_ext, cannot disasemble]↪→

35

36 def get_arguments():
37 parser = argparse.ArgumentParser()
38 parser.add_argument("-p", "--part", default=1337, type=int, help="Part of

dataset to label 0,1,2")↪→
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39 parser.add_argument("-s", "--split", default=1337, type=int, help="spilt
into n parts")↪→

40 return parser.parse_args()
41

42 def write_stat():
43 with open(PATH_CWD + "hidden_stats.csv", "w+") as f:
44 for k, v in stat.items():
45 out = str(k)
46 for i in v:
47 out += "," + str(i)
48 out += "\n"
49 f.write(out)
50

51 def remove_dir(dir):
52 shutil.rmtree(dir, ignore_errors=True)
53

54 def unzip(path):
55 with ZipFile(path, "r") as zf:
56 if "." in path:
57 dir = path.rsplit(".")[0]
58 else:
59 dir = path + "_noext"
60 zf.extractall(dir)
61 return dir + "/"
62

63 def find_hidden_dex_jar(dir, hash, features, depth=0):
64 dex = []
65 jar = []
66 ext = "noext"
67 if hash not in stat:
68 stat[hash] = [0,0,0,0,0,0,0,0]
69 for root, dirs, files in os.walk(dir):
70 for file in files:
71 file = os.path.join(root, file)
72

73 #find extension
74 if "." in file:
75 ext = file.rsplit(".")[-1]
76

77 #find file type using magic header
78 try:
79 filetype = magic.from_file(file)
80 except:
81 filetype = "invalid"
82

83 #Look for files in zip archives or apk files
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84 #APK and JAR files are of the same filetypes
85 #APK file will contain classes.dex file
86 if "JAR" in filetype:
87 APK = False
88 try:
89 unziped = unzip(file)
90 if os.path.exists(unziped + "classes.dex"):
91 APK = True
92

93 if APK:
94 features["S_H_File_Apk_size"] += os.path.getsize(file)
95 stat[hash][3] += 1
96 if ext == "apk":
97 stat[hash][4] += 1
98 else:
99 features["S_H_incorrectExtension"] += 1

100 features["S_H_incorrectExtension_" + ext] = 1
101 tmp_dex, tmp_jar, features =

find_hidden_dex_jar(unziped, hash, features, 1)↪→

102 dex += tmp_dex
103 jar += tmp_jar
104

105 else: #its most likley a .jar file
106 features["S_H_File_Jar_size"] += os.path.getsize(file)
107 stat[hash][5] += 1
108 if ext == "jar":
109 stat[hash][6] += 1
110 else:
111 features["S_H_incorrectExtension"] += 1
112 features["S_H_incorrectExtension_" + ext] = 1
113 jar.append(file)
114 except:
115 print("Not zip archive..?")
116

117

118 #Find dex files
119 if "Dalvik dex" in filetype:
120 features["S_H_File_Dex_size"] += os.path.getsize(file)
121 default_dex = file.replace(dir, "")
122 if default_dex != "classes.dex" and default_dex !=

"classes2.dex":↪→

123 dex.append(file)
124 stat[hash][0] += 1
125 if ext == "dex":
126 stat[hash][1] += 1
127 elif depth > 0:
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128 dex.append(file)
129 stat[hash][0] += 1
130 if ext == "dex":
131 stat[hash][1] += 1
132

133 return dex, jar, features
134

135 def list_smali_files(dir):
136 smali_files = []
137 for root, dirs, files in os.walk(dir):
138 for file in files:
139 file = os.path.join(root, file)
140 if file.endswith(".smali"):
141 smali_files.append(file)
142 return smali_files
143

144 def initiate_feature_dict():
145 features = {}
146 features["S_H_String_len100"] = 0
147 features["S_H_String_len200"] = 0
148 features["S_H_String_len300"] = 0
149 features["S_H_String_len400"] = 0
150 features["S_H_String_len500"] = 0
151 features["S_H_String_len1000"] = 0
152 features["S_H_String_len2500"] = 0
153 features["S_H_String_len5000"] = 0
154 features["S_H_String_len10000"] = 0
155 features["S_H_String_len15000"] = 0
156 features["S_H_String_len20000"] = 0
157 features["S_H_Strings"] = 0
158 features["S_H_NumAndroidApiCalls"] = 0
159 features["S_H_NumOtherApiCalls"] = 0
160 features["S_H_File_Dex_size"] = 0
161 features["S_H_File_Jar_size"] = 0
162 features["S_H_File_Apk_size"] = 0
163 features["S_H_incorrectExtension"] = 0
164 return features
165

166 def parse_smali_files(files, features, system_cmds, class_list, package_list,
prefix):↪→

167 num_android_api_calls = 0
168 num_other_api_calls = 0
169 for file in files:
170 with open(file, "r") as f:
171 lines = f.readlines()
172 for line in lines:
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173 line = line.strip()
174

175 if "const-string" in line:
176 string = line.rsplit(", \"")[-1].replace("\"", "")
177 features["S_H_Strings"] += 1
178 if len(string) > 100:
179 features["S_H_String_len100"] += 1
180 if len(string) > 200:
181 features["S_H_String_len200"] += 1
182 if len(string) > 300:
183 features["S_H_String_len300"] += 1
184 if len(string) > 400:
185 features["S_H_String_len400"] += 1
186 if len(string) > 500:
187 features["S_H_String_len500"] += 1
188 if len(string) > 1000:
189 features["S_H_String_len1000"] += 1
190 if len(string) > 2500:
191 features["S_H_String_len2500"] += 1
192 if len(string) > 5000:
193 features["S_H_String_len5000"] += 1
194 if len(string) > 10000:
195 features["S_H_String_len10000"] += 1
196 if len(string) > 15000:
197 features["S_H_String_len15000"] += 1
198 if len(string) > 20000:
199 features["S_H_String_len20000"] += 1
200

201 #Look for cmds in strings
202 if string in system_cmds:
203 if "S_H_SystemCmd_" + string in features:
204 features["S_H_SystemCmd_" + string] += 1
205 else:
206 features["S_H_SystemCmd_" + string] = 1
207

208 if "invoke-" in string:
209 feature = "S_H_String_" + string
210 if feature in features:
211 features[feature] += 1
212 else:
213 features[feature] = 1
214

215 elif "invoke-" in line:
216

217 line = line.rsplit("}, ")[1].rsplit(";->")
218 if len(line) == 1:
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219 continue
220

221 method = line[1].rsplit("(")[0]
222 if method.startswith("<init>"): #ignore init method
223 continue
224

225 package = line[0]
226 if package.startswith("[L"):
227 package = package[2:]
228 elif package.startswith("L"):
229 package = package[1:]
230 else:
231 continue
232

233 package = package.replace("/", ".")
234 api_call = package.rsplit(".")
235 pkg = ""
236 cls = ""
237 android_package = False
238

239 for api in api_call:
240 if pkg + api in package_list:
241 pkg += api + "."
242 android_package = True
243 else:
244 break
245

246 if android_package:
247 api_call = package.replace(pkg, "")
248 api_call = api_call.rsplit(".")
249 for api in api_call:
250

251 if cls + api in class_list:
252 cls += api + "."
253 else:
254 num_other_api_calls += 1
255 continue
256 # Not valid android api call
257

258 api_call = pkg + cls + method
259

260 num_android_api_calls += 1
261 api = ""
262 api_call = api_call.rsplit(".")
263 for word in api_call:
264 api += word + "."

112



Hybrid analysis for Android malware family classification in a time-aware setting

265 feature = prefix + api[:-1]
266 if feature in features:
267 features[feature] += 1
268 else:
269 features[feature] = 1
270 else:
271 num_other_api_calls += 1
272

273 features["S_H_NumAndroidApiCalls"] += num_android_api_calls
274 features["S_H_NumOtherApiCalls"] += num_other_api_calls
275

276 return features
277

278 def disas_dex(dex_file):
279 proc = subprocess.run(["d2j-dex2smali.sh", "--force", "--output",

PATH_SMALI_DIR, dex_file], encoding='utf-8', stdout=subprocess.PIPE,
stderr=subprocess.PIPE)

↪→

↪→

280 smali_dir = proc.stderr.rsplit(" -> ")[-1].replace("\n", "").replace(" ",
"")↪→

281 return smali_dir
282

283 def disas_jar(jar_file):
284 proc = subprocess.run(["d2j-jar2dex.sh", "--force", "--output",

PATH_JAR_TO_DEX, jar_file], encoding='utf-8', stdout=subprocess.PIPE,
stderr=subprocess.PIPE)

↪→

↪→

285 line = proc.stdout.rsplit("\n")
286 dex_file = line[0].rsplit(" -> ")[-1].replace("\n", "").replace(" ", "")
287 smali_dir = disas_dex(dex_file)
288 return smali_dir
289

290 def extract_features(apk, system_cmds, class_index, package_index):
291 features = initiate_feature_dict()
292 hash = apk.replace(".apk", "")
293 dir = unzip(PATH_SAMPLES + apk)
294 dex, jar, features = find_hidden_dex_jar(dir, hash, features)
295

296 for dex_file in dex:
297 # try:
298 prefix = "S_H_Dex_ApiCalls_"
299 smali_dir = disas_dex(dex_file)
300 smali_files = list_smali_files(smali_dir)
301 features = parse_smali_files(smali_files, features, system_cmds,

class_index, package_index, prefix)↪→

302 remove_dir(smali_dir)
303 # except:
304 # stat[hash][2] += 1
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305 # print("Error while analysing dex file: ", dex_file)
306

307 for jar_file in jar:
308 # try:
309 prefix = "S_H_Jar_ApiCalls_"
310 smali_dir = disas_jar(jar_file)
311 smali_files = list_smali_files(smali_dir)
312 features = parse_smali_files(smali_files, features, system_cmds,

class_index, package_index, prefix)↪→

313 remove_dir(smali_dir)
314 # except:
315 # stat[hash][7] += 1
316 # print("Error while analysing jar file: ", jar_file)
317

318 remove_dir(dir)
319 return features
320

321 def load_info():
322 with open(PATH_LIB + "cmds.txt", "r") as f:
323 system_cmds = f.readlines()
324 system_cmds = [x.replace("\n", "") for x in system_cmds]
325 with open(PATH_LIB + "class_list.txt", "r") as f:
326 class_index = f.readlines()
327 class_index = [x.replace("\n", "") for x in class_index]
328 with open(PATH_LIB + "package_list.txt", "r") as f:
329 package_index = f.readlines()
330 package_index = [x.replace("\n", "") for x in package_index]
331 return system_cmds, class_index, package_index
332

333 def main():
334 global PATH_SMALI_DIR
335 #Load known feature names
336 system_cmds, class_index, package_index = load_info()
337

338 #parallelize
339 args = get_arguments()
340 part = args.part
341 split = args.split
342

343 apks = os.listdir(PATH_SAMPLES)
344

345 #Filter done
346 # done = os.listdir(PATH_HIDDEN_FILES)
347 # print("TODO: ", len(apks))
348 # for apk in done:
349 # apk = apk.replace("-hidden.json", ".apk")
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350 # if apk in apks:
351 # apks.remove(apk)
352 # print("filtered done - TODO: ", len(apks))
353

354 #If split work
355 if split != 1337:
356 apks = np.array_split(apks, split)[part]
357 PATH_SMALI_DIR = PATH_CWD + "smali" + str(part) + "/"
358 print("after split - TODO: ", len(apks)/3)
359

360 #Create dir for feature files
361 if not os.path.exists(PATH_HIDDEN_FILES):
362 os.mkdir(PATH_HIDDEN_FILES)
363 if not os.path.exists(PATH_SMALI_DIR):
364 os.mkdir(PATH_SMALI_DIR)
365 if not os.path.exists(PATH_TMP):
366 os.mkdir(PATH_TMP)
367

368

369 #Extract features
370 for i, apk in enumerate(apks):
371 if ".apk" in apk:
372 features = extract_features(apk, system_cmds, class_index,

package_index)↪→

373 filename = apk.replace(".apk", "-hidden.json")
374 with open(PATH_HIDDEN_FILES + filename, "w+") as f:
375 f.write(json.dumps(features))
376 if i % 100 == 0:
377 print(i)
378 print(datetime.now()-start)
379 # break
380

381 write_stat()
382 print(datetime.now()-start)
383

384 main()

A.10 extract_native_code.py

1 #extract_native_code.py
2

3 import subprocess
4 import re
5 import shutil
6 from zipfile import ZipFile
7 import os
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8 import magic
9 import json

10 import time
11 import argparse
12 import numpy as np
13 #pip3 install pyelftools
14 from elftools.elf.elffile import ELFFile
15 from elftools.elf.descriptions import describe_sh_flags
16 from datetime import datetime
17 start = datetime.now()
18

19 PATH_CWD = os.getcwd() + "/"
20 PATH_EXTENSIONS = PATH_CWD + "extensions.csv"
21 PATH_FILETYPES = PATH_CWD + "filetypes.csv"
22 PATH_SAMPLES = PATH_CWD + "/download/done/"
23 PATH_NC = PATH_CWD + "/nativecode/"
24

25 #sudo apt install gcc-arm-none-eabi
26 OBJDUMP_ARM = "arm-none-eabi-objdump"
27

28 #Valid chars for feature names
29 alp = "abcdefghijklmnopqrstuvwxyz"
30 num = "1234567890"
31 special = "._"
32 VALID_CHRS = num + alp + alp.upper() + special
33

34

35 # loaded when looking for native code...
36 ftypes = {}
37 extensions = {}
38 num_nc = {} # [nc, arm, arm fails, not arm same name arm]
39

40 def get_arguments():
41 parser = argparse.ArgumentParser()
42 parser.add_argument("-p", "--part", default=1337, type=int, help="Part of

dataset to label 0,1,2")↪→

43 parser.add_argument("-s", "--split", default=1337, type=int, help="spilt
into n parts")↪→

44 return parser.parse_args()
45

46 def is_printable(str):
47 for ch in str:
48 if ch not in VALID_CHRS:
49 return False
50 return True
51
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52 def get_architecuture(filepath):
53 arch = magic.from_file(filepath)
54 tmp = arch.rsplit(",")
55 arch = tmp[1][1:].replace(" ", "")
56 return arch.lower()
57

58 def write_dict(filepath, dict, list=False):
59 with open(filepath, "w+") as f:
60 for k, v in dict.items():
61 out = str(k)
62 if list:
63 for i in v:
64 out += "," + str(i)
65 else:
66 out += "," + str(v)
67 out += "\n"
68 f.write(out)
69

70 def remove_dir(dir):
71 shutil.rmtree(dir, ignore_errors=True)
72

73 def unzip(path):
74 with ZipFile(path, "r") as zf:
75 if "." in path:
76 dir = path.rsplit(".")[0]
77 else:
78 dir = path + "_noext"
79 zf.extractall(dir)
80 return dir + "/"
81

82 def find_native_code(dir):
83 nc = {}
84 for root, dirs, files in os.walk(dir):
85 for file in files:
86 file = os.path.join(root, file)
87 if "." in file:
88 ext = file.rsplit(".")[-1]
89 else:
90 ext = "noext"
91 #Statistics for report:
92 #Extensions in dataset
93 if ext in extensions:
94 extensions[ext] += 1
95 else:
96 extensions[ext] = 1
97 try:
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98 filetype = magic.from_file(file)
99 except:

100 filetype = "invalid"
101 #File types in dataset
102 if filetype in ftypes:
103 ftypes[filetype] += 1
104 else:
105 ftypes[filetype] = 1
106

107 if "archive" in filetype:
108 try:
109 unziped = unzip(file)
110 nc.update(find_native_code(unziped))
111 except:
112 print("Not zip archive..?")
113 if "ELF" in filetype:
114 nc[file] = ext
115 return nc
116

117 def get_header_info(filepath, arch, features):
118 """"
119 An APK might have multiple NC files, from multiple architectures,
120 Features are counted per architecture.
121 """
122 #Number of NC files per architecture
123 prefix = "S_NC_" + arch + "_"
124 if prefix in features:
125 features[prefix] += 1
126 else:
127 features[prefix] = 1
128

129 with open(filepath, "rb") as f:
130 elffile = ELFFile(f)
131 elfheader = elffile.header
132

133 #Number of program headers
134 feature = prefix + "ProgramHeaders"
135 if feature in features:
136 features[feature] += elfheader["e_phnum"]
137 else:
138 features[feature] = elfheader["e_phnum"]
139

140 #Program header size
141 feature = prefix + "ProgramHeader_Size"
142 if feature in features:
143 features[feature] += elfheader["e_phentsize"]

118



Hybrid analysis for Android malware family classification in a time-aware setting

144 else:
145 features[feature] = elfheader["e_phentsize"]
146

147 #Number of sections headers
148 feature = prefix + "Sections"
149 if feature in features:
150 features[feature] += elffile.num_sections()
151 else:
152 features[feature] = elffile.num_sections()
153

154 #Size of section headers
155 feature = prefix + "SectionHeader_Size"
156 if feature in features:
157 features[feature] += elfheader['e_shentsize']
158 else:
159 features[feature] = elfheader['e_shentsize']
160

161 #Size of sections and flags
162 for section in elffile.iter_sections():
163 if is_printable(section.name):
164 s_prefix = prefix + "Section_" + section.name
165

166 # Size
167 feature = s_prefix + "Size"
168 if feature in features:
169 features[feature] += section["sh_size"]
170 else:
171 features[feature] = section["sh_size"]
172 # Flags
173 flags = describe_sh_flags(section["sh_flags"])
174 for flag in flags:
175 feature = s_prefix + "_Flag_" + flag
176 if feature not in features:
177 features[feature] = 1
178 return features
179

180 def get_external_calls(filepath, arch, features):
181 if arch == "arm":
182 objdump = OBJDUMP_ARM
183 else:
184 print("Unknown architecture")
185 return features
186

187 proc = subprocess.run([objdump, "-d", filepath], encoding='utf-8',
stdout=subprocess.PIPE)↪→

188 prefix = "S_NC_" + arch + "_pltCall_"
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189 for line in proc.stdout.rsplit("\n"):
190 if "@plt" in line and line.endswith(">"):
191 call = line.rsplit("<")[-1].rsplit("@")[0]
192 feature = prefix + call
193 if feature in features:
194 features[feature] += 1
195 else:
196 features[feature] = 1
197 return features
198

199 def extract_features(apk):
200 features = {}
201 dir = unzip(PATH_SAMPLES + apk)
202 nc = find_native_code(dir)
203 hash = apk.replace(".apk", "")
204 num_nc[hash] = [0,0,0,0]
205 num_nc[hash][0] = len(nc)
206 names_arm = []
207 names_not_arm = []
208 for k, v in nc.items():
209 # Inconsistant extension for .so file
210 if v != "so" and v != "noext":
211 # print("wrong ext: ", v)
212 if "S_NC_IncorrectExtensions" in features:
213 features["S_NC_IncorrectExtensions"] += 1
214 else:
215 features["S_NC_IncorrectExtensions"] = 1
216 features["S_NC_IncorrectExtensions" + v] = 1
217

218 arch = get_architecuture(k)
219 name = k.rsplit("/")[-1]
220 if arch == "arm":
221 size = os.path.getsize(k)
222 feature = "S_NC_ARM_Size"
223 if feature in features:
224 features[feature] += size
225 else:
226 features[feature] = size
227 names_arm.append(name)
228 num_nc[hash][1] += 1
229 try:
230 features = get_header_info(k, arch, features)
231 features = get_external_calls(k, arch, features)
232 except:
233 print("failed to disasemble - get header info")
234 num_nc[hash][2] += 1
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235 pass
236 else:
237 names_not_arm.append(name)
238 remove_dir(dir)
239 for n in names_not_arm:
240 if n in names_arm:
241 num_nc[hash][3] += 1
242 return features
243

244 def main():
245 #Create dir for NativeCode feature files
246 if not os.path.exists(PATH_NC):
247 os.mkdir(PATH_NC)
248

249

250 #parallelize
251 args = get_arguments()
252 part = args.part
253 split = args.split
254

255

256 #Get list of apks
257 apks = os.listdir(PATH_SAMPLES)
258

259

260 #Filter out analysed
261 # done = os.listdir(PATH_NC)
262 # print("TODO: ", len(apks))
263 # for apk in done:
264 # apk = apk.replace("-nc.json", ".apk")
265 # if apk in apks:
266 # apks.remove(apk)
267 # print("filtered done - TODO: ", len(apks))
268

269

270 #If split work
271 if split != 1337:
272 apks = np.array_split(apks, split)[part]
273 print("after split - TODO: ", len(apks)/3)
274

275

276 for i, apk in enumerate(apks): #split[p]
277 if ".apk" in apk:
278 features = extract_features(apk)
279 filename = apk.replace(".apk", "-nc.json")
280 with open(PATH_NC + filename, "w+") as f:
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281 f.write(json.dumps(features))
282 if i % 100 == 0:
283 print(i)
284 print(datetime.now()-start)
285 # break
286

287 write_dict(PATH_CWD + "extensions", extensions)
288 write_dict(PATH_CWD + "filetypes", ftypes)
289 write_dict(PATH_CWD + "nc_stats.csv", num_nc, list=True)
290 print(datetime.now()-start)
291

292 main()

A.11 apk_statistics.py

1 #apk_statistics.py
2 import operator
3 import os
4 import matplotlib.pyplot as plt
5 from datetime import datetime
6

7 PATH_CWD = os.getcwd() + "/"
8

9 #Input files
10 PATH_METADATA = PATH_CWD + "final_dataset.csv"
11 PATH_FILETYPES = PATH_CWD + "filetypes"
12 PATH_EXTENSIONS = PATH_CWD + "extensions"
13 PATH_NC_STAT = PATH_CWD + "runtime_data/nc_stats.csv"
14 PATH_HIDDEN_STAT = PATH_CWD + "hidden_stats.csv"
15

16 #Output dir
17 PATH_HISTOGRAMS = PATH_CWD + "histograms/"
18

19 #Output files
20 PATH_FILETYPE_ANALISIS = PATH_CWD + "filetypes_analysis.csv"
21 PATH_EXTENSIONS_ANALISIS = PATH_CWD + "extensions_analysis.csv"
22 PATH_NC_STATISTICS = PATH_CWD + "nc_statistics.csv"
23 PATH_HIDDEN_STATISTICS = PATH_CWD + "hidden_statistics.csv"
24

25

26 def read_metadata(dataset):
27 metadata = {}
28 errors = []
29 with open(PATH_METADATA, "r") as f:
30 for row in f:
31 s = row.replace("\n", "").rsplit(",")
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32 hash = s[0]
33 if hash in dataset:
34 family = s[1]
35 type = s[2]
36 dexdate = datetime.strptime(s[3], "%Y-%m-%d %H:%M:%S")
37 apksize = int(s[4])
38 dexsize = int(s[6])
39

40 metadata[hash] = [family, type, dexdate, apksize, dexsize]
41

42 return metadata
43

44 def create_histogram(data, date_index, title, y_title):
45 sorted_data = sorted(data, key=operator.itemgetter(1))
46 start = min(sorted_data, key=operator.itemgetter(1))
47 cur_year = start[1].year
48 quarter = int((start[1].month-1)/3)
49 index = []
50 labels = []
51 values = []
52 i = 0
53 counter = 0
54 total = 0
55 index.append(i)
56 labels.append(" Q" + str(quarter + 1) + "-" + str(cur_year)[2:])
57

58 for d in sorted_data:
59 if cur_year == d[1].year and quarter == int((d[1].month-1)/3):
60 total += 1
61 if d[0] > 0:
62 counter += 1
63 else:
64 cur_year = d[1].year
65 quarter = int((d[1].month-1)/3)
66 i += 1
67 index.append(i)
68 labels.append(" Q" + str(quarter + 1) + "-" + str(cur_year)[2:])
69 values.append((counter*100)/total)
70 counter = 0
71 total = 0
72 values.append((counter*100)/total)
73

74 plt.close(1)
75 font = {'size' : 18}
76 plt.rc('font', **font)
77 plt.figure(figsize=(14,6))
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78 plt.bar(index, values)
79 plt.xticks(index, labels)
80 plt.ylabel(y_title)
81 plt.title(title)
82 plt.savefig(PATH_HISTOGRAMS + title + ".png")
83

84 def add_to_dict(dict, feature, value):
85 if feature in dict:
86 dict[feature] += value
87 else:
88 dict[feature] = value
89 return dict
90

91 def analyze_filetypes(filepath):
92

93 with open(filepath, "r") as f:
94 lines = f.readlines()
95

96 ftypes = {}
97 for line in lines:
98 line = line.rsplit(",")
99 count = int(line.pop())

100 ft = line[0].rsplit(" ")[0]
101

102 ftypes = add_to_dict(ftypes, ft, count)
103

104 # Remove filetypes with less than 500 files
105 rem = []
106 for k, v in ftypes.items():
107 if v < 1500:
108 rem.append(k)
109 for k in rem:
110 del ftypes[k]
111

112 # Sort file types
113 sorted_ftypes = sorted(ftypes.items(), key=operator.itemgetter(1),

reverse=True)↪→

114

115 # get full file type of filetype starting with token
116 for i, d in enumerate(sorted_ftypes):
117 full_ft = ""
118 most = 0
119 for line in lines:
120 if line.startswith(d[0]):
121 line = line.rsplit(",")
122 count = int(line.pop())
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123 ft = line[0].rsplit(":")[0].rsplit("(")[0]
124 if count > most:
125 most = count
126 full_ft = ft
127 sorted_ftypes[i] += (full_ft, most)
128

129 with open(PATH_FILETYPE_ANALISIS, "w+") as f:
130 f.write("Filetype short,Count,Filetype,Count\n")
131 for d in sorted_ftypes:
132 out = ""
133 for i in d:
134 out += str(i) + ","
135 out = out[:-1] + "\n"
136 f.write(out)
137

138 def analyze_extensions(filepath):
139 with open(filepath, "r", encoding="utf8") as f:
140 lines = f.readlines()
141

142 extensions = {}
143 for line in lines:
144 ext = line.rsplit(",")[0]
145 count = line.rsplit(",")[1].replace("\n", "")
146 count = int(count)
147 if count > 1500:
148 extensions[ext] = count
149

150 with open(PATH_EXTENSIONS_ANALISIS, "w+") as f:
151 f.write("Extension,Count\n")
152 for k, v in extensions.items():
153 out = str(k) + "," + str(v) + "\n"
154 f.write(out)
155

156 def analyze_nc(filepath, metadata):
157 #[nc, arm, arm fails, not arm same name arm]
158 nc_stat = {}
159 nc_date = []
160

161 num_nc_files = 0
162 num_arm_files = 0
163 num_arm_error = 0
164 num_not_arm_same_name = 0
165 num_not_arm_not_same_name = 0
166 has_nc = 0
167

168 with open(filepath, "r") as f:

125



Hybrid analysis for Android malware family classification in a time-aware setting

169 for l in f:
170 tmp = l.replace("\n", "").rsplit(",")
171 hash = tmp[0]
172 nc_stat[hash] = [int(tmp[1]), int(tmp[2]), int(tmp[3]), int(tmp[4])]
173

174 #list for histogram
175

176 if int(tmp[1]) > 0:
177 nc = 1
178 else:
179 nc = 0
180 try:
181 nc_date.append([nc, metadata[hash][2]])
182 except:
183 print(hash)
184

185 for k, v in nc_stat.items():
186 if v[0] > 0:
187 has_nc += 1
188 num_nc_files += v[0]
189 num_arm_files += v[1]
190 num_arm_error += v[2]
191 num_not_arm_same_name += v[3]
192 num_not_arm_not_same_name = num_nc_files - num_arm_files -

num_not_arm_same_name↪→

193

194 with open(PATH_NC_STATISTICS, "w+") as f:
195 out = "Samples," + str(len(nc_stat)) + "\n"
196 out += "Samples with NC," + str(has_nc) + "\n"
197 out += "NC files," + str(num_nc_files) + "\n"
198 out += "Architecture ARM," + str(num_arm_files) + "\n"
199 out += "Failed to analyse ARM," + str(num_arm_error) + "\n"
200 out += "Not Arm same name," + str(num_not_arm_same_name) + "\n"
201 out += "Not Arm different name," + str(num_not_arm_not_same_name) + "\n"
202 f.write(out)
203

204 create_histogram(nc_date, 1, "Native code usage", "Percentage of samples
with native code")↪→

205

206 def analyze_hidden(filepath, metadata):
207 hidden_date = []
208

209 num_files = 0
210

211 num_dex_files = 0
212 num_dex_ext = 0
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213 num_dex_cannot_disas = 0
214

215 num_apk_files = 0
216 num_apk_ext = 0
217

218 num_jar_files = 0
219 num_jar_ext = 0
220 num_jar_cannot_disas = 0
221

222 has_hidden = 0
223

224 with open(filepath, "r") as f:
225 # Each line in file:
226 # hash, num_dex, dex_ext, cannot disasemble, num_apk, ext_apk, num_jar,

jar_ext, cannot disasemble↪→

227 for l in f:
228 num_files += 1
229

230 tmp = l.replace("\n", "").rsplit(",")
231 hash = tmp[0]
232

233 num_dex = int(tmp[1])
234 num_apk = int(tmp[4])
235 num_jar = int(tmp[6])
236

237 num_dex_files += num_dex
238 num_dex_ext += int(tmp[2])
239 num_dex_cannot_disas += int(tmp[3])
240

241 num_apk_files += num_apk
242 num_apk_ext += int(tmp[5])
243

244 num_jar_files += num_jar
245 num_jar_ext += int(tmp[7])
246 num_jar_cannot_disas += int(tmp[8])
247

248 #Has jar, apk or dex files
249 if num_dex > 0 or num_apk > 0 or num_jar > 0:
250

251 has_hidden += 1
252 hidden = 1
253 else:
254 hidden = 0
255 try:
256 hidden_date.append([hidden, metadata[hash][2]])
257 except:
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258 print(hash)
259

260

261 with open(PATH_HIDDEN_STATISTICS, "w+") as f:
262

263 out = "Samples," + str(num_files) + "\n"
264 out += "Samples with HC," + str(has_hidden) + "\n"
265

266 out += "Dex files," + str(num_dex_files) + "\n"
267 out += "Dex correct extensions," + str(num_dex_ext) + "\n"
268 out += "Dex cannot disasemble," + str(num_dex_cannot_disas) + "\n"
269

270 out += "APK files," + str(num_apk_files) + "\n"
271 out += "APK correct extensions," + str(num_apk_ext) + "\n"
272

273 out += "Jar files," + str(num_jar_files) + "\n"
274 out += "Jar correct extensions," + str(num_jar_ext) + "\n"
275 out += "Jar cannot disasemble," + str(num_jar_cannot_disas) + "\n"
276

277 f.write(out)
278

279 create_histogram(hidden_date, 1, "Hidden code usage", "Percentage of samples
with hidden code")↪→

280

281 #Load list of dataset hashes
282 dataset = os.listdir(PATH_CWD + "download/done/")
283 for i in range(len(dataset)):
284 dataset[i] = dataset[i].replace(".apk", "")
285

286

287 metadata = read_metadata(dataset)
288 # analyze_filetypes(PATH_FILETYPES)
289 # analyze_extensions(PATH_EXTENSIONS)
290 # analyze_nc(PATH_NC_STAT, metadata)
291 analyze_hidden(PATH_HIDDEN_STAT, metadata)
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