
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

B
ac

he
lo

r’
s

pr
oj

ec
t

Kristian Sigtbakken Holm
Martin Kvalvåg
Nikolai Fauskrud
Olav Henrik Hoggen

Automated Malware Analysis
Platform

Bachelor’s project in IT-Operations and Information Security
Supervisor: Basel Katt

May 2019

Automated Malware Analysis Platform

Author(s)

Kristian Sigtbakken Holm
Martin Kvalvåg
Nikolai Fauskrud
Olav Henrik Hoggen

Bachelor in IT-Operations and Information Security
20 ECTS

Department of Information Security and Communication Technology
Norwegian University of Science and Technology,

20.05.2019

Supervisor Basel Katt

Malware Analysis Infrastructure

Sammendrag av Bacheloroppgaven

Tittel: Automatisert Skadevareanalyse-plattform

Dato: 20.05.2019

Deltakere: Kristian Sigtbakken Holm
Martin Kvalvåg
Nikolai Fauskrud
Olav Henrik Hoggen

Veiledere: Basel Katt

Oppdragsgiver: Kongsberg Defence & Aerospace

Kontaktperson: David Lee Andersen,
david.lee.andersen@kongsberg.com,
48227979

Nøkkelord: Innholdsanalyse, Antivirus, Infrastruktur som kode, Virus
Antall sider: 86
Antall vedlegg: 13
Tilgjengelighet: Åpen

Sammendrag: Alle bedrifter trenger en måte å sikre virksomheten deres,
og i dagens digitale tidsalder er dette spesielt fokusert mot
å beskytte digitale systemer mot skadelige og ondsinnede
entiteter. Denne beskyttelsen blir i dag ofte betjent av ett
enkelt antivirus i det private domenet. Hva om flere an-
tivirus og andre analyse verktøy ble samlet inn i en spe-
sialisert beskyttelse og analyse plattform? Det er ideen
bak "open souce", "self-hosted", VirusTotal alternatives:
IRMA. IRMA mottar usikre filer, sjekker dem mot et sett av
analyse verktøy og forteller oss om de er trygge eller ikke.
Vår oppgave var å undersøke denne løsningen, tilpasse
den, og følge "open-source" mantraet, slik at den blir
tilgjengelig for oppsett for enhver interessert aktør, for sel-
skaper eller for privatpersoner. Sluttresultatet ble et mod-
ifisert IRMA system for vår infrastruktur med en bland-
ing av andre og våre egne analyseverktøy modifisert for
IRMA.

i

Malware Analysis Infrastructure

Summary of Graduate Project

Title: Automated Malware Analysis Platform

Date: 20.05.2019

Authors: Kristian Sigtbakken Holm
Martin Kvalvåg
Nikolai Fauskrud
Olav Henrik Hoggen

Supervisor: Basel Katt

Employer: Kongsberg Defence & Aerospace

Contact Person: David Lee Andersen,
david.lee.andersen@kongsberg.com,
48227979

Keywords: Malware, Antivirus, Infrastructure as Code, Analysis
Pages: 86
Attachments: 13
Availability: Open

Abstract: All businesses need to ensure their security, and in today’s
digital age, this need stretches to protecting digital sys-
tems against harmful and malicious parties. This protec-
tion is often served by a single antivirus in the private
domain. What if multiple antiviruses and other analysers
were aggregated into a specialised protection- and anal-
ysis platform? That is the idea behind the open source,
self-hosted VirusTotal alternative: IRMA. IRMA receives
insecure files, checks them up against a set of analysers,
and tells us whether the files are safe or not. Our task was
to research this solution, adapt it, and follow the open
source mantra, making it available for setup and usage
for any interested actor, be it business or home. The end
result was an openly available, modified IRMA with ex-
tended security functionality through a variety of analy-
sers, some of which custom-added.

i

Malware Analysis Infrastructure

Foreword

Our inspiration to choose this assignment was because we wanted a challenging project
with both security and infrastructure aspects. After four months of development we got
both a fun and a quite challenging project.

We would like to thank Kongsberg for providing us with all the guidance we could ask
for, assistance, and always being available to bounce ideas off of and discuss. We would
especially like to thank our contact person and product owner, David Lee Andersen. We
would also like to thank Basel Katt for guiding us during the project, referring us to
multiple practical sources for information, and challenging our view of the project.

We would like to thank our families for constant support through the whole academic
ordeal.

And finally we would like to thank each member of the bachelor group for working
hard throughout the project, for compromising when necessary for progress, and rising
above conflicts, and for carrying each other the whole way.

ii

Malware Analysis Infrastructure

Contents

Foreword . ii

Contents . iii

List of Figures . vii

List of Tables . ix

Glossary . x

1 Introduction . 1

1.1 Problem area, delimitation, and defining the assignment 1

1.2 Purpose of the assignment . 1

1.3 Target audience . 2

1.4 Students’ backgrounds and qualifications 2

1.4.1 Nikolai Fauskrud . 2

1.4.2 Kristian S. Holm . 2

1.4.3 Olav H. Hoggen . 2

1.4.4 Martin Kvalvåg . 2

1.5 Project scope . 3

1.5.1 Field of study . 3

1.5.2 Delimitations . 3

1.5.3 Project description . 4

1.6 Other roles . 4

1.7 Project process . 5

1.7.1 Central project process . 5

1.7.2 Theory . 5

1.7.3 Plan for status meetings and decisions 5

1.7.4 Tools used . 5

1.8 Thesis structure . 6

2 Requirements . 8

2.1 Initial requirements . 8

2.1.1 Use Case . 9

2.1.2 High level use case . 9

2.2 Functional requirements . 11

2.3 Operational requirements . 11

2.4 External requirements . 11

3 Theory and technology . 12

3.1 Malware detection . 12

3.1.1 Static detection . 12

iii

Malware Analysis Infrastructure

3.1.2 Dynamic detection . 13

3.1.3 Malware Anti-VM techniques . 13

3.2 Analytical Infrastructure . 13

3.2.1 Infrastructure Alternatives . 15

3.2.2 Chosen framework: IRMA . 18

3.2.3 Dynamic Malware Analysis tool . 21

3.2.4 Chosen dynamic analysis tool: Cuckoo 21

3.3 Configuration Management . 22

3.3.1 Automatic provisioning . 22

3.3.2 Push vs pull model . 23

3.3.3 Configuration Management Strategy 23

3.3.4 Configuration Management Tools 25

3.3.5 Configuration Management requirements 26

3.4 Orchestration . 27

3.4.1 Orchestration requirements . 27

3.4.2 Packer . 28

3.4.3 Vagrant . 29

3.4.4 Virtualisation . 29

4 Implementation . 31

4.1 Configuration and set-up of IRMA . 31

4.1.1 Hardware . 31

4.1.2 Installation . 31

4.1.3 Available configuration . 35

4.1.4 Analysers . 35

4.1.5 Problems with the setup . 36

4.1.6 Automatic provisioning of antivirus and tools 37

4.1.7 Activation of analysers and possible bug fixes 37

4.2 Configuration and set-up of Cuckoo . 42

4.2.1 Adaption for our use case . 42

4.2.2 Installation . 42

4.2.3 ESXi/vSphere support . 45

4.3 Changes made . 47

4.3.1 Pipeline . 48

4.3.2 Kiosk . 54

4.3.3 Cuckoo as a probe of IRMA . 58

4.3.4 NSRL . 58

4.3.5 Packer . 60

5 Testing and Analysis . 63

5.1 Development and testing hardware . 63

5.2 Efficiency of deployment . 63

iv

Malware Analysis Infrastructure

5.3 Bottlenecks . 64

5.4 Accuracy of scans . 65

5.4.1 Testing of benign files . 65

5.4.2 Testing of malicious files . 65

5.4.3 Statistics . 67

5.5 What is shared? . 68

5.5.1 Without internet access . 69

5.5.2 With internet access . 69

6 Results and Discussion . 70

6.1 Results . 70

6.1.1 Infrastructure setup . 70

6.1.2 Infrastructure modifications . 70

6.1.3 Ported probes . 70

6.1.4 Designed features . 71

6.2 Hardware used in development and initial testing 71

6.3 Recommended Infrastructure . 71

6.3.1 Orchestration computer/Ansible provisioner 71

6.3.2 IRMA . 72

6.3.3 Cuckoo . 74

6.3.4 Local mirroring . 74

6.3.5 Kiosk . 75

6.4 Recommended further work . 75

6.4.1 Additions . 75

6.4.2 Modifications . 77

6.4.3 Fixes . 79

6.5 Nice-to-have improvements . 79

6.5.1 Additions . 80

6.5.2 Modifications . 80

7 Conclusion . 84

7.1 Project assessment . 84

7.2 Knowledge gained . 84

7.2.1 Configuration with Ansible . 84

7.2.2 Orchestration with Vagrant . 85

7.2.3 Troubleshooting . 85

7.2.4 Project management . 85

7.2.5 Malware detection using multiscanning 85

7.3 Results . 85

7.4 Future Work . 85

Bibliography . 86

A Installation Guide . 87

v

Malware Analysis Infrastructure

A.1 IRMA . 87

A.2 Cuckoo . 88

B Project Agreement . 90

C Development Process . 95

C.1 Daily Scrum logs . 95

D IRMA dataflow models . 96

E Kiosk appendix . 100

E.1 Kiosk mount helper prototypes . 100

E.1.1 Simplified kiosk work-flow . 100

F Testing Appendix . 102

G Code Appendix . 107

H Format of database and scans . 110

H.1 Scan API . 110

H.2 Result API . 110

I images . 112

J Meeting Logs . 113

J.1 Record of meetings . 113

J.1.1 Dato: 2019/01/11 . 113

J.1.2 19-01-09 week-01 . 113

J.1.3 19-01-18 week-02 . 114

J.1.4 28.02.19 . 114

J.1.5 Møte med Kongsberg 1/3/2019 . 114

J.1.6 Sprint 18/03/2019 - 31/03/2019 114

K Time logged . 116

L Slack communication logs . 135

M Efficiency result raw-logs . 162

M.1 Vagrant setup times . 162

M.2 IRMA-Ansible setup times . 163

vi

Malware Analysis Infrastructure

List of Figures

2.1 Use case and misuse case-diagram . 9

3.2 Conceptual Infrastructure . 15

3.3 IRMA architecture . 19

3.4 Reproduced with permission. Copyright 1999-2019 QuinStreet, Inc. All
rights reserved. 29

4.5 Folder structure . 32

4.6 how to test new analyser . 36

4.7 template for role in ansible-requirements 36

4.8 example of role in provisioning.yml . 36

4.9 libssl1.0.0 tasks added to Avast role . 37

4.10 ESXi/vSphere suggested role . 45

4.11 ESXi/vSphere suggested role . 46

4.12 ESXi/vSphere suggested role . 47

4.13 scan workflow . 49

4.14 How the pipeline can look for files . 51

4.15 Cuckoo scoring . 52

4.16 Conceptual kiosk-to-infrastructure architecture 55

4.17 Kiosk drive handler prototype . 56

4.18 Kiosk process pseudo-code . 57

4.19 Initial NSRL setup . 59

4.20 basestring is a functionality in Python2 removed in Python3 60

5.21 Example scan of benign files . 65

5.22 Summary scan of malicious files . 66

5.23 Detailed scan of one malicious file . 67

5.24 Antivirus - Detection rate . 68

5.25 Wireshark filter . 69

D.26 IRMA Figure 1 . 96

D.27 IRMA Figure 2 . 96

D.28 IRMA Figure 3 . 97

D.29 IRMA Figure 4 . 97

D.30 IRMA Figure 5 . 98

D.31 IRMA Figure 6 . 98

D.32 IRMA Figure 7 . 99

E.33 Kiosk mount helpers protoype . 100

vii

Malware Analysis Infrastructure

G.34 prod.yml . 108

G.35 metadataProvisioning.yml . 109

G.36 clamAvFix.yml . 109

H.37 scan query . 110

H.38 response on result requests . 111

I.39 IRMA web-gui . 112

viii

Malware Analysis Infrastructure

List of Tables

2.1 Use case - Insert data through kiosk . 9

2.2 Use cases - Upload data to web front end 9

2.3 Use cases - Choose scan engines . 9

2.4 Use cases - View scan status on web front end 10

2.5 Misuse case - Steal/leak data . 10

2.6 Misuse cases - Infect low level USB drivers 10

2.7 Misuse case - Sophisticated malware . 10

2.8 Misuse case: Access to file storage . 10

2.9 Misuse case - Malware escaping VM . 11

3.10 Analytical Infrastructure frameworks comparison 16

3.11 Dynamic Analysis Tools Comparison . 21

5.12 Average setup times?? . 63

5.13 Table showing detections, no detections and errors 68

ix

Malware Analysis Infrastructure

Glossary

VCS Version Control System - A tool used for tracking changes to code

ICAP server is a server which can be queried through the ICAP protocol which is a pro-
tocol designed to off-load some Internet-based content to dedicated servers.

Automation fear is an inherent distrust for automation in Infrastructure, with lack of
testing as a cause.

Cloudflare is a content delivery platform which additionally helps mitigate DDOS at-
tacks.

WinRM is a windows connector made for remote management, somewhat similar to
SSH.

Executable is a term used in the report about files that can execute, this includes any
files that contain executable components.

Bottleneck a part of the code or system that severely limits the efficiency of the rest.

Active Directory is a directory service that allows administrators to store and manage
resources on the network.

A [Play] is when a playbook is executed.

Playbook is a recipe in Ansible for how the configuration should be done.

Roles is a method in Ansible for modularising code. These modules provisions for one
service, and multiple roles are combined to provision a larger service.

Probe refers to either a machine for hosting analysers or an analyser.

Host is a machine from which something is run or is running on.

Configuration drift is a concept where servers slowly over time being configured differ-
ently, mostly due to ad-hoc fixes. Leads to snowflake servers.

Snowflake server is a concept a server that have gone through numerous ad-hoc fixes
which are not documented or easily reproducible.

x

Malware Analysis Infrastructure

1 Introduction

1.1 Problem area, delimitation, and defining the assignment

The transfer of unknown, insecure files is a constant challenge between employer and
supplier. To ensure the safety of external files they need to be scanned for malicious con-
tent before being transferred to the internal infrastructure. Solutions providing this as
a service does exists, some examples are VirusTotal and Opswat MetaDefender. These
were quickly ruled out based on features not compliant with our requirements. Kongs-
berg needs a solution to ensure that whatever is imported to their systems is safe and
non-malicious, while not sharing confidential data with third-parties. Kongsberg requires
an in-house solution to avoid entrusting their security to an unrelated third-party.

This project aims at providing an in-house solution using primarily open-source soft-
ware where possible to cover the need for security. The system will primarily handle data
from physical mediums connected with USB. This system will inherently be advanced,
keeping it updated and easy to configure are significant challenges that needs to be met
in design and final product. The final product needs to be easy to use, implement, set-
up, and must be low maintenance. The final product should be a "blueprint" solution
for a system that detects malicious software or files. It should be a good starting point
for further development, but require no or minimal user interaction during operations.
Maintenance should be easy and need minimal work. An automated setup with good
descriptions and explanations could be a fitting solution.

The project development starts 1. February 2019, and ends about 20. May 2019. We’re
limited to 4 developers with a short time frame, which restricts our capability to complete
such a large project.

1.2 Purpose of the assignment

Kongsberg Gruppen is a Norwegian company supplying high-technology systems and
solutions to maritime-, army-, aerospace-, and offshore oil and gas industries, both na-
tionally and internationally. The company is split into multiple branches. One of which is
Kongsberg Defence and Aerospace (KDA), the specific party responsible for handing out
this assignment1

On a daily basis, KDA handles large amounts of confidential data transferred from
third parties. The assignment arises from no previous effective solution in place to scan
incoming data. Every business needs effective and secure solutions. Hence, their current
approach of designated "dishwasher" machines running one single anti-virus with no sup-
porting infrastructure, while lacking integration with their other systems, is insufficient.

KDA wants a dynamic system, capable of scanning files and discovering potential
threats in a complex environment. One typical use case is plugging a flash drive into
company kiosk hardware, automatically scanning all the data in an analytic system after
a company authentication. This analytic system should contain a wide array of automated

1Kongsberg Gruppen:https://www.kongsberg.com

1

https://www.kongsberg.com

Malware Analysis Infrastructure

analysis tools. The wide array of tools should ascertain the security of files with a high
degree of certainty. In the end this generates a report with scan results. The generated
report is relayed back to the user initiating the scan, and is also stored in a logging
platform for any further analysis deemed necessary in the future.

The purpose is automation of menial, manual tasks. The result will be less repeating
tasks for employees ensuring company security.

1.3 Target audience

This report is aimed at people expected to have a good grasp of general IT concepts,
e.g. students ready to start a bachelor project, professors, IT workers, e.g. KDA. With this
in mind, general concepts will not be explained in further details, but system specifics,
related concepts and ruminations will be explained.

1.4 Students’ backgrounds and qualifications

We are a group of 4 bachelor students in IT-Operations and Information Security at the
Norwegian University of Science and Technology (NTNU) on our final year.

1.4.1 Nikolai Fauskrud

Scrum master, developer: Nikolai is a 21 year old student straight out of a high school
in Lillehammer where he studied general studies. His work experience includes SlettMeg
where he works alongside the bachelor thesis.

1.4.2 Kristian S. Holm

Developer: A 22 year old student of BITSEC, has taken multiple extra curricular classes,
most of which in the programming field, while volunteering for reference group respon-
sibilities in multiple classes. Commands a wide field of knowledge. Like the rest of the
group, capable of handling most aspects of this project.

1.4.3 Olav H. Hoggen

Developer: Olav is a 23 year student studying operations and security. Has been involved
in student volunteering and has had a position as board member in "Studentenes Hus
Gjøvik". Has the general knowledge needed to complete the bachelor project, but not
as much infrastructure as code experience as the other group members and thus had to
spend some time at the start of the project learning infrastructure tools.

1.4.4 Martin Kvalvåg

Developer: Martin is a 24 year old IT operations and information security student from
Fredrikstad. In his free time he has tinkered a bit with self hosting different services as an
option to commercially available services. He has also tinkered with a couple of simple
Raspberry pi projects. Both cases using infrastructure as tools and containerisation. This
combined with a couple of previous courses related to infrastructure and a passion for
information security makes this project both exciting and realistic to execute with a good
final product.

Most of us have some experience with infrastructure tools such as Heat and Puppet.
While these were considered, they did not end up being used. Previously we mostly had
theoretical knowledge and we had to learn practical parts necessary e.g. Vagrant, Packer

2

Malware Analysis Infrastructure

and Ansible. Therefore large quantities of time went into learning specifics of the selected
technologies.

1.5 Project scope

1.5.1 Field of study

Malware detection

We will look at and evaluate different technologies, frameworks and tools used to detect
malware. The goal is to evaluate the different options, their pros and cons and choose
the best fitted options. We will also explain why we believe these best meets the require-
ments.

Automation and orchestration

Automation should be a priority for any developer today. In a world with an increas-
ing amount of available tools, platforms, and interfaces for handling the abstraction of
configuration and setup, automation is a critical part of time and software management.
We will evaluate different automation and orchestration tools such as Terraform, Chef,
Puppet, Ansible etc. The chosen tools will be based on functionality and performance.
Previous knowledge of group members and preferences from KDA if any will also be
taken into consideration.

Scalability

None of the members of the group have any previous experience with development of
scalable programs. We cannot determine with certainty whether scalability is realistic to
get implemented properly alongside the rest of the project within our given time frame.
If we deem scalability out of reach for the current project we will do our best to facilitate
further development.

Logging

Logging every action done upon the supplied files are necessary for the system to be
used in classified or business settings handling sensitive files. It is therefore necessary
to evaluate different means of logging actions done upon the given files. Some options
could be to use extended system logs using AppArmor2/SELinux3 or internal logging in
the tools we decide to use.

1.5.2 Delimitations

Scalability

Scalability is an unknown area for all the group members and is not the main focus of this
project. Because of that it will have a secondary priority and might only be an evaluation
and not explicitly implemented.

Web and email delivery

Having a custom web interface or an email that any user inside the organisation can
access and submit files to is a great and useful feature but is not within the main scope of
this project. Considering IRMA, Cuckoo and many of the tools we will evaluate already

2AppArmor: https://wiki.ubuntu.com/AppArmor
3SELinux https://en.wikipedia.org/wiki/Security-Enhanced_Linux

3

https://wiki.ubuntu.com/AppArmor
https://en.wikipedia.org/wiki/Security-Enhanced_Linux

Malware Analysis Infrastructure

have a web interface for submitting files, it’s should be fairly easy to create a collective
web interface for submission of files. Though it is not something we know the complexity
of at the current time, neither do we know the requirements to implement it as an email
service. Therefore this is a secondary priority and will be evaluated, but might not be
implemented.

Summary report

An automatic collective and summarised report of all analyses done is a useful feature,
it is also something that might be very time consuming to develop. It is our opinion that
a well functioning system with high accuracy is more important and valuable than a
system with low accuracy and a beautiful report. A simple collective report is necessary,
but a detailed and highly customised report has a lower priority than a good functioning
system.

Detection Rules

Malware can be very complicated and intricate. The main focus of this project will be to
develop a system that can use detection rules as a way of detecting malware. It is not to
create new and custom rules for known or custom malware. That is not to say we won’t
implement any but we will mainly use existing publicly available detection rules.

1.5.3 Project description

A composite system that scans and analyses a given file or a set of files. The first and
primary way of delivery will be by automatic retrieval of the files from newly connected
storage media. Secondary ways of delivery is wanted and planned but given the uncer-
tainty of the project size these are not the primary focus. These include, but are not
limited to: a web page for uploading suspicious files of unknown origins, delivery by
email with files as an attachment, and more.

The finished system should handle the files internally and not share specifics of the
files or its behaviour with any external entities. It should analyse each batch of files
separately, thus minimising the chance of cross contamination, and the user should end
up with a report of the results.

1.6 Other roles

Product owner (KDA):
David Lee Andersen
david.lee.andersen@kongsberg.com

Position: Security Analyst
Involvement: Product owner

Employer (KDA):
Thomas R. Andersen
thomas.rivrud.andersen@kongsberg.com

Position: IT engineer
Involvement: Occasional

Counsellor:
Basel Katt
basel.katt@ntnu.no

Position: Associate Professor at NTNU
Involvement: Supervisor

4

mailto:david.lee.andersen@kongsberg.com
mailto:thomas.rivrud.andersen@kongsberg.com
mailto:basel.katt@ntnu.no

Malware Analysis Infrastructure

1.7 Project process

1.7.1 Central project process

Scrum has been chosen and adapted due to its inherent fit to handle complex projects
in an organised fashion, and the ability to keep a constant dialogue between us and the
product owner for discussing all manner of details. Bearing in mind the size, complexity
and openness of the assignment, it is deemed beneficial to continually challenge our vi-
sion and the one of the product owner for different alternative implementations. We aim
to continually utilise the experiences from the product owner and our NTNU supervisor.

1.7.2 Theory

A scrum team consists of three roles: the developers, scrum master, and the product
owner. The process is based on sprints, with meetings for sprint review, sprint planning,
and daily sprint meetings4.

• The sprint planning meeting is where the scrum team meets to plan what to priori-
tise for the coming sprint.

• The sprint review is where the scrum team meets to discuss the previous sprint;
what was accomplished, what went wrong, and what needs to be re-prioritised.

• Sprint meetings are daily fifteen minute meetings between the developers to dis-
cuss how progress is going, what they plan to do, or whether they have found some
obstacles.

• The developers are the students responsible for this bachelor. Our scrum master
was elected to be the member of the team responsible for communicating with
KDA, our employer, who has agreed to act as product owner.

1.7.3 Plan for status meetings and decisions

There will be bi-weekly meetings with our NTNU supervisor with the opportunity to
arrange weekly meetings when it’s deemed necessary. All of these are initially set to
Fridays.

Our sprints have been decided to have a duration of two weeks, starting from the
sprint planning with all relevant actors, and ending with the sprint review. In between
there are daily sprint meetings.

Scrum sprints will start Fridays with sprint planning and go on for two weeks until
the next Friday sprint review, immediately followed by the next sprint planning meeting.

In addition to the short scrum meetings, the developers will meet up weekly to discuss
and work in tandem.

Reports will be actively written to constantly document findings, decisions, consider-
ations done, and other significant events.

1.7.4 Tools used

We have used some different planning and productivity tools during the project and will
in this section go through the most significant of these.

4Scrum: https://en.wikipedia.org/wiki/Scrum_(software_development)

5

https://en.wikipedia.org/wiki/Scrum_(software_development)

Malware Analysis Infrastructure

Toggl

Toggl is a logging tool used to log time spent. In the bachelor assignment we have used it
both to fulfil the logging requirement of time spent. Furthermore, it is used to document
time spent on each task for our sake. Each group member has been responsible for their
own individual logging.

Trello

Trello is a productivity tool for organising tasks into what stages of development. We
utilised boards for the following stages: product backlog, sprint backlog, in progress,
review/testing, and task done. These boards were used to organise our Scrum sprints
and backlogs. Tasks agreed upon at Sprint planning meetings were taken from product
backlog to sprint backlog, further on claimed by a developer and moved to in progress.
When finished, the task would be marked for review. This led to a self-organised, organic
work-flow where essential tasks were picked up and worked on, and minimal collision
between different developers.

Google Drive

Google Drive was used to store files and notes covering all aspects of the development,
from meeting summaries to documenting experiences and challenges in development,
design drafts, and more. The only files that did not end up on Google Drive were any-
thing containing confidential data, and code that belongs in a dedicated version control
system(VCS).

GitHub

GitHub is a widely used online platform for project collaboration. Using GitHub as our
version control system, it can also act as remote storage for finished code. There are
many administration tools on the platform to manage code, e.g. what is added, what is
removed, whether it fulfils quality standards or not, etc. GitHub was used to host all our
code except any sensitive test data that should stay private. Furthermore, all open-source
software used in this project was already hosted on GitHub.

Overleaf

Overleaf is a collaborative editor for writing the typesetting language LaTeX. It was specif-
ically used in writing the entirety of this report and the compilation of it. This saves a
significant amount of time from setting up local LaTeX environments and streamlines
cooperation.

1.8 Thesis structure

The team and the project is introduced in the first chapter, Introduction.
In the next chapter, Requirements, the requirements are specified e.g. through usage of
use case diagrams and high level use cases.
These, introduction and requirements, lay the foundation for the next chapter which is
Theory and Technologies, where requirements for specific technologies are set, theory is
explained and technology is selected.
The next chapter, Implementation goes through how the technologies can be imple-
mented, and how they are implemented, and adds some discussion around these im-

6

Malware Analysis Infrastructure

plementations. Sub sections to note within Implementation are Configuration and set-up
of IRMA and Configuration and set-up of Cuckoo.
The next chapter is Testing and Analysis, which tests efficiency, checks for probe flaws
and what the probes shares, and how accurate scans are.
The next chapter, Results and Discussion, summarises the results achieved through the
implementation and testing. Additionally, it mentions our recommendations for the in-
frastructure and further work.
Lastly, the Conclusion summarises the whole project, what we have learned, an assess-
ment of the project and summarises future work required.

7

Malware Analysis Infrastructure

2 Requirements

2.1 Initial requirements

The initial assignment outlined multiple requirements. Early during our dialogue with
KDA these were asserted to be floating stepping stones to bounce ideas and discussion
off of and to initiate the research phase. These are the initial requirements:

• Analysis

◦ Static (header, certificate)
◦ Known good / bad
◦ Yara
◦ Antivirus (several)
◦ Dynamic analysis (network, IDS)

• Integrates with authentication solution and file systems
• Website for uploading files and view status
• Results via API, exported to a logging platform

KDA also specified certain "nice to haves":

• Solution should be highly automated.
• Scalability (10 000 - 20 000 users)
• Upload via email and web-site as well as API.
• Should cause little administration from KDA if put into operation.
• Should have tracking possibilities. 1

• Should have the possibility of automatically generated reports.

See the section Scope 1.5 for requirements deemed possible within the project time
frame, developer experience, and resources available.

1Tracking actions done upon the submitted files, by for example a dynamic analyser

8

Malware Analysis Infrastructure

2.1.1 Use Case

Figure 2.1: Use case and misuse case-diagram

2.1.2 High level use case

Use case Insert data through kiosk
Actor User

Description

A user inserts a USB stick or a hard drive into a kiosk. The
kiosk will automatically detect the input, then asks user
for authorisation through Active Directory. If authorised:
upload files for scanning.

Table 2.1: Use case - Insert data through kiosk

Use case Upload data to web front end
Actor User

Description
A user can manually upload files to the web front end. It is
not possible to get any files from the web frontend - scan
results are available.

Table 2.2: Use cases - Upload data to web front end

Use case Choose scan engines
Actor User

Description
The user can explicitly decide which analysis engines to
be used in their scan.

Table 2.3: Use cases - Choose scan engines

9

Malware Analysis Infrastructure

Use case View scan status on web front end
Actor User

Description

After a scan has finished the user can see a list of all the
files that have been scanned. File name on the left and
number of scanners on the right. Results are coloured red
for malicious and green for safe. The user can also click
on individual files for a more detailed look from each in-
dividual scanner.

Table 2.4: Use cases - View scan status on web front end

Misuse case Steal/leak data
Actor Insider

Description

A potential insider can be the biggest threat to the sys-
tem. If a USB stick or a hard drive is left unattended, im-
portant and sensitive files can be stolen and/or leaked.
It may also be possible for files and/or information to
be stolen/leaked after a scan has been done.

Table 2.5: Misuse case - Steal/leak data

Misuse case Infect low level USB drivers
Actor Hacker

Description

A sophisticated malicious program could potentially in-
ject malicious code on the kiosk USB driver. This would
lead to the infection being too low level for an Anti-
malware program to easily discover, if at all. This could
lead to every scan done from the kiosk to potentially be
contaminated, or worse.

Table 2.6: Misuse cases - Infect low level USB drivers

Misuse case Sophisticated malware
Actor Hacker

Description

A sophisticated malicious program could pick up confi-
dential Active Directory user credentials during authen-
tication/authorisation phase and store this for later ex-
traction.

Table 2.7: Misuse case - Sophisticated malware

Misuse case Access to file storage
Actor Insider/Administrator

Description
An administrator with access to the file storage, can
extract potentially confidential or otherwise sensitive
files.

Table 2.8: Misuse case: Access to file storage

10

Malware Analysis Infrastructure

Misuse case Malware escaping VMs
Actor Hacker

Description
Highly advanced malware can escape VMs and spread
across the system, potentially gathering data for later
extraction, or dealing damage to the infrastructure.

Table 2.9: Misuse case - Malware escaping VM

2.2 Functional requirements

The system must be able to register outside input, authenticate the input as sent by
an authorised user. Afterwards, the system needs to send the input across an isolated
network, then it needs to scan the input with several types of known good/bad, static,
and lastly dynamic analysers. It must return a result from the analysis that shows whether
the input was malicious or safe.

There should be logging to ensure the KDA security department can examine files at a
later occasion if they are retroactively discovered to be suspicious. KDA especially wants
to log files which have been altered or ran through dynamic scans and exactly what
actions were done on the files. This logging is especially important when doing business
with actors like the Norwegian Armed Forces. It is required to follow strict requirements
to log any action to ensure repudiation and explicitly abide with the law.

2.3 Operational requirements

KDA requested that the system should not involve a high degree of administration from
KDA. Once configured and deployed, it should operate with minimal human supervision.
This implicitly means the system should be highly automated and easy to configure. The
web front end for uploading files should be stable and be user friendly to a degree where
regular users can intuitively use it to upload a relevant files for scanning. KDA should
spend minimal time on troubleshooting.

2.4 External requirements

KDA does not want any scanned data to be shared with third parties and wants all of
the data to stay in-house. This quickly closes the highly known VirusTotal out of the
question. The data is highly confidential, meaning the security requirements are high.
It is not an option to allow any data leaks. That means any transfer must be encrypted,
and the system has to be as isolated as possible inside a secluded network with minimal
connections to any other KDA network until all data has been approved by scans.

KDA operates in a way where they try to use and adapt open-source systems for their
use cases to a high degree. That is why it’s a preference for this project to use open
source software wherever possible and feasible. If open source software is adapted into
a complete system for free use by both KDA and other interested parties of any affiliation
it is seen as an ideal outcome.

11

Malware Analysis Infrastructure

3 Theory and technology

3.1 Malware detection

Anti-virus giant, Norton1, summarises malicious software as any software specifically
designed to access, exploit, or damage computers. This software is commonly referred to
as malware. Malware tends to act without the knowledge of the owner, but there are also
exceptions to this where the malware can exist to scare a user into believing something
is wrong, and in that way gain leverage on a user.

Malware programmers come from many backgrounds and with several motivations.
Usual motivations include: profit, vandalism, information gathering, and many more.
To reach these goals, the malicious actors have devised a multitude of malware types,
including viruses, worms, Trojan horses, ransomware and more.

3.1.1 Static detection

Global Director of Threat Research at NTT Security, Jeremy Scott2, writes that static de-
tection is a way of determining whether a file is malicious or not from static, technical
indicators of the file by using several tools and techniques. Technical indicators include
file names, checksums or hashes, file types, and file sizes. These techniques allow scan-
ning for any abnormalities without executing the files, further leading to lower risk of
infection, but also having a considerable risk of false positives or negatives.

The main techniques that are used in static analysis are:

• Signature-based detection
• Heuristic-based detection

Signature-based detection will check static identifiers of files against enormous
databases of known malware. This is the simplest and quickest way of doing malware de-
tection. When new or previously unknown malware is discovered, its signature is added
to one or multiple malware signature databases. Experts agree34 a major downside to this
approach is that this type can not discover any type of unknown malware not already in
a database.

Heuristic-based detection, on the other hand, is used to discover both new types of
malware, and altered versions of already known malware. This is done by analysing files
that do not have a signature match, and then comparing that with statistically suspicious
characteristics. One such characteristic could be unusual instructions or junk code seem-
ingly serving no purpose. Seasoned information security professional currently teaching
at SANS institute, Lenny Zeltser5, informs that this type of detection is often used in
conjunction with signature-based detection but has a higher rate of false positives.

1https://us.norton.com/internetsecurity-malware.html
2https://technical.nttsecurity.com/post/102efk4/detecting-malware-through-static-and-dynamic-techniques
3https://www.infosecurity-magazine.com/opinions/malware-detection-signatures/
4https://searchsecurity.techtarget.com/tip/How-antivirus-software-works-Virus-detection-techniques
5https://searchsecurity.techtarget.com/tip/How-antivirus-software-works-Virus-detection-techniques

12

https://us.norton.com/internetsecurity-malware.html
https://technical.nttsecurity.com/post/102efk4/detecting-malware-through-static-and-dynamic-techniques
https://www.infosecurity-magazine.com/opinions/malware-detection-signatures/
https://searchsecurity.techtarget.com/tip/How-antivirus-software-works-Virus-detection-techniques
https://searchsecurity.techtarget.com/tip/How-antivirus-software-works-Virus-detection-techniques

Malware Analysis Infrastructure

3.1.2 Dynamic detection

Jeremy Scott6 also explains dynamic detection. It is based on running files in a con-
trolled and simulated environment and observing what they do. Functionality will be
analysed and technical indicators identified. These technical indicators may include do-
main names, IP addresses, file paths, etc. Dynamic detection can also identify commu-
nication with an attacker-controlled external server for command and control purposes.
Dynamic analysis can be seen as what most sandbox environments do today.

Curtis Cade at OPSWAT blog7 describes sandbox detection as a technique that can
be summed up as using isolated, often virtual, "sandbox" environments to analyse sus-
picious files by executing them and recording their behaviour. When a file is executed it
is automatically analysed through a weight system or by a malware analyst, often both.
With sandboxing, a detailed report on the behaviour of the malicious files is compiled
and generated. One specific example of a sandbox detection system, Cuckoo, is explained
in detail later in section 3.2.4.

According to Lenny Zeltser at the SANS institute8, behavioural-based detection
reads the execution of suspicious files and observes potentially malicious activity. Some
particular parameters that are observed are access requests, network connections, mod-
ification of host files, etc. When analysing these, potentially malicious activity can be
observed and based off of this activity it is often possible to determine whether a file
is malicious or not. As this is a type of dynamic detection, it requires running files to
perform scans.

3.1.3 Malware Anti-VM techniques

With the advancement of dynamic detection and sandboxing, malware authors have de-
signed countermeasures to avoid detection. One of these countermeasures is detection of
virtualised systems and sandboxing9. If a malware with anti-vm countermeasures detects
that it is executed within a virtualised environment it will not deploy malicious code or
its payload to try to avoid detection.

3.2 Analytical Infrastructure

To support the requirements from section 2.1, we will need an infrastructure that can
manage files throughout an entire scanning process. That includes handling relevant
user input, managing full scans from start to finish, supporting a large number of static
and dynamic anti-virus engines, controlling scans and distributing them effectively to the
different engines, compiling results and storing these along with other needed data.
An infrastructure fulfilling these criteria can be reasonably abstracted to three main parts:

• front end
• task handler
• analysers

The front end should be the point of access for all user interaction, and consist of an

6https://technical.nttsecurity.com/post/102efk4/detecting-malware-through-static-and-dynamic-techniques
7https://www.opswat.com/blog/understanding-heuristic-based-scanning-vs-sandboxing
8https://searchsecurity.techtarget.com/tip/How-antivirus-software-works-Virus-detection-techniques
9Anti-VM and Anti-Sandbox Explained: https://www.cyberbit.com/blog/endpoint-security/

anti-vm-and-anti-sandbox-explained/

13

https://technical.nttsecurity.com/post/102efk4/detecting-malware-through-static-and-dynamic-techniques
https://www.opswat.com/blog/understanding-heuristic-based-scanning-vs-sandboxing
https://searchsecurity.techtarget.com/tip/How-antivirus-software-works-Virus-detection-techniques
https://www.cyberbit.com/blog/endpoint-security/anti-vm-and-anti-sandbox-explained/
https://www.cyberbit.com/blog/endpoint-security/anti-vm-and-anti-sandbox-explained/

Malware Analysis Infrastructure

API and a graphical user interface (GUI). Significant user actions such as file input and
viewing both new and old results must be available through the front end.

The task handler should act as a controller for all analysers, meaning it should dis-
tribute and organise all tasks. In other words, it should be the middleware between the
front end and analysers. The relationship between front end and task handler should be
one to one, while task handler to analysers should constitute a one to many relationship.
The task handler will need to be aware of all available analysers, and must be able to
present files for analysis and get a result back, and further return results back to the front
end to present to the user.

The analysers will provide the required analysis for the previously described infras-
tructure. This involves handling the actual scanning of files and detection of malware.
The infrastructure can consist of anti-viruses, dynamic analysis tools, metadata retriev-
ers, etc. There are multiple ways to host these, where the two most relevant are; all
tools gathered in one host or hosting relatively light weight tools together and hosting
resource intensive tools by themselves. Especially dynamic analysis tools demand a high
amount of resources, and can be thought of as their own platforms. Dynamic tools often
rely on using their own probes to perform their analysis.

• All-in-one will allocate one shared resource pool for all analysis tools. This works
for small scale usage, development, and testing. It would likely lead to conges-
tion and starvation because of lacking resources, and worst case a complete crash
and forced shut-down when used at a larger scale. Dedicating resources efficiently
within such a solution would be a challenge.

• Separating and grouping analysers based on resource usage should prove beneficial
at larger scale by allowing hardware resources to be efficiently allotted. This entails
grouping tools like independent static analysers together to share a resource pool
when compatible. It is necessary to carefully set the amount of available resources
to match the need of these analysers. More advanced and demanding analysers like
dynamic tools should receive their own allotted resources to allow their required
sub-probes to function optimally.

With an all-in-one solution used during development and testing, it was discovered how
important it can be to separate probes appropriately. Trying to run both the general
system and a dynamic analyser off the same host proved very unstable and resulted
in multiple complete crashes forcing manual reboots. Hence why option two should be
considered if the system is to face moderately scaled or higher usage.

An aspect yet to be mentioned, is storage of the data in an infrastructure like this.
The data includes long term storage for analysis; scan history, individual data from all
past scans, compiled scan results, logs; long term storage to ensure repudiation; logs of
actions performed in dynamic scans, specific user responsible for requesting scans; and
short term storage to handle logic; fast access to tasks, queues to track tasks and delegate
them for analysis, keeping track of results from individual analysers before compiling
them together. The natural approach to this would be to store long term data on disk in
a normalised database in the front end for quick retrieval, or more securely; the same
database approach on a dedicated logging platform. To potentially increase efficiency,
the database could cache hashes from all previous files to reduce redundant actions

14

Malware Analysis Infrastructure

by not scanning previously scanned files. Short term storage should consist of quicker
memory based databases and small data structures like queues to track tasks, scans,
when and where to delegate, etc. These would logically be situated on the task handler
for efficiency.

One last aspect to consider is employing a kiosk solution. A kiosk solution would
simply act as a gateway to the front end for users. Input from users could be handled
here before reaching the front end and the actual analysis infrastructure. This would be
a natural place to add user authentication before input is sent to the infrastructure. This
would make it possible to enforce a policy for only authenticated employees to initiate
scans, leading to removing a small risk of abusing an insecure entry point.

This infrastructure should explicitly be allowed minimal network connectivity to com-
pensate for the fact it is a zone dedicated to analysing insecure files. This should obvi-
ously be constrained to one limited area as to avoid spreading any malware found to
the rest of the organisations network. The kiosk would benefit from specific and limited
connectivity to an authentication service. Otherwise, the front end can benefit from con-
trolled network access to; accept requests from authorised users from the organisation
network; share secure files after a scan to the responsible users file space, e.g. in an
Active Directory structure.

Figure 3.2: Conceptual Infrastructure

3.2.1 Infrastructure Alternatives

Creating an infrastructure of this complexity from scratch was too large of a task for a
relatively short bachelor project, therefore existing alternatives were researched. Discov-
ered alternatives were:

• IRMA 10

• OPSWAT MetaDefender 11

• VirusTotal 12

• Multiscanner 13

10IRMA:https://irma.readthedocs.io/en/latest/intro/supported_probes.html?highlight=
analyzers

11OPSWAT MetaDefender:https://www.OPSWAT.com/products/MetaDefender
12VirusTotalurlhttps://www.virustotal.com
13Multiscanner:https://multiscanner.readthedocs.io/en/latest/overview.html

15

https://irma.readthedocs.io/en/latest/intro/supported_probes.html?highlight=analyzers
https://irma.readthedocs.io/en/latest/intro/supported_probes.html?highlight=analyzers
https://www.OPSWAT.com/products/MetaDefender
https://multiscanner.readthedocs.io/en/latest/overview.html

Malware Analysis Infrastructure

Requirements/Alternatives IRMA OPSWAT Multiscanner VirusTotal
On-site Yes Yes Yes No
Open source Both No Yes No
Automated setup Yes Unknown Yes Unknown
Yara support Yes Yes Yes Yes
Dynamic analysis No Yes Yes Yes
Known good/bad Yes Yes Yes Yes
Static analysis Yes Yes Yes Yes
Pipeline scans No Unknown No Unknown
API Yes Yes Yes Yes
Web interface Yes Yes Yes Yes
Free version Yes Trial Yes Yes
Number of probes 30 30+ 30 70+
Machine learning No Yes Yes Yes

Table 3.10: Analytical Infrastructure frameworks comparison

16

Malware Analysis Infrastructure

VirusTotal

To understand the goal of the product, an understanding of VirusTotal is required as it is
the main inspiration for the entire assignment. It sets the baseline for expectations and
requirements of the project.

"VirusTotal aggregates many antivirus products and online scan engines to check for
viruses that the user’s own antivirus may have missed, or to verify against any false posi-
tives." 14

VirusTotal15 works by either uploading a file, searching by hash, or linking to a file or
website for scanning or searching in the VirusTotal known hashes database. Additionally
it gives the user the ability to rate the result and comment on it which can prove useful.
The main issue is as explained that it is not available as an on-site, in-house solution; that
the scan results are shared with the world. This allows malware creators to automate and
change their malware when its discovered, and it also breaks KDAs requirement of strict
confidentiality (Section 2.4).

OPSWAT MetaDefender

OPSWAT, the company behind MetaDefender, has the philosophy Trust no File. Trust no
Device. They are focused on reducing insecurities within the platform and creating a
secure environment for malware detection and analysis.

The analytical platform in itself is very similar to Virustotal, but have added further
features such as a kiosk solution. It also have data sanitisation built into the solution
which removes potential malicious elements from files.16 The analytical system is com-
promised of 30+ antimalware engines and checks for unusual content in different file
types, 30 file types are supported17.

MetaDefender has a lot of similarities with VirusTotal, but can also be acquired as a
on-site solution for a price and this approach includes options for the customer organisa-
tion to decide every facet of what is shared and what is kept private. This module is also
well established in the market, but it lacks publicly available documentation of capabil-
ities and design. As KDA stated a clear wish for the system to available for free usage
for anyone (section 2.4), a closed source solution as MetaDefender is hardly qualified for
use in this project.

IRMA

IRMA: Incident Response Malware Analysis18 is an on-site infrastructure framework
made by french company Quarkslab. The module is available with built-in orchestra-
tion and provisioning options; Hashicorp’s Vagrant and Packer using pre-built images,
and automatic Ansible provisioning. Setup is almost completely automated with a few
errors which can be mostly fixed through available configuration. The main issue with
IRMA is that it does not support dynamic analysis by default, though it can be added
through additions in the publicly available official code base on Github 19 An enterprise

14VirusTotal: https://en.wikipedia.org/wiki/VirusTotal
15About VirusTotal:

https://support.VirusTotal.com/hc/en-us/articles/115002126889-How-it-works
16Data sanitization: https://www.opswat.com/technologies/data-sanitization
17Opswat: https://www.opswat.com/products/metadefender
18IRMA:https://irma.readthedocs.io/en/latest/
19Quarkslab/IRMA at Github: https://github.com/quarkslab/irma

17

https://en.wikipedia.org/wiki/VirusTotal
https://support.VirusTotal.com/hc/en-us/articles/115002126889-How-it-works
https://www.opswat.com/technologies/data-sanitization
https://www.opswat.com/products/metadefender
https://irma.readthedocs.io/en/latest/
https://github.com/quarkslab/irma

Malware Analysis Infrastructure

option is available, but it is barely documented nor open source.

IRMA was selected as the framework for the project as the sole candidate found dur-
ing the research phase to support on-site hosting and an open source code base. Though
IRMA lacks features such as dynamic analysis support, pipelined scans, kiosk support,
and have been found to have idempotency issues during provisioning. 20 Pipelined scans
is not a direct requirement, but is a functionality that increases scanning efficiency by a
large degree, therefore, also improving scalability. This lead the development team, in
cooperation with KDA, to set the project goal to testing, fixing and adding as much as
possible.

Multiscanner

Nearing the end of the development phase Multiscanner by Mitre was discovered. Through
the documentation it seems to be very good candidate, but it was not considered as an
alternative as it was not known as of late in research and early design phases.

Multiscanner supports a wide array of probes, the main difference to IRMA being the
different architecture and the probe types it supports. It has native support for sandbox
execution and machine learning which is not a feature in IRMA. Multiscanner has a wider
array of metadata modules but lacks in anti-virus modules natively supported. It supports
three sandbox modules:

• Cuckoo
• FireEye API
• VxStream

Based on a simple overview Multiscanner fulfils a wider array of the required capabilities,
but lacks in its provisioning21.

Additionally, it has been tested in containerised environments, which is something
IRMA itself struggles with, though it does not seem to be a difficult fix. 22. Containers
should not be used for modules of the system such as dynamic scanning, but if used for
modules not executing potential malicious content, the decreased security should not be
a problem. By using the containers the setup speed of the system should increase.

3.2.2 Chosen framework: IRMA

IRMA has two versions, one enterprise edition and one open source. The open source
alternative is officially termed IRMA OSS, but this report will continue to use IRMA to
reference the open source edition.

In addition to VirusTotal inspiring the assignment, KDA also had knowledge of IRMA
beforehand, and it helped shape the expectations for the system. As mentioned in the
earlier IRMA introduction, section 3.2.1, the development team and KDA decided IRMA
was the top candidate for the project. This due to the open source nature of the frame-
work and the on-site focus, together with a high degree of out-of-the-box automation,
relatively covering documentation, and a high number of supported analysis tools.

An important sentiment shared between the KDA interests and the Quarkslab team;

20IRMA: https://irma.readthedocs.io/en/latest/
21Multiscanner https://multiscanner.readthedocs.io/en/latest/
22Twitter post: https://twitter.com/mboman/status/865473084270059521

18

https://irma.readthedocs.io/en/latest/
https://multiscanner.readthedocs.io/en/latest/
https://twitter.com/mboman/status/865473084270059521

Malware Analysis Infrastructure

"you keep control over where data goes and who gets your data."23

Analysis Process

The IRMA analysis process24 can be summed up like this: start by uploading files to the
front end. When files are uploaded their SHA256 values are checked against a database of
past results to test if any of the individual files have been scanned before. All unscanned
files will be added in the front end FileSystem under their SHA256 values and the values
will be stored in the database for scan tasks to be started. The scan tasks relay the files to
the task handler, the brain, where the files are temporarily stored in a FTP server while
the brain is diverting different tasks to all running analysis tools, the probes. After the
probes return the results from their analysis the brain will process the results and return
them to the front end for storage. The results will be stored in the database on the front
end, and be available to the user. See appendix D for figures displaying a simple overview
of the dataflow within IRMA.

Architecture

Like the analysis process is hinting towards, the IRMA architecture is matching the pro-
posed analytical architecture design discussed earlier in the section 3.2. This is seen in
IRMA being built with a front end, a controller (brain) serving as a task handler, and
analysers in the form of numerous probes.

Figure 3.3: IRMA architecture

Every component uses python-based applications to function, and a key aspect is the
Celery distributed task queue library. The official technical description can be found at
IRMA.readthedocs.io 25.

23IRMA official purpose: https://irma-oss.quarkslab.com/
24Analysis Process:https://irma.readthedocs.io/en/latest/intro/process.html
25Technical description:https://irma.readthedocs.io/en/latest/technical/index.html

19

https://irma.readthedocs.io/en/latest/technical/index.html
https://irma-oss.quarkslab.com/
https://irma.readthedocs.io/en/latest/intro/process.html
https://irma.readthedocs.io/en/latest/technical/index.html

Malware Analysis Infrastructure

Front end

The IRMA front end has a web-gui and an command line interface available. These are
based around a RESTful Hug API running on a NGINX web server with a uWSGI applica-
tion server to handle user interaction. The earlier mentioned long term storage require-
ment (section 3.2) is covered by a PostgreSQL database on the front end. The database
contains all results from earlier scans and information about current scans.

When the API receives a scan request with new files, it will immediately search the
database for any matching file-hashes from earlier scans unless explicitly stated to force
a new scan. If the database does not contain matches, or a force parameter is set, Celery
workers start a scan task to transfer the files to the brain, requesting scans and expecting
a complete result in return.

Brain

In IRMA the brain complies with the role earlier defined as file handler (section 3.2).
It contains an SFTP server to house files for scanning, a RabbitMQ server to broker
queueing between the front end and scan tasks on brain, relaying them to the probes
for analysis, and lastly returning the result back to the front end. To ensure efficiency in
the ideally short life span of scan tasks, an SQLite database is implemented to store the
required data.

These elements can be equated to objects in object-oriented programming. Celery
workers and handlers are responsible for handling the tasks to and from the front end,
and between probes and brain. They tie the different systems together to form the main
logic of the IRMA anti-malware platform.

Probes

IRMA natively supports multiple methods for detection and analysis. Out of the box there
are four different supported categories of probes26:

• Anti-virus
There are 22 natively supported anti-virus programs. Seven run on Windows, with
15 on GNU/Linux. Adding new anti-virus software should be easy as Quarkslab has
provided a skeleton and a thorough description27 of necessary steps to integrate
new anti-virus programs properly.

• External analysis
VirusTotal and ICAP servers are supported. File hashes are sent to these and results
retrieved. VirusTotal will not be used as it opposes the whole purpose of keeping
data purely in-house.

• File databases
Only one is natively supported. NSRL is a public database available of known sig-
natures that can be downloaded for usage in isolated networks.

• Metadata
IRMA supports five metadata analysers that extracts and returns metadata from
files. If mimetype filtration is activated for a scan, it means files are filtered based on
their file type so only files compatible with the respective analyser will be analysed.

26Supported probes: https://irma.readthedocs.io/en/latest/intro/supported_probes.html
27Writing your own Analyzer for the Open-Source Multi-Scanner IRMA: https://blog.quarkslab.com/

writing-our-own-analyzer-for-the-open-source-multi-scanner-irma.html

20

https://irma.readthedocs.io/en/latest/intro/supported_probes.html
https://blog.quarkslab.com/writing-our-own-analyzer-for-the-open-source-multi-scanner-irma.html
https://blog.quarkslab.com/writing-our-own-analyzer-for-the-open-source-multi-scanner-irma.html

Malware Analysis Infrastructure

The details surrounding why this works are very low-level and beyond the scope
and relevance of this project. An introduction to file system concepts necessary to
understand for this, see Complete Tour of PE and ELF: An Introduction.

3.2.3 Dynamic Malware Analysis tool

As IRMA doesn’t support a dynamic analysis probe by default, one needs to be selected
and added. Luckily it is easy to extend IRMA to support it. Main requirements set for a
chosen dynamic detection tool: it should be extendable by other tools, open source and
easy to use with an API. FireEye AX and VxStream was also considered, though at a later

Requirements/Alternatives Bro IDS (Zeek) Cuckoo Joebox ThreatAnalyzer
On-site Yes Yes Both No
Open source Yes Yes No No
Automated setup No No Unknown Unknown
Yara support No Yes Yes Yes
API Yes Yes Yes Yes
Host monitoring No Yes Yes Yes
Network monitoring Yes Yes No Yes
Free Yes Yes No Trial

Table 3.11: Dynamic Analysis Tools Comparison

point in the development. They were simply not fit as they are neither open-source nor
free (Section: 2.4).

Cuckoo resulted in the best fit for our project as the only other open source option is
Zeek and it only supports network monitoring. A huge time sink in adding a sandbox is
that none have official automatic provisioning. Luckily some unofficial were found. They
did not work perfectly, but they were a good baseline for an Ansible module developed
for Cuckoo for this project. Additionally IRMA needs an interface with which it can com-
municate with the analyser. This interface took inspiration from the code shown in the
documentation on extending IRMA 28.

3.2.4 Chosen dynamic analysis tool: Cuckoo

What is Cuckoo

Cuckoo Sandbox is a dynamic analyser that analyses unknown or suspicious files be-
haviour within a controlled and contained environment on demand, also called a sand-
box analysis tool. The sandbox should be as similar as possible to the production envi-
ronment of the recipient/target. It should emulate a normal environment to not wake
suspicion with advanced malware and programs. A file should be submitted if the sender
is unknown, if its content is deemed suspicious or the target environment is of sensitive
enough nature. A file is analysed to understand how it would behave if it were opened
or executed on a device used by employees, a regular user or a server (Windows, Linux,
Mac, etc.). It is also possible to add support for Android Virtual Device (AVD). Cuckoo
officially describes itself as:

"Cuckoo Sandbox is the leading open source automated malware analysis system."29

28Extending IRMA, for a probe that is not a antivirus: https://irma.readthedocs.io/en/latest/
extending/add_probe.html?highlight=mimetype#for-a-probe-that-is-not-a-antivirus

29https://cuckoosandbox.org/

21

https://resources.infosecinstitute.com/complete-tour-of-pe-and-elf-part-1/
https://www.zeek.org/
https://cuckoo.readthedocs.io/en/latest/
https://www.joesecurity.org/
https://www.threattrack.com/malware-analysis.aspx
https://irma.readthedocs.io/en/latest/extending/add_probe.html?highlight=mimetype##for-a-probe-that-is-not-a-antivirus
https://irma.readthedocs.io/en/latest/extending/add_probe.html?highlight=mimetype##for-a-probe-that-is-not-a-antivirus

Malware Analysis Infrastructure

How Cuckoo functions

Cuckoo is usually accessible through a web page and an API where you can submit files
for analysis, see status of scan, results and reports. The API has the same functions as
the web page but enables automation and extending the interface of cuckoo, e.g a email
service.

When a file is submitted, Cuckoo will download the file on an incoming interface.
Cuckoo reverts to a specific VM snapshot set in the machinery configuration and starts the
VM. When the VM is started and the Cuckoo agent is ready on the guest VM, Cuckoo will
send a file for execution and analysis. During execution Cuckoo will gather data for later
analysis. Dependent on what modules are available and enabled Cuckoo will trace API
calls, dump and analyse network traffic (also encrypted) and perform advanced mem-
ory analysis30. These are default features when following the official cuckoo installation
guide. More features can be enabled31, for example Suricata. When execution and mon-
itoring is finished, Cuckoo will process the results and create a report. To see a overview
of the dataflow of Cuckoo check hatching.io

Why use Cuckoo?

In rapidly evolving and complex environments there are a lots of potential weaknesses
and exploitable parts. The bigger and more complex an environment becomes, the more
important it is to have control and decide what files are allowed entry within its borders.
Most, if not all of the probes supported by IRMA are static analysers and meta analyser.
These only look for predetermined patterns and values, a set of signatures, heuristics or
a set of rules, they are not able to analyse what is done during execution. They quickly
and efficiently find known malware and malicious patterns. Some of them even have an
Host-Based Intrusion Protection System (HIPS)32.

With mostly, or only analysers that analyses files in a static environment Cuckoo aims
to fill the need of a dynamic analyser. The purpose of Cuckoo is to catch the malicious
files that the static analysers cannot detect. Cuckoo should detect malicious files using
new, non-public, or obscure techniques not yet classified by the other analysers. Cuckoo
should ideally also detect targeted software from APTs or other advanced threats. It is a
last defence against advanced malware that manages to bypass other detection methods.

3.3 Configuration Management

3.3.1 Automatic provisioning

Kief Morris’ Infrastucture as Code defines provisioning as making an infrastructure ele-
ment, such as an infrastructure server or network device, ready for use. Depending on
the infrastructure elements being provisioned this could involve a couple of things[1]:

• Assigning resources to the element
• Instancing the element
• Installing software onto the element
• Configuring the element
• Registering the element with infrastructure services.

30https://cuckoosandbox.org/
31Adding processeors: https://cuckoo.sh/docs/customization/processing.html?highlight=process
32https://cdn1.esetstatic.com/ESET/INT/Products/Home/EAV/v12/ESET_NOD32_Antivirus_Product_Overview.pdf

22

https://hatching.io/blog/cuckoo-sandbox-architecture
https://cuckoo.sh/docs/customization/processing.html?highlight=process

Malware Analysis Infrastructure

At the end of the provisioning process the element would be fully ready to use. There are
three main points you need to have an effective provisioning process:

• Any existing infrastructure element can be rebuilt on demand
• Any element can be rolled out and replicated to several instances and environments

after being defined once.
• The process for provisioning and defining any element should be transparent and

easy to modify.

3.3.2 Push vs pull model

Kief Morris’ Infrastructure as Code explains the two models: push and pull[1]. In a push
model for configuration management, a central/master server pushes updates/configura-
tions to the servers it manages. This model is used by the configuration management tool
Ansible. Some systems using the push model may need a client running on the servers
the configuration are pushed to. Other systems, like Ansible, uses SSH to connect and
execute commands. The advantages of push systems is that they give you more control
over where and when to update and apply new changes.

Another model for configuration management is the pull model, where an agent is
installed on each server to schedule and apply changes. The agent runs periodically, and
checks a master or central repository for the newest configuration and applies it to its
own server. This method is used in the configuration management tools as Puppet and
Chef.

An advantage with the pull model is that it’s a more simple security model. The servers
in a push model must find a way to expose themselves to central repository/master and
thus need to implement an authentication solution. Ansible solves this by connecting
over SSH.

A pull based system may also be more scalable than a push based system. When a
push system needs to scale up it must open up connections to more hosts, which could
cause bottlenecks.

3.3.3 Configuration Management Strategy

The Configuration Management System section explains a type of configuration manage-
ment, configuration synchronisation, but what is a configuration management strategy?
Configuration management strategy is the different ways/strategies to approach config-
uration management in an infrastructure. Configuration synchronisation through config-
uration management systems is one of several approaches to avoid configuration drift
which is the main purpose of configuration management systems. Configuration drift is
in the words of Kief Morris:

"... the phenomenon where servers in an infrastructure become more and more differ-
ent from one another as time goes on, due to manual ad-hoc changes and updates,
and general entropy." 33.

Configuration drift in a production environment, or any environment, means inconsis-
tencies across servers and possibly services which is bad for maintenance, concurrency
and possibly stability and performance. Configuration drift makes troubleshooting and
a applying fixes a lot harder since you cannot necessarily know with certainty that the

33http://kief.com/configuration-drift.html

23

Malware Analysis Infrastructure

failure you found is the correct one, the only one or the same across all the different sys-
tems. These are the systems we try to avoid with configuration management also called
snowflake servers34. The name comes from their potential brittle and fragile existence in
a bigger collected environment.

Ad Hoc Change Management

Ad Hoc is basically just manual maintenance and configuration of infrastructure and
servers. There is no significant automation and synchronisation across services except
what is done manually. It is not preferable in any form of production environment or any
environment at all where consistency and and control is in focus.

Mutable

Mutable according to Merriam Webster is described as:

"capable of change or of being changed"35

That is also exactly what it means in the context of Configuration Management. A server,
or infrastructure managed by changing the configuration on the fly on a running server.
This can be done manually, with a Configuration Management System, updating the
system or any other way of intentionally changing a running servers configuration.

Configuration Synchronisation

To update and manage a system or infrastructure with a Configuration Management
System across all relevant systems/servers with the same configuration, in theory en-
suring that all systems have the exact same configuration. If a system is running over
an extended period there is a chance configuration drift might occur even when using
a Configuration Management System. A Configuration Management System cannot con-
trol all aspects of an individual system or server and all of it’s components. An update to
some or several components can for example change the behaviour of some but not all
parts of an infrastructure or system. In an ideal environment this would never happen.

Immutable

Immutable is the opposite of mutable, "not being capable of change or susceptible to
changed"36. This is usually done with virtualisation or Containerised services. In the case
of virtualisation it is usually done by have a "clean" base image, then manually or with
a Configuration Management System install and configure the relevant programs and
services for that server. For a Containerised service it is usually with a "recipe" where
you specify what base image should be used and what programs and services should
be installed. The main difference in comparison to mutable servers is how a update of
configuration or programs are handled. Instead of changing the configuration on a run-
ning server a new image is created preferably from the previous one. The old server with
the outdated service/configuration is removed and a new server with the updated ser-
vice/configuration is created/started. This allows for quick scaling and restoring of the
services as long as the current image is available. It can both be quicker and slower on
update all depending on size of update/changes and infrastructure.

34https://martinfowler.com/bliki/SnowflakeServer.html
35https://www.merriam-webster.com/dictionary/mutable
36https://www.merriam-webster.com/dictionary/immutable

24

Malware Analysis Infrastructure

Containerised services

Containerised services is run usually run alongside Linux, or other supported operating
systems. This means it shares resources and services with its host system. This allows
for less overhead. This also means that the services on the subsystem are closer to the
host system. Containers have existed for a long time as LXC on Linux37 but is today most
popularly used as Docker containers. [1]

3.3.4 Configuration Management Tools

There are many configuration management tools and approaches. After establishing an
overview of the different options we decided to evaluate the four biggest and most known
and established configuration management tools; Ansible, Chef, Puppet, and Salt. Each
has different advantages, disadvantages, and a approaches to reach the same result. The
main differentiator in execution is master vs masterless / client-server approach.

Puppet

Puppet was the first of these four developed with an initial release in 2005. Being de-
veloped 14 years ago it has matured a lot. Many modules have been developed by both
Puppet and third-parties. As one of the first proper configuration management tools it
was the first to do a lot of things. Not having any previously known pitfalls, a lot of
sub-optimal decisions were made.38

One of the main functionalities of Puppet is definition of configurations for each and
every host. Once a configuration has been defined Puppet will continuously check if the
required configuration has been altered and revert it back to its original state. Puppet
uses a master-node architecture, a change made on the centralised master-repo will au-
tomatically spread to other configured nodes. 39

Modules are created using Ruby or Puppet’s own DSL40, creating a bigger threshold
for new developers and users having to potentially learn a new language. Puppet has
strong reporting capabilities built into it reporting back from client to server. Puppet
Enterprise has built in tools to view the reports in a web browser. Puppet Opens Source
does not have a built in viewer but can use third-party viewer such as Puppetboard or
PuppetExplorer. This needs to be explicitly enabled in configuration to work since it is
not enabled by default41. It can also use git for version control through r10k. Though the
link is to a Puppet Enterprise site, r10K and its capabilities are also available in Puppet
Open Source42. Learning Puppet can be quite challenging since you will need to learn
Puppet DSL, how Puppet works, and potentially Ruby.

Chef

In comparison to Puppet that uses it’s own DSL in combination with Ruby, Chef uses a
Ruby-based DSL43. Chef uses git as a deployment platform which brings along strong
version control called chef-repo44. Chef has a command-line tool called knife that can

37https://en.wikipedia.org/wiki/LXC
38Puppet: https://puppet.com/company
39What is Puppet: https://www.edureka.co/blog/what-is-puppet/
40Puppet Wikipedia Page: https://en.wikipedia.org/wiki/Puppet_(software)
41Puppet Documentation: https://puppet.com/docs/puppet/6.4/reporting_about.html
42Puppet r10k https://puppet.com/docs/pe/2019.0/r10k.html
43Chef Wikipedia page: https://en.wikipedia.org/wiki/Chef_(software)
44Chef Documentation: https://docs.chef.io/chef_repo.html

25

https://puppet.com/company
https://www.edureka.co/blog/what-is-puppet/
https://en.wikipedia.org/wiki/Puppet_(software)
https://puppet.com/docs/puppet/6.4/reporting_about.html
https://puppet.com/docs/pe/2019.0/r10k.html
https://en.wikipedia.org/wiki/Chef_(software)
https://docs.chef.io/chef_repo.html

Malware Analysis Infrastructure

help you manage your environment 45. It can have quite a steep learning curve as you
may need to learn Ruby and how Chef works at the same time, assuming you do not know
Ruby beforehand. To manage a Chef environment, a workstation is needed to manage
the master to manage the clients.46 47

Ansible

Ansible is masterless. Its playbooks are written in Python with YAML formatting. The
playbooks are pushed to clients over ssh 48. Ansible nodes can pull configurations but
requires Ansible to be installed on the node to execute as local-host. When serving many
nodes at the same time it can slow down needing a lot of resources due to limitations of
SSH 49. Ansible does not provide a good way to view and manage your hosts, which roles
are currently deployed or which version used on which host. Ansible Tower or AWX is a
good option with a web-based user interface which solves a lot of these challenges 50.

Salt

Salt uses SSH, but the scalability over Ansible is greatly enhanced by the use of agents
called minions [2]. It has an asynchronous file server to speed up file serving to minions
[2]. It has the potential for greater scalability and resiliency with support of multiple
levels of masters and tiered arrangement 51.

3.3.5 Configuration Management requirements

A provisioning tool is needed to automate the setup and start the necessary processes
to run IRMA. Ansible is natively supported, but the setup has it flaws and Ansible its
disadvantages. The flaws in the IRMA Ansible provisioning is mentioned later in the
implementation, the disadvantages can be summed up as:

• OS restriction
Ansible has great support for Unix based OSes where ssh is installed by default,
but the moment it tries connecting to Windows problems arise. This is mostly be-
cause it is agentless and push based with SSH as its main method of connecting
to machines. It also supports WinRM, but this isn’t enabled by default on Windows
machines and the setup can be fragile. This is solved in the system by simply creat-
ing images with the correct configuration.

• Stateless
This leads to tasks being repeated multiple times and decreasing the overall speed
of the setup, though this is very dependant on the way the Ansible modules are
designed. If they have a very modularised design, the playbooks are created for
small sub tasks and are combined to complete larger tasks which is why this won’t
be a large issue.

• Speed
The speed can be lacking when deploying larger infrastructures, but even this can
be solved by modularising playbooks into smaller sub tasks. Additionally, speed can

45Chef knife: https://docs.chef.io/knife.html
46Chef System Requirements: https://docs.chef.io/chef_system_requirements
47Chef workstation: https://www.chef.sh/docs/chef-workstation/about/
48Ansible Architecture: https://en.wikipedia.org/wiki/Ansible_(software)#Architecture
49Ansible Performance: https://opensource.com/article/19/3/ansible-performance
50Ansible AWX: https://github.com/ansible/awx
51Salt Multi Master: https://docs.saltstack.com/en/latest/topics/tutorials/multimaster.html

26

https://docs.chef.io/knife.html
https://docs.chef.io/chef_system_requirements
https://www.chef.sh/docs/chef-workstation/about/
https://en.wikipedia.org/wiki/Ansible_(software)##Architecture
https://opensource.com/article/19/3/ansible-performance
https://github.com/ansible/awx
https://docs.saltstack.com/en/latest/topics/tutorials/multimaster.html

Malware Analysis Infrastructure

be improved by creating asynchronous tasks that can be run in parallel. The speed
can also be increased as with all other configuration management tools by having
a local file server for downloads.52

Advantages:

• Ansible Galaxy
It is a Puppet Forge-like online repository for existing modules which are easy to
use and extend upon.

• Agentless53

• YAML playbooks
YAML is more readable, allows for comments and makes it easier to use variables
than the JSON format often employed by other tools.

• Easy to learn/understand

We see no reason to move away from Ansible as it is already implemented in IRMA.
There is little to no potential benefit to rewriting IRMA in a different provisioning tool,
as it would be of an immense cost to understand the code and redevolop it. For the benefit
to outweigh the cost the provisioning speed and idempotency using that tool would need
to increase by a huge margin without losing any advantages already present.

3.4 Orchestration

According to Kief Morris’ Infrastructure as Code an infrastructure definition tool, also
known as an orchestration tool, allows people to specify what infrastructure resources
they want to allocate and how they should be configured.[1]

Orchestration is used to described various aspects of computing. In our case it is
specifically in the context of orchestration, allocation and management of processing re-
sources. Configuration of applications and services are not the main objective of orches-
tration in our case. There are often overlapping features or integrated certain functional-
ity used for configuration of applications or services in orchestration tools. It is also the
other way around for configuration management tools. Orchestration can be managed
in several ways; manually, with a configuration management software (Infrastructure as
Code), virtualisation, provisioning/orchestration tools etc54.

3.4.1 Orchestration requirements

Our case relies on an in house solution with changing requirements for resources, virtu-
alisation initially seems like a good option. Regardless of the solution we choose, it needs
to be able to dynamically allocate and reallocate resources from one service to the other.
By default IRMA uses Vagrant in combination with Packer to orchestrate machines for
running IRMA, keep in mind this solution is not meant for production, but only for de-
velopment environments55. KDA requested that the infrastructure was capable to support
VMWare, which Vagrant does although through a plugin which needs a licence. The plu-
gin lacks some features, none of which seems to be of immediate concern56.

52Asynchronous playbooks: https://docs.ansible.com/ansible/2.4/playbooks_async.html
53Agentless: https://www.upguard.com/blog/agent-vs-agentless-and-why-we-chose-agentlessskrivom
54Orchestration: https://en.wikipedia.org/wiki/Orchestration_(computing)
55Vagrant: https://www.vagrantup.com/intro/vs/terraform.html
56Vagrant VMWare: https://www.vagrantup.com/vmware/index.html

27

https://docs.ansible.com/ansible/2.4/playbooks_async.html
https://www.upguard.com/blog/agent-vs-agentless-and-why-we-chose-agentless skriv om
https://en.wikipedia.org/wiki/Orchestration_(computing)
https://www.vagrantup.com/intro/vs/terraform.html
https://www.vagrantup.com/vmware/index.html

Malware Analysis Infrastructure

During the development phase for the thesis a combination of Vagrant and Packer
was used which comes with some downsides:

• Resource limitation of working environment

• Differences in implementation between hypervisors

• Security concerns
Vagrant uses an ssh key retrieved from a public Github repository to access the
machines it changes. This can be changed but is something to be aware of.

For a production environment the requirements differ, Vagrant isn’t as capable when
it comes to cloud orchestration, which is then often solely doable through community
plugins (e.g. for VMWare)57, which have a habit of becoming deprecated and flawed.
Requirement specification for a production environment include:

• Cloud agnostic
Support a variety of different cloud architectures

• Boot or use a machine from a snapshot
Pre-build an image or snapshot so the setup is quicker

For the production environment that KDA would hopefully deploy, Vagrant should in
theory not be used, as its explicitly not designed for production58

3.4.2 Packer

Packer creates base images called boxes for selected hypervisors and configures these to
fit the system. This makes provisioning easier at later stages in the process by enabling
SSH on Windows machines as an example. Packer boxes should only contain parts that
are necessary for provisioning in the later stage and parts that are rarely changed. By
doing an analysis of what should and shouldn’t be built into an image, one can reduce
setup speed drastically.

Different methods exists for increasing packaging speed of boxes. Packaging can be
splint into multiple stages, images built with a rarely done configuration and uses this
image/box as a basis for the other boxes.

Boxes built with Packer only supports the hypervisor they were built for by default.
This means it is necessary to build for each hypervisor separately for each configuration.
There is one exception, which is Packer’s capability to rebuild OVA/OVF boxes into Virtu-
albox boxes. OVA/OVF are open virtualisation formats which supports multiple different
hypervisors. Multiple hypervisors are capable of exporting to and importing from the for-
mats, though this is not natively supported in either Packer or Vagrant. By tinkering with
APIs for different hypervisors it should be possible to automate the process of importing
and exporting between the virtualisers.

If used in an infrastructure one can add smoke testing at the end of the packaging
workflow to verify that everything appears to be working. This will decrease automation
fear.
An example of the workflow can be seen below in figure 3.4.

57VMWare plugin: https://www.vagrantup.com/vmware/index.html
58Vagrant production: https://www.vagrantup.com/intro/vs/terraform.html

28

https://www.vagrantup.com/vmware/index.html
https://www.vagrantup.com/intro/vs/terraform.html

Malware Analysis Infrastructure

Figure 3.4: Reproduced with permission. Copyright 1999-2019 QuinStreet, Inc. All rights reserved.

3.4.3 Vagrant

Vagrant is a tool for orchestrating virtual machines in a single workflow. The Vagrantfile
is used to configure and provision your virtual machine environment. In the Vagrantfile
you can specify which type of box you want to use for your machines, network configu-
rations and programs to be installed, which is called provisioning. Once the vagrantfile
is configured you only have to run vagrant up to set up your virtual machines, vagrant
halt to shut them down and vagrant destroy to remove them.

It shouldn’t be used in production environments per its own documentation as it is
mainly used for managing local VMs. It can be extended to support other platforms (e.g.
Openstack), but this is often through community created modules which has a varying
dependability.

Vagrant is the default orchestration tool used by IRMA and is used for creating ma-
chines out of boxes that are stored in a Hashicorp Box repository or locally. IRMA has
specialised boxes for its machines which only supports a small amount of hypervisors59.

3.4.4 Virtualisation

Virtualisation, or hardware virtualisation in our case:

"refers to the creation of a virtual machine that acts like a real computer with an
operating system."60

This allows a full separation between the two systems, that is logically in software.
This makes it possible to run malicious software in a controlled and segregated envi-
ronment separate from the host system. There are a lot of different type of virtualisers
and providers. There are both Type 1 and Type 2 virtualisers. Type 1 is a virtualiser
running directly on hardware while a Type 2 virtualiser is running with a host operating
system like Windows or Linux. Since Type 1 virtualisers are running directly on hardware
with no middleware, also called bare-metal, it is reasonable to assume that there is less
performance overhead compared to type 2 virtualisers. Depending on the type of soft-
ware/load running on a virtual machine, load on the host system and type of hardware
the difference isn’t necessarily that big between type 1 and type 2 virtualisers. There are
option of both types of virtualisers.
Type 1

• ESXi
59Box repository: https://app.vagrantup.com/boxes/search?utf8=%E2%9C%93&sort=downloads&

provider=&q=quarkslab
60Virtulisation Wikipedia article: https://en.wikipedia.org/wiki/Virtualization#Hardware_

virtualization

29

https://app.vagrantup.com/boxes/search?utf8=%E2%9C%93&sort=downloads&provider=&q=quarkslab
https://app.vagrantup.com/boxes/search?utf8=%E2%9C%93&sort=downloads&provider=&q=quarkslab
https://en.wikipedia.org/wiki/Virtualization#Hardware_virtualization
https://en.wikipedia.org/wiki/Virtualization#Hardware_virtualization

Malware Analysis Infrastructure

• OpenStack61

• Xen62

• Hyper-V62

• KVM62

Type 2

• Virtualbox
• VMware Player/Workstation
• QEMU

61OpenStack is not a good comparison to the others as it is a lot more complex to setup and aimed at large
scale infrastructure hosting and management.

62There are arguments that these are not technically type 1 virtualisers, but for simplicity that’s what they
are categorised as in our context.

30

Malware Analysis Infrastructure

4 Implementation

This chapter describes implementation details found during the project development
phase. It highlights interesting challenges met, how these relate to the project, and
workarounds, solutions, and potential fixes.

4.1 Configuration and set-up of IRMA

IRMA already had a mostly working installation method for the base system which only
requires some configuration for it to be fully functional. Adding new analysers were
more problematic as the installation is a bit clunky or lacking in many cases. We forked
the official Quarkslab repository1, and expect to send a pull request for our additions in
the near future after performing quality assurance.

4.1.1 Hardware

As seen in the theory section IRMA consists of three modules; the brain, the front end,
and possibly several probes. These can either be installed on one or several hosts. The
brain and the front end must be installed on a GNU/Linux machine. At the start of the
bachelor project our group was given a laptop with Ubuntu 18.04 that were installed
the brain and the front end, the specifics of are described in section 6.2. IRMA does
not estimate performance on any set ups, but for a small deployment the entire IRMA
platform can be hosted on one host with several systems inside virtual machines which
is what we did during the project.

4.1.2 Installation

IRMA can be installed manually or by using an automated install done with IRMA. We
will only look at the automated installation.
The repository can be cloned using:

git clone --recursive https://github.com/quarkslab/irma

Running without the "recursive" tag misses a required submodule for running IRMA. We
found out later that a file only was linked to in the repository, so we added the flag to
retrieve that as well.

First one needs to retrieve requirements with specific versions, this can be done using
pip to install packages mentioned in requirements.txt which is located in the Ansible
folder.

pip install -r requirements.txt

The main requirement for the installation is:

• ansible = 2.4.2.0
1Quarkslab IRMA: https://github.com/quarkslab/irma

31

https://github.com/quarkslab/irma

Malware Analysis Infrastructure

also this is installed using pip to install through the requirements.txt.

Otherwise to use IRMA’s orchestration solution with Vagrant, one needs Vagrant in-
stalled with the selected hypervisor and a vagrant plugin for the hypervisor if necessary.
We started out using Virtualbox which doesn’t require a plugin simply to test the system,
and changed to VMWare workstation after a while. VMWare requires the plugin vagrant-
vmware-desktop which have a licensing fee. 2

It can be installed and licensed with:

vagrant plugin install vagrant-vmware-desktop
vagrant plugin license vagrant-vmware-desktop ~/license.lic

The license file can be acquired from
By using VMWare we also had to create boxes supporting it, this process is covered later
in section 4.3.5. As written in section 4.3.5 we experienced issues creating Windows
boxes with Packer, which led us to use Virtualbox once again in the last phase of the
project due to IRMA already having a box for it.
As for the file structure of the repository the most relevant folders are:

IRMA

ansible

roles

environments

irma-ansible

playbooks

group_vars

host_vars

brain

common

frontend

probe

modules

antivirus

custom

database

external

metadata

tools

Figure 4.5: Folder structure

2VMWare plugin: https://www.vagrantup.com/vmware/index.html

32

https://www.vagrantup.com/vmware/index.html
https://www.vagrantup.com/vmware/index.html
https://www.vagrantup.com/vmware/index.html

Malware Analysis Infrastructure

The Ansible folder contains all code, mostly Ansible yaml code, for installing the sys-
tem. The environment folder within describes how the infrastructure should look like.
Some machine variables are set for each machine separately, these include IP and ansi-
ble_groups. Ansible_groups are roles within the Ansible setup, for the probes they often
are the anti viruses to be provisioned. Additionally, it is important to mention that the de-
velopment and production environments transfer necessary files differently. In develop-
ment the transfers are performed directly with rsync, while production packs everything
commited in the local git repository into zipped files before rsyncing. Configuration for a
Linux probe can be seen below.

1 - name: avs-linux.irma
2 ip: 172.16.1.32
3 ansible_groups: [avast, avg, bitdefender, clamav, comodo, escan]
4 box: debian_vmware
5 cpus: 2
6 memory: 2048

These analysers are automatically provisioned and started if necessary. Additionally, on
the bottom of an environment file there are general variables for the system in the section
called ansible_vars.

1 ansible_vars:
2 irma_environment: production
3 vagrant: true
4 irma_code_archive_generation: False

A full list of available variables with some description can be found in the file irma_vars.yml.sample
in the Ansible folder. Most of these variables can also be configured in the configuration
files placed in playbooks/group_vars and playbooks/host_vars folders. The difference be-
tween the files in the folders are that group_vars are more in general for machines while
host_vars are more specific variables for hosts.

There is also a section for libvirt specific configuration called libvirt_config. We have
not used this section in our project, but it can be used to manage the following virtuali-
sation technologies: KVM, Xen, VMware ESXi, QEMU.
Additionally the environment files can be split into a few different categories based on
their names:

• allinone
Those with allinone in its name are installation where the whole system is installed
onto one machine. In the others front end, brain and probes are installed on sepa-
rate machines.

• dev and prod
Dev specifies the environments that are created for development, in these necessary
files are rsynced to the machines specified. In prod, which are created for produc-
tion, files are transferred to archives which can be created manually or set to be au-
tomatically generated each time the playbooks are run by setting irma_code_archive_generation
to true.

33

Malware Analysis Infrastructure

• vmware
We created a separate environment file which supports VMWare, by specifying
VMWare boxes instead of the default Virtualbox boxes. Those with VMWare in
their name use VMWare boxes, while the others use Virtualbox.

In the Ansible folder there is also an Vagrantfile one can use to setup the infrastructure for
Ansible to install onto. Vagrant orchestrates these machines using information provided
in a environment file, specifically name, IP, box, CPUs and memory. Vagrant defaults to
using the one named prod but by using the environment variable VM_ENV one can set it
to the wanted file. To start and setup the machines one simply needs to:

1 export VM_ENV="name of environment file" # optional
2 vagrant up

Using the prod environment, four separate machines are orchestrated where two of them
are probes, one for Linux and one for Windows (prod.yml code: G.34). In this stage
the machines only contain what is defined through the boxes made by Packer (section:
4.3.5).

In IRMA, Vagrant reads information from the necessary environment files to create
the specified machines. This includes: IPs, names, files to share, and some resource al-
location. Additionally, boxes (section: 3.4.2) to base the machines upon are specified.
Within IRMA, these only include configuration for allowing Vagrant to manage them,
and for Ansible to provision them. As long as necessary files are provisioned and the
configuration is similar to what Ansible expects, SSH, the machine would work just as
well.

Before provisioning, we recommend adding the machines to known hosts as Ansible
can’t do so automatically. Without doing it is needed to manually type in yes during the
provisioning which we have experienced as buggy, this happens because IRMA relies on
ssh which questions the user when connecting to unknown hosts. The system can then be
provisioned and started using irma-ansible.py which reads information from necessary
files and starts the Ansible playbooks. The first time running the installation could take
some time, about 15 minutes without any extra antiviruses enabled, but subsequent
installations takes considerably less time. More exact numbers can be found in testing
and analysis under section 5.2
The command for starting the provisioning is:

Python irma-ansible.py environments/prod.yml playbooks/playbooks.yml

Note that the same environment file must be used so that the infrastructure Ansible tries
provisioning to is the same as the infrastructure actually orchestrated. The playbook
playbooks.yml initiates these playbooks in the order listed:

• provisioning.yml fixes all dependencies for the machines
• updating.yml updates the analyser probes through their role ansible descriptions

in their role
• deployment.yml deploys the IRMA code and sets it up which includes starting nec-

essary services

These can also be run separately by swapping playbooks.yml with the wanted playbook

34

Malware Analysis Infrastructure

in the previous command.

After provisioning the whole infrastructure should be up and running and is accessible
through

http://<the IP specified in the environment file for frontend>

which should look something like the image shown in the appendix I.39. The API docu-
mentation will be available under:

http://<the IP specified in the environment file for front end>/swagger/

It is important to note that for some reason the site won’t load if one doesn’t include the
forward slash at the end of the url.

4.1.3 Available configuration

There are some additional configurations available beside the environment files, Va-
grantfile, group vars, and host vars. These are for the modules individually (front end,
brain, and probes). Among the more important parts of this is the configuration for a
syslog. 3 This is a boolean which allows for logging to syslog. The celery configura-
tion is also important, especially setting a max limit of of simultaneous celery workers.
There is also an optional SSL setup for the system. The configuration is well documented
on the irma.readthedocs. The relevant configuration files are available under <module
name>/config/<module name>.ini4

An issue we experienced is that when starting a large scan made up of a few hundred
tasks (a task can be for one probe to scan one file). All the tasks are created and start
as per usual, but within a few seconds the progress slows to a halt. This ends with a
large amount of tasks suddenly returning a timeout error. We believe it comes from a
mixture of not having a limit on the number of available celery workers, and a relatively
low timeout value. This likely results in resource starvation. As more and more tasks
are dispatched to the probe machines, the resources are simply used up by the celery
workers and they do not manage to finish the work load before timing out. Therefore,
it is important to set a max limit of celery workers through the variable concurrency to
what the hardware is actually capable of supporting.

4.1.4 Analysers

The analysers are split into a few different categories, or probe types as its called in
IRMA, with the same name as the folder the probe is in e.g. antivirus and database, this
can be seen in the folder structure in figure 4.5.

IRMA have created skeleton templates following the required configuration for probes5.
Each analyser is usually compromised of at least two files, the plugin.py and the analyser
specific file, e.g. nsrl.py. The plugin file handles the interaction between IRMA and the
analyser, through using calls from the analyser specific file, testing whether it works and
using it. It also specifies potential requirements and registers the analyser to a plugin
manager. The analyser specific file acts as an interface between the actual analyser e.g.

3Syslog: https://en.wikipedia.org/wiki/Syslog
4IRMA configuration: https://irma.readthedocs.io/en/latest/admin/index.html
5Analyser skeleton: https://irma.readthedocs.io/en/latest/extending/add_probe.html

35

https://en.wikipedia.org/wiki/Syslog
https://irma.readthedocs.io/en/latest/admin/index.html
https://irma.readthedocs.io/en/latest/extending/add_probe.html

Malware Analysis Infrastructure

anti virus and IRMA, standardising necessary calls.
Analysers can be tested through:

1 cd ansible
2 vagrant rsync # transfer files necessary
3 vagrant ssh
4 sudo su deploy
5 cd /opt/irma/irma-probe/current
6 venv/bin/python -m extras.tools.run_module
7 venv/bin/python -m extras.tools.run_module my_module file # if previous

command shows it as available↪→

Figure 4.6: how to test new analyser

After having tested whether the analyser works or not we recommend also adding
provisioning of the necessary requirements for the analyser. In IRMA this is done through
roles, one can add this in the ansible/roles directory as a separate folder. Even better, if
one adds the role in ansible-requirements.yml in the ansible directory the role would be
automatically pulled from a specified git repository when the provisioning command is
run. It would look something like this:

1 - src: https://github.com/dummy/dummy-example.git # repository for the
role↪→

2 version: v1.2.4 # optional
3 name: dummy.example

Figure 4.7: template for role in ansible-requirements

If one then adds it to provisioning.yml under ansible/playbooks in the following for-
mat:

1 - name: Example provisionning
2 hosts: example
3 roles:
4 - { role: dummy.example, tags: example }

Figure 4.8: example of role in provisioning.yml

The role can be added as with other analysers in the environment file. Some of the
already supported analysers lack existing provisioning, but this can be extended through
the method mentioned, by creating a new role.

4.1.5 Problems with the setup

We have met some issues when following the installation guide 6. In general there were
a lack of provisioning on some probes, updating of database signatures for anti viruses

6IRMA installation: https://irma.readthedocs.io/en/latest/install/automated/index.html

36

https://irma.readthedocs.io/en/latest/install/automated/index.html

Malware Analysis Infrastructure

seeming to time out, and some issues arising during download of files from the Internet.

RabbitMQ
We had an issue where the retrieval of RabbitMQ installation files seemingly fails. The
issue could be fixed temporarily by curling the site from the machine (brain) before the
provisioning was run. The issue seemed to be caused by a cloudflare on the official site,
and could be fixed by setting the role variable rabbitmq_os_package to true, which makes
the role install the package through apt from an OS repository instead.
Avast installation
During installation of Avast a software requirement was not met. Avast requires the pack-
age named libssl1.0.0. libssl1.0.0 is not available in newer version of some Linux distri-
butions, one of them being Debian 9. Since we used Debian as our base image we added
a task to download and install the libssl1.0.0 from an older version of Debian if the
playbook is ran on a Debian machine. Our proposed solution can be seen in Figure 4.9

1 - name: Downloading libssl1.0.0 (for Debian 9.0 (stretch) or newer
2 get_url:
3 url: http://security-cdn.debian.org/debian-security/pool/update
4 /main/o/openssl/libssl1.0.0_1.0.1t-1+deb8u11_amd64.deb
5 dest: /tmp/libssl1.0.0_1.0.1t-1+deb8u11_amd64.deb
6 mode: 0644
7

8 - name: Install libssl1.0.0
9 become: true

10 become_method: sudo
11 command: dpkg -i /tmp/libssl1.0.0_1.0.1t-1+deb8u11_amd64.deb

Figure 4.9: libssl1.0.0 tasks added to Avast role

4.1.6 Automatic provisioning of antivirus and tools

IRMA has a total of 22 supported analysers, 1 database of known good/bad hashes
(NSLR) and 4 supported metadata analysers. IRMA can automatically enable six of those
supported analysers, and one metadata analyser. They are enabled when provisioning
with the default Ansible roles by adding them to the environment file being used. In An-
sible, a role can be used to break up a playbook into directories with their own files, vari-
ables and tasks. 7 This helps breaking down complex playbooks into different reusable
parts. A role in IRMA is referenced to in the yaml provisioning file and in the environ-
ment file. For some of the supported analysers IRMA has not made Ansible roles. Adding
some of this provisioning is some of the work we have done.

4.1.7 Activation of analysers and possible bug fixes

Often the provisioning will fail during a downloading or updating task. This can be by-
passed by running the provisioning again or by using a local mirror which is discussed in
section 6.3.4.

7Ansible role: https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.
html

37

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html

Malware Analysis Infrastructure

The following anti viruses works with automatic provisioning without any changes

• McAfee VirusScan Command Line scanner (Windows)
• Clam AntiVirus Scanner (Linux)
• F-PROT Antivirus (Linux)
• eScan Antivirus (Linux)
• FSecure Antivirus (Linux)
• AVG AntiVirus Free (Linux)
• Trid (Metadata analyser)

Antivirus requiring license keys/files

• Bitdefender (Tested with free trial and confirmed working)
• Zoner
• Dr Web
• Avast
• Kaspersky
• EsetFileSecurity

The file to add license keys to can be found in playbooks/ either in host_vars/probe.irma.yml
or one of the files in playbooks/group_vars/. If you are given a license key IRMA will most
likely have a files directory the file needs to be put in.

Windows AV’s without roles implemented

The following Windows AV’s are according to IRMAs documentation supported but does
not have any roles implemented, meaning they are not provisioned for.

• Avira
• G Data Antivirus
• Kaspersky Internet Security
• Sophos Endpoint Protection
• Symantec Endpoint Protection

Emsisoft Command Line

When first running Emsisoft during provisioning we got this error:

1 "rc": 2, "start": "2019-05-17 06:49:12.642023", "stderr": "",
"stderr_lines": [], "stdout": "Please always use the /s command
when running Emsisoft Commandline Scanner from within the same
folder that contains a

↪→
↪→
↪→

2 n active Emsisoft Service component or shut down the Service if it is
no longer needed.\r\n", "stdout_lines": ["Please always use the /s
command when running Emsisoft Commandline Scanner from within the
same fol

↪→
↪→
↪→

3 der that contains an active Emsisoft Service component or shut down the
Service if it is no longer needed."]}↪→

This was easily fixed by adding a /s to the command in
quarkslab.emsisoft_a2cmd_windows/tasks/update_auto.yml

1 - name: Install a2cmd signatures

38

Malware Analysis Infrastructure

2 win_command: "\"{{ remote_programfiles }}/{{
emsisoft_win_install_path }}/a2cmd.exe\" /u /s":↪→

Yara

IRMA had implemented an Yara analyser, but this lacked provisioning. We added this
to through a role with automatic update on each run. The requirements Yara needed to
work was

• yara-python
• Yara 3
• Yara rules

We also added a method to add rules from a specified git repository in this role:

1 - name: Yara | add rules
2 get_url:
3 url: "{{ yara_rules_url }}"
4 dest: "{{ yara_rules_path }}/yara_rules.yar"
5 become: yes
6 become_user: root

The repository where the rules are retrieved from can be updated by setting yara_rules_url
in the environment, it is by default set to:

raw.githubusercontent.com/Yara-Rules/rules/master/Antidebug_AntiVM/antidebug_antivm.yar

Metadata analysers

IRMA uses several metadata analysers. These can easily be enabled by running: "pip
install -r" on the path to the requirements.txt from the irma/probe directory. For example:
pip install -r modules/metadata/lief/requirements.txt You can do this on the following
analysers:

• Lief
• Static Analyser
• Peid

We have provided a playbook for activating all three metadata analysers that can be run
with the command: ansible-playbook metadataProvisioning.yml. KDA still needs to edit
the path corresponding to their own infrastructure. We have tried to merge the playbook
commands into the different metadata analyser roles, but during provisioning the roles
were unable to find the requirement files they needed to install.

clamAv

1 fatal: [avs-linux.irma]: FAILED! => {"changed": true, "cmd": "freshclam
--quiet", "delta": "0:00:00.100503", "end": "2019-05-15
15:21:53.806114", "failed_when_result": true, "msg": "non-zero
return code", "rc": 1, "start": "2019-05-15 15:21:53.705611",
"stderr": "", "stderr_lines": [], "stdout": "", "stdout_lines": []}

↪→
↪→
↪→
↪→

We were not able to interpret this error but a possible fix could be to halt the running
Vagrant VMs and start them up again with vagrant up.

39

Malware Analysis Infrastructure

When we have managed to provision ClamAv it has worked for a short while, but
after a short while only returns errors. When doing troubleshooting we found this error:

1 clamav: ERROR: Could not connect to clamd on LocalSocket
/var/run/clamav/clamd.ctl: Connection refused'↪→

The troubleshooting was done by connecting to the probe machine running ClamAV and
debug as specified:

sudo su deploy
cd /opt/irma/irma-probe/current
./venv/bin/python -m extras.tools.run_module ClamAV requirements.txt

We suspect the reason for this is a short timeout number (30 seconds) on the clamd
process shutting it down after a short time of inactivity. 8 Note that the error is somewhat
inconsistent, so this might not be the reason.

Lacking memory

1 fatal: [avs-linux.irma]: FAILED! => {"changed": true, "cmd":
["/opt/f-prot/fpupdate"], "delta": "0:00:01.545158", "end":
"2019-05-16 13:50:47.572828", "msg": "non-zero return code", "rc":
1, "start": "2019-05-16 13:50:46.027670", "stderr": "Error: Update
- Out of memory", "stderr_lines": ["Error: Update - Out of
memory"], "stdout": "Downloading update (\%100)", "stdout_lines":
["Downloading update (\%100)"]}

↪→
↪→
↪→
↪→
↪→
↪→

We got an error during provisioning that it could not allocate memory. We also got a sim-
ilar error at other points during testing of provisioning. This is probably due to several
previous failed provisioning attempt. Our quick fix was to reboot the VM’s with vagrant
halt and vagrant up to free up memory. This is can potentially be avoided by initially
allocating more memory and not running all AV probes on the same host. If the recom-
mended infrastructure (section 6.3) is followed this problem should not arise to begin
with.

VirusBlokAda

VirusBlokAda gives an error during provisioning. The error says the following:

1 fatal: [avs-linux.irma]: FAILED! => {"changed": false, "dest":
"/tmp/vba32/vbacl-linux.tar.gz", "msg": "Request failed",
"response": "HTTP Error 404: Not Found", "state": "absent",
"status_cod··················

↪→
↪→
↪→

2 e": 404, "url":
"http://anti-virus.by/pub/vbacl-linux-3.12.26.4.tar.gz"}↪→

If we follow the link described in the link we get a permission forbidden error. By further
investigating VirusBlokAdas website we are unable to find a linux antivirus installation
file and conclude that IRMAs documentation here is outdated and that VirusBlokAda is
no longer supported. We did not find the same anti virus anywhere else either so we
could not provide the role with a new url.

8clamd dokumentation: https://manpages.debian.org/testing/clamav-daemon/clamd.conf.5.en.
html

40

https://manpages.debian.org/testing/clamav-daemon/clamd.conf.5.en.html
https://manpages.debian.org/testing/clamav-daemon/clamd.conf.5.en.html

Malware Analysis Infrastructure

Sophos

Sophos for Linux is a free antivirus that is not provisioned by IRMA. In its Ansible
role in ansible/roles/quarkslab.sophos/defaults/main.yml you can see some hard coded
variables that must be edited. KDA must most likely edit those themselves. The ones
that the bachelor group changed was sophos_archive_url and sophos_archive_name. We
found a linux installation for Sophos at Sophos website and copied its link address into
sophos_archive_url and its file name into sophos_archive_name. When we tried running
the provisioning playbooks we got this error:

1 fatal: [avs-linux.irma]: FAILED! => {"changed": false, "msg": "Failed
to find handler for \"/tmp/sophos/sav-linux-free-9.tgz\". Make sure
the required command to extract the file is installed. Command
\"/bin/tar\" could not handle archive. Command \"/usr/bin/unzip\"
could not handle archive."}

↪→
↪→
↪→
↪→

After some research we discovered that the public download link requires human inter-
action to start the download. A solution can be to download and locally host the package,
or get an official link form Sophos.

The original task in the Sophos role Quarkslab used an ansible specific function to
unzip the download file which failed.

1 fatal: [avs-linux.irma]: FAILED! => {"changed": true, "cmd": ["tar",
"-xvzf", "/tmp/sophos/sav-linux-free-9.tgz", "/tmp/sophos"],
"delta": "0:00:00.003650", "end": "2019-05-16 10:23:44.852778",
"msg": "non-zero return code", "rc": 2, "start": "2019-05-16
10:23:44.849128", "stderr": "\ngzip: stdin: not in gzip
format\ntar: Child returned status 1\ntar: Error is not
recoverable: exiting now", "stderr_lines": ["", "gzip: stdin: not
in gzip format", "tar: Child returned status 1", "tar: Error is not
recoverable: exiting now"], "stdout": "", "stdout_lines": []}

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

For this reason we suspected that the file could not be properly unzipped, so we replaced
the Ansible function with a bash command that would unzip the file. The proposed soul-
tion can be seen below:

1 command: tar -xvzf "{{ sophos_temp_dir }}/{{ sophos_archive_name }}"
"{{ sophos_temp_dir }}"↪→

It is also possible that this happened because of the first error we encountered, that a
proper archive were never downloaded.

To summaries the three possible solutions could be:

• Host the downloaded file locally and edit the hard coded installation directory.
• You can download the file and host it on a cloud platform.
• You can download the file and put it into the files directory in the Sophos role and

copy the files with the Ansible native rsync or copy command.

41

Malware Analysis Infrastructure

4.2 Configuration and set-up of Cuckoo

For consistency across components of the finished product, among other things, we de-
cided to go with ansible as the configuration management system for configuring and
managing Cuckoo. There are several option available. Several were tested with a varying
degree of success. In the end the repository created by Github user julianoborba9 was
chosen as our basis. As of writing this report a pull request is not created from our fork
10 with all the latest and relevant updates.

4.2.1 Adaption for our use case

The original Ansible playbook was developed with full support for only Virtualbox. It had
machinery files already added but needed roles for handling and installations if needed.
During development we used VMWare Workstation as our virtualiser. It was chosen based
on simplicity to manage and maintain during our development period. After some time
we realised it was not the best fit for more advanced automation. In the end to much time
was used on fully automating Cuckoo with VMWare workstation and full automation was
not achieved either.

The end product probably will run in a production environment running on ESXi/v-
Sphere. A role ESXi was started but not completed see section 4.2.3 for more information
and the suggested code.

4.2.2 Installation

NOTE: It should be mentioned that the source code on GitHub could have been changed
after submission of the report, look there for possible updated information.

Requirements/Preparations

Hardware
There is little to none information from Cuckoo officially or the team behind it on hard-
ware requirements or recomendations. Using a bit of common sense and comments from
Cuckoo users on reddit 11 it is safe to assume that a proper production environment
needs at the very least these specifications per guest VM:

• CPU: 2 (At least 1 per running VM)
• RAM: 2GB (4GB for Windows VM, 2GB for Linux)
• Storage: 60GB (anti-anti VM measures, simulating a realistic environment etc.)

Taking into consideration that these are recommendations for one guest virtual ma-
chine. You can get away with lesser hardware but these are our recommendations based
on VMWare, Microsofts recommendations for Windows as well as what others have said
they use. These are probably not optimal cost/performance specifications and further
testing could be beneficial. Resources for the Cuckoo host is not a part of the list above,
which will also vary depending on which processing modules are added and installed. It
is also dependent on if all, none or some of the Cuckoo infrastructure is hosted on the
same machine/server. E.g Elasticserach/logging as a separate service, hosted on its own
machine or on the Cuckoo host etc.

9Origin playbook repository: https://github.com/julianoborba/Ansible-Cuckoo
10Ansible Playbook for Cuckoo: https://github.com/knaku/ansible-cuckoo
11Reddit comment: https://www.reddit.com/r/Malware/comments/5z8gu1/cuckoo_sandbox_

hardware_recommendations/

42

https://github.com/julianoborba/Ansible-Cuckoo
https://github.com/knaku/ansible-cuckoo
https://www.reddit.com/r/Malware/comments/5z8gu1/cuckoo_sandbox_hardware_recommendations/
https://www.reddit.com/r/Malware/comments/5z8gu1/cuckoo_sandbox_hardware_recommendations/

Malware Analysis Infrastructure

Software
Ansible Provisioner
On the Ansible provisioner, ansible and the git repository with the playbook are obvious
requirements. It is also necessary to have all the correct information regarding the sys-
tems Cuckoo will be installed on, and potential guest systems as well as root access.

Installation
Step 1 - Clone the Ansible playbook repository

1 git clone https://github.com/knaku/Ansible-Cuckoo.git \\

To install Ansible, run the install_ansible.sh in the root folder of the newly cloned git
repository, or copy and run the commands below.

1 apt update
2 apt -y install apt-transport-https software-properties-common
3 apt-add-repository ppa:ansible/ansible -y
4 apt update
5 apt -y install ansible sshpass

If you don’t already have git installed run:

1 apt update
2 apt -y install apt-transport-https software-properties-common
3 apt install git

Step 2 - Prepare Cuckoo host
Ubuntu 18.04 server/machine, 16.04 and 17.04 should work as well but have not been
tested. The playbook was created for Ubuntu but should work on most Debian based
distributions as well if you update the roles accordingly, it might be enough to update to
use correct repositories. Other Linux distributions should also work fine with a bit more
adjustments.

Ansible requires Python and a SSH-server to run. If you use a regular desktop Ubuntu
there is a good chance that both are already installed.

Run these command in you terminal to install the needed requirements:

1 apt install -y openssh-server python

If you want Ansible to connect with the user name and password of the account, use
those. If you want Ansible to connect with SSH-keys, simply add your public key to the
Cuckoo host.

Step 3 - Cuckoo guest image
You need a pre-configured Windows, Linux or macOS fulfilling the requirements given
by Cuckoo 12. You can see a quick summary of Windows requirements below:

12Cuckoo software requirements: https://cuckoo.sh/docs/installation/guest/requirements.html

43

https://cuckoo.sh/docs/installation/guest/requirements.html

Malware Analysis Infrastructure

• (Optional) All anti-anti VM counter measure configured and installed
• (Optional) All user programs (Microsoft Office, Adobe Acrobat/Reader etc.), and

other requirements to emulate a normal environment.
• Installed Python.
• agent.py that starts automatically, preferably with administrative rights. agent.py

can be started manually when creating the snapshot. It is not necessary for it to
start automatically but it makes repeatablity a lot simpler. Use .pyw instead of .py
if you want the terminal window to be minimised.

• Turn off the Windows firewall.
• Turn off Windows updating.
• Set a static IP. Cuckoo cannot handle DHCP yet. If you leave everything as default

after cloning set it to 192.168.56.111 with a default gateway of 192.168.56.1.
• Snapshots:
• ◦ You can create a snapshot manually while the VM is running with require-

ments above
◦ You can let Ansible handle it automatically (mostly if using VMware Worksta-

tion). Agent.py is required to start on startup for this to work.
◦ · With Virtualbox you can let the playbook handle everything automatically.

· With VMWare Workstation you must manually start and stop the VM dur-
ing the play if a snapshot does not already exists. If a snapshot exists it
might create a bit of issue with Cuckoo and VMWare.

Step 4 - Installing and running Cuckoo
Replace the information in cuckoo-playbook/inventories/production/hosts with the
correct one for your Cuckoo guest.

• HOST is the IP address of the server to install Cuckoo to
• ADMIN is a user with sudo privileges on the server
• PASSWORD is the user ADMIN password

Now run this command in the terminal of your ansible-provisioner to start the play,
look below for explanation for a description of the different variables after –extra-vars:

1 ansible-playbook -i inventories/production site.yml --extra-vars
"distribution=bionic nic=ens32 vmwareNetworkAdapter=1
license=xxxxx-xxxxx-xxxxx-xxxxx-xxxxx"

↪→
↪→

• "distribution" is the Ubuntu distribution
• "nic" is the nic on the cuckoo host to use in the routing.conf
• "vmwareNetworkAdapter" is vmnet suffix used with the cuckoo guest. Only en-

ter the value after vmnet. e.g for vmnet1: vmwareNetworkAdapter=1. vmnet1 is
usually host-only while vmnet8 is usually NAT. If you don’t set a custom vmnet it
usually ends up using vmnet8. This is only necessary to add when using VMware
workstation

• "license" is the license for VMWare Workstation and is only to add when using
VMWare workstation.

You might want to look over and verify or change the different variables in some of the
configuration files since they are hard coded and might not reflect the values you have

44

Malware Analysis Infrastructure

in you environment. Directories and files to check are "cuckoo-playbook/roles/[name of
role]/files/*.conf" The most relevant roles to check are Cuckoo and VMWare, the others
might be relevant depending on your problem but have not been changed by us. Look
at the bottom of the git repository 13, under "Things that need manual changing if you
change the default" for most relevant variables that might need changing.

4.2.3 ESXi/vSphere support

Due to the decision of using VMWare Workstation as our virtualiser and time restrictions
a fully functioning and automatic role were not created. An adapted role from VMWare
Workstation were created. The only missing parts should be the remaining API calls for
orchestrating the Cuckoo guests as well as potentially creating a snapshot if not already
created. It should be mentioned that this is not tested code as is simply suggestions and
should be adapted accordingly. Text in italics should either be replaced or are suggestions.

1 ---
2

3 - name: Install pyVmomi package
4 become: true
5 become_method: sudo
6 pip:
7 name: pyvmomi
8 state: latest
9

10 #check that script has required permissions with ESXi/vSphere
11 - name: Check permissions
12 command: \textit{write API call here}
13 register: \textit{permission}
14 failed_when: \textit{permission == false} # adapt this to the

correct response from the API↪→

Figure 4.10: ESXi/vSphere suggested role

13Ansible Playbook for Cuckoo: https://github.com/knaku/ansible-cuckoo

45

https://github.com/knaku/ansible-cuckoo

Malware Analysis Infrastructure

1 #check if a preconfigured image for Cuckoo guest is available on
ESXi/vSphere host for provisioning↪→

2 #\textit{it is also possible to check for an already provisioned and
configured machine}↪→

3 # use getallvms.py in
4 # use \textit{class com.vmware.vcenter_client.ResourcePool(config)

list}↪→
5 - name: Check for Cuckoo image / Check for Cuckoo VM
6 command: \textit{write API call here}
7 register: \textit{exsisting_vm}
8 failed_when: \textit{True not in existing_vm} # adapt this to the

correct response from the API↪→
9

10 #provision new Cuckoo guest from previously found image, or verify
connection to already configured machine↪→

11 class com.vmware.vcenter_client.ResourcePool(config) create
12 - name: Provision new Cuckoo machine / Connect or power on machine
13 command: \textit{write API call here}
14 register: \textit{provisoned}
15 failed_when: \textit{True not in provisoned} # adapt this to the

correct response from the API↪→
16

17 - name: Copy Cuckoo configuration file to Cuckoo host
18 become: true
19 become_method: sudo
20 become_user: "{{ cuckoo_user }}"
21 copy:
22 src: "{{ item }}"
23 dest: "/home/{{ cuckoo_user }}/.vsphere/conf/"
24 mode: 0644
25 force: yes
26 with_fileglob:
27 - vsphere.conf
28

29 # remember to customise this to the proper network interface for
ESXi/vSphere↪→

30 - name: Configure \textit{network interface} to be up
31 become: true
32 become_method: sudo
33 command: ifconfig \textit{network interface} 192.168.56.1 netmask

255.255.255.0 broadcast 192.168.56.255 up↪→
34

35 #check for existing snapshots of windows/linux guest
36 # see \textit{snapshot_operations.py --list_all} at GitHub in link

below figure↪→
37 - name: Check for existing snapshot
38 command: \textit{write API call here}
39 register: \textit{exists}
40 failed_when: \textit{exists == false} # adapt this to the correct

response from the API↪→

Figure 4.11: ESXi/vSphere suggested role

46

Malware Analysis Infrastructure

1 #start the machine if no snapshot exists
2 - name: Start Cuckoo guest
3 command: \textit{write API call here}
4 register: \textit{started}
5 failed_when: \textit{started == false} # adapt this to the correct

response from the API↪→
6

7 #wait time should be between 2-3 minutes for Windows guests, it can
probably be shorter for a Linux guest↪→

8 - name: Wait for machine to complete booting
9 pause:

10 minutes: 3
11

12 #create a new snapshot if one does not exist
13 # see \textit{create_snapshot.py} at GitHub in link below figure
14 - name: Create snapshot of the Cuckoo guest
15 command: \textit{write API call here}
16 register: \textit{created_snapshot}
17 failed_when: \textit{created_snapshot == false} # adapt this to the

correct response from the API↪→
18

19 - name: Wait for machine to complete booting
20 pause:
21 minutes: 1

Figure 4.12: ESXi/vSphere suggested role

Link for pyvmomi community samples mentioned in Figure: 4.12vmware/pyvmomi-
community-samples

4.3 Changes made

From the requirements section KDA wanted several ways to conduct an analysis in an
automated infrastructure. Everything from static analysis to known good/bad, Yara and
more. Thus, the bachelor group searched for tools/software that could be used in an in-
frastructure to best solve for KDAs requirements. For the analysis platform we chose
IRMA. We have installed and configured IRMA with some troubleshooting required.
Much of this is described earlier in the report.

NSRL has been implemented to complement the known files functionality of IRMA.
While IRMA’s known files only applies to already scanned files, NSRL contains a huge
database of hashes with some information about each. IRMA originally had partial sup-
port for NSRL but it was outdated and the bachelor group had to write new Python3
code for this. More about this is specified later in the report (Section

IRMA has support for automatic provisioning of antivirus but much of this comes
with errors that the bachelor group has been working with debugging. The bachelor
group provides in the report an overview of antiviruses that is supported by IRMA with
an overview of bug fixes.

KDA also wanted dynamic analysis. There were several alternatives the bachelor

47

https://github.com/vmware/pyvmomi-community-samples
https://github.com/vmware/pyvmomi-community-samples

Malware Analysis Infrastructure

group considered but we ended up choosing Cuckoo for our dynamic analysis platform.
We also had a goal of implementing Cuckoo as a probe of IRMA. Implementing Cuckoo
was a fairly large task, that took some time, it is such a big task that a completely differ-
ent bachelor project is implementing and setting up an automatic setup for Cuckoo. The
bachelor group implemented Cuckoo as a probe of IRMA.

After the requirement specification phase was over, the bachelor group came up with
an idea to implement a pipeline for the infrastructure, which KDA became very interested
in. The logic for how it can be implemented is completed, but it was not near enough
completion to be pushed.

4.3.1 Pipeline

Scanning in IRMA is very inefficient. By default files already analysed are re-analysed
and almost all probes are used for every file. The only method employed without change
is MIME-type filtering. This filters out which metadata probes are used, depending on
the file type scanned.

To understand how this can be improved upon one needs an understanding of how it
currently works. Scanning tasks are queued through usage of Python Celery:

"Celery is an asynchronous task queue/job queue based on distributed message pass-
ing. It is focused on real-time operation, but supports scheduling as well.
The execution units, called tasks, are executed concurrently on a single or more worker
servers using multiprocessing. Tasks can execute asynchronously (in the background)
or synchronously (wait until ready)." 14

The scan workflow is as follows15:
14Celery: http://www.celeryproject.org/
15scan workflow: https://irma.readthedocs.io/en/latest/technical/scan_workflow.html

48

http://www.celeryproject.org/
https://irma.readthedocs.io/en/latest/technical/scan_workflow.html

Malware Analysis Infrastructure

Figure 4.13: scan workflow

1. Frontend API

1. A request is sent to the front end API or made through the GUI. The request
format can be seen in the appendix (H.37)

2. This creates a scan object in the PostgreSQL database which stores the param-
eters

3. Files are uploaded, and stored in the file system, to the front end and regis-
tered in the same database

4. The scan is added to the front end celery queue as an asynchronous task

2. Front end Celery

1. Which probes to be used are selected based on scan options and mime type
filtering

2. Empty results are stored in the database, one each file for each probe. Some
of these results can already be present depending on whether the force scan
option is true or not, by default it is true.

3. Files are uploaded to the file server
4. A scan task is created on the brain in the celery queue for each file, a probe

list is also added to this scan task.

3. Brain celery

1. The scan job is stored in the local SQLite database for tracking jobs
2. Files are sent to probes selected, for each two callbacks are set, one for success

and the other for failure

4. Probe Celery

49

Malware Analysis Infrastructure

1. The scan task is received with a file id
2. the file is downloaded from the file server using the provided id
3. file is scanned
4. results are sent to Brain using one of the two callbacks (success or failure)

5. Brain Celery

1. Successful results are marked as complete in the SQLite database and are
forwarded to the front end

2. Failed results are marked as complete and an error message is generated and
sent to the front end

6. Front end Celery

1. Results are received, one for each file and probe
2. result is updated in PostgreSQl database
3. If the scan is finished a scan flush task is created on the brain to delete the

files from the file server

In simpler terms, files are uploaded and a scan job is started from the user and sent to
the front end. The front end uses parameters and a probe list to send a scan job for each
file to the brain. The brain creates a scan job for each file and probe, sends these to the
probe, with the requested analyser on it, and listens for response. Lastly the brain notifies
the front end when a job is complete, the front end adds the result to its database.

With some configuration, by disabling force scan, IRMA handles known good/bad
files by simply not re-scanning known files. In combination with mime type filtration this
reduces scan time slightly by reducing the number of jobs for each probe.

Sending every file to every probe is a huge waste of resources when it includes
Cuckoo, it simply takes too much time. By stopping some files in earlier stages using
a pipeline one can further reduce the amount of scan jobs each probe.

The pipeline can work in numerous ways, it really depends on what the purpose of
the system is. If the goal is to analyse malicious files, these should be sent to Cuckoo or
if the goal is to lessen time spent scanning, one should stop files as early as possible.

This all depends on what is wanted of the system, in our case the goal was to reduce
the scan time as much as possible while retaining a low false negative.

The pipeline works by splitting the scan process into stages:

1. Cache lookup - Check if a file hash has been encountered previously
2. Static analysis including metadata extraction, Yara and NSRL
3. Every antivirus probe available
4. Dynamic analysis, only Cuckoo for now, but the basis for extending with others is

done

50

Malware Analysis Infrastructure

Figure 4.14: How the pipeline can look for files

The pipeline code knows which probes to use by retrieving all available probes and their
category which is a value stored in their module class. Possible categories are:

• Unknown
• Antivirus
• Database (refers to local databases such as NSRL)
• External (refers to probes contacting external services such as VirusTotal)
• Metadata
• Tools
• Dynamic (which should be added for dynamic support)

This makes it extremely easy to change the order of which probe categories are employed
in. Additionally new categories can easily be added in common/src/utils.py and then to
the class in plugin.py belonging to the probe, which allows even further customisation of
the queue.

The pipeline itself is created by adding a new Boolean argument when starting new
scans named pipeline. This allows a pipeline without making major changes to the code
or through an external service which will explained later. Pipeline logic is added to step
1.4, where celery tasks for each file is created on the brain, in the scan workflow and
works as follows when pipeline is true:

• Retrieve probe types of selected probes
• check for which stage the file should be scanned in

◦ check the probe type used in the previous scan, in the SQL database, and use
the next in the list, if there is none use the first

51

Malware Analysis Infrastructure

The other part of the logic is added to a function at the front end checking whether a
scan for a file is finished or not. The logic checks the result of the scan and determines if
it should continue to the next stage or if it is complete. If it continues to the next stage,
a new scan for the file is initiated on the brain with the next probes. For each stage com-
pleted the result for the scan needs to be updated with new analysers and results in the
database.

Logic to decide whether to continue
In the pipeline, results from scans have to be somewhat automatically interpreted, in

contrast to the previous solution, (section 3.2.2) where interpretation is left to the end
users. The question is how this can be automated.

In this implementation files are stopped if they are known, which is done before the
pipeline code is even reached. The second stage is therefore always run with unknown
files.

The second stage involves metadata, Yara and NSRL, which is hardly any form of
static analysis as the files in NSRL are not necessarily known good and Yara having such
a high rate of false positives, though this depends on the rules employed. With more
methods of static detection more files can be stopped at this stage, without hardly any
are stopped.

The third stage is where the majority of the files are stopped. Files should be stopped
based on a percentage of how many of the analysers marks the file as malicious or not.
Files determined to be malicious are stopped and those without detections, that are not
executable (retrieved result from second stage) are stopped. Executable files where there
are uncertainty are sent to Cuckoo, the last stage.

Cuckoo have a scoring system one can base the decision on, but a more advanced
method to interpret the results would probably be advantageous for the future. The
scoring system does not have a range of 1-10, but they are looking for other algorithms
to use which will have a final score between 1-10 16. It should also be noted that the
Cuckoo scoring system is not fully developed, and it should be taken as a guide rather
than a definite result, see screenshot from Cuckoo’s result screen at Figure 4.15.

Figure 4.15: Cuckoo scoring

This interpretation is a very simplified view of how the logic can be done. Where

16Read in slack channel, search for score: https://cuckoosandbox.slack.com/

52

https://cuckoosandbox.slack.com/

Malware Analysis Infrastructure

much of the data is left unused, e.g. what NSRL and Yara provides, and the system is
therefore not as efficient as it could be. For maximising the efficiency while maintaining
a low false negative rate, the algorithm should be modified through testing and analysis.

Possible alternative methods
Alternative ways to implement the pipeline was considered. It could as an example be
handled through an external application which started a separate scan for each stage
and file in the process. The difference would be that a listener would be required to wait
for signal informing that a scan is done. An alternative to this can be checking if the scan
is complete every 5 seconds, but this would create unnecessary load. The listener would
need its own worker or thread.

Currently code for checking whether a scan is complete or not, is done through isFin-
ished() which is interlocked so that only one celery worker can run it at a time. This can
lead to a performance decrease as a queue of workers that are waiting for the resource
to be available might pile up. This will hopefully not happen as the function is only run
in the last stage of a scan, and the checks are not especially demanding either.

If this becomes an issue a new way to do the pipeline logic has to be made. This could
potentially be done by adding the checks for whether a file should continue or not, as
a task in a worker queue instead of inside isFinished(), basically starting the pipeline
checks asynchronously. The external code works in such a way by having the checks ex-
ternally, through a queue of its own. A requirement for the queuing and external checks is
some sort of parallelisation, multiple workers and a listener is required. Considered alter-
natives for allowing the parallelism necessary were Rebus, Celery and Python threading.
Rebus was the alternative mentioned to us in the Quarkslab IRC when asking for advice
regarding the pipeline. It is described as:

"REbus facilitates the coupling of existing tools that perform specific tasks, where one’s
output will be used as the input of others." 17

The REbus implementation could look something like the list below (list 4.3.1).

With Celery one could simply create a similar structure as used by IRMA as a new
queue, and a few celery workers performing these. This method is most probably overkill
as the tasks shouldn’t be very time demanding.

Using Python threads are too low level as they lack a queuing system, and the paral-
lelisation is slower as well because each thread runs in the same Python process. 18

The external methods are not viable unless the pipeline logic grows more demanding.
If that turns out to be the case an external method could look something like this:

• Start a scan with analysers for the correct (if new, first) stage using the API
• Tag (section 4.3.2) it with a common id
• Receive a notification when a scan on a file is done through isFinished()
• Check if the file should continue to the next stage

◦ Repeat from the start with the next stage

17Rebus: https://github.com/airbus-seclab/rebus
18Python threads:

https://www.quantstart.com/articles/Parallelising-Python-with-Threading-and-Multiprocessing

53

https://github.com/airbus-seclab/rebus
https://www.quantstart.com/articles/Parallelising-Python-with-Threading-and-Multiprocessing

Malware Analysis Infrastructure

◦ Scan for that file is complete, no need to do anything

• Combine scans with a common tag id

What to do with the files?

If a file is deemed safe it should be sent to the previously authorised user, who was
authenticated through the kiosk at the initialisation of the scan, in the Active Directory
User Storage. If the file is deemed malicious, administrators should be alerted with a
link to the scan report, then they can perform further analysis. A safety precaution and
simplification of the algorithm (section 4.3.1) can be to not send any file to the user
space from a scan containing one or more malicious files.

4.3.2 Kiosk

At the current stage the kiosk only reached conceptual design and slight prototyping,
but with no finished application. The concepts are rather simple with a simple computer
dedicated to running software constantly awaiting input, e.g. flash drives, USB-disks,
etc, and performing user authentication and authorisation against an Active Directory-
structure. Once an authorised user has been authenticated the kiosk will simply transfer
the files from the input drive to the infrastructure front end to perform analysis, finally
at the end display the result.

The very main advantage with the proposed approach would be that without explicit
user authentication, no drive would be mounted. E.g, without having valid user creden-
tials, accessing or contaminating the kiosk or infrastructure illicitly will be limited further
by constraining this access point. This would require disabling any auto-mount feature
from whatever GNU/Linux distribution is chosen. To avoid this step wholly, a minimal
build like Debian Minimal could be used. As desktop Environments based on GNOME
comes with auto-mount features out-of-the-box; one solution is building a text user in-
terface with Curses19 to fulfil kiosk interaction as it should be highly automated and only
require IO-interaction for storage input and user authentication.

19Curses in Python3: https://docs.python.org/3/library/curses.html

54

https://docs.python.org/3/library/curses.html

Malware Analysis Infrastructure

Figure 4.16: Conceptual kiosk-to-infrastructure architecture

Prototype design

An incomplete kiosk prototype was written with Python3 based on figure 4.16 infras-
tructure. To allow a high degree of control over detecting, mounting, and reading input
drives, the design requires GNU/Linux. This is because Windows does not easily support
low-level actions to the same degree.

Drive handling

The prototype code bases drive detection on the pyudev-library wrapper around the udev
device manager available in the user space. Udev listens to kernel-space hardware events.
By monitoring these uevents, it is trivial to detect added storage media devices by filtering
uevents containing BLOCKas subsystem value, and checking the resulting device for an
action parameter set to ADD. If that is the case, further filtering based on parameters
ID_FSTYPE and DEVNAME existing and not NULL can be used to confirm the device as a
storage media, and to automatically mount the device with the correct file system after
authenticating an authorised user with an AD-structure.

After a user is authenticated and the drive is mounted the kiosk should make parallel
tasks. One task returning to the listener loop, while at least one20 should perform the file
transfer straight from the input drive to the IRMA front end.

Scan tagging
At this stage, some type of identifying user credentials should also be transferred as a

way of marking scans and attaching them to an owner. This would need to be accounted
for in the IRMA front end by either modifying it to accept an identity parameter to apply
to scans as tags, or make use of the irmacl-module21 and the tags functionality that is im-
plemented in IRMA, but never applied automatically. The use of the irmacl-module could
reasonably be implemented by using it as wrapper script for the kiosk to pass the scans

20More than one would require the code to support parallel file transfer on both kiosk and front end. See:
https://stackoverflow.com/questions/24058544/speed-up-rsync-with-simultaneous-concurrent-file-transfers

21irmacl repo: https://github.com/quarkslab/irmacl22

55

https://stackoverflow.com/questions/24058544/speed-up-rsync-with-simultaneous-concurrent-file-transfers
https://github.com/quarkslab/irmacl

Malware Analysis Infrastructure

through before the front end. This wrapper can also take care of adding the identifying
information to the scans via the aforementioned tags. This will make sorting scans much
easier compared to how IRMA does it by default in the GUI as described later in Section
6.5.2.

Figure 4.17 is a prototype of a disk monitor that could serve as inspiration to imple-
ment a drive handler for a kiosk solution in Python3.

1 """Drive handler protoype:"""
2 import pyudev
3

4 class DiskMonitor:
5 """Monitors for storage disk activity."""
6

7 def __init__(self):
8 """Initiate uevent listener."""
9 self.context = pyudev.Context()

10 self.monitor = pyudev.Monitor.from_netlink(self.context)
11

12 def uevent_listener(self):
13 """Loop through block device events for self.monitor.
14 returns dictionary with block path and file system type.
15 (e.g. /dev/sda and ext4)."""
16 self.monitor.filter_by(subsystem='block')
17

18 # Iteration of MONITOR.poll = 'while: true'-loop
19 for device in iter(self.monitor.poll, None):
20 if device.action == 'add':
21 """*Authorise user credentials*"""
22 #Assign relevant data to dictionary
23 dev_dict={'DEVNAME': device['DEVNAME'],'ID_FS_TYPE':

device['ID_FS_TYPE']}↪→
24 return dev_dict

Figure 4.17: Kiosk drive handler prototype

In appendix E.33 there is an incomplete prototype of disk mount helper functions
written in Python3 using the subprocess module to dynamically mount inserted drives.
One severe security flaw in this solution to consider is lacking input validation. Even
though this code should never be called with user designated input, and should in every
single case dynamically get a block’s DEVNAME fetched from uevents, malicious injection
could be inserted in these parameters by a malicious actor by editing the metadata of
a drive. That, and the lack of any error handling are red-flag issues, and led to this
prototype only being added as a bare-bones example as an appendix.

Transfer handling

The most important consideration of the transfer handling should be to effectively and
securely transfer the files between the kiosk and the front end.

In the design, rsync was considered for handling file transfer due to its integrity
preservation features with checking the delta between the local files and the remote

56

Malware Analysis Infrastructure

files. Due to lack of experience and the time constraints of the project at the end of im-
plementation, this feature was never realised, and will need to be implemented at a later
stage. This, along with other kiosk recommendations are discussed later in Section 6.4.1

Kiosk work-flow

Figure 4.18 describes a proposed work-flow for the kiosk as a whole.

1 """Kiosk process pseudo-code:
2 Constantly loop 'drive added'-event checker.
3 When event detected: try to authorise
4 If authorised within 3 tries:
5 fork process.
6 If child: mount, transfer, wait for results, display, kill self.
7 If parent: go back to 'drive added'-event checker.
8 Else:
9 Deny the scan request; go back to 'drive added'-event checker."""

10 while true:
11 drive_added = check_udev_add_events()
12 if drive_added:
13 try authenticate_user_with_AD:
14 if user_authorised:
15 fork_process() or new_thread()
16 if new_process/thread:
17 drive_path = mount_drive(drive_added)
18 # transfer_drive params: (from:, to:,

id_to_tag_scan:)↪→
19 scan_id = transfer_drive(drive_path, irma_frontend,

username)↪→
20 # Busy waiting check if scan result ready:
21 # (Potentially progress check and display)
22 while true:
23 sleep(30 second)
24 if scan_result(scan_id):
25 display_result()
26 return
27 catch failed_authentication:
28 # Retry authentication up to 3 times.
29 # If still not successful then: deny request.
30 while counter < 3
31 counter += 1
32 retry_try_block
33 deny_request()

Figure 4.18: Kiosk process pseudo-code

Some specifics to note for Figure 4.18:

• Active Directory (AD) integration was never implemented, so it could potentially
be a much more complicated task than the logical step might imply.

• The transfer_drive params are: from: <dir-where-drive-is-mounted>, to: <ip-of-irma-
frontend>, username: AD user-name

57

Malware Analysis Infrastructure

• If an irma-cl based wrapper is used to pass the scans and assign identifying tags:
to: <ip-of-irma-wrapper>

• The sleep(30 second) means the script checks if a scan result has arrived in 30
second intervals, to minimise busy waiting effect.

4.3.3 Cuckoo as a probe of IRMA

When adding Cuckoo as a probe we used the already existing VirusTotal probe along
with the skeleton_plugin as references. Cuckoo’s REST API is used to communicate with
IRMA to create and view the results of the scan. Cuckoo was implemented following
IRMA’s guide23. To set the IP address of your existing Cuckoo infrastructure edit mod-
ules/external/cuckoo/config.ini to reflect your IP addresses and ports.

Since Cuckoo as of version 2.0.6 does not return the calculated score there is no way
to determine within the probe whether or not a file is malicious or benign. As you can
see from figure: 4.15 and the explanation above it, the scoring system is not very reliable
to begin with. In other word deducing whether or not a file analysed with Cuckoo cannot
be automated yet and will always need human interaction.

The files appropriate for Cuckoo are executables, files supporting executables or files
that can contain executables e.g PE/ELF, PDF, Office files.

4.3.4 NSRL

NSRL is a reference library supported by NIST (National Institute of Standards and Tech-
nology) to promote efficient and effective forensic analysis of computers.

"The National Software Reference Library (NSRL) is designed to collect software from
various sources and incorporate file profiles computed from this software into a Ref-
erence Data Set (RDS) of information. The RDS can be used by law enforcement,
government, and industry organizations to review files on a computer by matching
file profiles in the RDS. This will help alleviate much of the effort involved in deter-
mining which files are important as evidence on computers or file systems that have
been seized as part of criminal investigations."24

It is important to specify that not all signatures necessarily are non-malicious the files
are simply known software files, as quoted from NIST:

"The RDS is a collection of digital signatures of known, traceable software applica-
tions. There are application hash values in the hash set which may be considered
malicious, i.e. steganography tools and hacking scripts. There are no hash values of
illicit data, i.e. child abuse images."25

Because the files are profiled one can modify the detection method to use NSRL to
determine whether a file most likely is safe or not. Something to be aware of if one
actively uses NSRL for detection is that most alerts probably are false positives as some
harmless software uses common files that also are used in hacker tools.

A way to base check for potential danger is to use the ApplicationType field in NSRL
located in the NSRLProd.txt file which classifies the software based on functionality some
examples are keylogger, Accounting, Money Management, Virus Scan, Drivers and Utili-

23Adding new IRMA probes: https://irma.readthedocs.io/en/latest/evolution/add_probe.html#
for-a-probe-that-is-not-a-antivirus

24NIST: https://www.nist.gov/software-quality-group/national-software-reference-library-nsrl
25NIST: https://www.nist.gov/software-quality-group/national-software-reference-library-nsrl

58

https://irma.readthedocs.io/en/latest/evolution/add_probe.html##for-a-probe-that-is-not-a-antivirus
https://irma.readthedocs.io/en/latest/evolution/add_probe.html##for-a-probe-that-is-not-a-antivirus
https://www.nist.gov/software-quality-group/national-software-reference-library-nsrl
https://www.nist.gov/software-quality-group/national-software-reference-library-nsrl

Malware Analysis Infrastructure

ties. An issue with this is that it would probably require human intervention as there are
obscene amounts of categories. One can automate it somewhat by creating a dictionary
of potential unsafe or safe ApplicationTypes.

This field can be combined with the SpecialCode field which marks signatures as
malicious, special or normal.

One of the main differences from NSRL and different databases (e.g. hashkeeper) is
its focus, which is for use in law enforcement:

1. Provenance
2. Court worthiness
3. Scope
4. Illicit file data
5. Specificity of data

The module for NSRL in IRMA worked by using the four files provided by NSRL: NSRL-
Prod.txt, NSRLManufacturer.txt, NSRLOS.txt, and NSRLFile.txt to build a leveldb database.
The building of the database had to be initiated manually by downloading the com-
pressed file, unpacking it, setting correct file path to the text files in the configuration
and running a script. 26

There is a command for creating the database that initially returned error specifying
a missing module:

python -m modules.database.nsrl.nsrl create -t os NSRLOS.txt \
/home/irma/leveldb/os_db

1 ImportError: No module named irma.common.utils.oopatterns
2 python -m modules.database.nsrl.nsrl create -t os NSRLOS.txt

/home/irma/leveldb/os_db↪→
3 Traceback (most recent call last):
4 ...
5 TypeError: type() takes 1 or 3 arguments

Figure 4.19: Initial NSRL setup

It turned out to be an user error where the script was run by the wrong Python envi-
ronment. It had to be run from the virtual environment installed for the current version
of IRMA. When doing this the error was replaced by:

26NSRL FAQ: https://www.nist.gov/software-quality-group/about-nsrl/
nsrl-frequently-asked-questions

59

https://www.nist.gov/software-quality-group/about-nsrl/nsrl-frequently-asked-questions
https://www.nist.gov/software-quality-group/about-nsrl/nsrl-frequently-asked-questions

Malware Analysis Infrastructure

1 Traceback (most recent call last):
2 ...
3 File "/home/deploy/.local/lib/python3.5/site-packages/leveldict.py",

line 51, in __init__↪→
4 if isinstance(db, basestring):
5 NameError: name 'basestring' is not defined

Figure 4.20: basestring is a functionality in Python2 removed in Python3

Which is a result of running it in Python3 instead of 2 as basestring was a variable type
in Python2 and was deprecated for Python3, the environment was installed as Python3
for some reason instead of Python2. Updating the codebase line by line was not an option
as the library, leveldict, in use also was at fault. The issue could have been fixed simply
by changing the version installed for the environment to Python2, but that would lead to
issues in the future as Python2 is being deprecated in 2020. 27

A new script to build and access the database was made instead. The new script
uses the library plyvel to interact with leveldb, and most of the other code logic could be
harvested with minor changes as mostly parts relying on leveldict was at fault. The code
can be summed as a method to build the database and one to search for an entry using
SHA1.

The need for manual setup for NSRL was also removed by adding an Ansible role for
it which downloads NSRL and unpacks it. Adding the probe is then as easy as adding the
role in the environment file. Provisioning with Ansible may be a dumb way to do this
because the file size of NSRL is large. It might be better to build the files directly into the
image, but that would add redundant files when not using NSRL.

4.3.5 Packer

IRMA uses Packer to build images that supports the installation, by enabling SSH if nec-
essary, updating, upgrading, basic configuration of hardware and software, hypervisor
guest additions, setting up SSH and enabling it. At this level one can change what distri-
bution or OS is used for the images as the creation allowed Vagrant and Ansible to treat
each machine as they were alike. Which is the goal of Packer, to fix one of Ansible main
flaws, OS restrictions.
The Packer images created for this project can be split up into minimal and Cuckoo
guests.

1. Minimal
Only the bare minimum is left on these of both files and software, and the process of
creating them is basically like what it was previously in IRMA. The main difference
is that instead of installing guest additions for Virtualbox it installs VMWare tools.
Additionally support for Ubuntu and Windows is added.
The process for Windows is slightly different as it works differently. In broad strokes
they are:

1. Windows is slimmed down by removing tracking, Cortana functionality etc.
2. Disabling Windows update (it is still run during install, but it is disabled so it

27Python2 deprecation: https://devguide.python.org/#status-of-python-branches

60

https://devguide.python.org/##status-of-python-branches

Malware Analysis Infrastructure

doesn’t start automatically)
3. Enables Windows PowerShell Remoting by setting network connection to pri-

vate 28

4. Setting the password to Windows default
5. Installing Cygwin, adding SSH and opening ports for it

These changes are necessary for Vagrant and Ansible to use Windows machines
similar to Linux machines.

2. Cuckoo guest
These are very different in that they have a variety of software pre-installed and dif-
ferent configuration. This is to best disguise them as vulnerable machines as some
malware checks for vulnerabilities before execution. These images are Windows 10
and Windows 8.1 installations, Windows 7 should be included but wasn’t added as
no download source was found for it. These operating systems are good choices for
Cuckoo guests as they are the usual targets, still at least one Linux machine should
be included (section: 3.1.3).
The previous configuration is done with the exception of slimming down Windows,
additionally the following are done:

1. Software installed:

a. Cuckoo agent
b. Flash player version 14.0.0.145
c. Firefox version 25.0
d. Python 2.7.12
e. PIL a Python library for imaging
f. Ollydbg
g. Ida free

2. Windows is never updated
3. Firewall is disabled

The reason for adding vulnerable software is because some advanced malware
won’t execute if they do not detect vulnerabilities present on the system. The in-
cluded software should probably be expanded on, but we have deemed that to be
outside of our scope.
This also counts for vulnerabilities in Operating Systems, which is why running
multiple hosts with different vulnerable systems is advised.

The configuration for Windows machines have been somewhat problematic as there have
been problems with the connectivity. The first issue was connecting to the machine dur-
ing building after it had booted, it turned out to be an environmental problem that
remains unresolved. Therefore the Windows boxes were simply built in another envi-
ronment than those for Linux. Another issue is the time spent building the images. To
build one Windows image somewhere between 1-2 hours were required which affected
the configuration of these immensely as the testing was so time demanding. The time
is used on first booting the machine, which takes about 20 minutes, then configuring it
which required rebooting in-between some of the scripts. The next issue is met when

28Windows Powershell: http://blogs.msdn.com/b/powershell/archive/2009/04/03/
setting-network-location-to-private.aspx

61

http://blogs.msdn.com/b/powershell/archive/2009/04/03/setting-network-location-to-private.aspx
http://blogs.msdn.com/b/powershell/archive/2009/04/03/setting-network-location-to-private.aspx

Malware Analysis Infrastructure

Ansible tries connecting to the Windows machines through SSH. Windows have different
features which isn’t directly documented stopping machines from directly SSHing into
it, which also resulted in a struggle. This was solved with Vagrant by adding support for
WinRM, but the Ansible configuration did not work with the connector. In that Ansible
could not connect to the machines. As configuring this was not of central importance
to the project, as Packer configuration is slightly out of scope, we decided on using the
Virtualbox boxes provided by IRMA instead for the last part of the project.

62

Malware Analysis Infrastructure

5 Testing and Analysis

The goal for the testing is to find potential flaws in analyses, finding performance issues
during provisioning and scanning, and checking if there are any confidentiality issues
with network connectivity of the infrastructure and file sharing.

The efficiency (section 5.2), network connectivity (section: 5.5) and scan accuracy
(section: 5.4) were tested through practical tests. By testing what happens and analysing
the results.

The bottlenecks section (5.3) was written purely based on looking at what parts in
the scanning and provisioning the process slowed down and looking into what the reason
may be. Because of a lack of time we did not have time to perform more specific tests on
the code base.

5.1 Development and testing hardware

Our development and testing platform was a laptop with an Intel i7-4800MQ and an SSD
with 512GB (section 6.2). It was sufficient for a development environment, but not for
a production environment or more than a bare-bones testing environment. When eval-
uating the results from testing it should be taken into consideration that these results
may not reflect the relative performance of the platform in a proper production environ-
ment. Some problems with anti viruses failing, issues with provisioning of software, and
bottlenecks is not necessarily reflective of the software but the hardware used for testing.

5.2 Efficiency of deployment

With the development hardware running a fresh Ubuntu 18.04.2 LTS install, the initial
Vagrant provisioning using VirtualBox and with the IRMA production multi-VM setup can
be expected to take about 4 minutes 15 seconds to complete. This environment contains
four VMs in the test stage; frontend.irma, brain.irma, avs-linux.irma, mcafee-win.irma.

After the network has been provisioned by Vagrant, the IRMA specific setup is run.
This setup connects to each IRMA machine with Ansible to provision and configure all
necessary services and requirements to run the entire platform. This setup took 800
seconds on a clean install.

A series of raw logs of 17 individual setups of the entire infrastructure from Vagrant
to a ready IRMA-ansible setup with 14 probes can be found in Appendix M.

The huge variations in setup times is inexplicable, as there seems to be no clear over-
arching correlation between setup times and apparent environmental settings.

Avg. setup time
Vagrant 4m 25s +/- 20s

IRMA-ansible (no probes) 13m 20s
IRMA-ansible (14 probes) 25m +/- 4m

Table 5.12: Average setup times??

63

Malware Analysis Infrastructure

5.3 Bottlenecks

Improvements of the scan efficiency is always welcome, which is why a check for poten-
tial bottlenecks in the procedure is required. There are different methods one can employ
to check for bottlenecks; using functionality in the system and looking for the obvious,
another is to measure time spent and analysing results with different configuration.

• If a scan is started through the front end web GUI it is not initiated before all files
are uploaded, which can result in waste of time. This is because IRMA expects all
files to be present when starting scans.

◦ Quick connection
A quicker connection would reduce the time used for the upload.

◦ Asynchronous scanning
Through a combination of the kiosk and the proposed pipeline solution larger
scans can be started as smaller sub-scans from the kiosk and use the pipeline
to combine these. This is not implemented, but it is not a complicated feature
to add. It can be implemented by splitting up scans in the kiosk and assigning
each a tags which the the API can receive and use to later combine the scans
in the Database. The combination of these scans can also be done using the
tagging feature in IRMA.

• Celery Workers on machines scaling without a limit leads to all tasks running slowly
and many scans experiencing time outs which is the cause for the large increase in
errors when running larger scans.

◦ Limit amount of workers
IRMA has a built-in configuration for setting the max amount of active workers
at a time, this is a separate option in each machine (probe, brain and front
end). Configuration for setting a limit is mentioned in section 4.1.3.

Quicker provisioning through uncovering and solving bottlenecks is also a goal of the
project.

• IRMA lacks some modularisation in its Ansible implementation leading to unnec-
essary tasks being done when only smaller tasks are needed.

◦ Modularise
By dividing playbooks into smaller sub tasks they can be combined to perform
more exact tasks and therefore waste less time.

◦ Local mirror
By having a local mirror for what needs to be downloaded, the download time
can be close to removed.

Other methods that should have been employed to find bottlenecks are looking through
logs and testing with Python1. We did not have time to do this, and therefore, only
have a overview of flaws found by using the system. Important logs to look at are those
named syslog in /var/log. For the provisioning we recommend looking at tasks using

1IPython: https://jakevdp.github.io/PythonDataScienceHandbook/01.07-timing-and-profiling.
html

64

https://jakevdp.github.io/PythonDataScienceHandbook/01.07-timing-and-profiling.html
https://jakevdp.github.io/PythonDataScienceHandbook/01.07-timing-and-profiling.html

Malware Analysis Infrastructure

larger amounts of time.

5.4 Accuracy of scans

5.4.1 Testing of benign files

The bachelor group has so far not seen any problems with false positives. False positives
refers too:

"an error in data reporting in which a test result improperly indicates presence of a
condition, when in reality it is not present"2

While scanning files the bachelor group knew to be benign, the scan results always indi-
cated the files were benign. To be sure of this the bachelor group did an analysis of 100
benign files and analysed the results. This test was done later in the development process
than the scan of the malicious files in Section 5.4.2. Because of this, the benign scan was
done with a slightly different set of analysers. An example scan of the result can be seen
in Figure 5.21:

Figure 5.21: Example scan of benign files

5.4.2 Testing of malicious files

The bachelor group did a statistical analysis of a selected 100 files from the open source
malware repository theZoo3 to check for false negatives. Of those 100 files, we extracted
all the exe files and filled the rest of the 100 file quota with dll files. False negatives refer
to:

"an error in which a test result improperly indicates no presence of a condition, when
in reality it is present."4

We assume that all 100 files would be malicious.In total 10 antivirus scanners were used.
A full list of the antiviruses used can be seen in the excel sheet provided. After the 100

2False posetives/negatives wikipedia: https://en.wikipedia.org/wiki/False_positives_and_false_
negatives

3theZoo repository: https://github.com/ytisf/theZoo
4False positives/negatives wikipedia: https://en.wikipedia.org/wiki/False_positives_and_false_

negatives

65

https://en.wikipedia.org/wiki/False_positives_and_false_negatives
https://en.wikipedia.org/wiki/False_positives_and_false_negatives
https://github.com/ytisf/theZoo
https://en.wikipedia.org/wiki/False_positives_and_false_negatives
https://en.wikipedia.org/wiki/False_positives_and_false_negatives

Malware Analysis Infrastructure

files were scanned, their results were logged in a CSV-format. In the results a malicious
file will be marked: 1, a file not detected as malicious: 0, and an error: -1. Using this the
bachelor group made an excel sheet to analyse the results from the selected 100 files

The figure under shows a limited scan summary from ten of the hundred scanned
files. The results look very promising.

Figure 5.22: Summary scan of malicious files

66

Malware Analysis Infrastructure

Figure 5.23: Detailed scan of one malicious file

The above figure shows a detailed scan of the file 21.exe from figure 5.22. It shows 7
of the available 10 antiviruses mark the file as malicious. This can be interpreted as the
file is very likely to be malicious. We see one error from ClamAV that we see quite often.
This has been discussed in the implementation chapter 4.1.7, and there are also two false
positives from the Windows antiviruses. This is discussed in the next chapter 6.4.3.

5.4.3 Statistics

Table 5.13 and figure 5.24 show the aggregation of results from the above mentioned
scan of 100 malicious files from theZoo5. The exact dataset used in the scan can be seen
in appendix F.

5theZoo repository: https://github.com/ytisf/theZoo

67

https://github.com/ytisf/theZoo

Malware Analysis Infrastructure

Antiviruses Detection Errors No detection
McAfee Command Line scanner (Linux) 34 0 66
AVG AntiVirus Free (Linux) 74 0 26
eScan Antivirus (Linux)) 86 0 14
FSecure Antivirus (Linux) 77 0 23
Comodo Antivirus (Linux) 67 0 33
Clam AntiVirus Scanner (Linux) 2 98 0
Emsisoft Commandline Scanner (Windows) 32 2 66
McAfee Command Line scanner (Windows) 1 0 99
F-PROT Antivirus (Linux) 68 0 32
Bitdefender Antivirus Scanner (Linux)s (Linux) 83 2 15
All antiviruses 91 0 9

Table 5.13: Table showing detections, no detections and errors

Figure 5.24: Antivirus - Detection rate

We see that in total 91 percent of the malicious files are discovered with some degree
of varying discovery rate between the different antivirus products and a few products that
has some problems. Even though we assume all 100 files to be malicious that is something
we can not not know exactly. Some files may be bening files. Other files may be a delivery
method for some malware that can only be discovered by a dynamic analyser.

5.5 What is shared?

Due to time limitations we could not do many thorough tests but we manage but we
ran two Wireshark packet captures. One were with the host machine’s network interface
was turned off. We wanted to ensure that the analysers would still function properly and
see what external addresses they tried to connect to. The other was run with complete
internet access to check if any antiviruses connected to any external services and what
information they possibly shared. We tested the same set of files both with and with-
out internet access. The submitted files were a random collection of files from one of
developers computer along with some malware.

We did a fairly simple check of the captured files. The host computers IP address is
10.0.0.15 and the public IP of the host machine was 88.95.173.107. To exclude this and

68

Malware Analysis Infrastructure

other interal machines we used the filter in figure 5.25

1 !(ip.addr == 88.95.173.107) && !(ip.addr == 10.0.0.95) &&
!(ip.addr == 10.0.0.125)↪→

Figure 5.25: Wireshark filter

5.5.1 Without internet access

As expected every scanned completed without any problems and all the results were as
expected. Most of the requests were DNS and API calls. The package captured and used
for analysis is attached along with the report.

5.5.2 With internet access

Every scan obviously returned the expected results as well. A lot of the packets captured
were NTP requests, DNS queris and interal ARP requests. There were also requests going
to external IP’s. These were of course encrypted and not possible to decrypt. Checking
the IP’s with an online IP lookup tool we can see who is responsible for each IP. Several
of the IP’s were American, one of the also belonged to Amazon (52.25.98.1). We can-
not conclude anything but it is reasonable to assume that at least one of the outgoing
connections were to an antivirus provider. This will of course need more research to get
a correct conclusion, but with the mentioned requirements 2.1 of not sharing data it
could be safe to assume that an air gapped or restricted internet access is beneficial. The
package captured and used for analysis is attached along with the report.

69

Malware Analysis Infrastructure

6 Results and Discussion

This chapter sums up our general results compactly, and further discusses ideas and
suggestions based off of our results. The discussions and arguments sections rely on what
the overall results were by supplementing and expanding with what we, the developer
team, deem logical courses of action for future work based off of our experiences and
knowledge.

6.1 Results

Changes done, and therefore, the results are explained in depth in the section: 4.3.

6.1.1 Infrastructure setup

We have researched and modified the IRMA anti-malware framework, ultimately result-
ing in a thorough guide containing requirements, setup, configuration, pitfalls, and other
supplementary information contained within this thesis (Chapter 4). Our guide uses our
own slightly modified fork from the original quarkslab/irma, and is publicly available at
krisshol/kmno-irma.

6.1.2 Infrastructure modifications

Antivirus troubleshooting

Not all antivirus analysers were working in the default IRMA installation. Multiple errors
during provisioning were fixed and Ansible roles modified to accomodate outdated de-
fault configurations. In the end a total of 15 analysers were implemented and confirmed
working, and 3 custom-made analysers were implemented; NSRL, Yara, and Cuckoo.

Pipeline support

Through a deep-dive into the scanning code base, we managed to add features support-
ing features to be required by a pipeline solution, albeit, we did not manage to implement
a full pipeline.

These supporting features include; adding a new dynamic analysers category, func-
tionality to retrieve probes and corresponding probe category, the method isFinished() for
explicitly notifying when a scan is finished (Section: 4.3.1), and another function to com-
bine individual results to take advantage of effective, smaller sub-scans and later piecing
them together to the total scans. These features are implemented in the krisshol/kmno-
irma fork, and will serve useful for a complete pipeline based on the discussions in Sec-
tion 4.3.1.

6.1.3 Ported probes

NSRL

Originally, NSRL was a supported IRMA probe, but due to a weird abnormality with
Python runtime versions, we found both implementation and the IRMA documentation to
be outdated. The official implementation was written in soon-to-be deprecated Python2,

70

https://github.com/quarkslab/irma
https://github.com/krisshol/kmno-irma
https://github.com/krisshol/kmno-irma
https://github.com/krisshol/kmno-irma

Malware Analysis Infrastructure

but due to above mentioned abnormality the system was once run in Python3 with most
functionality working, with the exception of this probe. This situation lead us to port the
NSRL module to Python3, the implementation of which can be found at nikolaifa/NSRL.
Unfortunately, it has not been appropriately tested in a running IRMA environment, but
our modificated IRMA-fork will automatically provision this ported module using the
nikolaifa/NSRL_ansible.

Cuckoo

We implemented Cuckoo using the existing ansible playbook at julianoborba/Ansible-
Cuckoo as a starting point. During development to much time was spent on trying to
implement a fully automatic VMware role, which in the end did not work due to feature
restrictions within VMware Workstation. It also lead to us not completing an ESXi or
vSphere role. We also did a complete implementation of Cuckoo as an IRMA probe.

6.1.4 Designed features

Kiosk

A kiosk was conceptually designed, and potential specific technologies available to solve
the necessary use-cases were researched. The designed kiosk solution was based on
GNU/Linux to access low-level functionality, but lacks any implemented solutions for
handling user authentication or file transfers. The feature-limited kiosk prototype can be
found at kmno-kiosk.

Pipeline

The pipeline conceptual design is complete, and specific technologies were researched for
the use case. In the end, we advise using the Celery layout already in use by IRMA for en-
abling the required parallelisation. What lacks in the implementation is the stage/pipeline
logic discussed in depth in section 4.3.1.

6.2 Hardware used in development and initial testing

HP ZBook 15 Mobile Workstation

• I7-4800MQ 2.7GHz base clock (3.7GHz boost)
• 16GB RAM
• 512GB SSD

It was stored vertically in a closed closet with minimal air circulation. The fans and air
intake were facing out for optimal airflow in a non optimal environment.

6.3 Recommended Infrastructure

Because of our working environment (Section: 6.2), we have no practical basis for mak-
ing the recommendations. Our only basis is some minimal guesstimates found in the
official documentation for used technologies.

6.3.1 Orchestration computer/Ansible provisioner

Depending on the size of the infrastructure an average computer or server will do the
job. If updates will be done manually a personal/work laptop can be used for a basic
infrastructure provisioning, management and updating.

71

https://github.com/nikolaifa/NSRL
https://github.com/nikolaifa/NSRL_ansible
https://github.com/julianoborba/Ansible-Cuckoo
https://github.com/julianoborba/Ansible-Cuckoo
https://github.com/krisshol/kmno-kiosk

Malware Analysis Infrastructure

If the updates, management and provisioning should be automated, an Ansible AWX/-
Tower instance might be beneficial. If the infrastructure is big, with more than 50 host
and to be provisioned from a single computer, a high performance computer is recom-
mended. Ansible uses SSH for provisioning and a high amount of concurrent connections
might require a lot of resources.

6.3.2 IRMA

These recommendations are based upon general Quarkslab estimates, combined with
Windows and VMWare recommendations. Quarkslab themselves specify that they do not
have any specific numbers, as the system has not been tested in full scale usage. However,
they give general hardware recommendations based on previous experiences and how
they have hosted it in the past.

"For a large company, in theory, given a single high-memory machine, with 16+
cores, and SSDs, you could run IRMA platform and bear the workload load with
reasonable response time." 1

What exactly is meant by "large company" and "high-memory machine" is difficult to
say, therefore, some estimations are made. How it is configured and how many probes
are included is unknown in IRMAs estimations. The only relevant statement they make
regarding hardware is:

"we managed to run the whole IRMA platform on a single machine by hosting it with
multiple systems inside virtual machines: this setup gives fairly high throughput as
long as it has reasonable IO (ideally, SSDs), and a good amount of memory (our
setup was an i7 cpu with 16 GB ram on regular drives (at least 200 GB required)" 2

This is can be regarded as the minimum requirements for a usable system which includes
every analyser. For a more efficient system the focus is increasing CPU cores and RAM.
Storage space will vary depending on how often one wants to run a clean install, but
using SSD storage is still important.

The system as a whole
The modules (front end, brain and probe) can either all be installed on the same ma-
chine or separately. If the different modules (front end, brain and probes) are installed
on different machines the hardware resources have to be divided between them. How
these are divided will depend on what is selected for each machine. It is recommended
to separate the different modules so that they are easier to manage.

• CPU: 16 cores
• RAM: 32 GB
• Storage: 500+ GB

Front end
It must have resources to handle incoming requests and responses, sending/receiving
tasks to/from brain, storage of files and scan results. Therefore the main focus for the
front end is storage capability. As mentioned the size will vary on how often a clean
install is done, but 300 GB should be enough to last more than a week depending on the

1IRMA recommendation: https://irma.readthedocs.io/en/latest/intro/requirements.html
2IRMA recommendation: https://irma.readthedocs.io/en/latest/intro/requirements.html

72

https://irma.readthedocs.io/en/latest/intro/requirements.html
https://irma.readthedocs.io/en/latest/intro/requirements.html

Malware Analysis Infrastructure

work load. As of now only one instance of the front end can run at a time 3 , and it is
also only tested for Linux.

• CPU: 4 cores
• RAM: 4 GB
• Storage: 300 GB

Brain
It must handle requests/responses to/from the front end and the probes, store files and
scan information temporarily. Therefore, it is more important for the brain to have mul-
tithreading capability. Required storage capability can be lessened through configuration
for an external file server. Only one instance of the brain is supported at a time, and it is
only tested for Linux.

• CPU: 6 cores
• RAM: 4 GB
• Storage: 100 GB

Probes
It must handle request/responses to/from brain and scanning tasks using present anal-
ysers. The number of CPU cores are most important as multithreading these scans are
extremely important. The analysers, with the exception of Cuckoo, are not very demand-
ing either.

• Linux (Debian) base

◦ CPU: 2 cores
◦ RAM: 4 GB
◦ Storage: 10 GB

• Windows 10 base

◦ CPU: 2 cores
◦ RAM: 4 GB
◦ Storage: 40 GB

The NSRL database files, which are about 4 GB, are calculated into the required base
storage as it is an exception when it comes to storage required for each analyser.

Additionally one needs to add resources for each analyser installed on the machine.
What the analysers actually requires varies slightly, but a general baseline makes the
process easier. We recommend adding:

• CPU: 1 core for every 2 analysers
• RAM: 500 MB each analyser
• Storage: 1 GB each analyser

How one wants to split the analysers between the machines doesn’t really matter as long
as they have the required resources.

Lastly we recommend having the Cuckoo host running on its own probe machine as
it stores files, scan results and logs locally.

3Multiple front ends: https://irma.readthedocs.io/en/latest/technical/brain.html#id1

73

https://irma.readthedocs.io/en/latest/technical/brain.html##id1

Malware Analysis Infrastructure

6.3.3 Cuckoo

It should be noted that these recommendations are based on general Microsoft recom-
mendations for Windows4, VMware5 recommendations for virtual machines and general
common sense. The recommendations are based on clean Windows and Linux images
with only the required programs to get Cuckoo running. It is not taken into consider-
ation additional services and programs expected to exist in a realistic user or produc-
tion environment. It is highly recommended to emulate a true to nature environment
in your Cuckoo guest with anti-anti VM features to avoid more advanced malware slip-
ping through your defences. These Cuckoo guests will most likely need more resources
and that should be taken into consideration when acquiring/deciding hardware. A good
starting point for estimating the necessary resources would be to check the official rec-
ommendation for the software you plan to integrate into your Cuckoo guest. You can
estimate an expected load of software together with anti-anti VM features and use that
as a basis to test and evaluate needed/optimal resources requirements.

The CPU should be of a "newer" architecture. It would be beneficial for both per-
formance and power usage if the architecture is based on Sandy Bridge or newer for
Intel processors, or the new Zen architecture for AMD processors. It is also highly recom-
mended that the processors supports VT-d/AMD-Vi and VT-x/AMD-V. It’s also likely that
must be enabled in BIOS, supported by the virtualiser and per virtual machine for it to
have any benefit.

Storage should preferably be SSD storage or another fast and low latency medium. A
HDD storage solution with decent SSD caching would also be possible.

Recommendations per VM/Cuckoo guest

• CPU: 2 Cores (At least 1 per running VM)
• RAM: 2GB (4GB for Windows VM, 2GB for Linux)
• Storage: 60GB (anti-anti VM measures, simulating a realistic environment etc.)

Recommendations Cuckoo host

• CPU: 2 Cores + 2/1 (x concurrent VM’s)
• RAM: 4GB + 2/4GB (x number of VMs)
• : Storage: 40GB + 60GB (x number of VMs)
• Support for VT-d/AMD-Vi and VT-x/AMD-V

6.3.4 Local mirroring

To improve the speed of provisioning, updating and potentially security, local hosting
of required files and images should be evaluated. Some parts of the infrastructure re-
quires downloading pre-configured images from online repositories, installer packages,
virus definitions and more. These parts of the installation can potentially be sped up by
hosting/caching the required files in-house. If an advanced threat is targeting the infras-
tructure they could abuse these external sources to plant malicious code or backdoors
to get a foothold within the infrastructure. By verifying and hosting all the external files
you as a host should in theory have complete control of every step of the chain. This

4Windows Minimum Requirements: https://support.microsoft.com/en-us/help/4028142/
windows-windows-10-system-requirements

5vSphere Minimum Requirements: https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.
esxi.install.doc/GUID-DEB8086A-306B-4239-BF76-E354679202FC.html

74

https://support.microsoft.com/en-us/help/4028142/windows-windows-10-system-requirements
https://support.microsoft.com/en-us/help/4028142/windows-windows-10-system-requirements
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.esxi.install.doc/GUID-DEB8086A-306B-4239-BF76-E354679202FC.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.esxi.install.doc/GUID-DEB8086A-306B-4239-BF76-E354679202FC.html

Malware Analysis Infrastructure

can for example be solved by hosting necessary files on a in-house FTP server, VM im-
ages e.g in a datastore when using vSphere, Apt-Cacher 6 for caching required programs
and installing Python packages from local packages 7. This will of course require more
infrastructure with some maintenance for the hosted files. It would also be required to
edit and adapt the Ansible playbooks in varying degree, e.g for apt installed packages
a simple edit of repositories are enough, while hosted files would need a configured
and maintained SFTP server with proper adaption in the playbooks. This solution should
fix a lot of the previously, mentioned errors in section 4.1.5, we got when provisioning
IRMA. This could also solve potential future problems with downloading required files
and packaged from external sources.

6.3.5 Kiosk

The kiosk is as of now only conceptual, but by definition it should not need much re-
sources. The most resource demanding parts will be CPU and I/O, with limitations in the
transfer protocol (USB, Thunderbolt, etc). By design, the kiosk should have limited input
as each user needs to be authenticated before starting a scan. This means potential CPU
congestion is a very unlikely, and bottlenecks will likely be in the actual transfers. Which
means the most important components are I/O-ports and -protocols.

Based on this, a computer with USB3-ports, potentially thunderbolt to push for a move
away from the insecure and flawed USB-protocol8, and Gigabit Ethernet connection to
handle the I/O should suffice. Depending on the actual implementation of the kiosk and
how it handles files; threaded vs. single process, the CPU can either be as light as a
dualcore processor or as heavy as a hyperthreaded quadcore processor.

6.4 Recommended further work

A recommended feature is a feature that will either greatly enhance the features or per-
formance of the final product, or that will to a high degree be beneficial to evaluate and
implement.

6.4.1 Additions

Recommendations for new probes

It is possible to add several more probes to IRMA, the documentation for this can be
found here: 9 One possible new probe is Hashkeeper. It is very similar to the NSRL which
has been written about earlier in the report here in section 4.3.4. According to the na-
tional Institute of Standards and Technology, the main difference is that the sources of
NSRL are known while Hashkeeper’s sources are not. The scope of Hashkeeper may po-
tentially be much larger but the file data being used may also potentially be of illegal
nature.10

There exists plenty of additional anti viruses that can be added on existing analyser

6Apt-Cacher: https://www.unix-ag.uni-kl.de/~bloch/acng/
7Python local packages: https://pip.pypa.io/en/stable/user_guide/

#installing-from-local-packages
8USB flaw: https://www.schneier.com/blog/archives/2014/07/the_fundamental.html
9Adding probe: https://irma.readthedocs.io/en/latest/extending/add_probe.html#

automatic-provisioning
10NIST NSRL FAQ: https://www.nist.gov/software-quality-group/about-nsrl/

nsrl-frequently-asked-questions

75

https://www.unix-ag.uni-kl.de/~bloch/acng/
https://pip.pypa.io/en/stable/user_guide/##installing-from-local-packages
https://pip.pypa.io/en/stable/user_guide/##installing-from-local-packages
https://www.schneier.com/blog/archives/2014/07/the_fundamental.html
https://irma.readthedocs.io/en/latest/extending/add_probe.html##automatic-provisioning
https://irma.readthedocs.io/en/latest/extending/add_probe.html##automatic-provisioning
https://www.nist.gov/software-quality-group/about-nsrl/nsrl-frequently-asked-questions
https://www.nist.gov/software-quality-group/about-nsrl/nsrl-frequently-asked-questions

Malware Analysis Infrastructure

hosts. Some examples include:

• Malwarebytes
• Tencent
• ViRobot
• With many more

Alternatives to Cuckoo, like FireEye AX and VxStream can also be considered. If one
sandbox is already implemented we would not normally consider it necessary to add
another, as the likelihood of a malicious file going undetected through both static and
dynamic analysis is quite low, and resource requirements are substantial. If security re-
quirements are high enough more sandbox solutions can be implemented, for example
as a way to combat anti-VM techniques.

Implement kiosk

As stated multiple times, the kiosk solution was never implemented. In spite of this,
specific technologies have been researched and a work-flow has been conceptualised.
The specific use cases of the kiosk can be summed up to:

• Recommended Operating System:
Any minimal GNU/Linux build. A safe and stable alternative is Debian Minimal.

• Low-level input handling:
This is solved in our draft found at kmno-kiosk. It uses the pyudev-module, and
proved through manual testing to be functional.

• High-level handling:
Authenticating and authorising users to Active Directory. A Python3 module named
easyad was found and unless future developers have experience with other LDAP
solutions it looks like a recommended solution to use. It looks very intuitive, and
with a low required level of entry, meaning worst case scenario is a miniscule
amount of manhours spent on researching it.

• File transfer:
Through our limited research, the only suitable tool for this use-case was rsync as
it provides integrity checking and high bandwidth usage and can be recommended
based on those two aspects. Unless the future developers have experience with any
other secure and efficient methods to transfer files from one machine to another,
looking further into using rsync should be beneficial.

• Connect scan and user identification:
This step could be done in multiple ways. One is to adapt the receiving front end
portion to accept the transfer of identifications and tag scans with their respective
owner, either by modifying IRMA source code, or by placing a wrapper class on the
front end to handle the kiosk output to handle repudiation of scans.
One specific "quick and dirty" way of handling this is by making a file with a unique
handle and adding the identifying user-tag on to it for the file transfer. The unique
handle should in that case follow a format the front end knows to look for, and can
then dynamically allocate the identifying user-tag to the respective scan as a tag.

• Kiosk front end:
As suggested in Section 4.3.2, an ncurses-based command line user interface would
be beneficial for guiding the flow of which a user interacts with the system. E.g. "In-

76

https://github.com/krisshol/kmno-kiosk
https://pypi.org/project/easyad/
https://linux.die.net/man/1/rsync

Malware Analysis Infrastructure

sert drive/disk/storage" -> "Login with acc@our.bizz.nis" -> "Iniate scan?". If yes,
send files, and display progress on regular intervals. When scan finished, display
result.

6.4.2 Modifications

Updating the system and air gapping

The system should periodically go through a clean install because the quality of the
machines degrade over time. There is also a very small possibility of malware escaping
from a sandbox VM11 and spreading through the system. A clean install will limit the
amount of time and potential for malware to do harm. Some reasons machines degrade
over time are configuration drift (explained in section 3.3.3), storage space being filled
up, etc.

Before a clean install is done, scan results, logs and known files can be extracted. As
such, routines and documentation of what files should be extracted, how they should be
extracted are necessary. Scan results are stored in the front end PostgreSQL database,
which can be migrated using Alembic following the IRMA documentation.

If one wants to keep the files they are stored in the front end file system, sorted
into folders by their hashes. Logs are stored differently depending on configuration, it is
stored in /var/log for the file/folder belonging to the process, but can also be on a syslog
server (mentioned in section 6.4.2). What exactly extracted is up to the owners of the
system, but we recommend at least extracting logs and scan results.

As the system executes and deals with potentially harmful files it should be separated
from the entirety of the internal KDA infrastructure. This can be dealt with mostly 12 by
air gapping the infrastructure. An air gap is a network security method to isolate a secure
network from an insecure one.

We recommend an infrastructure where the only server with any occasional inter-
net access is the one hosting the local mirror. The local mirror can beneficially only be
connected while updating. At any time the infrastructure is not explicitly updating, the
mirror and infrastructure should be completely separated from each other. Ideally the
mirror and infrastructure should be physically separated whenever updating the local
mirror.

Updating the system can be done by setting up a new IRMA instance, testing if it
works, and changing kiosk’s end-point from the old instance to the new one. Tasks on
the old instance will be completed before extracting necessary data and destroying the
old machines. Orchestration and provisioning of the infrastructure should be done from
a separate machine on the outside of IRMA’s network, potentially using a local mirror,
which is mentioned in section 6.3.4.

An important consideration to make when creating the update routine is how often
the system should be wiped. For example, if its destroyed and recreated once a day, up-
dating the antivirus databases and software in-between is pointless. If the wipe occurs
once a week or rarer, it is needed to consider updating the antivirus databases and soft-
ware in-between. That entails potentially daily antivirus databases updates, which means

11Escape from VM: https://en.wikipedia.org/wiki/Virtual_machine_escape
12Air Gap malware: https://arxiv.org/abs/1406.1213, https://en.wikipedia.org/wiki/Air-gap_

malware

77

https://irma.readthedocs.io/en/latest/migration/index.html
https://en.wikipedia.org/wiki/Virtual_machine_escape
https://arxiv.org/abs/1406.1213
https://en.wikipedia.org/wiki/Air-gap_malware
https://en.wikipedia.org/wiki/Air-gap_malware

Malware Analysis Infrastructure

a connection must be temporarily opened so that the newer version can be acquired. The
interface should not lead to the Internet but to a local mirror for the databases, and
should be closed after usage.

This reduces potential exit points for an advanced malware that could potentially
manage to spread across the malware analysis infrastructure.

Changes in pipeline

The pipeline development is not completed, and have features that can be added. The
pipeline logic (section: 4.3.1) to decide whether a file should progress to the next stage or
not should be tested and reworked for maximising efficiency while remaining the highest
possible detection rate. This can be done by changing the code for the logic, testing it
and iterating through different methods/logic for best possible results.

The structure of the stages (mentioned in section 4.3.1) should possibly be changed,
at least when adding more analysers. E.g. if more dynamic analysers are added it would
be a waste of resources to run all of these, they should rather be ran sequentially de-
pending on necessity. If many antivirus analysers are added one should create a separate
stage for these, so that resources are not wasted on scanning a file through e.g. 30 anti
viruses, but instead 15 at first, then the others only when necessary.

Additionally, the files which are already scanned, and are stored on the front end
and Cuckoo host can be deleted periodically. This would increase the lifespan of both
machines as the storage is used up at a slower rate. Our advise would be to do this when
a file scan is done, and after files deemed benign are sent to the Active Directory.

Logging

IRMA has three types of logs built into its configuration that exist separately for each
module under /var/log. The logs are created independently by the processes running,
the one(s) for IRMA is named syslog on each machine. IRMA have built in experimental
functionality for exporting these logs to a logging server using rsyslog, (configuration is
mentioned in section 4.1.3) which is an configuration default set to false. We haven’t had
time to test this functionality, but recommend testing it and expanding on it if necessary,
and using it for formating and sending the logs to a selected logging server.

Scanning logs can be exported either through the frontend GUI where you can down-
load a CSV report from the scan summary after the scan is completed. The report can
also be retrieved with the API by sending a GET request to /results/resultId. The result is
returned in JSON format (Appendix H.38). There is also an option of doing this through
irma-cli13, but we have not researched the possibility.
Cuckoo
Cuckoo supports several modules, one of them are an Elasticsearch module that can ex-
port the log files to an Elasticsearch server. It is also possible to add AppArmor or SELinux
support in Cuckoo for extended logging support. It is supported in the ansible playbook
for Virtualbox, but we did not have enough time to verify its functionality within VMware
and ESXi/vSphere so it was not included in the final product.

For Cuckoo a presentable report is available through the web GUI. Using the REST
API you can do a GET request14 to /tasks/report/ (int: id) / (str: format). To request

13irma-cli: https://irma.readthedocs.io/en/latest/use/cli/
14Cuckoo REST API documentation: https://cuckoo.sh/docs/usage/api.html?highlight=api#

78

https://irma.readthedocs.io/en/latest/use/cli/
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report

Malware Analysis Infrastructure

your report replace the "int: id" with the id of the scan you wish to query in either HTML
or JSON format by replacing "str: format" with JSON or HTML.

6.4.3 Fixes

Updating to Python3

IRMA only supports Python2 which causes a problem in the future as Python2 will be
deprecated as early as 202015. We hope that Quarkslab internally are working on updat-
ing IRMA to Python3, but we do not know for sure. We do think it is possible for people
outside of Quarkslab to update IRMA to Python3 as the bachelor group wrote code for
NSRL with Python3, but it could pose a challenge. The recommended course of action if
this is deemed necessary, is to reach out to Quarkslab and collaborate efforts to update
the IRMA framework as quickly as possible.

Cuckoo

Cuckoo currently only supports Python2 as of right now16. A lot of the external libraries
supports both Python2 and 3 while some only support Python3 in newer releases. They
have a long term goal to support the both Python2 and 3 but no current official timeline
on release.

Fixing file upload bottleneck

As of now (section: 5.3) scans do not start at all before all files are present on front end
and all tasks are defined for the scan. This means without enough resources to transfer
files quickly, a few minutes are wasted at this stage. It should be possible to fix this using
code added with pipeline to combine scans in the database, and through sending larger
scans as sub-scans with a pre-made scan id added as a tag (section: 4.3.2). This will
make the process somewhat more asynchronous and flexible to larger scan sizes with the
exception of cases where the files themselves are large. This can also be fixed through a
fast connection between the kiosk and the front end.

More thorough work on making scans a combination of asynchronous sub-scans for
each file individually is a larger task which will increase efficiency, but the pay off com-
pared to using a fast connection isn’t very large so the work may not be worth it.

McAfee VSCL fixes

The antivirus McAfee VSCL scanner for windows almost always (99 percent of the time)
return a result as benign, i.e it doesn’t detect the files as malicious. We suspect this is
because our version of the antivirus uses an outdated database. We use the virus database
version 5600.1067. McAfee currently have two different versions of it’s antivirus, v2 and
v3, that is updated concurrently. The V2 version is currently on version 9257. Quite a
leap from our current version on IRMA.

6.5 Nice-to-have improvements

A nice to have feature is a feature that is not critical for production value but can be a
nice to addition if requirements change.

tasks-report
15Python2 #Update end-of-life: https://www.python.org/dev/peps/pep-0373/
16Cuckoo Python3 support: https://github.com/cuckoosandbox/cuckoo/issues/594

79

https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://cuckoo.sh/docs/usage/api.html?highlight=api#tasks-report
https://www.python.org/dev/peps/pep-0373/
https://github.com/cuckoosandbox/cuckoo/issues/594

Malware Analysis Infrastructure

6.5.1 Additions

Threat levels

As with the pipeline, which automated some interpretation of scan results for deciding
whether a file should continue to the next stage or not, some automated analysis of a
whole scan result for a file is also advised. This could be done by combining viewing
the values for whether a scan should continue to the next stage in the pipeline (section
4.3.1) and combining it with Cuckoo results. As it is hard to tell whether a file is poten-
tially malicious or not we recommend basing it on numbers of detection by anti viruses,
combined with a potential for harm based on file type and other metadata. Interpret-
ing the results given by Cuckoo as a whole is probably extremely difficult, but Cuckoo
handles it internally and can give us a potential which can be combined with the rest.

The representation of the levels can be as easy as 0-10 where 0 represents a non-
existing to a low likelihood of it being malicious and 10 being extremely likely. With a
system such as this one can automate the process for sending files to the Active Directory.

Distributed Cuckoo

If the infrastructure and load on Cuckoo increases "Distributed Cuckoo17" can be a bene-
ficial advancement. This is only beneficial when there are two or more machines running
a Cuckoo daemon and Cuckoo REST API. Distributed Cuckoo allows a common REST
API point where samples and URLs can be submitted which will then be submitted to a
connected Cuckoo node. This can allow a greater Cuckoo infrastructure without adding
a lot of complexity and retaining a single point of access for you Cuckoo service.

Load balancing of probes

So far during the development process the bachelor group used two probes with a goal
of using a third. Because of the development infrastructure (described in section 6.2 we
used, we did not have the opportunity to use any more probes as we already experienced
some problems with the current infrastructure. We recommend that KDA uses more re-
sources and creates an infrastructure where they will have the opportunity to add more
probes. Thus, the total number of analysers could be split among several probes. If IRMA
can handle more than one of the same probe we speculate that it can be beneficial to
run several of the same probe on different hosts, if we at the same time can load balance
them.

6.5.2 Modifications

Front end GUI Improvements

As it is today, the frontend GUI is exceedingly lacking in accessibility and a positive user
experience (UX). For instance, to access the results of one full, earlier scan, a user would
have to; navigate to the search tab; then either know a specific file name or it’s SHA256
value and search for it; or change the number of displayed files per page to circumvent
a bug where the list of files will not load initially, after which the user must know a file
pertaining to the desired scan to select it from an alphabetically sorted list of files; this
sends the user to the report page of that specific file, and finally here the option to select
"Back to the scan summary" to select a scan summary is available.

That is one of two ways to retroactively access a full scan summary. The other is to

17Distributed Cuckoo: https://cuckoo.readthedocs.io/en/latest/usage/dist/

80

https://cuckoo.readthedocs.io/en/latest/usage/dist/

Malware Analysis Infrastructure

already know the identifying SHA256-hash of that scan and input it directly in the URL.
In other words, if the GUI is to be used at any stage it needs a big overhaul in design
philosophy. This can be done as simply as basing it on the existing IRMA code and adding
options to sort results by time of scan or what scan individual files pertain to. It would
likely be advantageous to introduce a whole new tab for viewing and selecting past scan
summaries directly from an overview of all existing scans as well. One way to accomplish
sorting, could be by using the already implemented tag feature (Section 4.3.2)

Front end performance and reliability

If the platform is under heavy use and needs more input capacity to make use of abun-
dant backend resources, adding more front ends behind a load balancer can be a good
option. A load balancer approach will also provide more stability and redundancy if one
or more of the front ends were to go down or fail.

As of now, IRMA has no support for multiple front end servers, but in theory it should
be fairly simple to configure multiple frontends with a single brain. Support for multiple
frontends is a feature that the developers want to implement, but no ETA or official plan
is public.

It should be fairly simple to implement by creating new instances with the same con-
figuration as provisioned by the playbook. Some changes to the configuration is probably
needed to support multiple frontends, at least in on the brain celery configuration.

The internal SQL server on the front end can be provisioned to a separate host from
the rest of the front end. This would provide an option to keep a permanent SQL record
of all scans, even over multiple clean installs. If some adaptions are made, it should be
possible to create a database cluster for increased performance and redundancy, and de-
pending on the configuration load, balancing between databases should also be possible.

To improve the speed and reduce resource usage on the different frontends, a caching
service could be configured and set up along with the load balancer. Such a cache should
decrease load time for the end user and reduce the load on the front end. That is, as long
as the cache storage is big enough to cover all of the most requested files and pages.

Ansible Playbook modularisation

Setup and maintenance of IRMA takes quite a long time, sometimes longer than neces-
sary. This is mostly because there are a lot of components that needs to be provisioned
and handled correctly. In most cases more tasks than necessary will be executed dur-
ing a play because the playbooks are big and complex. A potential way of reducing the
time used would be to modularise the playbooks by extracting parts of the playbook and
put them in their own playbook. This can allow a user to run segments of the complete
playbook instead of the full playbook on every update or configuration change. IRMA
has already implemented this to a degree by separating the playbook into three pieces;
provisioning.yml, updating.yml and deployment.yml. Our suggestion is a further seg-
mentation of the playbooks into smaller parts so it won’t be necessary to run tasks that
are irrelevant for the given change or update.

The same could also be done with the Cuckoo playbook. The Cuckoo playbook is not
nearly as complex but it could also gain on being segmented a bit. For example if testing
of changes or updating should be done on only one of the roles it could save time to run
one of the playbooks instead of running a full play.

81

Malware Analysis Infrastructure

Improving provisioning through snapshots

As of now provisioning of the system is done in multiple phases. First configuring and
building a box using Packer, then using this box to orchestrate machines and lastly in-
stalling the system on these machines. This setup is prone to failure during the provision-
ing phase, note that we’ve experienced numerous special case errors due to the working
environment VMs being so limited (working environment described in 6.2). After the
system is properly configured for its environment we recommend moving as much of
the provisioning into Packer or a similar tool for building snapshots/images/boxes. This
allows for extensive testing of capabilities before production and moves provisioning to
the testing, therefore also removing provisioning errors/faults from production, this de-
pends on how extensive tests are. With good coverage in tests and good tests in general
one can then be sure that the snapshot will work when it is started instead of having to
wait about (section 5.2) 15 minutes on a potentially working build. This leads to a more
reliable and scalable infrastructure which are constant goals of Infrastructure as Code.

The current Ansible implementation probably doesn’t support this entirely as it also
starts necessary processes on each machine after installation. This is fine as it allows for
testing before the build is completed, the issue is that probably not all of these services
automatically starts upon reboot. There are several methods to fix this issue, for example
by adding these as services which are enabled to start on boot by systemd, or by adding
local provisioning as a service run during boot which starts them.

Builds should be smoke tested individually to test whether a build of a specific module
(front end, brain or probe) is working as expected. These must be written for each ma-
chine individually as they perform separate tasks. There are already functionality present
for testing whether expected probes are present and works as they should (command in
section 4.6).

After individual smoke testing, the system should be tested for functionality collec-
tively by starting a machine for each image. The most important tests for this stage is
whether basic functionality works. This includes web page, scanning, retrieval of results
etc. Cuckoo and other dynamic analysers eventually added requires testing by them-
selves, which can be done through their APIs, before being added to collective tests.

The testing environment wont need quite as much resources as the production envi-
ronment because speed and capacity no longer is that important.

The snapshot creation should be split up into several stages where each goes through
testing and are based upon the previous stage. This modularises the creation and skips
unnecessary building which in turn increases speed.

Cuckoo network configuration

With the playbook used in this project Cuckoo is configured with no internet access at
all. Cuckoo has several ways of handling networking 18

INetSim
Is a network simulation tool:

INetSim is a software suite for simulating common internet services in a lab envi-
18Cuckoo Routing: https://cuckoo.sh/docs/installation/host/routing.html?highlight=inetsim#

routing-tor:

82

https://cuckoo.sh/docs/installation/host/routing.html?highlight=inetsim#routing-tor:
https://cuckoo.sh/docs/installation/host/routing.html?highlight=inetsim#routing-tor:

Malware Analysis Infrastructure

ronment, e.g. for analyzing the network behaviour of unknown malware samples.
19

INetSim can be used for creating a better emulation of external and internal infras-
tructure. This can be relevant as an anti-anti-VM measure for advanced malware, or for
emulating your real infrastructure for advanced custom created malware for your busi-
ness.

VPN & Tor
If you don’t care, or want the malware to get internet access, and want to obfuscate your
real IP and location. There are two supported ways of doing this in Cuckoo. You can send
the traffic through Tor 20 or through a VPN. Both are modules must be configured and
enabled in Cuckoos respective configuration files, see link mentioned in the intro of this
section (Cuckoo network access and handling.

19INetSim: https://www.inetsim.org/
20The Tor Project: https://www.torproject.org/about/history/

83

https://www.inetsim.org/
https://www.torproject.org/about/history/

Malware Analysis Infrastructure

7 Conclusion

This chapter gives a short overview of the project, what is done, what we have learned,
and what should be done in the future.

7.1 Project assessment

From the start this project was quite broad without very strict and confined requirements.
KDA wanted us to explore and research alternatives for analysis of digital content. From
one perspective this gave us a lot of flexibility on how to implement the bachelor project.
Quite a lot of time was spent initially on researching different technologies, evaluating
the technologies, choosing an alternative and learning about the chosen alternatives.

After the initial technologies were chosen, the most important being IRMA and Cuckoo,
quite a lot of time were used figuring out how to install and configure those systems/in-
frastructures. For this, and the aforementioned reason, we could not implement as much
of the infrastructure as we would like. Most of the pre-planned functionality was im-
plemented, but not all of it was tested properly and some new ideas we got was only
logically designed and planned.

In retrospect, when writing the report, we should have been better at documenting
errors and potential bug fixes we did. During the development, individual group mem-
bers would work on a problem but not always share the problem and/or the fix. As
the project was so broad, different group members would work for some time on many
different problems and it was easy to lose track of what was being done.

From the beginning we had planned to post daily scrum-reviews of what was being
done in the bachelor groups messenger chat but it was quickly lost among general discus-
sions and administrative decisions. In the beginning of march we separated daily scrum
reviews into it’s own slack channel were only scrum-reviews were posted. This increased
our overview of what was being done somewhat, but we could have been more clear
with what was written. We could also have tried to meet up and worked together more,
but this was difficult as 3 people had different subjects at different times and one student
having a part time job.

7.2 Knowledge gained

As the project was so open and broad in scope we have gained quite a lot of new knowl-
edge surrounding different infrastructure technologies. We have become better at config-
uring systems/infrastructures and troubleshooting, in addition to gaining skills in project
planning/management.

7.2.1 Configuration with Ansible

The configuration language Ansible was used extensively during the project, and all
group members have gotten experience using it by the end of the project. Most if not
all of the group members have used, edited and made either their own or other play-

84

Malware Analysis Infrastructure

books and Ansible roles.

7.2.2 Orchestration with Vagrant

Vagrant is the orchestration tool used by the group. The group has gained knowledge
on how to configure Vagrantfiles to get a development and/or production environment.
The group also learned the necessary commands and knowledge to configure and trou-
bleshoot the environment.

7.2.3 Troubleshooting

The group has gotten extensive experience with troubleshooting systems/infrastructures
we were introduced to. This could be simple syntax errors related to Ansible and Vagrant
but it could also be more complex logical errors found during configuration of IRMA and
Cuckoo. Errors during IRMA provisioning were often especially tedious as it often would
take five minutes or more to check if an error were fixed.

7.2.4 Project management

At the start of the project we had a project planning phase where we chose scope, de-
velopment model and made a plan for implementation among other things. During the
development project we used several tools to help us with our project management. This
has given us skills we can take to further projects in the future.

7.2.5 Malware detection using multiscanning

We have learned much about how an infrastructure for handling multiscanning functions,
using multiple scanners, of files during the development of IRMA. This have given us a
good insight into challenges that occur when working on large scale tasks such as an
infrastructure.

7.3 Results

• IRMA installed, configured and modified
• Cuckoo installed and configured
• 15 antivirus analysers confirmed working
• 3 custom made analysers added

◦ Cuckoo
◦ NSRL
◦ Yara

• Pipeline logic designed
• Kiosk designed

7.4 Future Work

• Kiosk implemented
• Update to Python3
• Pipeline implemented

85

Malware Analysis Infrastructure

Bibliography

[1] Morris, K. 2016. Infrastructure as Code - Managing Servers in the Cloud. O’Reilly
Media.

[2] Hosmer, B. 2015. Getting Started with SaltStack.
https://leanpub.com/gettingstartedwithsaltstack.

86

Malware Analysis Infrastructure

A Installation Guide

A.1 IRMA

Clone the repositories:

git clone --recursive https://github.com/krisshol/kmno-irma

The official version is at: https://github.com/quarkslab/irma

Install the requirements, exact versions and specification can be installed through:

pip install -r requirements.txt

The requirements file is located in the ansible folder.
For using Vagrant in combination with VMWare one needs a plugin, this needs to be
licensed. The license file can be acquired in contact with Hashicorp at https://www.
vagrantup.com/vmware/index.html. The plugin can then be installed and licensed us-
ing:

vagrant plugin install vagrant-vmware-desktop
vagrant plugin license vagrant-vmware-desktop ~/license.lic

After the plugin is activated, and the hypervisor installed one can setup the machines
with the wanted configuration using (from the ansible folder):

export VM_ENV="name of environment file" # optional
vagrant up

The environment files are located in the ansible/environments folder. To specify a provider
(e.g. VMWare) for Vagrant to use the flag –provision can be added.
The machines can then be provisioned using from the ansible folder using:

python irma-ansible.py environments/prod.yml playbooks/playbooks.yml

This will start an about 20 minutes long provisioning of necessary files and software for
the system.
After the web GUI should be available at:

http://<the IP specified in the environment file for front end>

And the API documentation will be available under:

http://<the IP specified in the environment file for front end>/swagger/

Which probes that are added is specified in the environment file selected. And available
probes are listed in provisioning.yml.

87

https://github.com/quarkslab/irma
https://www.vagrantup.com/vmware/index.html
https://www.vagrantup.com/vmware/index.html

Malware Analysis Infrastructure

A.2 Cuckoo

Requirements/Preparations

Ansible Provisioner
On the Ansible provisioner, ansible and the git repository with the playbook are obvious
requirements. It is also necessary to have all the correct information regarding the sys-
tems Cuckoo will be installed on, and potential guest systems as well as root access.

Installation
Step 1 - Clone the Ansible playbook repository

1 git clone https://github.com/knaku/Ansible-Cuckoo.git \\

To install Ansible, run the install_ansible.sh in the root folder of the newly cloned git
repository, or copy and run the commands below.

1 apt update
2 apt -y install apt-transport-https software-properties-common
3 apt-add-repository ppa:ansible/ansible -y
4 apt update
5 apt -y install ansible sshpass

If you don’t already have git installed run:

1 apt update
2 apt -y install apt-transport-https software-properties-common
3 apt install git

Step 2 - Prepare Cuckoo host
Ubuntu 18.04 server/machine, 16.04 and 17.04 should work as well but have not been
tested.

Ansible requires Python and a SSH-server to run. If you use a regular desktop Ubuntu
there is a good chance that both are already installed.

Run these command in you terminal to install the needed requirements:

1 apt install -y openssh-server python

If you want Ansible to connect with the user name and password of the account, use
those. If you want Ansible to connect with SSH-keys, simply add your public key to the
Cuckoo host.

Step 3 - Cuckoo guest image
You need a pre-configured Windows, Linux or macOS fulfilling the requirements given
by Cuckoo 1. You can see a quick summary of Windows requirements below:

1Cuckoo software requirements: https://cuckoo.sh/docs/installation/guest/requirements.html

88

https://cuckoo.sh/docs/installation/guest/requirements.html

Malware Analysis Infrastructure

• (Optional) All anti-anti VM counter measure configured and installed
• (Optional) All user programs (Microsoft Office, Adobe Acrobat/Reader etc.), and

other requirements to emulate a normal environment.
• Installed python.
• agent.py that starts automatically, preferably with administrative rights. Use .pyw

instead of .py if you want the terminal window to be minimised.
• Turn off the Windows firewall.
• Turn off Windows updating.
• Set a static IP. Cuckoo cannot handle DHCP yet. If you leave everything as default

after cloning set it to 192.168.56.111 with a default gateway of 192.168.56.1.
• Snapshots:
• ◦ You can create a snapshot manually while the VM is running with require-

ments above
◦ You can let Ansible handle it automatically (mostly if using VMware Worksta-

tion). Agent.py is required to start on startup for this to work.
◦ · With Virtualbox you can let the playbook handle everything automatically.

· With VMWare Workstation you must manually start and stop the VM dur-
ing the play if a snapshot does not already exists. If a snapshot exists it
might create a bit of issue with Cuckoo and VMWare.

Step 4 - Installing and running Cuckoo
Replace the information in cuckoo-playbook/inventories/production/hosts with the
correct one for your Cuckoo guest.

• HOST is the IP address of the server to install Cuckoo to
• ADMIN is a user with sudo privileges on the server
• PASSWORD is the user ADMIN password

Now run this command in the terminal of your ansible-provisioner to start the play,
look below for explanation for a description of the different variables after –extra-vars:

1 ansible-playbook -i inventories/production site.yml --extra-vars
"distribution=bionic nic=ens32 vmwareNetworkAdapter=1
license=xxxxx-xxxxx-xxxxx-xxxxx-xxxxx"

↪→
↪→

• "distribution" is the Ubuntu distribution
• "nic" is the nic on the cuckoo host to use in the routing.conf
• "vmwareNetworkAdapter" is vmnet suffix used with the cuckoo guest.
• "license" is the license for VMWare Workstation and is only to add when using

VMWare workstation.

You might want to look over and verify or change the different variables in some of the
configuration files since they are hard coded and might not reflect the values you have
in you environment. Directories and files to check are "cuckoo-playbook/roles/[name of
role]/files/*.conf" The most relevant roles to check are Cuckoo and VMWare, the others
might be relevant depending on your problem but have not been changed by us. Look
at the bottom of the git repository 2, under "Things that need manual changing if you
change the default" for most relevant variables that might need changing.

2Ansible Playbook for Cuckoo: https://github.com/knaku/ansible-cuckoo

89

https://github.com/knaku/ansible-cuckoo

Malware Analysis Infrastructure

B Project Agreement

90

Malware Analysis Infrastructure

C Development Process

C.1 Daily Scrum logs

95

Malware Analysis Infrastructure

D IRMA dataflow models

Figure D.26: IRMA Figure 1

Figure D.27: IRMA Figure 2

96

Malware Analysis Infrastructure

Figure D.28: IRMA Figure 3

Figure D.29: IRMA Figure 4

97

Malware Analysis Infrastructure

Figure D.30: IRMA Figure 5

Figure D.31: IRMA Figure 6

98

Malware Analysis Infrastructure

Figure D.32: IRMA Figure 7

99

Malware Analysis Infrastructure

E Kiosk appendix

E.1 Kiosk mount helper prototypes

1 """Mount drive helpers:"""
2 import subprocess
3

4 def temp_mkdir(target):
5 """Dynamically make temp dir '/tmp/<target>'."""
6 command = "mkdir -p /tmp/{}".format(target)
7 print(command.split(" "))
8 output = subprocess.check_output(command.split(" "))
9

10 def temp_rmdir(target)
11 """Remove temp dir <target>."""
12 command = "rmdir -p /tmp/{}".format(target)
13 output = subprocess.check_output(command.split(" "))
14

15 def readonly_mount(source, fs):
16 """Mount <source> as read only at /tmp/<source>
17 with file system <fs>."""
18 temp_mkdir(source)
19 target = "/tmp/{}".format(source)
20 command = "mount -o ro,noload -t {2} {0} {1}".format(source,

target, fs)↪→
21 output = subprocess.check_output(command.split(" "))
22

23 def unmount(target):
24 """Unmount a block from <target>"""
25 command = "umount {}".format(target)
26 output = subprocess.check_output(command.split(" "))
27 temp_rmdir(target)

Figure E.33: Kiosk mount helpers protoype

E.1.1 Simplified kiosk work-flow

• Detect new drive added.
• Ask for user authentication.
• Authenticate with AD-structure.
• If authorised:

◦ Fork process/start new thread.
◦ Mount drive.
◦ Rsync all folders and files directly to the front end.
◦ The rest of the platform handles analysis.

100

Malware Analysis Infrastructure

• Else:

◦ Deny input request.

101

Malware Analysis Infrastructure

F Testing Appendix

The dataset used in the accuracy of scans section can be seen under.

102

Linux time

Date SHA256Sum Filename First seen Last seen Size Status

1557755177 ddf2542dc5ac74a98d5ee9e55497572104d6c880aad9137caf884d10ca5953ce7ZipSetup.exe 1557581705 1557755384 162032 1

1557755177 e9cfb6eb3a77cd6ea162cf4cb131b5f6ad2a679c0ba9757d718c2f9265a9668f5a765351046fea1490d20f25.exe 1557581704 1557755385 386048 1

1557755177 036e4f452041f9d573f851d48d92092060107d9ea32e0c532849d61a598b8a713_4.exe 1557581704 1557755395 60928 1

1557755177 ef32516eb5658c65299cb1c9a0f7ec552216f4b9d2975d074ff31eacb3003a192.dll 1557581591 1557755408 41988096 1

1557755177 3144079c68ba00cebfd05239a2f5bd406096ec02e13e8571ca24313df7a5b679901FA02FFD43DE5B2D7C8C6B8C2F6A43_SideBar.dll_ 1557752795 1557755394 41984 1

1557755177 2fd5b075ab9dffe8b421a4942ecdac322d8f0fceca597a644a6a9e631901e8bc798_abroad.exe 1557581707 1557755426 1638624 1

1557755177 2ecc525177ed52c74ddaaacd47ad513450e85c01f2616bf179be5b576164bf63131.exe 1557581706 1557755421 2415104 1

1557755177 a13161d957ef1bf6362cbc488a82ffca8f6f52f48143f1110616b9c540e5997a97C11E7D6B1926CD4BE13804B36239AC_SideBar.dll.doc_ 1557752793 1557755427 124732 1

1557755177 027cc450ef5f8c5f653329641ec1fed91f694e0d229928963b30f6b0d7d3a745027cc450ef5f8c5f653329641ec1fed9.exe 1557237901 1557755429 362360 1

1557755177 8abb47ca7c0c4871c28b89aa0e75493e5eb01e403272888c11fef9e53d633ffe21.exe 1557581705 1557755429 56224 1

1557755939 e226dc651390b1dd40d889f8a7869e5b0caa8ede764265139c8c29b3b0854bd9_setup.lib 1557582038 1557756068 247905 0

1557755939 961537d5fd688ea7eaabde87883db48b0da2f103971c27d805713ec87d51d44ecounter.exe 1557581711 1557755961 32256 1

1557755939 5291232b297dfcb56f88b020ec7b896728f139b98cef7ab33d4f84c85a06d5531002.exe 1557581707 1557755978 257024 1

1557755939 89a1bbe42cde01ddfe531d69dd6ea6575296096010400cb63cbf4999eca52e52ch.dll 1557581710 1557756051 13312 1

1557755939 e67834d1e8b38ec5864cfa101b140aeaba8f1900a6e269e6a94c90fcbfe56678cerber.exe 1557581710 1557756034 619008 1

1557755939 b02c56d29447690cdafd8f2f6877d526d1f6efcaae74017719c460d9b3ee38b8cam.dll 1557581710 1557756051 65024 1

1557755939 84d06e7541bafcf499ac69d3ededa494556aea6c4af4f979f7b7493dbf3aaa76Build.exe 1557581710 1557756061 401408 1

1557755939 96ca097b0daff949826f3611116c7efc41343ad15cc76b96db1eeac3c01a3608BOTBINARY.EXE 1557581710 1557756062 77824 1

1557755939 ef1503f018dc86161d663071e2a7fd06eec504895334fcd692b4a17272013d60 Acrobat PDF Writer 3.exe ? 1557581709 1557756066 1

1557755939 3a93d0b4345900c5eddfaa574b721546312468a418f34b39bcefbbda9118b0cbabba_-_happy_new_year_zaycev_net.exe 1557581708 1557756069 194968 1

1557755939 8cf50ae247445de2e570f19705236ed4b1e19f75ca15345e5f00857243bc0e9b1003.exe 1557581707 1557756068 261120 1

1557757059 89c2d370bfa36f1d4c3e4f2ff36f966bafef3e1179319e3a4a0f2a344896bc41dumped2.exe 1557581746 1557757135 1965568 1

1557757059 17b7ad3434a9ce3ce31978a6822be271a7fe0b45bff47adc6b1e2d04238ec4bedumped.dll 1557581745 1557757117 73728 1

1557757059 db8c0fc8427546ed54664fba24bdc7aa335eedb34b21c0d9a030dbc4f2bd7aefdump1.exe 1557581745 1557757158 274432 1

1557757059 32f66e8f05d39b0de147175fac105baa1c0044d0ac5e1e28e2263d3521b24f19DELLXT.dll 1557581745 1557757212 21495808 1

1557757059 a15c351b940046bc80c8d0a69b8d5f6c4198cb20f68ad830dc3b1036ba8d34e4decrypted_inj_services_x64.dll 1557581712 1557757197 28665 1

1557757059 099ad10b55e74e1b99424d8e739107534004ba5b1e6c051cf8b942ed32dabca6decrypted_inj_services_Win32.dll 1557581711 1557757211 61440 1

1557757059 b71a4a57d21742797ec9079c745e2f884cb9379717069189bf0839078b0e2c62Fake Intel (1).exe 1557581749 1557757215 1220213 1

1557757059 41220549274428abee7267d72987c00f3d970518cce8d47ee5c82d148bf44ae3F897A65B.exe 1557581748 1557757219 79620 1

1557757059 ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aaed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa.exe1557576585 1557757219 3514368 1

1557757059 ae79d6e52e9eb8ad4bd0f9a0fe230f1cdbe53f077ecda0d15949945532541d80DW20.dll 1557581746 1557757219 44032 1

Linux time

1557757298 d23b4a30f6b1f083ce86ef9d8ff434056865f6973f12cb075647d013906f51a2gchrome.exe 1557581751 1557757463 2930176 1

1557757298 e98dccc92e1733f8736678d82b3d1a8c6388b8cb1e42a5083d113cf75fb0577df-mydoom.exe 1557581750 1557757432 113664 1

1557757298 f132324acf09c0562a1cad1288bfb4021bd991659126d21ecb9499938bf6acb3fm.dll 1557581750 1557757475 13312 1

1557757298 fc3e0bee12147595078864a597e14161792c6fafbac55174588561c99494a6a4FLASH829.EXE 1557576586 1557757526 22528 1

1557757298 3f5a6d8334f31acd4d9e2811ca705e0bcf4a1c9f672d2fb4933a00adf46b2f5aFIX_NIMDA.exe 1557581750 1557757527 40960 0

1557757298 426511145595346a6aee1d3483685ad32674f626a4695bb91aa82c1b016a0f1cfile_4571518150a8181b403df4ae7ad54ce8b16ded0c.exe 1557581750 1557757527 873472 1

1557757298 10745182ac1b738e4a363166f650069d16b81873b3bbb1990e7d07cb652495e8fax_390392029_072514.exe 1557581749 1557757527 283136 1

1557757298 ef32516eb5658c65299cb1c9a0f7ec552216f4b9d2975d074ff31eacb3003a19hV46VA.dll 1557581591 1557757532 41988096 1

1557757298 6f201afc797370ac6e33fafec41a794a2eb44c1bfd7d9079e3633ebe7bbb41e1hostr.exe 1557581752 1557757528 107520 1

1557757298 87aaec18d56d29fc14fd7fca96dc672bcbf49239a329de255e0e21c692db1daeGREEN.EXE 1557581752 1557757533 77767 1

1557757798 c1f6f5c2cb8ee4ca4e4e4362eea1ae22c0c932e10e06917b83d9c3dde43f88d0malware3.exe 1557753384 1557757829 158464 1

1557757798 426511145595346a6aee1d3483685ad32674f626a4695bb91aa82c1b016a0f1cmalware2.exe 1557581750 1557757877 873472 1

1557757798 89c2d370bfa36f1d4c3e4f2ff36f966bafef3e1179319e3a4a0f2a344896bc41malware1.exe 1557581746 1557757883 1965568 1

1557757798 3373baa1681c8908761241a8a047a8b071e6f1c3bf81e641e6831b60e53a8060malware.exe 1557581869 1557757882 269312 1

1557757798 b10eeea84d9bf0314dcd86bfb6f931330d6cb52e6fb0bf4d1b8fe09da3c332baloader_00400000.Embedded01.DLL 1557581869 1557757917 32768 1

1557757798 59979d3bc3d64500898f3c1fda833cc0f87db36b65f1bb4631e2ac1b232c8aadjpeg1x32.dll_C2BA81C0DE01038A54703DE26B18E9EE 1557581868 1557757895 31744 1

1557757798 834d1dbfab8330ea5f1844f6e905ed0ac19d1033ee9a9f1122ad2051c56783dcInstallBC201401.exe 1557578095 1557757917 13370880 0

1557757798 c22b5d38c0de8ff04e8d69313b95a3de0be1dd7447578a1e07c589947d55dde4malware6.exe 1557753385 1557757915 428168 1

1557757798 efc94fdac8753451e7070f0cccb1b8e2ba2ce9e6edd3378a7ac412a359a256e4malware5.exe 1557753384 1557757922 20480 1

1557757798 9781784910935ce4a1344714d636e6591a5a64fd3925dd32f1ff888472b9b0e1malware4.exe 1557753384 1557757928 98158 1

1557758135 fd624aa205517580e83fad7a4ce4d64863e95f62b34ac72647b1974a52822199njRAT.exe 1557581870 1557758206 982016 1

1557758135 cd9709bf1c7396f6fe3684b5177fa0890c706ca82e2b98ba58e8d8383632a3c8NAudio.dll 1557581870 1557758160 391168 0

1557758135 cdadc26c09f869e21053ee1a0acf3b2d11df8edd599fe9c377bd4d3ce1c9cda9Mono.Cecil.dll 1557581870 1557758225 312320 1

1557758135 c8d699c35d307046d0b43f99eebbfe9c5dc2ee088ae7a0cd80b5cf766f6f7e9fMiniConfigBuilder.exe 1557581869 1557758222 13312 1

1557758135 fde583027a692d210e8f1f73667fa0037705128ade8bbfbc9b780f019ead6672Mic.dll 1557581869 1557758242 417280 1

1557758135 0f79e9a13bd268c9925e2b30eb9bcff3be4dd36cdfa20f067ffe7d30885952f5Q30097~1.EXE 1557581871 1557758241 237280 0

1557758135 a3e4bee1b6944aa9266bd58de3f534a4c1896df621881a5252a0d355a6e67c70pw.dll 1557581871 1557758245 39936 1

1557758135 66bca3f92841b7bffae4d27c3ddb5adbf8084ad40ee0edda1edc1d25f5e1b967PlugX_3C74A85C2CF883BD9D4B9F8B9746030F_DW20.dll_ 1557753387 1557758246 233472 1

1557758135 40050153dceec2c8fbb1912f8eeabe449d1e265f0c8198008be8b34e5403e731PDFXCview.exe 1557581871 1557758253 431884 1

1557758135 e3e057465bb3a5ca29b4d3d4b0aafbad57506ee231e511fc1d6c2866dc4b0ec2payload.dll 1557581871 1557758251 10752 1

1557758283 5e77eee9704e619b68e37829c5f2099c52d22b170087c9953cbcabd7a21500bascanslam.exe 1557581873 1557758307 61440 0

1557758283 d3dcb25f9004f6fce3f3d94406ad6845d996cda2f106a203082aed39a84fac4esc2.dll 1557581873 1557758346 10752 1

1557758283 ebc324308ee01698aeb02ab5de68cc7d8f9e13bd9f4d8edc7daeb438850612b9sample.exe 1557581873 1557758362 57344 1

1557758283 517ac5506a5488a1193686f66cb57ad3288c2258c510004edb2f361b674526ccRansomware.Unnamed_0.exe 1557581873 1557758355 924160 1

1557758283 d24d79011d003dc7a4cadbc1b7b3efb89947f9a84f814c6739a01c1c38e227b8raffle.exe 1557581872 1557758371 1787208 1

1557758283 aedf60c10f8cc74d70eee2e70515ebac57932ac99619493ebb9f8bb29382fad3Q300972I.EXE 1557581871 1557758378 242832 0

1557758283 8e2bdcaee8dfefcfe42740a43a0079eb1babfc530200bcfb57b1b1a548852af1slide.exe 1557581874 1557758391 102400 0

1557758283 4c2efe2f1253b94f16a1cab032f36c7883e4f6c8d9fc17d0ee553b5afb16330csigned.exe 1557581874 1557758394 91888 1

1557758283 39aedd6cd6df61e15bc4b1c2d7a0a7b99da9a2e00a07d02bd98f40616f4b8669shmgr.dll_AD6590E0DF575228911852B1E401D46E 1557581874 1557758400 161280 1

1557758283 82379c6a61d0409c33986176f7eb2b7aaf3b05086f571decde67e6fa1927750dSCHDPL32.exe 1557581873 1557758401 166400 1

1557758461 dce2d575bef073079c658edfa872a15546b422ad2b74267d33b386dc7cc85b47Win32.DarkTequila.exe 1557237828 1557758488 877568 1

1557758461 699ec052ecc898bdbdafea0027c4ab44c3d01ae011c17745dd2b7fbddaa077f3Win32.AgentTesla.exe 1557581877 1557758502 460800 1

1557758461 9dfde6e3e10615d2ead32d028d6925a2f7c494fadbbb902024649d0dbf2f4eb8W32_Swen@MM.exe 1557581876 1557758526 106496 1

1557758461 0fa128bd5e54cd8c921113c386baa2b8f4f1ff0b0c7213ffe605e0fd1d3f663aW32.Elkern.4926.exe 1557581876 1557758547 397312 1

1557758461 c7dc529d8aae76b4e797e4e9e3ea7cd69669e6c3bb3f94d80f1974d1b9f69378Vcffipzmnipbxzdl.exe 1557581875 1557758563 846848 1

1557758461 b831f61d4e2a438ef4bde3201f62a225db3b08acef0d5bdc947bbd8cd3b5998eUpdateCheck.exe 1557581875 1557758551 8192 1

1557758461 58e61318aad78f21aa08c54c55d8f130b409de43cb776fdfa0ebb6edf3f09dc6TOKYO_1258.EXE 1557581875 1557758571 736 1

1557758461 e5c643f1d8ecc0fd739d0bbe4a1c6c7de2601d86ab0fff74fd89c40908654be5svchost.exe 1557581875 1557758568 720896 1

1557758461 fff0ccf5feaf5d46b295f770ad398b6d572909b00e2b8bcd1b1c286c70cd9151strip-girl-2.0bdcom_patches.exe 1557581874 1557758577 22528 1

1557758461 9d88425e266b3a74045186837fbd71de657b47d11efefcf8b3cd185a884b5306win32.exe 1557581466 1557758582 24960 1

1557758649 2c7b1c5c51f6952e7b8d0ac8137bc890f0edb43f878d0e356a4bdbe1ab325127wirelesskeyview.exe 1557581469 1557758794 177568 1

1557758649 4eabb1adc035f035e010c0d0d259c683e18193f509946652ed8aa7c5d92b6a92win33.exe 1557581469 1557758803 68096 1

1557758649 6528633916983853e79a97983ee3f0dbb4891729e9967fda858645d0ba312dc3Win32_klez.exe 1557581469 1557758860 253952 0

1557758649 653bc2b16b1624e045c1225810185e9aa3694dc378fe0095e2052b7f1e265d01Win32.WannaPeace.exe 1557581469 1557758867 674816 1

1557758649 55504677f82981962d85495231695d3a92aa0b31ec35a957bd9cbbef618658e3Win32.Wannacry.exe 1557237910 1557758879 5267459 1

1557758649 ff808d0a12676bfac88fd26f955154f8884f2bb7c534b9936510fd6296c543e8Win32.SofacyCarberp.exe 1557581466 1557758875 133632 1

1557758649 1c0ea462f0bbd7acfdf4c6daf3cb8ce09e1375b766fbd3ff89f40c0aa3f4fc96Win32.GravityRAT.exe 1557581466 1557758881 660480 1

1557758649 ef32516eb5658c65299cb1c9a0f7ec552216f4b9d2975d074ff31eacb3003a19ydrHrp_One.dll 1557581591 1557758887 41988096 1

1557758649 bc73990f2d04358ddb9c17520d7cc9905c014eb61fbd7d895d565e2263de58c9YAUNCH.EXE 1557581469 1557758886 8681 1

1557758649 a6ff8dfe654da70390cd71626cdca8a6f6a0d7980cd7d82269373737b04fd206wmighost.dll 1557581469 1557758886 20480 1

1557759030 cee4a7208ec3144eda92df0fc1ba27ebad356aa0a3b5e50afab133bbbee14be2ZHR2970.EXE 1557581592 1557759076 5290 1

1557759030 8463ac9eec3013887995ee9d94eeeb960400cd173afa53fbe48a5950e36433e7ZHR1958.EXE 1557581592 1557759052 4534 1

1557759030 71b38f041b4a4ae169c44e3aff412e527e1156f92c27f1340a8abe70a45bee10ZeroAccess_xxx-porn-movie.avi.exe_ 1557581592 1557759131 163840 1

1557759030 0e4cdcde772cf03bfc2c69c6fbb35dd028cdca97a680344a2bfab0d85bb0c61dY-TP46.EXE 1557581592 1557759077 29825 1

1557759030 d080159cff102bbde041c8d275a6d1d09c7491f260008998ee328789bd92c770Y-L3052.EXE 1557581592 1557759139 4092 1

1557759030 c2581af6d4ff858b9fdf6c3bb6c32f988873057c0c28342b4c4bfa659ca5c0a8yfoye_dump.exe 1557581592 1557759131 36864 1

1557759030 91fa185f353b790b4dfb3b468503244e4c84be8c43959b32d6821d764d5d0c41YESMILE.EXE 1557581592 1557759148 4946 1

1557759030 e57367f1a537b8e430f75f6f68da010879400ef4dad5524cd7ef5b90d89e3df8YEKE1204.EXE 1557581592 1557759149 21684 1

1557759030 a15c351b940046bc80c8d0a69b8d5f6c4198cb20f68ad830dc3b1036ba8d34e4decrypted_inj_services_x64.dll 1557581712 1557759150 28665 1

1557759030 099ad10b55e74e1b99424d8e739107534004ba5b1e6c051cf8b942ed32dabca6decrypted_inj_services_Win32.dll 1557581711 1557759151 61440 1

Malware Analysis Infrastructure

G Code Appendix

107

Malware Analysis Infrastructure

1 ---
2

3 servers:
4 - name: frontend.irma
5 ip: 172.16.1.30
6 ansible_groups: [frontend, sql-server]
7 box: quarkslab/debian-9.0.0-amd64
8 cpus: 2
9 memory: 2048

10 - name: brain.irma
11 ip: 172.16.1.31
12 ansible_groups: [brain]
13 box: quarkslab/debian-9.0.0-amd64
14 cpus: 2
15 memory: 2048
16 - name: avs-linux.irma
17 ip: 172.16.1.32
18 ansible_groups: [avast, avg, bitdefender, clamav, comodo, escan]
19 box: quarkslab/debian-9.0.0-amd64
20 cpus: 2
21 memory: 2048
22 - name: mcafee-win.irma
23 ip: 172.16.1.33
24 ansible_groups: [mcafee-win]
25 box: eval-win10x64-enterprise
26 cpus: 2
27 memory: 2048
28 windows: true
29

30 libvirt_config:
31 driver: kvm
32 # connect_via_ssh: true
33 # host:
34 # username:
35 # storage_pool_name:
36 # id_ssh_key_file:
37

38 ansible_vars:
39 irma_environment: production
40 vagrant: true
41 irma_code_archive_generation: False

Figure G.34: prod.yml

108

Malware Analysis Infrastructure

1 ---
2

3 - hosts: 127.0.0.1
4 connection: local
5 tasks:
6 - name: Install lief
7 command: pip install -r

~/kmno-irma/probe/modules/metadata/lief/requirements.txt↪→
8

9

10 - name: Install static analyzer
11 command: pip install -r

~/kmno-irma/probe/modules/metadata/pe_analyzer/requirements.txt↪→
12

13

14 - name: Install peid
15 command: pip install -r

~/kmno-irma/probe/modules/metadata/peid/requirements.txt↪→

Figure G.35: metadataProvisioning.yml

1 ---
2

3 - hosts: all
4 tasks:
5 - name: Install clamAV
6 become: true
7 become_method: sudo
8 command: sudo apt-get install clamav-daemon -y
9

10 - name: Find locked process
11 shell: ps aux | grep clamav | awk ' ' '{print$2}'
12 register: pid
13

14 - name: Kill locked process
15 become: true
16 become_method: sudo
17 shell: kill "{{item}}"
18 with_items: "{{pid.stdout_lines }}"
19

20 - name: Freshclam
21 become: true
22 become_method: sudo
23 command: freshclam
24 register: test
25 failed_when: false

Figure G.36: clamAvFix.yml

109

Malware Analysis Infrastructure

H Format of database and scans

H.1 Scan API

The format for a request to create a scan object:

1 {
2 files: [fileext1, fileext2...]
3 options:
4 probes: list of probes or None for all available,
5 force: boolean (default False),
6 mimetype_filtering: boolean (default True),
7 resubmit_files: boolean (default True),
8 }

Figure H.37: scan query

H.2 Result API

The format returned when requesting scan result:

110

Malware Analysis Infrastructure

1 [
2 {
3 "result_id": 0,
4 "name": "string",
5 "path": "string",
6 "file_sha256": "string",
7 "parent_file_sha256": "string",
8 "scan_id": "string",
9 "file_infos": {

10 "sha256": "string",
11 "sha1": "string",
12 "md5": "string",
13 "mimetype": "string",
14 "timestamp_first_scan": "string",
15 "timestamp_last_scan": "string",
16 "size": 0,
17 "tags": [
18 {
19 "text": "string"
20 }
21]
22 },
23 "probe_results": [
24 {
25 "status": 0,
26 "name": "string",
27 "type": "external",
28 "results": "string",
29 "version": "string"
30 }
31],
32 "probes_total": 0,
33 "probes_finished": 0,
34 "status": 0
35 }
36]

Figure H.38: response on result requests

111

Malware Analysis Infrastructure

I images

Figure I.39: IRMA web-gui

112

Malware Analysis Infrastructure

J Meeting Logs

J.1 Record of meetings

J.1.1 Dato: 2019/01/11

Laget Trello Board med oppgaver.
Laget forslag til scrum arbeidsmetodikk.
Laget rutiner og regler.

/Olav Henrik Hoggen

J.1.2 19-01-09 week-01

Author: kristian
- Møte Fredag 11.jan kl 10:15-12:00 rom: S213

- Møte Fredag 18.jan kl 10:15-14:15 rom: S312

- Kar.mål: B/A
- Arb.metode diskutert: heller mot Scrum men kan ikke nok til å ta et valg enda

- Trello board e.l. for å dele opp og ut arb.oppg

- Alle fører egne timer arb. med Toggl e.l. Må diskutere om det er rel. hvordan det
grupperes

- Rullerer hvem som skriver referat

- Oppgaver:

- Repetere arbeidsmetodikker.

- Utgjøre tanker om oppgaven så kan forstå den og begrense der nødvendig sammen
med kongsb/veileder.
- - Gjøre opp tanker rundt forarbeidet og planleggingen
- - Olav: begynner Cuckoo-fikling

- Martin opptatt torsdager, Olav opptatt tirsdager, Nikolai?

113

Malware Analysis Infrastructure

J.1.3 19-01-18 week-02

Author: kristian

Meeting w/Basel:
- "task was .. rather large?" - Nikolai
- Input: set of files
- Process: run files into programs
- Output: results from scan

- Keep thinking what we do in regards to task B)

- Start large, then narrow down. "Follow your interest"
- Ask Kongsberg about a case-testing hdd
- Run Cuckoo directly on the openstack as own vm?

J.1.4 28.02.19

Diskuterte fobedringspunkter for utvikling av produktet, som f. Eks
mer organsiert felles arbeid
bedre strukturering ved fordeling av oppgaver.
Mer disiplin

Laget bedre organisert backlog
Planlagt neste sprint
Forbedret møte med oppdragsgiver
Diskutert prioriteringsrekkefølge på implementasjoner

/Martin K

J.1.5 Møte med Kongsberg 1/3/2019

Lisens for VMware ingen problem, send link på mail
De vil ha oppskriften til hvordan alt settes opp
Kan lage opptak fra VMware som demo.
Anbefales å se på og forstå Packer
Fint å legge ned i rapporten hva Packer er, Vagrant, Terraform etc
Tror at Packer kan legge inn lisensnøkkel senere?
Vi kan kjøre hybrid løsning av type 1 og 2 hvis det er nødvendig. (vmware workstation
kan imitere esxi)
kan søke på sommerjobb, send mail før start av neste uke
si ifra om vi føler møte kan være nyttig om 2 uker

J.1.6 Sprint 18/03/2019 - 31/03/2019

Sprint planning mål:
Cuckoo som faktisk fungerer, som en probe

114

Malware Analysis Infrastructure

Hvordan de ulike antivirus probene fungerer (statisk, dynamisk, header, søking), og
hvilke flere vi kan ta i bruk.
Skrive ferdig introduksjonskapittelet.
Skrive kravspek (figurer, tekst, mer)
Skrive om teknologier brukt og teknologier vurdert.
Utforske/inkorporere tags med IRMA
Utforske utgående data etter og under en scan

115

Malware Analysis Infrastructure

K Time logged

The log is not accurate for some members for the month of january and february as some
of the group did not start to use Toggl until march.

116

Detailed report
2019-01-01 - 2019-12-31

911 h 00 minTotal

Date Description Duration User
01-09 planlegge bachelor 2:00:00 Makval

Kgb - Bachelor 11:00-13:00

01-11 planlegge bachelor 1:45:00 Makval

Kgb - Bachelor 11:30-13:15

01-11 (no description) 1:45:00 Makval

Kgb - Bachelor 13:15-15:00

01-16 bachelor arbeid 4:45:00 Makval

Kgb - Bachelor 10:00-14:45

01-23 forprosjekt 4:20:00 Makval
Kgb - Bachelor 11:35-15:55

01-24 forprosjekt 3:50:00 Makval
Kgb - Bachelor 10:45-14:35

01-30 forprosjekt 4:00:00 Makval
Kgb - Bachelor 12:35-16:35

01-31 forprosjekt 3:00:00 Makval
Kgb - Bachelor 14:35-17:35

02-01 (no description) 2:00:00 Nikolai Fau

Kgb - Bachelor 07:00-09:00

02-01 (no description) 2:00:00 Nikolai Fau

Kgb - Bachelor 11:00-13:00

02-12 notepad logging 1:30:00 Makval

Kgb - Bachelor 12:13-13:43

02-15 (no description) 7:03:21 Nikolai Fau

Kgb - Bachelor 10:00-17:04

02-15 (no description) 7:00:00 Makval

Kgb - Bachelor 10:20-17:20

02-15 (no description) 1:59:35 Nikolai Fau

Kgb - Bachelor 17:29-19:28

02-15 (no description) 1:23:24 Nikolai Fau

Kgb - Bachelor 19:59-21:23

02-15 (no description) 0:20:13 Nikolai Fau

Kgb - Bachelor 22:15-22:35

02-15 (no description) 0:14:33 Nikolai Fau

Kgb - Bachelor 23:13-23:27

02-18 (no description) 8:05:00 Makval

Kgb - Bachelor 10:40-18:45

02-18 (no description) 0:08:23 Nikolai Fau

Kgb - Bachelor 20:23-20:31

02-18 (no description) 0:28:56 Nikolai Fau

Kgb - Bachelor 21:40-22:09

02-19 (no description) 0:36:28 Nikolai Fau

Kgb - Bachelor 13:55-14:32

02-19 (no description) 0:47:04 Nikolai Fau

Kgb - Bachelor 16:51-17:38

02-19 (no description) 1:00:00 Nikolai Fau

Kgb - Bachelor 17:30-18:30

02-20 (no description) 5:00:00 Makval

Kgb - Bachelor 12:00-17:00

02-21 (no description) 2:00:00 Makval

Kgb - Bachelor 09:30-11:30

02-21 (no description) 7:25:00 Nikolai Fau

Kgb - Bachelor 13:00-20:25

02-22 (no description) 4:00:00 Makval

Kgb - Bachelor 09:00-13:00

02-23 (no description) 3:00:00 Makval

Kgb - Bachelor 10:00-13:00

02-24 (no description) 3:00:00 Makval

Kgb - Bachelor 10:00-13:00

02-24 (no description) 3:00:00 Makval

Kgb - Bachelor 14:00-17:00

02-24 (no description) 3:25:00 Nikolai Fau

Kgb - Bachelor 14:25-17:50

02-25 RIP Laptop, prøvde å sette opp cuckoo 2:30:00 Makval

Kgb - Bachelor 22:00-00:30

02-27 Scrum planlegging 2:28:00 Nikolai Fau

Kgb - Bachelor 14:32-17:00

02-28 Research 0:00:06 Krisshol
Kgb - Bachelor - [meeting] 14:32-14:32

02-28 Research 0:00:10 Krisshol
Kgb - Bachelor - [meeting] 14:33-14:33

02-28 Research 1:39:49 Krisshol
Kgb - Bachelor - [meeting] 14:33-16:13

02-28 Research 0:40:33 Krisshol
Kgb - Bachelor - [meeting] 16:21-17:02

02-28 Research 0:00:00 Krisshol
Kgb - Bachelor - [meeting] 16:21-16:21

03-01 Ansible/Vagrant troubleshooting 0:30:00 Ohho1588

Kgb - Bachelor 10:30-11:00

03-01 Møter + Packer 7:00:00 Nikolai Fau

Kgb - Bachelor - [meeting, Packer] 11:00-18:00

03-01 Møte med Basel 0:15:00 Ohho1588

Kgb - Bachelor 11:00-11:15

03-01 Ansible/Vagrant troubleshooting 1:15:00 Ohho1588

Kgb - Bachelor 11:15-12:30

03-01 Ansible/Vagrant troubleshooting 0:15:00 Ohho1588

Kgb - Bachelor 12:30-12:45

03-01 Ansible cuckoo 3:30:00 Makval

Kgb - Bachelor 12:30-16:00

03-01 Research 2:23:03 Krisshol
Kgb - Bachelor - [meeting] 12:57-15:20

03-01 Møte med KGB 0:45:00 Ohho1588
Kgb - Bachelor 13:00-13:45

03-01 Gått gjennom IRMA dokumentasjon, kjørt IRMA 1:00:00 Ohho1588

Kgb - Bachelor 13:45-14:45

03-01 RabbitMQ troubleshooting 1:50:00 Ohho1588

Kgb - Bachelor 14:45-16:35

03-01 Research 2:32:13 Krisshol
Kgb - Bachelor - [meeting] 15:21-17:53

03-01 Ansible cuckoo 2:15:00 Makval

Kgb - Bachelor 16:30-18:45

03-01 Research 1:28:53 Krisshol
Kgb - Bachelor - [meeting] 17:53-19:22

03-01 Ansible cuckoo på stasjonær 5:00:00 Makval

Kgb - Bachelor 20:00-01:00

03-03 Packer research 0:03:01 Nikolai Fau

Kgb - Bachelor - [Packer] 20:40-20:43

03-03 Packer research 0:48:16 Nikolai Fau

Kgb - Bachelor - [Packer] 20:44-21:32

03-03 Packer Cuckoo 0:27:48 Nikolai Fau

Kgb - Bachelor - [Packer] 21:37-22:05

03-03 Packer 1:09:40 Nikolai Fau
Kgb - Bachelor - [Packer] 22:22-23:32

03-03 IRMA feilsøking 0:30:09 Nikolai Fau

Kgb - Bachelor - [irma] 23:54-00:24

03-04 IRMA feilsøking 0:10:27 Nikolai Fau

Kgb - Bachelor - [irma] 00:32-00:42

03-04 Packer 0:21:12 Nikolai Fau
Kgb - Bachelor - [Packer] 01:24-01:45

03-04 IRMA feilsøking 1:04:56 Nikolai Fau

Kgb - Bachelor - [irma] 13:00-14:05

03-04 Ubuntu + drivere + min stasjonere != sant 1:00:00 Makval

Kgb - Bachelor 18:00-19:00

03-05 Cuckoo ansible oppsett er teit, fikk ikke utrettet så mye men kom nærmere en løsning 5:00:00 Makval

Kgb - Bachelor 11:30-16:30

03-05 irmacml testing 3:00:00 Ohho1588

Kgb - Bachelor 11:40-14:40

03-05 Packer Cuckoo 2:39:02 Nikolai Fau

Kgb - Bachelor - [Packer] 13:16-15:55

03-05 Research 2:23:26 Krisshol
Kgb - Bachelor - [meeting] 13:43-16:07

03-05 irmacml feilsøking 1:00:00 Ohho1588

Kgb - Bachelor 14:40-15:40

03-05 irmacml feilsøking 1:00:00 Ohho1588

Kgb - Bachelor 16:00-17:00

03-05 Research 1:49:58 Krisshol
Kgb - Bachelor - [meeting] 16:24-18:14

03-05 Docker er teit 1:00:00 Makval

Kgb - Bachelor 17:10-18:10

03-06 Packer Cuckoo 0:30:00 Nikolai Fau

Kgb - Bachelor - [Packer] 00:00-00:30

03-06 lynkurs rapport 1:00:00 Ohho1588

Kgb - Bachelor 12:05-13:05

03-06 Research 0:59:05 Krisshol
Kgb - Bachelor - [crash course, report] 12:05-13:05

03-06 Research 4:29:43 Krisshol
Kgb - Bachelor - [meeting] 14:03-18:33

03-06 IRMA VMWare 0:41:28 Nikolai Fau
Kgb - Bachelor - [irma] 14:03-14:45

03-06 manuell testing av datasett 1:00:00 Ohho1588

Kgb - Bachelor 14:30-15:30

03-06 Prøver å finne ut hvorfor setup scriptet gir 2 failures 1:00:00 Ohho1588

Kgb - Bachelor 15:30-16:30

03-06 Prøver å finne ut hvorfor setup scriptet gir 2 failures 1:00:00 Ohho1588

Kgb - Bachelor 16:30-17:30

03-06 Prøver å finne ut hvorfor setup scriptet gir 2 failures 0:30:00 Ohho1588

Kgb - Bachelor 17:30-18:00

03-07 Packer Cuckoo 0:09:52 Nikolai Fau

Kgb - Bachelor - [Packer] 01:19-01:28

03-07 Packer Cuckoo 0:43:00 Nikolai Fau

Kgb - Bachelor - [Packer] 14:15-14:58

03-07 Cuckoo ansible playbook 2:00:00 Makval

Kgb - Bachelor 15:15-17:15

03-08 Research 5:19:04 Krisshol
Kgb - Bachelor - [irma] 11:28-16:48

03-08 Cuckoo ansible playbook 5:15:00 Makval

Kgb - Bachelor 11:35-16:50

03-08 Packer Cuckoo 4:38:10 Nikolai Fau

Kgb - Bachelor - [Packer] 12:08-16:46

03-11 Cuckoo ansible playbook 6:55:00 Makval

Kgb - Bachelor 11:30-18:25

03-11 Research 1:11:37 Krisshol
Kgb - Bachelor - [irma] 14:30-15:42

03-11 Packer Cuckoo 0:34:00 Nikolai Fau

Kgb - Bachelor - [Packer] 19:16-19:50

03-12 cuckoo windows vm manuel 2:00:00 Makval

Kgb - Bachelor 11:00-13:00

03-12 Packer Cuckoo 1:29:58 Nikolai Fau

Kgb - Bachelor - [Packer] 12:30-14:00

03-12 implement vmware handling in playbook 5:30:00 Makval

Kgb - Bachelor 13:00-18:30

03-12 Packer Cuckoo 1:43:00 Nikolai Fau

Kgb - Bachelor - [Packer] 14:17-16:00

03-12 Research 1:11:14 Krisshol
Kgb - Bachelor - [irma] 14:37-15:49

03-12 Research 5:05:53 Krisshol
Kgb - Bachelor - [irma] 16:43-21:48

03-13 implement vmware handling in playbook 7:41:00 Makval

Kgb - Bachelor 11:10-18:51

03-13 Packer Cuckoo 2:45:00 Nikolai Fau

Kgb - Bachelor - [Packer] 13:45-16:30

03-13 Packer Cuckoo 2:09:18 Nikolai Fau

Kgb - Bachelor - [Packer] 19:15-21:25

03-13 Packer Cuckoo 1:16:00 Nikolai Fau

Kgb - Bachelor - [Packer] 21:29-22:45

03-14 Antivirus 3:00:00 Ohho1588
Kgb - Bachelor 12:30-15:30

03-14 vmware rest api for nettverks adapter håndtering 3:05:00 Makval

Kgb - Bachelor 15:00-18:05

03-15 vmware rest api for nettverks adapter håndtering 4:50:00 Makval

Kgb - Bachelor 14:10-19:00

03-15 Test making 1:10:26 Krisshol
Kgb - Bachelor - [irma] 16:40-17:50

03-15 Test making 3:07:48 Krisshol
Kgb - Bachelor - [irma] 18:08-21:16

03-16 fikler med packer 1:49:31 Nikolai Fau

Kgb - Bachelor - [Packer] 15:44-17:34

03-16 Packer Cuckoo 0:24:32 Nikolai Fau

Kgb - Bachelor - [Packer] 18:08-18:33

03-16 Packer Cuckoo 0:34:13 Nikolai Fau

Kgb - Bachelor - [Packer] 20:15-20:49

03-16 Packer Progress 1:18:55 Nikolai Fau

Kgb - Bachelor - [Packer] 21:58-23:17

03-17 Packer ssh 0:56:43 Nikolai Fau
Kgb - Bachelor - [Packer] 13:40-14:36

03-18 teste cuckoo med packer images fra bunn av 2:56:00 Makval

Kgb - Bachelor 10:14-13:10

03-18 rapport research/skriving 1:00:00 Ohho1588

Kgb - Bachelor 11:00-12:00

03-18 scrum møte 0:45:00 Nikolai Fau
Kgb - Bachelor - [meeting] 14:00-14:45

03-18 sprint planning møte 1:00:00 Ohho1588

Kgb - Bachelor 14:00-15:00

03-18 Scrum Planning 0:49:05 Krisshol

Kgb - Bachelor - [irma] 14:05-14:54

03-18 teste cuckoo med packer images fra bunn av 3:45:00 Makval

Kgb - Bachelor 14:10-17:55

03-18 rapport skriving intro + req 1:00:00 Ohho1588

Kgb - Bachelor 15:00-16:00

03-18 Cuckoo-ansible 1:14:49 Krisshol

Kgb - Bachelor - [pair programming] 15:30-16:45

03-18 rapport skriving req + tek 1:00:00 Ohho1588

Kgb - Bachelor 16:00-17:00

03-18 General research 0:46:43 Krisshol

Kgb - Bachelor - [pair programming] 16:45-17:31

03-18 rapport skriving tek 1:00:00 Ohho1588

Kgb - Bachelor 17:00-18:00

03-18 General research 1:27:48 Krisshol

Kgb - Bachelor - [pair programming] 18:07-19:35

03-19 scrum møte 0:25:00 Nikolai Fau
Kgb - Bachelor - [meeting] 00:30-00:55

03-19 fikset bitdefender failure + litt rapportskriving 1:00:00 Ohho1588

Kgb - Bachelor 10:00-11:00

03-19 teste cuckoo med packer images fra bunn av 3:25:00 Makval

Kgb - Bachelor 10:25-13:50

03-19 Antivirus 1:00:00 Ohho1588
Kgb - Bachelor 11:00-12:00

03-19 teste cuckoo med packer images fra bunn av 2:55:00 Makval

Kgb - Bachelor 15:10-18:05

03-19 Packer ssh 1:01:10 Nikolai Fau
Kgb - Bachelor - [Packer] 22:07-23:08

03-19 prøvde å fikse vm start med ansible igjen, funka ikke:(1:00:00 Makval

Kgb - Bachelor 23:32-00:32

03-20 Packer ssh 0:10:00 Nikolai Fau
Kgb - Bachelor - [Packer] 00:30-00:40

03-20 cuckoo start vm i ansible playbook, still 3:23:00 Makval

Kgb - Bachelor 10:57-14:20

03-20 malware research 2:00:10 Nikolai Fau

Kgb - Bachelor - [cuckoo, Packer, research] 12:30-14:30

03-20 cuckoo start vm i ansible playbook 4:20:00 Makval

Kgb - Bachelor 14:40-19:00

03-20 Thesis writing 0:19:32 Krisshol

Kgb - Bachelor - [report] 16:51-17:10

03-20 Reset prep 1:07:14 Krisshol
Kgb - Bachelor 17:34-18:41

03-20 kgb reinstallere + 3:35:00 Makval

Kgb - Bachelor 21:10-00:45

03-21 antivirus og feilsøking 2:30:00 Ohho1588

Kgb - Bachelor 10:00-12:30

03-21 irma packer 0:39:41 Nikolai Fau
Kgb - Bachelor - [irma, Packer] 15:00-15:40

03-22 antivirus og irma feilsøking 1:45:00 Ohho1588

(no project) 10:15-12:00

03-22 møte, og planlegging og snakking og stuff 5:20:00 Makval

Kgb - Bachelor 11:20-16:40

03-22 Møte + Yara 4:13:50 Nikolai Fau
Kgb - Bachelor - [irma, meeting, research] 11:30-15:44

03-22 planlegging 2:00:00 Ohho1588
Kgb - Bachelor 12:00-14:00

03-22 Plan meeting 1:50:30 Krisshol
Kgb - Bachelor 12:30-14:20

03-22 Antivirus 2:30:00 Ohho1588
Kgb - Bachelor 14:00-16:30

03-22 Kiosk design 0:51:22 Krisshol
Kgb - Bachelor 14:37-15:29

03-22 Kiosk design 0:45:28 Krisshol
Kgb - Bachelor 15:42-16:27

03-22 Kiosk design 1:29:24 Krisshol
Kgb - Bachelor 16:50-18:19

03-22 Packer and cleanup in code 3:25:53 Nikolai Fau

Kgb - Bachelor - [cuckoo, Packer] 22:30-01:56

03-23 vmware er bæsj 2:02:00 Makval

Kgb - Bachelor 00:30-02:32

03-25 Antivirus 3:00:00 Ohho1588
Kgb - Bachelor 09:00-12:00

03-25 irma feilsøling 2:00:00 Ohho1588

Kgb - Bachelor 12:00-14:00

03-25 kmno-irma i Git 1:00:00 Krisshol

Kgb - Bachelor 15:00-16:00

03-26 Vm start.. 1:00:00 Makval
Kgb - Bachelor 09:30-10:30

03-26 møte 1:00:00 Ohho1588
Kgb - Bachelor 11:00-12:00

03-26 Møte 2:00:00 Nikolai Fau
Kgb - Bachelor - [irma, meeting, research] 11:00-13:00

03-26 Møte + AVsammen med olav 2:00:00 Makval

Kgb - Bachelor 11:00-13:00

03-26 kgb møte 0:55:00 Krisshol
Kgb - Bachelor 11:05-12:00

03-26 antivirus og rapportskriving 4:30:00 Ohho1588

Kgb - Bachelor 12:00-16:30

03-26 Skrive rapport + misc 1:50:00 Makval

Kgb - Bachelor 14:30-16:20

03-26 prøvde å fikse eset, comodo og clam er humørsyke 1:25:00 Makval

Kgb - Bachelor 16:50-18:15

03-26 Yara 1:57:22 Nikolai Fau
Kgb - Bachelor - [irma, research] 20:00-21:57

03-27 prøvde vm start igjen, gitt opp 3:50:00 Makval

Kgb - Bachelor 11:00-14:50

03-27 antivirus og rapportskriving 2:00:00 Ohho1588

Kgb - Bachelor 12:00-14:00

03-27 Yara 1:45:00 Nikolai Fau
Kgb - Bachelor 13:00-14:45

03-27 kmno-irma i Git 1:26:08 Krisshol

Kgb - Bachelor 14:00-15:26

03-27 sjekker at cuckoo fungerer som den skal 3:55:00 Makval

Kgb - Bachelor 14:50-18:45

03-27 packer windows 0:43:00 Nikolai Fau

Kgb - Bachelor - [Packer] 21:30-22:13

03-28 packer windows + yara 1:53:10 Nikolai Fau

Kgb - Bachelor - [Packer] 00:06-02:00

03-28 Yara 1:05:40 Nikolai Fau
Kgb - Bachelor 02:15-03:20

03-28 skrev på rapport 1:00:00 Makval

Kgb - Bachelor 10:00-11:00

03-28 irma 1:00:00 Nikolai Fau
Kgb - Bachelor - [irma] 11:20-12:20

03-28 yara + irma 3:35:00 Nikolai Fau
Kgb - Bachelor - [irma] 14:40-18:15

03-28 kmno-irma i Git 1:32:23 Krisshol

Kgb - Bachelor 15:55-17:28

03-28 kmno-irma i Git 0:41:11 Krisshol

Kgb - Bachelor 17:36-18:17

03-28 få cuckoo til å kjøre 2:45:00 Makval

Kgb - Bachelor 21:15-00:00

03-28 av-win og yara finish upper 1:43:30 Nikolai Fau

Kgb - Bachelor - [irma] 21:25-23:08

03-28 packer windows 0:26:00 Nikolai Fau

Kgb - Bachelor - [Packer] 23:40-00:06

03-29 rapportskriving 2:25:00 Ohho1588

Kgb - Bachelor 11:00-13:25

03-29 Thesis writing 0:58:11 Krisshol

Kgb - Bachelor - [report] 18:00-18:59

03-31 packer windows 0:40:00 Nikolai Fau

Kgb - Bachelor - [Packer] 12:00-12:40

03-31 irma production bugs 4:00:00 Nikolai Fau

Kgb - Bachelor - [irma] 16:22-20:22

03-31 irma production bugs 1:01:33 Nikolai Fau

Kgb - Bachelor - [irma] 20:23-21:24

04-01 rapportskriving 2:00:00 Ohho1588

Kgb - Bachelor 10:00-12:00

04-01 få cuckoo til å kjøre 5:15:00 Makval

Kgb - Bachelor 11:00-16:15

04-01 sett på wireshark 1:30:00 Ohho1588

Kgb - Bachelor 12:00-13:30

04-01 tcpdump av scan 1:00:00 Ohho1588

Kgb - Bachelor 14:00-15:00

04-02 Yara test 1:31:50 Nikolai Fau
Kgb - Bachelor - [irma] 00:00-01:32

04-02 Klargjøre for mer cuckoo playbook testing 0:35:00 Makval

Kgb - Bachelor 09:15-09:50

04-02 Forbedre cuckoo playbook 4:05:00 Makval

Kgb - Bachelor 10:25-14:30

04-02 diskusjon 0:30:00 Ohho1588
Kgb - Bachelor 12:00-12:30

04-02 windows + pipelining + rapport 1:55:00 Nikolai Fau

Kgb - Bachelor - [Packer, report, research] 12:05-14:00

04-02 ansible script antivirus 2:00:00 Ohho1588

Kgb - Bachelor 12:30-14:30

04-02 Forbedre cuckoo playbook 2:50:00 Makval

Kgb - Bachelor 14:40-17:30

04-02 ansible script antivirus 2:35:00 Ohho1588

Kgb - Bachelor 15:00-17:35

04-02 kmno-irma i Git (redo) 2:19:07 Krisshol

Kgb - Bachelor 15:00-17:19

04-02 windows + pipelining + rapport 2:15:00 Nikolai Fau

Kgb - Bachelor - [Packer, report, research] 15:15-17:30

04-03 cuckoo 0:30:00 Makval
Kgb - Bachelor 10:15-10:45

04-03 ansible script antivirus 1:00:00 Ohho1588

Kgb - Bachelor 14:00-15:00

04-03 packer windows + pipeline irma scans 2:33:44 Nikolai Fau

Kgb - Bachelor - [irma, Packer, research] 21:00-23:33

04-04 pipelining provisioning 1:25:20 Nikolai Fau

Kgb - Bachelor - [irma, research] 02:07-03:32

04-04 ansible script antivirus 3:00:00 Ohho1588

Kgb - Bachelor 11:00-14:00

04-04 pipelining provisioning 1:20:01 Nikolai Fau

Kgb - Bachelor - [irma, research] 13:30-14:50

04-04 ansible script antivirus 1:40:00 Ohho1588

Kgb - Bachelor 14:30-16:10

04-04 pipelining + scalability 2:52:33 Nikolai Fau

Kgb - Bachelor - [irma, research] 14:50-17:42

04-04 vmware forskjellig ip samme base image 4:00:00 Makval

Kgb - Bachelor 15:10-19:10

04-04 pipelining + scalability 0:02:14 Nikolai Fau

Kgb - Bachelor - [irma, research] 17:50-17:52

04-04 cuckoo test 3:45:00 Makval
Kgb - Bachelor 21:25-01:10

04-04 packer windows 0:04:41 Nikolai Fau

Kgb - Bachelor - [Packer] 23:50-23:55

04-05 cuckoo test, dokumentasjon og rapport 1:00:00 Makval

Kgb - Bachelor 11:00-12:00

04-05 ansible script antivirus feilsøking 4:00:00 Ohho1588

Kgb - Bachelor 11:30-15:30

04-05 Cuckoo doku, pluss gr samtaler 4:25:00 Makval

Kgb - Bachelor 12:40-17:05

04-05 Diskusjon 1:00:00 Nikolai Fau
Kgb - Bachelor - [meeting] 13:00-14:00

04-05 kgb møte 0:20:00 Krisshol
Kgb - Bachelor 14:45-15:05

04-05 Kiosk design 3:53:33 Krisshol
Kgb - Bachelor 15:25-19:19

04-08 cuckoo dokumentasjon og testing av playbook. 8:10:00 Makval

Kgb - Bachelor 11:50-20:00

04-08 clamAV fungerer nå 2:00:00 Ohho1588

Kgb - Bachelor 12:00-14:00

04-08 Sliter plutselig med noen andre AV-er 2:00:00 Ohho1588

Kgb - Bachelor 14:00-16:00

04-09 ansible script antivirus 2:00:00 Ohho1588

Kgb - Bachelor 11:00-13:00

04-09 installere esx 1:20:00 Makval

Kgb - Bachelor 11:50-13:10

04-09 Sett på rapporter 1:00:00 Ohho1588

Kgb - Bachelor 13:00-14:00

04-09 prøve å innstalere esx på nytt, riktig versjon kanskje... 1:15:00 Makval

Kgb - Bachelor 17:45-19:00

04-09 Kiosk design 1:30:00 Krisshol
Kgb - Bachelor 18:30-20:00

04-10 winrm fix + starting av tester 0:30:00 Nikolai Fau

Kgb - Bachelor - [irma, Packer] 00:30-01:00

04-10 reading IRMA code 1:27:00 Nikolai Fau

Kgb - Bachelor - [irma, research] 01:00-02:27

04-10 api research, NSRL, known good/bad 1:21:27 Nikolai Fau

Kgb - Bachelor - [irma, Packer, research] 12:03-13:25

04-10 AV-debugging 3:00:00 Ohho1588
Kgb - Bachelor 13:00-16:00

04-10 Testing og oppsett 0:10:00 Nikolai Fau

Kgb - Bachelor - [irma, Packer, research] 13:24-13:34

04-10 Rapport + speed tests 1:00:00 Nikolai Fau

Kgb - Bachelor - [irma, report, research] 13:44-14:44

04-10 Kiosk design 0:30:15 Krisshol
Kgb - Bachelor 17:45-18:16

04-10 NSRL 1:29:35 Nikolai Fau
Kgb - Bachelor - [irma, research] 20:32-22:01

04-10 NSRL 1:39:00 Nikolai Fau
Kgb - Bachelor - [irma, research] 23:21-01:00

04-11 AV-debugging 3:00:00 Ohho1588
Kgb - Bachelor 12:00-15:00

04-11 NSRL debug 0:42:00 Nikolai Fau
Kgb - Bachelor - [irma, Packer, report, research] 15:25-16:07

04-11 NSRL debug 0:27:00 Nikolai Fau
Kgb - Bachelor 16:15-16:42

04-11 Kiosk design 2:00:00 Krisshol
Kgb - Bachelor 21:00-23:00

04-12 NSRL debug 1:00:02 Nikolai Fau
Kgb - Bachelor 01:30-02:30

04-12 Sett på output av scans og windows provisjonering 3:00:00 Ohho1588

Kgb - Bachelor 13:00-16:00

04-12 NSRL debug + Pipeline planning + IRMA research 2:58:12 Nikolai Fau

Kgb - Bachelor - [irma, meeting, pair programming, research] 13:10-16:09

04-12 Cuckoo som irma probe 1:30:00 Makval

Kgb - Bachelor 13:30-15:00

04-12 Cuckoo som irma probe 1:35:00 Makval

Kgb - Bachelor 16:00-17:35

04-12 NSRL debug 0:00:02 Nikolai Fau
Kgb - Bachelor 16:04-16:04

04-12 kode forståelse 0:30:00 Nikolai Fau

Kgb - Bachelor - [irma, research] 16:55-17:25

04-12 kode forståelse 1:05:00 Nikolai Fau

Kgb - Bachelor - [irma, research] 21:10-22:15

04-13 NSRL kode 0:45:00 Nikolai Fau
Kgb - Bachelor - [irma, research] 01:10-01:55

04-14 NSRL kode 1:00:00 Nikolai Fau
Kgb - Bachelor - [irma, research] 01:00-02:00

04-14 NSRL koding 4:00:00 Nikolai Fau
Kgb - Bachelor - [irma] 14:07-18:07

04-14 NSRL koding 0:32:21 Nikolai Fau
Kgb - Bachelor - [irma] 18:47-19:20

04-14 kode research 0:51:00 Nikolai Fau

Kgb - Bachelor - [irma, research] 19:50-20:41

04-17 rapport skriving 1:15:00 Makval

Kgb - Bachelor 15:15-16:30

04-17 Kiosk design 1:20:35 Krisshol
Kgb - Bachelor 23:06-00:27

04-18 Kiosk design 0:45:02 Krisshol
Kgb - Bachelor 22:40-23:25

04-18 Kiosk design 1:31:19 Krisshol
Kgb - Bachelor 23:50-01:22

04-21 windows provisjonering 1:00:00 Ohho1588

Kgb - Bachelor 11:00-12:00

04-21 linux AV roller 3:00:00 Ohho1588

Kgb - Bachelor 12:00-15:00

04-22 linux AV roller 3:00:00 Ohho1588

Kgb - Bachelor 13:00-16:00

04-22 rapport m.m 0:15:00 Makval
Kgb - Bachelor 21:20-21:35

04-23 oversikt over hvilke AVer som feiler og hvor de gjør det 2:00:00 Ohho1588

Kgb - Bachelor 09:00-11:00

04-23 rapport 0:36:00 Ohho1588
Kgb - Bachelor 11:00-11:36

04-23 ferdig av linux roller 2:24:00 Ohho1588

Kgb - Bachelor 11:36-14:00

04-23 Sjekket om noen av-errors har en enkel fix 1:47:00 Ohho1588

Kgb - Bachelor 14:00-15:47

04-23 rapport m.m 0:15:00 Makval
Kgb - Bachelor 18:45-19:00

04-23 rapport m.m 0:50:00 Makval
Kgb - Bachelor 19:10-20:00

04-24 Kiosk design 3:17:47 Krisshol
Kgb - Bachelor 18:42-22:00

04-24 Kiosk design 0:56:49 Krisshol
Kgb - Bachelor 23:20-00:17

04-26 Kiosk design 1:02:28 Krisshol
Kgb - Bachelor 14:47-15:49

04-26 Kiosk design 1:36:49 Krisshol
Kgb - Bachelor 20:42-22:19

04-26 Kiosk design 1:15:56 Krisshol
Kgb - Bachelor 22:55-00:11

04-30 rapportskriving 2:00:00 Ohho1588

Kgb - Bachelor 12:00-14:00

04-30 (no description) 5:00:00 Nikolai Fau

Kgb - Bachelor 18:00-23:00

04-30 Kiosk design 0:36:09 Krisshol
Kgb - Bachelor 19:00-19:36

04-30 Kiosk design 3:37:00 Krisshol
Kgb - Bachelor 21:30-01:07

05-01 rapportskriving 0:20:00 Ohho1588

Kgb - Bachelor 13:40-14:00

05-01 møte om rapportstruktur og rapportskriving 2:00:00 Ohho1588

Kgb - Bachelor 14:00-16:00

05-01 Møte 1:05:00 Krisshol
Kgb - Bachelor 14:40-15:45

05-01 Kiosk design 1:34:32 Krisshol
Kgb - Bachelor 15:56-17:30

05-01 use case 1:00:00 Ohho1588
Kgb - Bachelor 16:00-17:00

05-02 studert win av roller (to måter å implementere avhengig om installasjonsscript brukes) 2:30:00 Ohho1588

Kgb - Bachelor 08:00-10:30

05-02 win av rolle implementasjon 1:30:00 Ohho1588

Kgb - Bachelor 10:30-12:00

05-02 rapportskriving - kravspek 3:10:00 Ohho1588

Kgb - Bachelor 12:00-15:10

05-03 Fixing introduction 3:03:31 Krisshol

Kgb - Bachelor 01:32-04:36

05-03 rapportskriving kravspek 1:30:00 Ohho1588

Kgb - Bachelor 12:00-13:30

05-03 rapportskriving use case & sekvensdiagram 4:00:00 Ohho1588

Kgb - Bachelor 14:00-18:00

05-03 rapport + møte 3:00:00 Makval

Kgb - Bachelor 14:15-17:15

05-03 Fixing introduction 1:42:03 Krisshol

Kgb - Bachelor 14:59-16:41

05-03 (no description) 2:00:00 Nikolai Fau

Kgb - Bachelor 15:00-17:00

05-04 (no description) 4:00:00 Nikolai Fau

Kgb - Bachelor 14:00-18:00

05-04 rapport 1:30:00 Makval
Kgb - Bachelor 15:30-17:00

05-05 rapportskriving malware & malware detection 6:00:00 Ohho1588

Kgb - Bachelor 09:00-15:00

05-05 (no description) 5:00:00 Nikolai Fau

Kgb - Bachelor 12:00-17:00

05-06 Fixing introduction 4:03:07 Krisshol

Kgb - Bachelor 00:00-04:03

05-06 rapportskriving 2:00:00 Ohho1588

Kgb - Bachelor 09:00-11:00

05-06 rapportskriving 3:00:00 Ohho1588

Kgb - Bachelor 12:00-15:00

05-06 rapport 2:45:00 Makval
Kgb - Bachelor 13:45-16:30

05-06 rapportskriving 2:30:00 Ohho1588

Kgb - Bachelor 15:30-18:00

05-06 rapport 0:25:00 Makval
Kgb - Bachelor 17:10-17:35

05-07 rapportskriving 7:15:00 Ohho1588

Kgb - Bachelor 10:00-17:15

05-07 rapport 5:15:00 Makval
Kgb - Bachelor 12:45-18:00

05-07 (no description) 9:00:00 Nikolai Fau

Kgb - Bachelor 15:00-00:00

05-08 rapportskriving 1:30:00 Ohho1588

Kgb - Bachelor 08:30-10:00

05-08 rapport 5:00:00 Makval
Kgb - Bachelor 12:10-17:10

05-08 (no description) 2:00:00 Nikolai Fau

Kgb - Bachelor 15:00-17:00

05-08 (no description) 3:00:00 Nikolai Fau

Kgb - Bachelor 18:00-21:00

05-08 lese og kommentere rapport 2:10:00 Makval

Kgb - Bachelor 21:15-23:25

05-08 Fixing requirements 1:49:16 Krisshol

Kgb - Bachelor 23:26-01:15

05-09 Fixing theory 3:08:10 Krisshol

Kgb - Bachelor 01:39-04:47

05-09 (no description) 6:00:00 Nikolai Fau

Kgb - Bachelor 12:00-18:00

05-09 Fixing theory 1:30:01 Krisshol

Kgb - Bachelor 21:20-22:50

05-10 Fixing theory 4:27:23 Krisshol

Kgb - Bachelor 00:04-04:31

05-10 rapportskriving 1:00:00 Ohho1588

Kgb - Bachelor 10:00-11:00

05-10 Møte 2:40:00 Krisshol
Kgb - Bachelor 11:00-13:40

05-10 møte 3:00:00 Makval
Kgb - Bachelor 11:00-14:00

05-10 møter 3:00:00 Ohho1588
Kgb - Bachelor 11:00-14:00

05-10 Fixing theory 0:48:44 Krisshol

Kgb - Bachelor 15:30-16:18

05-11 rapportskriving - testing og analyse 7:15:00 Ohho1588

Kgb - Bachelor 12:00-19:15

05-11 rapport 7:15:00 Makval
Kgb - Bachelor 12:00-19:15

05-11 (no description) 5:00:00 Nikolai Fau

Kgb - Bachelor 13:00-18:00

05-11 Fixing theory 1:00:00 Krisshol

Kgb - Bachelor 18:30-19:30

05-11 Fixing theory 2:31:20 Krisshol

Kgb - Bachelor 22:00-00:31

05-12 (no description) 4:00:00 Nikolai Fau

Kgb - Bachelor 12:00-16:00

05-12 Fixing theory 0:20:00 Krisshol

Kgb - Bachelor 18:00-18:20

05-12 Adding theory - IRMA 0:30:00 Krisshol

Kgb - Bachelor 20:00-20:30

05-12 Adding theory - IRMA 3:19:53 Krisshol

Kgb - Bachelor 21:35-00:54

05-12 så på esxi støtte 1:10:00 Makval

Kgb - Bachelor 22:30-23:40

05-13 Adding theory - IRMA 2:50:29 Krisshol

Kgb - Bachelor 01:08-03:59

05-13 (no description) 10:00:00 Nikolai Fau

Kgb - Bachelor 07:00-17:00

05-13 legge till Cuckoo som probe i IRMA 5:00:00 Makval

Kgb - Bachelor 11:00-16:00

05-13 rapportskriving 5:00:00 Ohho1588

Kgb - Bachelor 11:00-16:00

05-14 (no description) 10:00:00 Nikolai Fau

Kgb - Bachelor 09:00-19:00

05-14 rapportskriving 8:10:00 Ohho1588

Kgb - Bachelor 10:00-18:10

05-14 rapport, cuckoo probe, drøfting av rapport 8:15:00 Makval

Kgb - Bachelor 10:00-18:15

05-14 reinstallere + fikse irma som jeg sletta 0:30:00 Makval

Kgb - Bachelor 18:45-19:15

05-14 reinstallere + fikse irma som jeg sletta 0:45:00 Makval

Kgb - Bachelor 20:00-20:45

05-14 reinstallere + fikse irma som jeg sletta 5:30:00 Makval

Kgb - Bachelor 20:00-01:30

05-15 rapportskriving + testing 5:00:00 Ohho1588

Kgb - Bachelor 10:00-15:00

05-15 rapport skriving, cuckoo probe 4:40:00 Makval

Kgb - Bachelor 10:20-15:00

05-15 (no description) 10:00:00 Nikolai Fau

Kgb - Bachelor - [report] 11:00-21:00

05-15 General report writing - kiosk 8:48:49 Krisshol

Kgb - Bachelor 13:30-22:18

05-15 rapport skriving, cuckoo probe 6:20:00 Makval

Kgb - Bachelor 15:30-21:50

05-15 rapportskriving + testing 6:30:00 Ohho1588

Kgb - Bachelor 15:30-22:00

05-15 rapport skriving, cuckoo probe 1:10:00 Makval

Kgb - Bachelor 22:50-00:00

05-15 General report writing - kiosk 0:44:21 Krisshol

Kgb - Bachelor 22:57-23:41

05-15 rapportskriving + testing 1:00:00 Ohho1588

Kgb - Bachelor 23:00-00:00

05-16 rapport skriving, cuckoo probe 6:00:00 Makval

Kgb - Bachelor 10:05-16:05

05-16 (no description) 12:00:00 Nikolai Fau

Kgb - Bachelor - [report] 11:00-23:00

05-16 rapportskriving + testing 6:00:00 Ohho1588

Kgb - Bachelor 12:00-18:00

05-16 General report writing - kiosk 0:49:12 Krisshol

Kgb - Bachelor 15:13-16:02

05-16 rapport skriving, cuckoo probe 4:10:00 Makval

Kgb - Bachelor 16:50-21:00

05-16 General report writing - kiosk 1:52:48 Krisshol

Kgb - Bachelor 18:00-19:53

05-16 cuckoo probe 1:35:00 Makval
Kgb - Bachelor 21:35-23:10

05-16 cuckoo probe 1:30:00 Makval
Kgb - Bachelor 23:35-01:05

05-17 rapportskriving + testing 3:00:00 Ohho1588

Kgb - Bachelor 09:00-12:00

05-17 cuckoo probe debugging 3:00:00 Makval

Kgb - Bachelor 23:00-02:00

05-18 rapportskriving 12:00:00 Ohho1588

Kgb - Bachelor 10:00-22:00

05-18 rapport lesing 11:00:00 Makval

Kgb - Bachelor 11:15-22:15

05-18 Fixing stuff 4:14:08 Krisshol
Kgb - Bachelor 11:45-15:59

05-18 (no description) 7:06:00 Nikolai Fau

Kgb - Bachelor - [report] 13:00-20:06

05-18 Fixing stuff 3:26:45 Krisshol
Kgb - Bachelor 16:13-19:40

05-18 Fixing stuff 2:37:57 Krisshol
Kgb - Bachelor 19:58-22:36

05-18 cuckoo probe 0:15:00 Makval
Kgb - Bachelor 23:00-23:15

05-19 cuckoo probe 2:00:00 Makval
Kgb - Bachelor 00:40-02:40

05-19 irma 1:00:00 Makval
Kgb - Bachelor 09:40-10:40

05-19 (no description) 13:00:00 Nikolai Fau

Kgb - Bachelor - [report] 10:00-23:00

05-19 rapportskriving 13:00:00 Ohho1588

Kgb - Bachelor 10:00-23:00

05-19 report 6:35:00 Makval
Kgb - Bachelor 11:50-18:25

05-19 report + cuckoo 4:35:00 Makval

Kgb - Bachelor 18:55-23:30

Created with toggl.com

Malware Analysis Infrastructure

L Slack communication logs

[
{

"client_msg_id": "dcc77fa2-b27c-458e-92f8-89d82bb629e8",
"type": "message",
"text": "Hva jeg har gjort:\nPrivate github fork av IRMA, forsøkt

videre med rabbitmq remote denied bugen.\n\nHva jeg
planlegger:\nTeste setup av IRMA på egen maskin, sjekke om
rabbitmq bugen skjer der også.\nHvis feilen skjer: Fortsette
med rabbitmq, finne ut hvor env variablen faktisk må
settes.\nOm den går opp: manuelt sende inn og teste dataset.
\nEvt: Se på ssh auth mellom kgb og github for pull av
repository.\n\nPotensielle hindringer:\nRabbitmq modulen
utdatert og må erstattes eller oppdateres\/skrives om. ",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1551498669.013400"

}
][

{
"client_msg_id": "45276472-b498-407b-9afc-2f3cbc6c8ce6",
"type": "message",
"text": "Hva jeg har gjort:\nSett gjennom irma dokumentasjon,

lastet ned Irma command line API og prøvd å få den til å
fungere. Ingen fremgang i dag.\n\nHva jeg
planlegger:\nFortsette med irmacml feilsøking, evt begynne på
rapport",

↪→
↪→
↪→
↪→
"user": "UGMNQ83QS",
"ts": "1551802870.018700"

},
{

"user": "UGQTTS29M",
"type": "message",
"subtype": "channel_join",
"ts": "1551811677.019000",
"text": "<@UGQTTS29M> has joined the channel"

},
{

"client_msg_id": "b4ce090b-8515-47d0-97b0-d4603d033ef4",
"type": "message",
"text": "Hva har jeg gjort:\nJeg prøvd å få ansible playbook til

å fungere, ikke helt i mål enda. Slåss med docker for å kjøre
virtualbox inne i docker, fikk det ikke helt til men virker
greit nok.\nHva jeg planlegger:\nFullføre overnevnte og få
teste cuckoo ordentlig\nPotensielle hindringer\nAnsible er
teit, cuckoo image er knot.",

↪→
↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1551814570.020400"

},

135

Malware Analysis Infrastructure

{
"client_msg_id": "a9c8ff54-bc4e-4cb0-966e-2e8d1978336c",
"type": "message",
"text": "Hva har jeg gjort:\nPrøvd å lage et image for en cuckoo

guest (win10), fikk ikke sett om det var suksessfult ettersom
tmux sesjon var borte når jeg kom tilbake, antar at pc ble
restarta",

↪→
↪→
↪→
"user": "UGL9Y07FB",
"ts": "1551828944.022300"

},
{

"client_msg_id": "ebd2510d-24fa-4cf9-a6ea-abbfec439af1",
"type": "message",
"text": "Hva jeg har gjort:\nPort forwardet IRMA frontenden,

kranglet med CLI-apiet til IRMA\n\nHva jeg
planlegger:\nTroubleshoote problematisk IRMA der filer ikke
vil scannes, så får aldri resultat\n\nPotensielle
hindringer:\nIRMA ikke ordentlig, ikke kontakt mellom
delene?",

↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1551838422.023600",
"edited": {

"user": "UGMTT84F9",
"ts": "1551838582.000000"

}
}

][
{

"client_msg_id": "7a7c8fe3-abc7-4b5a-8b3c-7b4215ff16d2",
"type": "message",
"text": "Hva jeg har gjort:\nVært på lynkurs, manuell testing av

datasett, prøvd å fikse failures fra setup.py test\n\nHva jeg
planlegger:\nFortsette å se på setup.py, legge til flere
antivirus",

↪→
↪→
↪→
"user": "UGMNQ83QS",
"ts": "1551892375.027300"

},
{

"client_msg_id": "0757c036-ced2-4ba0-a11a-2c7239c579b9",
"type": "message",
"text": "Hva jeg har gjort:\nIRMA-cli oppe, testing går. Lagd

script til å fore den med NTNU datasettene. Sett at VMware
backbone fikser problemene med IRMA ikke ville scanne.\n\nHva
jeg planlegger:\nForstå logger fra IRMA scans, prøve å finne
en halvoversiktlig måte å bruke dem+se dem\n\nPotensielle
hindringer:\nForferdelig view av scanne resultater, hvis man
kan kalle det i det hele tatt. Må forbedres\/skrotes og lages
bedre",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1551892962.031200"

},
{

"client_msg_id": "7dc5ff9c-509c-403a-bc1c-38b258d7b986",

136

Malware Analysis Infrastructure

"type": "message",
"text": "Hva jeg har gjort:\nFikk ikke gjort stort mer, men fiksa

så irma bruker VMWare, fikk testa packer image generering av
windows cuckoo guest.\nHva jeg planlegger:\nSe på scriptet
som skal aktivere winRM på windows maskina\nEventuelt sette
opp cuckoo guest for linux",

↪→
↪→
↪→
↪→
"user": "UGL9Y07FB",
"ts": "1551908248.033000"

}
][

{
"client_msg_id": "ac29dc0d-6fa7-4601-a859-319129cf7afe",
"type": "message",
"text": "Hva jeg har gjort:\nTatt meg veldig god tid til testing

av antivirus, sett på rapport og dokumentasjon (og reddit)
mens testingen foregikk. Alle antivirusene untatt 5 gir
errors\/blir skipped.\nHva jeg planlegger:\nSkaffe en trial
versjon lisensnøkkel for et antivirus som gir error\/skipped
for å sjekke hva som skjer da.",

↪→
↪→
↪→
↪→
↪→
"user": "UGMNQ83QS",
"ts": "1552060548.037400"

},
{

"client_msg_id": "4d0b292c-93c5-44d6-be0d-0844d78ec618",
"type": "message",
"text": "Hva jeg har gjort (torsdag 07.03)\nVurderte juju4 cuckoo

playbook og prøvde å få den til å fungere igjen. Ga opp etter
en stund og postet en issue der jeg ba om hjelp. \n\nHva jeg
planlegger:\nEnten få det til å fungere eller bytte til annen
playbook\n\n\n------\n\nHva har jeg gjort (fredag 08.03):\nGa
opp juju4 playbook. Har begynt å teste julianbo.... et eller
annet playbook, har flere features \"innebygd\". Har mått
tilpasse til ansible 2.7 før jeg innså at det kanskje er
greier å bruke en eldre versjon av ansible. Fullførte aldri
helt da noen facts ikke er samme i 2.7 som i
playbooken.\n\nHva planelgger jeg:\nFullføre og
forhåpentligvis ende med at denne er det beste valget for
playbook for cuckoo. Legge til vmware role. Teste å sørge for
at den fungere ordentlig med irma. Gjøre ytterligere
utbedringer å legge til flere features.\n\nPotendielle
hindringer:\n\nDenne fungere heller ikke og jeg failer vilt.
Må gjøre mer playbook arbeid fra bunn av.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1552060880.046200"

}
][

{
"client_msg_id": "aa27ad54-f8f0-42d2-aab4-29f2e47d04b5",
"type": "message",

137

Malware Analysis Infrastructure

"text": "Hva jeg har gjort:\nEndret python scriptet til å sende
mindre biter av datasettet til api testing om
gangen.\nDiskutert potensielle frontend løsninger der hvor
scan results blir mer oversiktlig.\n\nHva jeg planlegger:\nSe
på trello om jeg finner noe å gripe tak i. Evt se på Windows
packer til Nikolai om han ikke får fikset det.
\n\nPotensielle hindringer:\nIRMA er VELDIG tregt til å
scanne virker det som. Må testes ordentlig
etterhvert.\nIgjen, helt forferdelig gui, og også
frustrerende api, må utforskes. ",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1552141486.053800"

}
][

{
"client_msg_id": "e2415a1c-e010-40c6-accf-ac5bbc036173",
"type": "message",
"text": "Hva jeg har gjort:\nKort økt, ryddet delvis i trello, så

over litt IRMA kode og bittelitt om hvordan implementere en
probe.\n\nHva jeg planlegger:\nFørst få igang python script
til å sammenligne forventet res vs faktisk res, så begynne å
se på loggemuligheter siden det er et stort krav fra
kgb\n\nPotensielle hindringer:\nDårlig form, ellers ingenting
programvare relatert i dag.",

↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1552315302.058000"

},
{

"client_msg_id": "9cb968fd-877e-402a-9b50-d3907e73080d",
"type": "message",
"text": "Hva har jeg gjort:\nEndelig slåss meg ferdig med den

tredje ansible cuckoo playbooken. Denne virker lovende og
fungerer ganske bra, har også flere prossecing moduler
allerede inkludert f. eks surricata. Fjernet også et par vmer
som ikke fungerte somm har kjørt i litt over 4 dager uten å
egentlig eksistere. Det var det som laget så mye bråk.\n\nHva
jeg planlegger:\nEnten benytte meg av packer image eller evt
laget et manuelt fåreløpig samt implementere automatisk
håndtering av vmware og image i playbooken sånn at et
ordentlig oppsett av cuckoo kan endelig komme til live. Burde
også få til en automatisk håndtering av medsendt conf fil for
moloch.\n\nPotensielle hindringer:\nProssecing modulen
mitmproxy fungerer ikke med python2, kun med python3. Hvert
fall den siste versjonen. Foreløpig bare bort kommentert. Så
langt virker dette ganske så lovende og burde egentlig
fungere relativt greit.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1552324578.063300",
"edited": {

"user": "UGQTTS29M",
"ts": "1552324640.000000"

}
},

138

Malware Analysis Infrastructure

{
"client_msg_id": "668fb043-5458-4245-bc5e-e35dee43fbbf",
"type": "message",
"text": "Hva jeg har gjort:\nFortsetter å jobbe med packer for

windows, virker som det er et problem med brannmuren.
Problemet med tilkobling av winrm\/ssh vedvarer. Problemet er
ikke vmware specific.\nDen klarer ikke sette opp TCP
tilkobling til ip:port\nHva jeg planlegger:\nFå til et
fungerende oppsett",

↪→
↪→
↪→
↪→
↪→
"user": "UGL9Y07FB",
"ts": "1552331715.064200",
"edited": {

"user": "UGL9Y07FB",
"ts": "1552340006.000000"

}
}

][
{

"client_msg_id": "e2f7b324-4604-4867-a057-ae1da9a05485",
"type": "message",
"text": "Hva har jeg gjort:\nLaget en windows vm manullet som

burde fungere.\nHar også begynt å implementere vmware
handling i playbooken. Installerer uten problemer. Så langt
har jeg ikke funnet et cli som fungerer ordentlig.\n\nHva jeg
planlegger:\nFinne en løsning som fungerer og spinne opp
cuckoo på kgb og koble til irma.\n\nPotensielle
hindringer:\nvmrun ved config av network adapters fungerer
ikke. PowerCLI burde være en løsning men virker som om det
kan være kronglete å implementere med ansible.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1552411925.068500"

},
{

"client_msg_id": "0c18d242-3a61-4510-b8d0-2363b3043709",
"type": "message",
"text": "Hva jeg har gjort:\nFortsatt å jobbe med packer +

windows. Nå ser det ut til at problemet skyldes at maskinen
skrur seg av\nHva jeg planlegger:\nFinne ut eksakt hvorfor
dette skjer, og hindre det fremover\nPotensielle
hindringer:\nLogs er veldig spredd, og dermed også vanskelige
å feilsøke",

↪→
↪→
↪→
↪→
↪→
"user": "UGL9Y07FB",
"ts": "1552419318.070100"

},
{

"client_msg_id": "071fe7a3-8d12-41ac-9c00-830fa71e15e7",
"type": "message",

139

Malware Analysis Infrastructure

"text": "Hva jeg har gjort:\nHar sett på samme Windows
Packer-filer som Nikolai, null resultat her heller.\nVet ikke
hva konkret feilen er, så vanskelig å fikse det.\nHverken
vanlig Makefile eller Makefile.cuckoo ender noe
annerledes.\nPotensielt en annen win-iso vil kunne
funke?\n\nHva jeg planlegger:\nStange hodet mot dette til
sprinten er over om ikke en av oss løser det.\nEllers rolig
pause-underholdning med IRMA-APIet og scripte tests
der.\n\nPotensielle hindringer:\nTydelig at WinRM ikke er
oppe, om det skyldes at win10 skrur seg av eller motsatt, vet
jeg ikke.\nSom Nikolai skrev er logs spredd, og viser seg å
være utfordrende å få innsyn i VMen på hva som går galt.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1552423358.076800"

}
][

{
"client_msg_id": "588447f2-f984-4f80-a071-740453972c0a",
"type": "message",
"text": "Hva jeg har gjort:\nKommet meg forbi et problem med

packer + windows, nådd neste. Nåværende problem er at VMet
ikke har nettverkstilgang og at det derfor ikke kan laste ned
nødvendig programvare. Fungerer fint i virtualbox,
nettverksproblemer i VMWare skyldes konfigurasjonen som
gjøres generelt i vmx_data. Virker som VMWare feilen varierer
etter miljø (fungerer på egen laptop, men ikke stasjonær)
(laptop bruker vmware 14.1 mens stasjonær og kgb bruker
15)\nHva jeg planlegger:\nDette problemet tror jeg skal være
ganske rett fram, så planen er fortsatt å løse dette og får
skvipet til å funke.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGL9Y07FB",
"ts": "1552493194.079300",
"edited": {

"user": "UGL9Y07FB",
"ts": "1552512109.000000"

}
},
{

"client_msg_id": "3dd0b993-3d8e-4b9a-bf39-11a2027e1ccb",
"type": "message",
"text": "Hva jeg har gjort:\nFortsatt på implementasjon av vmware

handling i playbooken. Nesten ferdig, mangler kun håndtering
av nettverk adapterene\nsom jeg tror jeg har funnet løsningen
på, med litt hint fra David. REST apiet funker, bare jeg som
hadde misforstått litt.\nHar også fått testet cuckoo og hele
playbooken i en vm.\n\nHva jeg planlegger å gjøre:\nFullføre
implementasjon og få REST apiet til å fungere. Samt teste
hele playbooken på nytt på clean image for å sørge for at alt
fungere 100%\n\nPotensielle hindringer:\nOppsett av REST api
gjennom ansible er vanskelig eller ikke mulig. Eller lett.
Hvem vet. Må også finne ut hvorfor\nå ta eierskap gjennom
chown ikke fungerer og er nok for vmware, må fortsatt ta
eierskap gjennom vmware gui.\nKan ha noe med at vm filer er
flyttet, noe som også må fikses gjennom ansible.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

140

Malware Analysis Infrastructure

"user": "UGQTTS29M",
"ts": "1552498263.079500",
"edited": {

"user": "UGQTTS29M",
"ts": "1552498434.000000"

}
}

][
{

"client_msg_id": "546480db-e77f-4991-a0e9-702c6770e8d2",
"type": "message",
"text": "Hva har jeg gjort:\nSosa mye, prøvd å fått wifi på

laptopen til å fungere. Great success, jeg fikk det til.
Skjønt hvordan jeg skal få satt opp vmrest gjennom ansible...
kopiere conf fil.. Eller tror jeg det blir ish grei skuring å
få gjort resten.\n\nHva planlegger jeg:\nFullføre ^. Muligens
også implementere et par comfort features som står nevnt på
trello. Evt kjøre full test igjen fra clean image?",

↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1552584088.085300"

}
][

{
"client_msg_id": "13331b2b-3d11-45bb-8d43-f65ba07584d7",
"type": "message",
"text": "Hva har jeg gjort:\nFikset cuckoo netverks adapter

håndtering. Yay:tada: Trenger fortsatt litt fiksing da.
Trenger også bedre håndtering av vm image og sånt, men den
fungerer i det minste helt automatisk nå, foruten vm filene
da.\n\nHva planlegger jeg:\nFix it ^. Kanskje et par comfort
features? mest sannsylig ikke. Kjøre igjennom en full test
igjen og sjekke at cuckoo faktisk fungerer som den
skal.\n\nHva har jeg lært:\nHusk \" og {{ }} når du holder på
med ansible. Me dumdum",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1552672628.088300"

},
{

"client_msg_id": "b45571da-66c1-4e79-9c46-31d5b2151fca",
"type": "message",
"text": "Hva jeg har gjort:\nFikset python-test script til å

fungere og printe dersom known false positives eller false
negatives oppstår.\n\nHva jeg planlegger:\nSe på å sette opp
så det ikke blocker og da ikke potensielt stopper alt fra å
få kjøre til testen er ferdig.\n\nPotensielle
hindringer:\nIRMA virker forferdelig tregt. Ved å kjøre
scriptet og bare sende med 2 av hver type fil (4
totalt),\nbrukte IRMA 37 sekunder på å returnere resultat.
Ved 10 av hver tar det mellom 1 min og 1 min 30.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1552673243.090100",
"edited": {

"user": "UGMTT84F9",

141

Malware Analysis Infrastructure

"ts": "1552673413.000000"
}

}
][

{
"client_msg_id": "866600e6-c127-4442-8190-a767ce3f69a2",
"type": "message",
"text": "Hva jeg har gjort:\nKommet med videre med packer + cukoo

+ windows skvipet, neste er at winrm sliter med å koble seg
til.\nHva jeg planlegger:\nHar fått det til å fungere med ssh
i en annen variant, noe som virker en del lettere. Så tenker
å konvertere til ssh",

↪→
↪→
↪→
↪→
"user": "UGL9Y07FB",
"ts": "1552774701.091200",
"edited": {

"user": "UGL9Y07FB",
"ts": "1552774732.000000"

}
}

][
{

"client_msg_id": "b7384704-d985-4153-a36a-54c1030c0287",
"type": "message",
"text": "Hva jeg har gjort:\n14\/03:\nSå på antivirus og hvordan

vi kunne legge til flere. Fant en ansible fil der man kunne
legge til lisensnøkler for visse antiviruser. Så om det var
mulig å skaffe trial versjoner av de nevnt i filen, men ingen
av dem kom med en lisensnøkkel.\nI dag:\nJobbet med rapport i
dag, sett litt på struktur av andre bacheloroppgaver, lagt
til stoff til rapporten på introduksjonskapittelet, mye tatt
fra forprosjektet. Har lagt til noe på arbeidsmetoder om
verktøy vi har brukt (Trello, Toggl), sikkert mye mer vi kan
ha her. Tror at eneste vi mangler på intro kapittelet er
øvrige roller og rapportstruktur. Lagt til Kongsbergs krav og
kladdet litt på teknologier.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMNQ83QS",
"ts": "1552928052.091600",
"edited": {

"user": "UGMNQ83QS",
"ts": "1552928401.000000"

}
},
{

"client_msg_id": "1c52e74e-a344-4805-a225-67ff12f6d3e7",
"type": "message",
"text": "Hva har jeg gjort: \ntestet cuckoo fra bunn av, ble ikke

ferdig for vmware er teit og ansible er, og jeg er
teit.\n\nGjøre videre: \nFix it",

↪→
↪→
"user": "UGQTTS29M",
"ts": "1552928540.095100"

},
{

"client_msg_id": "e2c26401-3163-480a-8bf6-0a31b8e3bd1b",

142

Malware Analysis Infrastructure

"type": "message",
"text": "Hva jeg har gjort:\nSå på rapport oppsettet for

forståelsens skyld, og prøvde å aktivere en ekstra antivirus
for IRMA (Bit Defender)\n\nHva jeg planlegger:\nSette opp
flere evaluation\/trials for antivirus og teste, prøve å leke
med tags for å markere om en fil er suspekt, trygg, eller
farlig.\n\nPotensielle hindringer:\nDersom APIet og videre
funksjonaliteten i IRMA er så begrenset som jeg mistenker, så
kan det kreve veldig mye å få implementert noe form for
automatisert tagging.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1552954087.100100"

}
][

{
"client_msg_id": "2fe42ca7-abd2-4e4f-8b8b-055b321befd5",
"type": "message",
"text": "Hva har jeg gjort:\nDouble quotes er sykt teit, og jeg

har møka med å få ansible til å godta \" i en command i hele
dag. Sykt tett. Ikke salty i det hele tatt. Postet på reddit
for hjelp, om det ikke er noen løsning blir det å kopiere
over hele kommandoen og kjøre lokalt på cuckoo maskinen som
et script. Noe som er teit.\n\nHva jeg planlegger:\nFikse
det. Så verifisere at ansible playbooken fungerer.
Igjen.\n\nPotensielle hindringer:\nAnsible",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1553015127.103300",
"reactions": [

{
"name": "joy",
"users": [

"UGL9Y07FB"
],
"count": 1

}
]

},
{

"user": "UGMTT84F9",
"type": "message",
"subtype": "channel_purpose",
"ts": "1553015262.104100",
"text": "<@UGMTT84F9> set the channel purpose: Legg scrum daily

review her:\nHva jeg har gjort\nHva jeg
planlegger?\nPotensielle hindringer.\n\nKun daily reviews
skal postes her. Alt annet vil bli slettet. Memes, tull,
seriøs diskusjon skal til sine respektive channels.",

↪→
↪→
↪→
↪→
"purpose": "Legg scrum daily review her:\nHva jeg har gjort\nHva

jeg planlegger?\nPotensielle hindringer.\n\nKun daily reviews
skal postes her. Alt annet vil bli slettet. Memes, tull,
seriøs diskusjon skal til sine respektive channels.",

↪→
↪→
↪→
"reactions": [

{

143

Malware Analysis Infrastructure

"name": "triumph",
"users": [

"UGL9Y07FB"
],
"count": 1

}
]

},
{

"client_msg_id": "91f27293-eb68-40dc-a243-68847180b7cb",
"type": "message",
"text": "Hva jeg har gjort:\ndokumentert eksakt hva som er

installert i packer boxes, og sett godt over hva som blir
gjort.\nHva jeg planlegger?\nLese fler artikler jeg har
funnet om dynamisk analyse for bl.a hvilke software software
vi burde ha med eller andre generelle tips\nPotensielle
hindringer:\nPacker problemet jeg feilsøker på sida er
irriterende, ellers går det nok fint",

↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGL9Y07FB",
"ts": "1553041076.105700",
"edited": {

"user": "UGL9Y07FB",
"ts": "1553041174.000000"

}
}

][
{

"client_msg_id": "ee66603e-5894-498c-afce-a0f5fc92ba55",
"type": "message",
"text": "Hva jeg har gjort:\nSkrevet om en hel setning i

rapporten, gjort backup av et helt script.\n\nHva jeg
planlegger:\nHar ikke snøring atm\n\nPotensielle
hindringer:\nPersonlig helse :sunglasses:",

↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1553103972.107400",
"edited": {

"user": "UGMTT84F9",
"ts": "1553103992.000000"

}
},
{

"client_msg_id": "9f365af0-1eef-4ba3-986a-e47aa3b37765",
"type": "message",
"text": "Hva har jeg gjort:\nPrøvd å få start vm til å fungere,

ikke fått det til. Tror jeg må få lit feedback og ideer fra
dere eller noe andre. Er kind of lost.\n\nHva jeg
planlegger:\nFix\n\nPotensielle hindringer:\nsfljsf, teit.
møk",

↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1553104804.109100"

}
][

{

144

Malware Analysis Infrastructure

"client_msg_id": "dec1d867-235f-4c33-90b8-fc8461e75576",
"type": "message",
"text": "Hva jeg har gjort:\nFikset Bitdefender failures\nLagt

til litt mer på teknologidelen av rapporten\nPrøvd å legge
til flere antivirus\n\nHva jeg planlegger:\nSe mer på
antivirus",

↪→
↪→
↪→
"user": "UGMNQ83QS",
"ts": "1553184496.110200",
"reactions": [

{
"name": "+1",
"users": [

"UGMTT84F9"
],
"count": 1

}
]

}
][

{
"client_msg_id": "b388f3c5-63ce-42fc-bbda-6e43f1b425dd",
"type": "message",
"text": "Hva jeg har gjort:\nBegynt design av kiosk

m\/interaksjon med resten av systemet.\nWrapper rundt api
design-tanker, kan kontrollere statisk+dynamisk analyse flow,
pluss sette tags på hensiktsmessig måte\n\nHva jeg
planlegger:\nSe mer på designet, gå mer low level i
kiosk-krav.\n\nPotensielle hindringer:\nHvordan få til en
hensiktmessig flow fra disk settes inn til resultat er klart,
og hvordan håndtere det så bruker får nytte av det.\n-
Systemet skal være isolert; hvor isolert -> Skal det være
exit points for scannede filer, isåfall hvor skal det så
være?\n- Hvis legge opp til mulig AD: ca hvordan er
AD-strukturen til kgb -> hva slags identifiers er
nødvendig for å gjøre filoverføring av trygge filer
brukervennlig?",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1553274767.118700"

},
{

"client_msg_id": "537c47e9-a827-4c50-81d8-289172ddfd82",
"type": "message",
"text": "Hva har jeg \ntalked'n stuff, planned'n stuff. Vmware er

teit.\n\nhva jeg planlegger:\nskrive rapport.
Vmware.\n\nPotesielle hindringer:\nVmware",

↪→
↪→
"user": "UGQTTS29M",
"ts": "1553305009.119700"

}
][

{
"client_msg_id": "d0343a2b-4df0-4c0f-91b8-317e37af53e4",
"type": "message",

145

Malware Analysis Infrastructure

"text": "Fredag 22\/3:\nHva jeg gjorde:\nLa til F-prot
antivirus\nPrøvde å legge til Sophos men var utdaterte
instrukser på IRMA og Sophos var teit",

↪→
↪→
"user": "UGMNQ83QS",
"ts": "1553501881.121000"

}
][

{
"client_msg_id": "1c8307f4-fd61-4110-ac97-baf4329b99c1",
"type": "message",
"text": "Fredag 22\/3\nHva jeg har gjort:\nMasse snakking og litt

rapport",↪→
"user": "UGQTTS29M",
"ts": "1553613556.125900"

},
{

"client_msg_id": "b79a71c3-9c2a-4479-905f-f94c7a7fff1e",
"type": "message",
"text": "Hva jeg har gjort:\nAktivert ClamAV, comodo, LIEF, PEID,

StaticAnalyzer og Virustotal med god hjelp fra Martin der jeg
fikk error. Prøvd å aktivere Eset, NSRL og AVG. Lagt til et
avsnitt på rapporten.\n\nHva jeg planlegger:\nHar gått
gjennom alle antivirusene IRMA har dokumentasjon på. Vil
fortsette å gå gjennom de som IRMA støtter men ikke har
dokumentasjon på. Føler meg ferdig med Vagrant på rapporten
så går over til å skrive om antivirus snart.\n\nPotensielle
hindringer:\nSom skrevet over så har IRMA en del flere
antivirus de støtter men som de har ingen dokumentasjon på,
som kan bli vanskelig å aktivere. I tillegg gir clamAV error
på hver eneste scan hittil og PEID, LIEF, staticanalyzer
vises som aktivert på IRMA men gjør ingen scanning.
Bitdefender har også plutselig begynt å gi errors. Verdt å
se på senere.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMNQ83QS",
"ts": "1553613772.131400"

},
{

"client_msg_id": "97c6e672-ecad-4b59-91aa-c1da29dffff2",
"type": "message",
"text": "Hva jeg har gjort:\nPrøvde ny måte å løse VM start på.

Fungerte ikke. Har tenkt på potensiell ny løsning. Om det
ikke fungerer tror jeg gir opp, for vmware workstation.
Muligens fikse for esx da det tilslutt blir brukt. \nHoldt på
med å legge inn AV sammen med Olav. Skrev noe på
rapport\n\nVidere: \nFortsette cuckoo, fortsette rapport.",

↪→
↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1553613793.132000"

}
][

{
"client_msg_id": "15c170c6-a4eb-4bb8-ac48-1faad63a4837",
"type": "message",

146

Malware Analysis Infrastructure

"text": "Hva jeg har gjort:\nFunnet en løsning på git sub-module
problemet. En alternativ løsning er å fjerne alle spor av
sub-modules og bare legge til den ene fila manuelt i
repoet.\nStartet smått på rapportseksjonen IRMA.\n\nHva jeg
planlegger:\nVisualisere hvordan IRMA seksjonen i rapporten
bør bygges opp.\nPrøve å tenke ut en måte og samspille
rapporten til en minimumsgrad så det blir mindre å skrive om
senere+mindre unødvendig skriving fra alle for å dekke andres
stoff.\n\nPotensielle hindringer:\nLite coherency mellom
gruppemedlemmer så mye informasjon i rapporten fort blir
gjengitt redundantly i flere seksjoner på rad (mye plass til
å beskrive IRMA var både under IRMA og Cuckoo som var neste
seksjon. Rotete.)",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1553708380.137500"

},
{

"client_msg_id": "d66aec4e-b4ef-4fdf-8eaa-cba489767a9d",
"type": "message",
"text": "Hva har jeg gjort:\nGitt opp autostart av vm med vmware.

Testet cuckoo uten autostart. Liten bug med lasting av vm når
cuckoo kjører, tester nå burde være i orden nå snart.\n\nHva
jeg planlegger:\nVerifisere at cuckoo fungerer. Skriver
ferdig cuckoo delen i rapporten + muligens litt
virtualisering. Så muligens se på ESX?\n\nPotensielle
hindringer:\nCuckoo vm issue var mer enn liten bug?",

↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1553708638.140100"

}
][

{
"client_msg_id": "25151eec-cfba-478f-8829-fa4e7cd27851",
"type": "message",
"text": "Hva jeg har gjort:\nDrevet med mer AV testing i går og i

dag. Tenker jeg gir meg med å prøve å aktivere flere. Er
4(Zoner, Virusblokada, McAfeeVSCL, Kaspersky\t) til som ikke
er prøvd aktivert men nettsidene deres var vanskelig å
navigere og fant ikke en linux versjon. 11 AVer er velykket
aktivert i IRMA men noen er veldig ustabile og er \"skrudd
av\" per nå. Noen ganger virker de, andre ganger ikke. Noen
som er aktivert gir ofte error state i IRMA, spesielt
Bitdefender og Comodo.\n\nHva jeg planlegger:\nIkke helt
sikker hva jeg skal gjøre praktisk akkurat nå. På rapporten
er det mer som kan skrives og dokumentasjon kan muligens
utbedres.\n\nPotensielle hindringer:\nUstabile AV-er, ustabil
IRMA.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMNQ83QS",
"ts": "1553783788.004600"

},
{

"client_msg_id": "27c8b45f-869e-4025-8ea6-98bf0e710f36",
"type": "message",

147

Malware Analysis Infrastructure

"text": "Hva har jeg gjort:\nSkrevet mer i rapporten. Mangler
fortsatt en del. Fått testet at cuckoo fungerer som den skal.
Kjører fortsatt playbook siden jeg glemte å gi mer enn 512
mb.\n\nHva planlegger jeg:\nSkrive rapport. Få cuckoo
ordentlig inn i IRMA. Streamlinet håndtering av cuckoo i
playbooken og evt vurdere hva som kan fjernes i vårt
tilfelle.\n\nPotensielle hindringer:\nPlaybooken trenger mere
fixes.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1553808283.006900"

}
][

{
"client_msg_id": "70342846-1314-47a2-9962-259251e2bdca",
"type": "message",
"text": "Hva jeg har gjort:\nSkrevet ish litt over en halv side

om antivirus.\n\nHva jeg planlegger:\nHar ikke skrevet noe
spesifikt om antivirusene vi har nå eller implementasjon av
dem.\n\nPotensielle hindringer:\nSnart helg",

↪→
↪→
↪→
"user": "UGMNQ83QS",
"ts": "1553862098.008300",
"edited": {

"user": "UGMNQ83QS",
"ts": "1553862129.000000"

}
},
{

"client_msg_id": "bfdfa7e0-31e4-4c59-b2da-d8272517788a",
"type": "message",
"text": "Hva jeg har gjort:\nSkrevet om IRMA seksjon til å

omhandle Malware Analyse Platform teknologier, begynt å
diskutere OPSWAT vs IRMA vs VirusTotal der og utdype mer om
alternativ+krav\n\nHva jeg planlegger:\nImportere gamle
notater videre\nFortsette kiosk+nødvendige infrastruktur
tanker videre\n\nPotensielle hindringer:\nPersonlige
problemer, lite klarhet i hvordan rapporten konkret bør se ut
(bør være intuitivt nok til å ikke bli altfor stort
problem)",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1553882626.012300"

}
][

{
"client_msg_id": "20470966-a842-4865-8dac-7c1c30f8da40",
"type": "message",
"text": "Hva jeg har gjort:\nSkrevet ned hvordan man enabler

antivirusene vi har fått til hittil i rapporten, men muligens
overflødig hvis vi legger alt i ansible script? Også tatt en
tcpdump mens en scan foregår.\n\nHva jeg
planlegger:\nUsikker\n\nPotensielle hindringer:\nOgså litt
usikker på rapportstruktur, har lagt til det jeg skrev i
implementation seksjonen av rapporten.",

↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMNQ83QS",

148

Malware Analysis Infrastructure

"ts": "1554125374.014500",
"thread_ts": "1554125374.014500",
"reply_count": 1,
"reply_users_count": 1,
"latest_reply": "1554152922.016200",
"reply_users": [

"UGL9Y07FB"
],
"replies": [

{
"user": "UGL9Y07FB",
"ts": "1554152922.016200"

}
]

},
{

"client_msg_id": "86bba503-09bc-4e71-9c66-5e8c585a36b3",
"type": "message",
"text": "Hva har jeg gjort:\nFå cuckoo til å fungere.\n\nHva

planlegger jeg:\nFikse på playbook sånn at så mye som mulig
går av seg selv. Så evt fikse på configer også sånt. Evt
vurdere hva som er overflødig og kan fjernes fra
sluttprodukt. Skrive mer i rapporten.",

↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1554127625.016100"

},
{

"client_msg_id": "28279047-9aa6-4c84-af02-e04074743dd7",
"type": "message",
"text": "Veldig greit å ha gjort det manuelt før man skriver det

om til ansible :smile:",↪→
"user": "UGL9Y07FB",
"ts": "1554152922.016200",
"thread_ts": "1554125374.014500",
"parent_user_id": "UGMNQ83QS"

}
][

{
"client_msg_id": "e0f4abda-b2db-4829-a846-3e467a4dcd5f",
"type": "message",
"text": "Hva jeg har gjort:\nBegynt med automatisering av AV-er.

Lagt til peid, static analyzer og lief. Ble akkurat ferdig
med AVG, Avast og Comodo men fikk ikke testet før vi måtte
dra.\n\nHva jeg planlegger:\nFortsette med ansible scriptet.
Forbedre det jeg har skrevet i rapporten.\n\nPotensielle
hindringer:\nHar ikke fått lagt til Trid og skjønner ikke
hvordan akkurat nå. Jeg trodde det skulle gjøres på samme
måte som peid, static analyzer og lief men det går tydeligvis
ikke? Har vært lagt til i Irma før...",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMNQ83QS",
"ts": "1554221052.019200"

},
{

149

Malware Analysis Infrastructure

"client_msg_id": "441ce02e-ea31-4c25-8a60-11c541ff6af4",
"type": "message",
"text": "Hva har jeg gjort:\nCuckoo\n\nHva planlegger jeg:\nSamme

som forrige",↪→
"user": "UGQTTS29M",
"ts": "1554226102.020000"

}
][

{
"client_msg_id": "b0147612-96d2-4358-a0a2-c9dfd57abea7",
"type": "message",
"text": "Hva jeg har gjort:\nFått fikset problemene til AVG,

Avast og Comodo. Men har sletet med ClamAV resten av
tiden.\n\nHva jeg planlegger:\nFortsette med scriptet",

↪→
↪→
"user": "UGMNQ83QS",
"ts": "1554387073.021000"

},
{

"client_msg_id": "b396a06c-3cf1-4fef-96a3-063e7d7afb29",
"type": "message",
"text": "Hva jeg har gjort:\nJobbet med pipeline, sett på

muligheter. F.eks ved å bruke
<https:\/\/github.com\/airbus-seclab\/rebus> (har en
fungerende provisjoneringsløsning om denne er best). Et
alternativ er å ha et eget api entrypoint som pipeliner scans
ved å kommunisere med API'en lokalt. Funnet et par løsninger
for å raskere sette opp irma, og potensielt noen for raskere
skans. Delvis planlagt designet for pipeline i tillegg.\nLagt
til Yara støtte og skiftet over til prod i nye irma repo\nHva
jeg planlegger:\n IDAG: Fikse windows winrm problemer
ettersom det automatisk brukes av ansible og eventuelle
nettverksproblemer som kommer av at vi bruker vmware\n
SENERE: Diskutere pipeline med grp, og teste
effektivitetsløsninger. Oppdatere Kongsberg om fremgang",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGL9Y07FB",
"ts": "1554393974.025300",
"edited": {

"user": "UGL9Y07FB",
"ts": "1554394606.000000"

},
"attachments": [

{
"service_name": "GitHub",
"title": "airbus-seclab\/rebus",
"title_link":

"https:\/\/github.com\/airbus-seclab\/rebus",↪→
"text": "REbus facilitates the coupling of existing tools

that perform specific tasks, where one's output will
be used as the input of others. -
airbus-seclab\/rebus",

↪→
↪→
↪→
"fallback": "GitHub: airbus-seclab\/rebus",
"from_url": "https:\/\/github.com\/airbus-seclab\/rebus",
"thumb_url":

"https:\/\/avatars0.githubusercontent.com\/u\/25298315?s=400&v=4",↪→

150

Malware Analysis Infrastructure

"thumb_width": 250,
"thumb_height": 250,
"service_icon":

"https:\/\/a.slack-edge.com\/bfaba\/img\/unfurl_icons\/github.png",↪→
"id": 1,
"original_url":

"https:\/\/github.com\/airbus-seclab\/rebus"↪→
}

]
},
{

"client_msg_id": "eb51f3be-20df-4501-84c9-24171495edd3",
"type": "message",
"text": "Hva har jeg gjort:\nFikset ip problem med vm som er fra

samme image. Sjekket at playbook fungerer som planlagt på
nytt. Det gjorde den. Trenger litt kjærlighet på noe config
men ellers greit.\n\nHva planlegger jeg:\nSkrive i rapporten
og fikse dokumentasjon + README til å reflektere endringer og
generelt oppdatere den. Muligens også utbedre noe
funksjonalitet.",

↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1554419518.027100"

}
][

{
"client_msg_id": "1e9d314d-56a1-42ff-b388-bfa11f4c73e4",
"type": "message",
"text": "Hva har jeg gjort:\nLagt inn feil ip i vmen igjen?

Skrevet om Readme og installasjonsguide i git repo. Satt opp
cuckoo igjen. Nå skal den være mer eller mindre i
orden.\n\nHva planlegger jeg:\nSkrive ferdig doku. Skrive mer
i rapporten. Legge til ESX støtte.\n\nPotensielle
hindringer:\nEsx er værre en workstation.",

↪→
↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1554476794.031900",
"reactions": [

{
"name": "cry",
"users": [

"UGMTT84F9"
],
"count": 1

},
{

"name": "+1",
"users": [

"UGL9Y07FB"
],
"count": 1

}
]

},
{

151

Malware Analysis Infrastructure

"client_msg_id": "cca37045-803b-499c-bdb5-27002b4788fa",
"type": "message",
"text": "Hva jeg har gjort:\nKioskløsning, funnet noen konkrete

alternativer til å oppdage tilkoblede enheter i
kiosken\nEnder antageligvis opp med listener for å finne
\"ACTION\"=\"add\" og uevents\nSatt opp igjen så irma faktisk
starter lokalt til bruk for api-testing+api-docs\n\nHva jeg
planlegger:\nImplementere kiosk demo\n\nPotensielle
hindringer:\nVi har redigert default environment-filer
(prod.yml referer til vmware istedenfor for å bare lage
vmware_prod.yml til samme formål)\nDette er fantastisk
irriterende når man kaster bort tid på å prøve og sette opp
default env og det ikke funker.\nVet ca hva <@UGL9Y07FB>
planlegger, men aner ikke hvordan det blir utført. Føler jeg
sitter i tåka på hvordan connections mellom kiosk og irma
skal kodes.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1554484332.039500",
"edited": {

"user": "UGMTT84F9",
"ts": "1554484405.000000"

},
"thread_ts": "1554484332.039500",
"reply_count": 1,
"reply_users_count": 1,
"latest_reply": "1554485861.039900",
"reply_users": [

"UGL9Y07FB"
],
"replies": [

{
"user": "UGL9Y07FB",
"ts": "1554485861.039900"

}
]

},
{

"client_msg_id": "520276e4-a86b-42f0-8db5-16d9613964a6",
"type": "message",
"text": "Per nå brukes orginal prod slik at vi har fungerende

windows maskin for avs. I første omgang holder det med at
kiosken starter en skann hos IRMA i likheten av det du har
kodet før for å teste irma. Etter det er gjort kan man utvide
ved å legge til tags på filer tilhørende den returnerte skann
id'en",

↪→
↪→
↪→
↪→
↪→
"user": "UGL9Y07FB",
"ts": "1554485861.039900",
"edited": {

"user": "UGL9Y07FB",
"ts": "1554485916.000000"

},
"thread_ts": "1554484332.039500",
"parent_user_id": "UGMTT84F9"

152

Malware Analysis Infrastructure

}
][

{
"client_msg_id": "6624afce-3a83-4ae6-a691-4d30f08f4d28",
"type": "message",
"text": "Hva har jeg gjort:\nFikset \"ferdig\" ansible playbooken

for cuckoo og pushet til github\n\nHva jeg
planlegger:\nSkrive mer om det i rapporten. Legge til
esx.\n\nPotensielle hindringer:\nEsx er verre en
workstation",

↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1554746114.041700"

},
{

"client_msg_id": "6882b7c7-d6a8-4d9a-a8c3-0aa3d41088aa",
"type": "message",
"text": "Hva jeg har gjort:\nGjort klart windows på hjemmepc til

å jobbe i framtida. Ellers opptatt med ikke-skolefaglige ting
i dag.\n\nHva jeg planlegger:\nFortsette arbeid fra fredag på
skolen.\n\nPotensielle hindringer:",

↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1554752932.043900"

}
][

{
"client_msg_id": "3809e065-dfb4-49e4-aedf-564262db006a",
"type": "message",
"text": "Hva jeg har gjort:\nI går og i dag. Fikset clamAV

problemet men fikk problemer med de AV-ene som henter ting
fra nettet. Har ikke klart å fikse de men scriptet er i
prinsippet fungerende.\n\nHva jeg planlegger:\nBegynne å
debugge probes, se på rapport og kanskje windows AV-er.",

↪→
↪→
↪→
↪→
"user": "UGMNQ83QS",
"ts": "1554816704.045600"

},
{

"client_msg_id": "0ae60fb4-e1e0-4fe5-be94-77b86502dbeb",
"type": "message",
"text": "Hva har jeg gjort:\nPrøvd å innstallere esx, fikk

installert gratis versjonen. Trenger ikke gratis versjonen.
Prøvde det, fikk ikke prøve lisens. Sia ga med beskjed om at
den ikke fantes...\n\nHva planlegger jeg:\nPrøve igjen
da..\n\nPotensielle hindringer:\nvmware",

↪→
↪→
↪→
↪→
"user": "UGQTTS29M",
"ts": "1554829192.047200",
"reactions": [

{
"name": "heart",
"users": [

"UGMTT84F9"
],
"count": 1

}

153

Malware Analysis Infrastructure

]
},
{

"client_msg_id": "f26fa495-f897-4dd7-a5a2-928fa9dcc9ed",
"type": "message",
"text": "Hva jeg har gjort:\nFunnet en teori om at livet ville

vært enklere med ritalin eller lignende\n\nHva jeg
planlegger:\nHva som helst at this point\n\nPotensielle
problemer:",

↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1554837784.050100"

}
][

{
"client_msg_id": "2c2aaf8a-8a92-45d6-aa11-c547432c9bc5",
"type": "message",
"text": "*Hva jeg har gjort:*\nTesta metoder for å gjøre vagrant

provisjonering fortere, og funnet flere.\nBegynt på NSRL
møter på problemet når jeg skal \"bygge\" dbene (tror det
bare vil si at jeg skriver om formatet på fila til
key=value)\nPlanlagt og skrevet litt for rapporten, og
utforsket multiscanner. Jobbet med metodikk for pipeline, må
først teste ut API'en for å finne ut mer eksakt hvordan den
funker\n*Hva jeg planlegger:*\nFikse NSRL db bygging, er i
kommunikasjon med i IRC for dette + videre feilsøking og
forståelse av kode.\nTeste IRMA API og begynne med kode for
pipeline (bl.a se på hva som returneres i hvert stage av
pipeline for å planlegge logikken)\nFå sendt en demo\nTeste
parallellisering av IRMA scans og skrive mer
notater\n*Potensielle problemer:*\nKan oppstå vanskeligheter
med å få løst NSRL problemet, koden er såpass komplisert så
forståelse er tidkrevende",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGL9Y07FB",
"ts": "1554936171.050300",
"edited": {

"user": "UGL9Y07FB",
"ts": "1554936624.000000"

}
}

][
{

"client_msg_id": "66423e9b-653e-4e55-83da-3eea5a3378b6",
"type": "message",
"text": "Hva jeg har gjort:\nSett på om noen AV-er trengs å bli

debugget. Bitdefender brukte å faile ofte før men etter 300+
scans har den bare failet 2 ganger. Har prøvd å gjøre debug
utifra den her:
<https:\/\/irma.readthedocs.io\/en\/latest\/troubleshooting\/debug.html>.
Og ifølge den var det ikke noe i veien med Bitdefender, la ut
output i google drive under docs. Ingen ande AV-er har gitt
errors, men ser ut som mcAffe aldri reagerer på noe.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMNQ83QS",
"ts": "1554993838.053600",

154

Malware Analysis Infrastructure

"reactions": [
{

"name": "heart",
"users": [

"UGL9Y07FB",
"UGMTT84F9"

],
"count": 2

}
]

},
{

"client_msg_id": "3098f03d-4961-42c4-8850-afa400d10ac3",
"type": "message",
"text": "Hva har jeg gjort:\nEndelig fått til å sette noen

skeleton filer til livet for kiosken.\nTygd gjennom en del
dokumentasjon på hvordan man kan parse events fra kernel i
python;\nSlik kan man oppdage nye enheter plugget inn.\n\nHva
jeg planlegger:\nFå istand enkel uevent lesing for å dynamisk
oppdage nye enheter.\n\nPotensielle
problemer:\nDokumentasjonen er ikke særlig selvforklarende og
vanskelig å forstå seg på.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1555018625.058400"

},
{

"client_msg_id": "56560c03-066e-4fdc-87e6-afef5b1531f4",
"type": "message",
"text": "*Hva jeg har gjort:*\nKommet videre med NSRL, metoden

for å bygge bygger på utdatert et utdatert bibliotek (støttes
ikke lenger i python3, som venv'et kjøres i)\nSkrevet for
rapport\n*Hva jeg planlegger:*\nFikse NSRL db bygging +
videre feilsøking og forståelse av kode. Eventuelt finne en
løsning for å automatisk sette opp venvet i python2 eller se
på andre alternativer for dette\nTeste IRMA API og begynne
med kode for pipeline (bl.a se på hva som returneres i hvert
stage av pipeline for å planlegge logikken)\nFå sendt en
demo\nTeste parallellisering av IRMA scans og skrive mer
notater\n*Potensielle problemer:*\nKan oppstå vanskeligheter
med å få løst NSRL problemet, mye utdatert",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGL9Y07FB",
"ts": "1555028866.058700",
"edited": {

"user": "UGL9Y07FB",
"ts": "1555029002.000000"

}
}

][
{

"client_msg_id": "e715d2d6-0378-4f27-a4dc-b6f2dfa7c5a3",
"type": "message",

155

Malware Analysis Infrastructure

"text": "*Hva jeg har gjort:*\nNSRL er ca ferdig, burde forbedre
noe kode, men vil teste med IRMA først\nFunnet ut hvor jeg
kan slenge inn et kall mot pipelinen i IRMA koden\n*Hva jeg
planlegger:*\nTeste og evt fikse resterende av NSRL og
begynne å skrive kode for pipeline\nFå sendt en
demo\n*Potensielle problemer:*",

↪→
↪→
↪→
↪→
↪→
"user": "UGL9Y07FB",
"ts": "1555270828.001600"

}
][

{
"client_msg_id": "a61899ca-d1d5-448b-9f12-93e78339f984",
"type": "message",
"text": "Hva jeg har gjort:\nNye ledetråder funnet for udev og

tilhørende python wrapper-bibliotek, so thats nice\nForstår
pyudev wrapperen, mangler udev bibliotek kjennskap\n\nHva jeg
planlegger:\nDypdykk i udev biblioteket for kommunikasjon
mellom kernel og user space\n\nPotensielle
hindringer:\nKomplisert dokumentasjon å lese gjennom og
forstå",

↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1555630291.003100"

}
][

{
"client_msg_id": "af47ce2f-81a3-485e-adf8-1368608401dc",
"type": "message",
"text": "Hva jeg har gjort:\nSett på windows AV provisjonering og

implementert 1. IRMA støtter flere men da må vi lage rollene
selv. Begynt å implementere AV scriptet mitt som flere roller
men har ikke kommet så langt der ennå for har fokusert på en
type error.\n\nHva jeg planlegger:\nFortsette med å lage
flere roller både får linux og windows.",

↪→
↪→
↪→
↪→
↪→
"user": "UGMNQ83QS",
"ts": "1555851558.002400",
"edited": {

"user": "UGMNQ83QS",
"ts": "1555852032.000000"

}
}

][
{

"client_msg_id": "a8e7c58f-3dd4-4b89-b65e-910549ecaaef",
"type": "message",

156

Malware Analysis Infrastructure

"text": "Hva jeg har gjort:\nBlitt ferdig med linux av roller, de
gir ihvertfall ingen errors nå men skulle gjerne gjort en
restart av IRMA for å faktisk se om de virker men det kan tas
senere. Fant ut i dag at noe av det originale av scriptet
mitt var overflødig for det hadde allerede blitt gjort i noen
av rollene :disappointed: Men var fortsatt noe jeg kunne
legge til. Begynte å lage en oversikt over hvilke av-er som
ikke virket og prøvde å sjekke om noen hadde noen raske
fixes, fikk lagt til et par flere samtidig.\n\nHva jeg
planlegger:\nPrøve å lage noen windows
av-roller\n\nPotensielle hindringer:\nTar ish 5 min å sjekke
om en spesifikk rolle fungerer så tar fort en del tid når du
gjør flere syntax feil på rad xD",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMNQ83QS",
"ts": "1556027806.007200"

}
][

{
"client_msg_id": "061d6351-5957-42b7-88db-828923d4b45e",
"type": "message",
"text": "Hva jeg har gjort:\nFunnet ut hvordan håndtere udev til

å finne ut når en device settes inn i maskin, og noen
potensielle attributes som ser ut til kunne fungere til å
identifisere alle normale filsystem og formaterte
drives.\n(ID_FS_TYPE og subsystem=\"block\")\n\nHva jeg
planlegger:\nImplementere koden som skal ligge over det low
level nivået; mount drives, sende til ekstern maskin (IRMA),
\n\"long term\": kreve autentisering for å sende til scan
(Active Directory login?).\n\nPotensielle problemer:\nUSB
attacks og hvordan ikke motarbeide countermeasures til det i
kodingen.\nAutentisering er viktig, men også det jeg antar
blir mest problematisk å implementere.\nFortsatt ikke helt
sikker på hvordan overføre hele disker, men tror det går
greit med http(s) kopiering av mounted drives rett og
slett.\nAccountance buddies er ubrukelig..",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1556144247.022400"

}
][

{
"client_msg_id": "520a6475-e6a7-4da0-86f0-13a841bebeb2",
"type": "message",

157

Malware Analysis Infrastructure

"text": "Hva jeg har gjort:\nKodet delen for å plukke opp uevents
for block-devices og hente FS_TYPE og DEVNAME til mounting
senere.\nFunnet en (forhåpentligvis) dynamisk kodesnutt som
kan brukes til å mounte nye devices for sending til
IRMA.\n99% bestemt meg for å bruke rsync for å overføre
filene.\n\nHva jeg planlegger:\nTeste at de nåværende
funskjonene nå fungerer i det hele tatt.\nTilpasse
IRMA-frontend scan wrapperen fra tidligere.\nReise til gjøvik
for å finne design skissen min for å se hva jeg har
glemt.\n\"Long term\": Implementere enkel try-catch error
handling.\n\nPotensielle problemer:\nAner ikke hvordan jeg
skal kunne skrive noe automatiserte tester for casene her, så
må gjøres manuelt.\nActive Directory authorisation uheldigvis
utenfor midlertidig scope.\nUsikker på hvor filoverføringen
bør ende og håndteres;\n- TCP port på kgb, sende filene til
\/tmp\/<dir> der, så videre til IRMA?\n- Rett til IRMA
frontend og håpe alt går slik det skal der?\n- Annet?",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1556316672.012900"

}
][

{
"client_msg_id": "f4406b59-3e37-4a57-8c6e-36b5d7e0946e",
"type": "message",
"text": "Hva jeg har gjort:\nTestet kode, refaktorert kode, addet

ny kode, totalt endret mount funksjonen. Nå funker den, men
error handling er fraværende i forhold til clib
approachen.\n\nHva jeg planlegger:\nMøte i morgen og
diskutere vegen videre.\n\"Autorisering\"\nImplementere rsync
filoverføring+vise resultat når ferdig\n\nPotensielle
problemer:\nLite tid igjen, mangler vi fortsatt logging og kø
som var i den originale kravspeken?",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1556665668.017600"

}
][

{
"client_msg_id": "5d7434dd-a26b-4a5c-aff2-d1f616d3cc3d",
"type": "message",
"text": "Hva jeg har gjort:\nFant python LDAP library som

håndterer AD communication enkelt.\nFikk oppgaver
udtelt.\n\nHva jeg planlegger:\nLitt koding, mye
skriving\/lesing\/retting.\n\nPotensielle problemer:\nIngen
ordentlig mulighet til å teste LDAP biblioteket, så blir bare
litt framework som _burde_ funke, men er mulig det ikke
går.",

↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1556760171.020400"

}
][

{
"client_msg_id": "f8a08eea-fc96-426b-a46a-b6eff90860f4",
"type": "message",

158

Malware Analysis Infrastructure

"text": "Hva jeg har gjort:\nStudert eksisterende windows av
roller før jeg begynte å implementere min egen. Har ikke
begynt å teste men er 99% sikker på at det ikke virker
akkurat nå;)\nBegynt å lage use case og misuse case sammen
med beskrivende tabeller. Skrevet litt om funksjonelle,
operasjonelle og eksterne krav.\n\nHva jeg planlegger:\nTeste
ut windows av rolle og prøve å få det til å virke men blir
ikke førsteprioritet. Gå over hva jeg har skrevet i kravspek
og føre inn i Overleaf. Lage sekvensdiagram.\n\nPotensielle
hindringer:\nVar en spesifikk ting i win av rollen som jeg
ikke forsto. Med emsisoft sin rolle som eksempel så brukes
det en install_path variabel. Jeg skjønner funksjonen den har
i rollen men ikke hvordan man vet hvilken path den skal ha,
og vankselig å lage en fungerende rolle uten det. Fint om
noen kunne sett på det :slightly_smiling_face:",

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMNQ83QS",
"ts": "1556802578.025800",
"edited": {

"user": "UGMNQ83QS",
"ts": "1556802625.000000"

}
},
{

"client_msg_id": "7db4e07e-8783-4a00-b3d2-c75465d3d8bc",
"type": "message",
"text": "Hva jeg har gjort:\nBegynt å skrive om

introduksjonen.\n\nHva jeg planlegger:\nSkrive om
introduksjonen.\n\nPotensielle hindringer:\nIntroduksjonen må
praktisk talt totalendres. Vil ta tid.",

↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1556850717.028100"

}
][

{
"client_msg_id": "34ee7762-7d82-40d9-9dd2-3ed4e0ef75cf",
"type": "message",
"text": "Hva jeg har gjort fredag mai 3:\nSkrevet om use case og

high-level use case. Laget sekvensdiagram men ikke lagt til i
rapporten enda.",

↪→
↪→
"user": "UGMNQ83QS",
"ts": "1557060793.029700"

},
{

"client_msg_id": "e66e192b-b1fe-4db2-a4e1-0fe8f394fbcf",
"type": "message",
"text": "Hva jeg hart gjort:\nSkrevet om malware og malware

detections innen static og automatic.\n\nHva jeg
planlegger:\nSkrive om automatisk provisjonering generelt +
info om ansible, puppet, salt & chef. Skulle egentlig
være gjort til i dag men må se hva jeg rekker. Drar fra
skolen nå for å trene og lage middag, må se om jeg får gjort
noe etter det.\n\nPotensielle hindringer:\nFinne gode
kilder.",

↪→
↪→
↪→
↪→
↪→
↪→
↪→

159

Malware Analysis Infrastructure

"user": "UGMNQ83QS",
"ts": "1557060945.032000",
"edited": {

"user": "UGMNQ83QS",
"ts": "1557060958.000000"

}
},
{

"client_msg_id": "2e04667f-4b7f-44ff-b650-09e0656f9afd",
"type": "message",
"text": "Hva jeg har gjort:\nIntroduksjon nå 90% ferdig og 99%

presentabel, mangler kun få småting.\n\nHva jeg
planlegger:\nReview checke det jeg hadde fått beskjed
om.\n\nPotensielle hindringer:\nEvt. manglende kilder, tror
derimot det ikke trengs noe særlig av i introduksjon.",

↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1557108112.034400",
"edited": {

"user": "UGMTT84F9",
"ts": "1557108197.000000"

}
}

][
{

"client_msg_id": "8ddb07a2-84cc-48e9-8561-7743b7c50eeb",
"type": "message",
"text": "Hva jeg har gjort:\nLest gjennom og utbedret på

teori.\n\nHva jeg planlegger:\nFortsette å lese gjennom og
utbedre section by section.\n\nPotensielle hindringer:\nTar
tid, men går.",

↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1557455360.001600"

}
][

{
"client_msg_id": "771c7543-0971-43ee-a615-8dcae72cf1f7",
"type": "message",
"text": "Hva jeg har gjort:\nUtarbeidet og utvidet generelle

delen under Analytical Infrastructure med. Muligens en del
over på implementasjon, men ellers introdusert og oppsummert
alle grunnprinsipper som IRMA og andre slike infrastrukturer
logisk sett vil bygge på.\n\nHva jeg planlegger:\nFortsette
med readthrough, skrive om, skrive på, kommentere, notere,
merke, etc etc\n\nPotensielle hindringer:",

↪→
↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1557497679.004400"

}
][

{
"client_msg_id": "b6ae94e9-8903-470f-889f-74aec09f119d",
"type": "message",

160

Malware Analysis Infrastructure

"text": "Hva jeg har gjort:\nSkrevet generell IRMA teori,
begrunnelse for valget, og om arkitekturen (front
end+brain).\n\nHva jeg planlegger:\nLese over og fikse
største feilene.\n\nPotensielle hindringer:\nUsikker på hva
som menes med noen av kommentarene over ønsket innhold. Spør
gruppa i morgen.",

↪→
↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1557712630.002600"

}
][

{
"client_msg_id": "56318d4a-23c2-4e62-81a2-85119ed7bbe3",
"type": "message",
"text": "Hva jeg har gjort:\nSkrevet om infrastruktur teori til å

være litt mer riktig og kortet ned, skrevet litt mer på
IRMA.\n\nHva jeg planlegger:\nStarte på kiosk skriving,
videre.\n\nPotensielle problemer:\nForferdelig treg dag
mentalt.",

↪→
↪→
↪→
↪→
"user": "UGMTT84F9",
"ts": "1557790030.004400"

}
]

161

Malware Analysis Infrastructure

M Efficiency result raw-logs

M.1 Vagrant setup times

./Vagrant-04:08:14

real 4m27,489s

user 0m14,757s

sys 0m7,276s

./Vagrant-05:08:15

real 4m32,530s

user 0m14,912s

sys 0m7,188s

./Vagrant-06:08:15

real 4m33,801s

user 0m14,888s

sys 0m7,094s

./Vagrant-07:08:14

real 4m25,498s

user 0m14,717s

sys 0m7,090s

./Vagrant-08:08:14

real 4m28,227s

user 0m14,823s

sys 0m7,270s

./Vagrant-09:08:14

real 4m21,528s

user 0m14,811s

sys 0m7,049s

./Vagrant-11:19:15

real 4m25,855s

user 0m14,970s

sys 0m7,159s

./Vagrant-12:19:14

real 4m27,575s

user 0m14,668s

sys 0m7,463s

./Vagrant-13:19:14

real 4m33,370s

162

Malware Analysis Infrastructure

user 0m15,060s

sys 0m7,055s

./Vagrant-14:19:14

real 4m30,567s

user 0m14,831s

sys 0m7,350s

./Vagrant-15:19:15

real 4m35,168s

user 0m15,122s

sys 0m7,168s

./Vagrant-16:19:14

real 4m26,931s

user 0m14,721s

sys 0m7,186s

./Vagrant-17:19:14

real 4m49,968s

user 0m14,728s

sys 0m7,296s

./Vagrant-18:19:14

real 4m42,696s

user 0m14,884s

sys 0m7,244s

./Vagrant-19:19:14

real 4m25,392s

user 0m15,075s

sys 0m6,930s

./Vagrant-20:19:14

real 4m39,175s

user 0m14,720s

sys 0m7,302s

./Vagrant-21:19:15

real 4m26,098s

user 0m14,788s

sys 0m7,231s

M.2 IRMA-Ansible setup times

./Ansible-04:12:42

real 23m40,000s

user 1m37,788s

sys 0m34,459s

163

Malware Analysis Infrastructure

./Ansible-05:12:47

real 26m0,053s

user 1m54,873s

sys 0m44,152s

./Ansible-06:12:48

real 21m11,711s

user 1m30,022s

sys 0m33,830s

./Ansible-07:12:40

real 29m43,627s

user 1m59,311s

sys 0m44,771s

./Ansible-08:12:42

real 20m22,771s

user 1m27,372s

sys 0m32,084s

./Ansible-09:12:36

real 28m32,984s

user 1m55,682s

sys 0m44,371s

./Ansible-11:23:40

real 27m48,141s

user 1m56,124s

sys 0m42,558s

./Ansible-12:23:42

real 25m26,800s

user 1m52,860s

sys 0m43,683s

./Ansible-13:23:48

real 27m9,405s

user 1m53,340s

sys 0m42,754s

./Ansible-14:23:45

real 29m0,267s

user 2m1,164s

sys 0m45,308s

./Ansible-15:23:50

real 24m44,946s

user 1m49,631s

sys 0m43,475s

164

Malware Analysis Infrastructure

./Ansible-16:23:41

real 28m12,310s

user 1m57,511s

sys 0m45,084s

./Ansible-17:24:04

real 27m13,812s

user 1m50,723s

sys 0m43,485s

./Ansible-18:23:57

real 27m25,137s

user 1m59,829s

sys 0m44,488s

./Ansible-19:23:40

real 20m25,919s

user 1m30,191s

sys 0m32,806s

./Ansible-20:23:53

real 28m32,542s

user 1m56,747s

sys 0m44,159s

./Ansible-21:23:41

real 24m51,022s

user 1m51,585s

sys 0m42,443s

165

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

B
ac

he
lo

r’
s

pr
oj

ec
t

Kristian Sigtbakken Holm
Martin Kvalvåg
Nikolai Fauskrud
Olav Henrik Hoggen

Automated Malware Analysis
Platform

Bachelor’s project in IT-Operations and Information Security
Supervisor: Basel Katt

May 2019

	Foreword
	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Problem area, delimitation, and defining the assignment
	Purpose of the assignment
	Target audience
	Students' backgrounds and qualifications
	Nikolai Fauskrud
	Kristian S. Holm
	Olav H. Hoggen
	Martin Kvalvåg

	Project scope
	Field of study
	Delimitations
	Project description

	Other roles
	Project process
	Central project process
	Theory
	Plan for status meetings and decisions
	Tools used

	Thesis structure

	Requirements
	Initial requirements
	Use Case
	High level use case

	Functional requirements
	Operational requirements
	External requirements

	Theory and technology
	Malware detection
	Static detection
	Dynamic detection
	Malware Anti-VM techniques

	Analytical Infrastructure
	Infrastructure Alternatives
	Chosen framework: IRMA
	Dynamic Malware Analysis tool
	Chosen dynamic analysis tool: Cuckoo

	Configuration Management
	Automatic provisioning
	Push vs pull model
	Configuration Management Strategy
	Configuration Management Tools
	Configuration Management requirements

	Orchestration
	Orchestration requirements
	Packer
	Vagrant
	Virtualisation

	Implementation
	Configuration and set-up of IRMA
	Hardware
	Installation
	Available configuration
	Analysers
	Problems with the setup
	Automatic provisioning of antivirus and tools
	Activation of analysers and possible bug fixes

	Configuration and set-up of Cuckoo
	Adaption for our use case
	Installation
	ESXi/vSphere support

	Changes made
	Pipeline
	Kiosk
	Cuckoo as a probe of IRMA
	NSRL
	Packer

	Testing and Analysis
	Development and testing hardware
	Efficiency of deployment
	Bottlenecks
	Accuracy of scans
	Testing of benign files
	Testing of malicious files
	Statistics

	What is shared?
	Without internet access
	With internet access

	Results and Discussion
	Results
	Infrastructure setup
	Infrastructure modifications
	Ported probes
	Designed features

	Hardware used in development and initial testing
	Recommended Infrastructure
	Orchestration computer/Ansible provisioner
	IRMA
	Cuckoo
	Local mirroring
	Kiosk

	Recommended further work
	Additions
	Modifications
	Fixes

	Nice-to-have improvements
	Additions
	Modifications

	Conclusion
	Project assessment
	Knowledge gained
	Configuration with Ansible
	Orchestration with Vagrant
	Troubleshooting
	Project management
	Malware detection using multiscanning

	Results
	Future Work

	Bibliography
	Installation Guide
	IRMA
	Cuckoo

	Project Agreement
	Development Process
	Daily Scrum logs

	IRMA dataflow models
	Kiosk appendix
	Kiosk mount helper prototypes
	Simplified kiosk work-flow

	Testing Appendix
	Code Appendix
	Format of database and scans
	Scan API
	Result API

	images
	Meeting Logs
	Record of meetings
	Dato: 2019/01/11
	19-01-09 week-01
	 19-01-18 week-02
	28.02.19
	Møte med Kongsberg 1/3/2019
	Sprint 18/03/2019 - 31/03/2019

	Time logged
	Slack communication logs
	Efficiency result raw-logs
	Vagrant setup times
	IRMA-Ansible setup times

