
Thor A
leksander B

uan
In depth analysis of Long-Short-Term

-M
em

ory N
eural N

etw
orks w

ith the purpose of detecting cyberbullying

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Thor Aleksander Buan

In depth analysis of Long-Short-
Term-Memory Neural Networks with
the purpose of detecting
cyberbullying

Master’s thesis in Information Security
Supervisor: Raghavendra Ramachandra

June 2019

Thor Aleksander Buan

In depth analysis of Long-Short-Term-
Memory Neural Networks with the
purpose of detecting cyberbullying

Master’s thesis in Information Security
Supervisor: Raghavendra Ramachandra
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Information Security and Communication Technology

Analysis of LSTM Networks

Preface

This thesis concludes my master grade at NTNU. This thesis was carried out during the spring
semester of 2019. The idea of studying cyberbullying detection was brought up by my supervisor
Prof. Raghavendra Ramachandra.

This thesis is intended to be read by Cyber Security specialists, Artificial Intelligence specialists
or enthusiasts that want to learn about Neural Network designs, in regard to detecting cyberbully-
ing.

01-06-2019

i

Analysis of LSTM Networks

Acknowledgment

I would like to thank my supervisor Prof. Raghavendra Ramachandra for his valuable guidance
throughout this project. I will also thank my brother Kim Eide and Frank Nunes for reading my
thesis and supplying me with very usable input. Lastly, I will thank my parents for reminding me of
the importance of taking brakes.

T.A.B

ii

Analysis of LSTM Networks

Abstract

Social media usage has skyrocketed the last decades. Along with all the upsides of social media,
there are also a few downsides. One of the most problematic downsides has been the rise of cy-
berbullying. New statistics shows that this problem has kept on escalating in the recent years. The
problem with detecting and preventing cyberbullying is that social media generates so much data
that it is virtually impossible to detect cyberbullying by performing manual inspections. This has
motivated researchers to come up with new automated methods of detecting cyberbullying. In the
most recent years, it has become popular among researchers to utilize a type of artificial Neural
Network called Long-Short-Term-Memory Neural Network.

In this thesis we present the empirical evaluation of different types of artificial Neural Network
to see how the network can be designed to maximize its performance with regards to detecting
cyberbullying. To find the best design of a Long-Short-Term-Memory Neural Network we conduct
two experiments, testing 56 different designs. These experiments have been designed as factorial
experiments, meaning that a set of variables has been modified in combination with each other.
This lets us track any cause and effect relationships between the different variables in a much more
accurate way, than what is possible by studying the existing research within the field.

In order to make the results of this study as relevant as possible to the state-of-the-art cyber-
bullying research, we base the whole Natural Language Processing pipeline that leads up to the
artificial Neural Network on the existing state-of-the-art research. We also explain this Natural Lan-
guage Processing pipeline in depth, such that it can be recreated, and used for continuous study of
other variables that are not tested by us, in future research projects.

Four main variables are tested in this thesis; composition of different layer types, stacking of
equal layer types, training epochs and activation mechanisms for the classes. Our findings show
that the best composition of layer types are found by combining a traditional Convolutional Neu-
ral Network with a Long-Short-Term-Memory Neural Network. We also find that all of the Neural
Networks, no matter what layer composition, benefit from going from no stacking to stacking its
layers twice. As expected, we also find that Neural Networks perform better when properly trained,
but there is no correlation between how much training a model needs and how well it performs.
Lastly, we prove that there is no reason to blindly choose Softmax as the activation for the classes
in the Neural Network models, as most of the researchers tend to do. Our findings show that using
an activation mechanism that mimics the mechanisms of a Support-Vector-Machines classifier out-
performs the Softmax activation, with all four different layer compositions of the Neural Network
that we tested.

iii

Analysis of LSTM Networks

Contents

Preface . i
Acknowledgment . ii
Abstract . iii
Contents . iv
List of Figures . vii
List of Tables . xiii
Listings . xiv
1 Introduction . 1

1.1 Keywords . 1
1.2 Problem description . 1
1.3 The purpose . 1
1.4 Topics covered by the project . 2
1.5 Justification, motivation and benefits . 2
1.6 Research questions . 2

2 Theory . 3
2.1 Machine learning . 3

2.1.1 Why do we need Machine learning? . 3
2.1.2 What is Machine learning? . 3

2.2 Natural Language Processing . 5
2.2.1 Why we need Natural Language Processing 5
2.2.2 State-of-the-art NLP components . 6
2.2.3 Tokenization . 6
2.2.4 Stop word removal . 6
2.2.5 Removal of repeating characters . 7
2.2.6 Stemming . 7
2.2.7 Part-of-speech tagging . 8
2.2.8 Bag-of-word . 8
2.2.9 Global Vectors for Word Representation . 8

2.3 Natural Language Processing Classifiers . 9
2.3.1 Classifiers used within the field . 9
2.3.2 Random Forest classifier . 10
2.3.3 Support vector machines . 11
2.3.4 Neural Network . 12
2.3.5 State-of-the-art Neural Network types . 15

iv

Analysis of LSTM Networks

2.3.6 Measuring the performance of a classification model 16
2.3.7 Challenges with comparing methods . 17

3 Methodology . 19
3.1 Experiment . 19

3.1.1 The two experiments . 19
3.1.2 About the experiments . 19
3.1.3 Challenges and counter measures . 20
3.1.4 The Natural Language Processing pipeline . 21
3.1.5 Experiment setup . 21
3.1.6 Experimental environment . 22

3.2 Data set . 23
3.3 Quantitative assessment . 23
3.4 Details about the models to be tested . 24

3.4.1 Experiment 1 . 24
3.4.2 Experiment 2 . 25

3.5 Model selection during training . 27
4 Implementation . 29

4.1 Third party libraries used . 29
4.2 Implementation dependencies and components needed to run the program 29
4.3 Test setup implementation . 29

4.3.1 Data set acquisition . 29
4.3.2 Preprocessing . 30
4.3.3 Classification testing . 35
4.3.4 Performance report . 40
4.3.5 The alternative activations . 40

5 Results . 44
5.1 Experiment 1 . 44
5.2 Experiment 2 . 44

6 Analysis . 48
6.1 The effects of increased training . 48

6.1.1 The effect of training, analyzed as a function of average epochs used 48
6.1.2 The effect of training, analyzed by training a model for 200 and 800 epochs . 49

6.2 The effects of stacking similar layers . 51
6.3 Comparison of the different network types . 53
6.4 Comparison of the different activation mechanisms 53

6.4.1 The best model compared with the state of the art models 56
7 Discussion . 58

7.1 Challenges . 58
7.1.1 Limited python experience . 58
7.1.2 Creating a state-of-the-art NLP pipeline . 58

v

Analysis of LSTM Networks

7.2 Evaluation . 59
8 Conclusion . 60

8.1 Future Work . 61
Bibliography . 62
A Appendix . 66

A.1 Data set lables . 66
A.2 Proof of faulty oversampling technique . 67
A.3 The code for the models in experiment 1 . 68

A.3.1 LSTM . 68
A.3.2 LSTM x2 . 68
A.3.3 LSTM x3 . 68
A.3.4 LSTM x4 . 69
A.3.5 LSTM x5 . 69
A.3.6 BLSTM LSTM . 70
A.3.7 BLSTM LSTM x2 . 70
A.3.8 BLSTM LSTM x3 . 71
A.3.9 BLSTM LSTM x4 . 71
A.3.10 BLSTM LSTM x5 . 72
A.3.11 BLSTM . 72
A.3.12 BLSTM x2 . 72
A.3.13 BLSTM x3 . 73
A.3.14 BLSTM x4 . 73
A.3.15 BLSTM x5 . 74
A.3.16 ConvLSTM . 74
A.3.17 ConvLSTM x2 . 75
A.3.18 ConvLSTM x3 . 75
A.3.19 ConvLSTM x4 . 76
A.3.20 ConvLSTM x5 . 77

A.4 The code for the models in experiment 2 . 77
A.4.1 SVM like activation . 77
A.4.2 The SVM and Random Forest Classifier used 79

A.5 The code for the testing environment . 80
A.5.1 Original script for retrieving the Tweets . 80
A.5.2 Modified script for retrieving the Tweets . 81
A.5.3 Text preprocessing script . 83
A.5.4 Full example of the testing script of one model 84

B Performance Reports Experiment 1, first test run with 200 Epochs 93
C Performance Reports from Experiment 1, second test run with 800 Epochs 124
D Performance reports from experiment 2 . 158

vi

Analysis of LSTM Networks

List of Figures

1 The training phase of machine learning (illustration based on [1]) 4
2 The testing phase of machine learning (illustration based on [1]) 5
3 A decision tree with two features (F1 and F2) and two classes (C1 and C2) 10
4 How a SVM separates the classes with a hyperplane 11
5 A four-layered feed-forward Neural Network . 12
6 Test setup . 22
7 Sketch of the models to be tested in experiment 1 . 26
8 Sketch of the models to be tested in experiment 2 . 28
9 First part of the performance report for the Convolutional LSTM model with one

layer stacking from experiment 1 . 41
10 Second part of the performance report for the Convolutional LSTM model with one

layer stacking from experiment 1 . 42
11 Third and last part of the performance report for the Convolutional LSTM model

with one layer stacking from experiment 1 . 42
12 F1 score for the bully class of all models tested in experiment 1, as a function of av-

erage epochs used in the training (Y-axis: F1 score for the bully class, X-axis: average
epochs used) . 49

13 The highest amount of epochs needed in the 10 cross fold run of all models in order
to get the best trained model, with maximum training set to 200 epochs and 800
epochs . 50

14 The highest amount of epochs needed in the 10 cross fold run of all models in order
to get the best trained model, with maximum training set to 800 epochs 51

15 Performance comparison of the models; BLSTM LSTM x2, BLSTM x2, LSTM x3,
LSTM x4, LSTM x5, ConvLSTM and ConvLSTM x2 with the training constrained
to 200 and 800 epochs . 52

16 F1 score for the bully class of all models in the second test run where the models
were trained with 800 epochs . 53

17 F1 score for the bully class yielded by the standard Neural Network model with Soft-
max activation, a Neural Network where the Softmax activation layer were replaced
with a SVM classifier and a Neural Network where the Softmax activation layer were
replaced with a Random Forrest classifier . 54

18 F1 score for the bully class yielded by the standard Softmax activation and the SVM
alike activation . 55

vii

Analysis of LSTM Networks

19 F1 score for the bully class yielded by the standard Softmax activation and the SVM
alike activation . 55

20 Performance comparison between the new ConvLSTM model with its layers stacked
three times with SVM alike activation and three models featured in or based on the
state-of-the-art research; BLSTM, LSTM and ConvLSTM without any stacking and
with Softmax activation . 57

21 Proof that the testing data set is leaking information to the training data set, with
the oversampling technique used by [2] . 67

22 ConvLSTM (200 epochs) performance report (part 1) 94
23 ConvLSTM (200 epochs) performance report (part 2) 94
24 ConvLSTM (200 epochs) performance report (part 3) 95
25 ConvLSTM x2 (200 epochs) performance report (part 1) 95
26 ConvLSTM x2 (200 epochs) performance report (part 2) 96
27 ConvLSTM x2 (200 epochs) performance report (part 3) 96
28 ConvLSTM x3 (200 epochs) performance report (part 1) 97
29 ConvLSTM x3 (200 epochs) performance report (part 2) 98
30 ConvLSTM x3 (200 epochs) performance report (part 3) 98
31 ConvLSTM x4 (200 epochs) performance report (part 1) 99
32 ConvLSTM x4 (200 epochs) performance report (part 2) 100
33 ConvLSTM x4 (200 epochs) performance report (part 3) 100
34 ConvLSTM x5 (200 epochs) performance report (part 1) 101
35 ConvLSTM x5 (200 epochs) performance report (part 2) 102
36 ConvLSTM x5 (200 epochs) performance report (part 3) 102
37 BLSTM LSTM (200 epochs) performance report (part 1) 103
38 BLSTM LSTM (200 epochs) performance report (part 2) 103
39 BLSTM LSTM (200 epochs) performance report (part 3) 104
40 BLSTM LSTM X2 (200 epochs) performance report (part 1) 104
41 BLSTM LSTM X2 (200 epochs) performance report (part 2) 105
42 BLSTM LSTM X2 (200 epochs) performance report (part 3) 106
43 BLSTM LSTM X3 (200 epochs) performance report (part 1) 106
44 BLSTM LSTM X3 (200 epochs) performance report (part 2) 107
45 BLSTM LSTM X3 (200 epochs) performance report (part 3) 107
46 BLSTM LSTM X4 (200 epochs) performance report (part 1) 108
47 BLSTM LSTM X4 (200 epochs) performance report (part 2) 109
48 BLSTM LSTM X4 (200 epochs) performance report (part 3) 109
49 BLSTM LSTM X5 (200 epochs) performance report (part 1) 110
50 BLSTM LSTM X5 (200 epochs) performance report (part 2) 111
51 BLSTM LSTM X5 (200 epochs) performance report (part 3) 111
52 BLSTM (200 epochs) performance report (part 1) . 112
53 BLSTM (200 epochs) performance report (part 2) . 112

viii

Analysis of LSTM Networks

54 BLSTM (200 epochs) performance report (part 3) . 113
55 BLSTM X2 (200 epochs) performance report (part 1) 113
56 BLSTM X2 (200 epochs) performance report (part 2) 114
57 BLSTM X2 (200 epochs) performance report (part 3) 114
58 BLSTM X3 (200 epochs) performance report (part 1) 115
59 BLSTM X3 (200 epochs) performance report (part 2) 115
60 BLSTM X3 (200 epochs) performance report (part 3) 116
61 LSTM (200 epochs) performance report (part 1) . 116
62 LSTM (200 epochs) performance report (part 2) . 117
63 LSTM (200 epochs) performance report (part 3) . 117
64 LSTM X2 (200 epochs) performance report (part 1) 118
65 LSTM X2 (200 epochs) performance report (part 2) 118
66 LSTM X2 (200 epochs) performance report (part 3) 119
67 LSTM X3 (200 epochs) performance report (part 1) 119
68 LSTM X3 (200 epochs) performance report (part 2) 120
69 LSTM X3 (200 epochs) performance report (part 3) 120
70 LSTM X4 (200 epochs) performance report (part 1) 121
71 LSTM X4 (200 epochs) performance report (part 2) 121
72 LSTM X4 (200 epochs) performance report (part 3) 122
73 LSTM X5 (200 epochs) performance report (part 1) 122
74 LSTM X5 (200 epochs) performance report (part 2) 123
75 LSTM X5 (200 epochs) performance report (part 3) 123
76 ConvLSTM (800 epochs) performance report (part 1) 125
77 ConvLSTM (800 epochs) performance report (part 2) 125
78 ConvLSTM (800 epochs) performance report (part 3) 126
79 ConvLSTM x2 (800 epochs) performance report (part 1) 126
80 ConvLSTM x2 (800 epochs) performance report (part 2) 127
81 ConvLSTM x2 (800 epochs) performance report (part 3) 127
82 ConvLSTM x3 (800 epochs) performance report (part 1) 128
83 ConvLSTM x3 (800 epochs) performance report (part 2) 129
84 ConvLSTM x3 (800 epochs) performance report (part 3) 129
85 ConvLSTM x4 (800 epochs) performance report (part 1) 130
86 ConvLSTM x4 (800 epochs) performance report (part 2) 131
87 ConvLSTM x4 (800 epochs) performance report (part 3) 131
88 ConvLSTM x5 (800 epochs) performance report (part 1) 132
89 ConvLSTM x5 (800 epochs) performance report (part 2) 133
90 ConvLSTM x5 (800 epochs) performance report (part 3) 133
91 BLSTM LSTM (800 epochs) performance report (part 1) 134
92 BLSTM LSTM (800 epochs) performance report (part 2) 134
93 BLSTM LSTM (800 epochs) performance report (part 3) 135

ix

Analysis of LSTM Networks

94 BLSTM LSTM x2 (800 epochs) performance report (part 1) 135
95 BLSTM LSTM x2 (800 epochs) performance report (part 2) 136
96 BLSTM LSTM x2 (800 epochs) performance report (part 3) 136
97 BLSTM LSTM x3 (800 epochs) performance report (part 1) 137
98 BLSTM LSTM x3 (800 epochs) performance report (part 2) 137
99 BLSTM LSTM x3 (800 epochs) performance report (part 3) 138
100 BLSTM LSTM x4 (800 epochs) performance report (part 1) 138
101 BLSTM LSTM x4 (800 epochs) performance report (part 2) 139
102 BLSTM LSTM x4 (800 epochs) performance report (part 3) 139
103 BLSTM LSTM x5 (800 epochs) performance report (part 1) 140
104 BLSTM LSTM x5 (800 epochs) performance report (part 2) 141
105 BLSTM LSTM x5 (800 epochs) performance report (part 3) 141
106 BLSTM (800 epochs) performance report (part 1) . 142
107 BLSTM (800 epochs) performance report (part 2) . 142
108 BLSTM (800 epochs) performance report (part 3) . 143
109 BLSTM x2 (800 epochs) performance report (part 1) 143
110 BLSTM x2 (800 epochs) performance report (part 2) 144
111 BLSTM x2 (800 epochs) performance report (part 3) 144
112 BLSTM x3 (800 epochs) performance report (part 1) 145
113 BLSTM x3 (800 epochs) performance report (part 2) 146
114 BLSTM x3 (800 epochs) performance report (part 3) 146
115 BLSTM x4 (800 epochs) performance report (part 1) 147
116 BLSTM x4 (800 epochs) performance report (part 2) 147
117 BLSTM x4 (800 epochs) performance report (part 3) 148
118 BLSTM x5 (800 epochs) performance report (part 1) 148
119 BLSTM x5 (800 epochs) performance report (part 2) 149
120 BLSTM x5 (800 epochs) performance report (part 3) 149
121 LSTM (800 epochs) performance report (part 1) . 150
122 LSTM (800 epochs) performance report (part 2) . 150
123 LSTM (800 epochs) performance report (part 3) . 151
124 LSTM x2 (800 epochs) performance report (part 1) 151
125 LSTM x2 (800 epochs) performance report (part 2) 152
126 LSTM x2 (800 epochs) performance report (part 3) 152
127 LSTM x3 (800 epochs) performance report (part 1) 153
128 LSTM x3 (800 epochs) performance report (part 2) 153
129 LSTM x3 (800 epochs) performance report (part 3) 154
130 LSTM x4 (800 epochs) performance report (part 1) 154
131 LSTM x4 (800 epochs) performance report (part 2) 155
132 LSTM x4 (800 epochs) performance report (part 3) 155
133 LSTM x5 (800 epochs) performance report (part 1) 156

x

Analysis of LSTM Networks

134 LSTM x5 (800 epochs) performance report (part 2) 157
135 LSTM x5 (800 epochs) performance report (part 3) 157
136 ConvLSTM x2 with SVM classifier (part 1) . 159
137 ConvLSTM x2 with SVM classifier (part 2) . 160
138 ConvLSTM x2 with RFC classifier (part 1) . 161
139 ConvLSTM x2 with RFC classifier (part 2) . 161
140 ConvLSTM x2 with Softmax activation (part 1) . 162
141 ConvLSTM x2 with Softmax activation (part 2) . 163
142 ConvLSTM x2 with Softmax activation (part 3) . 163
143 ConvLSTM x2 with SVM like activation (part 1) . 164
144 ConvLSTM x2 with SVM like activation (part 2) . 165
145 ConvLSTM x2 with SVM like activation (part 3) . 165
146 BLSTM LSTM x2 with SVM classifier (part 1) . 166
147 BLSTM LSTM x2 with SVM classifier (part 2) . 166
148 BLSTM LSTM x2 with RFC classifier (part 1) . 167
149 BLSTM LSTM x2 with RFC classifier (part 2) . 167
150 BLSTM LSTM x2 with Softmax activation (part 1) . 168
151 BLSTM LSTM x2 with Softmax activation (part 2) . 168
152 BLSTM LSTM x2 with Softmax activation (part 3) . 169
153 BLSTM LSTM x2 with SVM like activation (part 1) 169
154 BLSTM LSTM x2 with SVM like activation (part 2) 170
155 BLSTM LSTM x2 with SVM like activation (part 3) 170
156 BLSTM x2 with SVM classifier (part 1) . 171
157 BLSTM x2 with SVM classifier (part 2) . 171
158 BLSTM x2 with RFC classifier (part 1) . 172
159 BLSTM x2 with RFC classifier (part 2) . 172
160 BLSTM x2 with Softmax activation (part 1) . 173
161 BLSTM x2 with Softmax activation (part 2) . 173
162 BLSTM x2 with Softmax activation (part 3) . 174
163 BLSTM x2 with SVM like activation (part 1) . 174
164 BLSTM x2 with SVM like activation (part 2) . 175
165 BLSTM x2 with SVM like activation (part 3) . 175
166 LSTM x4 with SVM classifier (part 1) . 176
167 LSTM x4 with SVM classifier (part 2) . 176
168 LSTM x4 with RFC classifier (part 1) . 177
169 LSTM x4 with RFC classifier (part 2) . 177
170 LSTM x4 with Softmax activation (part 1) . 178
171 LSTM x4 with Softmax activation (part 2) . 178
172 LSTM x4 with Softmax activation (part 3) . 179
173 LSTM x4 with SVM like activation (part 1) . 179

xi

Analysis of LSTM Networks

174 LSTM x4 with SVM like activation (part 2) . 180
175 LSTM x4 with SVM like activation (part 3) . 180

xii

Analysis of LSTM Networks

List of Tables

1 Example that illustrates the bag-of-word model . 8
2 Third party libraries used in the implementation . 29
3 Vocabulary dict with indexes . 31
4 The vectors corresponding to data sample 1, 2 and 3 31
5 Performance results from experiment 1, with 200 epochs 45
6 Performance results from experiment 1, with 800 epochs 46
7 Performance results from the test with BLSTM with added LSTM layers design in

experiment 2 . 47
8 Performance results from the test with BLSTM design in experiment 2 47
9 Performance results from the test with Conv LSTM design in experiment 2 47
10 Performance results from the test with LSTM design in experiment 2 47

xiii

Analysis of LSTM Networks

Listings

4.1 Code example of how to create the vectors from the text in the preprocessed data
set, code was inspired by [3] . 31

4.2 The implementation of Glove embeddings, the code was inspired by [3] 31
4.3 Splitting the data into 10 folds . 33
4.4 Creating a set of oversampled folds . 34
4.5 Saving the data to NPY files . 35
4.6 Saving the data to NPY files . 35
4.7 Lists used to save and keep track of all the trained models in one training run 36
4.8 The 10 cross fold loop and how the Neural Network is initiated on the beginning of

each loop run . 37
4.9 The splitting of the data set into training and testing sets 38
4.10 Initiating the training of the model . 39
4.11 Manual testing of all the model versions created during training 39
4.12 How the data from the second last layer in the Neural Network is collected 41
4.13 How the best parameters of the Random Forrest classifier was found 43
A.1 The implementation of the LSTM model . 68
A.2 The implementation of the LSTM x2 model . 68
A.3 The implementation of the LSTM x3 model . 68
A.4 The implementation of the LSTM x4 model . 69
A.5 The implementation of the LSTM x5 model . 69
A.6 The implementation of the BLSTM LSTM model . 70
A.7 The implementation of the BLSTM LSTM x2 model 70
A.8 The implementation of the BLSTM LSTM x3 model 71
A.9 The implementation of the BLSTM LSTM x4 model 71
A.10 The implementation of the BLSTM LSTM x5 model 72
A.11 The implementation of the BLSTM model . 72
A.12 The implementation of the BLSTM x2 model . 73
A.13 The implementation of the BLSTM x3 model . 73
A.14 The implementation of the BLSTM x4 model . 73
A.15 The implementation of the BLSTM x5 model . 74
A.16 The implementation of the ConvLSTM model . 74
A.17 The implementation of the ConvLSTM x2 model . 75
A.18 The implementation of the ConvLSTM x3 model . 75
A.19 The implementation of the ConvLSTM x4 model . 76

xiv

Analysis of LSTM Networks

A.20 The implementation of the ConvLSTM x5 model . 77
A.21 The implementation of the LSTM model with SVM like activation 77
A.22 The implementation of the BLSTM LSTM model with SVM like activation 78
A.23 The implementation of the BLSTM model with SVM like activation 78
A.24 The implementation of the ConVLSTM model with SVM like activation 79
A.25 The SVM classifier and Random Forest classifier . 79
A.26 Original script made by [4] for retrieving the Tweets 80
A.27 The script used for retrieving the Tweets . 81
A.28 The script used for preprocessing the raw text in the tweets 83
A.29 The script used for preprocessing the raw text in the tweets 84

xv

Analysis of LSTM Networks

1 Introduction

1.1 Keywords

Neural Network, Natural Language Processing, Cyber bullying, Deep Learning, Text Classification

1.2 Problem description

The usage of social media has skyrocketed in the last few decades. According to Statistics Norway
(SSB) the proportions of Norwegians that use social media on a regular basis have now reached
80%[5]. The elephant in the room, however, is that cyberbullying also has become popular along
with the rise of social media. According to the Norwegian Media Authority[6] 28% of Norwegian
children in the age group nine to eighteen years old have experienced that people have been mean
to them or bullied them on social media.

Because of the large amounts of data generated by the high usage of social media, it is virtually
impossible to manually assess all the text logs, to capture and stop attempts of bullying online. Even
if it was possible, it is not certain it would be desirable, since it would raise questions regarding
privacy concerns. Therefore, there has been an increase in research towards finding a method to
automatically detect bullying content online. In the most recent years researchers have found Neu-
ral Networks to be quite a good tool for this task. The usage of Neural Networks for text analysis
purposes is not a new idea as its usage within this field can be traced back to 2003[7]. However, it is
only in recent years the method has become truly popular for text classification tasks, and been ap-
plied to detecting incidents of cyberbullying. Neural Networks is not just one distinct model, there
are several different types of Neural Networks with different designs and architectures. To increase
the complexity even more, Neural Networks are often referred to as "black boxes", since we cannot
fully understand why they makes the predictions that they do. This makes it a hard task to decide
which Neural Network design or architecture to choose. Therefore, to find the best designated Neu-
ral Network model for a certain task, it is crucial to test several different designs and architectures,
in a laboratory manner, to identify if there is a large performance difference between them.

1.3 The purpose

The objective of this thesis is to look into different architectures for Long-Short-Term-Memory
(LSTM) Neural Networks, with the purpose of detecting cyberbullying. The reason for why we
focus on the LSTM architecture is because these types of Neural Networks have become very popu-
lar within the field of cyberbullying detection in the most recent years. But while most of the new
research feature this type of Neural Network, they often feature slightly different designs of the
Neural Network type. We therefore want to empirically evaluate these different designs, and see if
we can detect any cause and effect relationships that can be used to improve the designs.

1

Analysis of LSTM Networks

The variables that will be tested are the amount of training, type of design (composition of dif-
ferent type of layers), the complexity of the models and the activation leading to the classification.
By studying these variables, in a laboratory environment, the goal is to detect relevant cause and
effect relationships, in respect to detecting cyberbullying, which can be used to define the Long-
Short-Term-Memory Neural Network models of the future.

1.4 Topics covered by the project

This thesis will cover the process of pre-processing text for classification purposes, also known
as Natural Language Processing. It will also cover some of the commonly used machine learning
algorithms for classifying text, such as Random Forrest classifier and Support Vector Machines, but
the main focus will be on Artificial Neural Network classifiers, especially Long-Short-Term-Memory
Neural Networks. All of the topics will be covered from the perspective of detecting cyberbullying
incidents.

1.5 Justification, motivation and benefits

The motivation for this research project is partly based on the issues surrounding the increased
reporting of cyberbullying incidents, and the problems of efficiently detecting such incidents. Fur-
thermore, parts of the motivation also stems from the confusing landscape of researchers utilizing
different Neural Network designs for the same purpose. While most researchers compare their Neu-
ral Network design with other designs, they seldomly test other designs in their own environment.
This makes it difficult to assess if there really is a big difference in the performance among the
different Neural Network designs or whether the performance difference is due to other variables.

By creating a standardized state-of-the-art method for pre-processing the textual data for the
Neural Network, the hope is to limit other variables that can affect the performance, so the true
performance differences between the Neural Networks can be assessed. This will hopefully limit
the workload on future research within the cyberbullying field in the search for improved future
methods.

1.6 Research questions

The following questions will be researched within this thesis:

1. How does the amount of training impact the performance of the Neural Network?
2. How does the performance of the different types of Long-Short-Term-Memory Neural Net-

works compare, when tested in a controlled environment?
3. What is the performance effect of blindly increasing a Neural Network’s complexity by stack-

ing equal layers on top of each other?
4. Is there a viable alternative to the commonly used Softmax activation layer?

All of these questions will be researched with the goal of detecting cyberbullying.

2

Analysis of LSTM Networks

2 Theory

The purpose of this chapter is to give the reader insight into the theoretical background needed
to understand this thesis. This chapter includes brief reviews of important concepts like machine
learning and Natural Language Processing, and the algorithms relevant for this thesis that are used
for these concepts. The chapter also includes an overview of different state-of-the-art methods or
models used within the field of text classification and cyberbullying detection which are found
relevant for this thesis.

2.1 Machine learning

2.1.1 Why do we need Machine learning?

Every action made on a device generates data in some form or another. For instance, when visiting a
website like Facebook, data is generated in the form of IP logs, browser history and so on. The posts
that are published are stored on servers, and the same goes for "likes" or other reactions that are
registered. In total all actions and use of the internet amounts to great quantities of data. According
to DOMO’s sixth report on data[8] 2.5 quintillion bytes of data are generated every day.

Data is generated so that it is possible to keep track of everything going on, but it can also be
utilized for several other purposes. Data is for instance essential when doing research. Whether you
are researching what strategy a business should use for the next year or researching the correlation
between online activity and depression, data is a key factor. Because of the importance of data, it is
often quoted to be the new oil.

But since the amounts of data generated in today’s society are so gigantic, it is virtually impossi-
ble to analyze this data manually. This is where machine learning comes in. Machine learning let’s
us automate the process of analyzing large quantities of data in a relatively short amount of time,
with the aim of detecting patterns.

2.1.2 What is Machine learning?

Machine learning refers to different types of models that are able to train themselves by analyzing
the data, and extracting knowledge from the data. Machine learning is a sub-field of artificial in-
telligence (AI), that has grown exponentially in the last 20 years. The idea is to create models that
are able to form their own rules, functions, probability distributions, or other knowledge represen-
tations based on the data it is fed, in order to detect patterns[9]. These knowledge representations
can then be used by the model to classify new data. For example, by saying that the sentiment of a
text is either positive or negative.

Simply put the process of machine learning is to train the model on one set of known data
samples, and use the trained model on new unknown data in order to make classifications of this

3

Analysis of LSTM Networks

new data[10]. This process is shown in more detail in figure 1 which gives an example of the
training scheme of such a model, and figure 2 which shows the classification scheme of the same
model.

Figure 1: The training phase of machine learning (illustration based on [1])

A typical training scheme in machine learning starts by pre-processing the data set to be utilized.
This can be as easy as normalizing the values or it can be more complex tasks of processing text,
by for example removing irrelevant parts of the text like punctuations. After the processing the
features need to be extracted from the data. This often means to create new features from a set of
existing features. For example, if the data exists of height and weight measurements of people, one
such feature may be the body-mass-index, which is a product of both height and weight. This step
can be done before the data is fed to the actual machine learning model, or the machine learning
model can do the feature extraction itself. This depends on the model design and what kind of
data that is being analyzed. Then the model attempts to classify the data based on the features
that have been extracted and some default knowledge representations. After the data has been
classified it evaluates the results. How this is done depends on the model type, whether it belongs
to the category of models using unsupervised learning or the category using supervised learning.
In this thesis only supervised learning is relevant, since all of the different model types that will be
studied belong to this category. In such a case the model evaluates its performance by comparing
its own classifications of the data samples, with the true classes that the data samples belong to.
It then slightly changes its knowledge representations, or what features it focuses on, before it
tries to classify the data again. The effect of the adjustments are then evaluated. If the adjustments
made, increases the performance, it may try to adjust again in the same direction to further improve
the performance, or if the performance did not improve, it may try some other adjustments. This
process is repeated again and again for a set amount of times, or until the performance of the model
reaches a preset threshold.

The classification scheme, as seen in figure 2, is very similar to the training scheme. The data
goes through the same pre-processing step(s) as used in the training, and the features are extracted
in the same manner. But instead of having an iterative process of feature selection, classification
and evaluation, as seen in figure 1, the model measures the values of the features chosen to give

4

Analysis of LSTM Networks

Figure 2: The testing phase of machine learning (illustration based on [1])

the best performance in the training scheme, and the classification is made from the knowledge
representations (rules, probability representations etc.) that the model learned during the training.
The output of the model contains the classes of all the data samples fed in to the model.

2.2 Natural Language Processing

2.2.1 Why we need Natural Language Processing

Natural Language Processing (NLP) is a sub-field of linguistics and artificial intelligence. Natural
Language Processing is the processing of human language data, in order to make the data under-
standable to computers and their algorithms[11]. In theory one could just feed raw human language
data to a machine learning algorithm, but this would lead to poor performance. The reason for this
is that a computer cannot correctly process human language data. Computers use the binary system
of ones and zeroes, and not the Oxford dictionary. While the two languages obviously consist of a
very different vocabulary, ones and zeroes versus words, there are several other challenges as well.
The human language is a quite complex language with many different rules that are needed in
order to understand the structure. A computer would be able to translate the sentence "The dog bit
a man" into ones and zeroes with the help of different tools like for example the ASCII table [12],
but it would not be able to understand the meaning of it.

In order to make computers able to understand we therefore use NLP. NLP is not one technique
but a set of components. An implemented NLP setup is often referred to as a NLP pipeline. The
reason for this is because an implemented NLP system often contains several different NLP compo-
nents which are run in a certain sequence, just as a pipeline. The NLP components have a big range
in complexity. The more complex the NLP components are, the more information can be extracted
from the textual data. The only problem is that these NLP components are not bullet proof, and by
increased complexity follow an increased rate of errors[13]. In addition, there are also other factors
than just the complexity of the NLP components that may increase the error rate. One of the main
reasons for increased error rates in NLP tasks are noisy unseen data[13]. These are typically data
from sources like social media platforms or chat logs. This is text that is written in a very informal
manner, where slang and emoticons are frequently used, and the text is usually not checked for

5

Analysis of LSTM Networks

spelling or grammar mistakes.

2.2.2 State-of-the-art NLP components

There are several different types of NLP components that are featured in state-of-the-art research
within the field of cyberbullying detection. The reason for this is because the source of the data sets
containing cyberbullying usually are different social media platforms. As already discussed, text
from these kinds of sources contains a lot of noise, thus making many of the NLP components more
prone to errors. As a result, there has been a few attempts of creating original NLP components,
specialized for the task of cyberbullying detection. One of these attempts was done by Nandhini
and Sheeba [14]. They proposed a method where the Levenshtein distance between text samples
and a dictionary of cyberbullying terms were calculated as part of the NLP pipeline (see [15], to
learn more about the Levenshtein distance metric). While the issues of processing noisy text in
cyberbullying detection is driving some researchers in the direction of new original NLP solutions,
it is still common to use well known NLP components. Some of the most popular components within
the field as identified by [16] are;

• Tokenization
• Stop word removal
• Removal of repeating characters
• Grammar and spelling correction
• Stemming

2.2.3 Tokenization

Tokenization is a process where data is split into smaller distinctive pieces. In the case of text
processing this usually means splitting a text into separate words. The tokenization process is often
thought of as a sub-process within NLP. This is because tokenization is usually used as a mean to
apply other NLP tasks. In most cases a text is first tokenized into separate words, before other NLP
tasks are applied, then the data pieces are detokenized into a full text again. Detokenization is
tokenization in reverse, taking many distinctive pieces and stitching them back together into one
piece. Tokenization is claimed to be one of the more reliable NLP components. There are however
situations where most tokenization algorithms will struggle as well. This can occur if the text being
processed is, for instance, sourced from Twitter where it is popular to use hashtags, or if the text
contains mathematical or chemical formulas[17].

2.2.4 Stop word removal

Stop word removal is an example of a NLP process that demands that the text first has been tok-
enized. Stop word removal is, as the name implies, the process of removing the stop words from
the text. A stop word, within the field of NLP, means a useless word[18]. This is usually done by
checking each word against a dictionary of such stop words. If the word is present in the dictionary
the word is dropped from the data sample. Which words are considered stop words is a bit ambigu-
ous, but it usually are words like "the", "a", "an" , "it" and so on. There are several readymade stop

6

Analysis of LSTM Networks

word dictionaries. NLTK’s [19] stop word dictionary is probably one of the most popularly used. The
main object of doing stop word removal is to wash away any unnecessary data that does not add
any information. By doing so the computational cost of doing the classification will be reduced. The
potential problem with this is that this automated process may wash away too much, potentially
removing words that do in fact add information.

2.2.5 Removal of repeating characters

Another frequently used text processing task identified by Salawu et al. [16] is the removal of
repeating characters. This process, as the name implies, is to removes any characters that are ex-
cessively repeated. The need for this process comes from the fact that computers do not have
any understanding of human language. Because of this a word that has a character repeated, like
"niceee", would be interpreted as a completely different word than the original word, in this case
the word "nice". Since the data processed in cyberbullying detection usually is very noisy, it makes a
lot of sense to apply a process that reduces this noise, as removing repeated characters. But as men-
tioned by [16], and shown by [20], this process may also corrupt or remove wanted information as
well. The corruption may happen when repeating characters are blindly removed. This may lead to
legitimate words being transformed into non-existing words, like the word "call" being transformed
to the non-existing word "cal". Maybe worse it can change one legitimate word like "good" into
another legitimate word like "god", which potentially can completely change the meaning of a text.
Another unwanted effect of this process can be that empathized information in the data is removed.
This can happen when a word is emphasized by excessively repeating its characters, like "you are so
duuuuuumb", where the "u" in "dumb" is excessively repeated to accentuate how dumb the person
in interest is. This could be information that would be relevant for the classification task.

2.2.6 Stemming

As discussed in the section 2.2.5 a computer interprets every word completely differently by default.
This is not only a problem when words have misspellings like repeated characters, but it is also a
problem when it comes to different versions of a word. This can for example be verbs that are
conjugated. For example, the words "run" and "running" have a slightly different meaning, the first
is in present tense and the second is in present continuous tense. However, both of the words "run"
and "running" are tied to the same activity. For a computer, these words will just be interpreted as
different words with no connection. The stemming process is a process that is aimed at solving this
problem. The stemming process tries to solve this by defining a core (called stem) of each word,
which all the versions of a word in the data set is transformed to. This means that both the word
"run" and "running" will be represented by the stem "run".

There exists a range of pre-made stemming algorithms freely available for use. Most of these
work by utilizing a dictionary and a set of rules. This means that for a word to be correctly stemmed
it has to be in the dictionary used by the stemming algorithm[7]. This is problematic in the case
of cyberbullying since the data, as mentioned, usually is quite noisy, with spelling errors and slang,
which means that the dictionary approach will be useless in many cases.

7

Analysis of LSTM Networks

2.2.7 Part-of-speech tagging

Part-of-speech (POS) tagging is aimed at extracting some of the structural features from the textual
data. The POS tagging aims to tag all the words in a corpus with a structural tag. These tags are
usually based on what type of word it is, for example verb, adverb, noun etc. They can also be more
specific as marking whether it is plural or singular[21]. A POS tagger algorithm typically consists
of a dictionary for word recognition and some kind of a classifier for deciding the tag within the
context of the rest of the textual data where the word exists. The classifiers used vary a bit for the
different implementations, some of the most popular POS tagging algorithms use Hidden Markow
models (see [22], for an explanation of this model type) and rule-based models (see section 2.3.2,
for an example of such an model type). POS taggers are reported to have a good accuracy score of
around 97%, but this is on the same type of data that they have been pre trained on, which typically
are news articles. On more noisy data, the accuracy will be lower[17].

2.2.8 Bag-of-word

The bag-of-word model, also referred to as the feature space model, is a model where the data set
is represented by vectors. There is one main vector that holds all the unique words in the data set.
The main vector therefore has the length N, where N equals the size of the vocabulary for the whole
data set. Each data sample in the data set is also represented by a vector of the same length. The
vector that represents the data samples consists of counts of, how many times each word in the
main vector, occurs in the data sample. This is illustrated by the example in table 1. Where the data
set consist of three samples. Data sample 1 is "Bob shot Fred", data sample 2 is "The dog shot the
dog" and lastly data sample 3 is "Fred shot Bob".

Main vector: Bob shot Fred the dog
Data sample 1: 1 1 1 0 0
Data sample 2: 0 1 0 2 2
Data sample 3: 1 1 1 0 0

Table 1: Example that illustrates the bag-of-word model

This example illustrates one of the biggest flaws of the bag-of-word model, which is that the
structure of the data samples is not represented[23]. This is easily shown by the representation
of data sample 1 and 3 in table 1. Even though the sentences have completely different meanings
concerning who shot who, they are represented with the same vector. The bag-of-word model is
popular despite its flaws. This is mainly due to its simplicity and the fact that many of the flaws
can be minimized by combining the bag-of-words model with other NLP methods. For example,
by applying POS-tags before using the bag-of-word model one would be able to keep some of the
structural elements in the data.

2.2.9 Global Vectors for Word Representation

Global Vectors for Word Representation (Glove) is an algorithm that was developed by [24] in
2014. The algorithm is referred to as a global log-bilinear regression model that combines two

8

Analysis of LSTM Networks

previously popular methods of capturing statistics from a corpus: global matrix factorization and
local context window methods [24]. In other words, the Glove model is an unsupervised model
which creates word vectors that are connected to a word and that explain their statistical properties
within a corpus. This is performed not just by looking at the co-occurrence of words, but also on the
ratio between the different co-occurrences. This allows the method to indicate that, for instance,
the words "man" and "woman" are related, by their co-occurrences, but that they are also quite
different, by the ratio between other co-occurrences, such as that "man" often occurs in combination
with "masculine", and "woman" occurs in combination with "feminine". The output of this model
is a vector of a predefined size, called the embedding size, that captures these ratios between the
co-occurrences. The model can be trained on a specific corpus, or more popularly one of the pre-
trained versions available at [25] can be used to create an embedding matrix for the data set to be
used.

This model also aims to capture knowledge as with the stemming or POS-tagging process, but
one main advantage of Glove is that it does not rely on a dictionary. By training the model on the
data set to be classified, or by using one of the pre-trained models that have been trained on data
from the same source as the data to be classified. One should not incur the problem that the words
in the data set cannot be processed with this method, as a consequence of the word not being in
the dictionary. Which as mentioned earlier is one of the main drawbacks with the stemming and
POS-tagging processes.

2.3 Natural Language Processing Classifiers

This section will briefly introduce the classifiers most used within the field of cyberbullying detec-
tion. Furthermore, the three classifiers most relevant for this thesis will be discussed in more depth.
The classifier that will be most thoroughly described is the Neural Network classifier, as this is the
main classifier used in this thesis.

2.3.1 Classifiers used within the field

There is a great range of different classifier algorithms that have been applied to natural language
processing. Some of the most popular classifiers applied for cyberbullying detection identified by
Salawu et al.[16] and for hate detection by Agarwal and Sureka[26] are:

• Support-vector-machines (SVM)
• Naïve Bayes
• K-nearest-neighbours (KNN)
• Rule Based Classifiers
• Clustering
• Exploratory Data Analysis (EDA)
• Link Analysis/Topical Crawler

There have also been several experiments made by combining different classifiers. According to
[16], a survey conducted in 2017, Naïve Bayes and SVM were detected as the best performing clas-

9

Analysis of LSTM Networks

sifier algorithms. While this survey is a great resource for identifying the state-of-the-art algorithms
applied for detecting cyberbullying incidents, the development within the field is continuous, and
in the latest two-three years another method named Neural Network has become popular within
the field of cyberbullying detection.

The use of Neural Networks for text classification purposes is actually a quite old idea. One of
the first implementations of this method was presented by Bengio et al. [7] back in 2003, but it
took some years before Neural Networks became popular. Today Neural Networks are considered
to be one of the state-of-art methods within text classification overall, but it is just recently that it
has found its way into the field of cyberbullying detection.

2.3.2 Random Forest classifier

A Random Forest classifier (RFC) is one of many rule-based classifiers. A RFC is in essence an
ensemble of a decision tree classifier, hence the name forest. A decision tree is a classifier that
consists of internal nodes, which are the features, edges that correspond to a subset of the feature
value and lastly leaves (also called terminal nodes) that correspond to the classes[9]. A simple
example of such a decision tree can be seen in figure 3. For a data sample to be classified as C2 in
this decision tree, it must match the decision rule (F1 < V1) ∧ (F2 = V2).

Figure 3: A decision tree with two features (F1 and F2) and two classes (C1 and C2)

When training a decision tree, one of the key tasks is to decide which feature that is the best
to use. To do this metrics like information gain, Gini-index or ReliefF is often calculated for all the
features. Then the best features are selected and the edges are generated[9]. This process is a bit
different with an RFC. With an RFC a set of different decision trees are created, and the best features
are determined from a random selection of some of the features. In the end all of the results are
averaged[27].

10

Analysis of LSTM Networks

The Random Forest classifier is quite popular to use since it is so easy to implement. Because
it combines several decision trees and makes random selections, it is also quite robust against
overfitting. The model has its disadvantages, however. One of them is that it can become quite
slow and resource heavy. This is because it may need to build many decision trees to improve the
accuracy[27].

2.3.3 Support vector machines

SVMs are one of the most successful machine learning algorithms throughout history, so it is there-
fore not a surprise that it is also one of the most popular methods used for detecting cyberbullying.
The basic principle is to place a hyperplane in the space of attributes that separates the classes
optimally. The data points closest to the hyperplane are called the support vectors, and the distance
between the support vectors and the hyperplane is called the margins. The optimal hyperplane po-
sition is found by maximizing the margins[9]. In figure 4 the hyperplane (the solid red line) and
how it is used to separate the two classes of data points (red stars and red circles) by maximizing
its margin to the support vectors (dotted red lines) are illustrated.

Figure 4: How a SVM separates the classes with a hyperplane

11

Analysis of LSTM Networks

2.3.4 Neural Network

Neural Network models are models which aim to imitate how the brain works. It consists of several
layers and each layer has a set of neurons in it. The amount of layers and the count of neurons they
hold varies from each Neural Network design. At the very least a Neural Network needs two layers,
an input and an output layer, but there is no upper limit. Each neuron can be viewed as a processing
unit. A neuron takes one or more inputs, applies weights to them and uses a activation function in
order to sum the input values and an output function to produce its output. Each layer of neurons is
connected sequentially to each other from the input layer to the output layer, as pictured in figure
5. The number of neurons in the first layer is equal to the number of features that will be used.
The number of neurons in the output layer decides how many classes the Neural Network is able to
detect. The layers between the input and output layer are called the hidden layers. These can have
any number of neurons in them, and there can be none or several hidden layers. The hidden layers
are what adds the complexity to the Neural Network. A Neural Network with just an input and
output layer with linear activation functions will only be able solve cases with linearly separable
data[9]. In order to solve more complex classification cases hidden layers or nonlinear activation
functions must be added. The more hidden layers that are added, the more complexity is added.
While more complexity may increase the accuracy of the model, it does also add a cost in form of
resources needed to train the Neural Network and/or the time needed for training.

Figure 5: A four-layered feed-forward Neural Network

Training

The training of a Neural Network is an iterative process, consisting of running the Neural Network
for a set number of runs, called epochs. The training process consists of changing the weights associ-

12

Analysis of LSTM Networks

ated with each connection between the neurons. There are several different learning rules that can
be implemented to a Neural Network. The four most popular ones are the Hebbian learning rule,
Delta learning rule, competitive learning rule and forgetting. For this thesis only the generalized
Delta learning rule is relevant. The generalized delta learning rule is more commonly known under
the name backpropagation[9]. This is the learning rule that is most frequently used in the ready-
made deep learning libraries like Keras [28] which is to be used in this thesis. With this learning
rule the weights are set randomly when the Neural Network is initialized. For each sample in the
training data the output of the model is computed and compared with the expected output. As the
name backpropagation implies, the model is corrected in the opposite way of how the calculations
are done. First the weights for the output layer are corrected with the difference (also referred to as
the error) between the expected and actual output of the model. Then the difference between the
expected and the actual values of the second last layer is computed and used to correct the weights
for that layer. This process is repeated all the way back to the input layer. The rate at which the
weights are updated is called the learning rate. The learning rate decides how much each weight is
to be adjusted each time[9].

Activation functions and output functions

As mentioned, each neuron is a processing unit that uses an activation function to calculate the sum
of its inputs, and a output function to calculate its output.

The activation function calculates the sum of the neurons input values. There are different kinds
of activation functions but the most frequently used is a standard linear activation. With linear
activation the input values of a neuron Xj is, the state of the neuron it is connected to (Xi),
multiplied with the weight (Wij) that the neuron has associated with that input neuron, and a
constant (Cj) that the neuron has (usually referred to as bias or threshold). This is shown in formula
2.1[9].

A(Xj) =
∑
i

WijXi + Cj (2.1)

The output function is a function that takes the value of the activation function and produces a
normalized value based on a threshold. There are several different output functions that are used
in the different designs of Neural Networks. In this thesis we will use Keras implementation of
the functions; linear, Sigmoid, Rectified Linear Unit and Softmax. Too add some confusion, these
functions are referred to as activation functions in the Keras API. This is however not accurate as
Keras uses the linear activation function as shown in formula 2.1 for the activation of the neurons.

The Sigmoid function is a function that is able to map arbitrary real values into a real value
interval[9]. There are a few different versions of this function, the function to be used in this thesis
is the Sigmoid function as defined in formula 2.2, which maps the values to the real value in the
interval (1,0).

Output(xi) =
1

1 + e−xi
(2.2)

13

Analysis of LSTM Networks

The Rectified Linear Unit (ReLu) is a function that will output zero if x is not greater than zero.
This means that if x is zero or negative the output will be zero, for any other case the output will
be equal to the value of x. The Rectified Linear Unit formula is displayed in formula 2.3[29].

Output(xi) = max(0, xi) (2.3)

The Softmax functions formula can be seen in formula 2.4 and 2.5 [30]. The Softmax function
will always output a number between zero and one, and the sum off all of the neurons output
values will be equal to one. The Softmax function has over time become the go to function for deep
learning and is almost always recommended by default to be used in the output layer of a Neural
Network. This can be seen by looking at the papers, [31], [32], [33] and [2], mentioned in section
2.3.5 about the state-of-the-art Neural Networks used for cyberbullying detection, where all of the
four papers uses Softmax activation in the output layer.

P (y = j|Θ(i)) =
eΘ(i)∑k
j=0 e

Θ
(i)

k

(2.4)

Θ = W0X0 +W1X1 + ...+WkXk =

k∑
i=0

WiXi = WTX (2.5)

Different types of Neural Networks

There are several different types of Neural Networks. Two examples are convolutional Neural Net-
work and Long-short-term-memory networks. These are networks that are designed in a special
way. A convolutional network usually consists of a set of hidden convolutional layers and pooling
layers. While the name may sound totally different from ordinary hidden Neural Network layer,
what differentiate them is simply the use of special activation functions.

In this thesis there are six main types of layers that will be used; Dense layer, Embedding layer,
one dimensional convolutional layer, Max pooling layer, Long-short-term-memory layer and Bidi-
rectional Long-short-term-memory layer.

The dense layer is an ordinary Neural Network layer that uses the linear activation function
mentioned earlier.

The embedding layer is a special type of input layer that is heavily used with textual data. The
embedding layer can have several different purposes, but in this thesis, it will be used to apply a
pre-trained Glove embedding to the input data of the Neural Network.

A one dimensional convolutional layer is a layer that takes two different signals and combine
them into one. One of the signals is the input signal that comes from the previous layer in the nerual
network, while the other signal comes from the kernel. Mathematically this is a combination of two
vectors as shown in formula 2.6 [34]. Where the input vector is defined as f with length n and
the kernel vector is defined as g with length m. The output of this operation will create a modified
signal (or vector). The idea is that through training of the Neural Network the modified signal will
enhance the relevant features of the input signal [34].

14

Analysis of LSTM Networks

(f ∗ g)(i) =

m∑
j=1

g(j) ∗ f(i− j +m/2) (2.6)

A convolutional layer is usually followed up with a max pooling layer. The max pooling layer
is a layer that down-samples the input data. There are two different types of pooling layers, max
pooling and min pooling. With max pooling only the maximum values from each selected region
of the input data are chosen, while the rest of the values are removed. Min pooling is the complete
opposite, where the minimum values are selected, and the maximum values are removed[35].

A Long-Short-Term-Memory layer is a type of Recurrent layer. A recurrent layer is special in the
sense that it does not only have an input and an output at each neuron, but also a loop. The loop
helps the neuron to not immediately "forget" its previous outputs since they are looped back to the
neuron. This makes it possible for the neurons to analyze its input based on both the current input,
but also the previous input. Mathematically this is described in formula 2.7 [36]. The state of the
hidden recurrent layer at time t is ht. ht equals a function of, the weights W , current states input Xt

added to the previous state of the hidden recurrent layer at time t-1 ht−1, which is multiplied with it
own hidden-state-to-hidden-state matrix U[36]. While this mechanism will let a layer take its past
values into consideration when deciding on the value for the current input, it will still struggle to
detect long dependencies going several states back. This is where Long-short-term-memory (LSTM)
layers come in. These layers have internal mechanisms referred to as gates and cell state. The cell
states keep information from previous states the neuron has encountered. The gates let the neurons
decide if the information seen should be added to the state or removed from the state. This means
that the LSTM layer is able to both remember previous states for a longer time, in addition to
forgetting information that does not seem relevant.

ht = µ(WXt + Uht−1 (2.7)

A bidirectional LSTM is a LSTM layer that works in two directions instead of just one. As previously
described, a traditional LSTM layer takes previous states into consideration when calculating its
current state. A bidirectional LSTM takes this mechanism a step further by not only looking at the
data in one direction, but also the opposite direction. In practice these are just two LSTM layers
combined in one, one that processes the input data in the original sequence, and one that processes
the input data in a reverse sequence. This will allow the layer not only to detect dependencies with
previously processed input data, but also future input data.

2.3.5 State-of-the-art Neural Network types

The most significant new trend for Neural Networks when it comes to cyberbullying detection is the
Long-Short-Term-Memory (LSTM) Neural Networks. The LSTM design has been applied in several
of the new research studies published most recently. [31] showed that by using several distinctive
LSTM classifiers in combination with features based on the users’ behavior, one could achieve per-
formance beating the previous state-of-the-art methods. While not using an original LSTM design,
[32] showed that by combining traditional Convolutional Neural Network (CNN) layers with Gated

15

Analysis of LSTM Networks

Recurrent Unit (GRU) layers one could also beat the state-of-the-art methods performance. The
GRU layers are quite similar to the LSTM layers in the sense that they have the same goal of track-
ing long term dependencies, but the GRU layers have fewer trainable parameters. LSTM and GRU
have been proven to yield very similar performance[37]. LSTM based Neural Networks were also
proposed by [33], which displayed that LSTM based networks where able to outperform a state-of-
the-art CNN and SVM methods. They later did further research to the LSTM architecture adding a
Bidirectional LSTM (BLSTM) based Neural Network, the results, published in [2], showed that the
BLSTM model was able to achieve even better performance than the traditional LSTM model.

2.3.6 Measuring the performance of a classification model

The performance of a classification model is based on how many classes the model successfully
classifies as correct. In order to assess this there are a few different measurements that are used.
Some of the most popular ones are; classification accuracy, precision, recall and F-score.

In order to describe these measurements, we first need to define some classification measure-
ments that are used to calculate them. In a classification scheme with two possible classes, one of
the classes are often referred to as the positive class, and the other is referred to as the negative
class. If the goal is to detect cyberbullying for example the positive class would be the data classified
as bullying while the negative class would be the data that are not classified as bullying. The results
of a classification test is then divided into four categories, True positives (TP), False positives (FP),
True negatives (TN) and False negatives (FN). The samples that are counted as True positives are
the samples that are from the positive class, and that the model classifies as positive. The samples
that are regarded as false positives are samples that really belong to the negative class, but the
model falsely classifies as positive. The true negatives are the samples that really are negative, and
that the model classified as negative. The false negatives are the samples that actually are positive,
but the model falsely classifies as negative.

Classification accuracy (hereby referred to as just accuracy) is defined as the frequency of correct
classifications[9]. The formula for accuracy can be seen in formula 2.8. Accuracy is the product of
correctly classified samples (ncorr) divided by the total number of samples (n), and multiplied with
100 in order to get the answer in percent. A accuracy score of 100%, means that all of the samples
classified by the model were correctly classified, and a accuracy score of 0% means that no samples
were classified as correct.

Accuracy =
ncorr
n
∗ 100 =

TP + TN

TP + FP + TN + FN
∗ 100 (2.8)

Recall (also known as true positive rate or sensitivity) is defined as the relative frequency of
correctly classified positive samples[9]. The mathematical formula for calculating the recall can be
seen in formula 2.9. Recall is the product of dividing the number of correctly classified positive
samples (TP), with all of samples that belong to the positive class (TP + FN)).

Recall =
TP

TP + FN
(2.9)

16

Analysis of LSTM Networks

Precision is defined as the portion of correctly classified samples that were classified as positive[9].
The mathematical formula for calculating the precision score is presented in formula 2.10. The pre-
cision score is calculated by dividing the number of samples that were correctly classified as positive
by the model (TP), with the total number of samples that were classified as positive by the model
(TP + FP).

Precision =
TP

TP + FP
(2.10)

F1-score (also known as F-measure) is the harmonic mean of precision and recall. The math-
ematical formula for calculating the F1-score is presented in formula 2.11. In order to get the
harmonic mean of recall and precision one have to take 2 multiplied with the ratio between the
product of precision and recall, and the sum of the precision and recall.

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

=
2TP

2TP + FP + FN
(2.11)

The problem with the accuracy is that for most of the classification tasks the class representation
in the data sets are skewed. Meaning that maybe 90% of the data samples belong to the negative
class, which means that only 10% of the samples are from the positive class. For a model to achieve
a respectable accuracy score of 90% it can then just classify all the data samples as negative. This is
a problem as it usually is the positive class, we are interested in identifying. Therefore, in order to
better understand the model’s ability to classify the positive class, the F1-score is often used when
comparing the performance of models. The problem with the F1-score, however, is that it does not
take into account the possible huge number of negative samples that are correctly classified[9]. In
order to account for this, it is usual to calculate the F1-score of both the classes separately, meaning
that both classes will be set as positive and negative ones. It is also natural in such a case to calculate
the average F1-score. In such a case there are two different averages that are popular to use; macro
and weighted. Macro average is the normal average between the two F1-scores scores. Weighted
average, however, takes the sample count into account. This means that each F1-score is weighted
by their support in the data set. If a class only is represented by 10% of the classes, the F1-score of
this class only will count 10% towards the average score.

2.3.7 Challenges with comparing methods

There are several challenges with comparing Neural Network architectures presented in different
research articles. Since a NLP pipeline consist of so many different variables, as the components
used, how they are implemented and what data set that is used, it is nearly impossible to define
any clear cause and effect relationships. Because of this it might end up invalid by directly compar-
ing the performance achieved by the researched methods mentioned in section 2.3.1, in regard to
determining what Neural Network architecture that has the best performance. These challenges are
also mentioned by the survey of state-of-the-art methods for cyberbullying detection [16]. Since the
goal of this thesis is to detect such cause and effect relationships in order to determine the best per-
forming Neural Network classifier architecture, it will be required to test the different architectures

17

Analysis of LSTM Networks

in a lab environment with as few changing variables as possible.

18

Analysis of LSTM Networks

3 Methodology

In this chapter the methodology of this project will be described. This includes description of the
experiment setup, testing scheme and type of measurements used.

3.1 Experiment

In order to answer the research questions, two experiments have been conducted. The first experi-
ment was conducted in order to answer the research question concerning what type of Long-Short-
Term-Memory Neural Network yields the best results (research question 2), what effect increased
training has (research question 1), and if it is beneficial to stack equal layers upon each other
(research question 3). The second experiment was conducted in order to investigate whether or
not the traditional Softmax activation layer in Long-Short-Term-Memory Neural Networks could be
replaced(research question 4). This chapter will cover the details about both experiments.

3.1.1 The two experiments

Experiment:

1. Test the difference between different types of LSTM Neural Networks, and the effect of stack-
ing similar layers. All models were tested in two test runs, first test run was with 200 epochs
of training, while in the second test run the models were trained for 800 epochs.

2. Test if Softmax activation can be replaced by either a SVM classifier, a Random forest classifier
or hybrid solution consisting of a Neural Network with a SVM like activation.

3.1.2 About the experiments

Both of the experiments were conducted with the OFAT approach. The OFAT (one-factor-at-a-time)
is, as the name implies, an experiment strategy which consists of only testing one factor at a
time[38]. This is one of the most popular experiment designs[38]. The main idea with this strategy
is to create a common baseline for the experiment. Then the variables which are to be experimented
with are changed one at a time. One of the big advantages with the OFAT strategy is that "one can
readily assess the factor effects as the experiment progresses, because only a single factor is being
studied at any stage"[39].

In order to be able to apply the OFAT strategy to the experiments being conducted in this
project a standardized Natural Language Processing pipeline has been developed. This pipeline
pre-processes the data set and produces feature vectors for every data sample. The details of this
pipeline can be assessed in the section 3.1.4. A standard layout for the Neural Networks has also
been established. In experiment 1 all of the Neural Networks have the same initial and final layer
structures, only the intermediate layers where changed. While in experiment 2 a candidate from
all four of the Neural Network types tested in experiment 1 were used, and only the activation

19

Analysis of LSTM Networks

mechanism of these Neural Networks was changed. The details of the models to be tested in both
experiments is described in section 3.4.

3.1.3 Challenges and counter measures

There are several challenges present when doing these kinds of experiments. One big challenge is
that the training process of a Neural Network is not one hundred percent consistent. Even though
the Neural Network and the data fed into it is kept one hundred percent the same, the Neural
Network will yield slightly different performance measurements each time. In order to cope with
this issue there are different types of strategies that can be applied, like k-fold-cross validation
or leave-one-out-cross validation. As discussed by [40] the leave-one-out-cross validation will be
preferable in order to minimize the prediction error. The leave-one-out-cross validation method is
however extremely computationally heavy. In this method the training is done on one minus all N
observations in the data set, and repeated for N times, in such way that all the data samples are left
out of the training one time individually and used for testing. Running the training of the Neural
Network N times, where in our case N = 4368 (see section 3.2 for detailed information on the
data set used), would take too much time. Therefore, the k-fold-cross validation has been chosen
instead. According to [40] the K-fold-cross validation is not perfect and will produce some bias, the
bias is however smaller the larger the K is. Therefore, a K value of 10 has been selected for this
experiment. This will reduce the bias to a minimum while still making it possible to do the testing
with our given resources, which is described in section 3.1.6.

While the OFAT strategy is good for assessing single factor effects, the design also has its disad-
vantages. One of the biggest disadvantages is that it will not be able to discover relational effects
between different factors. In order to deal with this problem, one should conduct a factorial experi-
ment. Factorial experiment design is based on varying different factors at the same time, and testing
every combination[38]. For example, if there is a case with two factors that can have two states, the
experiments will require a 22 factorial experiment, which will equal 4 runs in total. The problem
of course with this design is that the complexity of the experiment increases exponentially with the
amount of factors and states. Because of this experiment 1 will not utilize a factorial design that
includes the factors of the NLP pipeline. Instead the experiment will only focus on the following
three factors; type of LSTM network, amount of stacked layers and the amount of epochs used in
training. There are four LSTM types to be tested, the layers will be stacked up to five times and
the training will be done with 200 and 800 epochs. This experiment will therefore require a 2 ∗ 45

(The set of epochs, times, the types of LSTM designs, to the power of, the number of stacked layers)
factorial design, which will involve the experiment to be run for a total of 40 times

In experiment 2 the factorial design has also been utilized to some degree. Both the type of
LSTM design and activation will be varied. In total 4 LSTM designs will be tested, and 4 activation
techniques will be tested. This means that the experiment is 44 factorial experiment, which will
require 16 runs.

20

Analysis of LSTM Networks

3.1.4 The Natural Language Processing pipeline
Background

There is no de facto standard for the Natural Language Processing pipelines used within the re-
search community. The NLP pipeline design can have a great impact on the performance of the
classification. The NLP pipeline designs are therefore often experimented with by researchers, and
as a consequence of this almost all the published research within this field will have smaller or big-
ger changes to NLP pipeline design. The development of the implemented standard NLP pipeline in
this project has therefore been based on several tests with different NLP pipeline implementations
inspired by published research within the field of cyberbullying detection. The implemented NLP
pipeline consists only of components that are commonly used within the field. This is done to make
the experiment as relevant as possible.

Components of the NLP pipeline

The implemented NLP pipeline consists of a quite basic text pre-processor. The implemented text
pre-processor removes different kinds of punctuation, numbers, names mentioned by the @-symbol
and repeating characters. In addition, all the URLs in the texts are replaced by the generic text
"URL". Next step of the NLP is to transform the texts into vectors. To do this, the Keras Tokenizer
function is used. This implementation creates a dictionary based on the unique words found in the
data set. All the words are then given an index in the range of zero to the maximum number of
unique words identified. Each text data sample is then represented by a vector of word indices. The
vectors are also padded at the end so that they all end up having the same length.

Last step of the NLP is to create an embedding matrix. In order to create the embedding matrix
for the data set the Glove[41] algorithm developed by Stanford University is utilized. The imple-
mentation in this project uses the Glove algorithm that is pre-trained on a corpus consisting of 27
billion tokens collected from Twitter, with the embedding size equal to 200.

The all in depth details of the implemented NLP pipeline and the code used can be found in
chapter 4.

3.1.5 Experiment setup

Both experiment 1 and experiment 2 follow the same experiment scheme. The scheme is illustrated
in figure 6. The testing scheme is divided into three main components; Data set acquisition, Prepro-
cessing and Classification testing. The data set acquisition and preprocessing components are only
run once when starting the experiment. The classification testing component is an iterative process,
that is repeated for every model to be tested.

The data set acquisition component has the task of acquiring the complete data set to be used,
this is explained more thoroughly in section 3.2. The preprocessing component preprocesses the
textual data, transforms the textual data into vectors and creates the embedding matrix. This com-
ponent is explained in more detail in section 3.1.4. The classification component is as already stated
an iterative process that is repeated once for every model to be tested. The model to be tested is
trained and tested in a 10 cross fold manner, meaning that each model is trained and tested ten

21

Analysis of LSTM Networks

Figure 6: Test setup

times. In every epoch the weights from the model is stored, and at the end of the training run the
script called performance evaluator loads all of the model weights to see which model performs
the best. The performance measure from the best model from the training run is then stored. This
process is repeated for all of the ten folds, and at the end, the performance evaluator script cal-
culates the average performance measures for the 10 runs and create a performance report for
the model tested. The performance measures that are used along with more information about the
performance reports can be seen in section 3.3.

3.1.6 Experimental environment

Two different machines have been used to run the experiments. Machine 1 was used to run exper-
iment 1 with 200 epochs and experiment 2. While machine 2 was used to run experiment 1 with
800 epochs.

Machines:

1. Machine:

• Processor: Intel Core i7-8700K

22

Analysis of LSTM Networks

• Graphics Processing Unit: Nvidia Geforce 1070TI 8 GB
• Random Access Memory: 32 GB
• Owner: Thor Buan

2. Machine:

• Processor:Intel Xeon
• Graphics processing unit: Nvidia Quadro P5000 16 GB
• Random Access Memory: 32 GB
• Owner: Prof. Raghavendra Ramachandra

The script used to run the experiment also require approximately 18 GB of free disk space
available to be run, as the weights for the Neural Network model has to be saved during training.

3.2 Data set

The data set used in this project is the bullying traces data set [4] created by Professor Xiaojin
Zhu and the University of Wisconsin-Madison. The version 3.0 of this data set which is used in this
thesis consist of 7321 tweet ID’s and labels for these tweets. There are in total six different labels
associated with every tweet ID. All of the labels and their possible values are listed in section A.1.
For this project the only relevant label is the bullying label, which is yes or no, that indicates if the
data sample is bullying or not.

The data set originally consists of 7321 tweets represented by their ID and the labels associated
with them. The tweets in the data set were collected back in 2011. The tweets in their original
form were retrieved by creating a script that sends request to the Twitter API ([42]) to retrieve
the tweets belonging to the tweet ID’s in the data set. Due to the nature of Twitter several of the
tweets from the data set could not be retrieved. This can be because the tweets had been deleted by
the users themselves or that Twitter had removed the tweets. Because of this the data set that was
retrieved in February 2019 through the Twitter API was only counting 4367, whereas 1140 samples
are labeled as bullying. Since Neural Network models favor balanced data sets, the data set has
been over sampled with samples from the bullying class to even out the label representation to a
fifty-fifty distribution. The oversampling technique used is described in section 4.3.2.

3.3 Quantitative assessment

In order to assess the performance of each candidate in the two experiments a set of predefined
measurements are collected from the training and testing runs. These performance measurements
among other relevant data from the model is saved in a report, these reports can be assessed in
chapter B, C and D. The following performance measures are collected from each model test:

• Accuracy
• F1 score

◦ Macro average
◦ Weighted average

23

Analysis of LSTM Networks

◦ Bully class
◦ None class

• Precision score

◦ Macro average
◦ Weighted average
◦ Bully class
◦ None class

• Recall score

◦ Macro average
◦ Weighted average
◦ Bully class
◦ None class

All of the performance measures is averaged over the 10 cross fold run. In addition to these mea-
sures the epoch number for the best model found from each training run in each fold is stored. On
the basis of these numbers, the best performing model can easily be detected, but also the epochs
needed to achieve such a score with the respective models will also be easily found. This should
give enough information to decide which models performs the best, and detect any differences in
required training time for the models.

3.4 Details about the models to be tested

In this section details about each model to be tested in both of the experiments are described.

3.4.1 Experiment 1

As mentioned earlier to minimize the variables all the models have a standard layout which they
are based on. In experiment 1 this standard layout consists of:

• Initial layer

◦ Type: Embedding layer
◦ Input dim: 11478 (vocabulary size)
◦ Input length: 34 (length of vectors)
◦ Embedding used: Glove embedding matrix
◦ Embedding size: 200

• Second last layer

◦ Type: Regular densely-connected Neural Network layer
◦ Size: 11478 (vocabulary size)
◦ Activation: Rectified Linear Unit

• Last layer (activation layer)

24

Analysis of LSTM Networks

◦ Type: Regular densely-connected Neural Network layer
◦ Size: 2 (number of classes)
◦ Activation: Softmax

• Loss function: categorical cross-entropy
• Optimizer function: Adam
• Metric to evaluate performance during training: Accuracy
• Number of epochs: 200 and 800 (both tested individually)

The only variable(s) that are changed in this experiment are the intermediate layer(s) between the
initial layer and the second last layer, as illustrated in figure 7.

There are four types of LSTM based Neural Networks to be tested; ordinary LSTM (hereby
referred to as "LSTM network"), Bidirectional LSTM (hereby referred to as "BLSTM network"), Con-
volutional LSTM (hereby referred to as "ConvLSTM network") and BLSTM mixed with ordinary
LSTM (hereby referred to as "BLSTM with added LSTM network" or just "BLSTM LSTM"). The or-
dinary LSTM network and the BLSTM network will be designed by simply stacking ordinary LSTM
or BLSTM layers of the size 200. The BLSTM with added LSTM network is a bit different, as this
network design starts with a BLSTM layer, but are stacked consequently with ordinary LSTM layers.
The Conv LSTM design is also a bit different. One Conv LSTM component consists of a Conv1D
layer, a MaxPooling1D layer and a LSTM layer. In the Conv LSTM design the Conv LSTM compo-
nents are stacked. The raw code of all the models in experiment 1 can be found in the Appendix
section A.3.

3.4.2 Experiment 2

The standard layout of the model in experiment 2:

• Initial layer

◦ Type: Embedding layer
◦ Input dim: 11478 (vocabulary size)
◦ Input length: 34 (length of vectors)
◦ Embedding used: Glove embedding matrix
◦ Embedding size: 200

• Intermediate layers, one of the following designs

◦ LSTM stacked four times
◦ BLSTM stacked twice
◦ BLSTM with two added LSTM layers
◦ ConvLSTM stacked Twice

• Second last layer

◦ Type: Regular densely-connected Neural Network layer
◦ Size: 11478 (vocabulary size)

25

Analysis of LSTM Networks

Figure 7: Sketch of the models to be tested in experiment 1

26

Analysis of LSTM Networks

◦ Activation: Rectified Linear Unit

• Optimizer function: Adam
• Metric to evaluate performance during training: Accuracy
• Number of epochs: 800

The main variable to be tested in this experiment is the activation mechanism. In total four different
activation algorithms will be tested:

• Softmax activation
• An SVM like activation
• Classical SVM classifier
• Classical RFC classifier

Softmax has become almost a de facto standard as the activation function to use in Neural
Network within text classification. In this experiment some quite unorthodox activations will be
tested to see if they can compete with the Softmax activation function. One of these is a hybrid
approach between Neural Networks and Support Vector Machines, hereby referred to as SVM like
activation. The SVM like activation has three major differences from the typical Softmax activated
Neural Network. In the SVM like activation the loss function used with the Neural Network has
been changed to hinge loss, from cross entropy loss, the activation function of the last layer is
changed from Softmax to Linear, and lastly a L2 kernel regularizer is applied to the last layer. A
similar approach, just with GRU layers instead of LSTM layers, was proposed by [43] in order to
combine the powers of a SVM classifier with a Neural Network classifier for the purpose of intrusion
detection.

In addition to the Softmax and SVM activation functions, a traditional SVM classifier and a
traditional Random Forest classifier was tested as activation for the classes.

3.5 Model selection during training

All of the models to be tested are based on the Neural Network implementation from Keras[28].
While this is a really comprehensive and popular deep learning implementation it does have its
limitations. One of these is the function for selecting the best performing model from the training
of the Neural Network. It is only possible to use accuracy and loss as measurements for deciding the
best model. Since f1 measure is the preferred way of choosing the best performing model, the model
selection is done manually. This is done by saving the weights of the model from each epoch in the
training stage. After the training, all of the model weights are loaded, and the models are tested
individually. The model with the highest f1 score for the bully class is selected, as bully detection is
the main goal for these models. This procedure has a cost in sense of increased time and resources
spent on the training, but since F1 score is the only truly valid technique of measuring performance,
the procedure will ensure the best trained version of each model is selected.

27

Analysis of LSTM Networks

Figure 8: Sketch of the models to be tested in experiment 2

28

Analysis of LSTM Networks

4 Implementation

This chapter contains an overview of the third party libraries used in the implementation and other
dependencies, and describes how the test program has been implemented.

4.1 Third party libraries used

Library Source Used for
Tweepy [44] Data acquisition
Numpy [45] Data set handling
Pandas [46] Data set handling
NLTK [19] Preprocessing
Preprocessor [47] Tweet preprocessing
Keras [28] Preprocessing and Neural Network classification
TensorFlow [48] Back-end for the Neural Network classification
SKlearn [49] Performance measurements and, RFC and SVM classifier

Table 2: Third party libraries used in the implementation

4.2 Implementation dependencies and components needed to run the pro-
gram

Python version 3 [50] is required to run the program. For the development the Jupyter notebook
[51] and Jupyterlab [52] were utilized. All of these programs can easily be obtained by installing
the Anaconda environment package [53], which was used to develop this program. In addition to
this the pre-trained embedding model from Glove [25] and the data set called Bullyingtraces[4]
are required.

4.3 Test setup implementation

In this section the implementation of each core of the testing program is described. This section
is divided into the same core parts as found in figure 6; Data set acquisition, Preprocessing and
Classification testing.

4.3.1 Data set acquisition

The raw data set which already has been described in section 3.2, only consist of Tweet IDs, User
IDs and five different labels; bullying trace, type, form, teasing, author role and emotion. For this
thesis however only the bullying traces label was used. This label has one of two values, "y" meaning
it is indeed a bullying trace or "n" meaning it is not a bullying trace. Full overview of all of the labels
and their possible values are listed in the Appendix section A.1.

29

Analysis of LSTM Networks

In order to collect the raw Tweets associated with the Tweet IDs the Tweepy [44] library was
utilized. The data set downloaded from [4] already comes with an script for retrieving the Tweets
with the use of Tweepy through the Twitter API. This script however had to be slightly modified in
order to get the data into CSV format instead of JSON objects and to remove all the data samples
where it was not possible to retrieve the Tweets. The original script made by [4] can be seen in the
appendix section A.5.1, and the modified script that has been used in this thesis can be seen in the
appendix section A.5.2.

4.3.2 Preprocessing

After the data set has been fully acquitted the pre processing can begin. This process is a three step
process. First step is called the text preprocessing. In this step the raw text was processed in order
to maximize the classification performance by removing some of the noise in the textual data. The
following text processing tasks where implemented:

• Remove numbers
• Replace any URLs with the text "URL"
• Remove any characters that are repeated more than two times
• Remove the names in the @ mentions, but keeps the @ sign
• Remove all of the following signs:� �

’!"%&\()$*+ , -./:; <= >?[\\]^_‘{|}~ ’� �
• Transform all the characters to lowercase

The code of all of these operations can be assessed in the Appendix section A.5.3. As discussed in
section 2.2.5, removing repeating characters can corrupt the data. To avoid this, the implemented
algorithm that removes repeating characters in this thesis, only removes any characters that are
repeated more than two times. Thus avoiding any corruption of words that has double letters. The
drawback with such an implementation is that words that have mistakenly been spelled with double
letters, will not be corrected.

Next step in the preprocessing is to transform the text data into vectors. This was done by
utilizing the Keras library [28], as shown in listing 4.1. First the function fit_on_text is called.
This function creates an internal vocabulary dict based on the textual data passed to it. Next all
of the data samples are transformed to vectors with the use of the function text_to_sequences.
This function creates vectors based on the internal vocabulary dict previously generated. For each
data sample, all of the word is switched with their corresponding index in the internal vocabulary
dict. Finally the function pad_sequences is called on the data set holding the vectors. This function
pads all of the vectors so that they become the same length as the longest data sample. The finished
product is actually quite similar to that of the bag-of-word model previously discussed in section
2.2.8. The difference is that the length of all of the vectors is not equal to the vocabulary size, but
instead the length of the longest data sample. In addition, the sequence of the words in the data
samples are not removed as it is with the bag-of-word model, instead of identifying the words in

30

Analysis of LSTM Networks

Words: Bob shot Fred the dog
Indexes: 1 2 3 4 5

Table 3: Vocabulary dict with indexes

Data sample 1 1 2 3 0 0
Data sample 2 4 5 2 4 5
Data sample 3 3 2 1 0 0

Table 4: The vectors corresponding to data sample 1, 2 and 3

the sample with their placement in the vector, the words are identified with their indexes in the
internal vocabulary dict. To better understand this it can be useful to continue the exampled used
with the bag-of-word model in section 2.2.8. Given the data set with three data samples. Where
data sample 1 is "bob shot fred", data sample 2 is "The dog shot the dog" and data sample 3 "fred
shot bob". In this case we will have an internal vocabulary dict as shown in table 3, and the data
samples will be represented with the vectors shown in table 4.

Listing 4.1: Code example of how to create the vectors from the text in the preprocessed data set, code was
inspired by [3]� �

from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
vocabulary_size = None
tokenizer = Tokenizer(num_words= vocabulary_size)
#num_words=None means that all the indexes will be mapped
tokenizer.fit_on_texts(dataset [:,0])
#dataset [:,0] is the text column in the data set
sequences = tokenizer.texts_to_sequences(dataset [:,0])
#Pads the vectors such that they all get the same length:
dataTokenized = pad_sequences(sequences ,
maxlen=inputsize_)� �

Last step of the preprocessing is to generate the embedding matrix. As already mentioned, the
pre-trained Glove embedding has been used in this project. Therefore, in order to generate the
embedding matrix for the data set, all that is needed to do is to load the pre-trained embeddings
that are downloaded from Glove [25]. Create an empty matrix with the size equal to the length
of the internal vocabulary dict times the embedding size (in this thesis the embedding size used
was 200). Then compare the words from the Glove embedding with the words in the internal
vocabulary dict, and on a match of words, fill inn the embeddings from the Glove embedding into
our embedding matrix. Such that we get the embeddings made by the Glove model for all of the
words in our data set. The code for this operation is shown in listing 4.2

Listing 4.2: The implementation of Glove embeddings, the code was inspired by [3]� �
embeddings_index = dict()

31

Analysis of LSTM Networks

f = open(GloveFile , encoding="utf8")

for line in f:
values = line.split ()
word = values [0]
coefs = np.asarray(values [1:], dtype=’float32 ’)
embeddings_index[word] = coefs

f.close()
print(’Loaded␣%s␣word␣vectors.’ % len(embeddings_index))
word_index = tokenizer.word_index
print(’Found␣%s␣unique␣tokens.’ % len(word_index))

create a weight matrix for words in training docs
embedding_matrix = np.zeros ((vocabulary_size , embsize_))
for word , index in tokenizer.word_index.items ():

if index > vocabulary_size - 1:#out of scope
break

else:
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:

#embedding for word is found
embedding_matrix[index] = embedding_vector� �

Preparing the data for the classification scheme

After all of the data has been preprocessed it has to be prepared for the classification scheme. This
involve three different tasks; split the data into 10 folds (or parts) for the 10 cross fold validation,
balance the data set by oversampling, and saving the new data set.

Firstly the data set containing the vectors and labels are divided into 10 folds of equal size, this
procedure can be seen in listing 4.3. These folds are going to be used in a 10 cross fold scheme, as
discussed in section 3.1.3. This means that each fold, at some time, is going to be used as the testing
data for the classification, thus it is crucial to not leak any information from one fold to another.
Because of this it is very important that the data set is split into the folds before any oversampling is
done. Information leakage between the folds happens when a data sample is copied from one fold
to another.

After this each fold is oversampled individually to reach close to an equal representation of both
classes, this procedure can be seen in listing 4.4. This procedure creates a new set of 10 folds. This
is done in order to keep both a oversampled version of the data set, and a version of the data set
that is not oversampled. The oversampled data set will be used for training the model, while the
non-oversampled data set will be used for the performance testing of the model. One important
notice to make about this is that the two sets has the exact same indexing. The data in fold one
of the not oversampled data is copied over to fold one of the oversampled data set before the fold
then is oversampled. This means that fold one in the not oversampled data is equal to fold one of
the oversampled data. Then the oversampling is done individually on each fold in the oversampled

32

Analysis of LSTM Networks

data set. The oversampling is done by collecting all the class one (bullying) data samples from the
fold. Then the population size of class one data samples is divided on the population size of the
class zero (not bullying) data samples, in order to get the oversample rate needed to get close to a
fifty-fifty representation of the classes in the fold. The class one data samples is then duplicated in
accordance with the oversample rate.

Last task is to save the all the data needed to run the classification. This is done in order to
ensure that all the models in both experiment 1 and 2 are trained and tested on the exact same
data. This procedure is shown in listing 4.5. This produces 22 files of the type .npy in a folder called
test_data. Each fold from both the oversampled data set and the non-oversampled data set are
stored in individual files. The ten oversampled folds have the file names TraindataFolds_1.npy to
TraindataFolds_10.npy. The ten non oversampled folds have the file names DataFold_1.npy
to DataFold_10.npy. In addition to this the embedding matrix is saved in its own file called
embedding_matrix.npy, and other variables that the classification is dependent on are saved in
a file called Settings.npy.

Listing 4.3: Splitting the data into 10 folds� �
#10-Cross folding
#datasetTokenized = data set with the vectors and the labels

#First fold:
foldsize = int(np.round(len(datasetTokenized)*(0.1)))
datasetTokenizedF1=datasetTokenized [:foldsize ,:]

#Seccond Fold
Foldstart = foldsize
Foldeend = Foldstart+foldsize
datasetTokenizedF2=datasetTokenized[Foldstart:Foldeend ,:]

#Third to tenth fold
Foldstart = Foldeend
Foldeend = Foldstart+foldsize
datasetTokenizedF3=datasetTokenized[Foldstart:Foldeend ,:]

Foldstart = Foldeend
Foldeend = Foldstart+foldsize
datasetTokenizedF4=datasetTokenized[Foldstart:Foldeend ,:]

Foldstart = Foldeend
Foldeend = Foldstart+foldsize
datasetTokenizedF5=datasetTokenized[Foldstart:Foldeend ,:]

Foldstart = Foldeend
Foldeend = Foldstart+foldsize
datasetTokenizedF6=datasetTokenized[Foldstart:Foldeend ,:]

33

Analysis of LSTM Networks

Foldstart = Foldeend
Foldeend = Foldstart+foldsize
datasetTokenizedF7=datasetTokenized[Foldstart:Foldeend ,:]

Foldstart = Foldeend
Foldeend = Foldstart+foldsize
datasetTokenizedF8=datasetTokenized[Foldstart:Foldeend ,:]

Foldstart = Foldeend
Foldeend = Foldstart+foldsize
datasetTokenizedF9=datasetTokenized[Foldstart:Foldeend ,:]

Foldstart = Foldeend
datasetTokenizedF10=datasetTokenized[Foldstart :,:]

#List with all the data set folds
DataFolds =[datasetTokenizedF1 ,datasetTokenizedF2 ,
datasetTokenizedF3 ,datasetTokenizedF4 ,datasetTokenizedF5 ,
datasetTokenizedF6 ,datasetTokenizedF7 ,datasetTokenizedF8 ,
datasetTokenizedF9 ,datasetTokenizedF10]� �

Listing 4.4: Creating a set of oversampled folds� �
#New array for holding the oversampled folds:
TraindataFolds = DataFolds.copy()

#Loop through each fold individually:
for index , fold in enumerate(DataFolds):

tempdataoversampled=fold
class1datapoints= np.array ([])
neutralclasscount =0
#Find all data samples of class 1:
for datapoints in fold:

if datapoints[ClassCollumn] == 1:#Class 1:
if class1datapoints.size == 0:

class1datapoints=datapoints
else:

class1datapoints = np.vstack(
[class1datapoints ,datapoints])

#Calculate class 0 population:
neutralclasscount = int(np.round(len(fold)))
-len(class1datapoints)
#Calculate the difference in the population size
#of class 0 and 1:
oversamplerateclass1 = int(np.round(neutralclasscount/

34

Analysis of LSTM Networks

len(class1datapoints)))
#oversample class 1:
oversampledclass1 = class1datapoints
for i in range(oversamplerateclass1 -2):

oversampledclass1= np.vstack(
[oversampledclass1 ,class1datapoints])

tempdataoversampled = np.vstack ([tempdataoversampled ,
oversampledclass1])
#Add the fold to the list of oversampled folds:
TraindataFolds[index] = tempdataoversampled� �

Listing 4.5: Saving the data to NPY files� �
#Save all individual folds from the original data set:
for ind , fold in enumerate(DataFolds):

filename= "test_data\DataFold_"+str(ind +1)+".npy"
np.save(filename , fold)

#Save all individual folds from the oversampled data set:
for ind , fold in enumerate(TraindataFolds):

filename= "test_data\TraindataFolds_"+str(ind +1)+".npy"
np.save(filename , fold)

#Save the embedding matrix
filename= "test_data\embedding_matrix.npy"
np.save(filename , embedding_matrix)

#Save other important variables needed
Settings = [EpochCount ,embsize_ ,inputsize_ ,
batch_size_ ,ClassCollumn]
filename= "test_data\Settings.npy"
np.save(filename , Settings)� �

4.3.3 Classification testing
Load the data

Before the classification testing can start, all of the data is loaded from the files created in listing
4.5. This is a very simple procedure that can be seen in listing 4.6. As seen in this listing one variable
called vocabulary_size.npy is not loaded but instead set manually, this is due to a mistake made
when the data was stored. This variable was forgotten when the data was saved, and therefore it
had to be set manually.

Listing 4.6: Saving the data to NPY files� �
#Load previously generated classification data
from numpy import genfromtxt

35

Analysis of LSTM Networks

TraindataFolds =[[] ,[] ,[] ,[] ,[] ,[] ,[] ,[] ,[] ,[]]
DataFolds =[[] ,[] ,[] ,[] ,[] ,[] ,[] ,[] ,[] ,[]]
for i in range (10):

TraindataFolds[i] =
np.load("test_data\TraindataFolds_"+str(i+1)+".npy")
DataFolds[i] =
np.load("test_data\DataFold_"+str(i+1)+".npy")

Settings=np.load("test_data\Settings.npy")
embedding_matrix = np.load("test_data\embedding_matrix.npy")
EpochCount=int(Settings [0])
embsize_=int(Settings [1])
inputsize_=int(Settings [2])
batch_size_=int(Settings [3])
ClassCollumn=int(Settings [4])
vocabulary_size =11478� �

About the classification testing script

The implementation of the classification script can be divided into three main parts; the preparation
part, the 10 cross fold loop, and the performance report generation. A full example of the whole
script can be seen in the Appendix section A.5.4.

Classification testing script: The preparation part

There are two main tasks performed in this part of the script, importing all the resources needed
from third party libraries and preparing a model list. As described in section 3.5, selecting the
best performing trained version of the model is done manually instead of the automatic selection
algorithm implemented in Keras.

Because of this it is needed to save each version of the model from all of the epochs during the
training. The classification script therefore starts with creating a list of model names, where the
names are on the form saved-model-*Epochnumber*.hdf5. Where *Epochnumber* is a three digit
number from 001 to the amount of epochs that the model is to be trained (200 or 800). In addition,
an empty list called bestmodels is initiated. This list will be used to save the name of the best
performing model from each training run in the 10-cross-fold scheme. This will allow us to keep
track of the epochs needed to get the best model from each run. This whole procedure is shown in
listing 4.7.

Listing 4.7: Lists used to save and keep track of all the trained models in one training run� �
part1="saved -model -"
part3="-.hdf5"
ModelsTemp =[]
#EpochCount =200 or 800
for i,x in enumerate(range(EpochCount)):

i=i+1
if i<10:

part2="00"+str(i)

36

Analysis of LSTM Networks

if i<100 and i>9:
part2="0"+str(i)

if i>99:
part2=str(i)

modelname=part1+part2+part3
ModelsTemp.append(modelname)

bestmodels =[]� �
Classification testing script: 10 cross fold loop

The backbone of the testing script is a "for loop" that goes through each fold in the data set. During
each loop the following tasks are done:

• Defining and resetting the Neural Network model
• Splitting the data into a training and testing set
• Training the model
• Manual testing of all the trained versions of the model
• Extensive performance evaluation of the best version identified of the model

Defining and resetting the Neural Network model

For each loop of the 10 cross fold run the model is reset and redefined. This is done in order
to ensure that each training run is done entirely from scratch. An example of the code used to
create the model is shown in listing 4.8. This example is from the testing of the Convolutional
LSTM with no layer stacking from experiment 1. One important part of the model initiation to
take note of is that the model is created with a checkpoint function (last line in the listing). This
is done in order to save the weights of the model from each epoch of the training, so that the
weights later can be loaded to test the model performance from each epoch manually. The filepath
variable is used to give the file names to the weights saved. The value of this variable is set to
saved-model-{epoch:03d}-.hdf5 which will result in the weights files being given the same names
as stored in the list of model names that was described earlier.

Listing 4.8: The 10 cross fold loop and how the Neural Network is initiated on the beginning of each loop run� �
#Loop through all the folds
for index , fold in enumerate(DataFolds):

try:
modelNTNU.reset_states ()#Try to reset the model ,
#will throw an error on first run , therefore the try

except:
n=0#Do nothing , it’s just because its the first run

finally:
#Create the model
K.clear_session ()
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ , embeddings_initializer=

37

Analysis of LSTM Networks

Constant(embedding_matrix), trainable=False))
modelNTNU.add(Conv1D (256,11, padding=’same’,
activation=’relu’, strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_))
modelNTNU.add(Dense(vocabulary_size ,
activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])

filepath = "saved -model -{ epoch :03d}-.hdf5"
mcp = ModelCheckpoint(filepath , monitor=’val_acc ’,
verbose=0, save_weights_only=True ,
save_best_only=False , mode=’max’,period =1)� �

Splitting the data into a training and testing set

As already mentioned, the testing script uses a "for loop" to loop through the folds in the data set.
The fold selected by the "for loop" is therefore used as the testing fold for each run. The training
set is thereby defined as the remaining folds in the data set. The code for defining the training and
testing data of each loop can be seen in listing 4.9. One thing to note is that the oversampled data
fold is selected as testing set. This is because this is the testing set to be used as validation by Keras.
The testing set is later reset to the non-oversampled set before the manual performance testing, in
order to get as accurate performance measures as possible.

Listing 4.9: The splitting of the data set into training and testing sets� �
TestSet=TraindataFolds[index]#Testing fold
TrainSet= np.array ([])#Empty array
for index2 , fold in enumerate(DataFolds):

if index2 != index:
#Not testing set so include in training:
if TrainSet.size == 0:#First fold

TrainSet=TraindataFolds[index2]
else:#the rest of the folds

TrainSet = np.vstack ([TrainSet ,
TraindataFolds[index2]])

#Prepare the classes to be fed into keras:
Trainclasses = to_categorical(np.array(
TrainSet[:, ClassCollumn]))
Testclasses = to_categorical(np.array(
TestSet[:, ClassCollumn]))� �

38

Analysis of LSTM Networks

Training the model

The initiation of the training is done by a function call as showed in listing 4.10. While this is just
one call, this call will also take a long time to process, as this is where the training of the model
over 200 or 800 epochs take place. By using the callback function mcp, that was previously defined
in listing 4.8, all of the model’s weights from each of the epochs are also saved.

Listing 4.10: Initiating the training of the model� �
modelNTNU.fit(TrainSet [:,: inputsize_], Trainclasses ,
epochs=EpochCount , batch_size=batch_size_ ,
validation_data =(TestSet [:,: inputsize_],
Testclasses), shuffle=False , callbacks =[mcp],
verbose =0)� �

Manual testing of all the trained versions of the model

After the model has been trained all of the trained versions of the model is manually tested. This
is done by utilizing another "for loop" that loops through the list containing the file name of all the
saved weights. For each loop the selected file is loaded, and the weights are applied to the model.
The model is then set to predict the classes of the testing data samples. For each loop the F1 score
of the bully class (class 1) predictions are calculated. Based on the F1 score the best performing
model is selected. This manual testing loop can be assessed in listing 4.11.

Listing 4.11: Manual testing of all the model versions created during training� �
#Reset measurements
bestf1=-1
bestmodel=""
#Go through all the models from all the epochs
for modelname in Models [1]:

modelNTNU.load_weights(modelname)#Load the weights
#Use it to classify the test samples:
predict = modelNTNU.predict_classes(
TestSet [:,: inputsize_])
#calculate the F1 score:
f1result=f1_score(TestClassesList ,predict ,
average=None)#calculate F1-measure
#F1 is higher than highest F1 registered ?:
if f1result [1]> bestf1:

bestf1=f1result [1]#Save results
bestmodel=modelname#Save model

#Add file name of the best model to the list
bestmodels.append(bestmodel)� �

Extensive performance evaluation

The best version of the model that was identified is then loaded again in order to calculate more
detailed performance measurements. The performance measurements calculated for each model is

39

Analysis of LSTM Networks

as earlier mentioned in section 3.3:

• Accuracy
• F1 score

◦ Macro average
◦ Weighted average
◦ Bully class
◦ None class

• Precision score

◦ Macro average
◦ Weighted average
◦ Bully class
◦ None class

• Recall score

◦ Macro average
◦ Weighted average
◦ Bully class
◦ None class

These scores are stored in temporal lists, that is used to generate the performance report.

4.3.4 Performance report

After the 10 cross fold loop is done, all of the performance measurements of the best model from
each loop are averaged, creating the overall performance score of the model averaged over the ten
cross fold run. Then the script creates a performance report of the model. The performance report
contains information on the model overview, performance scores and the file name of the best
model weights from each epoch. The reason for storing the file names of the best model weights
are because these names contain the epoch number they are from. Thus, making it possible to
also collect information on the amount of training needed for each model design. The performance
reports are stored as text files. An example of the performance report can be seen in figure 9,
10 and 11. The performance reports generated for all of the models tested in this thesis can be
assessed in chapter B,C and D. While most of the content in the performance reports are generated
automatically by the script, the average epochs used by the model to reach peak performance is
calculated and added to the reports manually.

4.3.5 The alternative activations

For experiment 2 the aim was to test a set of four different activations. Two of these where a
bit special and needed some custom coding in order to work, these where the implementation of
the separate SVM classifier and Random Forest classifier as activation mechanisms for the Neural
Network. This was done in practice by training the Neural Network with Softmax activation as seen

40

Analysis of LSTM Networks

Figure 9: First part of the performance report for the Convolutional LSTM model with one layer stacking from
experiment 1

implemented in section 4.3.3, but with a minor change. First the model was trained as ordinary and
the best performing trained version of the model was selected. Then the best performing model was
used to classify the test data one extra time, but this time the data from the second last layer of the
Neural Network model was collected and put into a new data set. The code used to achieve this can
be seen in listing 4.12.

Listing 4.12: How the data from the second last layer in the Neural Network is collected� �
layer_name="dense_1"#The name of the seccond last layer

#Define a new model that only exist of the layers up to the
#second last layer:
intermediate_layer_model = Model(inputs=modelNTNU.input ,
outputs=modelNTNU.get_layer(layer_name). output)

#Use this new model to predict the test data and
#collect the output
SVM_folds[index] = intermediate_layer_model.predict(
TestSet [:,: inputsize_])

#combine the collected data and the labels in order to get a
#complete data set:

41

Analysis of LSTM Networks

Figure 10: Second part of the performance report for the Convolutional LSTM model with one layer stacking
from experiment 1

Figure 11: Third and last part of the performance report for the Convolutional LSTM model with one layer
stacking from experiment 1

42

Analysis of LSTM Networks

SVM_folds_complete[index] = np.column_stack ((
SVM_folds[index]. astype(np.object),TestSet[:, ClassCollumn]))� �

After the full 10 cross fold run the data set is complete, but instead of a data set containing
vectors and labels, the data set now contain the output from the second last layer in the Neural
Network and the labels. This data set was then used in another 10 cross fold set up where the
SVM classifier and the Random forest classifier were fitted to the data and their performance were
measured. The script used for this is identical to that of the Neural Network classifier described in
section 4.3.3, however, the model used was switched with SVM and Random Forest classifiers. The
SVM and Random forest classifiers were implemented by using the SKLearn library. The full code of
the SVM classifier and Random forest classifier can be assessed in the Appendix section A.4.2. The
same SVM classifier and Random Forrest classifier were used in combination with all of the Neural
Networks. In order to find the best parameters for the SVM classifier and Random Forrest classifier
the GridSearchCV model from SKLearn was used. This model is able to do an exhaustive search
over a preset set of parameters for a model, in order to detect what combination of parameters that
yield the highest score. An example of how this model was used to find the best possible parameters
for the Random Forrest classifier can be seen in listing 4.13. This model was run several times with
different sets of parameters.

Listing 4.13: How the best parameters of the Random Forrest classifier was found� �
param_grid = {

’bootstrap ’: [True],
’max_depth ’: [100 ,125] ,
’max_features ’: [100 ,125] ,
’min_samples_leaf ’: [400 ,500 ,600] ,
’min_samples_split ’: [200 ,250 ,300] ,
’n_estimators ’: [50 ,70 ,90]

}
Make grid search classifier
clf_grid = GridSearchCV(RandomForestClassifier (), param_grid ,
verbose=2, scoring= "f1_weighted", n_jobs =7)

Train the classifier
clf_grid.fit(Traindata , Trainclasses)

print("Best␣Parameters :\n", clf_grid.best_params_)
print("Best␣Estimators :\n", clf_grid.best_estimator_)� �

43

Analysis of LSTM Networks

5 Results

In this chapter the raw results from experiment 1 and 2 will be presented. These results will later
be analyzed in chapter 6. (For more information about the different performance measures, please
see section 2.3.6)

5.1 Experiment 1

The results from experiment 1 are presented in table 5 and table 6. Table 5 contain the results of
all the models trained over 200 epochs, while table 6 contains the results from the models trained
on 800 epochs. The raw performance reports from all the individual models tested in experiment
1, that contains the results that these tables are based on, can be found in the chapter B and C.

It should be noted that the two models BLSTM x4 and BLSTM x5, did not get tested in the first
test run with 200 epochs. The reason for this was that this test run was done on machine 1. Which
unfortunately did not have powerful enough hardware to train and test these models, as they are
the most complex models, and therefore demand a lot of resources. They were however tested
successfully in the second test run which was run on machine 2.

5.2 Experiment 2

The raw results from experiment 2 are presented in table 7, 8, 9 and 10. Table 7 presents the perfor-
mance results of the four different activations used with a Neural Network of the type Bidirectional
LSTM with added LSTM layers (in this case two LSTM layers where added). Table 8 contains the
performance results of the four types of activation with a Neural Network of the type Bidirectional
LSTM, where the Bidirectional LSTM layers where stacked twice. Table 9 contains the performance
results of the four different activations in combination with a Convolutional LSTM Neural Network,
where the Convolutional LSTM layers were stacked twice. Lastly table 10 contains the results of the
four different activations in combination with a LSTM Neural Network, where the LSTM layers was
stacked four times. The raw performance reports that these tables are based on can be assessed in
chapter D.

44

Analysis of LSTM Networks

M
od

el
:

F1
M

ac
ro

F1
W

ei
gh

te
d

F1
bu

lly
F1

N
on

e
Pr

ec
is

io
n

M
ac

ro
R

ec
al

lm
ac

ro
A

cc
ur

ac
y

A
vg

.e
po

ch
s

M
ax

ep
oc

h
B

LS
TM

LS
TM

0,
82

95
6

0,
86

27
6

0,
76

04
7

0,
89

86
5

0,
81

39
3

0,
86

04
9

0,
85

78
46

,4
61

B
LS

TM
LS

TM
x

2
0,

83
06

6
0,

86
45

2
0,

75
99

9
0,

90
13

4
0,

81
62

6
0,

85
56

6
0,

86
03

1
76

,4
17

0
B

LS
TM

LS
TM

x
3

0,
82

49
7

0,
85

89
5

0,
75

42
5

0,
89

57
0,

80
96

8
0,

85
48

7
0,

85
39

86
,2

14
2

B
LS

TM
LS

TM
x

4
0,

82
52

7
0,

85
80

4
0,

75
69

7
0,

89
35

7
0,

80
94

0,
86

02
0,

85
23

1
13

0,
4

19
7

B
LS

TM
LS

TM
x

5
0,

20
69

1
0,

10
82

8
0,

41
38

2
0

0,
13

05
2

0,
5

0,
26

10
5

1,
5

3
B

SL
TM

0,
82

60
4

0,
85

94
9

0,
75

63
2

0,
89

57
6

0,
80

94
7

0,
85

85
8

0,
85

41
4

23
,8

36
B

LS
TM

x
2

0,
82

75
3

0,
86

09
8

0,
75

78
6

0,
89

72
0,

81
14

2
0,

85
78

4
0,

85
59

8
59

,9
13

7
B

LS
TM

x
3

0,
83

04
6

0,
86

36
7

0,
76

14
4

0,
89

94
9

0,
81

58
1

0,
85

93
4

0,
85

89
5

62
,1

99
LS

TM
0,

82
67

5
0,

86
01

5
0,

75
71

2
0,

89
63

8
0,

81
21

0,
85

72
7

0,
85

50
4

27
50

LS
TM

x
2

0,
83

25
8

0,
86

45
5

0,
76

59
7

0,
89

92
0,

81
67

3
0,

86
52

8
0,

85
94

81
,1

17
1

LS
TM

x
3

0,
82

97
7

0,
86

31
6

0,
76

02
5

0,
89

28
0,

81
49

7
0,

85
88

7
0,

85
84

8
76

,9
12

9
LS

TM
x

4
0,

82
80

2
0,

86
15

6
0,

75
83

3
0,

89
77

1
0,

81
27

3
0,

85
78

2
0,

85
66

6
93

,5
12

7
LS

TM
x

5
0,

82
55

8
0,

85
91

5
0,

75
54

2
0,

89
57

4
0,

80
97

1
0,

85
76

7
0,

85
39

15
8

19
6

C
O

N
V

LS
TM

0,
82

75
9

0,
86

17
1

0,
75

36
3

0,
89

88
2

0,
81

45
3

0,
85

36
2

0,
85

73
6

40
,2

15
8

C
O

N
V

LS
TM

x
2

0,
83

22
9

0,
86

54
7

0,
76

31
1

0,
90

14
7

0,
81

69
2

0,
86

01
1

0,
86

1
36

,5
68

C
O

N
V

LS
TM

x
3

0,
83

39
9

0,
86

74
6

0,
76

43
1

0,
90

36
7

0,
81

94
2

0,
85

93
4

0,
86

35
3

41
,8

66
C

O
N

V
LS

TM
x

4
0,

83
00

8
0,

86
47

0,
75

78
6

0,
90

22
9

0,
81

69
7

0,
85

27
9

0,
86

10
1

39
,7

57
C

O
N

V
LS

TM
x

5
0,

83
14

4
0,

86
49

9
0,

76
14

8
0,

90
13

9
0,

81
64

6
0,

85
74

8
0,

86
07

7
53

,7
11

2

Ta
bl

e
5:

Pe
rf

or
m

an
ce

re
su

lt
s

fr
om

ex
pe

ri
m

en
t

1,
w

it
h

20
0

ep
oc

hs

45

Analysis of LSTM Networks

M
od

el
l

F1
m

ac
ro

F1
W

ei
gh

te
d

F1
bu

lly
F1

no
ne

Pr
ec

is
io

n
m

ac
ro

R
ec

al
lM

ac
ro

A
cc

ur
ac

y
A

vg
.E

po
ch

s
M

ax
ep

oc
h

B
LS

TM
LS

TM
0,

82
72

4
0,

86
1

0,
75

69
1

0,
89

75
7

0,
81

21
9

0,
85

58
8

0,
85

61
9

68
,2

15
4

B
LS

TM
LS

TM
x

2
0,

83
15

4
0,

86
43

5
0,

76
30

4
0,

90
00

3
0,

81
64

8
0,

86
11

3
0,

85
96

4
85

,9
17

5
B

LS
TM

LS
TM

x
3

0,
83

23
3

0,
86

58
4

0,
76

24
3

0,
90

22
2

0,
81

79
0,

85
76

8
0,

86
16

9
21

2,
7

76
4

B
LS

TM
LS

TM
x

4
0,

82
48

8
0,

85
76

1
0,

75
65

3
0,

89
32

2
0,

81
02

5
0,

86
05

6
0,

85
18

4
18

6,
1

51
3

B
LS

TM
LS

TM
5

0,
83

00
7

0,
86

28
7

0,
76

14
6

0,
89

86
7

0,
81

50
9

0,
85

97
9

0,
85

80
2

43
8,

5
56

1
B

LS
TM

0,
82

62
9

0,
86

03
1

0,
75

53
2

0,
89

72
6

0,
81

11
8

0,
85

55
8

0,
85

55
1

25
,7

53
B

LS
TM

x
2

0,
83

21
8

0,
86

49
2

0,
76

39
6

0,
90

03
9

0,
81

65
5

0,
86

23
5

0,
86

01
13

1,
7

77
0

B
LS

TM
x

3
0,

82
79

4
0,

86
10

8
0,

75
89

5
0,

89
69

4
0,

81
27

5
0,

85
90

4
0,

85
59

7
11

5,
4

37
7

B
LS

TM
x

4
0,

82
94

7
0,

86
25

2
0,

76
06

6
0,

89
82

8
0,

81
41

5
0,

85
95

1
0,

85
75

7
10

7,
5

39
2

B
LS

TM
x

5
0,

83
31

0,
86

62
3

0,
76

39
7

0,
90

22
2

0,
82

00
9

0,
85

81
4

0,
86

21
5

16
6,

1
51

2
LS

TM
0,

82
60

9
0,

85
91

7
0,

75
71

0,
89

50
7

0,
81

02
7

0,
85

92
8

0,
85

36
7

30
40

LS
TM

x
2

0,
82

94
4

0,
86

27
8

0,
75

99
7

0,
89

89
2

0,
81

46
5

0,
85

80
9

0,
85

80
3

65
,6

11
4

LS
TM

x
3

0,
82

97
3

0,
86

27
3

0,
76

11
1

0,
89

83
5

0,
81

46
9

0,
86

06
6

0,
85

78
1

90
,5

23
0

LS
TM

x
4

0,
83

18
2

0,
86

50
1

0,
76

27
5

0,
90

09
0,

81
66

2
0,

85
96

4
0,

86
05

5
14

6,
7

37
2

LS
TM

x
5

0,
83

01
8

0,
86

34
7

0,
76

08
8

0,
89

94
9

0,
81

47
0,

85
87

6
0,

85
87

2
24

8,
6

68
4

C
on

vL
ST

M
0,

83
26

7
0,

86
53

4
0,

76
44

5
0,

90
08

8
0,

81
85

2
0,

86
13

9
0,

86
07

7
43

,3
22

4
C

on
vL

ST
M

x
2

0,
83

80
8

0,
87

08
7

0,
76

96
9

0,
90

64
7

0,
82

41
9

0,
86

16
9

0,
86

71
9

31
2,

8
69

4
C

on
vL

ST
M

x
3

0,
83

19
3

0,
86

56
1

0,
76

18
0,

90
20

6
0,

81
96

0,
85

68
4

0,
86

17
1

96
,5

30
1

C
on

vL
ST

M
x

4
0,

83
58

8
0,

86
86

6
0,

76
76

7
0,

90
40

9
0,

82
2

0,
86

14
5

0,
86

46
66

62
,6

18
5

C
on

vL
ST

M
x

5
0,

83
60

6
0,

86
82

3
0,

76
90

1
0,

90
31

0,
82

01
1

0,
86

51
8

0,
86

37
5

80
,4

32
8

Ta
bl

e
6:

Pe
rf

or
m

an
ce

re
su

lt
s

fr
om

ex
pe

ri
m

en
t

1,
w

it
h

80
0

ep
oc

hs

46

Analysis of LSTM Networks

Activation F1 macro F1 Weighted F1 bully F1 none Precision macro Recall macro Accuracy
NN Softmax 0,82708 0,85998 0,75854 0,89563 0,81131 0,86042 0,85459
NN SVM 0,82776 0,85997 0,76047 0,89504 0,81333 0,86343 0,85435
SVM 0,18952 0,18344 0,20572 0,17333 0,18544 0,30431 0,22818
RFC 0,4247 0,6281 0 0,84981 0,36948 0,5 0,73895

Table 7: Performance results from the test with BLSTM with added LSTM layers design in experiment 2

Activation F1 macro F1 Weighted F1 bully F1 none Precision macro Recall macro Accuracy
NN Softmax 0,82832 0,86321 0,7556 0,90105 0,81456 0,85033 0,8594
NN SVM 0,83244 0,86457 0,76543 0,89944 0,81627 0,86615 0,85939
SVM 0,71252 0,75343 0,62818 0,79686 0,72742 0,77327 0,74322
RFC 0,4249 0,6281 0 0,84981 0,36948 0,5 0,73895

Table 8: Performance results from the test with BLSTM design in experiment 2

Activation F1 macro F1 Wheigted F1 bully F1 none Presision macro Recall macro Accuracy
NN Softmax 0,83385 0,86667 0,76541 0,90228 0,82002 0,86078 0,86238
NN SVM 0,84021 0,87262 0,77269 0,90774 0,82566 0,86424 0,86902
SVM 0,42095 0,59027 0,06496 0,77693 0,4007 0,45339 0,64257
RFC 0,70667 0,7881 0,538 0,87534 0,70231 0,74073 0,81341

Table 9: Performance results from the test with Conv LSTM design in experiment 2

Activation F1 macro F1 Wheigted F1 bully F1 none Presision macro Recall macro Accuracy
NN Softmax 0,82862 0,8615 0,7601 0,89713 0,81419 0,85992 0,85643
NN SVM 0,83625 0,86853 0,76879 0,90372 0,82094 0,86412 0,8642
SVM 0,20889 0,13028 0,37583 0,04196 0,16947 0,46316 0,25807
RFC 0,4249 0,6281 0 0,84981 0,36948 0,5 0,73895

Table 10: Performance results from the test with LSTM design in experiment 2

47

Analysis of LSTM Networks

6 Analysis

The purpose of this chapter is to analyze the results from the two experiments that where presented
in the previous chapter (chapter: 5). The goal of the analysis is to extract knowledge from the raw
results, so that arguments can be made towards a conclusion of the research questions (described
in section 1.6).

6.1 The effects of increased training

The first concept to be analyzed is what effect increased training has on the performance of a model.
The performance measurement we will focus on in this analysis is the F1 score for the bully class
as this was used as the decision criteria for the model selection during training (as explained in
section 3.5).

There are two ways one could argue that a model is utilizing the training more than another
model. One is by looking at the average epochs used to find the prime trained version of the model
from each training run. This measurement is calculated by averaging the number of epochs used
to find the best performing trained version of a model from each training run. As explained in
section 3.1.5, each model is trained 10 times on different parts of the data set. As we will discover
in the analysis in the next subsection(6.1.1), this is not necessarily a good way to evaluate how
much training a model receives. The second way one could decide that a model is receiving more
training, is by comparing a model’s performance with two different constraints in number of epochs
it is trained for. This effect will be analyzed in subsection 6.1.2.

6.1.1 The effect of training, analyzed as a function of average epochs used

Figure 12 shows a plot of the performance and average epochs used for all of the models that was
trained and tested in experiment 1. As seen in this figure it does not seem to be a clear connec-
tion between the two measurements. The correlation coefficient of the F1 score for the bully class
and the average epochs used equals 0,249. This indicates that there may be a positive correlation
between the two measurements. A positive correlation between two variables means that if one of
them increase, the other one is also likely to increase. Which in this case may indicate that increased
training might lead to an increased performance. But since the correlation coefficient is only 0,249
it is too low for there to be a strong correlation, meaning that in this case a clear cause and effect
relationship between the variables cannot be proven.

In order to understand more about what is going on here we have to look at another measure-
ment, the maximum epochs needed in the training to find the best trained version of a model. In
figure 13 the maximum epoch needed in the training for every model is displayed. From this figure
we can see that the maximum epochs needed for every model type increases when the model goes
from not being stacked repeatably to the model being stacked twice. An example of this can be seen

48

Analysis of LSTM Networks

Figure 12: F1 score for the bully class of all models tested in experiment 1, as a function of average epochs
used in the training (Y-axis: F1 score for the bully class, X-axis: average epochs used)

by looking at the BLSTM models graph from the 800 epochs run, with no stacking (BLSTM) and
its layers stacked twice (BLSTM x2). The reason for this is that the stacking of the layers increases
the complexity of the model, and increased complexity requires that the model has to be trained
for an increased amount of epochs in order to be fully trained. Therefore, we can assume that the
BLSTM with its layers stacked three times (BLSTM x3) is not fully trained, since we from the figure
can see that the BLSTM model with its layers stacked only two times is close to the constraint of
800 epochs. We can also assume from these numbers that the BLSTM model with its layers stacked
twice do not get enough training in the first test run, where the number of epochs were constrained
to 200. Since in the second test run, with epochs constrained to 800, the models maximum epochs
used was close to this constraint.

This suggests that by comparing the performance of the models in figure 12, we are actually
comparing fully trained models with models that have not been trained enough. Thus we are not
actually looking into the effects of increased training. But this goes to show that there is not a clear
correlation between average amount of epochs a model needs to find its prime trained version and
the performance it yields.

6.1.2 The effect of training, analyzed by training a model for 200 and 800 epochs

In order to analyze the effect of increased training we have to identify the models that were likely
to not get enough training in the first test run with 200 epochs of training, but who may have been
fully trained in the second test run with 800 epochs. In order to identify these models, we can
study the graph in figure 14, which shows the stacked versions of all the models and the maximum

49

Analysis of LSTM Networks

Figure 13: The highest amount of epochs needed in the 10 cross fold run of all models in order to get the best
trained model, with maximum training set to 200 epochs and 800 epochs

50

Analysis of LSTM Networks

Figure 14: The highest amount of epochs needed in the 10 cross fold run of all models in order to get the best
trained model, with maximum training set to 800 epochs

number of epochs they needed in the second test run, where the training was constrained to 800
epochs. From the figure we identify these models by taking the first stacked version of a model
that have a maximum number of epochs needed higher than 200 epochs, and we include all the
stacked versions of the models until the maximum number of epochs get close to 800. The models
identified to apply to these criteria is the model BLSTM LSTM stacked three times, BLSTM stacked
twice, LSTM stacked three, four and five times, and the ConvLSTM without stacking and stacked
twice. In figure 15, the performance of these models for the first and second test run is presented.
And by inspecting this graph we can indeed see that all of the models performed best in the second
test run where the models were trained for an increased amount of epochs. By calculating the
correlation coefficient for the performance of these selected models and the constraint of training
epochs of either 200 or 800, we get a correlation coefficient equal to 0,714. This tells us that it
is indeed a noticeable positive correlation between the number of epochs the training is run and
the performance the model yields. It is however not a perfect correlation, which means that the
performance of the model is not only determined by the increased training.

6.2 The effects of stacking similar layers

The effect the stacking of layer’s has on the performance the model’s yield can be assessed by
studying figure 16. The graph in this figure shows the F1 score for the bully class yielded by every
model type when no stacking is applied, and all the way up to stacking the layers five times. As
visible from the graph, all of the models increase in performance by going from no stacking to
stacking the layers twice. Further stacking beyond two times does not yield any clear trend, as the

51

Analysis of LSTM Networks

Figure 15: Performance comparison of the models; BLSTM LSTM x2, BLSTM x2, LSTM x3, LSTM x4, LSTM
x5, ConvLSTM and ConvLSTM x2 with the training constrained to 200 and 800 epochs

performance for the ConvLSTM model and the BLSTM model decreases, the performance of the
BLSTM LSTM model stays approximately the same, and the LSTM model’s performance increases.
This could be a sign that the increased complexity of the model is not needed in order to classify the
data. But we see this more probable to be a result of some models not being able to train enough
with the added complexity. From figure 14, we can see that the BLSTM model and ConvLSTM model
has a maximum epochs needed for training quite close to the constraint of 800 when the layers are
stacked twice. As already discussed, this most likely indicates that these models stacked three times
is not going to be fully trained with just 800 epochs of training. The BLSTM LSTM model however
does not obtain the maximum epochs needed in training close to 800 before it is stacked three
times. Lastly the LSTM model only get close to this constraint when it is stacked five times. While
the BLSTM LSTM model does not increase its performance by being stacked three times, it does
not decrease its performance either. This could be assessed as the model not benefiting from the
stacking beyond two times or that it merely is not trained enough with its layers stacked three times.
The LSTM model however seem to increase its performance all the way up to stacking its layers four
times. This is interesting since this is the model that is the furthest away from the constraint of 800
epochs when looking at the maximum epochs needed for training. The only time it gets close to this
constraint is when it is stacked five times, which also is the first time we see that the performance
of the LSTM model decreases as a result of increased stacking. Therefore, we cannot prove that
stacking beyond five times with a standard LSTM network will yield any gain in performance, but
it should perhaps be tested with a even higher epoch constraint before being evaluated as fully
disproved.

52

Analysis of LSTM Networks

Figure 16: F1 score for the bully class of all models in the second test run where the models were trained with
800 epochs

6.3 Comparison of the different network types

The most important remark to make about the different LSTM designs is that there does not seem
to be a large performance difference between them. In the second test run where the models were
trained over 800 epochs the best model performed 1,867% better than the worst performing model.
While this difference may not sound like much there still seem to be a significant difference. The
ConvLSTM design looks to be performing repeatedly better than the other designs, as can be seen
in figure 16. The only time that the ConvLSTM performed worse than any of the other models was
when its layers were stacked three times. This is a bit weird as the ConvLSTM model with its layers
stacked two or four times performs very good. This is most likely due to the fact that the model
is not trained enough, as discussed earlier. The difference between the designs should therefore
be measured by how they perform when they are not stacked, and when the layers are stacked
twice, since these versions of the models are most likely to have been trained enough. From these
two versions of the models we see that the BLSTM, LSTM and BLSTM LSTM yields very similar
performance when not stacked, but when the layers are stacked two times it may seem like the
BLSTM model and the BLSTM LSTM model are performing slightly better than the LSTM model.
The performance winner is however the ConvLSTM model that performs better than the other three
models both when not stacked, and stacked twice.

6.4 Comparison of the different activation mechanisms

In experiment 2 we tested three different activation mechanism as an alternative to the traditional
Softmax activation. Two of these where to replace the activation layers in the Neural Network

53

Analysis of LSTM Networks

Figure 17: F1 score for the bully class yielded by the standard Neural Network model with Softmax activation, a
Neural Network where the Softmax activation layer were replaced with a SVM classifier and a Neural Network
where the Softmax activation layer were replaced with a Random Forrest classifier

with two completely different classifiers; a Random Forest classifier and a Support-Vector-Machines
classifier. Figure 17, shows the performance of these methods compared to the Softmax activated
model for the four different network designs tested. As seen from this figure these models were not
able to yield any performance that could compete with the Softmax activated models. It is however
interesting to see that the Random Forest classifier performs best when combined with a ConvLSTM
network, but the SVM classifier performs best when combined with the BLSTM network.

The last of the three alternative activation mechanism tested was to replace the Softmax activa-
tion layer with a SVM inspired activation layer. In figure 18 the performance of these two activation
methods are presented, in combination with four different network types. The comparison shows
that the SVM alike activation outperforms the standard Softmax activation in combination with all
of the network types that was tested. The SVM like activation is also the only method tested in these
experiments that was able to yield a F1 score for the bully class over 0,77.

As mentioned in section 3.4.2, the models in this experiment was only tested with maximum
epochs set to 800. So while we cannot compare the results with the amount of training, it is still
interesting to take a look at the average epochs needed to find the prime trained version from each
fold in the 10 cross fold testing of the models. These numbers are illustrated in the graph in figure
19. As this graph shows the SVM alike activation drastically increases the average epochs needed for
training the model. The biggest increase is seen for BLSTM LSTM model where the average epochs
needed for training increased with approximately 325%, from 82,2 epochs with the Softmax acti-
vation to 349,7 epochs with the SVM alike activation. The lowest increase, measured in percentage,

54

Analysis of LSTM Networks

Figure 18: F1 score for the bully class yielded by the standard Softmax activation and the SVM alike activation

Figure 19: F1 score for the bully class yielded by the standard Softmax activation and the SVM alike activation

55

Analysis of LSTM Networks

was seen for the LSTM model where the increase was 101%, from 128,1 with the Softmax activa-
tion to 257 with the SVM alike activation. This indicates that the performance improvement seen
in figure 18 comes with a cost of increased training. This could suggest that the model with the
SVM activation would perform even better with increased training. It is however just an indication
of increased training being required for the SVM activation though, as the models have not been
tested with different constraints for the amount of epochs in the training.

6.4.1 The best model compared with the state of the art models

As we have seen, the ConVLSTM with its layers stacked twice with the new SVM alike activation,
performs better than the other models tested. But how good is it actually compared to the models
used in the state-of-the-art research within the field? To answer this question, we compare the
weighted averaged F1 score, the F1 score of the bully class, the F1 score of the not bully class
and the overall accuracy of the new proposed model with models featured in the state-of-the-art
research. The comparison can be seen in figure 20. The state-of-the-art models chosen for the
comparison is the LSTM, BLSTM and ConvLSTM models, all without any stacking from experiment
1. The LSTM model were featured in the research [33], the BLSTM model were presented in the
research article [2], and the ConvLSTM method is based on the model presented by [32]. From the
comparison we can see that the new ConvLSTM model with layer stacking and SVM alike activation
are outperforming the state-of-the-art models on all of the performance measures. The difference is
not huge though as the new model, averaged over all five of the performance measures, performed
0,9% better than the ConvLSTM model based on [32], 1,6% better than the BLSTM model presented
by [2], and 1,7% better than the LSTM model designed by [33].

56

Analysis of LSTM Networks

Figure 20: Performance comparison between the new ConvLSTM model with its layers stacked three times
with SVM alike activation and three models featured in or based on the state-of-the-art research; BLSTM,
LSTM and ConvLSTM without any stacking and with Softmax activation

57

Analysis of LSTM Networks

7 Discussion

In this chapter we will discuss some of the main challenges that was encountered in the work with
this thesis, and give a short evaluation of the project as a whole.

7.1 Challenges

7.1.1 Limited python experience

We had close to no experience with coding in the program language Python before this project
started. Since the Python environment has so many third-party libraries for NLP tasks it was de-
cided that this would be the preferred programming language. This did however slow down the
development process somewhat, thus leaving less time to run tests and write the thesis.

7.1.2 Creating a state-of-the-art NLP pipeline

One of the biggest challenges with the implementation of this thesis was to build a state-of-the-art
NLP pipeline that both represented all of the groundbreaking existing research and yielded perfor-
mance that could also be compared with the state-of-the-art methods. There are several reasons
why this was a challenge. One of the reasons is the several different data sets which are used by
the researchers in the field of cyberbullying, and as described by [16] these data sets tend to yield
very different performance. This made it very difficult to compare the different methods in order
to decide which techniques to base the NLP pipeline in this thesis on. Another challenge is that the
code used in similar research papers rarely is released. It also varies a great deal how detailed the
implementations are explained in these papers, often only the core parts of the NLP pipeline that
the researchers want to draw attention to is described in detail.

Discovering invalid performance results in the state-of-the-art research

The work with the NLP-pipeline started out as a quest to recreate the NLP-pipeline made by [2],
as they are one of very few that has published all of their code. Because of some errors it was
not possible to simply run their code, so the work of recreating their work had to begin, with the
goal of yielding the same performance as they had reported to achieve. Since we wanted to really
understand all of the code the decision was made to not only copy their code, but to rewrite it in
our own way. The problems become prevalent when the program was finished and the performance
testing began, as the performance we were able to get was not close to what [2] had reported. After
a lot of investigation. it was discovered that the oversampling technique used by [2] was faulty.
Since they were oversampling their data sets before splitting it into training and testing sets. This
resulted in information (data samples) being leaked from the testing set to the training set, thus
making the reported performance results invalid. Proof of this claim can be seen in the Appendix
section A.2.

58

Analysis of LSTM Networks

This was very frustrating as we had spent a lot of time on recreating their results. Therefore in
order to not let all the work be wasted we decided to base our NLP pipeline on this work and make
some changes in order to get a NLP pipeline that yielded respectable results as well as represented
the other NLP pipelines used in other research within the field of cyberbullying. The search for the
perfect NLP pipeline consisted of testing a bunch of different NLP pipelines. From very complex
pipelines that:

• Removed any stop words
• Identified the type of language used in the data sample and applied specialized stemming and

POS-tagging algorithms customized for that language.
• Identified possibly masked profanity words by calculating the Levenshtein distance between

the words in the data samples, and a list of profanity words

To the simplest NLP-pipelines that only vectorized the data. In the end we landed on a good middle
ground between the most complex and the simplest pipelines. Which we believe is a pipeline that
reflects the pipelines used in most of the state-of-the-art research in a worthy manner, and that
yields decent performance on the data set that we used.

7.2 Evaluation

This thesis actually started out as a project to make a tool for identifying high risk persons operating
on social media platforms. This plan was however changed when our plan to acquire our data set
from Kripos fell through. Then we started to look in to the cyberbullying field instead. We looked
into several different options for what to research within this field before we decided to analyze the
performance effects of different types of Long-short-term-memory Neural Network designs. So, to
state that the project has not followed a streamline plan is not exaggerating. In the end though we
feel that we were able to create a project and a thesis that challenge the state-of-the-art research
within its field in a beneficial way. By testing so many different models in controlled a lab environ-
ment we believe that we have been able to discover several cause and effect relationships within
the Neural Network designed to detect cyberbullying. These are cause and effect relationships that
can be utilized by future research within the field in order to achieve even better results, than what
today’s state-of-the-art research is able to achieve.

59

Analysis of LSTM Networks

8 Conclusion

The conclusion of this thesis is split into four parts, one part for each research question.

How does the amount of training impact the performance of the Neural Network?

Through the experiments conducted in this thesis we have found that there is no correlation be-
tween the amount of epochs a Long-Short-Term-Memory based Neural Network model uses in its
training to find its prime trained version, and the performance the model yields. But it is however
a correlation between increasing the amount of epochs used in the training, and the performance,
if the models are not trained enough in the first place.

How does the performance of the different types of Long-Short-Term-Memory Neural Net-
works compare, when tested in a controlled environment?

Our findings show that a Long-Short-Term-Memory Neural Network who is a combination of a
Convolutional Neural Network and a Long-Short-Term-Memory Neural Network (ConvLSTM) yields
the highest performance. The difference between the three other types of Long-Short-Term-Memory
networks tested; LSTM, Bidirectional LSTM (BLSTM) and BLSTM with added LSTM layer(s), was
marginal, and they should be considered as equal in term of performance yielded.

What is the performance effect of blindly increasing a Neural Network’s complexity by stack-
ing equal layers on top of each other?

Our experiment with stacking the same type of layers on top of each other showed that there is
indeed a performance increase going from no stacking to stacking the layers twice. Stacking the
layers more than two times however had a varying result. This was mainly because the stacking
comes with a cost of an increased need for training the model over more epochs. The LSTM model
did however benefit stacking the layers all the way up to four times. Which may indicate that
stacking beyond two times could increase the performance if only the models are trained enough.

Is there a viable alternative to the commonly used Softmax activation layer?

Our findings showed that a Neural Network which uses an activation layer that is inspired by the
mechanisms of the Support-Vector-Machines (SVM) classifier is indeed a good alternative to the
standard Softmax activation. In our experiment this alternative activation outperformed the Soft-
max activation in all of the tests with different types of Long-Short-Term-Memory Neural Networks.
Compared with models featured in state-of-the-art research that was tested with our setup, the
ConvLSTM model with its layers stacked twice and with a SVM like activation yielded a F1 score of
the bully class that was 0,9-1,7% higher.

60

Analysis of LSTM Networks

8.1 Future Work

One of the main findings from this project has been that the SVM inspired activation layer works
very well with cyberbullying detection. This method has never been tested for such a purpose
before. It would therefore be interesting to test this method further within this field. This method
was as mentioned inspired by the work of [43], that used this method for intrusion detection.
[43] Identified this new method to be faster than the Softmax activated Neural Network in both
the testing and training phase. As classification time would be of the essence within the field of
cyberbullying detection as well, because of the huge amounts of data, it would be very interesting to
see if the same would be true when classifying text data as well. Especially since our findings found
that the SVM alike activation seemed to require a higher amount of epochs needed for training, but
our experiment did not consider the time used.

Furthermore, it would also be interesting to see if this study could be reproduced with a different
NLP pipeline. Since only one standard NLP pipeline was used for all the tests in this study, we could
not investigate any cause and effect relationships between the Neural Network designs and the rest
of the NLP pipeline. There may therefore be a minor chance that the findings from this study is only
relevant for the specific NLP pipeline used in this study.

Similarly, it would also be interesting to see if the results could be reproduced with any of the
other cyberbullying data sets available. As mentioned earlier, the work by [16] showed that there is
a big difference on what kind of performance it is possible to get from the different data sets. So it
would be interesting to see if the performance relationships between the different Neural Network
designs identified in this thesis would stay the same. Or if perhaps the effects of the variables tested
would be greater.

Finally, we hope this thesis and the discoveries made here will help in fighting cyberbullying in
the years to come. Our hope is that one day technology will eliminate this kind of interactions on
social media, and hopefully this work could help spark the future solutions.

61

Analysis of LSTM Networks

Bibliography

[1] Shalaginov, A. January 2018. Lecture notes: "lecture 1: Introduction to data science in foren-
sics and security".

[2] Agrawal, S. & Awekar, A. 2018. Deep learning for detecting cyberbullying across multiple
social media platforms. Advances in Information Retrieval, 141–153. URL: http://dx.doi.
org/10.1007/978-3-319-76941-7_11, doi:10.1007/978-3-319-76941-7_11.

[3] Chollet, F. 2016. Using pre-trained word embeddings in a keras model. https:
//blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html. Ac-
cessed: 2019-04-01.

[4] Zhu, X. 2015. Data and code for the study of bullying. http://research.cs.wisc.edu/
bullying/data.html. Accessed: 2019-01-31.

[5] Fire av fem nordmenn bruker sosiale medier (online). August 2018. URL:
https://www.ssb.no/teknologi-og-innovasjon/artikler-og-publikasjoner/
fire-av-fem-nordmenn-bruker-sosiale-medier.

[6] Medietilsynet. 2018. Barn og medierundersøkelsen 2018. In Barn og medier 2018,
6. Medietilsynet. URL: https://www.medietilsynet.no/globalassets/publikasjoner/
barn-og-medier-undersokelser/2018-barn-og-medier.

[7] Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. March 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res., 3, 1137–1155. URL: http://dl.acm.org/citation.cfm?
id=944919.944966.

[8] DOMO. 2018. Data never sleeps. https://www.domo.com/solution/data-never-sleeps-6.
Accessed: 2019-04-20.

[9] Kononenko, I. 2007. Machine learning and data mining : introduction to principles and
algorithms.

[10] Louridas, P. & Ebert, C. Sep. 2016. Machine learning. IEEE Software, 33(5), 110–115. doi:
10.1109/MS.2016.114.

[11] Linckels, S. & Meinel, C. Natural Language Processing, 61–79. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011. URL: https://doi.org/10.1007/978-3-642-17743-9_4, doi:10.
1007/978-3-642-17743-9_4.

62

http://dx.doi.org/10.1007/978-3-319-76941-7_11
http://dx.doi.org/10.1007/978-3-319-76941-7_11
http://dx.doi.org/10.1007/978-3-319-76941-7_11
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
http://research.cs.wisc.edu/bullying/data.html
http://research.cs.wisc.edu/bullying/data.html
https://www.ssb.no/teknologi-og-innovasjon/artikler-og-publikasjoner/fire-av-fem-nordmenn-bruker-sosiale-medier
https://www.ssb.no/teknologi-og-innovasjon/artikler-og-publikasjoner/fire-av-fem-nordmenn-bruker-sosiale-medier
https://www.medietilsynet.no/globalassets/publikasjoner/barn-og-medier-undersokelser/2018-barn-og-medier
https://www.medietilsynet.no/globalassets/publikasjoner/barn-og-medier-undersokelser/2018-barn-og-medier
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=944919.944966
https://www.domo.com/solution/data-never-sleeps-6
http://dx.doi.org/10.1109/MS.2016.114
http://dx.doi.org/10.1109/MS.2016.114
https://doi.org/10.1007/978-3-642-17743-9_4
http://dx.doi.org/10.1007/978-3-642-17743-9_4
http://dx.doi.org/10.1007/978-3-642-17743-9_4

Analysis of LSTM Networks

[12] AB, I. 2019. Ascii code - the extended ascii table. https://www.ascii-code.com. Accessed:
2019-05-02.

[13] Lehmann, J. & Volker, J. 2014. Perspectives on Ontology Learning: Studies on the Semantic Web
18, volume 18 of Studies on the Semantic Web 18. Ios Press.

[14] Nandhini, B. S. & Sheeba, J. I. 2015. Cyberbullying detection and classification using infor-
mation retrieval algorithm. In Proceedings of the 2015 International Conference on Advanced
Research in Computer Science Engineering & Technology (ICARCSET 2015), ICARCSET
’15, 20:1–20:5, New York, NY, USA. ACM. URL: http://doi.acm.org/10.1145/2743065.
2743085, doi:10.1145/2743065.2743085.

[15] Babar, N. 2018. The levenshtein distance algorithm. https://dzone.com/articles/
the-levenshtein-algorithm-1. Accessed: 2019-05-05.

[16] Salawu, S., He, Y., & Lumsden, J. 2018. Approaches to automated detection of cyberbullying:
A survey. IEEE Transactions on Affective Computing, 1–1. doi:10.1109/TAFFC.2017.2761757.

[17] Maynard, D. & Bontcheva, K. 2014. Natural language processing. In Perspectives on Ontology
Learning, volume 18, 51–67. IOS Press.

[18] geeksforgeeks. Removing stop words with nltk in python. https://www.geeksforgeeks.
org/removing-stop-words-nltk-python/. Accessed: 2019-03-02.

[19] Project, N. 2019. Natural language toolkit. https://www.nltk.org. Accessed: 2019-03-02.

[20] Kontostathis, A., Reynolds, K., Garron, A., & Edwards, L. 2013. Detecting cyberbullying: Query
terms and techniques. In Proceedings of the 5th Annual ACM Web Science Conference, Web-
Sci ’13, 195–204, New York, NY, USA. ACM. URL: http://doi.acm.org/10.1145/2464464.
2464499, doi:10.1145/2464464.2464499.

[21] Pennington, J., Socher, R., & Manning, C. D. 2018. Part-of-speech tagging. https://web.
stanford.edu/~jurafsky/slp3/ed3book.pdf. Pages: 151-154.

[22] Pennington, J., Socher, R., & Manning, C. D. 2018. Hidden markov models. URL: https:
//web.stanford.edu/~jurafsky/slp3/A.pdf.

[23] Mctear, M., Callejas, Z., & Griol, D. 2016. The Conversational Interface: Talking to Smart
Devices. Springer International Publishing, Cham.

[24] Pennington, J., Socher, R., & Manning, C. D. 2014. Glove: Global vectors for word repre-
sentation. In Empirical Methods in Natural Language Processing (EMNLP), 1532–1543. URL:
http://www.aclweb.org/anthology/D14-1162.

[25] Jeffrey Pennington, R. S. & Manning, C. D. 2014. Glove: Global vectors for word representa-
tion. https://nlp.stanford.edu/projects/glove/. Accessed: 2019-02-25.

63

https://www.ascii-code.com
http://doi.acm.org/10.1145/2743065.2743085
http://doi.acm.org/10.1145/2743065.2743085
http://dx.doi.org/10.1145/2743065.2743085
https://dzone.com/articles/the-levenshtein-algorithm-1
https://dzone.com/articles/the-levenshtein-algorithm-1
http://dx.doi.org/10.1109/TAFFC.2017.2761757
https://www.geeksforgeeks.org/removing-stop-words-nltk-python/
https://www.geeksforgeeks.org/removing-stop-words-nltk-python/
https://www.nltk.org
http://doi.acm.org/10.1145/2464464.2464499
http://doi.acm.org/10.1145/2464464.2464499
http://dx.doi.org/10.1145/2464464.2464499
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
https://web.stanford.edu/~jurafsky/slp3/A.pdf
https://web.stanford.edu/~jurafsky/slp3/A.pdf
http://www.aclweb.org/anthology/D14-1162
https://nlp.stanford.edu/projects/glove/

Analysis of LSTM Networks

[26] Agarwal, S. & Sureka, A. 2015. Applying social media intelligence for predicting and iden-
tifying on-line radicalization and civil unrest oriented threats. CoRR, abs/1511.06858. URL:
http://arxiv.org/abs/1511.06858, arXiv:1511.06858.

[27] Donges, N. 2018. The random forest algorithm. https://towardsdatascience.com/
the-random-forest-algorithm-d457d499ffcd. Accessed: 2019-05-01.

[28] Keras. 2019. Keras: The python deep learning library. https://keras.io. Accessed: 2019-
02-20.

[29] Keras. 2019. Usage of activations. https://keras.io/activations/. Accessed: 2019-02-23.

[30] Mahmood, H. 2018. The softmax function, simplified. https://towardsdatascience.com/
softmax-function-simplified-714068bf8156. Accessed: 2019-04-23.

[31] Pitsilis, G., Ramampiaro, H., & Langseth, H. 2018. Effective hate-speech detection in twitter
data using recurrent neural networks. Applied Intelligence, 48(12), 4730–4742.

[32] Zhang, Z., Luo, L., & Espinosa Anke, L. 2018. Hate speech detection: A solved problem? the
challenging case of long tail on twitter. Semantic Web, 1–21.

[33] Badjatiya, P., Gupta, S., Gupta, M., & Varma, V. 2017. Deep learning for hate speech detection
in tweets. Proceedings of the 26th International Conference on World Wide Web Companion -
WWW ’17 Companion. URL: http://dx.doi.org/10.1145/3041021.3054223, doi:10.1145/
3041021.3054223.

[34] February 2013. Lecture notes from cornell university: "cs1114 section 6: Convolution". https:
//www.cs.cornell.edu/courses/cs1114/2013sp/sections/S06_convolution.pdf.

[35] Nigam, V. 2018. Understanding neural networks. from neuron
to rnn, cnn, and deep learning. https://towardsdatascience.com/
understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90.
Accessed: 2019-04-02.

[36] Skymind. A beginner’s guide to lstms and recurrent neural networks. https://skymind.ai/
wiki/lstm#long. Accessed: 2019-04-08.

[37] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. 2014. Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv:1412.3555.

[38] Montgomery, D. C. 2013. Design and analysis of experiments.

[39] Mason, R. L. 2003. Statistical design and analysis of experiments : with applications to
engineering and science.

64

http://arxiv.org/abs/1511.06858
http://arxiv.org/abs/1511.06858
https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd
https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd
https://keras.io
https://keras.io/activations/
https://towardsdatascience.com/softmax-function-simplified-714068bf8156
https://towardsdatascience.com/softmax-function-simplified-714068bf8156
http://dx.doi.org/10.1145/3041021.3054223
http://dx.doi.org/10.1145/3041021.3054223
http://dx.doi.org/10.1145/3041021.3054223
https://www.cs.cornell.edu/courses/cs1114/2013sp/sections/S06_convolution.pdf
https://www.cs.cornell.edu/courses/cs1114/2013sp/sections/S06_convolution.pdf
https://towardsdatascience.com/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90
https://towardsdatascience.com/understanding-neural-networks-from-neuron-to-rnn-cnn-and-deep-learning-cd88e90e0a90
https://skymind.ai/wiki/lstm#long
https://skymind.ai/wiki/lstm#long
http://arxiv.org/abs/1412.3555

Analysis of LSTM Networks

[40] Fushiki, T. Apr 2011. Estimation of prediction error by using k-fold cross-validation. Statis-
tics and Computing, 21(2), 137–146. URL: https://doi.org/10.1007/s11222-009-9153-8,
doi:10.1007/s11222-009-9153-8.

[41] Pennington, J., Socher, R., & Manning, C. D. 2014. Glove: Global vectors for word repre-
sentation. In Empirical Methods in Natural Language Processing (EMNLP), 1532–1543. URL:
http://www.aclweb.org/anthology/D14-1162.

[42] Twitter. 2019. Docs. https://developer.twitter.com/en/docs. Accessed: 2019-02-05.

[43] Agarap, A. F. M. 2018. A neural network architecture combining gated recurrent unit (gru)
and support vector machine (svm) for intrusion detection in network traffic data. In Proceed-
ings of the 2018 10th International Conference on Machine Learning and Computing, ICMLC
2018, 26–30, New York, NY, USA. ACM. URL: http://doi.acm.org/10.1145/3195106.
3195117, doi:10.1145/3195106.3195117.

[44] Rivera, P. Tweepy: An easy-to-use python library for accessing the twitter api. https://www.
tweepy.org. Accessed: 2019-02-20.

[45] NumPy. Numpy. https://www.numpy.org. Accessed: 2019-02-15.

[46] pandas. pandas: Python data analysis library. https://pandas.pydata.org. Accessed: 2019-
02-17.

[47] rrmina. Elegant and easy tweet preprocessing in python. https://github.com/rrmina/
preprocessor. Accessed: 2019-02-20.

[48] Google. An end-to-end open source machine learning platform. https://www.tensorflow.
org/about. Accessed: 2019-02-10.

[49] den Bossche, J. V. scikit-learn machine learning in python. https://scikit-learn.org/
stable/. Accessed: 2019-02-10.

[50] Foundation, P. S. Python is a programming language that lets you work quickly and integrate
systems more effectively. https://www.python.org. Accessed: 2019-01-20.

[51] Jupyter, P. The jupyter notebook. https://jupyter.org. Accessed: 2019-01-21.

[52] Jupyter, P. Jupyterlab. https://github.com/jupyterlab/jupyterlab. Accessed: 2019-01-
21.

[53] Anaconda, I. The enterprise data science platform for. . . . https://www.anaconda.com. Ac-
cessed: 2019-01-20.

65

https://doi.org/10.1007/s11222-009-9153-8
http://dx.doi.org/10.1007/s11222-009-9153-8
http://www.aclweb.org/anthology/D14-1162
https://developer.twitter.com/en/docs
http://doi.acm.org/10.1145/3195106.3195117
http://doi.acm.org/10.1145/3195106.3195117
http://dx.doi.org/10.1145/3195106.3195117
https://www.tweepy.org
https://www.tweepy.org
https://www.numpy.org
https://pandas.pydata.org
https://github.com/rrmina/preprocessor
https://github.com/rrmina/preprocessor
https://www.tensorflow.org/about
https://www.tensorflow.org/about
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://www.python.org
https://jupyter.org
https://github.com/jupyterlab/jupyterlab
https://www.anaconda.com

Analysis of LSTM Networks

A Appendix

A.1 Data set lables

All of the labels and their possible values in the data set:

• bullying:

◦ yes
◦ no

• author role:

◦ accuser
◦ assistant
◦ bully
◦ defender
◦ reinforcer
◦ reporter
◦ victim
◦ other
◦ NA - Not a bullying trace

• teasing

◦ yes
◦ no
◦ NA - Not a bullying trace

• type

◦ accusation
◦ cyberbullying
◦ denial
◦ report
◦ self-disclosure
◦ NA - Not a bullying trace

• form

◦ cyberbullying
◦ other
◦ physical

66

Analysis of LSTM Networks

◦ property damage
◦ relational
◦ verbal
◦ NA - Not a bullying trace

• emotion

◦ anger
◦ embarrassment
◦ empathy
◦ fear
◦ none
◦ other
◦ pride
◦ relief
◦ sadness
◦ NA - Not a bullying trace

A.2 Proof of faulty oversampling technique

Figure 21: Proof that the testing data set is leaking information to the training data set, with the oversampling
technique used by [2]

67

Analysis of LSTM Networks

A.3 The code for the models in experiment 1

A.3.1 LSTM

The implementation of the LSTM model is seen in listing A.1

Listing A.1: The implementation of the LSTM model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(LSTM(embsize_))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.2 LSTM x2

The implementation of the LSTM x2 model is seen in listing A.2

Listing A.2: The implementation of the LSTM x2 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(LSTM(embsize_ , return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.3 LSTM x3

The implementation of the LSTM x3 model is seen in listing A.3

Listing A.3: The implementation of the LSTM x3 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(LSTM(embsize_ , return_sequences=True))

68

Analysis of LSTM Networks

modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.4 LSTM x4

The implementation of the LSTM x4 model is seen in listing A.4

Listing A.4: The implementation of the LSTM x4 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(LSTM(embsize_ , return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.5 LSTM x5

The implementation of the LSTM x5 model is seen in listing A.1

Listing A.5: The implementation of the LSTM x5 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(LSTM(embsize_ , return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,

69

Analysis of LSTM Networks

return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.6 BLSTM LSTM

The implementation of the BLSTM LSTM model is seen in listing A.6

Listing A.6: The implementation of the BLSTM LSTM model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
return_sequences=True)))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.7 BLSTM LSTM x2

The implementation of the BLSTM LSTM x2 model is seen in listing A.7

Listing A.7: The implementation of the BLSTM LSTM x2 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
return_sequences=True)))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

70

Analysis of LSTM Networks

A.3.8 BLSTM LSTM x3

The implementation of the BLSTM LSTM x3 model is seen in listing A.8

Listing A.8: The implementation of the BLSTM LSTM x3 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
return_sequences=True)))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.9 BLSTM LSTM x4

The implementation of the BLSTM LSTM x4 model is seen in listing A.9

Listing A.9: The implementation of the BLSTM LSTM x4 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
return_sequences=True)))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

71

Analysis of LSTM Networks

A.3.10 BLSTM LSTM x5

The implementation of the BLSTM LSTM x5 model is seen in listing A.10

Listing A.10: The implementation of the BLSTM LSTM x5 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
return_sequences=True)))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.11 BLSTM

The implementation of the BLSTM model is seen in listing A.11

Listing A.11: The implementation of the BLSTM model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Bidirectional(LSTM(embsize_)))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.12 BLSTM x2

The implementation of the BLSTM x2 model is seen in listing A.12

72

Analysis of LSTM Networks

Listing A.12: The implementation of the BLSTM x2 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
return_sequences=True)))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
activation=’sigmoid ’)))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.13 BLSTM x3

The implementation of the BLSTM x3 model is seen in listing A.13

Listing A.13: The implementation of the BLSTM x3 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
return_sequences=True)))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
activation=’sigmoid ’,return_sequences=True)))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
activation=’sigmoid ’)))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.14 BLSTM x4

The implementation of the BLSTM x4 model is seen in listing A.14

Listing A.14: The implementation of the BLSTM x4 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,

73

Analysis of LSTM Networks

embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
return_sequences=True)))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
activation=’sigmoid ’,return_sequences=True)))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
activation=’sigmoid ’,return_sequences=True)))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
activation=’sigmoid ’)))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.15 BLSTM x5

The implementation of the BLSTM x5 model is seen in listing A.15

Listing A.15: The implementation of the BLSTM x5 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
return_sequences=True)))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
activation=’sigmoid ’,return_sequences=True)))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
activation=’sigmoid ’,return_sequences=True)))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
activation=’sigmoid ’,return_sequences=True)))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
activation=’sigmoid ’)))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.16 ConvLSTM

The implementation of the ConvLSTM model is seen in listing A.16

Listing A.16: The implementation of the ConvLSTM model� �
74

Analysis of LSTM Networks

modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Conv1D (256,11, padding=’same’,
activation=’relu’, strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.17 ConvLSTM x2

The implementation of the ConvLSTM x2 model is seen in listing A.17

Listing A.17: The implementation of the ConvLSTM x2 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Conv1D (256,11, padding=’same’,
activation=’relu’, strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_ ,return_sequences=True))
modelNTNU.add(Conv1D (128,9, padding=’same’,
activation=’relu’, strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.18 ConvLSTM x3

The implementation of the ConvLSTM x3 model is seen in listing A.18

Listing A.18: The implementation of the ConvLSTM x3 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,

75

Analysis of LSTM Networks

embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Conv1D (256,11, padding=’same’,
activation=’relu’, strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_ ,return_sequences=True))
modelNTNU.add(Conv1D (128,9, padding=’same’,
activation=’relu’, strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_ ,return_sequences=True))
modelNTNU.add(Conv1D (64,7, padding=’same’, activation=’relu’,
strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.19 ConvLSTM x4

The implementation of the ConvLSTM x4 model is seen in listing A.19

Listing A.19: The implementation of the ConvLSTM x4 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Conv1D (256,11, padding=’same’,
activation=’relu’, strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_ ,return_sequences=True))
modelNTNU.add(Conv1D (128,9, padding=’same’,
activation=’relu’, strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_ ,return_sequences=True))
modelNTNU.add(Conv1D (64,7, padding=’same’, activation=’relu’,
strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_ ,return_sequences=True))
modelNTNU.add(Conv1D (32,5, padding=’same’, activation=’relu’,
strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))

76

Analysis of LSTM Networks

modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.3.20 ConvLSTM x5

The implementation of the ConvLSTM x5 model is seen in listing A.20

Listing A.20: The implementation of the ConvLSTM x5 model� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Conv1D (256,11, padding=’same’,
activation=’relu’, strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_ ,return_sequences=True))
modelNTNU.add(Conv1D (128,9, padding=’same’,
activation=’relu’, strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_ ,return_sequences=True))
modelNTNU.add(Conv1D (64,7, padding=’same’, activation=’relu’,
strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_ ,return_sequences=True))
modelNTNU.add(Conv1D (32,5, padding=’same’, activation=’relu’,
strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_ ,return_sequences=True))
modelNTNU.add(Conv1D (16,4, padding=’same’, activation=’relu’,
strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.4 The code for the models in experiment 2

A.4.1 SVM like activation
LSTM

77

Analysis of LSTM Networks

Listing A.21: The implementation of the LSTM model with SVM like activation� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(LSTM(embsize_ , return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’linear ’,
kernel_regularizer=l2 (0.01)))
modelNTNU.compile(loss=’categorical_hinge ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

BLSTM LSTM

Listing A.22: The implementation of the BLSTM LSTM model with SVM like activation� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
return_sequences=True)))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’,
return_sequences=True))
modelNTNU.add(LSTM(embsize_ , activation=’sigmoid ’))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’linear ’,
kernel_regularizer=l2 (0.01)))
modelNTNU.compile(loss=’categorical_hinge ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

BLSTM

Listing A.23: The implementation of the BLSTM model with SVM like activation� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,

78

Analysis of LSTM Networks

embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
return_sequences=True)))
modelNTNU.add(Bidirectional(LSTM(embsize_ ,
activation=’sigmoid ’)))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’linear ’,
kernel_regularizer=l2 (0.01)))
modelNTNU.compile(loss=’categorical_hinge ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

ConVLSTM

Listing A.24: The implementation of the ConVLSTM model with SVM like activation� �
modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Conv1D (256,11, padding=’same’,
activation=’relu’, strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_ ,return_sequences=True))
modelNTNU.add(Conv1D (128,9, padding=’same’,
activation=’relu’, strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_))
modelNTNU.add(Dense(vocabulary_size , activation=’relu’))
modelNTNU.add(Dense(2, activation=’linear ’,
kernel_regularizer=l2 (0.01)))
modelNTNU.compile(loss=’categorical_hinge ’,

optimizer=’adam’,
metrics =[’accuracy ’])� �

A.4.2 The SVM and Random Forest Classifier used

Listing A.25: The SVM classifier and Random Forest classifier� �
from sklearn.ensemble import RandomForestClassifier
from sklearn import svm

#The random forest classifier:
RFC = RandomForestClassifier(bootstrap=True ,

class_weight=None , criterion=’gini’,

79

Analysis of LSTM Networks

max_depth =1000, max_features =2000, max_leaf_nodes=None ,
min_impurity_decrease =0.0, min_impurity_split=None ,
min_samples_leaf =500, min_samples_split =500,
min_weight_fraction_leaf =0.0, n_estimators =300,
n_jobs=None , oob_score=False , random_state=None ,
verbose=0, warm_start=False)

#The SVM classifier:
clf = svm.SVC(C=0.5, cache_size =200, class_weight=None ,

coef0 =0.0, decision_function_shape=’ovr’, degree=3,
gamma =0.01, kernel=’rbf’, max_iter=-1, probability=False ,
random_state=None , shrinking=True ,

tol =0.001 , verbose=False)� �
A.5 The code for the testing environment

A.5.1 Original script for retrieving the Tweets

Listing A.26: Original script made by [4] for retrieving the Tweets� �
#!/usr/bin/env python

"""
Sample code of getting tweet JSON objects by tweet ID lists.

You have to install tweepy (This script was tested with
Python 2.6 and Tweepy 3.3.0)
https :// github.com/tweepy/tweepy
and set its directory to your PYTHONPATH.

You have to obtain an access tokens from dev.twitter.com
with your Twitter account.
For more information , please follow:
https :// dev.twitter.com/oauth/overview/application -owner
-access -tokens

Once you get the tokens , please fill the tokens in the
squotation marks in the
following "Access Information" part. For example , if your
consumer key is
LOVNhsAfB1zfPYnABCDE , you need to put it to Line 33
consumer_key = ’LOVNhsAfB1zfPYnABCDE ’

"""

80

Analysis of LSTM Networks

call user.lookup api to query a list of user ids.
import tweepy
import sys
import json
import codecs
from tweepy.parsers import JSONParser

####### Access Information #################

Parameter you need to specify
consumer_key = ’’
consumer_secret = ’’
access_key = ’’
access_secret = ’’

inputFile = ’tweet_id ’
outputFile = ’tweet.json’

###
auth = tweepy.OAuthHandler(consumer_key , consumer_secret)
auth.set_access_token(access_key , access_secret)
api = tweepy.API(auth_handler=auth , parser=JSONParser ())

l=[];
with open(inputFile , ’r’) as inFile:

with codecs.open(outputFile , ’w’, encoding=’utf8’)
as outFile:

for line in inFile.readlines ():
l.append(line.rstrip ());
if (len(l) >=99):

rst = api.statuses_lookup
(id_=l);
for tweet in rst:

outFile.write(
json.dumps(tweet)
+ "\n");

l=[];
if (len(l) > 0):

rst = api.statuses_lookup(id_=l);
for tweet in rst:

outFile.write(json.dumps(
tweet) + "\n");� �

A.5.2 Modified script for retrieving the Tweets

81

Analysis of LSTM Networks

Listing A.27: The script used for retrieving the Tweets� �
import tweepy
import sys
import json
import codecs
from tweepy.parsers import JSONParser
import pandas as pd
import numpy as np

fields = ["Tweet␣ID", "User␣ID", "Bullying_Traces", "Type",
"Form", "Teasing", "Author_Role", "Emotion"];
idata = pd.read_csv("data.csv", header=None , names=fields)
inputFile = ’data.csv’
outputFile = ’tweet.json’

idata["Tweet␣ID"]
idataWTweets=idata
idataWTweets["Tweets"]=np.nan
####### Access Information #################
#NB: Information has been censored ,
#must be inserted in order to work
consumer_key = ’Censored ’
consumer_secret = ’Censored ’
access_key = ’Censored ’
access_secret = ’Censored ’

###
auth = tweepy.OAuthHandler(consumer_key , consumer_secret)
auth.set_access_token(access_key , access_secret)
api = tweepy.API(auth_handler=auth , parser=JSONParser ())
l=[];
with codecs.open(outputFile , ’w’, encoding=’utf8’) as outFile:

for row in idata["Tweet␣ID"]:
l.append(row);
if (len(l) >=99):

rst = api.statuses_lookup(id_=l);
for tweet in rst:

idataWTweets["Tweets"].loc[
idataWTweets[’Tweet␣ID’]
==tweet["id"]]
=tweet["text"]

l=[];
if (len(l) > 0):

rst = api.statuses_lookup(id_=l);

82

Analysis of LSTM Networks

for tweet in rst:
idataWTweets["Tweets"].loc[
idataWTweets[’Tweet␣ID’]
==tweet["id"]]= tweet["text"]

#Remove entries with no tweets
#(Dataset is some years old and some tweets therefore
#have been removed from Twitter)
CleanedidataWTweets=idataWTweets.dropna(subset =[’Tweets ’])
#Write to file:
CleanedidataWTweets.to_csv(’TwitterDataCleanedWTweets.csv’,
index=False)� �

A.5.3 Text preprocessing script

Listing A.28: The script used for preprocessing the raw text in the tweets� �
import re
import pandas as pd
import string
from nltk.tokenize.treebank import TreebankWordTokenizer ,
TreebankWordDetokenizer
from nltk.corpus import stopwords
import preprocessor as p #Source:
#https :// github.com/rrmina/preprocessor
nltk.download(’stopwords ’)
detokenizer = TreebankWordDetokenizer ()#Detokenizer module
tokenizer = TreebankWordTokenizer ()#Tokenizer module
CommentFieldName = "Tweets"
Inputfile = "Twitter -W-userdata.csv"
idata = pd.read_csv(Inputfile)
idataTemp=idata.copy()
stopWords = set(stopwords.words ())#Get list of stopwords
maxlen =0
#Loop the dataset:
for index , row in idata.iterrows ():

#Remove numbers:
p.set_options(p.OPT.NUMBER)
temp=p.clean(row[CommentFieldName])
#Replace URLS with URL:
p.set_options(p.OPT.URL)
tempword=p.tokenize(temp)
#Tokenize:
words = tokenizer.tokenize(tempword)
cleanedWords = []
#Go through all the tokenz/words in each data sample
for word in words:

83

Analysis of LSTM Networks

#Remove repeating characters:
word=re.sub(r’(.)\1+ ’, r’\1\1’, word)
cleanedWords.append(word)

detected =0
cleanedWords2 = []
#Loop that removes the name after a @ sign
for word in cleanedWords:

if detected ==1:
detected =0

else:
cleanedWords2.append(word)

if word=="@":
detected =1

#stitch the words back to a sentence/data sample
words = detokenizer.detokenize(cleanedWords2)
#Remove special signs:
pattern=set(’!"%&\()$*+ , -./:; <= >?[\\]^_ ‘{|}~’)
words = ’’.join(ch for ch in words if ch not in pattern)
#Tranform to lowercase:
words=words.lower ()
#Insert back into the data set
idataTemp.at[index , CommentFieldName] = words

idataTemp.to_csv("Twittter_cleaned.csv", index=False)� �
A.5.4 Full example of the testing script of one model

Listing A.29: The script used for preprocessing the raw text in the tweets� �
#Training and testing classifier (Bidirectional -LSTM -DNN)
#Preparation Part
#Modules needed:
from keras.callbacks import ModelCheckpoint
from keras import backend as K
from keras.models import Sequential
from keras.layers import Bidirectional , ConvLSTM2D ,
Dense , Flatten , LSTM , Conv1D , MaxPooling1D ,
Dropout , Activation , TimeDistributed
from keras.layers.embeddings import Embedding
from keras.initializers import Constant
from keras.utils import to_categorical
from sklearn.metrics import precision_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score

84

Analysis of LSTM Networks

import tensorflow as tf
config = tf.ConfigProto ()
config.gpu_options.allow_growth = True
session = tf.Session(config=config)

print("\x1B[3 mWARNING:␣Training␣and␣testing␣will␣take␣quite␣a
bit␣of␣time ,␣ETA:␣40␣min␣using␣GPU (1070TI)␣and␣CPU (8700k␣@
4,3Ghz)\x1B[23m")
print("Number␣of␣epochs␣set␣to:␣", EpochCount , "␣Input␣size
set␣to:␣",inputsize_ , "␣Embedding␣size␣set␣to:␣", embsize_ ,
"␣Batch␣size␣set␣to:␣", batch_size_)
print(’\x1B[3mNB:␣There␣may␣be␣some␣warning␣stating␣"F-score
is␣ill -defined",␣this␣is␣expected ,␣this␣warning␣is␣caused
when␣the␣performance␣of␣poorly␣trained␣models␣are␣measured
and␣the␣model␣does␣not␣classify␣any␣samples␣as
positive\x1B [23m’)

Models= [[] for _ in range (10)]
bestmodels =[]
part1="saved -model -"
part3="-.hdf5"
for ind ,t in enumerate(Models):

ModelsTemp =[]
for i,x in enumerate(range(EpochCount)):

i=i+1
if i<10:

part2="00"+str(i)
if i<100 and i>9:

part2="0"+str(i)
if i>99:

part2=str(i)
modelname=part1+part2+part3
ModelsTemp.append(modelname)

Models[ind]= ModelsTemp
#10 cross fold testing:
#For loop to go through all the folds
for index , fold in enumerate(DataFolds):

try:
#Try to reset the model , will throw an error on first
#run , therefore the try
modelNTNU.reset_states ()

except:
n=0#Do nothing , it’s just because its the first run

finally:
#Create the model
K.clear_session ()

85

Analysis of LSTM Networks

modelNTNU = Sequential ()
modelNTNU.add(Embedding(vocabulary_size , embsize_ ,
input_length=inputsize_ ,
embeddings_initializer=Constant(embedding_matrix),
trainable=False))
modelNTNU.add(Conv1D (256,11, padding=’same’,
activation=’relu’, strides =1))
modelNTNU.add(MaxPooling1D(pool_size =2))
modelNTNU.add(LSTM(embsize_))
modelNTNU.add(Dense(vocabulary_size ,
activation=’relu’))
modelNTNU.add(Dense(2, activation=’softmax ’))
modelNTNU.compile(loss=’categorical_crossentropy ’,

optimizer=’adam’,
metrics =[’accuracy ’])

filepath = "saved -model -{ epoch :03d}-.hdf5"
mcp = ModelCheckpoint(filepath , monitor=’val_acc ’,
verbose=0, save_weights_only=True ,
save_best_only=False , mode=’max’,period =1)
#fetch data:
TestSet=TraindataFolds[index]#Testing fold
#Empty array to hold the training set:
TrainSet= np.array ([])
#Fill the trainset:
for index2 , fold in enumerate(DataFolds):

if index2 != index:
#Not testing set so include in training:
if TrainSet.size == 0:#First fold

#set the training set equal to this fold
TrainSet=TraindataFolds[index2]

else:#the rest of the folds
#Append the trainingfold to the
#other trainingfolds:
TrainSet =
np.vstack ([TrainSet ,
TraindataFolds[index2]])

#Prepare the classes to be fed into keras:
Trainclasses =
to_categorical(np.array(TrainSet[:, ClassCollumn]))
Testclasses =
to_categorical(np.array(TestSet[:, ClassCollumn]))

#Fit/train the model:
print("Running ,␣Fold:␣", index+1, "␣of␣",
len(DataFolds))

86

Analysis of LSTM Networks

print("Training␣models␣in␣fold␣", index+1, "...")
modelNTNU.fit(TrainSet [:,: inputsize_],
Trainclasses , epochs=EpochCount ,
batch_size=batch_size_ ,
validation_data =(TestSet [:,: inputsize_], Testclasses),
shuffle=False , callbacks =[mcp], verbose =0)

#Set the test fold to not oversampled fold:
TestSet=DataFolds[index]

#ID the best performing model found through
#the training:
print("Testing␣performance␣of␣all␣trained␣models␣in

␣␣␣␣␣␣␣␣fold␣", index+1, "...")
from keras.models import load_model
TestClassesList= TestSet[:, ClassCollumn]. astype(int)
#Reset measurements
bestf1=-1
bestmodel=""
#Go through all the models from all the epochs
for modelname in Models [1]:

modelNTNU.load_weights(modelname)#Load the model
#Use it to classify the test samples:
predict =
modelNTNU.predict_classes(TestSet [:,: inputsize_])
#calculate F-measure:
f1result=f1_score(TestClassesList ,predict ,
average=None)
#Test if F1 is higher than highest F1 registered:
if f1result [1]> bestf1:

bestf1=f1result [1]#Save results
bestmodel=modelname#Save model

bestmodels.append(bestmodel)
#Measure the performance of the best model yielded
#through the training:
modelNTNU.load_weights(bestmodel)#Load the best model
#Use it to classify the test samples:
predict =
modelNTNU.predict_classes(TestSet [:,: inputsize_])
#Measure accuracy , precission , recall and F1:
if index ==0:#First fold

accuracyresults =
accuracy_score(TestClassesList ,predict)
Precisionresults=precision_score(TestClassesList ,
predict , average=None)
Precisionresults_Macro=precision_score(

87

Analysis of LSTM Networks

TestClassesList ,predict , average="macro")
Precisionresults_Weighted=precision_score(
TestClassesList ,predict , average="weighted")
recallresults=recall_score(
TestClassesList ,predict , average=None)
recallresults_Macro=recall_score(
TestClassesList ,predict , average="macro")
recallresults_Weighted=recall_score(
TestClassesList ,predict , average="weighted")
f1results_Macro=f1_score(
TestClassesList ,predict , average="macro")
f1results_Weighted=f1_score(
TestClassesList ,predict , average="weighted")
f1results=f1_score(
TestClassesList ,predict , average=None)

else:#Rest of the folds
accuracyresults = np.vstack ([accuracyresults ,
accuracy_score(TestClassesList ,predict)])
Precisionresults = np.vstack ([Precisionresults ,
precision_score(TestClassesList ,predict ,
average=None)])
recallresults = np.vstack ([recallresults ,
recall_score(TestClassesList ,predict ,
average=None)])
Precisionresults_Macro =
np.vstack ([Precisionresults_Macro ,
precision_score(TestClassesList ,predict ,
average="macro")])
recallresults_Macro =
np.vstack ([recallresults_Macro ,recall_score(
TestClassesList ,predict , average="macro")])
Precisionresults_Weighted =
np.vstack ([Precisionresults_Weighted ,
precision_score(
TestClassesList ,predict , average="weighted")])
recallresults_Weighted =
np.vstack ([recallresults_Weighted ,recall_score(
TestClassesList ,predict , average="weighted")])
f1results_Macro =
np.vstack ([f1results_Macro ,f1_score(
TestClassesList ,predict , average="macro")])
f1results_Weighted =
np.vstack ([f1results_Weighted ,f1_score(
TestClassesList ,predict , average="weighted")])
f1results =
np.vstack ([f1results ,f1_score(

88

Analysis of LSTM Networks

TestClassesList ,predict , average=None)])

print("Fold:␣", index+1, "␣is␣done ,␣best␣model␣was:",
bestmodel ,"␣with␣an␣f1 -score␣of:␣",
f1_score(TestClassesList ,predict , average="macro"))

#10 cross fold testing finished
print("All␣training␣and␣performance␣testing␣is␣done ,
writing␣report ...")

#script to create reprt:
#Average all the performance measures from each fold:
f1_Weighted_sum =0
f1_Weighted_avg =0
for f1_Weighted in f1results_Weighted:

f1_Weighted_sum = f1_Weighted_sum+f1_Weighted
f1_Weighted_avg=f1_Weighted_sum/len(f1results_Weighted)

f1_Macro_sum =0
f1_Macro_avg =0
for f1_Macro in f1results_Macro:

f1_Macro_sum = f1_Macro_sum+f1_Macro
f1_Macro_avg=f1_Macro_sum/len(f1results_Macro)

f1results
f1results1_sum =0
f1results1_avg =0
f1results2_sum =0
f1results2_avg =0
for f1 in f1results:

f1results1_sum = f1results1_sum+f1[0]
f1results2_sum = f1results2_sum+f1[1]

f1results1_avg=f1results1_sum/len(f1results)
f1results2_avg=f1results2_sum/len(f1results)

Precision1_sum =0
Precision1_avg =0
Precision2_sum =0
Precision2_avg =0
for Precision in Precisionresults:

Precision1_sum = Precision1_sum+Precision [0]
Precision2_sum = Precision2_sum+Precision [1]

Precision1_avg=Precision1_sum/len(Precisionresults)
Precision2_avg=Precision2_sum/len(Precisionresults)

89

Analysis of LSTM Networks

Precision_Macro_sum =0
Precision_Macro_avg =0
for Precision_Macro in Precisionresults_Macro:

Precision_Macro_sum = Precision_Macro_sum+Precision_Macro
Precision_Macro_avg=Precision_Macro_sum/len(
Precisionresults_Macro)

Precision_Weighted_sum =0
Precision_Weighted_avg =0
for Precision_Weighted in Precisionresults_Weighted:

Precision_Weighted_sum =
Precision_Weighted_sum+Precision_Weighted

Precision_Weighted_avg=Precision_Weighted_sum/len(
Precisionresults_Weighted)

accuracy_sum =0
accuracy_avg =0
for accuracy in accuracyresults:

accuracy_sum = accuracy_sum+accuracy
accuracy_avg=accuracy_sum/len(accuracyresults)

recall1_sum =0
recall1_avg =0
recall2_sum =0
recall2_avg =0
for recall in recallresults:

recall1_sum = recall1_sum+recall [0]
recall2_sum = recall2_sum+recall [1]

recall1_avg=recall1_sum/len(recallresults)
recall2_avg=recall2_sum/len(recallresults)

recall_Weighted_sum =0
recall_Weighted_avg =0
for recall_Weighted in recallresults_Weighted:

recall_Weighted_sum = recall_Weighted_sum+recall_Weighted
recall_Weighted_avg=recall_Weighted_sum/len(
recallresults_Weighted)

recall_Macro_sum =0
recall_Macro_avg =0
for recall_Macro in recallresults_Macro:

recall_Macro_sum = recall_Macro_sum+recall_Macro
recall_Macro_avg=recall_Macro_sum/len(recallresults_Macro)

90

Analysis of LSTM Networks

#Write the report to file:
line="__
_________"
doubleline="==
==============="
with open(’Basemodell -v2-convlstm -report.txt’,’w’) as fh:

fh.write(’Model␣overview :\n’)
fh.write(’Batch␣size:’+str(batch_size_)+
’\tNumber␣of␣epochs:␣’+str(EpochCount)+
’\tEmbedding␣size:␣’+str(embsize_)+’␣\n’)
#Next line is from the source:
#https :// stackoverflow.com/questions /41665799/ keras -model -
#summary -object -to-string
modelNTNU.summary(
print_fn=lambda x: fh.write(x + ’\n’))
fh.write(doubleline+’\n’)
fh.write(’\nModel␣Performance␣(10-Cross -Fold):\n’)
fh.write(line+’\n’)
fh.write(’Accuracy␣average:␣\t\t\t\t\t\t\t\t\t\t’+
str(round(accuracy_avg [0], 5))+’\n’)
fh.write(line+’\n’)
fh.write(’F1␣score␣average␣for␣None -class:␣\t\t\t\t\t\t’+
str(round(f1results1_avg , 5))+’\n’)
fh.write(line+’\n’)
fh.write(’F1␣score␣average␣for␣Bully -class:␣\t\t\t\t\t\t’+
str(round(f1results2_avg , 5))+’\n’)
fh.write(line+’\n’)
fh.write(’F1␣score␣weighted␣average:␣\t\t\t\t\t\t\t\t’+
str(round(f1_Weighted_avg [0], 5))+’\n’)
fh.write(line+’\n’)
fh.write(’F1␣score␣macro␣average:␣\t\t\t\t\t\t\t\t’
+str(round(f1_Macro_avg [0], 5))+’\n’)
fh.write(line+’\n’)
fh.write(’Precision␣average␣for␣None -class:␣\t\t\t\t\t\t’
+str(round(Precision1_avg , 5))+’\n’)
fh.write(line+’\n’)
fh.write(’Precision␣average␣for␣Bully -class:␣\t\t\t\t\t\t’
+str(round(Precision2_avg , 5))+’\n’)
fh.write(line+’\n’)
fh.write(’Precision␣weighted␣average:␣\t\t\t\t\t\t\t’
+str(round(Precision_Weighted_avg [0], 5))+’\n’)
fh.write(line+’\n’)
fh.write(’Precision␣score␣macro␣average:␣\t\t\t\t\t\t\t’
+str(round(Precision_Macro_avg [0], 5))+’\n’)
fh.write(line+’\n’)

91

Analysis of LSTM Networks

fh.write(’Recall␣average␣for␣None -class:␣\t\t\t\t\t\t\t’
+str(round(recall1_avg , 5))+’\n’)
fh.write(line+’\n’)
fh.write(’Recall␣average␣for␣Bully -class:␣\t\t\t\t\t\t’
+str(round(recall2_avg , 5))+’\n’)
fh.write(line+’\n’)
fh.write(’Recall␣weighted␣average:␣\t\t\t\t\t\t\t\t’
+str(round(recall_Weighted_avg [0], 5))+’\n’)
fh.write(line+’\n’)
fh.write(’Recall␣score␣macro␣average:␣\t\t\t\t\t\t\t’
+str(round(recall_Macro_avg [0], 5))+’\n’)
fh.write(doubleline+’\n’)
for indexes , r in enumerate(bestmodels):

fold=indexes +1
fh.write(’The␣best␣model␣in␣fold␣’
+str(fold)+’:␣’+r+’␣\n’)

print("Report␣is␣written ,␣and␣script␣is␣finished.")� �

92

Analysis of LSTM Networks

B Performance Reports Experiment 1, first test run with 200
Epochs

93

Analysis of LSTM Networks

Figure 22: Part one of the performance report for ConvLSTM (experiment 1, first test run with 200 epochs)

Figure 23: Part two of the performance report for ConvLSTM (experiment 1, first test run with 200 epochs)

94

Analysis of LSTM Networks

Figure 24: Part three of the performance report for ConvLSTM (experiment 1, first test run with 200 epochs)

Figure 25: Part one of the performance report for ConvLSTM x2 (experiment 1, first test run with 200 epochs)

95

Analysis of LSTM Networks

Figure 26: Part two of the performance report for ConvLSTM x2 (experiment 1, first test run with 200 epochs)

Figure 27: Part three of the performance report for ConvLSTM x2 (experiment 1, first test run with 200 epochs)

96

Analysis of LSTM Networks

Figure 28: Part one of the performance report for ConvLSTM x3 (experiment 1, first test run with 200 epochs)

97

Analysis of LSTM Networks

Figure 29: Part two of the performance report for ConvLSTM x3 (experiment 1, first test run with 200 epochs)

Figure 30: Part three of the performance report for ConvLSTM x3 (experiment 1, first test run with 200 epochs)

98

Analysis of LSTM Networks

Figure 31: Part one of the performance report for ConvLSTM x4 (experiment 1, first test run with 200 epochs)

99

Analysis of LSTM Networks

Figure 32: Part two of the performance report for ConvLSTM x4 (experiment 1, first test run with 200 epochs)

Figure 33: Part three of the performance report for ConvLSTM x4 (experiment 1, first test run with 200 epochs)

100

Analysis of LSTM Networks

Figure 34: Part one of the performance report for ConvLSTM x5 (experiment 1, first test run with 200 epochs)

101

Analysis of LSTM Networks

Figure 35: Part two of the performance report for ConvLSTM x5 (experiment 1, first test run with 200 epochs)

Figure 36: Part three of the performance report for ConvLSTM x5 (experiment 1, first test run with 200 epochs)

102

Analysis of LSTM Networks

Figure 37: Part one of the performance report for the model: BLSTM LSTM (experiment 1, first test run with
200 epochs)

Figure 38: Part two of the performance report for the model: BLSTM LSTM (experiment 1, first test run with
200 epochs)

103

Analysis of LSTM Networks

Figure 39: Part three of the performance report for the model: BLSTM LSTM (experiment 1, first test run with
200 epochs)

Figure 40: Part one of the performance report for the model: BLSTM LSTM x2 (experiment 1, first test run
with 200 epochs)

104

Analysis of LSTM Networks

Figure 41: Part two of the performance report for the model: BLSTM LSTM x2 (experiment 1, first test run
with 200 epochs)

105

Analysis of LSTM Networks

Figure 42: Part three of the performance report for the model: BLSTM LSTM x2 (experiment 1, first test run
with 200 epochs)

Figure 43: Part one of the performance report for the model: BLSTM LSTM x3 (experiment 1, first test run
with 200 epochs)

106

Analysis of LSTM Networks

Figure 44: Part two of the performance report for the model: BLSTM LSTM x3 (experiment 1, first test run
with 200 epochs)

Figure 45: Part three of the performance report for the model: BLSTM LSTM x3 (experiment 1, first test run
with 200 epochs)

107

Analysis of LSTM Networks

Figure 46: Part one of the performance report for the model: BLSTM LSTM x4 (experiment 1, first test run
with 200 epochs)

108

Analysis of LSTM Networks

Figure 47: Part two of the performance report for the model: BLSTM LSTM x4 (experiment 1, first test run
with 200 epochs)

Figure 48: Part three of the performance report for the model: BLSTM LSTM x5 (experiment 1, first test run
with 200 epochs)

109

Analysis of LSTM Networks

Figure 49: Part one of the performance report for the model: BLSTM LSTM x5 (experiment 1, first test run
with 200 epochs)

110

Analysis of LSTM Networks

Figure 50: Part two of the performance report for the model: BLSTM LSTM x5 (experiment 1, first test run
with 200 epochs)

Figure 51: Part three of the performance report for the model: BLSTM LSTM x5 (experiment 1, first test run
with 200 epochs)

111

Analysis of LSTM Networks

Figure 52: Part one of the performance report for the model: BLSTM (experiment 1, first test run with 200
epochs)

Figure 53: Part two of the performance report for the model: BLSTM (experiment 1, first test run with 200
epochs)

112

Analysis of LSTM Networks

Figure 54: Part three of the performance report for the model: BLSTM (experiment 1, first test run with 200
epochs)

Figure 55: Part one of the performance report for the model: BLSTM x2 (experiment 1, first test run with 200
epochs)

113

Analysis of LSTM Networks

Figure 56: Part two of the performance report for the model: BLSTM x2 (experiment 1, first test run with 200
epochs)

Figure 57: Part three of the performance report for the model: BLSTM x2 (experiment 1, first test run with
200 epochs)

114

Analysis of LSTM Networks

Figure 58: Part one of the performance report for the model: BLSTM x3 (experiment 1, first test run with 200
epochs)

Figure 59: Part two of the performance report for the model: BLSTM x3 (experiment 1, first test run with 200
epochs)

115

Analysis of LSTM Networks

Figure 60: Part three of the performance report for the model: BLSTM x3 (experiment 1, first test run with
200 epochs)

Figure 61: Part one of the performance report for the model: LSTM (experiment 1, first test run with 200
epochs)

116

Analysis of LSTM Networks

Figure 62: Part two of the performance report for the model: LSTM (experiment 1, first test run with 200
epochs)

Figure 63: Part three of the performance report for the model: LSTM (experiment 1, first test run with 200
epochs)

117

Analysis of LSTM Networks

Figure 64: Part one of the performance report for the model: LSTM x2 (experiment 1, first test run with 200
epochs)

Figure 65: Part two of the performance report for the model: LSTM x2 (experiment 1, first test run with 200
epochs)

118

Analysis of LSTM Networks

Figure 66: Part three of the performance report for the model: LSTM x2 (experiment 1, first test run with 200
epochs)

Figure 67: Part one of the performance report for the model: LSTM x3 (experiment 1, first test run with 200
epochs)

119

Analysis of LSTM Networks

Figure 68: Part two of the performance report for the model: LSTM x3 (experiment 1, first test run with 200
epochs)

Figure 69: Part three of the performance report for the model: LSTM x3 (experiment 1, first test run with 200
epochs)

120

Analysis of LSTM Networks

Figure 70: Part one of the performance report for the model: LSTM x4 (experiment 1, first test run with 200
epochs)

Figure 71: Part two of the performance report for the model: LSTM x4 (experiment 1, first test run with 200
epochs)

121

Analysis of LSTM Networks

Figure 72: Part three of the performance report for the model: LSTM x4 (experiment 1, first test run with 200
epochs)

Figure 73: Part one of the performance report for the model: LSTM x5 (experiment 1, first test run with 200
epochs)

122

Analysis of LSTM Networks

Figure 74: Part two of the performance report for the model: LSTM x5 (experiment 1, first test run with 200
epochs)

Figure 75: Part three of the performance report, from the first test run with 200 epochs, for the model: LSTM
x5 (experiment 1, first test run with 200 epochs)

123

Analysis of LSTM Networks

C Performance Reports from Experiment 1, second test run with
800 Epochs

124

Analysis of LSTM Networks

Figure 76: Part one of the performance report for the model: ConvLSTM (experiment 2, second test run with
800 epochs)

Figure 77: Part two of the performance report for the model: ConvLSTM (experiment 2, second test run with
800 epochs)

125

Analysis of LSTM Networks

Figure 78: Part three of the performance report for the model: ConvLSTM (experiment 2, second test run with
800 epochs)

Figure 79: Part one of the performance report for the model: ConvLSTM x2 (experiment 2, second test run
with 800 epochs)

126

Analysis of LSTM Networks

Figure 80: Part two of the performance report for the model: ConvLSTM x2 (experiment 2, second test run
with 800 epochs)

Figure 81: Part three of the performance report for the model: ConvLSTM x2 (experiment 2, second test run
with 800 epochs)

127

Analysis of LSTM Networks

Figure 82: Part one of the performance report for the model: ConvLSTM x3 (experiment 2, second test run
with 800 epochs)

128

Analysis of LSTM Networks

Figure 83: Part two of the performance report for the model: ConvLSTM x3 (experiment 2, second test run
with 800 epochs)

Figure 84: Part three of the performance report for the model: ConvLSTM x3 (experiment 2, second test run
with 800 epochs)

129

Analysis of LSTM Networks

Figure 85: Part one of the performance report for the model: ConvLSTM x4 (experiment 2, second test run
with 800 epochs)

130

Analysis of LSTM Networks

Figure 86: Part two of the performance report for the model: ConvLSTM x4 (experiment 2, second test run
with 800 epochs)

Figure 87: Part three of the performance report for the model: ConvLSTM x4 (experiment 2, second test run
with 800 epochs)

131

Analysis of LSTM Networks

Figure 88: Part one of the performance report for the model: ConvLSTM x5 (experiment 2, second test run
with 800 epochs)

132

Analysis of LSTM Networks

Figure 89: Part two of the performance report for the model: ConvLSTM x5 (experiment 2, second test run
with 800 epochs)

Figure 90: Part three of the performance report for the model: ConvLSTM x5 (experiment 2, second test run
with 800 epochs)

133

Analysis of LSTM Networks

Figure 91: Part one of the performance report for the model: BLSTM LSTM (experiment 2, second test run
with 800 epochs)

Figure 92: Part two of the performance report for the model: BLSTM LSTM (experiment 2, second test run
with 800 epochs)

134

Analysis of LSTM Networks

Figure 93: Part three of the performance report for the model: BLSTM LSTM (experiment 2, second test run
with 800 epochs)

Figure 94: Part one of the performance report for the model: BLSTM LSTM x2 (experiment 2, second test run
with 800 epochs)

135

Analysis of LSTM Networks

Figure 95: Part two of the performance report for the model: BLSTM LSTM x2 (experiment 2, second test run
with 800 epochs)

Figure 96: Part three of the performance report for the model: BLSTM LSTM x2 (experiment 2, second test
run with 800 epochs)

136

Analysis of LSTM Networks

Figure 97: Part one of the performance report for the model: BLSTM LSTM x3 (experiment 2, second test run
with 800 epochs)

Figure 98: Part two of the performance report for the model: BLSTM LSTM x3 (experiment 2, second test run
with 800 epochs)

137

Analysis of LSTM Networks

Figure 99: Part three of the performance report for the model: BLSTM LSTM x3 (experiment 2, second test
run with 800 epochs)

Figure 100: Part one of the performance report for the model: BLSTM LSTM x4 (experiment 2, second test run
with 800 epochs)

138

Analysis of LSTM Networks

Figure 101: Part two of the performance report for the model: BLSTM LSTM x4 (experiment 2, second test run
with 800 epochs)

Figure 102: Part three of the performance report for the model: BLSTM LSTM x4 (experiment 2, second test
run with 800 epochs)

139

Analysis of LSTM Networks

Figure 103: Part one of the performance report for the model: BLSTM LSTM x5 (experiment 2, second test run
with 800 epochs)

140

Analysis of LSTM Networks

Figure 104: Part two of the performance report for the model: BLSTM LSTM x5 (experiment 2, second test run
with 800 epochs)

Figure 105: Part three of the performance report for the model: BLSTM LSTM x5 (experiment 2, second test
run with 800 epochs)

141

Analysis of LSTM Networks

Figure 106: Part one of the performance report for the model: BLSTM (experiment 2, second test run with 800
epochs)

Figure 107: Part two of the performance report for the model: BLSTM (experiment 2, second test run with 800
epochs)

142

Analysis of LSTM Networks

Figure 108: Part three of the performance report for the model: BLSTM (experiment 2, second test run with
800 epochs)

Figure 109: Part one of the performance report for the model: BLSTM x2 (experiment 2, second test run with
800 epochs)

143

Analysis of LSTM Networks

Figure 110: Part two of the performance report for the model: BLSTM x2 (experiment 2, second test run with
800 epochs)

Figure 111: Part three of the performance report for the model: BLSTM x2 (experiment 2, second test run with
800 epochs)

144

Analysis of LSTM Networks

Figure 112: Part one of the performance report for the model: BLSTM x3 (experiment 2, second test run with
800 epochs)

145

Analysis of LSTM Networks

Figure 113: Part two of the performance report for the model: BLSTM x3 (experiment 2, second test run with
800 epochs)

Figure 114: Part three of the performance report for the model: BLSTM x3 (experiment 2, second test run with
800 epochs)

146

Analysis of LSTM Networks

Figure 115: Part one of the performance report for the model: BLSTM x4 (experiment 2, second test run with
800 epochs)

Figure 116: Part two of the performance report for the model: BLSTM x4 (experiment 2, second test run with
800 epochs)

147

Analysis of LSTM Networks

Figure 117: Part three of the performance report for the model: BLSTM x4 (experiment 2, second test run with
800 epochs)

Figure 118: Part one of the performance report for the model: BLSTM x5 (experiment 2, second test run with
800 epochs)

148

Analysis of LSTM Networks

Figure 119: Part two of the performance report for the model: BLSTM x5 (experiment 2, second test run with
800 epochs)

Figure 120: Part three of the performance report for the model: BLSTM x5 (experiment 2, second test run with
800 epochs)

149

Analysis of LSTM Networks

Figure 121: Part one of the performance report for the model: LSTM (experiment 2, second test run with 800
epochs)

Figure 122: Part two of the performance report for the model: LSTM (experiment 2, second test run with 800
epochs)

150

Analysis of LSTM Networks

Figure 123: Part three of the performance report for the model: LSTM (experiment 2, second test run with 800
epochs)

Figure 124: Part one of the performance report for the model: LSTM x2 (experiment 2, second test run with
800 epochs)

151

Analysis of LSTM Networks

Figure 125: Part two of the performance report for the model: LSTM x2 (experiment 2, second test run with
800 epochs)

Figure 126: Part three of the performance report for the model: LSTM x2 (experiment 2, second test run with
800 epochs)

152

Analysis of LSTM Networks

Figure 127: Part one of the performance report for the model: LSTM x3 (experiment 2, second test run with
800 epochs)

Figure 128: Part two of the performance report for the model: LSTM x3 (experiment 2, second test run with
800 epochs)

153

Analysis of LSTM Networks

Figure 129: Part three of the performance report for the model: LSTM x3 (experiment 2, second test run with
800 epochs)

Figure 130: Part one of the performance report for the model: LSTM x4 (experiment 2, second test run with
800 epochs)

154

Analysis of LSTM Networks

Figure 131: Part two of the performance report for the model: LSTM x4 (experiment 2, second test run with
800 epochs)

Figure 132: Part three of the performance report for the model: LSTM x4 (experiment 2, second test run with
800 epochs)

155

Analysis of LSTM Networks

Figure 133: Part one of the performance report for the model: LSTM x5 (experiment 2, second test run with
800 epochs)

156

Analysis of LSTM Networks

Figure 134: Part two of the performance report for the model: LSTM x5 (experiment 2, second test run with
800 epochs)

Figure 135: Part three of the performance report for the model: LSTM x5 (experiment 2, second test run with
800 epochs)

157

Analysis of LSTM Networks

D Performance reports from experiment 2

158

Analysis of LSTM Networks

Figure 136: Part one of the performance report for the model: ConvLSTM x2 with a SVM classifier as activation
(experiment 2)

159

Analysis of LSTM Networks

Figure 137: Part two of the performance report for the model: ConvLSTM x2 with a SVM classifier as activation
(experiment 2)

160

Analysis of LSTM Networks

Figure 138: Part one of the performance report for the model: ConvLSTM x2 with a RFC classifier as activation
(experiment 2)

Figure 139: Part two of the performance report for the model: ConvLSTM x2 with a RFC classifier as activation
(experiment 2)

161

Analysis of LSTM Networks

Figure 140: Part one of the performance report for the model; ConvLSTM x2 with Softmax activation, used as
the Neural Network for the SVM and RFC classifier tests (experiment 2)

162

Analysis of LSTM Networks

Figure 141: Part two of the performance report for the model; ConvLSTM x2 with Softmax activation, used as
the Neural Network for the SVM and RFC classifier tests (experiment 2)

Figure 142: Part three of the performance report for the model; ConvLSTM x2 with Softmax activation, used
as the Neural Network for the SVM and RFC classifier tests (experiment 2)

163

Analysis of LSTM Networks

Figure 143: Part one of the performance report for the model: ConvLSTM x2 with SVM like activation (exper-
iment 2)

164

Analysis of LSTM Networks

Figure 144: Part two of the performance report for the model: ConvLSTM x2 with SVM like activation (exper-
iment 2)

Figure 145: Part three of the performance report for the model: ConvLSTM x2 with SVM like activation (ex-
periment 2)

165

Analysis of LSTM Networks

Figure 146: Part one of the performance report for the model: BLSTM LSTM x2 with a SVM classifier as
activation (experiment 2)

Figure 147: Part two of the performance report for the model: BLSTM LSTM x2 with a SVM classifier as
activation (experiment 2)

166

Analysis of LSTM Networks

Figure 148: Part one of the performance report for the model: BLSTM LSTM x2 with a RFC classifier as
activation (experiment 2)

Figure 149: Part two of the performance report for the model: BLSTM LSTM x2 with a RFC classifier as
activation (experiment 2)

167

Analysis of LSTM Networks

Figure 150: Part one of the performance report for the model; BLSTM LSTM x2 with Softmax activation, used
as the Neural Network for the SVM and RFC classifier tests (experiment 2)

Figure 151: Part two of the performance report for the model; BLSTM LSTM x2 with Softmax activation, used
as the Neural Network for the SVM and RFC classifier tests (experiment 2)

168

Analysis of LSTM Networks

Figure 152: Part three of the performance report for the model; BLSTM LSTM x2 with Softmax activation,
used as the Neural Network for the SVM and RFC classifier tests (experiment 2)

Figure 153: Part one of the performance report for the model: BLSTM LSTM x2 with SVM like activation
(experiment 2)

169

Analysis of LSTM Networks

Figure 154: Part two of the performance report for the model: BLSTM LSTM x2 with SVM like activation
(experiment 2)

Figure 155: Part three of the performance report for the model: BLSTM LSTM x2 with SVM like activation
(experiment 2)

170

Analysis of LSTM Networks

Figure 156: Part one of the performance report for the model: BLSTM x2 with a SVM classifier as activation
(experiment 2)

Figure 157: Part two of the performance report for the model: BLSTM x2 with a SVM classifier as activation
(experiment 2)

171

Analysis of LSTM Networks

Figure 158: Part one of the performance report for the model: BLSTM x2 with a RFC classifier as activation
(experiment 2)

Figure 159: Part two of the performance report for the model: BLSTM x2 with a RFC classifier as activation
(experiment 2)

172

Analysis of LSTM Networks

Figure 160: Part one of the performance report for the model; BLSTM x2 with Softmax activation, used as the
Neural Network for the SVM and RFC classifier tests (experiment 2)

Figure 161: Part two of the performance report for the model; BLSTM x2 with Softmax activation, used as the
Neural Network for the SVM and RFC classifier tests (experiment 2)

173

Analysis of LSTM Networks

Figure 162: Part three of the performance report for the model; BLSTM x2 with Softmax activation, used as
the Neural Network for the SVM and RFC classifier tests (experiment 2)

Figure 163: Part one of the performance report for the model: BLSTM x2 with SVM like activation (experiment
2)

174

Analysis of LSTM Networks

Figure 164: Part two of the performance report for the model: BLSTM x2 with SVM like activation (experiment
2)

Figure 165: Part three of the performance report for the model: BLSTM x2 with SVM like activation (experi-
ment 2)

175

Analysis of LSTM Networks

Figure 166: Part one of the performance report for the model: LSTM x4 with a SVM classifier as activation
(experiment 2)

Figure 167: Part two of the performance report for the model: LSTM x4 with a SVM classifier as activation
(experiment 2)

176

Analysis of LSTM Networks

Figure 168: Part one of the performance report for the model: LSTM x4 with a RFC classifier as activation
(experiment 2)

Figure 169: Part two of the performance report for the model: LSTM x4 with a RFC classifier as activation
(experiment 2)

177

Analysis of LSTM Networks

Figure 170: Part one of the performance report for the model; LSTM x4 with Softmax activation, used as the
Neural Network for the SVM and RFC classifier tests (experiment 2)

Figure 171: Part two of the performance report for the model; LSTM x4 with Softmax activation, used as the
Neural Network for the SVM and RFC classifier tests (experiment 2)

178

Analysis of LSTM Networks

Figure 172: Part three of the performance report for the model; LSTM x4 with Softmax activation, used as the
Neural Network for the SVM and RFC classifier tests (experiment 2)

Figure 173: Part one of the performance report for the model: LSTM x4 with SVM like activation (experiment
2)

179

Analysis of LSTM Networks

Figure 174: Part two of the performance report for the model: LSTM x4 with SVM like activation (experiment
2)

Figure 175: Part three of the performance report for the model: LSTM x4 with SVM like activation (experiment
2)

180

Thor A
leksander B

uan
In depth analysis of Long-Short-Term

-M
em

ory N
eural N

etw
orks w

ith the purpose of detecting cyberbullying

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’

s
th

es
is

Thor Aleksander Buan

In depth analysis of Long-Short-
Term-Memory Neural Networks with
the purpose of detecting
cyberbullying

Master’s thesis in Information Security
Supervisor: Raghavendra Ramachandra

June 2019

	Preface
	Acknowledgment
	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Keywords
	Problem description
	The purpose
	Topics covered by the project
	Justification, motivation and benefits
	Research questions

	Theory
	Machine learning
	Why do we need Machine learning?
	What is Machine learning?

	Natural Language Processing
	Why we need Natural Language Processing
	State-of-the-art NLP components
	Tokenization
	Stop word removal
	Removal of repeating characters
	Stemming
	Part-of-speech tagging
	Bag-of-word
	Global Vectors for Word Representation

	Natural Language Processing Classifiers
	Classifiers used within the field
	Random Forest classifier
	Support vector machines
	Neural Network
	State-of-the-art Neural Network types
	Measuring the performance of a classification model
	Challenges with comparing methods

	Methodology
	Experiment
	The two experiments
	About the experiments
	Challenges and counter measures
	The Natural Language Processing pipeline
	Experiment setup
	Experimental environment

	Data set
	Quantitative assessment
	Details about the models to be tested
	Experiment 1
	Experiment 2

	Model selection during training

	Implementation
	Third party libraries used
	Implementation dependencies and components needed to run the program
	Test setup implementation
	Data set acquisition
	Preprocessing
	Classification testing
	Performance report
	The alternative activations

	Results
	Experiment 1
	Experiment 2

	Analysis
	The effects of increased training
	The effect of training, analyzed as a function of average epochs used
	The effect of training, analyzed by training a model for 200 and 800 epochs

	The effects of stacking similar layers
	Comparison of the different network types
	Comparison of the different activation mechanisms
	The best model compared with the state of the art models

	Discussion
	Challenges
	Limited python experience
	Creating a state-of-the-art NLP pipeline

	Evaluation

	Conclusion
	Future Work

	Bibliography
	Appendix
	Data set lables
	Proof of faulty oversampling technique
	The code for the models in experiment 1
	LSTM
	LSTM x2
	LSTM x3
	LSTM x4
	LSTM x5
	BLSTM LSTM
	BLSTM LSTM x2
	BLSTM LSTM x3
	BLSTM LSTM x4
	BLSTM LSTM x5
	BLSTM
	BLSTM x2
	BLSTM x3
	BLSTM x4
	BLSTM x5
	ConvLSTM
	ConvLSTM x2
	ConvLSTM x3
	ConvLSTM x4
	ConvLSTM x5

	The code for the models in experiment 2
	SVM like activation
	The SVM and Random Forest Classifier used

	The code for the testing environment
	Original script for retrieving the Tweets
	Modified script for retrieving the Tweets
	Text preprocessing script
	Full example of the testing script of one model

	Performance Reports Experiment 1, first test run with 200 Epochs
	Performance Reports from Experiment 1, second test run with 800 Epochs
	Performance reports from experiment 2

