
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

B
ac

he
lo

r’
s

pr
oj

ec
t

Daniel Krohn Siqveland
Nestor Gerrardo Fortique
Stian Rønningen

Platform for malwareanalysis

Plattform for skadevareanalyse

Bachelor’s project in IT-Drift og Informasjonssikkerhet
Supervisor: Eigil Obrestad

May 2019

Daniel Krohn Siqveland
Nestor Gerrardo Fortique
Stian Rønningen

Platform for malwareanalysis

Plattform for skadevareanalyse

Bachelor’s project in IT-Drift og Informasjonssikkerhet
Supervisor: Eigil Obrestad
May 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Information Security and Communication Technology

Sammendrag av Bacheloroppgaven

Tittel: Plattform For Skadevareanalyse

Dato: 14.01.2019

Deltakere: Daniel Krohn Siqveland
Stian Rønningen
Nestor Gerardo Fortique

Veiledere: Eigil Obrestad

Oppdragsgiver: NTNUSOC

Kontaktperson: Christoffer Vargtass Hallstensen, christof-
fer.hallstensen@ntnu.no

Nøkkelord: Plattform, Skadevare, Analyse, Cuckoo, Ansible, Sand-
kasse, TOR, Engelsk

Antall sider: 51
Antall vedlegg: 11
Tilgjengelighet: Åpen

Sammendrag: I en moderne verden er det viktig å være oppdatert
og kunne lære mer om skadevare. NTNU SOC presen-
terte et ønske om å lage en plattform som kunne anal-
ysere skadevare og som kunne brukes i produksjons-,
utviklings-, og testmiljøer. Det var et ønske om at plat-
tformen kunne installeres automatisk i forbindelse
med bruk i undervisningsscenarioer, men også fordi
den skulle være lett å vedlikeholde og videreutvikle.
Det var også ønskelig at plattformen skulle benytte seg
av Cuckoo Sandbox, med tett integrering av simulerte
nettverkstjenester som The Onion Router(TOR), Vir-
tual Private Network(VPN), og InetSim. Installasjonen
av Cuckoo Sandbox ble automatisert ved hjelp av An-
sible, et verktøy som brukes av server administratorer
verden rundt. Med dette prosjektet har vi levert en løs-
ning som innfyller ønskene til oppdragsgiveren, NTNU
SOC, og som etter kort tid vil bli tatt i bruk som en del
av NTNU SOC sitt daglige arbeid i å beskytte både stu-
denter og ansatte ved NTNU. Prosjektgruppen har hatt
fokus på profesjonell arbeidsmetodikk, ved for eksem-
pel en agil tilnærming av Waterfall-metoden i løpet av
utviklings perioden, og har brukt Kanban som hjelp til
å skrive denne rapporten.

Platform for malware analysis

Summary of Graduate Project

Title: Platform for malware analysis

Date: 14.01.2019

Authors: Daniel Krohn Siqveland
Stian Rønningen
Nestor Gerardo Fortique

Supervisor: Eigil Obrestad

Employer: NTNUSOC

Contact Person: Christoffer Vargtass Hallstensen, christof-
fer.hallstensen@ntnu.no

Keywords: Platform, Malware, Analysis, Cuckoo, Ansible, Sandbox,
TOR, English

Pages: 51
Attachments: 11
Availability: Open

Abstract: In the modern world, it is essential to be up-to-date
and to learn more about malware. NTNU SOC pre-
sented a wish to create a platform that could analyze
malware samples and which could be used in produc-
tion, development, and testing environments. There
was a wish that the platform could be installed au-
tomatically in combination with use in teaching sce-
narios, but also because it should be easy to maintain
and develop. It was also desirable that the platform
was built around Cuckoo Sandbox, with close integra-
tion of simulated network services such as The Onion
Router (TOR), Virtual Private Network (VPN), and In-
etSim. The installation of Cuckoo Sandbox was auto-
mated using Ansible, a tool used by server adminis-
trators around the world. With this project, we have
delivered a solution that fulfills the wishes of the em-
ployer, NTNU SOC, and which after a short time will
be used as part of NTNU SOC’s daily work in protect-
ing both students and employees at NTNU. The project
team has focused on professional work methodology,
for example, by an agile approach to the Waterfall
method during the development period, and has used
Kanban to help write this report.

ii

Platform for malware analysis

Preface

This is a bachelor thesis in IT-Operations and Information Security written and performed
by the following students:

Daniel Krohn Siqveland - 473126 - desiqvel@stud.ntnu.no
Stian Rønningen - 140362 - stiaron@stud.ntnu.no

Nestor Gerardo Fortique - 480240 - nestorgf@stud.ntnu.no

First of all the group would like to thank NTNU SOC for giving us such an interesting
and challenging project to work on. The group would also like to thank our employer,
Christoffer Vargtass Hallstensen, and our supervisor, Eigil Obrestad, for guiding, helping
and inspiring us throughout the whole project. Thanks to Frode Haug and Tom Røise for
helping the group with great presentations about report writing and project planning.
Last but not least the group would like to thank the Digital Security Section and the
Institutt for informasjonssikkerhet og kommunikasjonsteknologi (IIK) for lending us the
equipment necessary to make this project a reality.

iii

desiqvel@stud.ntnu.no
stiaron@stud.ntnu.no
nestorgf@stud.ntnu.no

Platform for malware analysis

Contents

Preface . iii

Contents . iv

List of Figures . viii

List of Tables . ix

Listings . x

Acronyms . xii

Glossary . xiv

1 Introduction . 1

1.1 Problem description . 1

1.2 Goals and research question . 1

1.2.1 Scope . 1

1.2.2 Limitation of scope . 2

1.3 Motivation . 2

1.4 Roles . 2

1.4.1 Employer . 2

1.4.2 Supervisor . 3

1.4.3 Authors . 3

1.5 Students experience . 3

1.5.1 Previous competence . 3

1.6 About the report . 3

1.6.1 Project period . 3

1.7 Target audience . 4

1.8 Thesis structure . 4

2 Background . 6

2.1 Virtual machine . 6

2.2 Malware . 6

2.2.1 Malware analysis . 6

2.3 Cuckoo Sandbox . 8

2.3.1 What is Cuckoo . 8

2.3.2 What can Cuckoo do . 8

2.3.3 Tools . 8

2.3.4 Networking . 10

2.4 Ansible . 11

2.4.1 Playbook . 11

3 Design . 12

iv

Platform for malware analysis

3.1 Architecture . 12

3.2 PfSense . 12

3.2.1 Networking . 13

3.3 Cuckoo . 14

3.3.1 Sandboxes . 14

3.3.2 Tools . 14

3.3.3 Systemd . 15

3.4 Ansible . 15

4 Implementation . 16

4.1 Methodology . 16

4.1.1 Technologies . 17

4.2 Virtualization environment . 17

4.3 Networking . 18

4.4 Software . 19

4.5 Configuration . 19

4.5.1 Cuckoo . 19

4.5.2 Virtual Environment . 20

4.5.3 OpenVPN . 20

4.5.4 Hypervisor . 20

4.5.5 Sandboxes . 21

4.5.6 Systemd . 21

4.6 Ansible . 22

5 Automation . 23

5.1 Prerequisites . 23

5.1.1 Software . 23

5.1.2 Network configuration . 23

5.2 Installation of the Platform . 24

5.2.1 Local installation . 25

5.2.2 Remote installation . 25

5.3 OpenVPN . 26

5.3.1 Disabling the role . 27

5.3.2 Enabling the role . 27

5.4 InetSim . 28

5.5 Cuckoo . 28

5.5.1 cuckoo.conf . 28

5.5.2 vsphere.conf . 30

5.5.3 esx.conf . 31

5.5.4 limits.conf and sysctl.conf . 31

5.5.5 memory.conf . 31

5.5.6 processing.conf . 32

v

Platform for malware analysis

5.5.7 reporting.conf . 32

5.5.8 routing.conf . 34

5.6 Elasticsearch . 34

5.7 Suricata . 35

5.7.1 suricata . 35

5.7.2 suricata.yaml . 35

5.8 Tor . 35

5.9 Cuckoo Startup . 36

5.10 Running the playbook . 36

5.11 Final thoughts . 36

6 Testing and verification . 37

6.1 Automation . 37

6.2 Cuckoo . 37

6.3 Malware . 39

6.4 Network . 39

6.5 Sandbox . 40

7 Discussion . 42

7.1 Obstacles . 42

7.1.1 Playbook . 42

7.1.2 vCenter Server Appliance (VCSA) 42

7.1.3 Sandboxes . 42

7.1.4 Cuckoo . 43

7.2 Alternative approaches and future work 43

7.2.1 Docker . 43

7.2.2 Development methodology . 43

7.2.3 Cuckoo Sandbox . 43

7.2.4 Automation . 44

7.2.5 Sandboxes . 45

7.2.6 Software . 45

7.2.7 Environment . 46

7.3 Criticism . 46

7.4 Evaluation of the groups work . 46

8 Conclusion . 48

8.1 Results . 48

8.1.1 Group achievements . 48

8.2 Closing statement . 48

Bibliography . 49

A Task Description . 52

B Project Agreement . 53

C Project Plan . 56

vi

Platform for malware analysis

C.1 Introduction . 56

C.2 Goals and Scope . 56

C.2.1 Project’s goals . 56

C.2.2 Project’s scope . 56

C.3 Organization . 57

C.3.1 Organizational structure . 57

C.3.2 Roles . 58

C.3.3 Time management and meetings 58

C.4 Risk Management . 58

C.4.1 Risk analysis . 59

C.4.2 Countermeasures . 59

C.5 Planning & Report . 60

C.5.1 Working process . 60

C.5.2 Experiment’s Notes . 61

C.6 Schedule . 61

C.6.1 Gantt diagram . 61

D Midterm review . 63

D.1 Status of the project before the meeting 63

D.2 Summary of the meeting . 63

D.3 The student’s decision . 63

D.4 Modifying the topic . 64

E Route.py . 65

F OpenVPN Systemd . 66

G Cuckoo Systemd . 67

G.1 Cuckoo Rooter . 67

G.2 Cuckoo . 67

G.3 Cuckoo Web . 68

G.4 Cuckoo API . 68

H vsphere.py . 69

I Sample Virtual Machine config - vsphere.conf 70

J Cuckoo Web GUI options . 71

K Ansible directory structure . 72

vii

Platform for malware analysis

List of Figures

1 Moloch active connections . 9

2 Yara rule matching . 10

3 Volatility warnings . 10

4 Architecture design . 12

5 Subnet design . 13

6 Application design . 14

7 Trello . 16

8 Network configuration sandboxes . 21

9 Systemd startup order . 22

10 Ansible test with errors . 37

11 Ansible test without errors . 37

12 Cuckoo test with errors . 38

13 Cuckoo test without errors . 38

14 Resolved DNS requests done by Cuckoo 39

15 Signatures of Trojan.Heur.FU.dmW@a8VPjLb tested in Cuckoo 39

16 Cuckoo Web GUI . 40

17 Traceroute script over VPN . 40

18 Task Description . 52

19 Task Description . 55

20 The organizational structure of this project 57

21 Working process during the project . 60

22 Gantt chart of the project flow and phases timing 61

23 Cuckoo Web GUI options . 71

viii

Platform for malware analysis

List of Tables

1 Previous Competence - Subjects . 3

2 Technologies and applications used in the project 17

3 vSphere Networking . 18

4 Network Configuration Virtual Machines 19

5 Project’s risks . 59

6 Project’s risk countermeasures . 59

ix

Platform for malware analysis

Listings

2.1 Elasticsearch . 9

5.1 Network Configuration . 24

5.2 site.yml . 24

5.3 Staging hosts . 25

5.4 Staging network cards . 25

5.5 Production host . 26

5.6 Production network cards . 26

5.7 cuckoo_rooter.service . 27

5.8 routing.conf . 27

5.9 openvpn.conf . 27

5.10 cuckoo.conf directory . 28

5.11 cuckoo.conf - Machinery . 28

5.12 cuckoo.conf - Memory dumps . 28

5.13 cuckoo.conf - Resultserver IP Address . 29

5.14 cuckoo.conf - Processing . 29

5.15 cuckoo.conf - Databases . 29

5.16 cuckoo.conf - Remote control . 29

5.17 vsphere.conf - Connection . 30

5.18 vsphere.conf - Certificate . 30

5.19 vsphere.conf - Sandboxes . 30

5.20 vsphere.conf - Network card . 31

5.21 limits.conf - Open file limit . 31

5.22 sysctl.conf - Open file limit . 31

5.23 memory.conf - File processing . 32

5.24 processing.conf - Process memory dumps 32

5.25 processing.conf - Suricata . 32

5.26 reporting.conf - MongoDB . 33

5.27 reporting.conf - Elasticsearch . 33

5.28 reporting.conf - Moloch . 33

5.29 routing.conf - Inetsim . 34

5.30 routing.conf - Network Interface Card (NIC) 34

5.31 routing.conf - TOR routing . 34

5.32 elasticsearch.yml . 35

5.33 suricata . 35

5.34 suricata.yaml . 35

x

Platform for malware analysis

5.35 torrc . 35

5.36 Running the Playbook . 36

7.1 Role added to site.yml . 44

7.2 group_vars file . 44

7.3 main.yml for ip_address role . 44

K.1 Ansible directory structure . 72

xi

Platform for malware analysis

Acronyms

API Application Programming Interface. 23

Bash Bourne again shell. xiv

Bionic Beaver Ubuntu 18.04 LTS. 2, 9, 19, 20, 23, 42, 46

DHCP Dynamic Host Configuration Protocol. xv

DNS Domain Name Server. xv, 9, 38

IDS Intrusion Detection System. 2, 9, 57

IIK Institutt for informasjonssikkerhet og kommunikasjonsteknologi. iii

IPS Intrusion Prevention System. 9

LAN Local Area Network. 18

NAT Network Address Translation. xvi, 19, 20

NIC Network Interface Card. x, 25, 26, 34, 35

NSM Network Security Monitoring. 9

NTNU Norges Teknisk-Naturvitenskapelige Universitet. 1–4, 12, 13, 48

OS Operating System. 6, 40, 43, 46, 48

PCAP Packet Capture. 9

PID Process Identifier Number. 21, 36

PPA Personal Package Archives. xvii

SOC Security Operations Center. 1, 2, 4, 43, 48

SSH Secure Shell. 11, 23

SSL Secure Sockets Layer. 30

TLS Transport Layer Security. 30

TOR The Onion Router. 13

UAC User Account Control. 21

xii

Platform for malware analysis

URL Uniform Resource Locator. 39

VCSA vCenter Server Appliance. 12, 17, 18, 23, 31, 42, 69

VPN Virtual Private Network. 1, 10, 13, 18, 20

Xenial Xerus Ubuntu 16.04 LTS. 2, 19, 42

xiii

Platform for malware analysis

Glossary

Android A smartphone Operating System developed by Google and used by many smart-
phone manufacturers worldwide, one of which is Samsung. xvi, 2, 8, 21, 28, 32,
45, 46, 56, 63

Ansible Ansible is an open-source IT automation engine with which you can provision,
configure, manage and deploy machines. 2, 11, 14–16, 22–24, 26, 46, 48, 57, 61,
63

API A software intermediary that allows two applications to talk to each other. Each time
you use an app like Facebook, send an instant message, or check the weather on
your phone, you’re using an API. 8

Backlog Product backlog is a list of tasks that is not yet started on. 16

Bash Bourne again shell (Bash) is a command process that typically runs in a text win-
dow where the user types in commands that cause actions. 23

Bitbucket Bitbucket is a version management solution designed for professional teams.
It is a central place to manage git repositories, collaborate on source code and it
helps making the development flow smoother. 20

Botnet A botnet is a group of computers connected in a coordinated fashion for ma-
licious purposes. Each computer in a botnet is called a bot. These bots form a
network of compromised computers, which is controlled by a third party and used
to transmit malware or spam, or to launch attacks. 1

Configuration Files Configuration files are files used to configure the parameters and
initial settings for some computer programs. 8, 19, 21

Container A container is a software package that contains everything the software needs
to run. The package includes the executable program as well as system tools,
libraries, and settings. Containers are not installed like traditional software pro-
grams, which allows them to be isolated from the other software and the operating
system itself. 43, 46, 56

Cuckoo Cuckoo is an open source automated malware analysis program that allows you
to trow any virus in it and it will give you a detailed report on what the virus is
trying to do. viii, xviii, 1–4, 8, 10, 12–16, 18–26, 28–34, 36–43, 45, 46, 48, 63, 64,
69

Cuckoo Rooter Rooter helps Cuckoo out with running network-related commands in
order to provide per-analysis routing options. 10, 14, 21, 22, 36, 39

xiv

Platform for malware analysis

Debugging Debugging is the routine process of locating and removing computer pro-
gram bugs, errors or abnormalities, which is methodically handled by software
programmers via debugging tools. 45

DevOps Devops is a software developing practice made to reduce the time of develope-
ment of software while delivering features, fixes, and updates frequently. 57

DHCP Dynamic Host Configuration Protocol (DHCP) is a network management protocol
used on UDP/IP networks whereby a DHCP server dynamically assigns an IP ad-
dress and other network configuration parameters to each device on a network so
they can communicate with other IP networks. 13, 21

Digitalocean Digital Ocean is a company where both private and enterprise actors can
buy servers online to deploy and deliver their application to the masses. 19, 20, 26

DNS Domain Name Server (DNS) is a protocol that translates domain names to IP ad-
dresses so browsers can load Internet resources. 13, 29

Docker Docker is a program designed to facilitate the use of containers, making it easier
to create, deploy, and run applications. 43, 46, 56, 61, 63

Elasticsearch Elasticsearch is an open source, broadly distributable, readily scalable
search engine. Accessible through an extensive and elaborate API, Elasticsearch
can power extremely fast searches that support your data discovery applications.
14, 15, 19, 20, 46

Environment The set of facilities, such as operating system, windows management,
database, etc., that is available to a program when it is being executed by a proces-
sor, in this project when the group refers to environment. 6–8, 10–12, 17, 18, 46,
60

ESXI VMware ESXi is an enterprise-class, type-1 hypervisor developed by VMware for
deploying and serving virtual computers. 6, 12, 17, 18, 20, 23, 28, 31, 42

Firewall A firewall is software used to maintain the security of a private network. Fire-
walls block unauthorized access to or from private networks and are often em-
ployed to prevent unauthorized Web users or illicit software from gaining access to
private networks connected to the Internet. 21

Gantt Diagram A Gantt diagram is an illustration of a projects schedule, and it shows
all the phases of the project. When those phases are due to start, when the phases
end, and which of those phases are running at the same time. 16, 61

Guest The virtual machine running inside the Host. 6

Home Directory A directory where the user stores all personal information and files as
well as user information. 19

Host A server which runs virtual machines inside itself. xv, 6, 7, 18

xv

Platform for malware analysis

HTTP HTTP or Hypertext Transfer Protocol is a set of rules for transferring files (text,
images, sound, video, and other multimedia files) on the World Wide Web. 9

Hypervisor A hypervisor is a process that creates and runs virtual machines (VMs). A
hypervisor allows one host computer to support multiple guest VMs by virtually
sharing its resources, like memory and processing [1]. 2, 6, 11, 12, 14, 18, 20, 23,
28, 30, 42

INetSim INetSim is a software suite for simulating common internet services in a lab en-
vironment, e.g. for analyzing the network behaviour of unknown malware samples.
8, 10, 11, 14, 28, 40

Infected computer A computer that is or has been affected by a virus in any way. 6, 8

interface The layout or design of the interactive elements of a computer program, an
online service, or an electronic device. 8, 20

iOS Apples smartphone implementation of Operating System running on phones devel-
oped by Apple, for example the iPhone X. 63

IP-address Identifies each computer using the Internet Protocol to communicate over a
network. 9–11, 23, 26, 29–36

Kernel The kernel is a program that constitutes the central core of a computer operating
system. It has complete control over everything that occurs in the system. 45

Linux Linux is a free open source Operating System based on UNIX that was created
in 1991 by Linus Torvalds. Users can modify and create variations of the source
code, known as distributions, for computers and other devices. It is also the base
Operating System for Android. xviii, 8, 46

MacOS Apples implementation of Operating System running on computers made by
Apple. 2, 8, 21, 45, 46, 56, 63

Malware Short for malicious software, is any software intentionally designed to cause
damage to a computer, server, client, or computer network. 1–4, 6–8, 10, 11, 13,
14, 16, 32, 39, 43, 45, 48, 56, 57, 61, 63

Moloch Moloch is an open source piece of software that can be used to index very large
PCAP files into Elasticsearch. 15, 19, 37, 46

NAT Network Address Translation (NAT) is the process where a network device, usually
a firewall, assigns a public address to a computer (or group of computers) inside a
private network. 13

OpenVPN OpenVPN is both a VPN protocol and a software that uses VPN techniques to
secure point-to-point and site-to-site connections. 12, 18, 20, 22, 26, 27

Operating System An operating system is a huge program that whose purpose is to
provide the user with a clean interface towards hardware. xiv, xvi, xix, 8, 63, 64

xvi

Platform for malware analysis

pcap Pcap consists of an application programming interface for capturing network traf-
fic. 9

pfSense Firewall, VPN, and router functionality for a fraction of the cost of proprietary
alternatives. 12–14, 18, 20

Pillow Pillow is a fork of the python image library that will help the group by taking
screenshots of the processes happening in the sandboxes. 21

Playbook Playbooks are Ansible’s configuration, deployment, and orchestration language.
They can describe a policy you want your remote systems to enforce, or a set of
steps in a general IT process. 11, 14–16, 19, 20, 22–24, 26, 28, 30–32, 36, 37,
42–46, 48, 63

Repository Often referred to as a Personal Package Archives (PPA). A repository is a
private collection of prebuilt packages for Linux systems that users can add to their
system to install the latest version of a package. When using a repository the user
will not have to compile the program from source code. 19

Risk According to ISO 31000, risk is the “effect of uncertainty on objectives” and an
effect is a positive or negative deviation from what is expected. Risk = Likelihood
* Impact. 7, 58, 59

Routing Routing refers to establishing the routes that data packets take on their way to
a particular destination. 8, 10, 13, 39, 40

Sandbox In computer security, a sandbox is a security mechanism for separating run-
ning programs. It is often used to execute untested code, or untrusted programs
from unverified third parties, suppliers, untrusted users and untrusted websites.
The sandbox typically provides a tightly controlled set of resources for guest pro-
grams to run in, such as scratch space on disk and memory. Network access, the
ability to inspect the host system or read from input devices are usually disallowed
or heavily restricted. xviii, 1, 2, 7, 12–16, 18, 20, 21, 25, 29–31, 38–40, 42, 43, 45,
56

Script A script is a lightweight, quickly constructed and possibly single-use tool pro-
gramming language. 14, 20, 40, 60

Security Operations Center A unit that deals with security issues on an organizational
and technical level. 8

Signature A signature is any detection method that relies on distinctive characteristics
being present in an exploit. These signatures are specifically designed to detect
known exploits as they contain a specific set of characteristics. 7, 8, 57

Snapshot A snapshot of a virtual machine is a file-based representation of the state of
the virtual machine at a given time. It includes disk data and configuration data of
the VM. With a snapshot you can restore a machine to a previous state. 14, 23, 30,
37, 43

xvii

Platform for malware analysis

Spoof Spoofing is the act of disguising a communication from an unknown source as
being from a known, trusted source to attempt to gain access to something they
should have access to. 1, 13, 14, 56

subnet A subnet is a logical partition of an IP network into multiple, smaller network
segments. It is typically used to subdivide large networks into smaller, more effi-
cient subnetworks. 13, 15

Subnet 1 The subnet that makes sure that the platform has Internet connectivity for
updates and other services. 18, 23, 34, 35

Subnet 2 The subnet where the sandboxes reside. Used for analyzing and routing be-
tween the Sandboxes and Cuckoo. 18, 23, 30, 31, 34, 36

Suricata Suricata is a free and open source, mature, fast and robust network threat
detection engine. The Suricata engine is capable of real time intrusion detection
(IDS), inline intrusion prevention (IPS), network security monitoring (NSM) and
offline pcap processing. 9, 15, 19, 32, 35, 46

systemd systemd is a system and service manager for Linux. It has replaced init for
startup- and servicemanagement [2]. 15, 19–21, 36

TOR The Tor browser is a web browser that anonymises your web traffic by bouncing
your communications around a distributed network of relays run by volunteers all
around the world. 1, 10, 11, 13, 14, 18, 34, 35, 40, 56

Traceroute Traceroute is a computer network diagnostic tool for displaying the route
and measuring transit delays of packets across an Internet Protocol network. 40

Trello Trello is a collaboration tool that organizes your projects into boards. Trello tells
you what’s being worked on, who’s working on what, and where something is in a
process. 47

Ubuntu Ubuntu is an open-source operating system (OS) based on the Debian GNU /
Linux distribution. 14, 19, 25

vCenter Server Appliance The vCenter Server Appliance is a preconfigured Linux vir-
tual machine, which is optimized for running VMware vCenter Server and the as-
sociated services on Linux. 18, 63

Version Management In this project, Version Management, means the possibility of in-
stalling different versions based on a preset variable in Ansible. 1

Virtual Environment At its core, the main purpose of Python virtual environments is
to create an isolated environment for Python projects. The isolated environment
means that each project can have its own dependencies(packages) which will not
be updated with system updates to avoid breakage. 20, 43

Virtualbox VirtualBox is a powerful x86 and AMD64/Intel64 virtualization product for
enterprise as well as home use. 45

xviii

Platform for malware analysis

VMWare VMware is a virtualization and cloud computing software that allows you to
run multiple virtual machines on a single physical machine. 2, 6, 12, 23, 45, 56

Volatility Volatility [3] is an open collection of forensic tools that facilitate the extraction
of digital artifacts from volatile memory (RAM) samples. 10, 15, 19, 31, 43

VPN A vpn is a tool used to hide an users traffic by encrypting it. A vpn also hides the
users ip-address by redirecting the users traffic through a server. 8, 11, 14, 19, 20,
40, 46, 56

vSphere Connecting ESXi to vCenter Server Appliance turns it into a vSphere Server,
expanding its features and allowing full memory dumps of virtual machines. 1, 2,
6, 12, 18, 20, 23, 28, 30, 31

WebGUI webgui, is a Website Graphical User Interface that allows users to interact with
electronic devices through graphical icons and visual indicators, instead of text-
based user interfaces, typed command labels or text navigation. 20

Windows Microsofts implementation of Operating System. 1, 2, 8, 16, 21, 29, 30, 41–
43, 45, 46, 48, 56, 63, 64

Yaml YAML (YAML Ain’t Markup Language) is a data-oriented language structure used
as the input format for diverse software applications. An application user or admin-
istrator specifies data in a YAML file, which the application then can read. 11

Yara Yara is an opensource software that classifies malware by matching it against tex-
tual or binary patterns. 8, 10, 15, 19, 43

xix

Platform for malware analysis

1 Introduction

Since the dawn of computers and computer networks, Malware has been in existence.
Malware is created by hackers or other evil-minded to help break into computers or com-
puter systems, through exploiting vulnerabilities in software. Today there exist hundreds
of thousands of different malware. The goals of malware can vary, but the most popular
ones usually turn a device into a slave of a Botnet or kidnap its files and encrypt them.
Malware expands as fast as or even faster than we can protect from it. It is imperative
to understand Malware by how it operates and how the mind behind the Malware think.
New sophisticated methods to lure a user into downloading malware and new types of
malware are discovered every day. The only way malware researchers can prepare them-
selves from these threats is to understand their method and structure. With this thesis,
we will take a closer look at how an immutable platform is used to analyze any malware
and present the results.

1.1 Problem description

This project was created by Christoffer Vargtass Hallstensen, head of Security Operations
Center in NTNU Gjøvik. NTNU SOC needed a service platform that could analyze poten-
tial malware quick and risk-free. Therefore, SOC made a bachelor submission, which had
these factors in mind.

It is time-consuming to do malware analysis manually. There is, therefore, a need to
scale up automatic Malware analysis. Scaling issues are addressed with the automation of
development, testing, and production. Automatic Malware analysis is versatile but is not
always accurate, so one needs to be able to do manual Malware analysis as well. Another
challenge is maintaining virtual machines for both manual and automated analyses. The
group solved this by using vSphere which makes maintenance of sandboxes easier and
the possibility to use the same Sandboxes for both manual and automated analysis when
needed, e.g., via VMware Workstation.

1.2 Goals and research question

The goal of the project will be to simplify Malware analysis by being able to use the same
platform for both automatic and manual analysis. The group will automate the installa-
tion of a malware analysis lab which will be scalable and can be further developed.

1.2.1 Scope

Implementing the Cuckoo analysis platform so it can run Malware on Windows Sand-
boxes. See appendix A for the full description of the task.

NTNU SOC wanted a platform that had a configuration component that allowed for
Version Management and had integration towards systems for threat intelligence. An-
other requirement from the employer was the implementation of different network ser-
vices such as TOR and Virtual Private Network (VPN) to Spoof the location of the ana-

1

Platform for malware analysis

lyzer and lure the attacker into unleashing the full potential of the Malware for better
analysis.

The environment will be built in a VMWare vSphere Hypervisor. Every other machine
run in the same environment will be virtual machines. The virtual machines the group
will use are Sandboxes for Malware testing, and a Ubuntu 18.04 LTS server for run-
ning Cuckoo. Network-based Intrusion Detection System systems will be installed along-
side Cuckoo to ensure that traffic generated by the malware is captured and inspected.
Cuckoo installation will be automated using Ansible.

1.2.2 Limitation of scope

The original plan was to install the platform on a Ubuntu 16.04 LTS (Xenial Xerus) server
(hereby referred to as Xenial Xerus). Since Canonical 1 will no longer be offering updates
to Xenial Xerus after April 2021, [4] the students have decided to change the operating
system of the Cuckoo host to Ubuntu 18.04 LTS (Bionic Beaver) (hereby referred to as
Bionic Beaver), which is supported until April 2023.

The implementation of containers proved to be more challenging than helpful. There-
fore the students, together with the employer, excluded containers during the midterm
review which can be read in appendix D.

The employer and the students decided to focus on the implementation of a platform
for analyzing Windows. The implementation for MacOS and Android would be optional
and put at future work.

1.3 Motivation

The group has a common interest in Malware, and they like practical challenges. The
group agreed that the bachelor thesis should include practical work, such as networking,
virtualization, and advanced server implementations. When "platform for skadevareanal-
yse" had the presentation about the subject and the task, the group knew right away, this
would be a perfect challenge.

In previous subjects, the students learned the basics of automation, infrastructure and
Malware so this would be an excellent opportunity to improve the groups’ knowledge in
these areas. Ansible and Cuckoo were entirely new for the students, and the group knew
right away it would be fun in a challenging way to learn new tools and applications.

1.4 Roles

This section will give the reader a better idea of who the authors are, who the employer
is, and who the supervisor is.

1.4.1 Employer

Christoffer Vargtass Hallstensen, head of Security Operations Center at Norges Teknisk-
Naturvitenskapelige Universitet in Gjøvik, provided the task. The students had progress
meetings with the employer every time the group deemed it necessary. In these progress
meetings, the group discussed the scope of the project, asked for technical advice regard-
ing the project and showed him some demos of Cuckoo Malware analysis in action.

1The Company behind Ubuntu: https://www.canonical.com/

2

Platform for malware analysis

1.4.2 Supervisor

The groups supervisor is Eigil Obrestad, an assistant professor at NTNU. The group had
progress meetings with him nearly every Monday. In these meetings the group discussed
everything from different infrastructures for Cuckoo and how to write the thesis.

1.4.3 Authors

The authors of this thesis are Daniel Emil Krohn Siqveland, Nestor Gerardo Fortique, and
Stian Rønningen. All of whom study IT-Operations and Information Security at NTNU
Gjøvik. The group initially received a different project from an external employer, but
the group decided that this project was much more interesting and felt they could learn
more from this project.

1.5 Students experience

All of the members of the group have a passion for IT-security, and that is why it was an
easy decision to take on this project. All of the group members have experience in coding
and are familiar with automating infrastructure with the help of Puppet.

Before this thesis, none of the students had any previous experience with Malware
analysis, nor had they ever heard of Cuckoo before. The students had to read up on both
subjects. Equally none of the group members had written a report of this proportion
before, meaning that the group had a lot to learn.

1.5.1 Previous competence

The projects participants have previous experiences from the subjects taken during three
years of studying before writing this thesis. Among many subjects, the ones the group
felt most relevant for this project can be seen in table 1.

Code Name Relevance
IMT2006 Computer Networks Subnetting
IMT2007 Network Security VPN, Firewall, Routing
IMT2008 ITSM, Security and Risk Management Risk Management
IMT2243 Software Engineering Software development models
IMT2571 Data Modelling and Database Systems Database administration and Security
IMT2282 Operating Systems Virtualization, Access Control and Malware, Bash
IMT3003 Service Architecture Operations Automation, Databases and Web Applications, Architecture
IMT3004 Incident Response, Ethical Hacking and Forensics Internet and Network Forensics

IMT3005 Infrastructure as Code
Logging, Monitoring and Auditioning/Testing, Configuration
Management, Rapid Deployments

Table 1: Previous Competence - Subjects

1.6 About the report

The report is written in Latex, and will have clickable links in PDF-format. The reader
will be able to follow links to references, sources, glossaries and acronyms throughout
the report. There will also be lists of figures, tables, listings and a table of contents, all
clickable. For bibliography, the document is using JabRef to Cite with BibLaTex [5]. A
more thorough list of tools used in the making of this thesis can be seen in table 2.

1.6.1 Project period

The project will start on 10.01.2019 and it will end 20.05.2019. A presentation of the
thesis will be held 04.06.2019.

3

Platform for malware analysis

1.7 Target audience

The target audience for this project is mainly our employer NTNU SOC, but it can also
be an interesting read for other SOC analysts, Malware researchers, academics, digital
forensics investigators, incident responders, and students that need a dynamic and agile
lab environment for malware analysis and research.

1.8 Thesis structure

This section will describe how the thesis is structured.

Introduction

Chapter 1 gives an overview of the thesis, including the description of the task and the
protagonists. It will also tell the reader about what the students have learned from a
project of this size, and what experience the group had from previous projects.

Background

Chapter 2 provides the necessary background information for the reader to be able to
understand the different types of malware analysis and tools/services that will be used
in this thesis. The analysis software uses a variety of services that will be briefly described.

Design

Chapter 3 explains more accurately how the architecture and services are connected, and
its use in this environment and platform.

Implementation

Chapter 4 will introduce the methodology, together with the technologies used and how
the implementation process of the architecture design was configured and conducted.

Automation

Chapter 5 covers the documentation of the automation installation of Cuckoo.

Testing and Verification

Chapter 6 points out errors that occurred during the implementation with examples and
how the troubleshooting was conducted. Additionally, the chapter covers how the differ-
ent tool’s functionality was verified.

Discussion

Chapter 7 will discuss the project from the groups’ perspective. The reader will make
sense of what obstacles the students faced along the way; the alternative approaches
that could have been taken with suggestions for future work, and a critical view on the
execution of the task — lastly, evaluation of the groups’ effort.

Conclusion

Chapter 8 concludes this thesis. It will discuss the project results, the groups’ achieve-
ments, and a closing statement from the students.

Bibliography

Displays a list of sources used in this thesis.

4

Platform for malware analysis

Appendix

Short content description of the appendix:

Appendix A: Task description.

Appendix B: Project agreement.

Appendix C: The students plan regarding the embodiment of the thesis.

Appendix D: Midterm review with the employer.

Appendix E: Code for route.py.

Appendix F: OpenVPN Systemd integration.

Appendix G: Cuckoo Systemd integration.

Appendix H: Code for vsphere.py.

Appendix I: Code sample of vsphere.conf.

Appendix J: Cuckoo Web GUI options in an analysis.

Appendix K: Ansible directory structure.

5

Platform for malware analysis

2 Background

To build the malware analysis platform, the group used a lot of different tools and con-
cepts; in this chapter, those tools and concepts will be explained in detail. Giving the
readers the necessary information to fully comprehend the rest of the thesis.

The purpose of malware analysis is usually to provide the information one needs to
respond to a network intrusion. The goal will be to determine precisely what happened
and ensure all of the Infected computer machines and files have been located. When
analyzing suspected malware, the key is to find out exactly what a particular suspect
binary can do, how to detect it on your network, and how to measure and contain its
damage [6]. In these evolving times, detecting and removing malware artifacts is not
enough; it is vitally important to understand how they operate to understand the context,
the motivations, and the goals of a breach.

2.1 Virtual machine

A virtual machine can be thought of as a computer inside a computer. The machine which
runs the virtual machine is often referred to as a Host, while the virtual machine itself
is often referred to as a Guest. The host shares its resources with the guest, meaning
memory, CPU, Disk, and I/O will be allocated between the two.

To be able to run a virtual machine, the Host needs to have a Hypervisor software in-
stalled. There are many variants of Hypervisors, including ones that can be installed as its
own Operating System(VMWare ESXI) and others that can be run on top an OS(VMWare
Workstation). The Hypervisor the group chose to use in this project is VMWare vSphere.
vSphere can be thought of as an extension to VMWare ESXI which allows an administra-
tor to manage multiple ESXI Hosts with one installation of vSphere, in addition to adding
more features to the standard ESXI installation.

The Guests running on the Host is considered to be in a safe Environment, where one
use case is using this Environment as a platform to test and analyze malware.

2.2 Malware

Malicious software, often referred to as Malware, plays a part in most computer intru-
sion and security incidents. Malware is often designed to steal sensitive information, or
otherwise harm a computer or a network causing downtime. During the last years there
has been a significant increase in new malware samples [7], thus increasing the need to
analyze and learn how to protect against these threats.

2.2.1 Malware analysis

Malware analysis is the art of dissecting malware to understand how it operates, what
it does to the infected system, how to identify it, and how to mitigate or eliminate the
damage it may cause. The purpose of malware analysis is to study and determine the
functionality, origin, and impact of a given sample.

6

Platform for malware analysis

With millions of malicious software on the Internet and new types of malware being
encountered every day, malware analysis is critical for anyone who responds to computer
security incidents. There are many ways to gather information from malware; one of
these is by performing an analysis on a given malware; this provides a unique Signature
for that malware. The Signature can then be added to an anti-virus Signature scan to
be able to detect this specific malware. While using signatures to detect malware is a
great technique, it is a weakness with anti-virus programs, since most anti-viruses will
only look for known signatures provided by its developer [8] meaning the anti-virus can
often be classified as outdated. The best way to detect the existence of a new malware
signature is to use a Sandbox feature that includes analysis tools.

It is recommended to set up a safe Environment before running an analysis on a Mal-
ware sample. Samples of Malware can be full of surprises, and if run in a production
Environment, it can quickly spread to other computers on the network and be very diffi-
cult to contain and remove. A safe Environment will allow investigation of the malware
without exposing other computers on the network to unexpected and unnecessary Risk
[9]. Therefore it is preferred to use virtual machines because these machines are isolated
from the Host so it does not infect other components than intended. The methods to
analyze malware usually fall under two categories, dynamic- and static malware analysis
[10].

Static malware analysis

Static or code analysis is usually performed by dissecting the different resources of the
binary file without executing it and studying each component. Static analysis can confirm
whether a file is malicious, provide information about its functionality, and sometimes
provide information which allows the production of simple network Signatures. Basic
static analysis is straightforward and can be quick, but it is mostly ineffective against
sophisticated Malware and can miss important behaviors [11].

An advanced static analysis consists of reverse-engineering the Malware’s internals
by loading the executable into a disassembler and looking at the Malwares hardware
instructions. The CPU executes the instructions, so advanced static analysis tells you
exactly what the Malware does [11].

Static Malware analysis is very similar to manual Malware analysis, because it uses
the same techniques to understand how a Malware operates.

Dynamic malware analysis

Dynamic analysis techniques involve running the Malware and observing its behavior
on the system in order to remove the infection, produce effective Signatures, or both.
Basic dynamic analysis techniques can be used by most people without deep program-
ming knowledge, but they will not be effective with all malware and can miss important
functionality [11].

Advanced dynamic analysis uses a debugger to examine the internal state of a running
malicious executable. Advanced dynamic analysis techniques provide another way to
extract detailed information from an executable. These techniques are most useful when
the goal is to obtain information that is difficult to gather with the other techniques[11].

A weakness of dynamic analysis is while testing the malware there is no way of being
100% sure if all of the executable paths of the malware have been successfully tested

7

Platform for malware analysis

and mapped [12].

Automation of Analysis

Automation is the use of various control systems for operating and controlling a pro-
cess or procedure without human assistance. The project’s thesis will involve the setup
of a Malware analysis platform that is going to be automated. It exists a wide variety
of software that will analyze many aspects of what a malware can do - intercept net-
work traffic, changes in file structure and requests to the Operating System. To solve
the issue of downloading, installing and linking the software together is where automa-
tion becomes handy, with only a few changes in Configuration Files the software can be
customized for each specific need.

2.3 Cuckoo Sandbox

This section will give the reader an idea about the main tool and how it is used in this
thesis.

2.3.1 What is Cuckoo

Cuckoo Sandbox is the leading open source automated Malware analysis system. In a
matter of minutes, Cuckoo will provide a detailed report outlining the behavior of the
file when executed inside a realistic but isolated Environment. [13]

Cuckoo Sandbox is free software that automated the task of analyzing any malicious
file under Windows, MacOS, Linux, and Android.

2.3.2 What can Cuckoo do

Cuckoo Sandbox is an advanced, extremely modular, and 100% open source automated
Malware analysis platform with countless application opportunities.
According to Cuckoo’s homepage 1, Cuckoo is able to:

• Analyze many different malicious files (executables, office documents, pdf files,
emails, etc) as well as malicious websites under Windows, Linux, MacOS, and An-
droid virtualized Environment.

• Trace API calls and general behavior of the file and distill this into high level infor-
mation and Signatures comprehensible by anyone working in a Security Operations
Center or anyone interested in malware analysis.

• Dump and analyze network traffic, even when encrypted with SSL/TLS. With na-
tive network Routing support to drop all traffic or route it through INetSim, a
network interface, or a VPN.

• Perform advanced memory analysis of the Infected computer virtualized system
through Volatility as well as on a process memory granularity using Yara.

2.3.3 Tools

This section will present some of the important tools that Cuckoo uses when analyzing
a file. Each of these tools have an independent purpose, and Cuckoo can take advantage
of all of them.

1https://cuckoosandbox.org/

8

Platform for malware analysis

Suricata

Suricata is a free and open source, mature, fast and robust network threat detection
engine. The Suricata engine is capable of real time Intrusion Detection System (IDS),
inline Intrusion Prevention System (IPS), Network Security Monitoring (NSM) and of-
fline PCAP processing. In this project, Suricata is used to intercept traffic in the form of a
pcap-file.

Moloch

Moloch is a standalone open source full packet capture system with meta data parsing
and searching. Moloch can present intercepted network traffic in a graphical chart in the
form of a webpage. Moloch is used as a supplement to Suricata to provide more visibility
by indexing the network traffic from the PCAP file into Elasticsearc.

Figure 1: Moloch active connections

Figure 1 shows active connections from IP-address 192.168.56.7. One can see that it
contacts 1.1.1.1 with a DNS request(port 53). After resolving the given DNS name, it
contacts 103.85.219.150 with a HTTP request(port 80).

Elastichsearch

Elasticsearch is a really fast search and analytics engine and database. Figure 2.1 depicts
a working Elasticsearch installation by running curl localhost:9200 on Bionic Beaver.

{
"name" : "xvJNENk",
"cluster_name" : "elasticsearch",
"cluster_uuid" : "VNtGOIxlTHCMQb8XR_he6w",
"version" : {

9

Platform for malware analysis

"number" : "5.6.16",
"build_hash" : "3a740d1",
"build_date" : "2019 -03 -13 T15 :33:36.565Z",
"build_snapshot" : false ,
"lucene_version" : "6.6.1"

},
"tagline" : "You␣Know ,␣for␣Search"

}

Listing 2.1: Elasticsearch

Yara

Yara [14] is a tool that will help an analyst by detecting what the malware is doing and
matching it up with a set of rules based on textual or binary patterns so Yara can classify
it.

Besides categorizing Malware, Yara [14] can also help the analyst in different ways,
one of them is that Yara can detect if the Malware checks if it runs in a virtual Environ-
ment.

Figure 2: Yara rule matching

Volatility

Volatility [3] is an open collection of forensic tools that facilitate the extraction of digital
artifacts from volatile memory (RAM) samples. With Volatility integrated into Cuckoo it
can analyze memory dumps after running a Malware analysis.

Figure 3: Volatility warnings

2.3.4 Networking

Cuckoo offers a wide variety of options when it comes to Routing. To do this Cuckoo uses
a routing service called Cuckoo Rooter. Cuckoo Rooter supports direct Internet connec-
tion, VPN connections, TOR, simulated network services and the default drop all routing.

TOR and VPN are both tools the group will use to hide the location from where
the testing is taking place from the Malware. If the malware detects that the traffic is
coming from a university network, it might execute differently than if it is coming from
an unknown IP-address. INetSim will be used as a service to fake real Internet access
from the Malware.

10

Platform for malware analysis

TOR [15]is a routing service that anonymizes its user’s traffic by bouncing it around
in a distributed network of relays run by volunteers all around the world.

A VPN [16] is a tool that anonymizes the user’s traffic by encrypting it, and it also
hides its users IP-address by redirecting the traffic from the user through a server.

INetSim [17] is a software suite for simulating common internet services in a lab
Environment, e.g. for analyzing the network behavior of unknown Malware samples.

2.4 Ansible

Ansible is an automation tool, developed by Red Hat Inc., capable of administrating
multiple hosts at the same time over the Secure Shell (SSH) protocol. Ansible uses
human-readable Yaml templates so that users can program repetitive tasks to occur au-
tomatically, without learning an advanced language. Ansible can install an entire set of
webservers and its backend in a matter of minutes. Ansible is capable of administrating
virtual machines and Hypervisors. Ansible Playbook is a collection of different roles put
together to allow installation of an entire platform on a single or multiple host simulta-
neously.

2.4.1 Playbook

The playbook is the core component of any Ansible configuration. An Ansible Playbook
contains one or multiple tasks, each of which define the work to be done for a configu-
ration on a managed server.

11

Platform for malware analysis

3 Design

This chapter will describe how the architecture is designed by connecting all the tools in
chapter 2 together.

3.1 Architecture

The architecture runs on a VMWare ESXI Hypervisor. The Hypervisor needs to run all of
the virtualized Sandboxes for Cuckoo to work. Connecting a vCenter Server Appliance
(VCSA) to the ESXI host turns the architecture into a vSphere Environment. Figure 4
describes how the architecture is designed.

ESXi host

NTNU Public

pfSense

Cuckoo

Windows 10 (sandbox)

Windows 8.1 (sandbox)

Windows 7 (sandbox)

Administered over OpenVPN

Circle represents Virtualized Environment

VPN
Connection

pfSense

VPN Gateway

vCenter Server Appliance

Double circle represents
Isolated Environment

Figure 4: Architecture design

3.2 PfSense

Cuckoo does not have a password protected login and is therefore vulnerable to anyone,
if connected NTNU Public directly. pfSense is needed to protect Cuckoo from fraudulent
use, and will have an active OpenVPN server which makes it is possible to work on the
platform remotely.

12

Platform for malware analysis

3.2.1 Networking

In addition to protecting Cuckoo from NTNU public, pfSense handles Routing, DHCP,
DNS and NAT. The architecture needs to have two separate subnets. One subnet in which
Cuckoo resides, and one subnet in which the Sandboxes reside. Figure 5 describes the
network design in better detail.

pfSense

Cuckoo

172.16.1.0/24

Windows 10 (sandbox)

Windows 8.1 (sandbox)

Windows 7 (sandbox)

Subnet 1 is 172.16.1.0/24
pfSense 172.16.1.1
Cuckoo 172.16.1.30

Subnet 2 is 192.168.56.0/24
Cuckoo 192.168.56.1
Win10 192.168.56.5
Win8.1 192.168.56.6
Win7 192.168.56.7

192.168.56.0/24

Figure 5: Subnet design

Some Malwares need internet access to reach full potential. Some malware checks
the IP-address from where it is executed and may stop when it is from a research center.
The next sections describe the routing options for Cuckoo to help an analyzer conceal
the location from where the Malware is executed.

The Onion Router - Tor

The Onion Router (TOR) will Spoof the traffic from a Sandbox by distributing the traffic
among different TOR nodes. Additionally, Tor encrypts the traffic [15]. Bouncing the
encrypted traffic through nodes, ensures that it is nearly impossible for a Malware to
know it is being analyzed from NTNU.

Virtual Private Network - VPN

Virtual Private Network (VPN) initiates an encrypted tunneled connection to a remote
server [16], which Spoofs the location of the analyzer.

13

Platform for malware analysis

INetSim

INetSim simulates Internet by Spoofing website requests to analyze network behavior of
unknown Malware samples [17].

3.3 Cuckoo

Cuckoo needs to run on a Ubuntu server. Everything needed to start and run Cuckoo
will be installed by an Ansible Playbook. Cuckoo interacts with the Hypervisor to start,
shutdown and restore Snapshots of the Sandboxes. Cuckoo will act as a router between
the sandboxes and pfSense to intercept and analyze network traffic generated by the
Sandboxes. Using Cuckoo Rooter, Cuckoo is also able to route traffic over internet, TOR,
VPN or INetSim. Cuckoo hosts a few databases, including MongoDB, PostgreSQL and
Elasticsearch, all set up and ready to use by the Ansible Playbook.

3.3.1 Sandboxes

This architecture includes three different Sandboxes. The Sandboxes will be used to
check if the Malware operates differently on different distributions. The sandboxes have
direct contact with Cuckoo by running a python Script, allowing the Sandboxes and
Cuckoo to interact to each other.

3.3.2 Tools

Cuckoo uses a variety of tools to perform analysis mentioned in chapter 2, in section
2.3.3. Figure 6 depicts the applications needed.

Cuckoo -
Application Design

Moloch

Suricata

Volatility

Elasticsearch

Yara

InetSim

Figure 6: Application design

14

Platform for malware analysis

The tools are dependent on each other to work with the exception of Yara and Volatil-
ity which will be detailed better in chapter 4. Suricata must be in place to capture-,
intercept- and analyze network traffic generated by the Sandboxes in subnet 2. Elastic-
search and Moloch are both dependent on Suricata to operate.

3.3.3 Systemd

A requirement from the employer was to implement Cuckoo’s services to systemd, which
is explained in deeper detail in chapter 4.5.6.

3.4 Ansible

The implementation of Ansible, will follow best practice on how to organize the Playbook
from the documentation of Ansible [18] and will be further detailed in chapter 5.

15

Platform for malware analysis

4 Implementation

This chapter will explain how the implementation process of the architecture design was
conducted and the methods used in both writing the thesis and workflow. The virtualiza-
tion platform was the first implementation in this assignment after the foundation was
made; the next step was an analyzing server. Cuckoo was firstly implemented manually
to understand the concept, then later set up with the help of an Ansible Playbook. The
last implementation needed to be hosts for the Malware, which is where Windows was
introduced as Sandboxes.

4.1 Methodology

As a development methodology, the students used waterfall, as mentioned in appendix
C.5.1. Each sequence or phase in the waterfall methodology must be complete before
the next can be started. The waterfall method makes it easy to understand and follow
when the project has clear objectives and requirements [19]. Traditionally there is no
process for going back, but because of changes in the requirements, some exceptions
were made. For the students, the waterfall methodology made it user-friendly to follow
the Gantt Diagram flow; when one sequence was done, the students started on a new. As
seen in figure C.6.1 implementation has four sub-phases that were worked on in parallel.
Waterfall worked great as a development methodology for this project, but for writing
the report, the students used a more agile approach.

The students used the Kanban methodology when writing the thesis. The students
started by making a Kanban board with a product Backlog in Trello, as seen in figure 7.
Trello is a flexible and visual way to manage projects workflow [20]. Using Trello allowed
the group to have a better overview of what needed to be done as well as what was left.
Trello became the primary tool to arrange the workflow systematically. The Kanban board
is to allow team members to track the progress of work through its workflow visually
[21].

Figure 7: Trello

16

Platform for malware analysis

4.1.1 Technologies

Name Type Area of application

Trello
Web-based project
management application Project control

Overleaf Online LaTeX compilator Thesis document

Bitbucket and Github
Web-based hosting service
for version control using Git Version control

Draw.io
Flowchart Maker and
Online Diagram Software Diagrams and figures

Google Drive
File storage and
synchronization service

Document and
file storage

Digitalocean Cloud infrastructure provider OpenVPN - Cuckoo

pfSense
Firewall/router computer
software OpenVPN - Users

Jabref
Bibliography reference
manager Bibliography

Atom Text and source code editor Code editor

Master PDF Editor Edit PDF files PDF files

LaTeX Table Generator
Online table generator
for LaTeX Tables

Table 2: Technologies and applications used in the project

Table 2 shows which applications/technologies have been used in the making of this
project. These tools helped the group save time by making it easy to review each other’s
work and also making the report writing process more streamlined.

4.2 Virtualization environment

At the start of the implementation phase as seen in figure C.6.1, the group needed a
virtualization Environment, and tried setting up an ESXI server on their personal com-
puters. Installing ESXi on a personal computer did not work, due to the infrastructure
requiring more computer resources than what a laptop could handle. The students had
to figure out a solution to run ESXI.

After a meeting with the employer, it was concluded that the infrastructure had to
be run on a server dedicated to run ESXI. With the assistance of Lars-Erik Pedersen, a
senior engineer of NTNU’s IT-Department, the group was able to loan a server from the
IT-Department. While setting up ESXI on the server, it would not run as intended. After
reading the documentation on ESXI, the students learned the server was not compatible
with the newest version(6.7) of ESXI. The implementation was put on hold while the
server was replaced with a compatible one.

With a new compatible server, the group was able to install ESXI along with vCenter
Server Appliance (VCSA) as a virtual machine. With a working server installed running

17

Platform for malware analysis

ESXI and VCSA, it was possible to access more functions like incorporate memory dump-
ing from vCenter Server Appliance and simulating human interaction with the Sand-
boxes. At this point, the group had a working vSphere Host by allowing VCSA to control
and administer the ESXI Hypervisor.

Once the virtualization Environment was working as intended, a server that would
monitor and analyze network traffic and perform different analyzes on the sandboxes
was next in line.

4.3 Networking

Having set up the Hypervisor, the group needed to implement some subnets in order for
the implementation to look like the design in figure 5.

The group set up three virtual network cards on the vSphere host to account for this
which can be seen in table 3

Name Virtual Machines Subnet vCenter
Bridge - Internett 2 128.39.142.0/24 128.39.142.137
pfMonitor 2 172.16.1.0/24 128.39.142.137
viruslan 4 192.168.56.0/24 128.39.142.137

Table 3: vSphere Networking

Bridge-Internet makes sure that some of the virtual machines are indirectly con-
nected to the Internet through NTNU Public. Even though these machines are not directly
connected to the Internet, it means that other students at NTNU can reach them by using
their IP addresses. If Cuckoo used NTNU public, it would mean that users of the network
could access Cuckoo and use it by running analysis and filling up the disk space on the
vSphere host. pfSense is implemented to protect Cuckoo from direct exposure to NTNU
Public. The second virtual machine running with a network card using this virtual switch
is vCenter Server Appliance (VCSA). The group decided it would be best to put the VCSA
in the same subnet as the ESXI host to avoid having communication problems between
the two. The administration of VCSA is also password protected, meaning that the group
was willing to take the risk of exposing it in NTNU’s public subnet, while also being able
to reach it without having to run a VPN. Being able to reach the vCenter Server Appli-
ance server without running a VPN, caused the group to become more flexible in case of
pfSense failure which would render the VPN connection useless.

pfMonitor(referred to as Subnet 1 in this thesis) is the Local Area Network (LAN)
behind pfSense. The two virtual machines that use this subnet are pfSense and Cuckoo.
pfSense routes traffic for Cuckoo. pfSense acts as the gateway for Cuckoo.

viruslan(referred to as Subnet 2 in this thesis) is the Local Area Network (LAN) be-
hind Cuckoo where all of the sandboxes reside. Cuckoo is set up as a gateway for the
sandboxes traffic to the Internet, OpenVPN, or TOR.

18

Platform for malware analysis

Name IP Address Guest OS

Cuckoo18.04
172.16.1.30
192.168.56.1 Ubuntu 18.04 64-bit

pfSense
128.39.142.158
172.16.1.1 FreeBSD 12 64-bit

vCenter Server Appliance 128.39.142.137 Proton Linux
Win10 192.168.56.5 Windows 10 64-bit
Win8.1 192.168.56.6 Windows 8.1 64-bit
Win7 192.168.56.7 Windows 7 64-bit

Table 4: Network Configuration Virtual Machines

4.4 Software

The first successful Cuckoo installation was done manually following Cuckoo‘s own doc-
umentation [22] on an Ubuntu 16.04 LTS (Xenial Xerus). In Cuckoo’s documentation,
there are plenty of references to additional software needed to make the most out of
Cuckoo’s analysis. Such as Yara, Volatility, Moloch and Elasticsearch [23]. Yara and
Volatility had to be downloaded and installed by compiling them. However, after up-
grading the server to Bionic Beaver, Volatility ’s latest version was already compiled and
ready to install from Ubuntu’s official repositories. The only application that had to be
installed by compiling it from source code was Yara. The manual installation went al-
most seamlessly, and there were some challenges with the version compatibility of some
packages; nevertheless, it worked in the end.

Having upgraded to Bionic Beaver, the group was able to install Suricata by adding a
Repository which also gave the group the latest version of Suricata [24]. Moloch was in-
stalled by heading over to moloch’s download page [25], downloading and installing the
latest prebuilt version for Bionic Beaver. The configuration of Cuckoo will be described
in the next section.

4.5 Configuration

This section will look into how the platform was configured in this project and will
include some of the more important subsections to the configuration of the Playbook,
Cuckoo and connecting to the VPN at Digitalocean.

4.5.1 Cuckoo

By default, the Playbook will create a user named cuckoo, and a Home Directory for
that user. The Playbook distributes the Configuration Files in this home directory for
Cuckoo to use as a working directory. Every time Cuckoo starts up its services, it will
read from the configuration files from this home directory. That means, every single time
a configuration file has changed, Cuckoo will have to be restarted to reflect these changes.
When running the Playbook, Cuckoo will be installed as a systemd service[2]. A systemd
service makes it fairly easy to reload new changes to Cuckoo by simply restarting the
Cuckoo systemd services, instead of restarting the whole server.

The server is also set up to do basic router functionality, along with Network Address

19

Platform for malware analysis

Translation (NAT). The server is configured with two network cards. One of the network
cards sits in the pfSense network, to give the server the Internet connection it needs. The
second network card sits in the Sandbox network, where it can reach the sandboxes. The
reason the group decided to do this was to make sure all network traffic generated by
the sandboxes was intercepted by Cuckoo, and therefore readable.

Due to compatibility issues with Cuckoo and Elasticsearch version 6 [26], the group
had to install an older version, namely Elasticsearch version 5. The group downloaded
the latest version of Elasticsearch 5, version number 5.6.16, and was able to integrate it
with Cuckoo. [27]

4.5.2 Virtual Environment

A Virtual Environment is a directory on the harddrive which installs the packages needed
for an application to work. The application in this case, is Cuckoo. In the virtualenv, the
administrator can install a specific version of a software to needed to run Cuckoo. In this
case, the specific software is python 2.7 and pip 9.0.3.

In addition to installing specific software to the virtualenv, these packets are not up-
dated with the rest of the system, meaning that the application running in this virtualenv
is less likely to break because of newer package versions that could stop the app work-
ing. The group implemented the virtual environment to the Playbook to future proof the
platform, and also to resolve the issues with Cuckoo not being able to run correctly with
newer versions of different kinds of software.

4.5.3 OpenVPN

The Playbook will by default include an OpenVPN installation. OpenVPN routes traffic
from the sandboxes through a VPN connection to conceal the analyzers location. The
OpenVPN server used for this purpose was set up by one of the group members, and it is
hosted by Digitalocean[28].

Since this server was only used to test the OpenVPN connection, it is included in
a private repo on Bitbucket, because this configuration contains everything needed to
connect to the OpenVPN hosted at Digitalocean.

It is set up to create a tun0 interface on the server hosting Cuckoo, so by choosing
to route through over VPN in Cuckoo’s WebGUI, the Sandboxes will appear to be in
France when running analysis. To make this work when connecting to the VPN, the
group had to search around for similar issues of how Cuckoo deals with this. A similar
issue is described, and the solution was to run a VPN with additional arguments together
with the route.py Script (see appendix E and source [29]). The script, along with the
complete command, can be found in the source above, by reading doomedraven’s 8th
comment. Using the same command, the group was able to implement the VPN as a
systemd service that starts automatically each time the Bionic Beaver server has been
restarted (see appendix F).

4.5.4 Hypervisor

The Hypervisor supported by this Playbook is ESXI and vSphere. Only basic configuration
of the ESXI has been done, by creating a datacenter for containtment of the virtual ma-
chines running, and three network cards. One for Internet connectivity, one for pfSense
network, and one for Sandbox network.

20

Platform for malware analysis

4.5.5 Sandboxes

Three different versions of Windows (7 64-bit, 8.1 64-bit, and 10 64-bit) were installed as
virtual machines that would become the Sandboxes. Together with the employer, it was
decided to start with only windows hosts to make sure the concept was working. If there
were spare time, in the end, the platform would include Android and MacOS. Inside each
Sandbox the group installed a couple of programs that were essential for Cuckoo to be
able to analyze them. These programs were Python 2.7,Pillow, and an agent for commu-
nicating with Cuckoo called agent.py. In order for Cuckoo to be able to communicate with
the sandboxes, User Account Control (UAC) and the Windows Firewall was disabled. Ad-
ditionally, the sandboxes were configured with a static IP configuration, because Cuckoo
is known not to be able to communicate with the sandboxes if configured with DHCP.
[30]. Figure 6 shows a sample network configuration on one of the sandboxes used in
the project.

Figure 8: Network configuration sandboxes

4.5.6 Systemd

The need to implement Cuckoo as a systemd service quickly surfaced as an issue for
the group after having installed Cuckoo and needing to restart its services after changing
some of the Configuration Files. As such, it was understandable that the employer wanted
it implemented as a systemd service, as it became very tedious to restart the server or to
kill the PID’s every time a change had happened.

Cuckoo Rooter is very special in that it needs every network service to be started

21

Platform for malware analysis

beforehand, otherwise it will fail to start. As seen in appendix F and G.1, Cuckoo Rooter
needs the OpenVPN service to be started before the Cuckoo Rooter starts, otherwise
Cuckoo and all will fail to start. Figure 9 describes the order in which Cuckoo’s services
and dependencies are started.

OpenVPN Cuckoo Rooter Cuckoo Cuckoo APICuckoo Web

Network-online.target

Figure 9: Systemd startup order

4.6 Ansible

When Cuckoo worked as intended after the manual installation, it was time to make the
installation process automated with the help of Ansible. The group started reading up on
documentation of Ansible and found out that the best way to implement an automatic
installation of the platform was to use Playbooks [31]. The reason for using Playbooks
is that the designer can include multiple roles to install many applications one by one
without requiring any user interaction, thus making the installation process automated.

Note: The Playbook used in creating this platform is based on a similar Playbook
that the group found on GitHub. The playbook was over a year old, and very outdated.
Having installed Cuckoo manually, the group could implement the steps taken during
the manual installation and rewrite the Playbook found on Github. The playbook needed
replacement of the old software with newer software versions, also adding new roles to
the playbook itself. Because of all the details, and different ways to set up the platform,
the group decided to make an entire chapter describing the Playbook and all the different
configuration setups in chapter 5.

22

Platform for malware analysis

5 Automation

This chapter covers the documentation of the installation process of Cuckoo. The plat-
form has been successfully installed using the Ansible Playbook developed by the group
during this project. The platform runs on an Ubuntu 18.04 LTS (Bionic Beaver) with
the latest updates.

5.1 Prerequisites

Some physical host running ESXI 6.7, managed by vCenter Server Appliance (VCSA) 6.7.
Managing the ESXI with VCSA effectively turns the ESXI into vSphere. vSphere is nec-
essary because it allowsCuckoo to retrieve full memory dumps of the virtual machine
analyzing a given virus, while also being able to simulate user interactivity. The min-
imum licence required to run Cuckoo on a VMWare vSphere environment is vSphere
Standard. Using the vSphere Essentials licence, which is free of charge, does not include
the API support needed by Cuckoo to interact with and control the virtual machines on
the vSphere Hypervisor.

During the project, the students found that the server running Cuckoo should have at
least 8GB of Ram and 25GB hard drive space. The server also needs to have two Network
cards - Subnet 1(Internet connectivity) and one for Subnet 2(Analyzing only).

Do take note that when running Cuckoo with full memory analysis, the disk space
needed will increase drastically. The memory dumps are very big in size, and Cuckoo
will download these Snapshot memory dumps from the vSphere host itself. The more
disk space, the better. An option to delete the memory dumps after processing them can
be used to preserve disk space. Using the option to delete the memory dumps will be
detailed in section 5.5.6.

5.1.1 Software

Before the installation process begins, make sure that the server is fully updated, and
that Python 2.7 is installed. Cuckoo relies heavily on Python 2.7, and will not run with
Python 3. Also, make sure that the machine running Ansible has the latest version of
Ansible installed or the Playbook might not work.

Before the Playbook can be run, it is vital that some of the files in the Playbook is
configured to match the IP-addresses used in the environment. Depending on if its a
local installation on a server, or a remote one, two different files can be changed to suit
the environment and will be detailed in section 5.2.1 and 5.2.2.

NOTE: All the commands in section 5.2 and on wards are executed in a Bash shell
either locally or remotely(through Secure Shell (SSH)) on the Ubuntu 18.04 LTS (Bionic
Beaver) server which will be used as a base to install the platform.

5.1.2 Network configuration

The server running Cuckoo needs to have two network cards. The server needs to be
configured with a static IP configuration on both network cards in order for Cuckoo to

23

Platform for malware analysis

work. In listing 5.1, an example configuration can be seen, and is also the groups network
configuration of the server running Cuckoo (etc/netplan/50-cloud-init.yaml):

network:
ethernets:

ens160:
addresses:
- 172.16.1.30/24
gateway4: 172.16.1.1
nameservers:

addresses:
- 1.1.1.1
- 1.0.0.1

ens192:
addresses:
- 192.168.56.1/24
nameservers: {}

version: 2

Listing 5.1: Network Configuration

5.2 Installation of the Platform

To install the platform, make sure to clone the repository from Github [32]. The group
has provided a bash script that adds the Ansible repository to the machine used with
Ansible. The bash script is only supported on debian-based distributions(e.g. Ubuntu or
Linux Mint). Having added the repository and installed Ansible, the Playbook can be
configured to the environment. The first file to note is site.yml in the directory:

cuckoo -playbook/

site.yml holds all the roles needed to install Cuckoo.

1 ---
2 - hosts: all
3 gather_facts: false
4 roles:
5 - python
6 - cuckoo_user
7 - build_directory
8 - ubuntu_packages
9 - python_packages

10 - postgresql
11 - elasticsearch
12 - cuckoo
13 - yara
14 - volatility
15 - suricata
16 - moloch
17 - tor
18 - inetsim
19 - openvpn
20 - network
21 - start_up_cuckoo

24

Platform for malware analysis

Listing 5.2: site.yml

The roles described in site.yml(5.2) refer to each folder inside of

cuckoo -playbook/roles

and the name of each role is case-sensitive.

5.2.1 Local installation

Make sure to have git installed on the server that is going to run Cuckoo, and that the
repository [32] is cloned somewhere on that servers’ disk. There are a few files that need
to be changed in order for the local installation to work.

Step 1

Head into

cd cuckoo -playbook/inventories/staging/

and open the hosts file. Edit the variable ansible_sudo_pass to the password of the user,
that allows the use sudo as depicted in listing 5.3.

1 [all]
2 localhost ansible_connection=local ansible_sudo_pass=

password

Listing 5.3: Staging hosts

Save and exit the file.

Step 2

Head into

cd cuckoo -playbook/inventories/staging/group_vars/

and open the all file. The all file includes variables that are used throughout the entire
playbook. The only thing that should need to change here is the variables that hold the
names of the Network Interface Cards. Using ifconfig or ip addr under Ubuntu will tell
you the names of each network card. Change them accordingly as depicted in listing 5.4.
nic is the interface for internet connectivity, and ananic is used for the subnet that the
Sandboxes reside in.

15 ### Network cards ###
16 nic: ens160
17 ananic: ens192

Listing 5.4: Staging network cards

Save and exit the file.

5.2.2 Remote installation

There are a few files that needs to be changed for the remote installation to work.

25

Platform for malware analysis

Step 1

Head into

cd cuckoo -playbook/inventories/production/

and open the hosts file. The ansible_host variable is the IP-address of the server you
wish to install the platform to. The ansible_ssh_user variable is the user that Ansible
will use to log into the target server. The only requirement for this user, is that it has
sudo rights. The ansible_ssh_pass variable is the password to the ansible_ssh_user. Edit
them accordingly, and save and exit the file when done. Listing 5.5 depicts an example
where the variables have been filled in.

15 [all]
16 remotehost ansible_host= ansible_ssh_user=user

ansible_ssh_pass=password ansible_sudo_pass=
sudoPassword

Listing 5.5: Production host

Note: Some Linux distributions allows a user to use a different password for elevating
to and running commands as sudo. With a standard installation of Ubuntu server, the
password used to log in as a given user, is the same as the password used to elevate sudo
rights.

Step 2

Head into

cd cuckoo -playbook/inventories/production/group_vars

and open all file. As with the local installation, the only variable that needs to be edited
is the network card variables. Make sure they reflect the names the of network cards on
the server used to install the platform onto. Example Network Interface Cards can be
seen in figure 5.6.

15 ### Network cards ###
16 nic: ens160
17 ananic: ens192

Listing 5.6: Production network cards

Save and exit the file.

5.3 OpenVPN

This section will include the steps needed to be taken when either disabling 5.3.1 or en-
abling 5.3.2 OpenVPN role. Note that it is required to have a working external OpenVPN
server for this role to work. To be able to fully test the functionality of the OpenVPN, one
of the group members bought a server at Digitalocean [33].

NOTE: To be able to start Cuckoo after the Playbook has installed the platform, some
steps need to be considered whether or not the Playbook should be installed. The Play-
book is installed in such a way that it requires an OpenVPN to be running before Cuckoo
can even start its services. The steps needed to both enable and disable the role com-
pletely will be better explained in sections 5.3.1 and 5.3.2.

26

Platform for malware analysis

5.3.1 Disabling the role

A side note when disabling the OpenVPN role, some more work needs to be done to fully
disable it from the setup. Commenting it out in site.yml is not enough.

Step one

Head into

cd cuckoo -playbook/roles/start_up_cuckoo/files/

in this folder, open the cuckoo_rooter.service file, and remove openvpnclient.service on
line 3.

1 [Unit]
2 Description=Cuckoo Rooter Service
3 After=network.target openvpnclient.service

Listing 5.7: cuckoo_rooter.service

Save the file and exit.

Step two

Head into

cd /cuckoo -playbook/roles/cuckoo/files

In this folder, open the routing.conf file, and change enabled=yes to enabled=no on
line 61 as seen in listing 5.8.

59 [VPN]
60 # Are VPNs enabled?
61 enable = yes

Listing 5.8: routing.conf

Save the file and exit.

5.3.2 Enabling the role

The role is by default enabled for installation, but it will still require you to change some
files around to make it fit your setup. Head into

cd cuckoo -playbook/roles/openvpn/files/

and open the openvpn.conf file. The easiest way to do this, is to replace the contents
in this file with the contents of an ovpn file that is already in your possession(assuming
you have a working openvpn server already). The only vital part about this, is that the
interface created by running the configuration file, must be named tun0 as depicted in
listing 5.9. More on this in a later section.

23 ;dev tap
24 dev tun0

Listing 5.9: openvpn.conf

NOTE: In the configuration file used in this project, the exact line number is 24, but it could
be different depending on the OpenVPN server configuration.

27

Platform for malware analysis

5.4 InetSim

If using an alternative to, and therefore do not want to install INetSim to the platform,
simply comment out the inetsim line from site.yml, and no additional configuration will
be needed for INetSim to be disabled upon running the Playbook.

5.5 Cuckoo

This section will cover every file used by Cuckoo that will have to be edited before run-
ning the Playbook. Do note that these files can be edited after the platform has been
installed, but editing them beforehand saves a little bit of hassle.

This section will not go into detail about every single one of these files, but only
the ones used in the making of this project. The files not detailed are used for either
VirtualBox (virtualbox.conf), KVM (kvm.conf), XenServer (xenserver.conf), and QEMU
(qemu.conf) as alternative Hypervisors to ESXI or vSphere. Other files not detailed are
avd.conf (Used for configuration of Android emulator) and configuration of analyzes on
physical machines(physical.conf).

5.5.1 cuckoo.conf

This section will look at some important variables inside the cuckoo.conf file found in:

cd cuckoo -playbook/roles/cuckoo/files/

Listing 5.10: cuckoo.conf directory

All of the files that needs to be edited can be found in the directory shown in listing 5.10.

Machinery

In the cuckoo.conf file is where one specifies which Hypervisor one would like to use,
along with other options like memory dumps. Depending on whether one want to use
ESXI or vSphere, go to the line depicted in listing 5.11

20 machinery = vsphere

Listing 5.11: cuckoo.conf - Machinery

Simply changing vsphere to esx changes the chosen Hypervisor to ESXI from vSphere.
Machinery is by default set to vsphere.

Refer to 5.5.2 for more information on vsphere.conf. If one want to use ESXI instead,
refer to 5.5.3.

Line 25 allows one to choose whether or not one wants to enable memory dumps, by
downloading the memory dumps from the Hypervisor after the analysis is done. Refer to
listing 5.12.

25 memory_dump = yes

Listing 5.12: cuckoo.conf - Memory dumps

Simply changing the value to ’no’ turns off memory dumps. Memory dumps can still be
turned on in the WebGUI when running an analysis. The options available can be seen in
appendix J.

28

Platform for malware analysis

Resultserver

The variable on line 87 describes which IP-address the sandboxes should interact with. In
this case, it will be the same IP-address as the platform running Cuckoo as seen in figure
5.

87 ip = 192.168.56.1

Listing 5.13: cuckoo.conf - Resultserver IP Address

Processing

Line 108 allows the analyst to resolve DNS lookups performed by the Sandboxes during
analysis.

107 resolve_dns = yes

Listing 5.14: cuckoo.conf - Processing

The resolved DNS lookups can be seen in figure 14.

Database

Line 122 through 127 includes the configuration of which databases to use for analy-
sis. Cuckoo will by default use a PostgreSQL database to store analyzed results. How-
ever, Cuckoo supports multiple databases. Listing 5.15 shows some examples of which
databases that are supported.

122 # Examples , see documentation for more:
123 # sqlite :/// foo.db
124 # postgresql ://foo:bar@localhost :5432/ mydatabase
125 # mysql :// foo:bar@localhost/mydatabase
126 # If empty , defaults to a SQLite3 database at $CWD/

cuckoo.db.
127 connection = postgresql :// cuckoo:cuckoo@localhost

:5432/ cuckoo

Listing 5.15: cuckoo.conf - Databases

Using PostgreSQL, allows Cuckoo to do multiple analysis simultaneously, and it is there-
fore default here.

Remote control

While the analysis is running, one can choose to remotely control the Sandboxes with a
tool called Guacd. Guacd is installed by the ubuntu_packages role, and is enabled by
default in cuckoo.conf. Lines 145 through 153 include the configuration of this service
in listing 5.16. NOTE: To be able to remote control Windows Sandboxes, VNC will have
to be installed on them, otherwise it will not work.

145 [Remote Control]
146 # Enable for remote control of analysis machines

inside the web interface.
147 enabled = yes
148
149 # Set host of the running guacd service.
150 guacd_host = 192.168.56.1

29

Platform for malware analysis

151
152 # Set port of the running guacd service.
153 guacd_port = 4822

Listing 5.16: cuckoo.conf - Remote control

The guacd_host variable(line 150) must be set to the same IP-address as Cuckoo has in
Subnet 2 as seen in figure 5.

5.5.2 vsphere.conf

The first lines one need to look at here are the lines 14 through 17. These lines hold the
configuration parameters to vSphere through the use of an IP-address, a username and a
password.

14 host = ip.address.to.vcsa
15 port = 443
16 user = username@some.domain
17 pwd = Passw0rd

Listing 5.17: vsphere.conf - Connection

Unfortunately, these parameters are not enough to make sure Cuckoo is able to in-
teract with the vSphere server. The parameters are not enough because in later ver-
sions of python(developed after the last version of Cuckoo), it has enabled SSL/TLS
connections(PEP-0476) by default because of a security issue described here [34]. Ap-
pendix H describes how the group managed to work around this issue by using SSL
instead of TLS. The patched version of vsphere.py is installed by the Playbook, so that
the connection between vSphere and Cuckoo works after the installation has finished.
Do note that this should only be necessary when using a self-signed certificate specified
at line 32 in listing 5.18:

32 unverified_ssl = yes

Listing 5.18: vsphere.conf - Certificate

Moving on with the configuration file, the Sandboxes that are hosted by the vSphere
can be defined. Line 22 describes this in further detail, but names in this file must match
the names of the virtual machines specified on the vSphere host. Listing 5.19 shows the
groups configuration.

22 machines = Win10 , Win81 ,Win7

Listing 5.19: vsphere.conf - Sandboxes

The configuration of the Windows 7 Sandbox which the group used for most of its
testing can be seen in appendix I. The configuration of Windows 8.1 and Windows 10
is identical to the sample, except for ip = and osprofile =. Both of these variables are
found at lines 107 and 117, respectively, in the sample configuration. The snapshot =
variable can be somewhat confusing. What it means is that it wants the name of the
Snapshot(on the Hypervisor) of the virtual machine when the agent is running. The
group used clean_agent as a reference to the rightful state of the virtual machine, but
you can use any name that makes sense to you.

30

Platform for malware analysis

Lastly, line 27 specifies the name of the network card on the Cuckoo server that is
connected to Subnet 2 and is used for intercepting network traffic generated by the
Sandboxes. The name of this network card will be the same as the one described in
section 5.2.2 (ananic).

27 interface = ens192

Listing 5.20: vsphere.conf - Network card

Save the file and exit.

5.5.3 esx.conf

Very similar to vsphere.conf, but the IP-address, username and password will have to
be different, because vSphere/VCSA is a different server than the ESXI server. Defines
Sandboxes the same way as done in vsphere.conf.

5.5.4 limits.conf and sysctl.conf

Running multiple analysis at once, might cause Cuckoo to stop and crash because it has
reached the limit of too many open files at once. To avoid this, two files need to be edited
in order to increase the open file limit. The group included a way to increase the open file
limit to the Playbook. NOTE: The group never actually hit the open file limit once during
the testing of the platform, but was done to future proof the platform for the employer.
The issue is described here [35].

The fix was implemented by appending some lines of configuration to both /etc/se-
curity/limits.conf (5.21) and /etc/sysctl.conf (5.22) [36]. Both of these files have been
included to the Playbook and will be installed by default by the cuckoo role.

limits.conf

Looking at the limits.conf file, line 56 through 59 was implemented to overcome this
issue.

56 * hard nofile 500000
57 * soft nofile 500000
58 root hard nofile 500000
59 root soft nofile 500000

Listing 5.21: limits.conf - Open file limit

sysctl.conf

Line 63 of sysctl.conf is the line that was implemented to fix the issue.

63 fs.file -max = 2097152

Listing 5.22: sysctl.conf - Open file limit

5.5.5 memory.conf

memory.conf handles all the tuning options for Volatility. memory.conf is the kind of
file where you would want to enable some parameters by changing enabled = no to
enabled = yes.

One very useful option for environments that does not have much harddrive space is
to enable the option to delete memory dumps after processing.

31

Platform for malware analysis

3 # Basic settings
4 [basic]
5 # Profile to avoid wasting time identifying it
6 guest_profile = WinXPSP2x86
7 # Delete memory dump after volatility processing.
8 # Change this to yes to avoid running out of space
9 delete_memdump = no

Listing 5.23: memory.conf - File processing

Other than that, the options that are enabled in memory.conf already, are what provided
the group with the best results during testing and is therefore enabled by default when
installing the Playbook.

5.5.6 processing.conf

Processing.conf handles everything from behavior analysis to hits of Malware signature
on VirusTotal.

Most of the sections here are self-explanatory, while some will have to be explained
in deeper detail. Among the few that do, is [procmemory]. [procmemory]’s section
creates process memory dumps for each analyzed process, right before they terminate
themselves or right before the analysis finishes. The group enabled it for better analysis,
and an extra option here is to delete the process memory dump after analysis to save
disk space. On low hard drive systems, this is recommended, because this quickly eats
up disk space. Memory dump can be enabled on line 87 of processing.conf:

86 # Delete process memory dumps after analysis to save
disk space.

87 dump_delete = no

Listing 5.24: processing.conf - Process memory dumps

Other options include testing apk’s. APK’s is the file-extension of every Android app that
exists out there. Since Android will not be tested here, it is therefore disabled by default.
The option to use Suricata is also enabled here. Lines 122 through 142 includes options
for Suricata. Since Suricata is only setup to listen in on traffic, and later used to analyze
the traffic, none of these options need to change from this project to deployment on
yours. It is possible to setup Cuckoo to increase performance here by letting Cuckoo talk
directly to the Suricata socket, which can be found at line 142.

142 socket =

Listing 5.25: processing.conf - Suricata

5.5.7 reporting.conf

This configuration file holds all the necessary IP-addresses for each component that runs
alongside Cuckoo. These components include things like MongoDB, Moloch and Elastic-
search.

Lines 34 through 43 hold the configuration for MongoDB:

32

Platform for malware analysis

34 [mongodb]
35 enabled = yes
36 host = 127.0.0.1
37 port = 27017
38 db = cuckoo
39 store_memdump = yes
40 paginate = 100
41 # MongoDB authentication (optional).
42 username =
43 password =

Listing 5.26: reporting.conf - MongoDB

Elasticsearch can be configured on lines 45 through 60. The free version of Elastic-
search is wide open, so there is no option here to configure a username or a password:

45 [elasticsearch]
46 enabled = yes
47 # Comma -separated list of ElasticSearch hosts. The

format is IP:PORT , if the port is
48 # missing the default port is used.
49 # Example: hosts = 127.0.0.1:9200 , 192.168.1.1:80
50 hosts = localhost :9200
51 # Increase default timeout from 10 seconds , required

when indexing larger
52 # analysis documents.
53 timeout = 300
54 # Set to yes if we want to be able to search every API

call instead of just
55 # through the behavioral summary.
56 calls = no
57 # Index of this Cuckoo instance. If multiple Cuckoo

instances connect to the
58 # same ElasticSearch host , then this index (in Moloch

called "instance ") should
59 # be unique for each Cuckoo instance.
60 index = cuckoo

Listing 5.27: reporting.conf - Elasticsearch

Running Elasticsearch on the same server as Cuckoo will require no changing of pa-
rameters. Elasticsearch will work as-is, if one wants to run Elasticsearch on a different
server, it is required to change line 50 of reporting.conf. Change it from localhost:9200
to whatever IP-address it runs on, but do not forget the :9200 at the end.

Lines 71 through 78 cover Moloch’s installation:

71 [moloch]
72 enabled = yes
73 # If the Moloch web interface is hosted on a different

IP address than the
74 # Cuckoo Web Interface then you ’ll want to override

the IP address here.
75 host = 172.16.1.30

33

Platform for malware analysis

76 # If you wish to run Moloch in http (insecure) versus
https (secure) mode ,

77 # set insecure to yes.
78 insecure = yes

Listing 5.28: reporting.conf - Moloch

The host in this section is the same host as Cuckoo and will therefore have its IP-address
set to the same as the one mentioned in Subnet 1 and in figure 5.

5.5.8 routing.conf

This file is a big one, and you are able to configure all the routing by Cuckoo here. There
are a few small variables that need to change in this file. The first one is the configuration
of InetSim, depending on your network setup:

48 [inetsim]
49 enabled = yes
50 server = 192.168.56.1

Listing 5.29: routing.conf - Inetsim

Change the variable server to the IP-address you need it to be. Make sure that it matches
the configuration of your network setup, use figure 5 as a reference point, but remember
that this IP-address needs to be in Subnet 2.

The second variable is the name of the network card handling the Internet routing.
The variable is located at line 19:

19 internet = ens160

Listing 5.30: routing.conf - Network Interface Card (NIC)

This should be changed to be the same network card that as used in Subnet 1.

TOR can also be somewhat configured in this file, but TOR is also configured in torrc,
which we will return to in section 5.8. A few lines still needs to be mentioned here,
because it is imperative that it matches the configuration in torrc:

52 [tor]
53 # Route a VM through Tor , requires a local setup of

Tor (please refer to our
54 # documentation).
55 enabled = yes
56 dnsport = 5353
57 proxyport = 9040

Listing 5.31: routing.conf - TOR routing

The ports configured in line 56 and 57 must match the ports in torrc.

5.6 Elasticsearch

The Elasticsearch role is a rather simple one and only requires you to change an IP-
address in its configuration file in order to work properly. The configuration file in ques-
tion is elasticsearch.yml, and is found under.

cuckoo -playbook/roles/elasticsearch/files/

34

Platform for malware analysis

The line we need to edit is found in the yml file at line 55:

55 network.host: 172.16.1.30

Listing 5.32: elasticsearch.yml

Make sure that this IP-address matches the one in Subnet 1. Use listing 5.1.2 as a refer-
ence.

5.7 Suricata

This section covers all of Suricata’s files that need to be edited depending on your net-
work configuration. All files are located under

cuckoo -playbook/roles/suricata/files/

5.7.1 suricata

This file has only one line that needs to be changed, and is once again dependant on
Network Interface Card (NIC) naming policy of the linux kernel. The line we need to
change is 19 as listing 5.33 describes further:

18 IFACE=ens192

Listing 5.33: suricata

5.7.2 suricata.yaml

The last file to edit for Suricata to be fully functional is suricata.yaml. On line 15, IP-
addresss for address groups is required for better performance and accuracy:

13 # more specifc is better for alert accuracy and
performance

14 address -groups:
15 #HOME_NET:

"[192.168.0.0/16 ,10.0.0.0/8 ,172.16.0.0/12]"
16 HOME_NET: "[192.168.56.0/32]"

Listing 5.34: suricata.yaml

Make sure the address groups fits subnet’s correctly.

5.8 Tor

torrc is a file that is used by TOR for its configuration and is located in:

cuckoo -playbook/roles/tor/files/

For this project and its features, it is enough for the group to look at lines 15 and 16 of
the file:

15 TransPort 192.168.56.1:9040
16 DNSPort 192.168.56.1:5353

Listing 5.35: torrc

Make sure that the IP-address here matches the one configured at ens192 in listing 5.1.
Also do make sure that the port number is the same as mentioned in listing 5.31. Other-
wise will not work.

35

Platform for malware analysis

5.9 Cuckoo Startup

This role is a rather simple one. All it does is copy four preconfigured systemd files to
/etc/systemd/system. The idea with this is that you can restart Cuckoo’s services(rooter,
cuckoo itself, web and api) without having to restart the entire server or kill the services
with PID’s every time you change a configuration file. Each one of the systemd services
can be more thoroughly viewed through appendixes G.1, G.2, G.3 and G.4. These also
be started in the correct order for Cuckoo to work. For example, if running a VPN, the
Cuckoo Rooter must be the first service to start. But the Cuckoo Rooter also handles
Internet routing, Tor and InetSim as well. Which is why the openvpnclient.service (ap-
pendix F) MUST be disabled in cuckoo_rooter.service before running the Playbook to
avoid any start up issues.
Note: Appendixes G.3 and G.4 also have IP-addresses in them. Change these addresses
to reflect your configuration.

5.10 Running the playbook

After having completed the previous steps, the playbook may be run with the following
command from the terminal inside the cuckoo-playbook directory:

ansible -playbook -i inventories/production site.yml

Listing 5.36: Running the Playbook

Depending on whether the Playbook is run on a remote or a local server, replace produc-
tion with staging.

5.11 Final thoughts

Most of the steps described in the previous sections can be omitted if Cuckoo’s Subnet
2 is defined with the same IP-addresss the group used. The IP-addresss of a production
environment might not be the same as the ones the group used, and will therefore have
to be changed.

To avoid manually changing all of these IP-addresss, the group has included a section
in chapter 7 under alternative approaches and future work (7.2.4) which would make
installation more automated.

36

Platform for malware analysis

6 Testing and verification

Testing is an essential step to point out errors made during the implementation phase
and to deliver a quality project. That is why the group focused on making tests that
made sure everything worked as intended before it was delivered to the employer.

6.1 Automation

To ensure that the Playbook worked without any input from the user, the group ran the
playbook on a fresh server after each test by reverting the server to an earlier Snapshot.
When an error occurred, the students would analyze the error message and correct the
issue in the Playbook as seen in figure 10. The group repeated this test until there were
no errors in the Playbook’s installation process, as shown in figure 11.

Figure 10: Ansible test with errors

Figure 11: Ansible test without errors

While the group was testing the playbook, it came to the group’s attention that Moloch
stopped the installation of the playbook, requiring input from the user for the Playbook
to continue installing the platform. After discussing this issue with the group’s employer,
it was agreed that this needed to be changed. To remedy this issue, the group added a
configuration file that adds a few parameters which result in Moloch not requiring user
input.

6.2 Cuckoo

To test if Cuckoo was configured correctly the group ran ./cuckoo -d as shown in figure
12. Running Cuckoo with its debug parameter, the group was able to find any configura-
tion problems by using the error messages. Moreover, fixing all the errors from Cuckoo’s
output, allowed Cuckoo to start and wait for an analysis to be submitted, a demonstration
can be seen in figure 13.

37

Platform for malware analysis

Figure 12: Cuckoo test with errors

Figure 13: Cuckoo test without errors

The message INFO: waiting for analysis tasks in figure 13 means that all the modules
were loaded successfully and Cuckoo is just waiting for the user to submit malware for
analysis.

When an analysis has completed, Cuckoo is set up to resolve all DNS requests made
by the Sandboxes. Figure 14 shows how this looks like in Cuckoos report in the WebGUI:

38

Platform for malware analysis

Figure 14: Resolved DNS requests done by Cuckoo

6.3 Malware

To test Cuckoo’s functionality, the group ran a variety of different Malware. The different
malware was tested so Cuckoo could analyze them, and then the group could see if the
results from the Cuckoo analysis matched the expected outcome.

Figure 15: Signatures of Trojan.Heur.FU.dmW@a8VPjLb tested in Cuckoo

After having tested a Malware and Cuckoo presented the results, it did not seem like
a test had happened; therefore, the group suspected something was wrong at some point
in the analyzing process. With Cuckoo reporting no suspicious activity, it could be an
indicator that one or more of the applications did not work as intended. Cuckoo displays
screenshot from the events on the Sandboxes with the help of Pillow, and the issue was
often found when the group into them. If the screenshots did not provide any useful
information, then the log files would.

6.4 Network

To test if the Sandboxes had internet access without having to log into each one and
trying to reach a website with every routing options, the group used Cuckoo’s Routing
tool Cuckoo Rooter. When writing a website URL in the "SUBMIT URLS/HASHES" field
(see figure 16) cuckoo tries to connect to the website from each sandbox. Cuckoo will

39

Platform for malware analysis

not only start the browser but will also attempt to actively instrument it in order to
extract interesting results such as executed Javascript, iframe URLs, etc[22]. The test
was executed with each routing option VPN, TOR, INetSim and Internet. These options
can be seen in appendix J.

Insights

Version 2.0.6

You are up to date.

reported 2

completed 0

total 2

running 0

pending 0

IQY malspam campaign
October 15, 2018

“Analysis of a malspam campaign leveraging .IQY (Excel
Web Query) �les containing DDE to achieve code execution.”

(https://hatching.io/blog/iqy-
malspam)

Hooking VBScript execution in
Cuckoo
October 03, 2018

“Details on implementation of Visual Basic Script
instrumentation for Cuckoo Monitor for extraction of
dynamically executed VBScript.”

(https://hatching.io/blog/vbscript-
hooking)

Cuckoo

 Drag your �le into the left �eld or click the icon to select a �le.

FREE DISK SPACE CPU LOAD MEMORY USAGE

Cuckoo Installation

Usage statistics

From the press:

SUBMIT A FILE FOR ANALYSIS

SUBMIT URLS/HASHES

Submit URLs/hashes

Submit

free used totalSystem info

28.5 GB
49.0 GB

0%
4 cores

3.5 GB
7.6 GB

(/)

 Dashboard
(/dashboard/)

 Recent
(/analysis/)

 Pending
(/analysis/pending/)

 Search
(/analysis/search/)

Submit
(/submit/)

Import
(/analysis/import/)

Figure 16: Cuckoo Web GUI

In order to test if Cuckoo is Routing the data packets correctly the group made a
Traceroute Script. Submitting this file for analysis and choosing a network service to
route through(Internet, VPN). The Traceroute script traces what path the data packets
took towards the Internet and helped the group fix routing issues too.

Figure 17: Traceroute script over VPN

6.5 Sandbox

To test the compatibility between Cuckoo and the Operating System (OS)’s running in
the different sandboxes. The group tested the same malware on the three different sand-
boxes(win7,win8.1, and win 10). The results of the analysis were different in all three
instances; this could be because as cuckoos own documentation states[37], Windows 7
is the recommended OS for the Sandbox. Since Windows 7 is older than both Windows

40

Platform for malware analysis

8.1 and Windows 10, it is believed that it does not possess all of the security mechanisms
newer versions of windows have [38]. Another reason for the difference in results in
these analyses could be that Cuckoo is more compatible with Windows 7.

41

Platform for malware analysis

7 Discussion

In this chapter, the reader will make sense of the difficulties for the students along the
way. The group will discuss alternative approaches that also could be used for future
work. In the end, the group will present self-criticism then evaluate the groups’ effort.

7.1 Obstacles

This section will describe the issues encountered and how the group resolved these is-
sues.

7.1.1 Playbook

The Playbook the group used to successfully install Cuckoo the first time, was based on a
Playbook that the group found on GitHub. [39]. The Playbook was used as a backbone,
because at the point of its creation it installed Cuckoo successfully on an Ubuntu 16.04
LTS (Xenial Xerus) server. Due to the Playbook being over a year old, the group updated
it to work with packets that were newer and compatible.

During a meeting with the employer, the group discussed the matter of running the
platform on Ubuntu 16.04 LTS. The employer suggested and wanted that the platform
should be updated to run on Ubuntu 18.04 LTS. Updating the platform to Ubuntu 18.04
LTS meant that the group had to rework the Playbook. After doing some research on
updating the Playbook, the group quickly realized that most of the packages that the
Playbook previously had downloaded and compiled from scratch were no longer needed,
because the official Bionic Beaver repositories already had most of the prior compiled
packages. Some of the roles had to be rewritten to reflect that some of the software did
not have to be downloaded, compiled, which made it easier to install the given packages.
The group used an evening to rewrite the Playbook to make it work on Bionic Beaver.

7.1.2 vCenter Server Appliance (VCSA)

During one of the meetings where the group had prepared a demo for the employer,
it became clear that the virtual machine running vCenter Server Appliance (VCSA) had
crashed. The crash caused the group not to be able to show a demo to the employer.

After some research, the group found out that the version of vCenter Server Appliance
(VCSA) had the wrong compatibility with ESXI, which caused VCSA to crash. The version
of VCSA had been running version 6.5, while the ESXI was running version 6.7. The
group quickly decided to download and install a compatible version of VCSA to match
the ESXI Hypervisor to solve this issue permanently. Having reinstalled VCSA to run
version 6.7 it has been stable, and not a single crash has occurred ever since.

7.1.3 Sandboxes

In addition to VCSA, the group had additional difficulties regarding the Sandboxes. Dur-
ing the execution of an analysis on either Windows 8.1 or Windows 10, Cuckoo’s agent
stopped communicating with Cuckoo. The group never really found the root issue of

42

Platform for malware analysis

Cuckoo’s agent stopping to communicate with Windows 8.1 and 10. Restarting the agent,
creating a new Snapshot and running a further analysis only provides a temporary solu-
tion, because the issue reappears after running one analysis on those two Sandboxes.

7.1.4 Cuckoo

During the early testing of the platform, the group quickly encountered an error with
python’s package manager called pip. After upgrading pip to its latest version at the time
of this writing (19.1.1), Cuckoo would stop working. Cuckoo is reliant on pip version
9.0.3 to run and work properly. In addition to pip, Cuckoo does not support python
version higher than 2.7.

All of these version checks have been implemented to the Playbook, and in addition
to using version checks, the Playbook installs Cuckoo into python’s Virtual Environment.

7.2 Alternative approaches and future work

The group will discuss alternative approaches to the project and the platform, which
could be implemented in future work.

7.2.1 Docker

A big decision was to exclude Docker Containers, which is mentioned in appendix D.
The decision to exclude Docker was to be certain that the group would deliver a working
product. The employer was like-minded on the issue and wanted the group to focus on
deploying a functional product. Additionally, the platform would not have much perfor-
mance difference compared to using containers, and may even be easier to troubleshoot
with its current implementation.

7.2.2 Development methodology

When it comes to the development methodology, there were plenty of possibilities. Scrum
could have worked better when considering the sprints and have a more detailed visual
view of what needs to get done during a sprint. The choice of development method
does not mean the students choose the wrong development methodology, because the
waterfall methodology gave the group a good overview, they knew what needed to be
done during a phase and executed that well.

7.2.3 Cuckoo Sandbox

Like mentioned earlier in the thesis, Cuckoo is extremely modular. Additionally, the tun-
ing of Cuckoo is something to take into consideration. By tuning Cuckoo, the group
means that the results of the analysis can vary, based on the options enabled/disabled
by changing the configuration files, changing memory profiles used by Volatility or using
custom made Yara rules. Tuning Cuckoo was mentioned in chapter 5.5, but the tuning of
Cuckoo could potentially be different based on which sandboxes are run in the environ-
ment. Even though the options the group used provided the best test results for Windows,
might not be the case in other environments running other OS’s than Windows.

It might prove beneficial to create different Cuckoo servers to test different OS’s, this
way the Malware researcher/SOC analyst can customize the Cuckoo servers to better
analyze the type of Malware made for the given OS.

43

Platform for malware analysis

7.2.4 Automation

Even though the installation of the platform is very automated as is, there are a few more
changes that could have been implemented to automate the installation process fully.
Making the platform even more automated involves adding a new role which makes
use of regular expressions [40] to edit a line directly in a file that has already been
copied over to the server by the Playbook. By using regular expressions in the Playbook
installation, one could avoid having to follow most of the steps in chapter 5.

22 - network
23 - ip_addresses # <-- New Role
24 - start_up_cuckoo

Listing 7.1: Role added to site.yml

Additionally, this would allow the new role to use variables in

cuckoo -playbook/inventories /(production/staging)/all/
group_vars

15 ### Network cards ###
16 nic: ens160
17 ananic: ens192
18
19 ### IP Addresses ###
20 ipnic: 172.16.1.30 # <-- new variable
21 ipananic: 192.168.56.1 # <-- new variable

Listing 7.2: group_vars file

Listing 7.3 shows an example of how the file could look like:

1 ---
2 - name: Setting correct IP Address to cuckoo.conf [1

/ 2]
3 become: true
4 become_method: "{{␣cuckoo_user␣}}"
5 lineinfile:
6 dest: /home/cuckoo /. cuckoo.conf/cuckoo.conf
7 state: present
8 regexp: ’^ip =’
9 line: ’ip = "{{␣ipananic␣}}"’

10
11 - name: Setting correct IP Address to cuckoo.conf [2

/ 2]
12 become: true
13 become_method: "{{␣cuckoo_user␣}}"
14 lineinfile:
15 dest: /home/cuckoo /. cuckoo.conf/cuckoo.conf
16 state: present
17 regexp: ’^guacd_host ’
18 line: ’guacd_host = "{{␣ipananic␣}}"’

Listing 7.3: main.yml for ip_address role

44

Platform for malware analysis

It would be necessary to add more sections to main.yml in the ip_adress role by using
regular expressions to edit the IP addresses of the files that need to change. Adding reg-
ular expressions would only require some initial editing of files and the Playbook would
install perfectly. The group did not implement regular expressions, due to time limita-
tions. Using regular expressions became clear for the students as a solution to automate
the environment even further, but was realized too late into the project period.

Note: The listings above are only an example of how the group would implement
this additional role, and is only meant reference of how the Playbook could have been
written differently.

7.2.5 Sandboxes

Unfortunately, due to time constraints the group was only able to implement Windows
based Sandboxes. In future work, the project should be updated with support for sand-
boxes with MacOS and Android. In Cuckoos documentation, it was mentioned Android
analysis may not work as expected due to becoming a Cuckoo Package [41]. Cuckoo
states it is possible to use MacOS, but have no documentation on how it is done. A
variety of Sandboxes were implemented to run analysis to see how Malware reacts to
different operating systems.

Another adjustment that hopefully could be implemented in the future is the instal-
lation of more software in the Sandboxes, for example, different versions of Microsoft
Office, this is so the platform can provide better test results for a given Malware. In addi-
tion to installing more software to the Sandboxes, kernel debugging is an option that has
to be done manually. Still, it is reasonably easy to implement, by adding a COM-port to
the virtual machine, and then connecting to this COM-port with VMWare Workstation.

Kernel debugging

Something the group would like to see be implemented in the future is Kernel Debug-
ging for the Sandboxes. Kernel debugging can be done to further analyze a malware,
by directly connecting to the Windows Kernel, and by attaching the debugger to a given
process, an analyst can see what code the malware executes relative to the Kernel [42].

7.2.6 Software

In the future, the group would also like for VMCloak to be implemented into the plat-
form [43]. VMCloak is a program that hides/cloaks virtual machines by making it harder
Malware to detect it is being run in a virtual environment. The group did not imple-
ment VMCloak due to the lack of documentation when it comes to setting it up with
VMWare infrastructure. Before successfully implementing VMCloak, it would mean the
group would have had to go through a lot more trial and error to get an effective inte-
gration.

VMCloak’s documentation is based on Virtualbox. A possible solution to installing
VMCloak on VMWare, would be to create the virtual machine in Virtualbox first, and
export/import it to VMWare. The group did not have the time to test the implementation
of VMCloak but should work in theory.

45

Platform for malware analysis

7.2.7 Environment

There are also a few infrastructure changes that could be made to the platform in the
future. One of them could be to adjust the projects Playbook by moving different parts of
the platform into different dedicated servers, thereby allowing the infrastructure of the
platform to not depend on one server, and be more redundant to failure. Distributing the
infrastructure should be done to avoid losing data when upgrading the server, potentially
installing a package that would otherwise harm or break the platform.

In the group’s experience, Cuckoo can sometimes stop routing correctly, which causes
Internet and VPN routing to stop working. Without Internet routing, the malware analysis
results may be affected negatively. Due to time limitations, the group found that rolling
the Bionic Beaver server back to its fresh state, install updates and then run the Play-
book again would solve these issues. To avoid spending too much time, in the end, trou-
bleshooting the routing issues. Having dedicated servers for PostgreSQL, Elasticsearch
and Moloch, along with Suricata, the installation of the platform could be reduced to
less than three minutes making it a better choice rather than having to install it all again.

As stated previously in section 7.2.1 the group chose to abstain from implementing
Docker Containers in the projects infrastructure, nevertheless it would be beneficial to
implement it in the future because it allows the infrastructure to be used in any Environ-
ment and it also helps with redundancy by separating the platform’s tasks. Implementing
containers will not entirely remove the need for virtual machines, because a windows
container can not be run under Linux and vice versa. Since this platform is almost en-
tirely built on linux, the need for windows virtual machines would still be needed even
if implementing docker Containers.

7.3 Criticism

One of the main lessons the group learned during the assignment is that writing from
the beginning is very important. Since the group did not document too much in the
beginning, the report writing took longer than anticipated.

The group could have documented more in the early stages. Due to the lack of docu-
mentation, the group had to go back to reproduce some of the errors and setups during
the implementation and install Cuckoo through Ansible. Due to lack of documentation,
this was done to get the necessary and relevant screenshots of the installation process.

The group also discovered that meeting and working together at the university proved
to be more productive than working alone from home. As a result, the group held most
meetings at the university.

Having read Cuckoo’s documentation, the group should have dropped implementing
Windows 8.1 and 10, because these OS’s are poorly documented and badly supported
by Cuckoo. The group should have used their time implementing Android and MacOS
instead, which is something the group regrets not having implemented since Android
and MacOS was a wanted functionality by the employer.

7.4 Evaluation of the groups work

The group worked together very well, the group held meetings constantly and worked
hard in each of them. The students helped each other whenever they were stuck with

46

Platform for malware analysis

a given task, which helped keep the standards for the project high by reviewing each
others work and motivated each other throughout the project.

By using Trello, the group could see what the other members of the group were work-
ing on, and also assist them if they were stuck with the task they were given. Trello
helped keep the standards for the project high, by reviewing each other’s work and moti-
vating each other throughout the project. The group has worked a lot on the report, and
it has been re-manufactured many times to find the correct layout, and so the chapters
and its contents made sense to one another. The group feels like they have delivered a
good report that reflects the subject and the task they have been given very well.

47

Platform for malware analysis

8 Conclusion

This chapter concludes this thesis; it presents the results achieved in this project, followed
by the students’ opinions. Lastly, the students give their closing statement.

8.1 Results

NTNU SOC wanted a platform for malware analysis, which was configurable and in-
stalled through the use of Ansible. Implementation of the platform was accomplished,
although not every functionality described in the task description was fulfilled. The stu-
dents and the employer had regular contact throughout the thesis. Regular communica-
tion with the employer was massively appreciated and used when issues or uncertainties
occurred.

The employer was satisfied with the finished product. Additionally, the students felt
their job was well executed; this is why the students think the task was accomplished.

An Ansible Playbook was created to implement a fully working Cuckoo analysis plat-
form, integrated with additional tools for thorough malware analysis. Cuckoo is opti-
mized to work together with Windows OS, but works best on Windows 7 as described in
chapter testing and verification under the sandbox section 6.5.

By following chapter 5, it is possible to get a complete walk-through of the setup used
in this thesis.

8.1.1 Group achievements

This project was a tremendous learning experience; the group learned a lot about Mal-
ware analysis, the different tools, and technologies used in this project, how those tech-
nologies interact with each other and most importantly how to work as a team.

At the end of the project, the group delivered a functional platform for Malware anal-
ysis and managed to implement most of what the employer required in the task de-
scription. The group is pleased with everything achieved and learned during this project.
That being said if the group had more time, the group would have loved to implement
the technologies named in future work.

8.2 Closing statement

The students learned a lot of valuable lessons throughout this project that we will carry
with us for the rest of our lives. We hope NTNU SOC will find our platform useful and
we would like to thank Christoffer Vargtass and NTNU SOC for trusting us with such an
interesting and relevant project to work with and learn from. Furthermore, NTNU SOC
has many possibilities for how they want to use this project for both production and de-
velopment environments. The code used in the making of the automation of Cuckoo is on
an open repository on GitHub and is therefore free for anyone to use. Finally, we would
like to thank our supervisor, Eigil Obrestad, for giving us critical feedback throughout the
project, pushing us to write a better report and developing a better project.

48

Platform for malware analysis

Bibliography

[1] VMWare. 2019. What is a hypervisor? URL: https://www.vmware.com/topics/
glossary/content/hypervisor.

[2] Debain. March 2019. systemd - system and service manager. URL: https://
wiki.debian.org/systemd.

[3] Oktavianto, D. & Muhardianto, I. Cuckoo Malware Analysis, chapter 02. Packt
Publishing, 2013.

[4] Ubuntu. April 2019. Ubuntu lifecycle (eol). URL: https://endoflife.software/
operating-systems/linux/ubuntu.

[5] JabRef. Bibliography reference manager. URL: https://www.jabref.org/#jabref.

[6] Sikorski, M. & Honig, A. February 2012. Practical malware analysis - the goals
of malware analysis. O’REILLY. URL: https://learning.oreilly.com/library/
view/practical-malware-analysis/9781593272906/ch01s01.html.

[7] Av-test. April 2019. Malware. URL: https://www.av-test.org/en/statistics/
malware/.

[8] McDowell, R. What are the disadvantages of antiviruses? URL: https://
www.techwalla.com/articles/what-are-the-disadvantages-of-antiviruses.

[9] Sikorski, M. & Honig, A. February 2012. Practical malware analysis - malware
analysis in virtual machines. O’REILLY. URL: https://learning.oreilly.com/
library/view/practical-malware-analysis/9781593272906/ch03.html.

[10] Sikorski, M. & Honig, A. February 2012. Practical malware analysis - what is mal-
ware analysis? O’REILLY. URL: https://learning.oreilly.com/library/view/
practical-malware-analysis/9781593272906/pr06s01.html.

[11] Sikorski, M. & Honig, A. February 2012. Practical malware analysis - malware
analysis techniques. O’REILLY. URL: https://learning.oreilly.com/library/
view/practical-malware-analysis/9781593272906/ch01s02.html.

[12] Krister, K. M. Automated analyses of malicious code. Master’s thesis, Norwegian
University of Science and Technology, 2009. URL: http://hdl.handle.net/11250/
251364.

[13] Oktavianto, D. & Muhardianto, I. Cuckoo Malware Analysis, chapter 01. Packt
Publishing, 2013. URL: https://learning.oreilly.com/library/view/cuckoo-
malware-analysis/9781782169239/ch01s04.html.

[14] Impe, K. V. June 2015. Signature-based detection with yara. URL: https://
securityintelligence.com/signature-based-detection-with-yara/.

49

https://www.vmware.com/topics/glossary/content/hypervisor
https://www.vmware.com/topics/glossary/content/hypervisor
https://wiki.debian.org/systemd
https://wiki.debian.org/systemd
https://endoflife.software/operating-systems/linux/ubuntu
https://endoflife.software/operating-systems/linux/ubuntu
https://www.jabref.org/#jabref
https://learning.oreilly.com/library/view/practical-malware-analysis/9781593272906/ch01s01.html
https://learning.oreilly.com/library/view/practical-malware-analysis/9781593272906/ch01s01.html
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://www.techwalla.com/articles/what-are-the-disadvantages-of-antiviruses
https://www.techwalla.com/articles/what-are-the-disadvantages-of-antiviruses
https://learning.oreilly.com/library/view/practical-malware-analysis/9781593272906/ch03.html
https://learning.oreilly.com/library/view/practical-malware-analysis/9781593272906/ch03.html
https://learning.oreilly.com/library/view/practical-malware-analysis/9781593272906/pr06s01.html
https://learning.oreilly.com/library/view/practical-malware-analysis/9781593272906/pr06s01.html
https://learning.oreilly.com/library/view/practical-malware-analysis/9781593272906/ch01s02.html
https://learning.oreilly.com/library/view/practical-malware-analysis/9781593272906/ch01s02.html
http://hdl.handle.net/11250/251364
http://hdl.handle.net/11250/251364
https://learning.oreilly.com/library/view/cuckoo-malware-analysis/9781782169239/ch01s04.html
https://learning.oreilly.com/library/view/cuckoo-malware-analysis/9781782169239/ch01s04.html
https://securityintelligence.com/signature-based-detection-with-yara/
https://securityintelligence.com/signature-based-detection-with-yara/

Platform for malware analysis

[15] Porup, J. July 2018. What is the tor browser? how it works and how it can help
you protect your identity online. URL: https://www.csoonline.com/article/
3287653/what-is-the-tor-browser-how-it-works-and-how-it-can-help-
you-protect-your-identity-online.html.

[16] O’DRISCOLL, A. April 2019. What is a vpn connection, what does it do, and how do
you set one up? URL: https://www.comparitech.com/blog/vpn-privacy/what-
is-a-vpn-connection/.

[17] Honig, A. & Sikorski, M. Practical Malware Analysis, chapter 03. No Starch
Press, 2012. URL: https://learning.oreilly.com/library/view/practical-
malware-analysis/9781593272906/ch04s08.html.

[18] Foundation, C. April 2019. Best practices. URL: https://docs.ansible.com/
ansible/latest/user_guide/playbooks_best_practices.html.

[19] Synopsys-Editorial-Team. March 2017. Top 4 software development method-
ologies. URL: https://www.synopsys.com/blogs/software-security/top-4-
software-development-methodologies/.

[20] Atlassian. URL: https://trello.com/about.

[21] Atlassian, D. R. What is kanban? URL: https://www.atlassian.com/agile/
kanban.

[22] Foundation, C. October 2018. Cuckoo sandbox documentation. URL: https:
//buildmedia.readthedocs.org/media/pdf/cuckoo/latest/cuckoo.pdf.

[23] Vanderzyden, J. September 2015. What is elasticsearch, and how can i use it? URL:
https://qbox.io/blog/what-is-elasticsearch.

[24] Suricata. Ubuntu installation - personal package archives (ppa). URL:
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/
Ubuntu_Installation_-_Personal_Package_Archives_(PPA).

[25] Moloch. 2019. Download moloch. URL: https://molo.ch/downloads.

[26] January 2018. Elasticsearch throws an unhandled exception! Github Issues. URL:
https://github.com/cuckoosandbox/cuckoo/issues/2085.

[27] Elasticsearch 5.6.16. URL: https://www.elastic.co/downloads/past-releases/
elasticsearch-5-6-16.

[28] Digitalocean. URL: https://www.digitalocean.com/.

[29] Dhatheway. February 2018. Rooter not starting tun interface or able to reach the
internet 2118. URL: https://github.com/cuckoosandbox/cuckoo/issues/2118.

[30] Foundation, C. 2018. Network configuration. URL: https://
cuckoo.readthedocs.io/en/latest/installation/guest/network/.

[31] Foundation, C. April 2019. Ansible documentation. URL: https://
docs.ansible.com/ansible/latest/index.html.

50

https://www.csoonline.com/article/3287653/what-is-the-tor-browser-how-it-works-and-how-it-can-help-you-protect-your-identity-online.html
https://www.csoonline.com/article/3287653/what-is-the-tor-browser-how-it-works-and-how-it-can-help-you-protect-your-identity-online.html
https://www.csoonline.com/article/3287653/what-is-the-tor-browser-how-it-works-and-how-it-can-help-you-protect-your-identity-online.html
https://www.comparitech.com/blog/vpn-privacy/what-is-a-vpn-connection/
https://www.comparitech.com/blog/vpn-privacy/what-is-a-vpn-connection/
https://learning.oreilly.com/library/view/practical-malware-analysis/9781593272906/ch04s08.html
https://learning.oreilly.com/library/view/practical-malware-analysis/9781593272906/ch04s08.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_best_practices.html
https://www.synopsys.com/blogs/software-security/top-4-software-development-methodologies/
https://www.synopsys.com/blogs/software-security/top-4-software-development-methodologies/
https://trello.com/about
https://www.atlassian.com/agile/kanban
https://www.atlassian.com/agile/kanban
https://buildmedia.readthedocs.org/media/pdf/cuckoo/latest/cuckoo.pdf
https://buildmedia.readthedocs.org/media/pdf/cuckoo/latest/cuckoo.pdf
https://qbox.io/blog/what-is-elasticsearch
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Ubuntu_Installation_-_Personal_Package_Archives_(PPA)
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Ubuntu_Installation_-_Personal_Package_Archives_(PPA)
https://molo.ch/downloads
https://github.com/cuckoosandbox/cuckoo/issues/2085
https://www.elastic.co/downloads/past-releases/elasticsearch-5-6-16
https://www.elastic.co/downloads/past-releases/elasticsearch-5-6-16
https://www.digitalocean.com/
https://github.com/cuckoosandbox/cuckoo/issues/2118
https://cuckoo.readthedocs.io/en/latest/installation/guest/network/
https://cuckoo.readthedocs.io/en/latest/installation/guest/network/
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html

Platform for malware analysis

[32] Forked from julianoborbara, edited by Stian, N. & Daniel. May 2019. Ansible-
cuckoo. URL: https://github.com/Desiqvel/Ansible-Cuckoo.

[33] Drake, M. May 2018. How to set up an openvpn server on ubuntu
18.04. URL: https://www.digitalocean.com/community/tutorials/how-to-
set-up-an-openvpn-server-on-ubuntu-18-04.

[34] Gaynor, A. August 2014. Enabling certificate verification by default for stdlib http
clients. URL: https://www.python.org/dev/peps/pep-0476/.

[35] Foundation, C. 2018. Ioerror:[errno 24] too many open files. URL: https://
cuckoo.sh/docs/faq/#ioerror-errno-24-too-many-open-files.

[36] EasyEngine. 2019. Increase “open files limit”. URL: https://easyengine.io/
tutorials/linux/increase-open-files-limit.

[37] Foundation, C. 2018. Creation of the virtual machine. URL: https://
cuckoo.readthedocs.io/en/latest/installation/guest/creation/.

[38] Ganacharya, T. January 2018. A worthy upgrade: Next-gen security
on windows 10 proves resilient against ransomware outbreaks in 2017.
URL: https://www.microsoft.com/security/blog/2018/01/10/a-worthy-
upgrade-next-gen-security-on-windows-10-proves-resilient-against-
ransomware-outbreaks-in-2017/.

[39] julianoborba. Mars 2018. Ansible-cuckoo. URL: https://github.com/
julianoborba/Ansible-Cuckoo.

[40] Inc., R. H. March 2019. lineinfile - ensure a particular line is in a file, or re-
place an existing line using a back-referenced regular expression. URL: https:
//docs.ansible.com/ansible/2.4/lineinfile_module.html.

[41] Foundation, C. Configuration (android analysis). URL:
http://docs.cuckoosandbox.org/en/latest/installation/host/
configuration_android/.

[42] everdox. July 2017. Setting up kernel debugging using windbg and
vmware. URL: https://www.triplefault.io/2017/07/setting-up-kernel-
debugging-using.html.

[43] Bremer, J. 2015. Vmcloak documentation. URL: https://
vmcloak.readthedocs.io/en/latest/.

51

https://github.com/Desiqvel/Ansible-Cuckoo
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-openvpn-server-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-openvpn-server-on-ubuntu-18-04
https://www.python.org/dev/peps/pep-0476/
https://cuckoo.sh/docs/faq/#ioerror-errno-24-too-many-open-files
https://cuckoo.sh/docs/faq/#ioerror-errno-24-too-many-open-files
https://easyengine.io/tutorials/linux/increase-open-files-limit
https://easyengine.io/tutorials/linux/increase-open-files-limit
https://cuckoo.readthedocs.io/en/latest/installation/guest/creation/
https://cuckoo.readthedocs.io/en/latest/installation/guest/creation/
https://www.microsoft.com/security/blog/2018/01/10/a-worthy-upgrade-next-gen-security-on-windows-10-proves-resilient-against-ransomware-outbreaks-in-2017/
https://www.microsoft.com/security/blog/2018/01/10/a-worthy-upgrade-next-gen-security-on-windows-10-proves-resilient-against-ransomware-outbreaks-in-2017/
https://www.microsoft.com/security/blog/2018/01/10/a-worthy-upgrade-next-gen-security-on-windows-10-proves-resilient-against-ransomware-outbreaks-in-2017/
https://github.com/julianoborba/Ansible-Cuckoo
https://github.com/julianoborba/Ansible-Cuckoo
https://docs.ansible.com/ansible/2.4/lineinfile_module.html
https://docs.ansible.com/ansible/2.4/lineinfile_module.html
http://docs.cuckoosandbox.org/en/latest/installation/host/configuration_android/
http://docs.cuckoosandbox.org/en/latest/installation/host/configuration_android/
https://www.triplefault.io/2017/07/setting-up-kernel-debugging-using.html
https://www.triplefault.io/2017/07/setting-up-kernel-debugging-using.html
https://vmcloak.readthedocs.io/en/latest/
https://vmcloak.readthedocs.io/en/latest/

Platform for malware analysis

A Task Description

Oppdragsgiver
Oppdragsgiver: Seksjon for digital sikkerhet, IT-avdelingen NTNU
Kontaktperson: Christoffer V. Hallstensen, Faggruppeleder SOC
Adresse: NTNU i Gjøvik
E-post: christoffer.hallstensen@ntnu.no
Tel: 61 13 51 45 | 481 35 180

Plattform for skadevareanalyse
NTNU SOC er en operativ digital beredskapsfunksjon i seksjon for digital sikkerhet og har
hovedansvaret for å detektere trusler mot NTNU, utføre sikkerhetsanalyse og respondere til
truslene i form av preventive tiltak eller hendelseshåndtering. NTNU SOC må daglig gjøre
skadevareanalyse for å best kunne beskytte NTNUs brukere og systemer.

Oppgave
Designe og implementere et komplett, agilt system for automatisk skadevareanalyse for å
støtte automatisk og manuell sikkerhetsanalyse ved NTNU SOC. Konfigurasjon og utrulling av
komponentene i systemet må automatiseres slik at systemet kan gjenskapes i utvikling, test
og produksjon.

Ønsket funksjonalitet:

• Konfigurasjonsstyringssystem med versjonshåndtering
• Bruk av kontainerteknologi for smidig utvikling, test og produksjon av komponenter
• Integrasjon mot systemer og tjenester for trusseletteretning
• Støtte for dynamisk og statisk analyse
• Støtte for automatisk og manuell analyse
• Støtte for sandkasser av Windows, MacOS og Android
• Støtte for VPN, Tor og simulerte nettverkstjenester
• Støtte for IDS
• Distribuert arkitektur
• Dokumentasjon / Wiki

Funksjonaliteten beskrevet over er ikke en nødvendigvis en fullstendig liste og begrensende,
det er muligheter for å utvide funksjonalitet og da spesielt i retning av utvikling.

Utvikling
Dette prosjektet er hovedsakelig et implementasjon og driftsprosjekt, og det er forventet at
sluttproduktet er et tilnærmet produksjonsklart system. Prosjektet passer for en gruppe på
2-5 studenter avhengig av funksjonalitet og dypde. I Prosjektet kan studentene forvente å
tilegne seg kunnskap innen:

• Agile metoder, automasjon og DevOps metodikk
• Virtualisering, kontainere og sandkasseteknolgi
• Nettverk og sikkerhetsmodeller
• Verktøy og metodikk for enkel skadevareanalyse

Figure 18: Task Description

52

Platform for malware analysis

B Project Agreement

53

Platform for malware analysis

54

Platform for malware analysis

Figure 19: Task Description

55

Platform for malware analysis

C Project Plan

C.1 Introduction

In these evolving times, detecting and removing Malware artifacts is not enough: it is
vitally important to understand how they operate in order to understand the context, the
motivations, and the goals of a breach.

C.2 Goals and Scope

C.2.1 Project’s goals

Design and implement a complete and agile platform automatic Malware analysis. The
project aims to assist NTNU SOC in its daily work by detecting threats against NTNU and
analyzing these threats.

Result goals

• Automated configuration and deployment of system components
• Immutable platform for use in development, test and production
• Platform for simple malware analysis

Effect goals

• Automatic and manual security analysis of malware
• Analyze new types of malware, as well as existing ones
• Used in context of lectures in the future

C.2.2 Project’s scope

Brief description of the project

This project aims to create a platform for Malware analysis by using a handful of tools
to automate and administrate the installation process along with operating the system
when it is finished. The main focus will be Windows(100% implementation and malware
analysis) and if time allows it, the project will include Android and MacOS.

Timeframe

The project period will be from 10.01.2019-20.05.2019. After the final date, the work on
the project will cease regardless of the project’s state unless arrangements are made.

Employer’s scope

Requirements / limitations for project and final report:

The employer wants a platform that is mostly built on Containers. The platform must
have a configuration component that allows for version management and has integration
towards systems for threat intelligence. It is required that there is an implementation
of different network services such as TOR and/or VPN to Spoof the analyzers location
and lure the attacker into unleashing the full potential of the Malware for better analy-
sis. The platform will be built upon VMWare and containers will be built using Docker.
Sandboxes will be run in VMWare, while Cuckoo will be used for malware analysis. The

56

Platform for malware analysis

entire platform will be administrated through the use of Ansible. Network Intrusion De-
tection System (IDS) systems will be used to ensure that malware is detected by the use
of Signatures and to help analysts identify the signature set a specific malware sample
triggers.

Student’s scope

The following requirements/limitations the students has to deliver/do for this project:

Write a project plan containing scheduling of the different phases during the project
(Delivered to the supervisor). Design and implement a complete agile system for auto-
matic and manual analysis of Malware. The configuration and deployment of compo-
nents in the system with DevOps in mind. (A final report to be graduated in Bachelor
in IT-Operations and Information Security at NTNU Gjøvik (Delivered to NTNU Gjøvik).
Finally have a presentation of the thesis.

C.3 Organization

C.3.1 Organizational structure

Secretary Comunications officer

Nestor Fortique Stian Rønningen

Leader

Text
Daniel Siqveland

Eigil Obrestad
NTNUSOC
Christoffer

Hallstensen

Supervisor Employer -
Contact person

Figure 20: The organizational structure of this project

57

Platform for malware analysis

C.3.2 Roles

The following roles have been specified for this project:

• Employer & Product Owner - Christoffer Vargtass Hallstensen representing NTNU
SOC

◦ Ensure the quality of the student’s works and proof that it matches the wished
requirements.

◦ Provide the needed information about systems for the students during the
defined period.

• Supervisor - Eigil Obrestad

◦ Follow the student’s working process.
◦ Provide feedback, and ensure that the students is on track.

• Students & task performers - Daniel E. Krohn Siqveland, Nestor Gerrardo Fortique
& Stian Rønningen

◦ Daniel, as the chosen leader of the group, will set time and dates for when the
group meets.

◦ Nestor will be the secretary, responsible of writing summaries of meetings.
◦ Stian will be the one in charge for sending mails and arranging meetings with

the supervisor and the employer.
◦ Responsible for project’s time management and delivering the requirements

of the project within the deadlines.

C.3.3 Time management and meetings

During this project, the students work Monday-Friday and sometimes during weekends.
The students are also responsible of maintaining the communication with their employer.
A meeting between the employer and the students is defined by dropping by the office
or arranging meetings by email if needed, and could be changed later according to the
process and time management. Additionally, the students are responsible for the meet-
ings between the supervisor and the students. It is already defined to be once each week
on Mondays.

C.4 Risk Management

This section will contain the Risks that could appear during this project. Each risk will
be evaluated relative to it’s likelihood to happen and consequence if a risk occurs. In
the risk analysis subsection under, it’s defined the likelihood and consequence on a scale
from one (1) to five (5). Where one is defined as None Critical and five is considered
Critical.

58

Platform for malware analysis

C.4.1 Risk analysis

Nr# Risk Likelihood Consequence Countermeasure

1 The project is not completed
before the deadline or deliv-
ery delay. Reasons could be
Backup lost, poor estimate of
points in activities.

2 5 Yes

2 Major changes in require-
ments specifications from
employer.

1 4 No

3 Loss of resources (data or re-
port).

2 5 Yes

4 Project shutdown 1 5 No
5 The final product does not

match the requirements of
the employer.

1 4 Yes

Table 5: Project’s risks

C.4.2 Countermeasures

To ensure the quality of the student’s work in the project, a list of countermeasures for
the mentioned Risks is listed in the table below.

Nr# Risk Countermeasures

1 The students will be using a more agile version of the waterfall development
model. So, both the quality of the work and the delivery should be matching
the requirements.

3 The data and the report of the project is vulnerable to be lost. Therefore, it
should be stored and protected. Also, a back-up of data will be often during
the project period. The report is hosted in Overleaf cloud storage and a back-
up will happen periodically.

5 The students should organize the work and share the process with the supervi-
sor and employer to ensure that they are following the right track.

Table 6: Project’s risk countermeasures

59

Platform for malware analysis

C.5 Planning & Report

C.5.1 Working process

Due to the task requirements from the employer, the project is divided into four phases.
The project will go through comprehensive testing, setup of tools and Scripts to make
the end product as simple as possible along with having included the requirements from
the employer.

Project Planning

Research

Preparation

Implementation

Set-up
tools

Set-up
Environment

Automate
Environment

Analyze
Findings

Figure 21: Working process during the project

• Phase 1 - Project planning

◦ Define the goals of the project.
◦ Set up a plan of the working process.
◦ Establish communications with the supervisor and the employer.

• Phase 2 - Research

◦ The students use the period to obtain the relevant information for the project,
by learning and reading about the different tools based on documentations.

◦ It is possible that during this phase the predefined project plan will change if
needed.

• Phase 3 - Preparation

◦ The students use this time to prepare for the experiment by preparing and
learning the tools for the project. This includes preparing to deploy the Envi-
ronment based on best practices.

• Phase 4 - Implementation

◦ The implementation phase contains 4 sub-phases that should run in parallel:

60

Platform for malware analysis

· Phase 4.1 - Set up the required tools
· Phase 4.2 - Set up environment
· Phase 4.3 - Automate environment
· Phase 4.4 - Analyze findings

The report (thesis) will be written in parallel with all phases as the students are starting
to see a working product.

C.5.2 Experiment’s Notes

The reason for running all the sub-phases at the same time under the experiment is to
ensure the quality of the environment. What is likely to happen the first time is that the
students set up the environment manually and then automate with Ansible and Docker
from there to create an agile environment that can be used in later situations. NTNU’s IT-
department has been very kind to lend the students a few servers to run the environment
on, because the students laptops were not up to the task of running the environment.

C.6 Schedule

C.6.1 Gantt diagram

The figure below is a Gantt Diagram that shows how the mentioned phases in C.5.1 are
divided over 18 weeks and four days as mentioned in C.2.2.

Bachelor 2019 - Platform for malware analysis
TASK NAME START DATE END DATE START ON

DAY*
DURATION*

(WORK DAYS)
Weeks - Period 10.01.2019 - 20.05.2019

Phases
Completed product 1/10 5/20 0 131
1 - Project planning 1/10 2/1 0 23
2 - Start-up phase 2/1 2/22 22 22
3 - Experimentation preparation 2/22 3/29 43 36
3.1 - Reading documentations 2/22 3/8 43 15
3.2 - Preparation deployment 3/8 3/29 57 22
4 - Experiment Phase 3/29 5/16 78 49
4.1 - Setup tools 3/29 5/16 78 49
4.2 - Setup environment 3/29 5/16 78 49
4.3 - Automate Environment 3/29 5/16 78 49
4.4 - Analyze findings 3/29 5/16 78 49
5 - Documentation/Wiki 5/9 5/16 119 8
Last fixes 5/16 5/20 126 5
Bachelor thesis report writing 1/10 5/20 0 131

Figure 22: Gantt chart of the project flow and phases timing

Planning is taking a part of this thesis from the start, and it is estimated to take three
weeks of work. During the planning, the students will use the time to obtain knowledge
about the assignment.

The next phase in line is the start-up phase. The students will start learning and
reading about the tools - what the best practices are, how to implement them and why
they should be implemented. Estimated time for this phase will be roughly three weeks.

After getting the basics, the project will enter the preparation-for-experimentation
phase. This is the phase where tools are tested for the first time, getting the hands-on
experience. Since some of the tools can be very overwhelming, the time frame for this
phase is set to three weeks.

The students will use five weeks of the project to implement the environment by
automating installation of components. This is also the phase where everything will be
tested, including testing Malware in the environment and analyzing the system thor-
oughly.

Even though the thesis will be written in parallel with all the phases, the project

61

Platform for malware analysis

will have four weeks at the end where all of the time will be dedicated to writing and
polishing the thesis.

62

Platform for malware analysis

D Midterm review

This section presents the the midterm review, where the students met with their em-
ployer. The meeting took place 8th of October and lasted one hour.

D.1 Status of the project before the meeting

The students had a working step by step guide to install, configure and run Cuckoo, but
not a working Ansible Playbook that downloads and installs everything necessary to run
Cuckoo. The Gantt-diagram in C.6.1 was followed and the students where on schedule,
with focus on the technical solution. This resulted in less writing the thesis than originally
planned. In preparation to the meeting the students had prepared a demo run with an
Malware that would show how Cuckoo worked. Also prepared a few questions that would
help with clarifying the process ahead.

D.2 Summary of the meeting

The employer answered questions regarding how much of the setup was to be automated
with Ansible. The students got an impression that the employer was more than happy
with the environment so Cuckoo could run smoothly. When it was time to present the
demo to the employer there was an issue with vCenter Server Appliance resulting in the
demo not working, but luckily the students where able to present the results of an earlier
analysis performed prior to the meeting.

The following two main factors were discussed during the meeting:

1. Clarification
During the meeting the students got clarification on what to automate. The wanted
functionality from the employer was that the installation process of Cuckoo would
be automated. Support for more Operating System than Windows was also dis-
cussed.

2. Docker
During the Planning Phase (see Appendix C) the students mentioned Docker to be
used as a way to run Cuckoo. This proved to be more challenging than helpful.
The students then chose to abandon the docker implementation of Cuckoo and
rather focus on getting a manual installation of it working. This resulted in a much
cleaner approach to the installation process itself by allowing easier automation
with Ansible. Following this approach will also leave the installation with a larger
backlog of earlier analyzes, restricted only by harddrive space.

D.3 The student’s decision

Due to time constraints, the students chose to only implement and test the platform on
a Windows environment. If time allows it, implementation of MacOS, iOS and Android
will be included in the platform. All of the Operating System’s mentioned in this section
are supported by Cuckoo, but not yet tested in this project.

63

Platform for malware analysis

D.4 Modifying the topic

In order to modify the original topic to a new one, several elements has been taken into
consideration, such as:

• The predefined project’s motivation, goals and research question.
The employer wish was to have as many Operating System as possible, but due
to time constraints, the students and the employer agreed on fully implementing
Windows as the primary goal.

• Time constraints
The manual installation and troubleshooting took way longer than the students
anticipated. Additionally Cuckoo’s configuration opportunities and documentation
were hard to familiarize and learn. As a result there wasn’t much time to write
on the thesis, the students focused more on providing a working prototype to show
the employer, also gathering enough knowledge about the environment to get more
specific questions.

64

Platform for malware analysis

E Route.py

1 #!/usr/bin/python
2 import os
3 import subprocess
4
5 IP_ROUTE_TABLES=’/etc/iproute2/rt_tables ’
6
7 if __name__ == ’__main__ ’:
8 config_name = os.environ.get(’config ’)
9 local_ip = os.environ.get(’ifconfig_local ’)

10 vpn_gateway = os.environ.get(’route_vpn_gateway ’)
11 common_name = os.environ.get(’common_name ’)
12 dev = os.environ.get(’dev’)
13 ip_table = common_name
14 print ’ip␣rule␣add␣from␣{}␣table␣{}’.format(

local_ip , ip_table)
15 print ’ip␣route␣add␣default␣via␣{}␣dev␣{}␣table␣{}

’.format(vpn_gateway , dev , ip_table)
16 subprocess.call([’ip’, ’rule’, ’add’, ’from’,

local_ip , ’table’, ip_table])
17 subprocess.call([’ip’, ’route’, ’add’, ’default ’,’

via’, vpn_gateway , ’dev’, dev , ’table’,
ip_table])

65

Platform for malware analysis

F OpenVPN Systemd

1 [Unit]
2 Description=Openvpn Client Service
3 After=network -online.target
4 Wants=network -online.target
5
6 [Service]
7 ExecStart =/usr/sbin/openvpn --config openvpn.conf --

script -security 2 --route -noexec --route -up route.
py

8 Restart=on-failure
9 User=root

10 Group=root
11 WorkingDirectory =/etc/openvpn/client
12
13 [Install]
14 WantedBy=multi -user.target

66

Platform for malware analysis

G Cuckoo Systemd

G.1 Cuckoo Rooter

1 [Unit]
2 Description=Cuckoo Rooter Service
3 After=network.target openvpnclient.service
4
5 [Service]
6 ExecStart =/opt/cuckoo/bin/cuckoo rooter
7 Restart=on-failure
8 User=root
9 Group=root

10 WorkingDirectory =/home/cuckoo /. cuckoo
11
12 [Install]
13 WantedBy=multi -user.target

G.2 Cuckoo

1 [Unit]
2 Description=Cuckoo Sandbox Service
3 After=network.target cuckoo_rooter.service
4
5 [Service]
6 ExecStart =/opt/cuckoo/bin/cuckoo
7 Restart=on-failure
8 User=cuckoo
9 Group=cuckoo

10 WorkingDirectory =/home/cuckoo /. cuckoo
11
12 [Install]
13 WantedBy=multi -user.target

67

Platform for malware analysis

G.3 Cuckoo Web

1 [Unit]
2 Description=Cuckoo Web Service
3 After=network.target cuckoo.service
4
5 [Service]
6 ExecStart =/opt/cuckoo/bin/cuckoo web runserver

172.16.1.30:8880
7 Restart=on-failure
8 User=cuckoo
9 Group=cuckoo

10 WorkingDirectory =/home/cuckoo /. cuckoo
11
12 [Install]
13 WantedBy=multi -user.target

G.4 Cuckoo API

1 [Unit]
2 Description=Cuckoo API Service
3 After=network.target cuckoo_web.service
4
5 [Service]
6 ExecStart =/opt/cuckoo/bin/cuckoo api --host

172.16.1.30 --port 8881
7 Restart=on-failure
8 User=cuckoo
9 Group=cuckoo

10 WorkingDirectory =/home/cuckoo /. cuckoo
11
12 [Install]
13 WantedBy=multi -user.target

68

Platform for malware analysis

H vsphere.py

This is the version that Cuckoo installs by default

97 # Workaround for PEP -0476 issues in recent
Python versions

98 if self.options.vsphere.unverified_ssl:
99 sslContext = ssl.SSLContext(ssl.

PROTOCOL_TLSv1)
100 sslContext.verify_mode = ssl.CERT_NONE
101 self.connect_opts["sslContext"] =

sslContext
102 log.warn("Turning␣off␣SSL␣certificate␣

verification!")

This is the patched version that works when Cuckoo interacts with VCSA. Notice that
line 99 has changed from ssl.PROTOCOL_TLSv1 to ssl.PROTOCOL_v23.

97 # Workaround for PEP -0476 issues in recent
Python versions

98 if self.options.vsphere.unverified_ssl:
99 sslContext = ssl.SSLContext(ssl.

PROTOCOL_SSLv23)
100 sslContext.verify_mode=ssl.CERT_NONE
101 self.connect_opts["sslContext"] =

sslContext
102 log.warn("Turning␣off␣SSL␣certificate␣

verification!")

69

Platform for malware analysis

I Sample Virtual Machine config - vsphere.conf

91 [Win7]
92 # Specify the label name of the current machine as

specified on your
93 # vSphere host.
94 label = Win7
95
96 # Specify the operating system platform used by

current machine
97 # [windows/darwin/linux].
98 platform = windows
99

100 # Please specify the name of the snapshot. This
snapshot should be taken

101 # while the machine is running and the agent started.
102 snapshot = clean_agent
103
104 # Specify the IP address of the current virtual

machine. Make sure that the
105 # IP address is valid and that the host machine is

able to reach it. If not ,
106 # the analysis will fail.
107 ip = 192.168.56.7
108
109 # (Optional) Specify the OS profile to be used by

volatility for this
110 # virtual machine. This will override the

guest_profile variable in
111 # memory.conf which solves the problem of having

multiple types of VMs
112 # and properly determining which profile to use.
113 # Profiles defined by Volatility , see link below for

more information
114 # https :// github.com/volatilityfoundation/volatility/

wiki /2.6-Win -Profiles
115 # Windows profiles only. Linux and Mac OS profiles can

be found in the link below
116 # https :// github.com/volatilityfoundation/profiles
117 osprofile = Win7SP1x64_23418

70

Platform for malware analysis

J Cuckoo Web GUI options

 Reset Analyze

 con�gure

 Con�gure your Analysis

 Global Advanced Options
Options you change here are globally persisted to all �les in your
selection.

Network Routing
(https://cuckoo.sh/docs/installation/host/routing.html)

NONE DROP INTERNET INETSIM TOR

Package Priority

Timeout

SHORT
60

MEDIUM
120

LONG
300 ... SECONDS

Options

Remote Control

Enables Guacamole UI for VM

Enable Injection

Enable behavioral analysis.

Process Memory Dump

Full Memory Dump

If Volatility has been enabled, process an entire VM memory
dump with it.

Enforce Timeout

Enable Simulated Human Interaction

disable this feature for a better experience when using Remote
Control

EXTRA
OPTIONS

What can I use?
(https://cuckoo.sh/docs/usage/packages.html)

NAME VALUE

name value

To add a new option, type the option name + value and hit enter. it
will add itself to the list. Remove an item by clicking the right remove

icon.

Machine

©2010-2018 Cuckoo Sandbox (https://www.cuckoosandbox.org)

(�letree:expandAllFolders)

(�letree:collapseAllFolders)

(�letree:selectAll)

(�l

1.7 MiB

 cpu-z_1.87-en.exe

 Selection

 Search selection

 CPU-Z_1.87-EN.EXE

(1)

These �les you selected will be included in your analysis. When
ready, click 'analyze' next to the page title.

submit �le analyze

VPN via Select

default

Win7

EXTENSION

(/)

Dashboard
(/dashboard/)

 Recent
(/analysis/)

 Pending
(/analysis/pending/)

 Search
(/analysis/search/)

Submit

(/submit/)

Import
(/analysis/import/)

C
re
at
ed
 in
 M
as
te
r P
D
F
Ed
ito
r

Figure 23: Cuckoo Web GUI options

71

Platform for malware analysis

K Ansible directory structure

Ansible -Cuckoo/
|-- cuckoo -playbook
| |-- inventories
| | |-- production
| | | |-- group_vars
| | | | --- all
| | | --- hosts
| | --- staging
| | |-- group_vars
| | | --- all
| | --- hosts
| |-- roles
| | |-- build_directory
| | | --- tasks
| | | main.yml
| | |-- cuckoo
| | | |-- files
| | | | |-- auxiliary.conf
| | | | |-- avd.conf
| | | | |-- cuckoo.conf
| | | | |-- esx.conf
| | | | |-- kvm.conf
| | | | |-- limits.conf
| | | | |-- memory.conf
| | | | |-- physical.conf
| | | | |-- processing.conf
| | | | |-- qemu.conf
| | | | |-- reporting.conf
| | | | |-- routing.conf
| | | | |-- sysctl.conf
| | | | |-- virtualbox.conf
| | | | |-- vmware.conf
| | | | |-- vsphere.conf
| | | | |-- vsphere.py
| | | | --- xenserver.conf
| | | --- tasks
| | | --- main.yml
| | |-- cuckoo_user
| | | --- tasks
| | | --- main.yml
| | |-- elasticsearch
| | | |-- files
| | | | --- elasticsearch.yml
| | | --- tasks
| | | --- main.yml
| | |-- inetsim
| | | |-- files

72

Platform for malware analysis

| | | | |-- inetsim
| | | | --- inetsim.conf
| | | --- tasks
| | | --- main.yml
| | |-- moloch
| | | |-- files
| | | | |-- Configure
| | | | |-- molochcapture.service
| | | | --- molochviewer.service
| | | --- tasks
| | | --- main.yml
| | |-- network
| | | --- tasks
| | | --- main.yml
| | |-- openvpn
| | | |-- files
| | | | |-- openvpnclient.service
| | | | |-- openvpn.conf
| | | | |-- route.py
| | | | --- rt_tables
| | | --- tasks
| | | --- main.yml
| | |-- postgresql
| | | --- tasks
| | | --- main.yml
| | |-- python
| | | --- tasks
| | | --- main.yml
| | |-- python_packages
| | | --- tasks
| | | --- main.yml
| | |-- start_up_cuckoo
| | | |-- files
| | | | |-- cuckoo_api.service
| | | | |-- cuckoo_rooter.service
| | | | |-- cuckoo.service
| | | | --- cuckoo_web.service
| | | --- tasks
| | | --- main.yml
| | |-- suricata
| | | |-- files
| | | | |-- oinkmaster.conf
| | | | |-- suricata
| | | | |-- suricata.log
| | | | --- suricata.yaml
| | | --- tasks
| | | --- main.yml
| | |-- tor
| | | |-- files
| | | | --- torrc
| | | --- tasks
| | | --- main.yml
| | |-- ubuntu_packages

73

Platform for malware analysis

| | | --- tasks
| | | --- main.yml
| | |-- volatility
| | | --- tasks
| | | --- main.yml
| | --- yara
| | --- tasks
| | --- main.yml
| --- site.yml
|-- install_ansible.sh
|-- LICENSE.md
--- README.md

49 directories , 62 files

Listing K.1: Ansible directory structure

74

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

nf
or

m
at

io
n

Se
cu

ri
ty

 a
nd

C
om

m
un

ic
at

io
n

Te
ch

no
lo

gy

B
ac

he
lo

r’
s

pr
oj

ec
t

Daniel Krohn Siqveland
Nestor Gerrardo Fortique
Stian Rønningen

Platform for malwareanalysis

Plattform for skadevareanalyse

Bachelor’s project in IT-Drift og Informasjonssikkerhet
Supervisor: Eigil Obrestad

May 2019

	Preface
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Glossary
	Introduction
	Problem description
	Goals and research question
	Scope
	Limitation of scope

	Motivation
	Roles
	Employer
	Supervisor
	Authors

	Students experience
	Previous competence

	About the report
	Project period

	Target audience
	Thesis structure

	Background
	Virtual machine
	Malware
	Malware analysis

	Cuckoo Sandbox
	What is Cuckoo
	What can Cuckoo do
	Tools
	Networking

	Ansible
	Playbook

	Design
	Architecture
	PfSense
	Networking

	Cuckoo
	Sandboxes
	Tools
	Systemd

	Ansible

	Implementation
	Methodology
	Technologies

	Virtualization environment
	Networking
	Software
	Configuration
	Cuckoo
	Virtual Environment
	OpenVPN
	Hypervisor
	Sandboxes
	Systemd

	Ansible

	Automation
	Prerequisites
	Software
	Network configuration

	Installation of the Platform
	Local installation
	Remote installation

	OpenVPN
	Disabling the role
	Enabling the role

	InetSim
	Cuckoo
	cuckoo.conf
	vsphere.conf
	esx.conf
	limits.conf and sysctl.conf
	memory.conf
	processing.conf
	reporting.conf
	routing.conf

	Elasticsearch
	Suricata
	suricata
	suricata.yaml

	Tor
	Cuckoo Startup
	Running the playbook
	Final thoughts

	Testing and verification
	Automation
	Cuckoo
	Malware
	Network
	Sandbox

	Discussion
	Obstacles
	Playbook
	vCenter Server Appliance (VCSA)
	Sandboxes
	Cuckoo

	Alternative approaches and future work
	Docker
	Development methodology
	Cuckoo Sandbox
	Automation
	Sandboxes
	Software
	Environment

	Criticism
	Evaluation of the groups work

	Conclusion
	Results
	Group achievements

	Closing statement

	Bibliography
	Task Description
	Project Agreement
	Project Plan
	Introduction
	Goals and Scope
	Project's goals
	Project's scope

	Organization
	Organizational structure
	Roles
	Time management and meetings

	Risk Management
	Risk analysis
	Countermeasures

	Planning & Report
	Working process
	Experiment's Notes

	Schedule
	Gantt diagram

	Midterm review
	Status of the project before the meeting
	Summary of the meeting
	The student's decision
	Modifying the topic

	Route.py
	OpenVPN Systemd
	Cuckoo Systemd
	Cuckoo Rooter
	Cuckoo
	Cuckoo Web
	Cuckoo API

	vsphere.py
	Sample Virtual Machine config - vsphere.conf
	Cuckoo Web GUI options
	Ansible directory structure

