
July 2008
Yuming Jiang, ITEM
Antti Ylä-Jääski, TKK
Arne Oslebo, UNINETT
Morten Knutsen, UNINETT

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Visualization of Network Traffic to
Detect Malicious Network Activity

Zhihua Jin

Problem Description
This is a project to research the different approaches to detect malicious network activity using
visualization of data sets. Data that can be used are collected from netflow systems, intrusion
detection systems, firewall logs and other relevant data sources.
The basic idea is that most of the network monitoring devices generate a lot of noise, and that our
brain is
the best tool to find and analyze patterns within noise (the best example being a noisy room where
you hear someone mention your name at the other end of the room).
There are several approaches to solve this problem, two of those are:
1. Visualization of multidimensional data.
This approach creates a multidimensional array of the available data, and then creates a 2
dimensional image of those data. Examples of dimensions could be IP addresses, port numbers,
known vulnerabilities related to a port, age of the vulnerabilities, number of known exploits for the
vulnerabilities and so on.
2. Research the possibility to use the IDS rainstorm techniques on netflow data.
This basic idea is described through several papers available at Greg Conti's home page:
http://www.rumint.org/gregconti/
The project consists of analyzing the various methods and implementing a proof of concept for one
of the methods.
References:
http://www.rumint.org/gregconti/publications/20050813_VizSec_IDS_Rainstorm.pdf
http://www.rumint.org/gregconti/publications/20060331_cga_info_overload.pdf

Assignment given: 15. January 2008
Supervisor: Yuming Jiang, ITEM

Preface
This thesis work was carried out at the Department of Telematics at The Norwegian University of
Science and Technology (NTNU).

First I would like to thank my supervisor Prof. Yuming Jiang at NTNU and co-supervisor Prof.
Antti Ylä-Jääski at the Helsinki University of Technology (TKK) for their guidance at a high
level of my work. As the main supervisor, Prof. Yuming Jiang introduced me to UNINETT,
which is the actual place I carried out my work. During this work, he gave me many ideas and
valuable advices in several close discussions with me. In the end, he helped me to prepare an
abstract paper of this work for a conference.

I would also like to thank my instructors Morten Knutsen and Arne Øslebø at UNINETT.
Morten gave me a lot of good advice in the practical work such as the implementation of our own
tool and the experimentation of detecting malicious activities in their NetFlow logs. Arne help me
to get acquainted with the NetFlow monitoring facility of UNINETT, which is very important in
this work as well. In addition I appreciate UNINETT for providing me their NetFlow monitoring
logs and the computing facilities.

Lastly I would like to thank Dr. Guoqiang Hu for valuable advices on revision of this report, and
my friend Hanbo Zhao, Kaiyu Dai and Ana Hristova for many practical helps in my work and the
good time together. Without you this work can not be completed.

Espoo, July 2008

Zhihua Jin

I

Abstract
Today, enormous logging data monitoring the traffics of the Internet is generated everyday.
However, the network administrators still have very limited insight into the logging data, mainly
due to the lack of efficient analyzing approaches. Most of the existing network monitoring or
analysis tools either mainly focus on the throughput of the network in order to assist network
structure planning and optimization, which is too high level for security analysis, or dig to too
low level into every packet, which is too inefficient in practice.

Unfortunately, not all network traffics are legitimate. As a matter of fact, a lot of malicious
traffics flow through the Internet all the time. Such malicious traffics can lead to various cyber-
crimes, and exhaust considerable network bandwidth. The expression that what you do not see
can hurt you perfectly suits the situation here.

In order to help the network administrators to discover malicious activities in their network
traffics, this thesis attempt to explore suitable visualization techniques to distinguish malicious
traffics from massive background traffics by using visual patterns, to which the human visual
perception system is sensitive and can thus processes efficiently.

To achieve such goal, we first extract the visual patterns of malicious activities from known
malicious traffics. Then, we look for the same visual patterns in the normal traffics. When the
same visual pattern is found, we identify the relevant malicious activities.

The tool used in our experimentation is designed and implemented according to the experiences
learned from previous related works, with special regards to human visual perception theory. The
result of our experimentation shows that some malicious activities which can not be easily
identified in traditional analyzing approaches before, can be identified by our visualization
system under certain conditions.

II

Contents
Preface... I
Abstract.. II
List of Figures.. VI
List of Tables..VIII
List of Abbreviations.. IX
1 Introduction... 1

1.1 Motivation..1
1.2 Scope..2
1.3 Criteria... 3
1.4 Methodology.. 3
1.5 Related Work..4
1.6 Report Outline..4

2 Related Work... 5
2.1 Survey of Existing VizSEC Systems... 5

2.1.1 NfSen..5
2.1.2 IDS Rainstorm and Rumint.. 6
2.1.3 SIFT..8
2.1.4 VIAssist..9
2.1.5 IDGraphs.. 9
2.1.6 InetVis.. 10
2.1.7 AfterGlow...11

2.2 Engineering the VizSEC System..12
2.2.1 Design Guideline..13
2.2.2 User Requirements... 13
2.2.3 Defense of DoI Attacks.. 14

3 Technological Background.. 15
3.1 NetFlow..15

3.1.1 Definition... 15
3.1.2 Architecture.. 18

3.2 Information Visualization.. 20
3.2.1 Human Perception and Visualization... 20
3.2.2 Plotting Schemes.. 23
3.2.3 Interaction Techniques... 25
3.2.4 Multidimensional Reduction.. 27

3.3 Botnet...28
4 UNINETT CERT... 31

4.1 Motivation..31
4.2 Facility and Resource...31
4.3 Existing Solution..31
4.4 Wishing List... 32

5 System Design... 33

III

5.1 Requirements... 33
5.1.1 Global Overview Snapshot.. 33
5.1.2 Local Details Drill-down..33
5.1.3 Multi-view Linking.. 33
5.1.4 Procedure Extraction.. 34

5.2 Principles..34
5.3 System Architecture... 35
5.4 Component Composition... 36
5.5 Functional Module Description... 37

5.5.1 Data Source Manipulation Backend...37
5.5.2 Visualization Preparing Components... 39
5.5.3 Interactive Plotting Component... 40
5.5.4 GUI Control Panel Frontend.. 41

6 Implementation.. 44
6.1 Data Source Manipulation Backend.. 44
6.2 Visualization Preparing Components...44
6.3 Interactive Plotting Components..44
6.4 GUI Control Panel Frontend..45
6.5 Deployment..50
6.6 Example Use Case... 51
6.7 Evaluation.. 54

7 Experimentation...56
7.1 Environment...56

7.1.1 Data Source.. 56
7.1.2 Additional Facilities... 58
7.1.3 Computing Resources.. 58

7.2 Experimentation planning..59
7.3 Scanning...60

7.3.1 NetFlow Property Selection... 61
7.3.2 Investigation... 61
7.3.3 Application on Common Dataset... 71

7.4 IRC Botnet C&C Link... 72
7.4.1 NetFlow Property Selection... 73
7.4.2 Investigation... 73
7.4.3 Application on Common Dataset... 78

7.5 HTTP Botnet C&C Link.. 78
7.5.1 NetFlow Property Selection... 79
7.5.2 Investigation... 79
7.5.3 Application on Common Dataset... 87

8 Discussion..88
8.1 Detection of Scanning..88
8.2 Detection of IRC Botnet C&C Link.. 88
8.3 Detection of HTTP Botnet C&C Link... 88
8.4 Essential Factors for Improvement of Detection... 89
8.5 Ideal Working Scenario..89

IV

9 Conclusion and Future Work... 90
9.1 Conclusion... 90
9.2 Future work..90

Appendix A Modification on Nfdump..93
A.1 Additions in nf_common.c..93

Appendix B Shell Scripts... 97
B.1 dump.sh... 97
B.2 preload.sh.. 97
B.3 getflownumber.sh.. 98
B.4 gettimewindow.sh..99

Appendix C R Scripts... 100
C.1 Load...100
C.2 Scatter Plot.. 100
C.3 Parallel Coordinate Plot.. 100
C.4 Histogram Plot...101
C.5 Bar Plot..101
C.6 Filter Color Brushing.. 101
C.7 Rainbow Color Brushing...102
C.8 rainbowcolor.r... 102
C.9 Save Plot..103

V

List of Figures
Figure 1: An example line graph produced by MRTG... 6
Figure 2: Plotting scheme of IDS Rainstorm..8
Figure 3: Plotting scheme of InetVis.. 10
Figure 4: Design framework of security visualization system... 13
Figure 5: Flow keys.. 16
Figure 6: NetFlow architecture...19
Figure 7: Human-computer problem solving loop... 20
Figure 8: Detailed problem solving loop with the reference model of visualization.....................21
Figure 9: Arbitrary symbol vs sensory symbol...22
Figure 10: Pre-attentive features...23
Figure 11: Plotting scheme of scatter plot.. 24
Figure 12: Plotting scheme of bar chart and histogram..24
Figure 13: Plotting scheme of parallel coordinate plot...25
Figure 14: Linked brushing between scatter plot and parallel coordinate plot...............................26
Figure 15: Basic botnet architecture... 28
Figure 16: UniVis system architecture... 35
Figure 17: UniVis component composition..36
Figure 18: Example CSV data table... 38
Figure 19: iPlots internal structure... 41
Figure 20: GUI control panel layout...42
Figure 21: GUI control panel block A.. 45
Figure 22: GUI control panel block B.. 46
Figure 23: GUI control panel block C.. 47
Figure 24: GUI control panel block D..49
Figure 25: Using scenario overview... 51
Figure 26: Using scenario details drill-down... 53
Figure 27: Observation points of the datasets for experimentation..57
Figure 28: Experimentation planning... 60
Figure 29: Original scatter plot "das vs ts"...62
Figure 30: Scatter plot "das vs ts" with rainbow brushing by sas.. 63
Figure 31: Scatter plot "das vs ts" with rainbow brushing by bpp... 64
Figure 32: Selection of IP-sweep scanning from overview snapshot...65
Figure 33: Local detail drill-down of IP-sweep scanning.. 66
Figure 34: Selection of creepy-crawly scanning from overview snapshot.....................................68
Figure 35: Local detail drill-down of creepy-crawly scanning.. 69
Figure 36: Local detail drill-down scatter plot of "das vs ts" for creepy-crawly scanning............70
Figure 37: Local detail drill-down scatter plot of "sp vs ts" for creepy-crawly scanning..............71
Figure 38: Scatter plot of "das vs ts" with rainbow brushing by bpp... 72
Figure 39: Scatter plots of data filtered by controllers and bots, color brushed by flow direction 74
Figure 40: Scatter plots of data filtered by controllers and bots, color brushed by source port.....74
Figure 41: Scatter plots of data filtered by controllers and bots, color brushed by byte per packet

VI

.. 75
Figure 42: Scatter plots of “das vs ts”, generated from data filtered by bots 76
Figure 43: Scatter plots of data filtered by controllers... 77
Figure 44: Scatter plots of data filtered by port number 3306..78
Figure 45: Scatter plots of data filtered by controllers and bots, color brushed by flow direction 80
Figure 46: Scatter plots of data filtered by bots, color brushed by flow direction......................... 82
Figure 47: Scatter plots of data filtered by controllers, color brushed by flow direction...............84

VII

List of Tables
Table 2.1: Survey of typical existing VizSEC systems...12
Table 5.1: Data types processed by the data source manipulation backend................................... 37
Table 7.1: Details of datasets from four data sources...57
Table 7.2: Details of IP-sweep scanning...67
Table 7.3: Details of creepy-crawly scanning...68

VIII

List of Abbreviations
ACK Acknowledgment

AI Artificial Intelligence

AS Autonomous System

BPP Byte per Packet

BYT Byte

CERT Computer Emergency Readiness Team

CLI Command Line Interface

CPU Central Processing Unit

CSV Comma Separated Value

CTA Cognitive Task Analysis

C&C Command and Control

DA Destination Address

DAS Destination Address String

DoS Denial of Service

DDoS Distributed Denial of Service

DP Destination Port

DST Destination

FFT Fast Fourier Transform

FIN Finish

GPU Graphics Processing Unit

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IP Internet Protocol

IPFIX Internet Protocol Flow Information eXport

IRC Internet Relay Chat

ISP Internet Service Provider

JVM Java Virtual Machine

IX

JNI Java Native Interface

MDMV MultiDimensional MultiVariate

MDS MultiDimensional Scaling

MRTG Multi Router Traffic Grapher

OS Operating System

OSI Open Systems Interaction

PCA Principle Component Analysis

PCP Parallel Coordinate Plot

PKT Packet

RAM Random Access Memory

RRD Round-Robin Database

SA Source Address

SAS Source Address String

SNMP Simple Network Management Protocol

SP Source Port

SRC Source

SYN Synchronize

TCP Transmission Control Protocol

TD Time Duration

TE Time End

TES Time End String

TOS Type of Service

TS Time Start

TSS Time Start String

UDP User Datagram Protocol

VCR VideoCassette Recorder

VizSEC VisualiZation of SECurity

X

1 Introduction

1.1 Motivation
Without doubt, the Internet nowadays is becoming bigger in size and faster in speed. With the
support of technology development, the Internet extends wider and penetrates deeper in our life.
As a result, the amount of its traffics grows explosively, and the variety of the network services
increases rapidly as well. Such enormous amount and complex composition of traffic pose a big
challenge for the network management, especially for the network security management.

In order to manage a network, the traffics going through it have to be well understood. In other
words, the network traffics have to be measured and analyzed. For the traffic measurement, there
are two ways in general. One is to capture only the network properties of the traffics without the
payload, normally performed by the network routers and the captured data are stored as network
flow records. The Cisco NetFlow[1] is a typical technology of this type. The other one is to
capture all information of the traffics including the payload, normally performed directly over the
network interface driver and the captured data are stored as network packet records. The
TCPDUMP/LIBPCAP[2] is a typical technology of this type.

Apparently, the packet based methods contain more information than the flow based methods,
which should be preferred for more thorough analysis. However, it is usually not possible to
apply the former type of methods because of legal issues. Also, more information means higher
maintainenance and analysis costs. As a matter of fact, even for the flow based methods, the
utilization of the captured data is far below its full potential and most of the time the data remain
untouched after a few basic analysis at the very beginning. In addition, because the Internet
traffics can be encrypted as the IPv6 emerges, the payloads contained in the data captured by the
packet based methods are going to lose their initial advantages. Therefore in practice, the flow
based methods usually come as the first choice, so doe they in this work. More specifically, we
use the Cisco NetFlow technology in this work.

Even though only partial information of the network traffics is obtained by applying the flow
based method, the resulting data are still huge. Thirty giga-bytes captured flow data per day is
considered very common in the backbone networks of medium or large Internet service providers
(ISPs). On one hand, such tremendous data may contain a lot of useful information that could
help better understand the traffics. On the other hand, such enormous data certainly require very
efficient analyzing methods and lots of analyzing resources.

Using the existing analyzing tools, which are mostly text based and provide very basic analyzing
functions, the network administrators can perform quite efficient analysis but come up with few
useful results. The limited functionality and the poor user interface of the tools lead to the
unsatisfactory utilization of the captured data.

However, as malicious activities never stop and tend to increase along the growth of the Internet,
they are always a major threat to the Internet security. As warned by Russ McRee in [3] that
“What you don't see can hurt you”, network administrators had better try other ways to gain more

1

1 Introduction

insights into their networks in order to make correct decisions timely. Visualization seems to be a
suitable way because comparing to the text based methods: 1) it can usually show much more
information in the same viewing space[4]; 2) it is possible to be processed very efficiently by
human beings by making use of human perception capabilities[5]; and 3) many times in history
visualization has shown unique capabilities in assisting from exploratory analysis to decision
making[6], e.g., its successful location of the contaminated source in the cholera epidemics in
London in 1854.

In this work, we try to apply visualization methods to assist the network administrators in the
analysis of the netflow data collected from real core Internet. The outcome is a prototype tool
named UniVis that visualizes the netflow data as requested during the interactions with user.
UniVis should enable fast identification of the network anomalies in the general overview,
convenient investigation into interesting spot for more details, and ultimately help the
administrators gain comprehensive understanding of their networks and hence hopefully make
more informative decisions and more timely responses during the network security management.

In order to achieve such ultimate goal, more approaches are needed to enhance the visualization
tools. As mentioned earlier, visualization mainly improves the efficiency of analysis by
increasing the amount of information being taken by human users in each single process. With
the help of proper human-computer interaction techniques, the interpretation of the visualization
could be enhanced by establishing domain-specific semantic relationships during the exploration.
However, how to interpret the visualization, or rather, how to correlate the visual interests with
actual network anomalies, remains the job of we human users. In this work, experimentations of
using our visualization tool to explore network anomalies are carried out in order to acquire such
experiences.

1.2 Scope
Though information visualization involves computer graphic theory and technology, which is
about specific computer drawing techniques, it is not the main issue in this work and such content
is not concerned. As a matter of fact, rather than focus on the drawing details, we focus more on
the visualization methods at a higher level, which is about the form in which they visually present
the data.

Besides direct visualization of the netflow data, there are also many algorithm based methods to
enhance and highlight the visual patterns which raise most concerns. For example,
multidimensional reduction algorithms could be used to classify the data and isolate the outliers.
In addition, spectrum analysis could be used to identify spectrum patterns of the data, whereby
correlation analysis could be used to establish relationships between similar temporal or spacial
patterns. Although these algorithm based methods may throw lights on the future exploration,
they are not the main direction in this work.

As stated in Section 1.1, the netflow data is chosen as the main input of our visualization. In other
words, packet analysis is out of the scope of this work, though the results of packet analysis are
used to identify some malicious activities at the first place and to confirm the anomalies
discovered by the visualization methods in the end. In addition, as each set of input data is
generated from one router, we only analyze the characteristics of the flows observed by this

2

1.2 Scope

single router, whereas the analysis concerning the relationships of traffic characteristics among
multiple routers is not considered.

1.3 Criteria
Since this thesis work results in the UniVis, a prototype network traffic visualization tool built for
assisting the visual exploration of network anomalies, some criteria should be introduced as a
guideline both for the initial designing and the final evaluation of such solution.

Considering the solution a analysis tool, the functionality naturally becomes an important
criterion. For example, how many visualization methods are supported, how many human-
computer interaction techniques are featured, and so on. As a tool aiming at assisting the
discovery of network anomalies, the variety of anomalies it can clearly represent, the efficiency
of the exploration process it can support, and the accuracy of the identification of anomaly it can
help to achieve are all essential criteria.

As a information visualization system, two major types of criteria must be taken into account. On
one hand, how well does it follow the human cognition and perception theory in order to take
most advantage of the human visual perception system. In other words, the human perception
capabilities need to be enabled and optimized to absorb the information visually represented by
the system. We name such ability perception efficiency in this work. On the other hand, because
the visualization system and sometimes even the human perception system could become the
targets of intentional attacks, the ability of resisting or evading from such attacks is also an
important criterion, which is referred as robustness in this work.

In addition to the above crucial criteria, some common criteria in implementation and utilization
practice are also applicable, such as scalability, extensibility, and usability. Because of the huge
amount of input data, fast processing speed become very critical and thence scalability turned out
to be the most concern of the network administrators.

1.4 Methodology
As the thesis title speaks for itself, this thesis work can be divided in two parts: visualization of
the network traffic, and using the visualization to detect malicious network activities. For each
part we have a methodology.

For the visualization of network traffic, we first make qualitative comparisons between several
selected visualization methods, in order to find the most suitable ones according to the structure
of the netflow data and the relevant criteria described in Section 1.3. Then, we make an
exhaustive survey of existing visualization tools or toolkits, and the existing network security
visualization solutions, and evaluate them with relevant criteria in Section 1.3. Based on the
comparison and survey results in the previous two steps, we then start to design and implement
our security visualization prototype – UniVis. Of course our prototype is then evaluated under the
same criteria as those being used to evaluate other solutions.

As for the detection of malicious network activity, our methodology consists of two major steps.
Firstly, we explore suspicious patterns in the visualizations of the unsampled netflow data, which

3

1 Introduction

is captured from small enterprise networks that are known to contain malicious traffics. Such
patterns should be confirmed to be caused by certain malicious activities if possible. Secondly,
we try to find more instances that are similar to the confirmed patterns, from both the
visualizations of the original data and the visualizations of the sampled netflow data which is
captured from the backbone network during the same time window. If the same pattern caused by
certain malicious activity can be found in the visualizations of the original data, it proves that
those visualizations are effective in identifying such malicious activity. If the same pattern caused
by certain malicious activity can be found in the visualizations of the sampled backbone network
data, those visualization methods show great potential to be used to detect such malicious activity
in practice, since most netflow data are sampled in practice.

1.5 Related Work
Research on applying information visualization techniques to computer security analysis has
lasted for years. At least the most active annual event in this field – the VizSEC workshop[7] has
went through 5 years since year 2004. During these years, various security visualization solutions
are proposed. Although those solutions concentrate on various purposes and use different kinds of
data, in this work we focus only on those visualizing the network traffics, especially those
visualizing the netflow data. In Chapter 2 we will discuss more about them.

Unfortunately, there are not many solutions fall in our focus. Worse more, none of the existing
implementation of the solutions for the netflow data takes the Cisco NetFlow data format, or
fulfill our criteria well enough. Thus, we decided to build our own solution – UniVis instead of
adopting an off-the-shelf one.

1.6 Report Outline
This report is divided into nine chapters and an appendix. The results of both the comparison of
candidate visualization methods and the survey of existing solutions are given in Chapter 2
Technological background of the main components in our solution is introduced in Chapter 3,
followed by Chapter 4 with a brief introduction of UNINETT, which provides the main using
scenario for our solution. Chapter 5 explains the system design of our solution UniVis, while
Chapter 6 presents the implementation of the prototype. In Chapter 7, the experimentation of
utilizing the prototype to detect network anomalies is described. Then Chapter 8 have more
discussion of the practical meaning of the experimentation results. Finally a conclusion is given
in Chapter 9, with some directions of future work.

4

2 Related Work
Security visualization became a hot topic in recent years, when many researchers have dedicated
themselves in the attempt to apply information visualization to the field of the computer security,
in order to get more insights into the explosively increasing security data efficiently. Though the
key words in such effort are information visualization, the key technologies and theories involved
are way beyond the scope of the information visualization itself. A quick list of several main
relevant disciplinary fields required by the successful achievement of such goal includes at least
human perception and cognition theory, human-computer interface, data mining, computer
system and network security, and computer graphics.

As one of the most active platform for the research community of security visualization, the
annual VizSEC workshops have witnessed a lot of discoveries and novel solutions since it was
held for the first time in 2004. In the latest happening in 2008, it covers an exhaustive problem
set of the state-of-the-art in cyber security, such as visualization of Internet routing, visualization
of packet traces and network flows, visualization of intrusion detection alerts, visualization of
application processes, etc. In addition, it also starts to give more concern on issues of the VizSEC
system itself, including deployment and field testing of VizSEC systems, evaluation and user
testing of VizSEC systems, user and design requirements for VizSEC systems, and development
of VizSEC systems. In the following of this chapter, we introduce and evaluate several
representative solutions for the visualization of network traffics, and discuss some issues about
the VizSEC system itself concerning our criteria.

2.1 Survey of Existing VizSEC Systems
The survey result of several VizSEC systems are presented in this section. In the end, Table 2.1
gives very brief comparison among these systems.

2.1.1 NfSen
In fact, NfSen[8] is not quite a VizSEC system but a network bandwidth usage analyzer with
limited graphical supports. It is selected as the first in our survey because it is a typical traditional
traffic analyzing tool, which derives from tools mainly use SNMP for data collection, but uses
netflow data also.

Because the traffic relevant information gathered by SNMP is usually the throughput of a queried
network device, such tools focus on traffic load monitoring and bandwidth usage classification.
Because the data is retrieved at a constant time interval, it is considered as time series data and
usually stored in the round-robin database (RRD). For such data structure, a straightforward and
typical visualization is the line graph shown in Figure 1, which is generated by one of the most
popular tool of the same kind named MRTG[9]. The vertical axis represents the traffic load while
the horizontal axis represents the time line. Different types of traffic load can be plotted on the
same graph and distinguished from each other by techniques such as color encoding, in order to
visualize the bandwidth usage classification. In addition, the combination of the time series data

5

2 Related Work

structure and RRD makes the visualization process very efficient regardless of the data amount.
This is one of the most crucial reason that such system framework is very popular in practical
large scale network administration.

NfSen uses netflow data instead of the SNMP data, but uses exactly the same visualization
method as the one shown in Figure 1. Because it only focuses on the traffic load properties
provided by the netflow data, namely Flows, Packets, and Bytes. Although NfSen provides many
useful features such as filtering, aggregation and statistics by using other properties of netflow
data as well, it gives up the opportunity to present new traffic characteristics other than load
characteristics by ignoring the visualization of other properties than the three load relevant
properties.

2.1.2 IDS Rainstorm and Rumint
Conti et al. propose in [10] the toolset composed of the IDS Rainstorm and the Rumint to
confront the overload of security information, which is one of the most important motivations of
this thesis work. As a matter of fact, this thesis starts from many inspiring ideas introduced in
[10].

First of all, Conti et al. bring up the issue of information overload concerning security
professionals. In short, the processing ability of human beings are exceeded by the enormous
security information even though they are well trained professionals, as long as such information
is still presented in the form of text. By bringing in the knowledge of human perception theory
and cognitive science, they pointed out that such information overload can be solved or alleviated
by replacing the text based presenting methods with the visualization based methods, due to the
fact that the human visual perception system can be very efficient in perception of large amount
of information as long as the information is presented visually in the right way. Such visual based
methods distinguish themselves from the artificial intelligence methods by taking advantages of
human brain directly rather than imitating the way it works.

Then, two prototype systems are given as a demonstration of concept. The first one is called the
IDS Rainstorm, which initially appeared in [11], focused on alert logs generated by IDS systems
such as Snort[12]. It uses a novel visualization combining the coordinate systems of scatter plot
and parallel coordinate plot that are described later in Section 3.2. Specifically, as shown in

6

Figure 1: An example line graph produced by MRTG[9]

2.1 Survey of Existing VizSEC Systems

Figure 4, multiple parallel y-axes are all assigned to the IP address property in order to show the
location of alarms, while a single x-axis is used as the time line to indicate when the alarms
occur. Besides the main view, a zoom-in view is also provided when the user selects an area to
zoom in. In the zoom-in view, two y-axes are preserved. The left y-axis represents the internal IP
addresses (victims) while the right one represents the external IP addresses (attackers). The lines
are drawn from the position of the external IP address on the right y-axis to the alarm point
caused by it, so that the connection characteristic of the alarms is visually presented too. In
addition, color encoding schemes are applied to reveal the severity and the amount of alarms.

The second tool Rumint focuses on network packets, which are captured by protocol and packet
analysis tools such as the Ethereal and stored in the pcap format. Most of the visualizations here
are about encoding packet byte into pixels. Besides the visualizations of packets in the binary
level, which are very interesting but beyond our scope, we may learn from the combined
visualization. As a combination of scatter plot and parallel coordinate plot again, this one
differentiates from the one in IDS Rainstorm by separating the view port in three parts. A
standard parallel coordinate plot with only two parallel y-axes stands in the middle, but the
properties represented by each axis can be changed interactively. Two scatter plots staying on
each side of the parallel coordinate plot share its two y-axes respectively. Both of their x-axes
represent the time lines but have opposite directions. In this way, not only the relations between
the selected two properties, but also the time patterns of those relations are depicted. Additionally,
a VCR like animation over time is provided for all the implemented visualizations. Such
playback assists the navigation of data and may give a clearer view of how network activity
happens as time elapse.

Though Conti et al. in [13] summarize the interaction techniques applied in the two
complementary tools as domain-specific semantic zooming, interactive encoding and dynamic
querying, the lack of direct interaction on the visual objects leave the existing visualization with
several problems which hinder potential further exploration into the data and reduce the analysis
efficiency somehow. Such problems are further discussed in Section 2.2.3.

Lastly, a framework for the design of security visualization systems is also given based on the
experiences gained in the implementation of the toolset. Such framework is described in Section
2.2.1.

7

2 Related Work

2.1.3 SIFT
The SIFT[14] project proposed by William Yurcik et al. is a visual computer network security
monitoring toolset designed directly regarding the practical operator interface requirements[15]
for the netflow data. Similar to Conti et al.'s approach[10], SIFT consists of two complementary
visualization tools as one for the holistic view and the other one focusing on a more specific view
of the data, namely NVisionIP[16][15][17] and VisFlowConnect-IP[18][19][20] respectively.
They directly take in Argus NetFlows[21] or NCSAUnified NetFlows as input data except for
Cisco NetFlows. The data management tool CANINE within SIFT is used to convert between
different netflow formats such as the Cisco NetFlows and Argus NetFlows. Unfortunately during
our work, CANINE had not implemented the functionality of convertion from Cisco NetFlows to
either of the other two NetFlow formats supported by the visualization tools yet.

The utmost requirement that NVisionIP attempts to fulfill is the ability to represent the state of all
IP addresses of a large network in a single view. In addition, it should also allow drill-down to
further details of the whole network on demand. Therefore it ends up with three views of
different detail level, Galaxy view, small multiple view and machine view. The galaxy view is a
scatter plot assign the horizontal axis with the subnet address and the vertical axis with the host
address, whereby the data points is encoded to either color or shape according to the selected
netflow property. Additional features include zooming and dynamic query. The other two detailed

8

Figure 2: Plotting scheme of IDS
Rainstorm[11]

2.1 Survey of Existing VizSEC Systems

views show statistical characteristics of certain netflow properties in histogram. By conveniently
navigating between the above three levels of view, the relationships between the aggregated
network activities and individual host activities should be identified and understood more easily.

The VisFlowConnect-IP simply adopts parallel coordinate plots to represent the connections
between IP addresses. According to the operator interface requirements, its plotting scheme is set
to three parallel vertical axes among which the middle one is assigned to source IP address
whereas the other two on the sides are mapped to the destination IP address or subnet depending
on the level of view. Thus each part of the view represents one direction of the flows.
Symmetrical connections indicate normal established session between two hosts while
asymmetry connections indicate scanning activities. Furthermore, by encoding the level of
transparency or the thickness of the lines, the uplink/downlink proportion of the encoded property
can be visualized as well. Such characteristics can be quite useful in security analysis.

2.1.4 VIAssist
D'Amico et al.'s VIAssist[22] is a visualization framework based on a comprehensive cognitive
task analysis (CTA) of network security analysts. Though the CTA sounds a bit unfamiliar and is
defined as “the study of an individual's or team's mental processing, activities, and
communications within a specific work context”[22], it basically means the same as collecting
firsthand requirements from the end users by modeling their best practices. Thus the resulting
system meets the actual needs in practice with optimized operating efficiency.

In brief, the VIAssist framework consists of an in-depth event analysis view and a dashboard
view of global activity, just as the complementary setup in the solutions introduced in Section
2.1.2 and Section 2.1.3. Based on this robust framework , VIAssist further distinguishes itself
from other solutions by integrating several verified visualization techniques into the in-depth
event analysis view such as histogram, parallel coordinate plot with glyph encoding. Commercial
products such as Table Lens and StarTree from Inxight software[23] are also incorporated. These
different in-depth views shares the same dataset so internal linkage is established by nature. In
addition those visualization views are equipped with several intuitive visual interaction
techniques for data manipulation, linked highlighting, and filtering. As one important result of the
CTA, VIAssist offers some features to support collaboration among human analysts, mainly
facilitated in a form of convenient documentation of the discoveries during the analysis.
However, VIAssist is a commercial product rather than an open source project. This hindered it
from being used in our work.

2.1.5 IDGraphs
Ren et al. build IDGraphs[24] in attempt to address four challenges in flow based IDS. These
challenges are, identification of temporal characteristics of the intrusions in netflows observed
from the edge network routers, identification of correlated novel attacks, interactive visual
investigation, and appropriate threshold for automatic statistical IDS. Its solutions for the first
three challenges are within our scope.

The first challenge is solved by using a plotting scheme based on scatter plot with the x-axis

9

2 Related Work

representing the time series and the y-axis representing certain post-processed netflow property.
Specifically such properties are the failed connection counts (SYN-SYN/ACK) for each
aggregating key, which is the aggregation result of six carefully selected types of aggregation
keys such as source IP address and destination port number. Such post-processed properties
appear useful in suggesting scanning or TCP SYN flooding activities in which the connections
are rarely established in general. In addition, the density of overlapped data points is mapped to
the luminance, resulting in a contour map representing the density distribution of the data.

The second and third challenges are addressed by employing their Histographs visualization
system to enhance the interaction capabilities. The interaction techniques includes interactive
query by directly mouse clicking on the plotted data points, zooming on region selected by mouse
dragging, and linked brushing of the selected data on different visualizations. Though the
interaction features of Histographs seem very useful, the Histographs is not openly available and
thus can not be utilized in our solution.

2.1.6 InetVis
InetVis[25] is a 3D scatter plot visualization tool adopted from the idea proposed in [26]. Unlike
most other network visualizations choosing the lines to represent connections as a intuitive
metaphor, the InetVis employs points for the same purpose. As an apparent consequence, the
reduction of dimensions of the visual representation saves more display space and improves the
rendering speed, at the cost of loosing the ability to separate the entities of each connection.
However, such sacrifice does not necessarily result in the missing of connectivity characteristics,
which is proved by the examples illustrated by the InetVis. Figure 3 explains the plotting scheme
of InetVis very clearly by itself, except that the separate icmp plane below the cube turns out only
2 dimensional because the port number represented by the y-axis does not exist in icmp but in
TCP or UDP.

Additional features of InetVis includes color encoding by selected traffic properties, resizing of
data points, common manipulation of 3D space such as moving, rotating and zooming, and
scalable playback animation.

10

2.1 Survey of Existing VizSEC Systems

Making use of the plotting scheme in Figure 3 and additional features, InetVis is useful in
identifying anomalies such as several scanning activities from the pcap data as demonstrated in
[25].

2.1.7 AfterGlow
AfterGlow[27] is a script based visualization tool built for showing the relationships among the
entities of the data input. It supports mainly two types of visualizations, namely network graph
and treemap.

According to the project website, AfterGlow can be applied to various types of data sources such
as network packet captures in pcap format, email logs, firewall logs, firewall rule-sets, web logs,
IDS logs, OS logs, etc., but the main experience in its current usage is on network packet captures
and email logs. It chooses a well known open source graph (network) visualization library named
Graphviz[28] as its visualization back end, which is be very fast and scalable but does not
directly support interaction.

Vorel et al. in [29] and Mansmann et al. in [30] give interesting examples of the botnet in large
scale networks. The former uses network graphs to visualize the relationships between IP address
and domain name hence the structures of the botnet stand out. The latter uses treemap to show the
distribution of network autonomous systems (AS). As each square in the map represents an AS,
its area indicates the number of IP addresses it holds and its color indicates the connection
numbers within the AS. In this way the botnet propagation activities can be observed.

11

Figure 3: Plotting scheme of InetVis[25]

2 Related Work

Solution Data
Source

Visualized
Property

Visualization Interaction Characteristic

NfSen Cisco
NetFlow

Flow, Byte,
Packet, Start
Time

Time series graph Filtering,
Color Encoding

Throughput

IDS
Rainstorm

Snort Log IP Address,
Severity of
Alarm,
Time stamp

Combined of Scatter Plot and
Parallel Coordiante Plot

Semantic Zooming,
Dynamic Querying,
Color Encoding
Animation

Connection,
Alarm

Rumint Pcap All Binary Rainfall,
Scatter Plot,
Parallel Coordinate Plot,
Combined of Scatter Plot and
Parallel Coordinate Plot

Multiple Views,
Filtering,
Color Encoding

Payload,
Connection,
Temporal,

SIFT Argus
NetFlow,
NCSAUnifi
ed NetFlow

IP Address Scatter Plot, Parallel
Coordinate Plot,
Histogram,
Fish eye,
Glyph

Dynamic Querying,
Focus-Context
Navigation,
Zooming,

Connection,
Statistics

VIAssist NetFlow,
etc.

All Histogram,
Parallel Coordinate Plot,
Glyph,
Table Lens,
Network Graph

Dynamic Querying,
Color Encoding,
Multiple View,
Linked Selection

Statistics,
Connection,

IDGraphs NetFlow IP Address,
Port, TCP
Flag

Scatter Plot Multiple View,
Linked Selection,
Luminance
Encoding,

Failed
Connection,

InetVis NetFlow IP Address,
Port

3D-Scatter Plot 3D-Space
Manipulation,
Color Encoding

Connection

AfterGlow Pcap,
Many logs

All Network Graph,
Treemap

None Connection

Table 2.1: Survey of typical existing VizSEC systems

2.2 Engineering the VizSEC System
This section summarizes the best practices in the development of the VizSEC systems. Such
valuable experiences take a essential part in guiding the design of our VizSEC system in Chapter
5, together with the requirements from UNINETT[31] network security administrators as
described in Section 4.4.

12

2.2 Engineering the VizSEC System

2.2.1 Design Guideline
Ben Shneiderman in [32] summarizes the basic principles from many visual design guidelines as
the Visual Information Seeking Mantra: Overview first, zoom and filter, then details-on-demand.
This is in accord with our survey results on the selected VizSEC systems in Section 2.1. Further
more, there are seven tasks to accomplish[32]:

● Overview: Gain an overview of the entire collection.

● Zoom: Zoom in on items of interest.

● Filter: Filter out uninterested data.

● Details-on-demand: Select an item or group and get details when needed.

● Relate: View relationships among items.

● History: Keep a history of actions to support undo, replay, and progressive refinement.

● Extract: Allow extraction of sub-collections and of the query parameters.

Meanwhile, Conti's VizSEC system design framework depicted in [10] fulfills the above
principles and basic tasks perfectly. As shown in Figure 4, a VizSEC system should be able to
take multiple input sources, to process and filter them before load them into RAM, and to swap
them into disk buffer when necessary. Then, under the control of the user interface, the data
loaded in the RAM or disk can be retrieved, filtered again, encoded according to specific scheme
such as color, and finally visualized by the graphics engine. The resulting visualizations should
be logged and further be compiled automatically into customized report.

2.2.2 User Requirements
The requirements of the network operator interface are summed up in [15] with the primary one
as “the need for an overall situational awareness view of an entire network”. Some other

13

Figure 4: Design framework of security visualization system[10]

2 Related Work

requirements in [15] which we also consider feasible to realize and important to be our criteria
are listed as follows.

General requirements:

● User-friendly interface not requiring expertise knowledge

● Flexibility to query all properties of source data

● Dynamic view of network events over different time scales

● Cross-cueing between events

● Profiling of distinguishable classes of computers by activity type, activity volume, and
time

Specific requirements:

● Raw port activity for well-known ports below 1024 and dynamic ports above 1024

● Indications of port activity above defined thresholds

● Drill-Down views of traffic by IP address

● Monitoring traffic exclusively to/from the Internet

● Monitoring traffic exclusively within the intranet

● Network mapping awareness

● Port scanning awareness

In order to enhance the discovery of novel anomalies, data mining techniques should be
combined with information visualization[33]. As data mining relies on statistical algorithms and
machine learning to find interesting pattern, allowing interactive input of human users to adjust
the data mining algorithms according to their perception of the visualization should be a good
approach towards the combination.

Last but not the least, the system should facilitate development and transfer of expertise and
collaboration based on such expertise[34]. Logging of the visualization results and the procedures
to generate such results can be a good start.

2.2.3 Defense of DoI Attacks
Though the VizSEC systems try to take advantages of the human brain in security analysis, there
are also attacks targeting the VizSEC system as well as the perceptual cognitive and motor
capabilities of human end users in order to diminish such advantages[35], namely the denial of
information (DoI) attacks. Though Conti et al. in [35] describe exhaustively typical DoI attacks
according to a DoI attack taxonomy by modeling the human processor as the targets, very few
defense strategies are proposed. But the table 3.4 in [36] finally gives a technological DoI defense
taxonomy which shows some sound directions. For example we can use filtering to reduce noise,
optimize resource consumption to save limited resource, apply data fusion to reduce the amount
of data input, and improve the human computer interface, etc.

14

3 Technological Background
This chapter presents the general technological background of NetFlow, information visualization
and botnet. While NetFlow technology provides data input for the detection of malicious
activities, visualizaiton techniques represent the NetFlow data source in the forms that can be
efficiently comprehended by human users. Typical malicious network activities are then
discussed in a botnet scenario.

3.1 NetFlow
In fact there are several NetFlow technologies that are slightly different from each other. In our
case only the Cisco NetFlow technology is used.

3.1.1 Definition
Although the NetFlow is a Cisco patented technology, it evolves to a standard called IP Flow
Information Export (IPFIX). The IPFIX standard defines a netflow as below.

The definition is further explaned in the following four aspects corresponding to the highlighted
key words.

Observation Object

The basic object observed by NetFlow technology is the Internet Protocol (IP) packet. To get the
values of the defined properties of the packet, the packet header of different protocols on multiple
layers is taken and processed, whereas its payload is discarded. The values of certain properties
(or attributes) are used as keys to distinguish each flow from others, while the values of other
properties are aggregated to reflect the characteristics of each flow.

To reduce resource consumption, sampling mechanism is used in practice. When sampling is
applied, only one packet out of every certain number of the observed packets is recorded whereas
the others are discarded. Such “one out of N” scheme leads to a sample rate of 1:N. In our case
the Cisco NetFlow provides two sampling modes, namely deterministic sampling and random
sampling.

The deterministic sampling is a scheme in which the packets observed at the exact interval are
taken. For example, at 1:100 sample rate, letting each packet be represented by its position in the
arrival queue, the resulting packet sequence looks like “1, 101, 201, 301, ... “. This may miss
most packets of a flow which arrives at a fixed pattern of interval. Thus the other scheme, i.e. the
random sampling, is most practically used

15

A set of IP packets passing an observation point in a network during a certain time
interval. All packets belonging to a particular flow have a set of common properties.

3 Technological Background

The random sampling copes with the defect in the deterministic sampling by adding a random
factor into the fixed sampling interval. In this way, the sample rate is statistically stable but the
distance between sampled neighbor packets can still vary. For instance, at 1:100 sample rate,
letting each packet be represented by its packet sequence number in the arrival sequence, the
resulting packet sequence may look like “5, 120, 230, 302, ... “.

Observation Subject

As the observation is carried out on the network layer, it is no surprise to see that layer-3 network
devices such as routers are in the right position to serve as the observation points. Of course, such
router must realize the NetFlow technology and enable the exporting function in order to act as
an NetFlow exporter in Figure 6.

Measures

NetFlow-enabled router maintains a local cache to generate flow records as measures of the
traffics. When a new packet arrives, the router first determines whether it belongs to any of the
flow entry recorded in the cache by matching their values of certain properties called flow keys in
this work.

The flow key is composed by seven properties to uniquely identify each flow, as depicted in
Figure 5.

If the packet does not belong to any existing flows, a new flow entry containing the values of
certain properties of the packet is created.

If the packet belongs to a flow entry in the cache, the router update the measurement data for this
flow, for example, the accumulated traffic amount in byte of this flow.

On both sides of the flow, the IP addresses in the IP header and the port number in the header of
the transport layer protocol such as TCP and UDP are marked as source or destination of the flow
according to the full field name of the IP address in the IP header. Because the source and

16

Figure 5: Flow keys

3.1 NetFlow

destination IP addresses are both used as flow keys and treated as different properties, the flow
defined under this restriction is obviously unidirectional.

The IP address tells the participant of the flow. The port number indicates the application carried
on this flow, or set to zero if not available. IP address and port number are reckoned suitable
properties to represent the connection characteristics of the flow.

When the flow runs through the observing router in the network, the local number of the ingress
interface on the router is chosen as another flow key, because a router normally have more than
one ingress interface. By combining with the routing table of the router, the knowledge of the
ingress interface can be used to identify the next hop of this flow.

The other two flow keys are the type of service and the type of protocol on the network layer of
the OSI model. They are useful in basic traffic classification in general network monitoring and
planning but do not offer much help in security analysis.

In addition to the seven flow keys, some other flow properties are also recorded. Here we mainly
describe the properties that we use in our implementation and explain why the rest properties are
ignored.

Time-strart, time-end and duration are all temporal properties of the flow. They are very
important in security analysis because all malicious activities would more or less have specific
temporal characteristics.

TCP flag could be a helpful property in identifying DoS attacks based on the three-way
handshake procedure to establish TCP connection. However, the nature that the value of this
property is the combination of all observed TCP flags in the flow diminish its effectiveness in the
identification of such anomalies. Surely this property is useless when the TCP protocol is not
used in the flow.

Last but not the least category of useful properties in security analysis is the payload statistics
including total byte number, total packet number, and byte per packet. As the payload is discarded
in netflow records, such statistical properties are the only clues to tell the characteristics of the
payload.

As for the rest of the flow properties, which are less useful in direct visualization in our specific
environment, are not used in the implementation in order to save limited resources. However,
they should be easily added if required by the users. In addition, they should be also useful in the
preprocesses of the data before visualization, such as aggregation and filtering.

The source and destination autonomous system (AS) of the flow may be good to show the
distribution of the other properties over a network-wide view, which is coarser and higher than
the host wide view based on IP address. However, our targeting observation points are mainly
routers located in the backbone network of a large ISP and very little variety of AS can be
observed.

Though the ingress interface is one of the flow keys, the ingress router interfaces of a flow does
not provide much information about the characteristics of the traffic itself, especially when the
routers are deployed within a core network in which the routing between routers are static.
Putting the NetFlow records from multiple routers all together may give some interesting

17

3 Technological Background

characteristics, but is out of the scope of our work.

Temporal Setup

All computer systems have limited resources and must have mechanism to balance the resource
consumption so that the system can work continuously with a smooth performance rather than
chock up or even halt.

Normally, when a packet indicating the end of a flow, such as the a TCP packet with the FIN flag
flipped on, NetFlow routers can understand and mark the corresponding flow entry as finished
and ready to be exported with other finished flows. In other words this flow entry is frozen until
being exported and cleared from the cache.

As a matter of fact, NetFlow introduces two timeout counters for each flow entry. One is idle
counter that resets to zero and starts to increase along time after the last arrival of packet.
Therefore, the counter indicates the inactive duration when no packet is observed in the flow.
Once reaching the threshold the flow entry is marked as finished

The other one is active counter which starts and keeps increasing along time since the creation of
the flow, as long as the relevant flow entry is not marked as finished. Therefore this counter
indicates the total duration of the flow. Once reaching the threshold, the flow entry is marked as
finished, even though the actual transmission within the flow is still active. Newly observed
packets share the same values of the flow keys with the active timed out flow are recorded in a
new flow entry and thus considered as a new flow. Lower active timeout threshold produce more
fine-grained flow observations, at the cost of the probability to tell the real duration of the flows.

3.1.2 Architecture
NetFlow technology is a system consisting of three logical components: NetFlow Exporter,
NetFlow Collector, and NetFlow Analyzer. Figure 6 shows the relationships between each
component and their functionalities.

18

3.1 NetFlow

As mentioned in the previous section, a NetFlow exporter is a NetFlow-technology-enabled
router deployed at a certain observation point in the network. It captures bypassing packets,
classifies them into flow entries in its local cache, and exports the finished flow entries to
NetFlow collectors.

A NetFlow collector is usually a UNIX server equipped with a NetFlow collection software, such
as the nfcap in the NfDump toolset in our case. Such software provides a daemon service
listening on the network. Whenever the flow records exported by the exporter arrive at the
collector, such daemon programme receives the records and stores them onto the hard disk,
normally in binary format for storage size optimization.

A NetFlow analyzer is usually a terminal with NetFlow analysis software installed. Such software
converts the binary raw flow data into human readable format, hence should probably in the same
tool suite with the collecting software mentioned above in order to recognize the binary format.
The software also provides analysis functionalities with human-computer interface that allows the
human user to make use of the data. In our case NfDump includes nfdump for format conversion
and several analyzing functionalities such as filtering, aggregation, and top talker statistics. More
sophisticated software such as NfSen described in Section 2.1.1would be very good to have on
the analyzer too in order to help the human users gain more insights into the data and to enhance
the analyzing efficiency.

Because the collector and the analyzer are mainly determined by the software installed on them,
their functionalities can also be fulfilled by a single computer with both softwares installed.

19

Figure 6: NetFlow architecture

3 Technological Background

3.2 Information Visualization
The term information visualization here covers a much wider range of domains than visualization
techniques. As a general and comprehensive description of information visualization, this section
explains the most relevant knowledge of those domains. Given not only how to visualize but also
why the visualization works, we can gain more in-depth evaluation of the design and
implementation of our VizSEC system. The main reference of this section is Colin Ware's book
“Information Visualization: Perception for Design”[5], in which many principles and techniques
have been applied and proved in the VizSEC systems surveyed in Section 2.1.

3.2.1 Human Perception and Visualization

In general, human beings have very special perception capabilities which are way beyond the
performance of any of the state-of-the-art AI algorithms in discovering patterns. On the other
hand, the major advantage of computers over human beings is its high speed in executing pre-
defined computational tasks. Combining the discovery capability of human beings and the fast
computing capability of computers, we have a problem solving system with a loop as shown in
Figure 7, wherein the thick red arrow indicates the abundant information produced by the
computer and the thin green arrow refers to the analysis result that is given by the human as a
guidance for the computer to produce information for the next problem solving cycle if the
problem is not solved yet.

In our scenario, the computer generates visual images of the netflow data for the human user to
discover malicious activities hidden in the data. In each analysis cycle the human user gives
feedbacks to the computer in order to get more desirable visual images that lead to a step forward
to the objective. Obviously, visualization acts as the interface between the two components. In
order to optimize the efficiency of the system, more detailed look into the loop is necessary.

Reference Model of Visualization

As depicted in Figure 8, the processing flow of computers and the perceptual flow of human
beings are enclosed in the two boxes, illustrating a reference model of the visualization.

The processing flow of computers in the left box looks very straightforward. Starting from the
raw data, the computer first dumps the raw data to the data table. Each row of the table represents
a data record, whereas each column represents a property of the data record. Any data that can be

20

Figure 7: Human-computer problem solving loop

3.2 Information Visualization

converted to such form of data table is called table data, so does the NetFlow data in our case.
The data table can also be acquired indirectly by applying a pre-processing on the raw data. For
example, linear transformations such as fast Fourier transform (FFT), dimension reduction
methods such as principle component analysis (PCA), clustering algorithms such as
multidimensional scaling (MDS), or other semantic procedures that convert the raw data into data
tables is considered valid prior model.

Then, the records in the data table are mapped visually to some visual structures such as points,
lines, areas, etc., and finally rendered to views displayed in the output device such as a monitor.
The process between data tables and views is visualization.

The perceptual flow of human beings in the right box can be divided to two parts: the vision input
by the sight of eyes, and the mental perceptual processing of brains.

Apparently, as the eyes are the only interface to take in the views, the faithfulness of the the
conversion from the real world view to mental view becomes critical. However, human eyes can
never take all information in the real world, because of many natural limitations. For example,
the limit in acuity, contrast sensitivity, color sensitivity, and so on. Besides, certain pattern such as
high frequency strips may easily cause visual stress, which significantly restrict the continuous
working period of eyes. If the views are carefully designed with respect to such limitations, the
performance can be optimized.

After the first step, the human brain takes over further perception according to the reference
model of visualization. This consists of three stages of perceptual processing as follows:

1. Pre-attentive processing

This is the first processing that extract low-level properties of the view captured by eyes.
As a result of evolution, the eye can perform very fast processing to extract certain
features in parallel, and stored them in the visual working memory. These features are so
called pre-attentive features, which are exemplified in Figure 10. Symbols of such

21

Figure 8: Detailed problem solving loop with the reference model of visualization

3 Technological Background

features are called sensory features. More details on working memory are given in Section
3.2.3.
Because this processing is done without consciousness, it is a bottom-up data driven
processing. The speed of pre-attentive processing is independent of the number of
distracting objects, while the processing speed of non-pre-attentive features is slower and
the speed decreases as the number of distracting objects increases.

2. Cognitive processing

Also called pattern perception, this processing is slow serial processing involving both
working memory and long-term memory, which are further discussed in Section 3.2.3.
Compared to the sensory symbols that the pre-attentive processing works on, cognitive
processing perceives arbitrary symbols that require cognitive efforts recalling knowledge
in the long-term memory. As presented in Figure 9, it would be much more difficult to
relate the Arabic symbol “3” in the left big circle to the meaning of “three”, than to relate
the three small circles in the right circle to the same meaning, unless the Arabic symbol is
learned in prior.

3. Goal-driven processing

Using the objects recognized in the cognitive processing, this stage of processing attempts
to form cognitive model for certain goals. Requiring high level reasoning in a sequential
manner, it is the slowest processing in the whole perceptual flow. The resulting model or
pattern is then sent to the computer to influence the next visualization processing.

Pre-attentive Features

22

Figure 9: Arbitrary symbol(left) vs sensory symbol(right)

3.2 Information Visualization

As mentioned before, pre-attentive features are certain forms that can be rapidly perceived in
parallel without conscious attention. Some examples of pre-attentive features are presented in
Figure 10. Such features should be encoded to the data representation in order to enable fast
identification of special visual patterns.

In addition, Gestalt (means “form” in German) laws provide several empirical guidelines to use
pre-attentive features to achieve visual clustering. For instance, objects that are close, similar, or
vertically symmetrical to each other can be pre-attentively perceived as a group. This is very
useful in fast visual classification of views containing enormous data points.

3.2.2 Plotting Schemes
In Section 3.2.1 we explained that netflow data is table data. Because table data have the same
multiple attributes for every data record, such data is also called Multidimensional Multivariate
(MDMV) data, where multidimensional refers to the dimensionality of independent properties
and multivariate refers to the dimensionality of dependent properties.

The visualization of such MDMV data[37] is not intuitive but several techniques are proved to be
effective and widely adopted, such as line graphs, scatter plots, histograms, glyphs and icons,
recursive visualizations, clustering visualizations, pixel-oriented techniques, and so on. In this
work we choose the simplest and most popular ones according to the design principles in Section
5.2.

Scatter Plot
Scatter plot is the most popular visual data mining tool that is good at finding outliers and
observing clusters and correlations. Though the plotting scheme can only represent two
dimensions of data, by employing additional techniques such as multiple views, glyphs and icons,
color encoding and so on, scatter plots can definitely represent higher dimensions of data. Figure
11 illustrates the plotting scheme of scatter plot.

23

Figure 10: Pre-attentive features

3 Technological Background

Histogram
As presented in Figure 12, histograms are bar charts in which the height for the bar represents the
total amount of data points falling in the value range on the x-axis. This value range is
determined by the positions at which the two edges of the bar located on the x-axis.

Though its plotting scheme only supports direct representation of data in one dimension, by using
the same techniques afore mentioned, histograms can be used to represent higher dimensions of
data too.

24

Figure 11: Plotting scheme of scatter plot

Figure 12: Plotting scheme of bar chart(left) and histogram(right)

3.2 Information Visualization

Parallel Coordinate Plot
Parallel coordinate plot (PCP) is mostly used as a visual method of the clustering visualization
techniques. Unlike the scatter plots and histograms that need additional techniques to show the
data in more dimensions, PCP can supports to very high dimensionality by simply increasing the
parallel y-axes as shown in Figure 13.

3.2.3 Interaction Techniques
In Section 2.2.1, we learned from the survey result that interaction functionalities are
indispensable requirement for a good VizSEC system. According to the problem solving loop and
the reference model of visualization in Section 3.2.1, we understand that visualization is the
interface that closes up the loop and interactive visualization is the most direct way to enhance
such interface. Furthermore in Section 3.2.2, to deal with the MDMV data, most of our selected
plotting schemes must add extra interaction features. All these show that interactive visualization
must be carefully designed in our solution.

Focus+Context Problem

The first issue that interaction techniques need to address is the focus+context problem in
navigating the data views. This is a challenge when confronting large scale data sets like the
netflow data.

More specifically, the focus+context problem is about how to find details from a larger context in
given information space. Several techniques are proved effective in addressing such issue, such
as the elision techniques, in which part of the structure is hidden until needed; or the distortion
techniques, in which regions of interest are magnified while the space of irrelevant regions are
compressed; or rapid zooming techniques, by which users can conveniently zoom in and out of
interested regions; or multiple views, among which some views give overview and others focus
on details.We choose the rapid zooming and the multiple views techniques again because of their
simplicity and verified efficiency. To enhance the relationships between different views, we

25

Figure 13: Plotting scheme of parallel coordinate plot

3 Technological Background

feature our prototype system with linked brushing technique as presented in Figure 14. This
technique enables automated highlighting of selected data subset in all views.

Interactive Visualization Feedback Loops

In general, there are three types of feedback loops in the interactive visualization:

1. Visual-manual control loop for data manipulation, where human users act on seeing visual
interface components such as buttons;

2. View refinement and navigation control loop for exploratory navigation, which
corresponds to the pre-attentive processing and the cognitive processing;

3. Problem solving loop for the discovery of cognitive models and patterns, corresponding to
the goal-driven processing.

Relevant time scales corresponding to each class are:

1. 0.1 second correspond to very fast psychological moment;

2. 1 second corresponds to slightly slower than previous one because cognitive effort is
needed to response to unprepared situation;

3. 10 seconds correspond to the slowest sequential reasoning of unit tasks.

Besides the reference model for visualization, the visual working memory and visual attention
theory can also explain the above time scales and probably shed light on the optimized utilization
of the interaction techniques.

In brief, the human perception system has a temporal memory similar to the random access
memory (RAM) in common computer architecture. Such memory is called working memory
which is supposed to extremely fast. But it has very small capacity and is only for the short term
caching. The visual working memory of a common human can hold only three to seven visual
objects and patterns, which stay at most a couple of minutes. Putting content into the visual
working memory requires visual attentions, whereas storage time longer than 3 seconds requires
cognitive effort. Even worse, performing cognitive effort rapidly used up the bandwidth available
for other tasks that ask for working memory.

26

Figure 14: Linked brushing between scatter plot (left) and parallel coordinate plot

3.2 Information Visualization

According to the visual working memory theory, the interaction techniques should try to reduce
the total number of views required in a perception task. Also, each small perception sub-task
forming a complex task unit should be as simple as possible in order to finish the perception as
soon as possible. Hence, the cognitive effort can be reduced or avoided so that other small task
can use the working memory as well to perform efficiently. In addition, the VizSEC system
should be fast enough in providing views within the time scale of each type of loop, otherwise the
working memory will be forced to perform cognitive effort in order to store certain content for a
task for a longer period. During this period, other task can not efficiently utilize the working
memory because of the limited bandwidth.

3.2.4 Multidimensional Reduction
Strictly speaking, multidimensional reduction is not mainly for information visualization. We
discuss about here along with other visualization issues because it provides another perspective of
MDMV data analysis than direct visualization methods.

Multidimensional reduction methods attempt to project the data from a high dimensional space to
a lower dimensional space but also to preserve the characteristics of the original data at the same
time. In our case, some netflow properties would be chosen first in order to determine which
columns of the data table should be processed. Because we want to visualize the new data of the
newly produced properties mainly by our two-dimensional scatter plot, we usually set the number
of the outputting lower dimension to two accordingly.

As for the reduction methods, the principle component analysis (PCA) should be the first option.
This is due to three reasons comparing to other methods. First, the meaning of PCA is relatively
intuitive. It tries to find an orientation in the high dimensional space along which the data should
be projected, so that the resulting data points projected to the lower dimensional space preserve
the greatest variance. Because some data points are inevitably collapsed after the projection, PCA
is usually more continuity optimized than trustworthiness optimized. Second, the algorithm for
PCA is systematic and could be very efficiently performed by computer. It is considered one of
the fastest multidimensional reduction methods. Third, PCA has been used for over a century
since its invention in 1901 by Karl Pearson. As one of the most popularly used exploratory data
analysis methods, it is proved reliable to find the factors of the data under three main
assumptions. First, the data is linear composition of certain basis. Second, the data is Gaussian
data in which statistical characteristics such as mean and covariance are important to depict the
data. Third, large variances have important dynamics. This assumption is mainly for the
interpretation of the result of PCA and based on another assumption that the data have high
signal-to-noise ratio. Hence the resulting principle components are considered as useful signals
rather than useless noise.

After the original data have been mapped to a lower dimensional subspace, plotting schemes
designed for low dimensional data could be used directly on the resulting data. However, because
the difficulty in interpretation of the result of multidimensional reduction alone, visualization of
the original properties should be used in combination with the new properties.

27

3 Technological Background

3.3 Botnet
A botnet is a network mainly consisting of compromised computers called bots, which are
controlled by other computers within the network. Those controlling computers use certain
network communication links to send commands to the bots. Thus such controlling computers are
called command and control (C&C) servers or simply controllers in this work, while the
communication links are called C&C links. Because controllers are in direct contact with the
bots, they may expose themselves too much and get caught for their illegal behavior. Thus
normally, the controllers are also compromised computers instead of the real bot herder. Figure
15 shows a basic botnet architecture, where the controller can be more and even organized in
several layers in order to hide the bot herder better.

Characterized by stealthy, organized and profit-driven, botnets are capable of performing various
malicious tasks from sending spam to operating large phishing system.

We focus on botnets for the detection of malicious activity for two main reasons. First, botnets as
a collection of the organized compromised computers in the networks, perform almost all typical
kinds of malicious activities. Hence by looking into botnets, we understand major malicious
network activities as well. Second, according to the latest worldwide infrastructure security
report[38] by the Arbor Networks, which covers 12 months from July 2006 to June 2007 and
focuses on operational network security issues, botnets have become the most significant security
threats together with distributed denial of service (DdoS) attacks in views of worldwide ISPs.

Just like any criminal organization, any malicious task performed by botnets can be separated to
four stages: reconnaissance, propagation, communication, and finally attack. Each stage involves
certain malicious activities, such as scanning for reconnaissance, spam relay and malware
distribution for propagation, C&C link for communication, and finally causing DoS [39] for
attack. Though botnets can carry out many other malicious activities such as click fraud,

28

Figure 15: Basic botnet architecture

3.3 Botnet

phishing, brute-force password guessing and so on, we only focus on the activities discussed as
follows for two reasons. One reason is that their instinct behavioral characteristics will probably
result in strong patterns in netflow data to be discovered. The other reason is that they are the
most prominent malicious activities across the Internet according to the observation of ISPs[38].

● Scanning

Scanning is the activity that scanners (computers connected to the networks) try to find
potential vulnerable computers that could be further exploited on the networks. Usually
the number of scanners are much smaller than the number of victims for cost-efficiency
reasons, and the time duration is short.

In general there are two basic types of scanning. One targets IP address and the other one
targets port number in TCP or UDP headers, namely IP-sweep scanning and port-sweep
scanning. IP address based scanning attempts to find vulnerable computers within a
network block, thus they result in traffic flows with very few different source IP
addresses but a lot of different destination IP addresses within a network block.

Meanwhile, port number based scannings attempt to find vulnerable services opened on
targeted computers. They leave main traces in the traffic flows characterized by very few
different source IP addresses but many different destination port numbers. In addition,
other properties of the flows are usually the same or very similar.

Most of the time the scannings are carried out in a very short time period, such as a few
seconds or minutes. When the period last much more than that, they become very difficult
to be discovered and are named creepy-crawly scannings.

● DoS Attack

DoS attack is the activity that attackers (computers connected to the networks) try to
exhaust computer resources or network bandwidth, in order to prevent them from
providing services to legitimate users.

The resulting effect of DoS attack mainly depends on its impact on the target and its
similarity to legitimate traffics. In other words, it generally cumulates as many attackers
as possible to send a large enough amount of legitimate service requests to the targets per
time unit in order to exhaust their capacities. Thus, effective DoS attacks usually lead to
traffic flows with a lot of different source IP addresses but only very few different
destination IP addresses. Then they are called Distributed DoS (DDoS) attacks. In
addition, like scanning, other properties of the flows are usually the same or very similar.

Two major types of DoS attacks are TCP SYN flooding attacks in which the packets have
the SYN bit in the TCP header set in order to exhaust the TCP connection capacity of the
targets, and UDP or ICMP flooding attacks in which the packets are very large in order to
exhaust the processing resources of the targets[38]. Such DoS attacks are brute-force
attacks which are simple but effective.

● C&C Link

C&C links are not such harmful threats by themselves unless they are exploited to
organize the bots to perform malicious activities. Via the C&C links, hundreds of

29

3 Technological Background

thousands of bots formed a powerful army under the control of bot herders. Of course, on
the other side the bots can do nothing without such C&C links. In addition, the C&C link
is the key to trace back to both controllers and bots, which is the first step to clean up the
infected computers in order to diminish the scale of botnets and mitigate the effect of their
attacks. Therefore, C&C links are considered the weakest part of botnets. In the mean
time, stealthiness is the most essential characteristic that all C&C links try to improve on.

In order to hide from detections, botnets use legitimate protocols such as IRC and HTTP
for their C&C links. Usually a botnet is denoted by the protocol used in its C&C link,
such as IRC botnet, and HTTP botnet.

In the IRC botnets, the traffics of the its C&C link are very similar to normal IRC traffics.
As a instinct behavior of IRC protocol, the controllers need to send very frequent
periodical keep-active signals to their bots in order to maintain the aliveness of the C&C
links connecting them. Thus once a controller is identified, it is quite easy to find the bots
under its control via the keep-alive signals. Moreover, the “push” style of dispatching
controlling commands in IRC channels exposes the malicious intention of controllers.

In the HTTP botnets, by using the “POST” method in the HTTP protocol, the bots take
the initiative to “pull” the controlling commands from their controllers. The “pull” style
hides the C&C links better than the “push” style by allowing more flexible temporal
communication patterns for different bots.

Fortunately, the botnets based on IRC C&C links are still the majority of current botnets
mainly due to their simplicity. However, emerging botnets such as HTTP botnets or even
peer-to-peer (P2P) botnets are more difficult to be detected, hence are more harmful and
deserve more attentions in the efforts for their detection and mitigation.

Most of the time, the C&C link is used for the following same tasks. First, the bots need it
to update their malware in order to perform specific malicious activities. Second, the
controllers need it as keep-alive signal to keep in touch with their bots. Third, the
controllers need it to send specific commands to their bots in order to launch destined
malicious activities. The first two tasks are very critical because if we can detect C&C
links by them, we can prevent or at least mitigate further destructions caused by the last
task by cleaning up the bots and quarantining the controllers in advance.

30

4 UNINETT CERT
UNINETT[31] deploys and maintains a national research based computer network with high
speed connectivity in Norway. UNINETT CERT is the security team in UNINETT that is
responsible for monitoring the network, alerting security events, and coordinating other relevant
departments to respond when security incidents occur. This thesis work fits itself in the proactive
part of UNINETT CERT, which concentrates on active prevention and detection of malicious
network activities.

4.1 Motivation
From such a big network connecting most educational and research institutes in Norway with
high speed connectivity, UNINETT collects more than 30 GB NetFlow data per day from its 27
Cisco NetFlow-enabled routers with 207 interfaces at the sampling rate of 1:100.

The same as many ISPs in the world, UNINETT's major concern of malicious activities is botnet
activities. Using its own NetFlow data source, the UNINETT CERT intends to find the bots and
clean them up in order to mitigate the botnets from their source of power.

4.2 Facility and Resource
In front of such massive amount of data, the small scale of the CERT is a too limited resource for
their challenging. However, the work has to be carried out in a way.

As a result, UNINETT CERT takes the “picking the low-hanging fruit” principle to guide their
work. In other word, they try to dedicate their limited resources in the very tasks that bring good
result fast.

For example, they have set up and maintained honeypots to study the most up-to-date malwares.
By performing code analysis on the malwares, useful information about the botnets is revealed,
such as the IP addresses of the controllers, and the programmatic behaviors of the bots that
execute such malware.

Another “low-hanging fruit” picked is the darknet facility. A darknet is a routed allocated IP
space in which no active services reside. Obviously, assumption can be made that all traffics flow
into the darknet are abnormal traffics.

Last but not the least, based on a lively up-to-date list of the IP addresses of the controllers,
UNINETT CERT routes the traffics destined for the known controllers to a sinkhole host, where
the malicious traffics are analyzed and dropped in the end. This facility is actually very effective
in mitigating the botnet relevant malicious activities by directly cutting off the C&C links.

4.3 Existing Solution
In order to utilize the enormous NetFlow log data better, UNINETT CERT attempts to explore

31

4 UNINETT CERT

the data directly. However, the existing solution, namely the Stager system, is based on the NfSen
project. As introduced in Section 2.1.1, the NfSen focuses on the analysis of the traffic load
characteristics using line graph visualizations and other features such as filtering and aggregation.
This solution appear insufficient and clumsy in security incident investigation so far, because of
its neglect of other traffic characteristics than the load characteristics and its limited interactive
visualization supports.

4.4 Wishing List
According to the situation described above, UNINETT CERT makes the following wishing list
for this thesis work:

● Build a tool to visualize more properties than load properties of the NetFlow data.

● The tool should be scalable enough concerning big data amount.

● The tool should support convenient navigation between overview and detailed view.

● The tool should support detail-on-demand.

● The tool should keep trace of investigation procedures, and allow the application of the
same procedure to different datasets.

● The tool should support multiple investigation on the same data, and provide means to
establish relationships between them.

● Establish relationships between actual activities and basic visual patterns observed from
views produced by the tool.

Generally, this list is a subset of the requirements given in Section 2.2.

32

5 System Design
Bearing Shneiderman's Visual Information Seeking Mantra in mind, we design our own VizSEC
system – UniVis, mainly by filling concrete components into Conti's design framework as
described in Section 2.2.1.

In order to meet the general user requirements summarized in Section 2.2.2 with special emphasis
on the wishing list of UNINETT CERT in Section 4.4, we try to choose the most suitable
components to be incorporated into our system. Our selection is mainly based on the survey
results in Section 2.1 which reveal verified advantages and disadvantages of each existing
VizSEC system. In addition to the preliminary empirical knowledges, several implementation
principles concerning our specific using scenario are also employed in the selection.

5.1 Requirements

5.1.1 Global Overview Snapshot
The first requirement of VizSEC systems shared by security administrators is the ability to
provide the overview of an entire network. In our case, the netflow data collected from a
backbone network router is so enormous that even the data of one hour is probably too much for
interactive operations by our simplest and thus most efficient visualization scheme. Therefore, we
suggest an auto-snapshot solution. By auto-snapshot, we mean a predefined schedule following
which the system automatically visualizes the specified dataset in specified ways without
interactive operations of human users. The views generated are saved as image files for off-line
routine analysis.

5.1.2 Local Details Drill-down
The second requirement is the interactive visual exploration ability that allows further drill-down
into the interesting local spots of the overview. The relevant features are zooming, filtering,
detail-on-demand, etc. Zooming provides clearer view of local area. Filtering excludes unwanted
data. Detail-on-demand hides details in general and provides convenient means to get them back
upon request. Apparently the drill-down process should allow iterative operation so each time the
process performed, the data in focus is further narrowed down to a smaller subset of itself.

5.1.3 Multi-view Linking
Based on the theory of the visual working memory and the pre-attentive perception of human
perception system, that human beings can rapidly perceive certain types of visual patterns in
parallel and store a limited amount of them into the short-term visual working memory, we can
take advantage of human brain by feeding it with multiple views at the same time, as long as the
visual patterns in those views are carefully addressed by pre-attentive features and the visual
working memory is not overloaded.

33

5 System Design

Though human brain can also establish relationships among multiple views, it requires cognitive
efforts which dramatically drain the bandwidth used to access visual working memory. To avoid
unnecessary consumption of the preciously limited perception resources, pre-attentive features
are introduced again to link multiple views together in the pre-attentive processing, which is a
lower-level than the cognitive processing in the reference model of visualization.

Moreover, when the information indeed overloads the visual working memory, which is very
likely to happen due to the complexity of security incidents, there should be some ways to buffer
the views temporarily so that the human users can concentrate on a few views and process them
efficiently. This is the same as the RAM cache – Disk buffer solution in common computer
system architecture. By this way the capacity deficiency of visual working memory is walked
around.

5.1.4 Procedure Extraction
By using VizSEC system to explore network anomalies, the exploring procedures themselves are
valuable knowledge already, because the security-domain-specific semantic interactions contain
the reasonings that reveal the characteristics of the target anomalies. As pointed out by Lakkaraju
et al. in [40], such exploring procedures play the same part as the sophisticated mathematical
algorithms, in terms of conveying the knowledge discovered during the exploration of data
between human and computer. In other words, common representation of exploring procedures
both used in human cognitive model and computer analysis model close the problem solving loop
on the cognitive level as described in Section 3.2.1. For example, if the result of an exploration is
a pattern that data points form a line in a scatter plot of two attributes such as A and B of a
dataset X, the exploration consisted of the procedure and the result can be described as “scatter
plot dataset X by attributes B vs A → line pattern”. Apparently this description can be understood
by human immediately. As for the computer, the procedure part can be easily converted to a script
such as “iplots(XA, XB)”, and the result part can be represented by a screen shot of the
resulting view. Some times the exploration can be extract to mathematical models, which can
speed up the analyzing procedures and enhance the analyzing results.

In addition, by using such common representation of exploring procedures, human users can
exchange knowledge and experience more conveniently in the same “language”. This is an
indispensable requirement in the security management community.

5.2 Principles
First of all, UniVis is a prototype VizSEC system mainly for concept demonstration. With very
limited time, fast development is of the utmost priority. Upon this base, the system should be kept
as simple as possible, while other criteria such as functionality, scalability and usability can be
traded off as long as they are sufficient for our experimentation.

In order to meet the requirements, we refer to the pros and cons of existing VizSEC systems for
the best practices. In addition, we attempt to separate each component of the system by modular
design. As the components are loosely coupled to each other and communicate via common
interfaces and protocols, each component can be improved without affecting too much on the

34

5.2 Principles

whole system.

Lastly, popular open source projects should be utilized if possible, whereby they can be better
adopted by direct modification in the source codes, and the popularity providing rich sources to
solve the practical problems during the implementation.

5.3 System Architecture
Figure 16 shows the system architecture according to the design framework of the VizSEC
system with slight adjustment. Such architecture mainly tells the data flow in a complete system
working process converting dataset to visualizations, and the position of each component in this
data flow. In general, the ellipses indicate input and intermediate data files, the boxes with round
corners represent output files consisted of plot snapshots and extracted parameters used to
generate the plots. Meanwhile square boxes except for the RAM represent system components
either processing the data or coordinating the work of other components.

A complete visualization process by using UniVis starts from the multiple input data files on the
most left side of the frame. These raw binary data files are provided by nfcap, which is part of the
open sourced toolset named NfDump[41] and plays the role of a NetFlow collector.

The main utility of NfDump is nfdump with command line interface (CLI), which is responsible
for dumping the raw binary data files to the comma separated value (CSV) data files.
Preprocessings such as aggregation, anonymization, and prefiltering are also performed by
nfdump during the dumping process by additional dumping options. Implemented in C
programming language, nfdump is optimized in processing speed. Hence it is selected for both
the preprocess and the prefilter modules in the framework.

The R[42] is a very popular open source statistical analysis environment featured by plenty of
statistic and graphic libraries and full data management support. R provides a complete
programming language in its computing environment and works efficiently as it is implemented
in the C programming language. As depicted in Figure 16, R is used in two places of the system.

The left R component is an additional component comparing to the original framework, due to

35

Figure 16: UniVis system architecture

5 System Design

the additional intermediate CSV data between the nfdump component and the R component. This
R component simply works as a data reader to import the CSV data files to the R environment.
On the other hand, the right R component is employed mainly for data manipulation and
statistical computation. The postfiltering and the encoding modules is fulfilled by its data
manipulation functions. In addition, it also apply statistical processing to the data. As the data is
already loaded into the RAM, an new module possibly called postprocessing can be added to the
framework between the postfiltering module and encoding module, in order to provide interactive
computation.

Obviously, the graphic engine module is realized by the iPlots[43] component. The iPlots is a
Java interactive visualization toolkit that is incorporated with the R environment. In order to be
used with R, iPlots includes a set of R scripts that provide interfaces for the R users to utilize the
interactive plotting library transparently without knowing any Java API. On the other side, the
iPlots can take the data stored in the R environment as input for the visualization.

Each plot view generated by the iPlots is a Java window frame featured with several interactive
operations. Such views can be logged as snapshot image files, together with text files recording
the parameters used in the previous components. Organized in a hierarchical tree structure with
specific naming scheme, those log files keep the tracks of the exploring procedures.

Finally, above all the above components, the frontend component is filled as the user interface of
the whole framework. By extending the length of the box representing this user interface module,
we allow the frontend to interact with preprocessing and prefiltering modules as well by design.
In this way all essential components can be operated via an integrated GUI control panel named
UniVis.

5.4 Component Composition

Figure 17 gives an overview of how each building block in the UniVis depends and interacts with
each other.

36

Figure 17: UniVis component composition

5.4 Component Composition

The blue blocks represent the common environments via which other components communicate.
The Linux block is the operating system (OS), providing basic OS functionalities such as file
system access.

Right on top of the OS lie two core components: nfdump and R, since they are installed directly
on the OS. Both of them can be launched directly from the Shell environment.

The nfdump is a common CLI utility that runs each time a valid command is sent to the Shell.
The control panel interacts with nfdump by executing nfdump commands in the Shell via the Java
Runtime in the Java Virtual Machine (JVM).

The R is a more complex environment that has its own command line interface and language. The
control panel interacts with the R in two ways. The first way is to use R in BATCH mode as a
common CLI utility. In other words, the control panel uses the R in the same way as it uses the
nfdump. The second way is to use the R via rJava, which provides interface between the R
environment and Java programmes running in the JVM, and is based on the Java Native Interface
(JNI) framework. In the second way the control panel launches the R environment by creating an
instance of R engine internally, and maintains the R environment by implementing an interface
that handles the R main loop callbacks. In brief, the control request its R engine to evaluate R
scripts, and the evaluation result is returned by the callbacks. Data type conversion is required
during the questioning-answering mechanism. This is partially addressed by rJava.

Finally on the very top layer lie the Java components including the GUI control panel and the
graphic engine iPlots. Though they are both Java components and iPlots can be indeed used
directly by the control panel, the iPlots here works more closely with R via rJava because its
input data for visualization comes directly from within the R environment. Therefore, the iPlots
and the control panel work independently and communicate with each other via the R
environment.

5.5 Functional Module Description
Previously we discussed the system from the perspective of its compositional entities. In this
section the system is described in more details in terms of its functional decomposition.

5.5.1 Data Source Manipulation Backend
This module takes care of the import processing of the NetFlow data. In all, the import
processing consists of two conversions between three data types. A brief comparison of the data
types is given in Table 5.1. No database is used for the storage and manipulation of data but only
a collection of data files and some processing utilities, because the latter solution is simpler to
implement for a prototype and fast enough for the experimentation.

37

5 System Design

File Type Producer Format Compression Algorithm

NfDump Raw NfDump Binary Fast LZO1X-1

CSV NfDump ASCII Text None

R Workspace Image R Binary gzip DEFLATE

Table 5.1: Data types processed by the data source manipulation backend

As a starting point of the whole visualization processing of the UniVis, the NfDump raw data is
normally supplied by the nfcapd utility of the NfDump toolset installed on the NetFlow collector.
In addition, the raw data can also be produced by other utilities of the NfDump toolset such as
nfdump, usually with additional processing applied at the same time such as filtering and
aggregation. The NfDump raw data is stored in binary format using fast LZO1X-1 compression,
which does not offer high compression ratio but extremely fast compression speed.

Taking the NfDump raw data as input, the first data conversion outputs the CSV data in ASCII
text format. This is the only human readable data type during the whole data manipulation phase,
and presents the table structure of the NetFlow data in an intuitive way, in which each row
represents a data record and each section of a row separated by commas represents a data
attriubte column. We have defined table data in Section 3.2.1 and stated in the same place that
NetFlow data is a kind of table data. As shown in Figure 18, the first row of every CSV file
shows the abbreviations of the names of the NetFlow data attributes, which are selected
according to the discussion on the network traffic measures employed by the NetFlow
technology. These rows are called the title rows in this report, and the rest of the rows are called
the data rows.

It is worth mentioning that nfdump dumped two kinds of text data of the same NetFlow data
attribute. One in the integer format is for machine processing, and the other one in string format
is for human processing. For example, the Ipv4 address string “158.36.73.69” can be represented
by integer “2653178181”. Evidently attributes that are essentially numeric have the same value in
both formats. In our case we dump both formats for the non-numeric attributes, and dump only
integer formats for the numeric attributes.

We choose such solution instead of only using integer format and converting them to string
format dynamically on demand, because the string data and the integer data can result in two
visualization optimization, namely, continuity and trustworthiness. Continuity means that the data
points should keep near to each other in the visualization if they are near originally.

38

Figure 18: Example CSV data table

5.5 Functional Module Description

Trustworthiness means that data points should be near to each other originally if they are near in
the visualization. Continuity and trustworthiness are two optimal goals often applied in
multidimensional reduction algorithms.

String data is reckoned as ordinal data, whose order is determined by the position of their
characters in the ASCII code. For example, 'a' is ahead of 'b' because 'a'(97) is ahead of 'b'(98) in
their ASCII codes. Also, characters that are ahead in the string have higher priority in determining
the order of the strings. For instance, “ab” is ahead of “bb” since the first character of “ab” is
ahead of the one in the same position of “bb”. The distance between each two data values only
represents the number of different observed data values between these two values. An easy
observation of ordinal data is that no gap will appear between two neighbor values even though
there are potential values that once observed, can be inserted between them according to the
ordering rules. For example, only two strings are observed, such as “a” and “c”. Unless “b” is
observed, “a” and “c” is still neighbor strings. Therefore, ordinal data have good continuity but
probably bad trustworthiness, such as the string data.

On the other hand, integer (or numeric) data instinctively keep the distance between each data
values. For example, the distance between '1' and '3' is always 2 as long as they are reckoned as
integer number. Thus, integer data have good trustworthiness but probably bad continuity. By
keeping both of them, we may see the difference between two optimal visualization of the values
of the same attribute, hence acquire a more complete understanding of the data. Obviously, more
memory space is required.

The conversion from the NetFlow raw data to the specific CSV data is carried out by a slightly
modified nfdump utility, because the original nfdump can not fulfill our needs for both integer
and string output at the same time.

As for the conversion from the CSV data to the R workspace data, the system can work anyway
without it because R can directly read CSV data each time. The main reason to add this
conversion is to improve the processing speed and to save storage space.

In the R environment data and functions are seen as objects in its workspace. The R can save the
objects in such workspace onto disk as a workspace image file, and load them back from the
image file to the workspace. Compared to the CSV data file, the workspace image file can be
loaded much faster into the R environment, and consumes much less disk space because of the
utilization of the compression and the binary format. Thus, though converting the CSV data to the
R work space image is an additional process, it is worthwhile as long as the data is going to be
used more than once, which is true in practice.

5.5.2 Visualization Preparing Components
This module covers all kinds of preparing processes of the input data before the visualization
process. In general, this module produces data of new attributes from the data of existing
attributes of the netflow data, which can be both visualized later by the interactive plotting
components described in the next section. In other words, the new data produced by this
component is multivariate data because the new attributes it belongs to depend on the existing
attributes.

39

5 System Design

Many kinds of method can be used to produce such data of certain new properties, such as
multidimensional reduction, cluster analysis, spectrum analysis, correlation analysis, and so on.

As described in Section 3.2.4, multidimensional reduction method such as the principle
component analysis (PCA) helps to prepare the original high dimensional data in a much lower
dimensional subspace without losing much original information, in order to allow lower
dimensional plotting schemes to directly visualize the data. The algorithms of clustering analysis
such as multidimensional scaling (MDS) are similar to multidimensional reduction methods to
some extent, but focus more on preserving the proximity of data points rather than optimize the
variances. In this way the cluster characteristics of data hidden in a high dimensional space can
hopefully be preserved and observed when projected to a lower dimensional subspace.

Different from multidimensional reduction and cluster analysis that attempt to discover the
spatial characteristics, spectrum and correlation analysis concentrate on the temporal
characteristics. Spectrum analysis methods such as fast Fourier transform (FFT) transform the
data of a single attribute observed along time to the spectrum domain, so the spectrum energy
distribution can be shown by a scatter plot, in which the x axis represents the frequency and the y
axis represents the energy. Correlation analysis targets to find the similarity between two sets of
observations by feeding them to the correlation function and evaluate the output.

Apart from the above methods, more methods can be added as long as they generate new
attributes from the original ones. Because R provides rich data manipulation and statistical
computation functionalities, each methods can be implemented separately as functions in R
scripts. Such plugin style structure results in great extensibility of this component, by which users
familiar with the R environment can easily implement customized functions by themselves.

5.5.3 Interactive Plotting Component
This module is responsible for all plotting and interaction functions of the data ready for
visualization. Because we use the R to manage and prepare the data for visualization, the most
efficient way to use the data is to use them within the R environment directly. As stated in Section
5.4, the iPlots (interactive plots) is the very utility we look for.

Exactly as it is named, the main functionality of the iPlots is generating interactive plots. It is
implemented in Java because of the advantages such as platform independence, object orientation
and graphic capabilities. Besides common interaction functions such as zooming and dynamic
querying, the iPlots distinguish itself from other interactive plotting toolkits by its linked plotting
ability.

In order to provide the linked interaction features, the iPlots brings in the concept of iSet.
Briefly, an iSet is a data structure consisting of arbitrary number of variables, which are vectors
of the same length. In other words, the iSet perfectly represents the MDMV data by using its
variable vectors to represent the data attributes. As shown in Figure 19, the iSet serves as root
objects of the plots in iPlots. From each iSet, arbitrary plots can be generated, but each plot can
only be linked to one iSet. Under such hierarchical structure, common parameters and temporary
data of plots linked to the same iSet can be attached to the iSet and shared by all the plots. For
example, each iSet maintains a color index for every data points it contains. Every plot linked to

40

5.5 Functional Module Description

the same iSet then uses the same color index to brush the data points displayed in its own view.
This is indeed how linked color brushing is realized. Also, each iSet maintains a selection index
to save the identification of each selected data points. Every plot linked to the same iSet then uses
the same selection index to identify and highlight the selected data displayed in its own view.
This is how linked selection and highlighting is achieved. In the same way, new attributes
generated by the visualization preparing components are also be attached to iSets dynamically so
they can be shared and displayed in a linked manner by multiple plots as well.

In addition to the interactive plotting, the iPlots can be used inside the R environment. Users can
call the iPlots functions by directly using the R language regardless of the Java implementation
details of the iPlots. As mentioned before, such transparent operations from R is achieved by
using the rJava package, which provide interaction interface between R and Java via the JNI
framework. Thanks to such transparency, we only need to write R scripts in order to create and
manage the data set and their plots in the iPlots. Further interactions are simply performed
directly over the Java windows showing the plots as well, such as adjusting the parameter for the
alpha channel, which controls the transparent level of the objects in the visualization. Once any
new plotting schemes are supported by the iPlots, they can be easily added to the UniVis simply
by adding new R scripts. Thus this module is also highly extensible.

5.5.4 GUI Control Panel Frontend
This module is the GUI frontend of the UniVis system. It connects all other modules in an
integrated control panel, whose design involves the general visual exploration procedure of the
netflow data.

Coming after the control panels of popular image processing softwares such as GIMP, this control
panel is designed for the best operating efficiency in a way that all operations are exposed on one
scroll panel without any hierarchical interaction techniques such as menu or dialog box. In order
to guide the general visual exploration procedure, operations of each system functional module
are grouped together, and all modules are arranged sequentially according to the processing flow.
Figure 20 shows the basic layout of such control panel.

41

Figure 19: iPlots internal structure

5 System Design

Each control block of the corresponding module in general should provide intuitive interface to
handle three types of operation consisting of the input selection, the parameter setup, and the final
execution.

For the control block of the data source manipulation module, it should provide convenient
interface to utilize the functions provided by the nfdump backend. For example, in the selection
of the input raw netflow file, a static file explorer can be used to locate the files more efficiently
than the pop-up explorer. For the time window selection, an initial time window retrieved from
the selected netflow files can be a good reference to specify the customized time window. As for
the filter expression, a feature to validate the correctness of the expression can help to reduce
operational mistakes. These features are generally not available in the original CLI backend.
Finally, there should be interfaces for the execution of the data type conversions.

For the control block of visualization preparing module, it should provide interface for the
netflow attribute selection, the preparing method selection, the preparing parameter setup, and the
execution of the preparing process.

The control block of the interactive plotting module is the main part of the control panel. In
addition to the common interfaces for the netflow attribute selection, the plotting method
selection, the plotting parameter setup and the plotting execution, this block introduces the
concept of the visualization tree in order to visually represent the relationships between the
visualized datasets and their plots, and the relationships between each visualized dataset.

The idea of the visualization tree is initially inspired by the hierarchical internal structure of
iPlots as shown in Figure 19, where an iSet managing the data to be visualized can be seen as the
tree root, whereas an iPlot managing the view generated from the root data can be seen as the tree
leaf. Moreover, because of the basic requirement of VisSEC system on details drill-down, the
dataset under analysis each time usually gets more focus on some local interesting spots, hence
temporary subsets of the original dataset need to be generated accordingly. As the original data is
the root, its subsets can be seen as the branches.

Apart from depicting relationships between the datasets and the plots, and between the dataset
and its sub-datasets, the visualization tree can be utilized for recording the exploration
procedures. Each plotted view, each generation of the sub-dataset, and each color encoding of the
data are parts of the exploration results. By logging these essential objects and actions, not only
the exploration results can be stored, but also the exploration procedures can be traced and added
to the knowledge base which can be used in the future exploration. In other words, the

42

Figure 20: GUI control panel layout

5.5 Functional Module Description

visualization tree transforms visual exploration procedures to symbolic rules, which can be re-
applied to new datasets. By bridging the human cognitive model and computer analysis model,
the visualization tree closes the human-computer problem solving loop between pattern discovery
and pattern searching, as stated in [40].

Finally, because many processing take quite some time and many operations of the components
can be carried out independently, parallel processing mechanism can be employed in order to
provide a more efficient control panel. For example, when some new raw netflow data is being
dumped, the whole system should not be blocked until the dumping process is finished, but allow
the users to operate on the previously dumped data. Additionally, because the raw netflow data
usually arrives at a certain interval in practical using scenario, scheduled routine operations can
reduce a lot of man hours. A schedule table showing the scheduled operations can be a good
feature. As most of the operations are launched by the scripts, this feature is be feasible for the
implementation.

43

6 Implementation
According to the design in the previous chapter, this chapter describes the implementation details
of the UniVis according to its functional modules. Discussions on the deployment, usage and
performance issues are followed behind.

6.1 Data Source Manipulation Backend
The implementation of the functional module of the data source manipulation backend includes
three parts: 1) the modification of the source code of nfdump for dumping raw netflow data to
CSV data, 2) the R script for the data conversion from the CSV data to the R workspace image
data in the R batch mode, and 3) the shell scripts for the execution of the manipulation processes.

For the first part, we achieve our goal by hacking into the source code of the nfdump to add one
more predefined output mode for its “-o” option, and add the necessary codes for the new output
mode referring to the existing codes for other modes.

For the second part, we use two R functions for the conversion. Function “read.table()” reads the
CSV files to the R internal data object, while function “save.image()” converts and saves all
objects in the R workspace to the R workspace image file.

Finally, shell scripts “dump.sh” and “preload.sh” utilize the above functions to carry out the
dump and preload processes. Notice that script “reload.sh” uses the R in batch mode in which the
R is used as a simple processing utility than a full functioning environment. In this mode, the R
takes in the input data and the parameters, and produce the output once per command in the Shell.
As both scripts run independently in the Shell, they can be performed in parallel without
interfering each other.

6.2 Visualization Preparing Components
First of all, this module implements the data object management functionality within the R
workspace. By directly utilizing several basic R functions, the implementation of such
functionality is a matter of writing the R scripts.

The implementation of the visualization preparing module is the scripts of R function as
mentioned in Section 5.5.2. Because the lack of time and the initial attempts to apply some
preparing methods such as PCA do not end with good result, the implementation of this module
is left for future improvement.

6.3 Interactive Plotting Components
As mentioned in Section 5.5.3, the actual functionality of interactive visualization is implemented
by the iPlots toolkit, whereas our implementation is writing R scripts to control the plotting
created by the iPlots.

44

6.3 Interactive Plotting Components

More scripts for other plotting and other functions such as subset creation, color encoding and so
on are attached in the appendix. Notice that these scripts are in fact hard coded in our
implementation due to time limitation, though they can be easily extracted as R script files, which
are more modular but need to be loaded and unloaded to the R environment each time being used.
This is because the batch mode of R can not be used here due to the complex context which each
R command is executed in and which can only handled in full functioning R environment.

6.4 GUI Control Panel Frontend
The figures from Figure 21 to Figure 24 present all function blocks within the GUI control panel
implemented using the Java Swing GUI framework

Block A as shown in Figure 21 corresponds to data source manipulation module and mainly
offers convenient interface for setting parameters for nfdump.

The “Chose Root Path” button and the text field on the right of it are used to decide the current
working directory for the nfdump. The file tree right below them shows the file system structure
under the specified directory, so users can navigate and select the raw netflow data files they want
to use in the nfdump.

The labels start with a dash indicate the dumping options of nfdump. The first two rows starting
with a radio button determine the path of the selected input raw netflow data file(s). Because they
start with radio button, only one row can be enabled at a time. The first row can specify multiple
files, while the second row can only specify a single file. Multiple files are set by defining the
starting file and the finishing file, whereby the file sequence are recursively sorted according to
the directory names or file names. Such method of selecting multiple files is useful because in

45

Figure 21: GUI control panel block A

6 Implementation

practice the raw netflow data files are usually organized in a directory structure such as “Router
ID\Year\Month\Day\filename”, and the files are named in the default format as
“YYYYMMDDhhmmss”.

The “-t” row is used to specify the time window, so only the flows within such period are
processed. If the choice box before the “-t” label is ticked when a file or a range of files are
already selected, the text fields followed will show the time window of the selected file(s).

The “-f” row is used to specify the filter expression for the filtering of the flows. For example,
“host src 192.168.0.1” tells the nfdump to only process the flows whose source IP address equals
to “192.168.0.1”. The filter syntax is very similar to the one used in tcpdump. More detailed
instructions on the usage of the filter and other opitons can be found in the manual document
contained in the nfdump package.

After the parameters for the options are set, the last row specify the output file name except for
the suffix, which is automated added to the output files generated by clicking on the “dump” or
the “preload” button. Intuitively, the“dump” button dumps the raw netflow files to the CSV files,
while the “preload” button converts the CSV files to the R workspace image files.

Block B deals with the preparing processes before visualization. As shown in Figure 22 there are
two sub-blocks. The first one manages the data objects in the R workspace, such as loading new
dataset, unloading a single data object or clear all data objects, and saving all data objects into the
workspace image file. Loaded data objects in the workspace will appear in the list on the left of
the buttons.

The second sub-blocks is left empty because of the reasons given in Section 6.2.

Block C is obviously the most complex control block on the control panel. All visualization
operations are gathered here. As shown in Figure 23, the whole block is also divided into several
sub-blocks.

46

Figure 22: GUI control panel block B

6.4 GUI Control Panel Frontend

The “Selection” sub-block is mainly used to specify the dataset to be visualized. The text field
under the “data” label shows the dataset contained by the current iSet. As stated in Section 5.5.4,
the dataset can be the original dataset directly converted from the CSV data. This kind of dataset
is called the root data. The dataset can also be the subset of other dataset. This kind of dataset is
called the branch dataset. There are two ways to generate the branch data, which are labeled as
“FILTER” and “INDEX”. The “FILTER” way uses the filter expression to take certain subset

47

Figure 23: GUI control panel block C

6 Implementation

from the current dataset. Such filter expression follows the R syntax, but is also very similar to
the nfdump or tcpdump filter syntax. On the other hand the “INDEX” way allows the users to
pick up data points directly from the plotted views by the mouse. In short, the “FILTER” way is
good at precise but inflexible subset selection, whereas the “INDEX” way is good at flexible but
coarse subset selection. The rest of the three GUI components in this sub-block are used in the
end of the overall visualization procedure, so they will be described later after those “plotting”
sub-blocks.

The “color” sub-block is responsible for the color brushing. Two color brushing methods are
supported currently. The first one is the filter based color brushing, which is on the upper half of
this sub-block. The main GUI components of this brushing is the 8x2 color palette. Under each
color label is a text field, where the filter expression can be filled in, so the data records meet the
filter condition will be brushed with the color accordingly. The “default” combo box determines
the basic color for the data records not meeting any of the filter expression. When the “brush”
button is clicked, the system sequentially brush the data with certain color according to the filter
assigned to the color. The brushing sequence is defined by the color positions in the palette,
where the first color starts from the left-top and the last color ends in the right-bottom. In other
words, if the datasets filtered out by two filter expressions are overlapped, the filter assigned to
the color with a latter position in the palette brushes the overlapped data with its color.

The second color brushing method is the “rainbow brushing”. This brushing based on a
continuous color space, in which the color gradually changes from one color to another. There are
many ways to use the rainbow color space, but in our case, we first select a netflow attribute from
the combo box on the right of the rainbow label. Then, the total amount of different values of this
attribute is counted and used to evenly split the rainbow color space. Thus, each section of the
split color space can be used to brush a value of the attribute. In our implementation, because we
use 64 discrete samples of rainbow color space instead of a real continuous rainbow color space,
when the number of different values exceeds 64, we can not provide different color for each
different values any more. Instead, we evenly split the number of different values to 64 parts, and
brush the values in the same parts with the same color. Notice that in our implementation it is
always the number of different values is considered instead of the actual number space. In other
words, we treat numeric numbers as strings. Finally, when the “rainbow brush” button is clicked,
the dataset shown in the text field below the “data” label within the “selection” sub-block will be
brushed with the rainbow colors according to the value of the selected attribute. As long as the
dataset is loaded, the color brushing can be carried out regardless of the existence of plots.

Then we have the plotting sub-blocks, which provide interface for the plotting parameter setup of
each plotting function. Intuitively, the labels of “x”, “y”, or “xN”, “yN” represent the axes in each
plotting scheme, which has been introduced in Section 3.2.2, except for the Mosaic plot. This plot
is only for testing and does not appear scalable. As it will not be used in our experimentation in
Chapter 7, we do not introduce it in this report either. The BG and the FG color means
background and foreground colors used in the plot. When the specific color brushing provided in
the “color” sub-block is applied, the colors specified here will be ignored. At any time only one
plotting scheme can be selected by selecting its radio button.

Finally, when the data, color brushing, and plotting scheme are all set, the system is ready for the
visualization. When the “Visualize” button on the “selection” sub-block is clicked, the control

48

6.4 GUI Control Panel Frontend

panel tells the iPlots library to plot the specified view via the R. When the plotting is completed,
it become a leaf node of its data set. Such internal structure will be visually presented in the
“Visualization Tree” sub-block, where the data set and plots are displayed and managed in a tree
structure.

Those buttons on the left side of the “Visualization Tree” sub-block provide some practical
functions for the user to manage the visualization tree. After selecting a node in the tree by the
left click of the mouse, clicking the “Toggle Plot(s)” button hides or shows the plot node or the
direct leaf plot nodes under a data node; clicking the “Tile Plots” button spreads all the plot nodes
under a data node with equal area on the screen; clicking the “View Data” button should pop out
a window showing the text details of the data node in a traditional table view, however it is not
implemented in our current version yet; clicking the “Save Plot(s)” button saves the image of the
plot node, or save the filter expression and color brushing expression of the data node together
with the images of the plot nodes directly linked to it; similarly, clicking the “Save All Plots”
button saves all data node information and plot node images within the subtree under the selected
data node; finally, clicking the “Delete” button removes the selected node and the whole subtree
under this node.

Apparently, the “Save Plot(s)” and the “Save All Plots” buttons actually realize the logging
function. Because when the information of each data node and the image of each plot node is
recorded, the exploration procedure is logged as well. In other words, previous procedures can be
stored as knowledge and reused in the future exploration. Because manually reproduction of a
previous procedure is tedious, an additional feature of the visualization tree allows the user to
copy the plotting procedure of any data node in the visualization tree. All that the users need to do
is to select the radio button of “as plots in” in the “selection” sub-block, right click on the original
data node in the visualization tree, and click the “Visualize” button in the “selection” sub-block.

The last feature for block C is that by ticking on the “save only” choice box in the “selection”
sub-block, all new plots will be minimized and hidden. This may save a considerable time if the
user only need to log the exploration procedures and the results rather than interactively carried
out the exploration.

As mentioned in Section 5.5.4, many processes in this system can be carried out independently,
hence parallel processing mechanism may help to improve the efficiency. The last control block
D provides the interface to monitor and manage such mechanism.

Internally, the UniVis system maintains two task managers. One for the Data manipulation tasks,

49

Figure 24: GUI control panel block D

6 Implementation

which can be executed concurrently. The other one for the rest of the operations, which can not
be performed in parallel. Though these two task managers run independently, the tasks within the
same manager still run in sequence. So, the table on the right side of the block D dynamically
displays the status of all the tasks managed by either manager. In addition, the buttons on the left
side of block D provide several management functions for the tasks displayed in the scheduled
task list. For example, as long as a task is not in the “INPROCESSING” state, the “Cancel”
button can call off the upcoming execution of the task. On the other side, the “Restart” button can
always reschedule the canceled task to be executed later, because the task manager keeps
checking the status of its tasks in order to decide if any task needed to be executed. Lastly the
“Clean” and the “Clean All” buttons are for the convenience of removing the failed or completed
tasks in the list in order to get a clearer view.

6.5 Deployment
In Figure 6, the UniVis is deployed on the NetFlow Analyzer, which can be any computer
terminal with sufficient computing and graphic capability. The deployment of the UniVis requires
some efforts, but should not be difficult.

First of all, a latest Ubuntu Linux operating system (OS) should be installed. This is because we
use the Ubuntu Linux OS as our implementation environment. In fact, the UniVis system can be
deployed on any Linux OS based computer system. However, we strongly recommend to use the
latest Ubuntu Linux OS to get the latest upgrades of the supporting utilities of the UniVis, in
order to get the most features and the least troubles. The latest Sun Java Software Development
Kit (SDK) over should be installed also.

Second, the NfDump toolset needs to be installed. Because the UniVis needs specific CSV data
with customized netflow properties, which can not be dumped by the original nfdump, we can not
use the NfDump package offered by the software package repository of the OS directly. Instead,
we need to download the latest NfDump source code, modify it accordingly, and then compile
and install it.

Third, the R environment have to be set up. This can be done directly by installing the necessary
R packages appeared in the software package repository of the OS. It is recommended to add the
Comprehensive R Archive Network (CRAN)[44] as an additional source of the software package
repository specifically for the R, in order to get the latest R packages.

Forth, after the basic R environment is prepared, it is time to install the iPlots. Because the iPlots
is designed to be used with R, and the R environment offers a very convenient software
management framework similar as the one of the OS, the iPlots can be easily installed directly via
some R commands. The simplest way is to install the Java GUI for R (JGR)[45] package so all
necessary R packages including the iPlots and other packages it depends on can be installed
automatically.

Finally, we simply copy our implementation of the GUI control panel of the UniVis to the target
computer. As this control panel integrates the functions of the above softwares in one place, we
can launch the UniVis system by executing the “univis.run” script included in the package from a
terminal.

50

6.6 Example Use Case

6.6 Example Use Case
With a complete UniVis system successfully set up, this section further describe a common use
case of the UniVis by a simple exploration of the NetFlow data.

According to the requirements discussed in Section 5.1.1, the UniVis should provide a global
overview of the input data. Figure 25 shows that the UniVis gives such an overview on the right
of the control panel. In fact, generally all visualizations of input data are going to be presented on
the right of the control panel, whereas the control panel itself keeps on the left. In Section 5.5.4,
we design the control panel in a way that the control blocks of necessary components are
organized from the top to the bottom according to the basic exploration procedure. Hence we
start from the top of the control panel to introduce such procedure.

First of all in the “Dump Data” block, we preprocess the raw data and convert it to the R
workspace image. We start from selecting the radio button of “-r” and then choose a single raw
netflow data file named “honeypot.bin” from the file tree. When the mouse is over the raw data
file in the tree, the amount of flow records within this file is shown in a pop-up tooltip. Usually

51

Figure 25: Using scenario overview

6 Implementation

the amount under 500 000 is considered best for the performance of the system, depending on the
processing power of the computer. Because the flow number of the file is under the limit, we can
use all the data without considerable performance degradation. Otherwise we have to narrow
down the flow number by applying the time window or the filter. By selecting the selection box
of “-t”, we can see the time window of this raw netflow data file is from “2008/04/16.01:00:31”
to “2008/04/24.00:59:43”. Since we simply want to use all the netflow data contained by this file,
we can leave the time window as it is or uncheck the selection box of “-t”. For the same reason
we left the selection box of “-f” unchecked so we do not apply any filter to the data. After setting
up the last parameter setup by filling in the output path in the text field at the bottom of this
block, we can sequentially press the “Dump” button and the “Preload” button to carried out the
actual processing and get the CSV data file and the R workspace image file. Simultaneously
corresponding tasks named “DUMP” and “PRELOAD” are added automatically to the
“Scheduled Task List” shown in Figure 26.

Then we move on to the “Visualization Preparation” block. Because no further data processing is
implemented yet, the only thing to do here is to load the previously generated R workspace image
file. This is done by pressing the “Load Data” button and selecting the R workspace image file
from a pop-up file selecting window. At the same time a “LOAD” task is added to the “Scheduled
Task List”. When the task is completed, the name “hp0416”of the loaded data appears in the
“workspace” list, as we can see in Figure 25.

If we select the dataset “hp0416” in the “workspace” list, the name should appear in the text field
under the “data” label of the “Selection” sub-block inside the “Interactive Visualization” block,
indicating data set “hp0416” is going to be visualized. Then we use the “Scatter Plot” sub-block
to set the UniVis to plot the dataset in the scheme of scatter plot, which uses the netflow
properties start time (“ts”) and destination IP address string (“das”) as the x axis and the y axis
respectively. Lastly, we click on the “Visualize” button in the same sub-block in order to generate
such scatter plot. This action not only adds a “VISUALIZE” task to the “Scheduled Task List”,
but also adds relevant nodes to the “Visualization Tree”. In this case, under the symbolic
“VisRoot” node, we have data node “hp0416” representing the original data set, data node
“hp0416_0” representing the first sub-dataset contained in an iSet and directly used for the
visualization, and the plot node “hp0416_0_0” representing the first plot linked to the iSet
“hp0416_0”. When the plotting process is completed, it is a minimized hidden window. In order
to show it in a convenient size and position, we select the “hp0416_0” node and click on the “Tile
Plots” button. As a result, we get the tiled “hp0416_0_0” plot filling up the space on the right of
the control panel as shown in Figure 25.

Notice the strange thick diagonal line across the scatter plot “hp0416_0_0”, it indicates that a
subset of IP addresses have incoming flows one after another along time. The thickness of the
line means for each flow the duration is quite similar. This looks a “creepy-crawly” scanning in
which the scanner does not scan all its targets simultaneously but separately. In other words, it
uses more time to scan the whole target network in order to hide its activity better. However, we
do not know if those flows are coming from the same source, at least not by using a single
overview scatter plot. Thus, we select the red data points in the middle of the scatter plot in
Figure 25 and visualize the selected sub-dataset from more aspects as shown in Figure 26, which
meets the second design requirement: the local details drill-down.

52

6.6 Example Use Case

Basically, we use other plotting sub-blocks in the “Interactive Visualization” block to request the
plots we need. For the plots shown in Figure 26, from the left to the right and from the top to the
bottom, we have first five scatter plots all using start time as x axis, and source IP address string,
destination IP address string, source port number, destination port number and byte per packet
respectively as the y axes. The sixth plot is the histogram of destination IP address string. The last
plot is the parallel coordinate plot using source port number, source IP address string, destination
IP address string and destination port number as parallel y axes sequentially. Because all plots
linked to the same dataset, the third design requirement: the multi-view linking is fulfilled as
well. The linkage is even more enhanced as the data points in all plots are brushed with the same
color encoding scheme according to the values of the byte per packet attribute. The dark green
color in the parallel coordinate plot clearly shows the fan out pattern, which means a single
source IP address have traffics with a lot of destination IP addresses. The second scatter plot of
“das vs ts” clearly shows the similar content pattern of the flows received by each destination IP
address, because we assume that the byte per packet attribute can reflect the content to some
extent. When we press the CTRL key and leave the mouse cursor over the line of the same color
in the third scatter plot of “dp vs ts”, the detail-on-demand feature pops out a tooltip telling the

53

Figure 26: Using scenario details drill-down

6 Implementation

destination ports are all “21”. Based on the above evidences, it is not difficult to confirm a
“creepy crawly” IP-sweep scanning is in action.

Finally, by selecting the “hp0416” node in the “Visualization Tree” block and clicking the “Save
All Plots” button, the information of every data node and the image of every plot node are saved
as text files and PNG image files respectively for later use. So the forth design requirement: the
procedure extraction is also met.

6.7 Evaluation
In the previous section we briefly examine our implementation concerning the design
requirements by studying a common use case. It turned out that all the four main design
requirements are well satisfied. In this section our implementation of the UniVis prototype is
evaluated more comprehensively against the criteria described in Section 1.3 with regards to the
system design principles stated in Section 5.2.

For the functionality, the UniVis supports some of the most common used plotting schemes such
as scatter plot, parallel coordinate plot, histogram and bar chart. It supports important interaction
techniques such as linked selection, linked color brushing, and so on. Its ability in helping to find
network anomalies is verified by a small use case. More discussions on this ability will be given
after Chapter 7.

For the perception efficiency, the UniVis takes some human cognition knowledge and human
perception principles into account in the design phase. For example, sensory symbols formed by
shapes such as circle, box and lines are used in the visualization rather than arbitrary symbols. In
such way more visual patterns may appear as pre-attentive features hence easier to be identified
according to the Gestalt Laws. Also, the visualization tree is designed in order to keep a clear
view of the structure of the visualization exploration procedure, in case too many plots are
inevitably generated and seriously decrease the human perception speed by exceeding the limited
visual working memory of human brain.

For the robustness of the visualization, the UniVis mainly solves it by the interaction techniques.
For instance, the alpha-channel provided by the iPlots can be used to show the data density when
most parts of the data overlap with each other. In addition, the details-on-demand features such as
the tooltip display and the zooming avoid showing too much unnecessary details and distracting
too much attentions. However, there are no specific techniques applied in the UniVis in order to
prevent the intentional DoI attacks, mainly due to the insufficiency in this direction of research.

As for other common criteria, UniVis is designed to satisfy them as well as possible.

For the scalability, because the actual plotting process is carried out by the iPlots written in Java,
the maximum amount of input data is between 500 000 and 1 000 000 flow records, depending
on the processing power of the computer. This is not sufficient for the overview of the traffics
measured on a backbone router, but good enough for exploring the local interesting spots.

For the extensibility, the modular design of the UniVis allows adding more functions rapidly by
only implementing new scripts instead of modifying a lot of source codes. The whole component
such as the iPlots can be upgraded or even be replaced independently.

54

6.7 Evaluation

Last but not the least, the UniVis is easy to use by its straightforward GUI control panel. Some
personnels of the UNINETT CERT have tried it a bit and found they can use it almost
immediately without much further instructions.

55

7 Experimentation
This section reports some of the investigations by using the UniVis in the routine NetFlow data
measured by the routers managed by the UNINETT, focusing on the three malicious activities
mentioned earlier in Section 3.3. Operational details of the investigations are omitted, as most of
the exploration operations are already described in detail in the use case in Section 6.6.

7.1 Environment

7.1.1 Data Source
In general, all the NetFlow data used in the experiments are provided by the UNINETT CERT.
Some of them are generated by the routers deployed on the backbone network, which is usually
sampled due to the huge traffic throughput. We call such routers the backbone routers in this
report. The other data are generated by the routers deployed on the edge between the smaller
networks and the backbone network. We call them the border routers. Because those smaller
networks usually have much smaller amount of traffics, the border routers are normally
configured to generate unsampled data.

Besides the difference of the sample rate, the backbone routers and the border routers also have
several other different configurations that are important to our experimentation. For instance, the
reporting interval, flow inactive timeout, and flow maximum timeout, etc. We will specifically
list those different configurations for each data we are using in the following experiments.

Because the packet analysis is our only method to identify the malicious hosts and the only way
to confirm our experiment results, it is more convenient for our analysis to preserve their original
IP addresses in the NetFlow data. Therefore, the NetFlow data used in the following experiments
are not anonymized during the investigation, though they are hidden in this report for privacy
reason.

With the above notices in mind, four NetFlow datasets are collected for analysis, namely the
common dataset, the honeypot dataset, the IRC botnet dataset and the HTTP botnet dataset. These
datasets are respectively generated by four routers deployed in four different observation points
in the network of UNINETT, as illustrated in Figure 27. More details of the datasets are given in
Table 7.1.

56

7.1 Environment

Purpose Common Honeypot IRC Botnet HTTP Botnet

Router oslo_gw uninett_gw kongsberg_gsw levanger_gsw

Time Window 2008-04-09
2008-04-16

2008-04-11
2008-04-16

2008-04-11
2008-04-15

2008-03-30
2008-04-15

Flow Number 319 912 003 320 862 301 445 738 40 562 332

Sample Rate 1:100 1:1 1:1 1:1

Inactive Timeout 15'' 15'' 15'' 15''

Active Timeout 1' 30' 30' 30'

Report Interval 15' 15' 5' 5'

Table 7.1: Details of datasets from four data sources

● Common
This dataset contains the sampled traffics observed by a main backbone router located at
Oslo, namely “oslo_gw” as shown in Figure 27. As a main gateway, most of the traffics
flowing between the UNINETT network and the external Internet can be observed here.
Such traffics can be internal traffics following close loops within the UNINETT networks,
external traffics bypassing UNINETT networks, and also the traffics between the
UNINETT internal networks and the external Internet. So, it is one of the best observing
points within the backbone networks. In other words, this dataset has a good chance to
contain the malicious traffics contained in the following datasets, which are observed by
the border routers.
Therefore, this dataset is mainly used for the second part of the experimentation, which
according to our methodology, is to verify the effectiveness of our results attained in the

57

Figure 27: Observation points of the datasets for experimentation

7 Experimentation

first part of the experimentation using the following datasets.
● Honeypot

This dataset contains the unsampled traffics observed by a border router named
“uninett_gw”, which serves as the gateway between the Internet and the local network
used by the UNINETT itself. The dataset is called honeypot data because it is produced by
filtering the traffics only relevant to the subnet (net 158.*.*.*/24) allocated to a honeypot
facility set up by the UNINETT CERT.
Because a honeypot is configured to a certain security level that is vulnerable enough to
download the malwares but still secure enough to prevent them from been executed, this
dataset should contains a lot of scanning traffics and possibly some C&C link traffics.

● IRC Botnet and HTTP Botnet
The IRC botnet dataset and the HTTP botnet dataset contain the unsampled traffics
observed by the border routers of two campus networks respectively. These two border
routers are chosen because the UNINETT CERT confirms by packet analysis that some
computers within these two networks are compromised bots and actually communicate
with some known botnet C&C controllers on the Internet. For the IRC botnet dataset, the
IP addresses of the C&C controllers are 67.*.*.* and 84.*.*.*. Both of them use TCP port
3306 to establish C&C links with the bot 158.*.*.*. As for the HTTP botnet dataset, the IP
address of the C&C controller is 64.*.*.*, which uses TCP port 80 to communicate with
another bot 158.*.*.*.

7.1.2 Additional Facilities
As mentioned in the description of the honeypot dataset, the UNINETT CERT has established
facilities such as the honeypot for assisting the security management of their networks. In
addition, the packet analysis is clearly not supported by the NetFlow data but pcap data.

Besides the honeypot facility, a mechanism described by Knutsen in [46] is also very useful in
our work. This mechanism is mainly used to redirect the traffics relevant to the known botnet
controllers to a sinkhole, where the traffic packets are finally dropped instead of received by the
destined receiver. Hence, this mechanism cuts off the C&C links between the botnet controllers
and the bots. In our case, we can stop such rerouting mechanism for a couple of botnet controllers
for a short period, in order to find the bots. As a matter of fact, this is how we get the IRC botnet
dataset.

7.1.3 Computing Resources
The main information related to the processing power of the computer running the UniVis system
is given in the following list. Notice that it is a common desktop personal computer with
enhanced processing power rather than any specialized workstation with instinct high
performance.

● CPU core number: 4
● CPU frequency: 2 333.509 MHz
● CPU cache size: 4 096 KB
● CPU bogomips: 4 666.96

58

7.1 Environment

● Memory: 5 189 696 KB
Most of the time the UniVis system ran smoothly during the experimentation on the above
computer. However, When the input flow number is higher than 100 000, some of the
visualization functions such as parallel coordinate plotting slow down rapidly. When the input
flow number is higher than 1 000 000, most visualization functions are too slow for interaction.

7.2 Experimentation planning
According to our methodology, the whole experimentation is organized in a hierarchical structure
and carried out in an iterative manner, as depicted in Figure 28 and explained as follows.

Firstly, several typical types of the malicious network activities are selected. In this
experimentation two of the three malicious activities introduced in Section 3.3 are chosen except
for the DoS attack. Because each of these activities should have certain characteristics, which
may help to distinguish them from each other and most importantly, from the normal activities,
we then need to use several visualization methods to explore such characteristics in the given
datasets. However, it is usually difficult to analyze a complex dataset as a whole while its natural
subsets, if any, are not well examined and understood yet. As we know, each flow record in the
NetFlow data are consisted of several attributes. In addition, because the processing speed of our
visualization system depends on the amount of the input data, the preliminary breakdown of the
dataset in a sense gives a considerable improvement in the performance of the system.

Hence secondly, for each type of malicious activity, the subsets of the original unsampled data are
extracted according to the selected attributes and the combinations of those attributes. The
selection and the combination of the attribute are mainly based on the preliminary knowledge of
the malicious activity. Unsampled data are used first simply because it contains more complete
information then the sampled ones.

Thirdly, when the dataset is prepared, they are visualized for the first round by all the
visualization methods available in our system, namely the scatter plot, the parallel coordinate
plot, the histogram and the bar chart. As a result, some plots may show clear visual patterns while
some others may not. Further more, some visual patterns may either correspond to actual
malicious activities or not. Thus, analysis of the observations are followed, trying to explain the
reasons of the result and to give suggestions that may help to improve the results for the next
step.

Fourthly, with the initial visualization results and analysis, the strength and weakness of each
visualization method applied to the specific malicious activity are exposed and compared
between each other. The comparisons result in a mixed way of usage of several visualization
methods together to explore the specific malicious activity. Interaction techniques such as linked
selection and color brushing are used in attempt to glue these visualization methods together into
an organic one. Such synthesized procedures are employed in the second round of
experimentation over the same data, followed by analysis as in the third step. This step can be
performed iteratively for several times since the experiences gained each time of using the
interaction techniques may help to have new discoveries and hence improve the results.

Lastly, the empirical procedures of the interactive visual exploration gained from examining the
unsampled datasets are applied to the sampled common dataset. As the sampling reduces the

59

7 Experimentation

amount of input data to our system and thus increase the processing speed, it is definitely worth
knowing if such reduction will also affect the previous results over unsampled data or not. And if
it does, how badly is the degradation. Though the experiments on the sampled data are carried out
separately from those on the unsampled data, the result and analysis are reported together
following the above steps.

From step 1 to step 4 the datasets are unsampled attained from specific observation points where
the traffics of specific malicious activities are for sure captured. These steps form the first part of
our experimentation, where the features of malicious activity are discovered and the procedures
to identify such activities are logged. In step 5, these features and procedures are applied to the
sampled common dataset in order to test their effectiveness in the identification of the
corresponding malicious activities. Step 5 is the second part of our experimentation. These two
parts correspond to the two parts of our methodology of detection of malicious network activity.

7.3 Scanning
As mentioned in Section 7.1.1, the honeypot dataset is used in the first part of this
experimentation. Though The whole dataset is used during the experimentation, in this report

60

Figure 28: Experimentation planning

7.3 Scanning

only the experiments using the dataset captured on 2008-04-16 are described as an example.
According to the discussions on the scanning given previously in Section 3.3, the basic traffic
phenomenon we look for here are the IP-sweep scanning, the port-sweep scanning, and the
creepy-crawly scanning.

7.3.1 NetFlow Property Selection
Because the scanning is about the communication relationships between network hosts, NetFlow
properties relevant to the IP addresses and port number are crucial, such as the source IP address
(sa/sas), destination IP address (da/das), and the source and the destination port number (sp, dp).

In addition, most scannings have strong bounds with time. That is to say, time relevant attributes
are useful as well, such as start time (ts/tss), end time (te/tes) and duration (td).

Moreover, most scanning traffics sent to different destinations have the same or very similar
content. Though we do not record the traffic content directly, the content related attributes such as
the byte number (byt), the packet number (pkt) and the byte per packet (bpp) may also reflect the
phenomenon.

As for the combination of the attributes, we mainly focus on the combination of two attributes.
This is because the combination of more attributes require parallel coordinate plot, which is much
more resource consuming than the two dimensional scatter plot.

One type of the combination of two attributes is to fix the time relevant attributes and replace
other attributes in turn. This type can be called the temporal combination. If we fix the content
relevant attributes and replace other attributes in turn, the resulting combinations can be called
the payload combinations. When we combine the IP address or port number attributes, the
resulting combinations can be called the connection combinations.

The data of each attribute or combination of several attributes suggest different aspects of the
traffic. Thus good visualization should reveal the same aspects and accentuate their
characteristics.

7.3.2 Investigation
The IP addresses allocated to our honeypot is a subnet 158.*.*.* with 24 bits netmask. Thus, the
scannings we look for are from the Internet towards this subnet. The traffics going towards the
honeyhot are called ingress flows which are mostly malicious, while the traffics on the other
direction are called egress flows. Besides the basic plotting schemes, color brushing, linked
selection, details-on-demand are the main interaction techniques.

Especially for the color brushing, both the filter brushing and the rainbow brushing are used. The
filter brushing are mainly used to distinguish the direction of flows. For instance, taking one end
point of the communication as the original end point, hence the flows going towards it are ingress
flows and the flows going away from it are egress flows. In this report, we usually brush the
egress flows as blue and the ingress flows as yellow. The rainbow brushing are in general used to
show the value distribution of an additional attribute to the original plotting. For example, when a
rainbow brushing according to the value of attribute bpp is applied, the flow data with different

61

7 Experimentation

bpp values can be easily distinguished by their colors.

Only some key visualizations are presented in this section, though much more plots has been
created and examined during the experimentation.

Global Overview Snapshot

According to the preliminary knowledge of scanning, several scatter plots are used to show the
main characteristics of scanning. We denote the types of scatter plot by the attributes of data
assigned to its two axes. For example, scatter plot “A vs B” denotes a scatter plot with its y axis
representing attribute A and with its x axis representing attribute B. The following scatter plots
are all of type “das vs ts” in order to identify the IP-sweep scanning and the IP based creepy-
crawly scanning. The investigation of the port-sweep scanning is omitted because they can be
identified by the same principles in the “dp vs ts” scatter plot.

Figure 29 shows the temporal pattern of destination IP addresses. A preliminary observation is
that the data points in general form lines in the plot. Horizontal lines suggest that many flows go
to a single IP address, which is a common characteristic of a server. The vertical lines indicate

62

Figure 29: Original scatter plot "das vs ts"

7.3 Scanning

that during a very short period of time many flows go to multiple IP addresses, which is one
important characteristic of scanning traffic and worth more examinations. In addition, the data
points inside the red box are traffics flowing towards the honeypot. Thus we should look more
into the vertical lines within that red box in order to see if they fits other basic characteristics of
scanning.

By brushing the original “das vs ts” scatter plot with the rainbow colors according to the sas
attribute we get Figure 30. Flows coming from different source IP addresses are brushed with
different colors. As can be easily observed, the data points forming each vertical line are of the
same color, which suggests that at the same time a single host or a small group of hosts are
sending flows towards many other hosts. After confirming that each of the flows forming the
vertical lines actually comes from very few hosts, the only basic characteristic left is the
similarity of flow payloads.

63

Figure 30: Scatter plot "das vs ts" with rainbow brushing by sas

7 Experimentation

As discussed before, the only attributes relevant to the payload is byt, pkt and bpp, among which
bpp is reckoned as the best one to represent the characteristics of the payload. Therefore we get
Figure 31 by brushing the original plot with the rainbow colors according to the bpp attribute.
Again we can observe the consistent color of the data points forming each vertical line,
suggesting very identical payload in each flows. Hence up to now we can confirm that those
vertical lines are actual IP-sweep scannings. Because the thick diagonal line lasts for a longer
time period, it can be identified as IP based creepy-crawly scanning. Of course they can also be
port-sweep scannings depends on result of the same investigation into the scatter plot of “dp vs
ts” generated from the same dataset.

Local Detail Drill-down

Most of the time, we need to know more details of the malicious activity, which can not be
efficiently and precisely acquired from the previous global overview snapshots. For example,
from only a single scatter plot of “das vs ts” color encoded by an additional attribute, we can not
conveniently find out the exact value of the attributes. At this moment, we need to drill down to

64

Figure 31: Scatter plot "das vs ts" with rainbow brushing by bpp

7.3 Scanning

the interesting spots for more detailed information. Two examples of local detail drill-down are
given as follows for the IP-sweep scanning and the creepy-crawly scanning respectively.

● IP-sweep

In Figure 32, two vertical scanning lines are selected as our examples of the IP-sweep
scanning, as marked by the red color. Apparently they are slightly different since the right
scanning line has continuous destination IP addresses while the left scanning line is not
but seems to have constant gaps of missing destination IP addresses.

65

Figure 32: Selection of IP-sweep scanning from overview snapshot

7 Experimentation

66

Figure 33: Local detail drill-down of IP-sweep scanning

7.3 Scanning

In Figure 33 we sequentially plot nine scatter plots of “das vs ts”, “sas vs ts”, “dp vs ts”, “sp vs
ts”, “byt vs ts”, “pkt vs ts”, “bpp vs ts”, “das vs sas”, “dp vs sas”, and finally one parallel
coordinate plot of “sp vs sas vs das vs dp”, from the left to the right and from the top to the
bottom. All these plots are brushed with the rainbow colors according to the bpp attribute. Each
plot gives an aspect of details of the scanning. Hence we read the information for the two IP-
sweep scannings as given in Table 7.2.

Group Source
IP Address

Destination
Port Source Port Byte

Number
Packet

Number Byte per Packet Flow
Number

Blue 202.*.*.*
1026
1027

38275 485 1 485 127

Pink 216.*.*.* 6080

1949
2102
2103
2202

144
96
48

3
2
1

48 254

Table 7.2: Details of IP-sweep scanning

● Creepy-crawly

In Figure 34, the thick diagonal scanning line is selected as our examples of creepy-
crawly scanning, as highlighted by the red color again. This scanning in all lasted for
approximately 8 hours and swept the whole IP address space of the honeypot. A closer
look shows that the whole scanning period can be evenly divided into many small time
slices, in each of which a small group of continuous IP addresses are scanned. In each
subsequent time slice after the previous one, the target IP addresses increase linearly.

67

7 Experimentation

In Figure 35 we perform the same visualizations as we did for the IP-sweep scanning. In the
same way, we hence read the information for the creepy-crawly scanning as given in Table 7.3.

Source
IP Address

Destination
Port Source Port Byte

Number
Packet

Number
Byte per
Packet

Flow
Number

66.*.*.* 21
32829-6099

9
52-37532 1-529 52-72 7888

Table 7.3: Details of creepy-crawly scanning

68

Figure 34: Selection of creepy-crawly scanning from overview snapshot

7.3 Scanning

69

Figure 35: Local detail drill-down of creepy-crawly scanning

7 Experimentation

In addition to the information shown in Table 7.3, some of the drill-down visualizations give
more information by their visual patterns than the more precise value readings of the data points.

In Figure 36, the local detail drill-down scatter plot of “das vs ts” rainbow brushed by bpp clearly
shows that the flows for each target host have very similar payload pattern. More specifically,
each horizontal line of the flows has a color spectrum sequentially and coarsely composed of
pink, brown, green and then brown again. Such pattern of the payload can lead to two results.
First, it further proves that this is a scanning. Second, it reveals that there are probably
interactions between the scanner and the victims. As other plots shows the destination port of the
scanning is 21 over the TCP protocol, which is the FTP service port, it is possilbe that the scanner
is trying some attacks already such as the password guessing. Figure 37 of the local detail drill-
down scatter plot of “sp vs ts” clearly shows the same color pattern of each line of flows as
previously observed in Figure 36, which further confirm the conclusions gained from Figure 36.
Such pattern does not appear in the plot produced in the same manner in the overview snapshot
such as Figure 31 because the value range of bpp of the creepy-crawly scanning flows is too
narrow. When the value range of bpp is much larger in the overview, the scanning flows can only
be encoded with very similar colors in the rainbow color space.

70

Figure 36: Local detail drill-down scatter plot of "das vs ts" for creepy-crawly scanning

7.3 Scanning

7.3.3 Application on Common Dataset
After the close examination of the honeypot dataset, here we try to find the same visual pattern of
the malicious activities in the common dataset. As mentioned earlier, the common dataset is
gathered from a different observation point of the network with sampling enabled and covers the
same time window.

Figure 38 gives the overview snapshot of the honeypot relevant traffics. Such overview is
produced by the exact same way as the one used to generate Figure 31. That is to say, it is a
scatter plot of “das vs ts” brushed by the rainbow colors according to the bpp attribute. The red
box highlights the flows going towards our honeypot.

Compared to Figure 31, the flows are much less in Figure 38. The two vertical scanning lines
which are used as our IP-sweep scanning examples totally disapear, so do many other vertical
scanning lines. On the other hand, the thick diagonal scanning line of the creepy-crawly scanning
still remains very clear and complete.

71

Figure 37: Local detail drill-down scatter plot of "sp vs ts" for creepy-crawly scanning

7 Experimentation

The results of the two types of scanning are so different at least due to the following two reasons.
First, because the common dataset is gained from a different observation point, it is possible that
the traffics of the IP-sweep scanning never flow through this observation point. Second, assuming
the traffics of the IP-sweep scanning all flow through this observation point, the packet number
for each flow is too low to pass the sampling processing. As shown in Table 7.2, each flow have
at most 3 packets in all. Among the massive other traffics, their chances of being noticed after the
sampling of 1:100 sample rate are extremely small.

7.4 IRC Botnet C&C Link
As mentioned in Section 7.1.1, the IRC botnet dataset is used in the first part of this
experimentation. Filtered by the known IP addresses of the controllers and bots, the dataset
focuses on the known C&C links. Based on the discussion on the IRC C&C link in Section 3.3,
the main traffic phenomenon we look for here are the initial malware downloading and the keep-
alive signaling, though the malware downloading can not be identified in the end.

72

Figure 38: Scatter plot of "das vs ts" with rainbow brushing by bpp

7.4 IRC Botnet C&C Link

7.4.1 NetFlow Property Selection
The selection here still refers to the selection in Section 7.3.1. In other words, the temporal,
payload and connection relevant attributes are all included in this selection, so are their
combinations.

7.4.2 Investigation

Global Overview Snapshot

Because the traffics of the C&C links are usually very rare, we can not identify them directly by
our current visualization techniques from any of the global overview snapshot. However, because
we already know some C&C links, we can use them to filter out all the other traffics in order to
focus on the C&C traffics for local details drill-down.

As introduced before, the IP addresses of the known C&C controllers are 67.*.*.* and 84.*.*.*.
Both of them use TCP port 3306 to establish C&C links with the infected bot 158.*.*.*. In order
to tell the direction of the flows in the plot when necessary, we denote the flows going from the
controllers to the bots as ingress flows, and the flows of the other direction as egress flows.

Local Detail Drill-down

By four filter expressions composed of the port number, the source IP address and the destination
IP address, we generate four sets of sub-datasets to investigate. In short, the first dataset filtered
by both the controller and the bot IP addresses is for the extraction of the original visual patterns
of the IRC botnet C&C links. Then, the other three datasets are filtered out by the filter
expressions each removing one aspect of the initial full expression, in order to find more C&C
links. Each dataset is visualized by four kinds of scatter plot, namely “sas vs ts”, “das vs ts”, “sp
vs ts”, and “bpp vs ts”. All plots of each dataset are brushed by three color schemes: 1) the filter
brushing according to the flow direction, whereby the ingress flows are blue and the egress flows
are yellow. 2) the rainbow brushing according to the sp attribute, and 3) the rainbow brushing
according to the bpp attribute.

● Filter Controllers and Bots
Figure 39 shows the plots brushed according to the flow direction. In Figure 39 (a) and (b) three
lines formed by the data points with steady interval of 30 minutes, indicating that the two
controllers and one bot have periodical outgoing or incoming communications. The same traffic
interval indicates they are very likely to be of the same botnet. Notice the traffics are
bidirectional in region A and become unidirectional in region B. The bidirectional traffics are
considered common keep-alive IRC C&C links. The unidirectional traffics are caused by the
isolation of the controllers. As a result the bot keeps contacting the controllers much frequently
(every 180 seconds) than before, without any responding flows from the controllers. In Figure 39
(c) the unidirectional connecting attempts can be confirmed by the rapid increase of the port
number on the port, which is a common behavior of the OS. Figure 39 (d) shows that the bpp
values of the payload of each flow direction is quite stable most of the time. This characteristic is
very similar to the keep-alive signals. In addition, the bpp value of the egress flows of the bot
after the isolation of the controllers differs from the one before the isolation.

73

7 Experimentation

Figure 40 shows the plots brushed by the rainbow colors according to the sp attribute. Again the
focus is on the connecting attempts from the bots after the isolation of the controllers. The
beautiful rainbow spectrum in Figure 40 strongly suggests that the two controllers are of the same
botnet because it is otherwise very rare that the bot can communicate with two controllers at the
same time using two malwares of two different botnets.

Figure 41 presents the plots brushed by the rainbow colors according to the bpp attribute. These
plots simply shows that the payloads of the egress flows are quite similar to each other and have
steady values, while the payloads of the ingress flows are much more various.

74

 (a) (b) (c) (d)

Figure 39: Scatter plots of data filtered by controllers and bots, color brushed by flow direction.
Plots (a), (b), (c) and (d) are scatter plots of “sas vs ts”, “das vs ts”, “sp vs ts” and “bpp vs ts”
respectively.

 (a) (b) (c) (d)

Figure 40: Scatter plots of data filtered by controllers and bots, color brushed by source port.
Plots (a), (b), (c) and (d) are scatter plots of “sas vs ts”, “das vs ts”, “sp vs ts” and “bpp vs ts”
respectively.

 A B A B

7.4 IRC Botnet C&C Link

● Filter Bots in Order to Find Controllers
Because other scatter plots are similar to the ones presented in the first sub-dataset using the full
filter expression, Figure 42 only shows the same scatter plots of “das vs ts”, which are color
brushed by direction, bpp and sp respectively. Figure 42 (a) shows the flows of three new
possible controllers in the red box, which have very similar pattern especially the frequent
connecting attempts after the known controllers are isolated. According to the “sas vs ts” scatter
plot which is not presented here, none of these hosts respond to the bot. A hypothesis is that these
newly appeared IP addresses are of the controllers within the same botnet. Hence these IP
addresses are included in the malware planted in the bot. They did not respond probably because
the IP addresses are not valid anymore or they are also isolated by the UNINETT CERT. The
rainbow color spectra in the red boxes in Figure 42 (b) and (c) provide further evidences to
support such hypothesis.

75

 (a) (b) (c) (d)

Figure 41: Scatter plots of data filtered by controllers and bots, color brushed by byte per packet.
Plots (a), (b), (c) and (d) are scatter plots of “sas vs ts”, “das vs ts”, “sp vs ts” and “bpp vs ts”
respectively.

7 Experimentation

76

 (a) (b) (c)

Figure 42: Scatter plots of “das vs ts”, generated from data filtered by bots. Plots (a), (b), (c) are
color brushed by flow direction, source port and byte per packet respectively.

7.4 IRC Botnet C&C Link

Similar to Figure 42, Figure 43 showing in plots (b), (c) and (d) respectively the same scatter
plots of “das vs ts”, which are color brushed by direction, bpp and sp. In addition , Figure 43 (a)
is the scatter plot of “sas vs ts”. Figure 43 (a) and (b) show the flows of one new possible bot in
the red box, which destined to contact both of the known controllers. Figure 43 (c) and (d) give
more evidences to confirm that the patterns of the payload and of the source port are similar to
the original C&C flows respectively.

● Filter Port Number in Order to Find Both Controllers and Bots
Although the visualizations of this sub-dataset have a lot of noise, the visual patterns observed
from the visualization of the previous three sub-datasets are still clear. That is to say, periodical
traffics from some hosts, and the rapid source port increase during the connecting attempts. The
main results here are more evidences that further confirm the previous hypothesis.

Figure 44 presents the scatter plots of “sas vs ts” and “das vs ts” respectively in sub plots (a) and
(b), which are both color brushed by sp. In the red box of Figure 44 (a) we identify the possible
new bot discovered in Figure 43. In the red box of Figure 44 (b) we identify the possibly new

77

(a) (b) (c) (d)

Figure 43: Scatter plots of data filtered by controllers. All plots are scatter plot of “das vs ts”
exacept that plot (a) is scatter plot of “sas vs ts”. Plots (a), (b), (c) and (d) are color brushed by
flow direction, flow direction, source port and byte per packet respectively

7 Experimentation

controllers discovered in Figure 42 (further digging such as a zooming operation can show that
there are three different controllers than two). Notice that there are more connecting attempts
towards the suspicious new controllers then shown in Figure 42. As shown in Figure 43, such
connecting attempts come from the suspicious new bot. Therefore, we can tell that the suspicious
new bot and new controllers actually belong to the same botnet as the originally known bot and
controllers do. Such result can not be concluded from any single one of the above four sub-
datasets.

7.4.3 Application on Common Dataset
Unfortunately, because of the instinct low amount and sparse distribution of the traffics, the
above patterns can not be identified anymore when applying the same investigation procedures as
used above to the common dataset.

78

 (a) (b)

Figure 44: Scatter plots of data filtered by port number 3306. Plots (a), (b) are scatter plots of
“sas vs ts” and “das vs ts” respectively. Both plots are color brushed by source port.

7.5 HTTP Botnet C&C Link

7.5 HTTP Botnet C&C Link
As mentioned in Section 7.1.1, the HTTP botnet dataset is used in the first part of this
experimentation. Filtered by the known IP addresses of the controllers and bots, the dataset
reduces most of the noise. Based on the discussions on the HTTP C&C links in Section 3.3, the
main traffic phenomenon we look for here are also the initial malware downloading and the keep-
alive signaling.

7.5.1 NetFlow Property Selection
The selection here is exactly as the one for the IRC botnet C&C link in Section 7.4.1.

7.5.2 Investigation

Global Overview Snapshot

As in the investigation for the IRC botnet C&C links, there are no immediate clear patterns in the
global overview snapshot of the HTTP botnet dataset. Direct filtering by the know C&C links is
applied in order to perform local drill-down to the traffics of the C&C links.

The IP address of the C&C controller is 64.*.*.*, which uses TCP port 80 to communicate with
the infected bot 158.*.*.*. Also the same as in Section 7.4, in order to tell the direction of the
flows in the plots when necessary, we denote the flows going from the controllers to the bots as
ingress flows, and the flows of the other direction as egress flows.

Local Detail Drill-down

Basically, the techniques used in the actual experimentation of the HTTP botnet dataset such as
the dataset sub-division, the plotting scheme and the color brushing schemes are exactly the same
as in Section 7.4 for the IRC botnet dataset. Except that in this section, we mainly present the
payload relevant visualizations. In other words, in each of the following sub-section, the three sub
plots in each figure are scatter plots of “byt vs ts”, “pkt vs ts” and “bpp vs ts” respectively, which
are color brushed according to the flow directions. Again, the egress flows are brushed as blue
and the ingress flows are brushed as yellow.

● Filter Controllers and Bots

By a red box on the top-left conner of the plots in Figure 45, the data points indicating possible
malware downloading activity are identified. Such data points are clearly distinguished from
other data points by its extraordinary higher value. Additional packet analysis by the UNINETT
CERT confirms that those flows are indeed malware downloading.

Apparently, most flows in each sub-figure of Figure 45 can be divided into two groups naturally
by the color brushing according to the flow direction. In other words, the payload of the flows of
each direction are different.

In addition, the values of the payload relevant attributes of each flow direction are quite stable.
That is to say, it is very likely that the traffics of each flow direction is actually very similar.

79

7 Experimentation

Though in Figure 45, it is hard to tell if the traffics are periodical, a zoom-in view within Figure
45 (b) shows that the traffics actually have a steady period of 10 minutes. This is an important
evidence to support the hypothesis that the traffics are keep-alive signals of the HTTP botnet
C&C link. Another evidence is that the downlink/uplink ratio seems too low for a normal HTTP
traffics, because the HTTP servers usually transfer much more amount of data to their clients.

80

7.5 HTTP Botnet C&C Link

81

(a)

(b)

(c)

Figure 45: Scatter plots of data filtered by controllers and bots, color brushed by flow direction.
Plots (a), (b) and (c) are scatter plots of “byt vs ts”, “pkt vs ts” and “bpp vs ts” respectively.

7 Experimentation

● Filter Bots in Order to Find Controllers

In the examination of this sub-dataset, we can not find new controllers because the noise is
already too much. However, the large noise provides the information of the common HTTP
traffics. Figure 46 shows that the amount of downlink traffics (brushed as yellow) are much
higher than the amount of uplink traffics (brushed as blue).

82

7.5 HTTP Botnet C&C Link

83

(a)

(b)

(c)

Figure 46: Scatter plots of data filtered by bots, color brushed by flow direction. Plots (a), (b)
and (c) are scatter plots of “byt vs ts”, “pkt vs ts” and “bpp vs ts” respectively.

7 Experimentation

● Filter Controllers in Order to Find Bots

Luckily, we find one new suspicious bot connected to the known controller. As indicated in
Figure 47, this bot have obvious periodical keep-alive traffics every 5 hours with the contorller.
In addition, the amount of payload in the flows of both directions are also very stable, and the
downlink/uplink ratio also seems quite low. They are both strong evidence suggesting the
suspicious bot is actually an infected bot. However we can not find the data point representing the
malware downloading.

84

7.5 HTTP Botnet C&C Link

85

(a)

(b)

(c)

Figure 47: Scatter plots of data filtered by controllers, color brushed by flow direction. Plots (a),
(b) and (c) are scatter plots of “byt vs ts”, “pkt vs ts” and “bpp vs ts” respectively.

7 Experimentation

● Filter Port Number in Order to Find Both Controllers and Bots

Because a great portion of the traffics in the Internet is HTTP traffics, this sub-dataset is simply
too large for investigation by the UniVis.

7.5.3 Application on Common Dataset
Unfortunately again, just as in the experimentation for the IRC botnet dataset, none of the above
patterns can be identified anymore when applying the same investigation procedures to the
common dataset.

86

8 Discussion
In Chapter 7, the experimentation of the identification of three kinds of malicious activities are
described. In this chapter, the experimentation is discussed against the practical criteria raised in
Section 1.3. Briefly, the actual detection performance and the way to improve it in practice are of
the utmost concern.

8.1 Detection of Scanning
Basically, the detection of the scanning in our experiments is effective and accurate, even when it
is applied to the sampled common dataset, except for the IP-sweep scanning with very limited
packet number in each flow.

Compared to the traditional statistical methods, where only the top talkers with the highest traffic
statistics such as the throughput or the number of flow are identified, the visual methods in the
UniVis can identify scanning activity without prominent traffic statistics as well. More
importantly, the identification of multiple scanning activities can be done very quickly at a glance
of a single global overview snapshot produced by the UniVis, whereas by using the statistical
methods the same work is carried out much more slowly by reading through the listed top talkers
line by line.

8.2 Detection of IRC Botnet C&C Link
For the detection of the IRC botnet C&C links, the main visual patterns we found in our
experiments are periodical data points that form lines, and the colorful rainbow spectrum caused
by rapid increase of the source port when a bot is trying to connect to a controller who suddenly
does not respond any more.

In addition, combining the investigation results of several subsets derived from the same dataset
can actually leads to new conclusions or help consolidate previous hypothesis.

However, without the initial filtering process to narrow down the target dataset, it is very unlikely
to discover the above patterns among massive noises, except that the periodical flows are
enhanced by suitable mathematical algorithms such as correlation analysis. Traditional top talker
statistics provided directly by the nfdump are less useful in this case.

8.3 Detection of HTTP Botnet C&C Link
As for the detection of the HTTP botnet C&C links, we observed three visual patterns. First, a
peak value of byte per flow indicates the malware downloading activity. Second, the amount of
flow payloads are stable and different for each direction of flow, meanwhile the downlink/uplink
ratio is low. Third, the traffics are usually periodical.

In terms of the identification of such patterns, the first pattern can easily disappear in slightly
worse noise condition. Considering the patterns of stable the low downlink/uplink ratio and of

87

8 Discussion

periodical keep-alive signal, considerable amount of legitimate websites also have the same
characteristic. Therefore, more efforts are still required to distinguish such benign sites from the
malicious ones.

8.4 Essential Factors for Improvement of Detection
According to the experimentation and the above discussions on it, in order to improve the
detection results, the following three factors are essential.

First, the VizSEC system used as the detection tool must scale very well. Such scalability
includes the capacity to take in enormous amount of data, and fast enough processing speed for
the preprocessing and visualization of huge data, and real-time interactions with the
visualizations.

Second, deeper understanding of target malicious activities should be the preliminary knowledge
acquired by the users of the VizSEC system. Such knowledge includes the theoretical features of
the malicious activities, and more importantly, the practical experiences of the visual exploration
of such activities by using the VizSEC system.

Last but not the least, the VizSEC system should well address the usability issues with regards to
human perception capabilities and limitations.

8.5 Ideal Working Scenario
Taking an ISP CERT such as the UNINETT CERT for example, an ideal work scenario of
network security management routine by using a VizSEC system can be as follows. When the
new input data arrive, the VizSEC system automatically pre-processes and produces the overview
snapshot of the input data, and finally logs the visualization results according to a predefined
schedule. The human administrator check the overview snapshots, which should not occupy
much effort, and then dig into more details of the suspicious spots. Because the whole procedure
of the drill-down investigation can be logged as well, human administrators can think over the
case independently, then discuss with their colleagues over the logs, and finally add the new
procedures in the automated tasks scheduled for the VizSEC system.

88

9 Conclusion and Future Work

9.1 Conclusion
To sum up, in this thesis work we first survey on the existing VizSEC systems. Then, according
to the survey results, we design and implement a VizSEC system named UniVis, which is built
mainly by integrating the existing utilities such as the nfdump, the R and the iPlots together, also
with special features such as the visualization tree. The UniVis distinguishes itself from other
VizSEC systems by the concentration on the NetFlow data, the utilization of interactive
visualization, and the design taking human factors into account at the very beginning.

Second, using the UniVis, real network traffics are used for the experimentation of detecting
several typical malicious network activities. The experiment results can be used directly to detect
such malicious activities, or to narrow down the range of the suspicious dataset.

Finally, practical challenges are pointed out and the corresponding improvement suggestions are
given, based on the practical experiences gained from the above work of survey, design,
implementation and experimentation.

9.2 Future work
According to the discussion of the essential factors for the improvement of the detection results in
Section 8.4, the future work should focus on those factors.

For the first factor, the scalability of UniVis can be improved by replacing the current Java based
visualization modules with more efficient implementation. For instance by moving the graphic
computing from the CPU to the graphic processing unit (GPU) can give a promising boost to the
processing speed.

For the second factor, more research on malicious network activities should be done. No doubt
this endeavor will be tough and endless. The VizSEC systems such as our UniVis can surely be
used for such work as an complementary approach to the others.

The third factor on one hand depends on the development of the human perception theory, which
is not quite the task of the security domain. On the other hand, it depends on better understanding
of user requirements and experiences, which can be improved by carefully designed user study of
the users of the UniVis system.

89

References
1: Cisco NetFlows, http://www.cisco.com/web/go/netflow/
2: TCPDump/LIBPCAP, http://www.tcpdump.org/
3: Russ McRee, Security Visualization: What you don't see can hurt you, 2008
4: Edward R. Tufte, The visual display of quantitative information, 1986
5: Colin Ware, Information visualization: perception for design, 2000
6: Edward R. Tufte, Visual Explanation, 1997
7: VizSEC Workshop, http://www.vizsec.org/
8: NfSen, http://nfsen.sourceforge.net/
9: MRTG, http://oss.oetiker.ch/mrtg/
10: Gregory Conti and Kulsoom Abdullah and Julian Grizzard and John Stasko and John A.
Copeland and Mustaque Ahamad and Henry L. Owen and Chris Lee, Countering Security
Information Overload through Alert and Packet Visualization, 2006
11: Kulsoom Abdullah and Chris Lee and Gregory Conti and John A. Copeland and John Stasko,
IDS RainStorm: Visualizing IDS Alarms, 2005
12: Snort, http://www.snort.org/
13: Gregory Conti and Julian Grizzard and Mustaque Ahamad and Henry Owen, Visual
Exploration of Malicious Network Objects Using Semantic Zoom, Interactive Encoding and
Dynamic Queries, 2005
14: William Yurcik, Visualizing NetFlows for security at line speed: the SIFT tool suite, 2005
15: Two visual computer network security monitoring tools incorporating operator interface
requirements, citeseer.ist.psu.edu/yurcik03two.html
16: A Prototype Tool for Visual Data Mining of Network Traffic for Intrusion Detection,
citeseer.ist.psu.edu/yurcik03prototype.html
17: Kiran Lakkaraju and William Yurcik and Adam J. Lee, NVisionIP: netflow visualizations of
system state for security situational awareness, 2004
18: Xiaoxin Yin and William Yurcik and Adam Slagell, The Design of VisFlowConnect-IP: A
Link Analysis System for IP Security Situational Awareness, 2005
19: Xiaoxin Yin and William Yurcik and Michael Treaster and Yifan Li and Kiran Lakkaraju,
VisFlowConnect: netflow visualizations of link relationships for security situational awareness,
2004
20: William Yurcik, Tool update: visflowconnect-IP with advanced filtering from usability
testing, 2006
21: Argus NetFlows, http://www.qosient.com/argus/
22: Anita D. D'Amico and John R. Goodall and Daniel R. Tesone and Jason K. Kopylec, Visual
Discovery in Computer Network Defense, 2007
23: Inxight Software, http://www.inxight.com/
24: Pin Ren and Yan Gao and Zhichun Li and Yan Chen and Benjamin Watson, IDGraphs:
Intrusion Detection and Analysis Using Histographs, 2005
25: Jean-Pierre van Riel and Barry Irwin, InetVis, a visual tool for network telescope traffic
analysis, 2006

90

26: Stephen Lau, The Spinning Cube of Potential Doom, 2004
27: AfterGlow, http://afterglow.sourceforge.net/
28: GraphViz, http://www.graphviz.org/
29: What a Botnet Looks Like,
http://www.csoonline.com/article/348317/What_a_Botnet_Looks_Like
30: Florian Mansmann and Daniel A. Keim and Stephen C. North and Brian Rexroad and Daniel
Sheleheda, Visual Analysis of Network Traffic for Resource Planning, Interactive Monitoring,
and Interpretation of Security Threats, 2007
31: UNINETT, http://www.uninett.no/
32: Ben Shneiderman, The Eyes Have It: A Task by Data Type Taxonomy for Information
Visualizations, 1996
33: Ben Shneiderman, Inventing discovery tools: combining information visualization with data
mining, 2002
34: John R. Goodall and Wayne G. Lutters and Anita Komlodi, I know my network: collaboration
and expertise in intrusion detection, 2004
35: Gregory Conti and Mustaque Ahamad and John Stasko, Attacking information visualization
system usability overloading and deceiving the human, 2005
36: Gregory John Conti, Countering network-level denial of information attacks using
information visualization, 2006
37: Patrick Edward Hoffman, Table visualizations: a formal model and its applications, 2000
38: ARBOR NETWORKS, WORLDWIDE INFRASTRUCTURE SECURITY REPORT, 2007
39: RFC4732: Internet Denial-of-Service Considerations, http://tools.ietf.org/html/rfc4732
40: Kiran Lakkaraju and Ratna Bearavolu and Adam Slagell and William Yurcik and Stephen
North, Closing-the-Loop in NVisionIP: Integrating Discovery and Search in Security
Visualizations, 2005
41: NfDump, http://nfdump.sourceforge.net/
42: R, http://www.r-project.org/
43: iPlots, http://www.rosuda.org/iplots/
44: CRAN, http://cran.r-project.org/
45: JGR, http://jgr.markushelbig.org/JGR.html
46: Morten Knutsen, Fighting Botnets in an Internet Service Provider Environment, 2005

91

Appendix A Modification on Nfdump

A.1 Additions in nf_common.c
> static const char *

> inet_ntop_v4(const void *src, char *dst, size_t size)

> {

> const char digits[] = "0123456789";

> int i;

> struct in_addr *addr = (struct in_addr *)src;

> u_long a = ntohl(addr->s_addr);

> const char *orig_dst = dst;

>

> if (size < INET_ADDRSTRLEN) {

> errno = ENOSPC;

> return NULL;

> }

> for (i = 0; i < 4; ++i) {

> int n = (a >> (24 - i * 8)) & 0xFF;

> int non_zerop = 0;

>

> if (non_zerop || n / 100 > 0) {

> *dst++ = digits[n / 100];

> n %= 100;

> non_zerop = 1;

> }else *dst++ = '0';

> if (non_zerop || n / 10 > 0) {

> *dst++ = digits[n / 10];

> n %= 10;

> non_zerop = 1;

> }else *dst++ = '0';

92

A.1 Additions in nf_common.c

> *dst++ = digits[n];

> if (i != 3)

> *dst++ = '.';

> }

> *dst++ = '\0';

> return orig_dst;

> }

>

> static void Vis_String_SrcAddr(master_record_t *r, char *string) {

> char tmp_str[IP_STRING_LEN];

>

> tmp_str[0] = 0;

> uint32_t ip;

> ip = do_anonymize ? anonymize(r->v4.srcaddr) : r->v4.srcaddr;

> ip = htonl(ip);

> inet_ntop_v4(&ip, tmp_str, sizeof(tmp_str));

>

> tmp_str[IP_STRING_LEN-1] = 0;

>

> snprintf(string, MAX_STRING_LENGTH-1, "%15s", tmp_str);

>

> string[MAX_STRING_LENGTH-1] = 0;

>

>

> } // End of Vis_String_SrcAddr

>

> static void Vis_String_DstAddr(master_record_t *r, char *string) {

> char tmp_str[IP_STRING_LEN];

>

> tmp_str[0] = 0;

> uint32_t ip;

93

Appendix A Modification on Nfdump

> ip = do_anonymize ? anonymize(r->v4.dstaddr) : r->v4.dstaddr;

> ip = htonl(ip);

> inet_ntop_v4(&ip, tmp_str, sizeof(tmp_str));

>

> tmp_str[IP_STRING_LEN-1] = 0;

>

> snprintf(string, MAX_STRING_LENGTH-1, "%15s", tmp_str);

>

> string[MAX_STRING_LENGTH-1] = 0;

>

>

> } // End of Vis_String_DstAddr

>

> void flow_record_to_vismix(void *record, uint64_t numflows, char ** s, int anon, int tag) {

> uint32_t sa, da;

> master_record_t *r = (master_record_t *)record;

> char first_str[64], last_str[64], prot_str[6], sa_str[IP_STRING_LEN],
da_str[IP_STRING_LEN], flags_str[16];

>

> // Assume all flows are IPv4

> if (anon) {

> r->v4.srcaddr = anonymize(r->v4.srcaddr);

> r->v4.dstaddr = anonymize(r->v4.dstaddr);

> }

>

> // Make sure Endian does not screw us up

> sa = r->v6.srcaddr[1] & 0xffffffffLL;

> da = r->v6.dstaddr[1] & 0xffffffffLL;

>

> String_FirstSeen(r, first_str);

> String_LastSeen(r, last_str);

> String_Protocol(r, prot_str);

94

A.1 Additions in nf_common.c

> Vis_String_SrcAddr(r, sa_str);

> Vis_String_DstAddr(r, da_str);

> String_Flags(r,flags_str);

>

> snprintf(data_string, STRINGSIZE-1 ,"%u,%s,%u,%s,%u,%u,%s,%u,%s,%u,%u,%s,%u,
%u,%s,%llu,%llu",

> r->first, first_str, r->last, last_str, r->last - r->first, r->prot, prot_str,

> sa, sa_str, r->srcport, da, da_str, r->dstport,

> r->tcp_flags, flags_str, (unsigned long long)r->dPkts, (unsigned
long long)r->dOctets);

>

> data_string[STRINGSIZE-1] = 0;

>

> *s = data_string;

>

> } // End of flow_record_vismix

>

95

Appendix B Shell Scripts

B.1 dump.sh
#!/bin/bash

dump binary nfdump data to readable csv data with customized flow records.

$1 the output (customized csv data) file name.

$[2-*] the option for nfdump

output path

out=$1

copy header to output file

cat scripts/vismix.hdr > $out

shift the arguments left so the new argument array are all for nfdump

shift 1

using modified nfdump to dump in customized format

nfdump -q -o vismix $* >> $out

B.2 preload.sh
#!/bin/bash

convert .csv file to R workspace .ws file.

$1 the output path.

$2 the data name in workspace.

output path

out=$1

if [! -f $out.csv]

96

B.2 preload.sh

then

 echo "Input file [$out.csv] not found - Aborting"

 exit -1

fi

data name in workspace

name=$2

temporary R script name

script=$out'_preload.r'

create temporary R script

#cat scripts/r_vismix.hdr > $script

echo $name' <- read.table("'$out.csv'",header=T,sep=",", quote="");' >> $script

echo 'save.image("'$out.ws'",compress=TRUE)' >> $script

execute R script in BATCH mode

R --no-save --slave < $script

remove temporary R script

rm $script

remove csv file

#rm $out.csv

B.3 getflownumber.sh
#!/bin/bash

1st parameter is raw binary nfdump file name

find the line records overall flow number and get the flow number

nfdump -r $1 -I | grep 'Flows:' | sed 's/Flows: //g'

97

Appendix B Shell Scripts

B.4 gettimewindow.sh
#!/bin/bash

find the line records first/last seen time in UNIX timestamp format

$* the option for nfdump

firstts=$(nfdump -I $* | grep 'First:' | sed 's/First: //g')

lastts=$(nfdump -I $* | grep 'Last:' | sed 's/Last: //g')

if [-z "$firstts"] || [-z $lastts]

then

exit 1

fi

the following commands do the same thing: convert UNIX timestamp format to customized
format

#date -d @$first +%Y/%m/%d.%T

first=$(date -d '1970-01-01 '$firstts' sec GMT' +%Y/%m/%d.%T)

last=$(date -d '1970-01-01 '$lastts' sec GMT' +%Y/%m/%d.%T)

echo $first-$last

98

Appendix C R Scripts
The following scripts use dataset “irc_cs.ws” as example.

C.1 Load
load("/home/jin/data/workspace/final/irc_cs.ws")

C.2 Scatter Plot
0> iset.set('irc_cs_0')

1> attach(iset("irc_cs_0")[])

2> iplot(ts,sas, customFieldBg=TRUE, COL_CUSTOMBG="black", ptDiam=3)

3> detach(iset("irc_cs_0")[])

4> .jcall(.jcall(.iplots[[as.integer(iplot.cur())]]
$obj,"Ljava/awt/Frame;","getFrame"),"V","setState",as.integer(1))

5> .jcall(.jcall(.iplots[[as.integer(iplot.cur())]]
$obj,"Ljava/awt/Frame;","getFrame"),"V","setVisible",FALSE)

6> iplot.size(1,1)

7> iplot.opt(title="irc_cs_0_0_iplot(ts,sas)")

8> iplot.opt(fillColor="green")

C.3 Parallel Coordinate Plot
0> iset.set('irc_cs_0')

1> attach(iset("irc_cs_0")[])

2> iplot(ts,sas, customFieldBg=TRUE, COL_CUSTOMBG="black", ptDiam=3)

3> detach(iset("irc_cs_0")[])

4> .jcall(.jcall(.iplots[[as.integer(iplot.cur())]]
$obj,"Ljava/awt/Frame;","getFrame"),"V","setState",as.integer(1))

5> .jcall(.jcall(.iplots[[as.integer(iplot.cur())]]
$obj,"Ljava/awt/Frame;","getFrame"),"V","setVisible",FALSE)

6> iplot.size(1,1)

7> iplot.opt(title="irc_cs_0_0_iplot(ts,sas)")

8> iplot.opt(fillColor="green")

99

Appendix C R Scripts

C.4 Histogram Plot
0> iset.set('irc_cs_0')

1> attach(iset("irc_cs_0")[])

2> ihist(ts)

3> detach(iset("irc_cs_0")[])

4> .jcall(.jcall(.iplots[[as.integer(iplot.cur())]]
$obj,"Ljava/awt/Frame;","getFrame"),"V","setState",as.integer(1))

5> .jcall(.jcall(.iplots[[as.integer(iplot.cur())]]
$obj,"Ljava/awt/Frame;","getFrame"),"V","setVisible",FALSE)

6> iplot.size(1,1)

7> iplot.opt(title="irc_cs_0_0_ihist(ts)")

8> iplot.opt(borderColor="black")

C.5 Bar Plot
0> iset.set('irc_cs_0')

1> attach(iset("irc_cs_0")[])

2> ibar(ts)

3> detach(iset("irc_cs_0")[])

4> .jcall(.jcall(.iplots[[as.integer(iplot.cur())]]
$obj,"Ljava/awt/Frame;","getFrame"),"V","setState",as.integer(1))

5> .jcall(.jcall(.iplots[[as.integer(iplot.cur())]]
$obj,"Ljava/awt/Frame;","getFrame"),"V","setVisible",FALSE)

6> iplot.size(1,1)

7> iplot.opt(title="irc_cs_0_1_ibar(ts)")

8> iplot.opt(borderColor="black")

C.6 Filter Color Brushing
0> iset.set("irc_cs_0")

1> color <- rep(3, dim(iset(iset.cur()))[1])

2> data <- irc_cs

3> attach(data)

4> color[dp==25] <- 05

100

C.6 Filter Color Brushing

5> color[sp==25] <- 07

6> detach(data)

7> rm(data)

8> iplot.opt(col=color)

9> rm(color)

C.7 Rainbow Color Brushing
0> source("scripts/rainbowcolor.r")

1> iset.set("irc_cs_0")

2> iset.col(rainbowcolor(iset("irc_cs_0")[]$ts))

3> rm(rainbowcolor)

C.8 rainbowcolor.r
Get the brush color for the input data

by 64 rainbow color space evenly according to the value of the data

rainbowcolor <- function(x) {

 lx <- levels(factor(x))

 len <- length(lx);

 palette <- rep(64, len)

 color <- rep(1, length(x))

 if (len > 64){

 delta <- ifelse(len %% 64 > 0, len %/% 64 +1, len %/% 64)

 remainder <- len %% delta

 count <- len %/% delta

 for (i in 0:(count - 1)) {

 palette[(i * delta + 1) : ((i + 1) * delta)] <- rep(64 + i, delta)

 }

 if (remainder > 0){

 palette[(count * delta + 1) : len] <- rep(64 + count, len - (count * delta))

 }

 }else if (len <= 64) {

101

Appendix C R Scripts

 delta <- 64 / len

 for (i in 0:(len - 1)) {

 palette[i + 1] <- 64 + round(delta * i)

 }

 }

 for (i in 1:len){

 color[x==lx[i]] <- palette[i]

 }

 return (color)

}

C.9 Save Plot
0> iset.set("irc_cs_0")

1> iplot.set(2)

2> p<-.iplots[[as.integer(iplot.cur())]]

3> com=.jcall(p$obj,"Ljava/awt/Component;","getComponent")

4> h<-.jcall(com,"I","getHeight")

5> w<-.jcall(com,"I","getWidth")

6> .jcall(com,,"setSize", as.integer(1600), as.integer(1200))

7> img=.jnew("java/awt/image/BufferedImage",as.integer(1600),as.integer(1200),as.integer(1))

8> g=.jcall(img,"Ljava/awt/Graphics;","getGraphics")

9> .jcall(com,,"paint",g)

10>
.jcall("javax/imageio/ImageIO","Z","write",.jcast(img,"java/awt/image/RenderedImage"),"png",.j
new("java/io/File", "/home/jin/data/workspace/irc_cs_0_1_ibar(ts).png"))

11> .jcall(com,,"setSize", as.integer(w), as.integer(h))

12> rm(p)

13> rm(h)

14> rm(w)

15> rm(com)

102

C.9 Save Plot

16> rm(img)

17> rm(g)

103

	Title Page
	Problem Description
	1 Introduction
	1.1 Motivation
	1.2 Scope
	1.3 Criteria
	1.4 Methodology
	1.5 Related Work
	1.6 Report Outline

	2 Related Work
	2.1 Survey of Existing VizSEC Systems
	2.1.1 NfSen
	2.1.2 IDS Rainstorm and Rumint
	2.1.3 SIFT
	2.1.4 VIAssist
	2.1.5 IDGraphs
	2.1.6 InetVis
	2.1.7 AfterGlow

	2.2 Engineering the VizSEC System
	2.2.1 Design Guideline
	2.2.2 User Requirements
	2.2.3 Defense of DoI Attacks

	3 Technological Background
	3.1 NetFlow
	3.1.1 Definition
	Observation Object
	Observation Subject
	Measures
	Temporal Setup

	3.1.2 Architecture

	3.2 Information Visualization
	3.2.1 Human Perception and Visualization
	Reference Model of Visualization
	Pre-attentive Features

	3.2.2 Plotting Schemes
	Scatter Plot
	
Histogram
	Parallel Coordinate Plot

	3.2.3 Interaction Techniques
	Focus+Context Problem
	Interactive Visualization Feedback Loops

	3.2.4 Multidimensional Reduction

	3.3 Botnet

	4 UNINETT CERT
	4.1 Motivation
	4.2 Facility and Resource
	4.3 Existing Solution
	4.4 Wishing List

	5 System Design
	5.1 Requirements
	5.1.1 Global Overview Snapshot
	5.1.2 Local Details Drill-down
	5.1.3 Multi-view Linking
	5.1.4 Procedure Extraction

	5.2 Principles
	5.3 System Architecture
	5.4 Component Composition
	5.5 Functional Module Description
	5.5.1 Data Source Manipulation Backend
	5.5.2 Visualization Preparing Components
	5.5.3 Interactive Plotting Component
	5.5.4 GUI Control Panel Frontend

	6 Implementation
	6.1 Data Source Manipulation Backend
	6.2 Visualization Preparing Components
	6.3 Interactive Plotting Components
	6.4 GUI Control Panel Frontend
	6.5 Deployment
	6.6 Example Use Case
	6.7 Evaluation

	7 Experimentation
	7.1 Environment
	7.1.1 Data Source
	7.1.2 Additional Facilities
	7.1.3 Computing Resources

	7.2 Experimentation planning
	7.3 Scanning
	7.3.1 NetFlow Property Selection
	7.3.2 Investigation
	Global Overview Snapshot
	Local Detail Drill-down

	7.3.3 Application on Common Dataset

	7.4 IRC Botnet C&C Link
	7.4.1 NetFlow Property Selection
	7.4.2 Investigation
	Global Overview Snapshot
	Local Detail Drill-down

	7.4.3 Application on Common Dataset

	7.5 HTTP Botnet C&C Link
	7.5.1 NetFlow Property Selection
	7.5.2 Investigation
	Global Overview Snapshot
	Local Detail Drill-down

	7.5.3 Application on Common Dataset

	8 Discussion
	8.1 Detection of Scanning
	8.2 Detection of IRC Botnet C&C Link
	8.3 Detection of HTTP Botnet C&C Link
	8.4 Essential Factors for Improvement of Detection
	8.5 Ideal Working Scenario

	9 Conclusion and Future Work
	9.1 Conclusion
	9.2 Future work

	Appendix A Modification on Nfdump
	A.1 Additions in nf_common.c

	Appendix B Shell Scripts
	B.1 dump.sh
	B.2 preload.sh
	B.3 getflownumber.sh
	B.4 gettimewindow.sh

	Appendix C R Scripts
	C.1 Load
	C.2 Scatter Plot
	C.3 Parallel Coordinate Plot
	C.4 Histogram Plot
	C.5 Bar Plot
	C.6 Filter Color Brushing
	C.7 Rainbow Color Brushing
	C.8 rainbowcolor.r
	C.9 Save Plot

