
Genetic diversity is observed among populations of 
different ancestries. Allele frequencies can exhibit large 
diversity among populations due to forces such as genetic 
drift and natural selection. Although most common variants 
are shared worldwide, rare variants (minor allele frequency 
[MAF] <1%) have the tendency to cluster in specific popula-
tions. Population-specific rare variants tend to have a strong 
functional effect [1].

In age-related macular degeneration (AMD), large 
variability in rare variant frequency has been reported in 
case-control studies of various populations; for instance, for 
variant rs121913059 (p.Arg1210Cys) in complement factor 
H (CFH; HGNC 4883, OMIM 134370). CFH rs121913059 
was first reported in a case-control study from the United 

States [2]. Several studies replicated the finding [3-5], but 
other Caucasian studies [6-9] and Asian studies [10,11] were 
unable to replicate the strong association (Table 1). Another 
example, variant rs141853578 (p.Gly119Arg) in complement 
factor I (CFI; HGNC 5394, OMIM 217030) first reported in 
a European cohort [7], was screened in a British [12] and 
American [13] cohort (odds ratio [OR] = 22.2; 8.5 and 2.6, 
respectively). However, although the variant was associ-
ated with AMD, the risk effect size was much weaker when 
compared to the first report.

In a recent genome-wide association study conducted 
by the International Age-related Macular Degeneration 
Genomics Consortium (IAMDGC) [3], seven rare variants 
were observed to independently confer risk for AMD. All 
seven rare variants are localized in or near genes encoding 
components of the complement system, namely, CFH, CFI, 
and complement components 3 and 9 (C3, HGNC 1318, 
OMIM 120700 and C9, HGNC: 1358 , OMIM 120940).
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Purpose: A recent genome-wide association study by the International Age-related Macular Degeneration Genomics 
Consortium (IAMDGC) identified seven rare variants that are individually associated with age-related macular degen-
eration (AMD), the most common cause of vision loss in the elderly. In literature, several of these rare variants have 
been reported with different frequencies and odds ratios across populations of Europe and North America. Here, we 
aim to describe the representation of these seven AMD-associated rare variants in different geographic regions based 
on 24 AMD studies.
Methods: We explored the occurrence of seven rare variants independently associated with AMD (CFH rs121913059 
(p.Arg1210Cys), CFI rs141853578 (p.Gly119Arg), C3 rs147859257 (p.Lys155Gln), and C9 rs34882957 (p.Pro167Ser)) and 
three non-coding variants in or near the CFH gene (rs148553336, rs35292876, and rs191281603) in 24 AMD case-control 
studies. We studied the difference in distribution, interaction, and effect size for each of the rare variants based on the 
minor allele frequency within the different geographic regions.
Results: We demonstrate that two rare AMD-associated variants in the CFH gene (rs121913059 [p.Arg1210Cys] and 
rs35292876) deviate in frequency among different geographic regions (p=0.004 and p=0.001, respectively). The risk 
estimates of each of the seven rare variants were comparable across the geographic regions.
Conclusions: The results emphasize the importance of identifying population-specific rare variants, for example, by 
performing sequencing studies in case-control studies of various populations, because their identification may have 
implications for diagnostic screening and personalized treatment.
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The difference in association for rare variants among 
different AMD case-control studies may reflect the differ-
ence in distribution of such rare alleles across geographic 
regions. This observation raises the question whether these 
variants identified by the IAMDGC are represented in all 
case-control studies or whether the association is driven 
by one or more studies from a specific geographic region. 
Therefore, we sought to evaluate the representation of these 
seven AMD-associated rare variants in 24 AMD case-control 
studies of different geographic regions.

METHODS

Data for this study were provided by the IAMDGC. The 
genotypes are in part available via dbGaP under accession 
number phs001039.v1.p1. The original data set contained data 
from 40,633 individuals of European ancestry as described 
by Fritsche et al. [3].

For analyses of the current study, participants from the 
Utah case-control study were excluded due to their mixed 
regions of origin. In addition, the Jerusalem case-control 
study was excluded due to its small sample size compared to 
the other geographic regions. Final analyses were performed 
on 39,582 participants derived from 24 of 26 studies [3]. The 
included studies were grouped in five geographic regions: 
eastern USA, western Europe, Britain, western USA, and 
Australia (Table S1). Data were collected by all study groups 
in accordance with the tenets of the Declaration of Helsinki; 
participants provided informed consent, and study protocols 
were approved by local ethical committees [3]. Ancestry was 
determined based on the first two principal components using 
autosomal genotyped variants together with genotype infor-
mation of the samples from the Human Genome Diversity 
Project [3]. The final data set included 39,582 successfully 
genotyped subjects, including 15,527 advanced AMD cases, 
6,537 non-advanced AMD cases, and 17,518 control indi-
viduals of European ancestry.

The MAF in each region was calculated and compared 
independently of AMD status. For comparison of effect sizes 
and interaction analyses, individuals were assigned “AMD” 
when they exhibited signs of (1) advanced AMD defined as 
geographic atrophy and/or choroidal neovascularization in at 
least one eye, or (2) non-advanced AMD defined as pigmen-
tary changes in the macula and/or more than five macular 
drusen with a diameter more than 63 μm. Individuals without 
any reported signs of AMD were assigned “No AMD.”

Genotype data of seven rare genetic variants were 
selected from array-based data generated by the IAMDGC 
[3]. Fritsche et al. [3] showed these seven rare variants were 
independently associated with AMD: CFH rs121913059 

(p.Arg1210Cys), CFI rs141853578 (p.Gly119Arg), C3 
rs147859257 (p.Lys155Gln), and C9 rs34882957 (p.Pro167Ser) 
and three non-coding variants in or near CFH (rs148553336, 
rs35292876, and rs191281603).

The software package SAS (Statistical Analysis System 
Institute, SAS Institute Inc., Cary, NC, V9.2) was used to 
compare MAFs between the different geographic regions in 
a logistic regression analysis with the Firth correction (S1 
Supporting information) [14]. Furthermore, we estimated the 
mean allele frequency of each rare genetic variant in each of 
the geographic regions including a 95% confidence interval 
(details provided in S1 Supporting information). To study the 
potential difference in the effect size of each variant between 
the geographic regions, interaction analyses were performed 
using binary logistic regression models with SPSS statistics 
software (IBM SPSS Statistics, IBM SPSS Statistics for 
Windows, Version 22.0. Armonk, NY, V22.0).

RESULTS

Demographic characteristics for each of the five geographic 
regions are shown in Supporting Information Table S1. The 
characteristics of the participants from the different regions 
were comparable, although the British study samples were 
slightly younger than the others, and the western European 
study samples included relatively more female participants 
compared to the remainder. These differences were compa-
rable in the cases and the controls.

We analyzed the difference in distribution of the seven 
rare variants among case-control studies from eastern USA, 
western Europe, Britain, western USA, and Australia using 
logistic regression analysis with the Firth correction (Table 
2; Figure 1) and observed a difference in the distribution of 
the variants CFH rs121913059 (p.Arg1210Cys, p=0.004) and 
CFH rs35292876 (p=0.001) across the different geographic 
regions. CFH rs121913059 was found at a higher frequency 
in eastern USA, especially compared to Britain and Australia 
(p=0.011 and p=0.003, respectively). CFH rs35292876 was 
found at a higher frequency in western Europe, compared 
to all other regions (ranging from p<0.001 in Britain to 
p=0.012 in eastern USA). The distribution of variants CFH 
rs121913059 (p.Arg1210Cys) and CFH rs35292876 was not 
confounded by the distribution of individuals with advanced 
and non-advanced AMD across the geographic regions (Table 
S2). The other five variants were found to have similar allele 
frequencies among all geographic regions.

The difference in distribution is also reflected by the 
estimated MAFs of each variant in the different geographic 
regions (Table S3). The allele frequency of CFH rs121913059 
is nearly three times higher in eastern USA than in Britain 
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and Australia. Noteworthy is the near absence of this risk 
variant in control individuals without AMD, indicating that 
the difference in distribution appears to be driven solely by 
individuals with AMD (Table S4).

To determine whether the effect size was influenced 
by geographic region, we performed interaction analyses 
for each variant. We observed that the risk associated with 
each specific rare variant is independent of the geographic 
region (Table 2). The overall effect sizes of the rare variants 
are comparable to the effect sizes reported in the IAMDGC 
study [3].

DISCUSSION

The distribution of rare CFH variants rs121913059 
(p.Arg1210Cys) and rs35292876 was significantly different 
between several of the studied geographic regions. This result 
confirms differences reported in previous studies for the CFH 
rs121913059 variant [2-11,13,15] (Table 1). CFH rs121913059 
was first associated with AMD in a study from the USA [2]; 
however, the association was not consistently replicated in 
Dutch/German [7], Icelandic [8], Japanese [10], and Chinese 
[11] studies. In this study, we confirmed the hypothesis that 
rare variants can be differently distributed among geographic 
regions, but as expected, the risk estimates are comparable 
across the geographic regions. Rare variants tend to be recent, 
and therefore, their distribution tends to be restricted to a 
specific region. Interpretation of rare variants, therefore, may 
be focused to a geographic region or population [16,17].

In AMD, a difference in geographic distribution has 
already been described for common risk haplotypes of the 
CFH and ARMS2 (HGNC: 32685, OMIM 611313) genes, 
which are the most prominent common genetic AMD risk 
factors [3]. Although Asian populations report a lower 
frequency of CFH risk haplotypes, the opposite holds true for 
the ARMS2/HTRA1 risk haplotype which is more prevalent 
in Asians compared to Caucasian populations [18,19]. These 
patient- and population-specific variations have implications 
for genetic counseling and carrier screening in diagnostic and 
research settings.

In addition to single variant associations, a significant 
burden of rare variants in the CFH and CFI genes has been 
reported for AMD [3,15]. The disease burden in these genes 
is attributed to the cumulative effect of rare coding variants, 
some of which are identified in multiple studies, while others 
are restricted to a single population or even a single patient 
[20]. Carriers of specific rare genetic variants in the comple-
ment genes that increase complement activation may benefit 
more from complement-inhibiting therapy than those who do 
not carry such variants [20]. Personalized treatment aiming at 
complement-activating rare variants in clinical trials may be 
applicable only to specific populations where these variants 
are sufficiently common.

It is likely that additional rare variants, other than CFH 
Arg1210Cys and rs35292876, fluctuate in frequency among 
geographic regions. To identify these variants, additional large 
sequencing studies will need to be performed in populations 

Table 2. disTribuTion and inTeracTion analysis of seven rare aMd-associ-
aTed geneTic varianTs across five geographical regions.

Gene
Difference in distribution 

between geographical regions# Interaction Analysis* Overall effect size‡

p-value p-value OR (95%CI)
CFH rs121913059 
(p.Arg1210Cys)

0.004 0.665 24.2 (8.9–65.6)

CFI rs141853578 
(p.Gly119Arg)

0.707 0.563 3.7 (2.5–5.7)

C3 rs147859257 
(p.Lys155Gln)

0.665 0.680 2.8 (2.3–3.4)

C9 rs34882957 

(p.Pro167Ser)

0.315 0.572 1.7 (1.5–2.0)

CFH rs148553336 0.053 0.015 0.5 (0.4–0.6)
CFH rs35292876 0.001 0.709 2.3 (2.0–2.6)
CFH rs191281603 0.735 0.980 0.9 (0.7–1.1)

#Logistic Regression with Firth correction. Individual Wald Chi-Square from likelihood ratio test for each of the variants across the 
geographical regions. *Interaction Analysis: Effect sizes in entire study and interaction analysis to study potential differences in effect 
size between cohorts. ‡Overall effect size adjusted for geographical region. Bold values: p value considered significant after Bonferroni 
correction (p<0.007).
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originating from diverse geographic regions. Until now, large 
sequencing initiatives are predominantly of North American 
or European origin, and sample sizes for non-European-
descent population are limited [3,21]. Recruiting case-control 
studies from other geographic regions and ancestries could 
allow for identification of novel highly penetrant rare vari-
ants implicated in AMD pathogenesis. These variants may be 
located in known AMD pathways, such as the complement 

system, or novel pathways [22]. For example, Asian popula-
tions have a different genetic predisposition for AMD than 
Europeans. Only half of the common European loci could 
be replicated in East Asians [23]. Furthermore, the rare vari-
ants CFH rs121913059 (p.Arg1210Cys), CFI rs141853578 
(p.Gly119Arg), and C3 rs147859257 (p.Lys155Gln) were not 
identified in Asian populations according to public database 
gnomAD [24]. It has been postulated that rare variants in 

Figure 1. The two rare variants in CFH that are differently distributed variants among different geographic regions. Minor allele frequencies 
(in percentage) for CFH rs121913059 (A) and CFH rs35292876 (B). Variants mapped to geographic location (from left to right): western 
USA, eastern USA, Britain, western Europe, and Australia.
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Asian populations may be found in other genes, for example, 
involved in cholesterol and lipid metabolism [25].

In conclusion, we demonstrated that rare AMD-associ-
ated variants CFH rs121913059 and rs35292876 are differently 
distributed among different geographic regions. These results 
emphasize the importance of identifying population-specific 
rare variants in AMD.

APPENDIX 1.

Code for the software package SAS for a logistic regression 
analysis and Firth’s bias correction. To access the data, click 
or select the words “Appendix 1”

APPENDIX 2.

List of members of the Age-related Macular Degeneration 
Genomics Consortium. To access the data, click or select the 
words “Appendix 2”

APPENDIX 3.

Demographic characteristics of AMD cohorts grouped in five 
geographical regions. To access the data, click or select the 
words “Appendix 3”

APPENDIX 4.

Overall estimated mean MAF of CFH rs121913059 
(p.Arg1210Cys) and CFH rs35292876 across five geographical 
regions in the complete study and subdivided for individuals 
with and without advanced AMD. 1 Advanced AMD defined 
as geographic atrophy and/or choroidal neovascularization in 
at least one eye. 2 Non-advanced AMD defined as pigmentary 
changes in the macula and/or more than five macular drusen 
with a diameter >63 μm or individuals without any reported 
signs of AMD. To access the data, click or select the words 
“Appendix 4”

APPENDIX 5.

Overall estimated mean MAF of seven rare AMD-associated 
genetic variants across five geographical regions. To access 
the data, click or select the words “Appendix 5”

APPENDIX 6.

Minor allele frequencies (%) of seven rare AMD-associated 
genetic variants across five geographical regions stratified 
by AMD status. To access the data, click or select the words 
“Appendix 6”
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