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Abstract

Model-based decision-making in oilfield development often involves
hundreds of computationally demanding reservoir simulation runs. In
particular, well placement optimization under uncertainty in the geologic
representation of the reservoir model is an overly time-consuming pro-
cedure as the performance of any proposed well configuration needs to
be evaluated over multiple realizations, using computationally expensive
flow simulations. To reduce computation, we propose an efficient robust
optimization procedure in which at each iteration of the optimization pro-
cedure, instead of evaluating the well configuration over all available real-
izations, we approximate the expected performance using a small subset
of randomly selected model realizations. Since the samples are selected
randomly, all the realizations are expected to eventually be included in
the performance evaluation after a certain number of iterations. However,
using only a few random realizations to compute the expected cost func-
tion introduces noise in the estimated objective function, necessitating
the use of a stochastic optimizer. In this paper, we use the Simultane-
ous Perturbation Stochastic Approximation (SPSA) algorithm, which is
known to be robust against noise in the objective function. We first eval-
uate the performance of different forms of the SPSA algorithm (including
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discrete, continuous, and adaptive) using several numerical experiments,
followed by a discussion of the properties of the proposed reduced random
sampling approach and comparison with global optimization techniques.
The method is applied to several numerical experiments, including case
studies involving vertical, horizontal, and lateral wells, to evaluate its
performance. The results from these experiments indicate that the re-
duced random sampling approach can provide significant computational
gain with minimal impact on the attained optimization performance.

1 Introduction

Drilling wells is a major capital expense in hydrocarbon reservoir development.
Well locations and their trajectories have a significant impact on the recovery
performance. Optimizing the location and configuration of wells has therefore
received significant attention in recent years. The optimization techniques which5

have been applied to the well placement problem can be classified into two
groups of approaches: gradient-based and derivative-free approaches. In the
following, the application of these two types of approaches to the well placement
problem is briefly reviewed.

For gradient-based recovery optimization, adjoint formulations offer a very10

efficient gradient calculation approach, which often introduces a computation
overhead less than the forward simulation time [21]. For well placement opti-
mization, however, adjoint-based gradient calculation with respect to well lo-
cations is not straightforward. Indirect approaches have been devised to im-
plement gradient-based algorithms for well placement optimization [38, 48, 52].15

An important disadvantage of the adjoint method is the need to access and
modify the reservoir simulator source code directly, which is not trivial for com-
mercial simulation codes. A simple approach to obtain the required gradients
is by using Finite Difference Method (FDM) approximation, which is compu-
tationally expensive when a large number of optimization variables is involved20

[3]. An efficient alternative to FDM is stochastic gradient approximation, in-
cluding ensemble-based approximation or simultaneous perturbation algorithms
[3, 24, 26].

In derivative-free methods, as the name suggests, the calculation of the ob-
jective function gradient is not required. Derivative-free methods can also be25

classified into local or global methods. Global derivative-free algorithms usually
can deal with multiple local optima, while local derivative free algorithms only
converge to local solutions. Three different deterministic derivative free methods
(Hooke-Jeeves Direct Search (HDDS), Generalized Pattern Search (GPS), and
a hybrid optimization parallel search package (HOPSPACK)) have been applied30

to the well placement problem in [6]. Further, stochastic derivative-free methods
have been applied to the well placement optimization problem such as different
types of Genetic Algorithm (GA)s [1, 3, 18, 51], covariance matrix adaptation
evolution strategy (CMA-ES) [7], Particle Swarm Optimization (PSO) [23, 35],
and Simulated Annealing (SA) [5].35
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In formulating reservoir management optimization problems, it is impera-
tive to account for the uncertainty in the geological description of the reservoir
model and the related input parameters, including the distribution of rock flow
properties such as porosity, permeability, and fluid contacts. A commonly used
approach to reflect the uncertainty in these properties is to assign an (often40

high-dimensional) Probability Density Function (PDF) to them. Unfortunately,
even when such PDFs can be defined, it is not trivial to directly incorporate
them into optimization problem formulations. In general, sampling methods and
Monte-Carlo simulation techniques provide a practical (approximate) approach
for incorporating model input uncertainty in optimization problems. To ade-45

quately approximate PDFs with samples, however, a large number of samples
must be drawn, especially when a PDF function is complex. Thus, to take into
account the geological uncertainty in the well placement problem, the perfor-
mance of candidate well configurations has to be evaluated over a large number
of geological realizations. In practice, however, because of the limited compu-50

tational resources, a small number of model realizations is often selected. In
realistic problems where computationally demanding forward reservoir simula-
tion runs have to be performed, even with a small number of realizations (e.g.,
100 realizations), the computational cost can become prohibitively expensive
due to the large number of iterations involved in well placement optimization.55

Several methods have been proposed in the literature to reduce the computa-
tional load of running multiple realizations [1, 18, 29, 40, 49]. In [1], the optimal
placement of nonconventional wells under geological uncertainty is addressed by
optimizing over multiple realizations subject to a prescribed risk attitude. The
authors used a statistical proxy based on a cluster analysis approach to reduce60

the number of necessary simulation runs. Using the proxy, a systematic ap-
proach was used to select a representative subset of the initial models for a full
simulation to approximate the output uncertainty. The authors showed that
optimization results obtained by using up to 20% of the total number of scenar-
ios (this subset was determined by the proxy), were very close to those achieved65

by including all the initial models in the optimization. In [49], Wang et al. pro-
pose a Retrospective Optimization (RO) method in which the original problem
involving a large number of realizations is treated as a sequence of optimization
subproblems with increasing number of realizations. At the beginning, the prob-
lem is started using a smaller number of realizations; the number of realizations70

is then gradually increased through the sequence of optimization subproblems.
The initial solution for the current subproblem is simply the solution returned
by the previous subproblem. Using small sample sizes at the beginning of the se-
quence leads to moderate computational load. Towards the end of the sequence,
despite the large number of realizations, the initial solutions are typically close75

to the optimum, which may reduce the required number of iterations needed
to converge to the optimum solution. One issue in adopting such a strategy
with local optimization techniques is the possibility of biasing the final solution
toward a local solution that has been obtained at early optimization subprob-
lems with very few samples. Guyaguler and Horne [18] introduce utility theory80

in the well placement problem, in which the utility framework transforms the
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stochastic problem into a deterministic one. They demonstrate how the util-
ity framework can quantify both the influence of uncertainty in the reservoir
description and the risk attitude of the decision maker.

In this paper, we propose a reduced sampling strategy whereby, at each op-85

timization iteration, the expected performance of a given well configuration is
approximated by a small subset of randomly selected model realizations. Be-
cause of the random sample selection, over a large number of iterations, it is
expected that all samples are included at least once (and potentially multiple
times, depending on the sample reduction ratio and number of iterations) in90

the performance evaluation. However, using a subset of random realizations
at each iteration introduces noise when computing the objective function. To
alleviate this problem, we implement the Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm, which is known to be robust against noisy
objective functions. The robustness of SPSA is discussed in detail in the orig-95

inal publications by Spall [1992,1998], where the convergence proof of SPSA is
based on the properties of the noise in the objective function.

In this work, we therefore optimize the trajectory of wells (including ver-
tical, horizontal, and deviated wells) using a continuous variant of SPSA. The
SPSA algorithm is a local optimization method that uses stochastic gradient100

approximation and is easy to implement.
SPSA was first applied to the well placement problem in [3]. For some

cases, the authors observed that the SPSA algorithm outperformed the Nelder-
Mead Simplex method, and GA. Discrete or integer versions of SPSA have been
used for vertical well placement in [3, 29]. In [28], Li and Jafarpour use the105

SPSA algorithm for well placement in a joint well placement and production
optimization problem to show the advantage of including variable controls in
solving the well placement problem. In a follow-up paper [29], the authors
combined the well placement and control problems into a joint optimization
algorithm using the SPSA algorithm. In [29], Li et al. also investigate the110

behavior of their algorithm under geologic uncertainty and show preliminary
results suggesting that, in robust optimization, using only a small random subset
of model realizations could result in similar optimization performance as in the
case where the entire ensemble of models is used. In this paper, we build on
the preliminary work of [29] to investigate the performance of SPSA with small115

sample sizes in robust optimization.
Early petroleum applications of the SPSA algorithm were performed by

[3, 17]. In [17], both SPSA and Adaptive SPSA (ASP) are applied to the his-
tory matching problem. The ASP algorithm uses the stochastic approximation
of the gradient and the Hessian matrix. For some cases, the authors showed120

that the ASP algorithm achieved a superior rate of convergence compared to
the SPSA algorithm. In [47], SPSA is implemented for production optimization,
and compared with the steepest ascent method in which the gradient is calcu-
lated using the adjoint method. In some cases SPSA with an average stochastic
gradient is shown to provide reasonable well control solutions. However, the125

convergence rate of the SPSA algorithm in those examples is slower than the
steepest ascent method. A stochastic Gaussian search direction (SGSD) algo-
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rithm is proposed in [27] to generate the stochastic search direction (instead of
the Bernoulli distribution in the original SPSA algorithm) in history matching
problems. Furthermore, a prior covariance matrix is proposed to approximate130

the inverse Hessian matrix. In [13], a modified version of SPSA (G-SPSA), where
Gaussian perturbations are applied, is used to estimate the pre-conditioned gra-
dient of an augmented Lagrangian in optimizing well controls, which is used to
directly incorporate all inequality and equality constraints. To impose a degree
of temporal smoothness on the optimization variables, in [13] a covariance ma-135

trix is used for pre-conditioning. Furthermore, in [12] the authors show that
Ensemble-Based Optimization (EnOpt) [10] is a special case of the modified
version of SPSA, i.e., smoothed G-SPSA. In the EnOpt method, the ensemble
is used to determine the sensitivities of the objective function with respect to
the optimization variables. The expectation of the smoothed G-SPSA gradient140

and that of the EnOpt gradient represent first-order approximation of a squared
covariance matrix times the true gradient.

A particular property of the search space corresponding to the well placement
problem is that reservoir heterogeneity is likely to result in a highly non-smooth
objective function containing multiple optima [35]. Given this type of topol-145

ogy, gradient-based searches for optimizing well locations may converge to local
optima within a few iterations, making the problem highly dependent on the
initial well configuration. However, the local optima in these problems tend to
have similar values, indicating that the objective function may contain a ridge-
like topology. In this work, we compare the performance of SPSA with PSO,150

which is a global search algorithm, for several numerical experiments. The PSO
algorithm [25] is inspired by the social behavior of animals such as bird flocking.
PSO is initialized with a population of random solutions, called particles. Each
particle is assigned a random velocity according to the experiences of the par-
ticle itself and its neighborhoods. In [35], PSO and binary Genetic Algorithm155

(bGA) are applied to several well placement problems, where it is observed that,
on average, the PSO algorithm provides comparable or better results.

This paper is organized as follows: We first formulate the well placement
problem under geological uncertainty. We then present the SPSA algorithm
and a few of its variants, and discuss their application to the well placement160

problem. We continue this section with a discussion of different sampling meth-
ods. Results from several numerical experiments, including the placement of
vertical, horizontal, and lateral wells, are presented and discussed before closing
the paper with our conclusions.
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2 Problem formulation165

The well placement problem under uncertainty can be formulated as follows:

max
ζ

JT (ζ,un, θ), (1a)

subject to:

Cwl(ζ), Crb(ζ, θ), Cwo(ζ), Cwd(ζ) ≤ 0, (1b)

x0(θ) = x0(θ), (1c)

gn(xn+1,xn, ζ,un, θ) = 0, n = 0, 1, · · · , N, (1d)

where ζ represents well coordinates, un denotes well controls, θ stands for the
uncertain parameters (e.g., permeability, porosity), xn refers to the dynamic
states of the simulation model gn that describes the fluid flow governing equa-
tions at time step n; Cwl, Crb, Cwo, and Cwd represent the well length, reservoir
boundaries, well orientation, and well distance constraints (for more details see170

[22]); and N is the total number of time steps. Note that the well length,
well orientation, and inter-well distance constraints in (1b) are functions of the
well coordinate variables, while the reservoir boundary constraint is a function
of both well coordinates and uncertain parameters, where the geometry of the
reservoir is also uncertain. The probability distribution functions for the un-175

certain parameters θ are either generally unknown because of the complexity
of real oil reservoirs, or they are known but do not lend themselves to nonlin-
ear propagation using complex reservoir simulation equations. A practical way
to represent and propagate the uncertainty in these parameters is to use their
stochastic realizations (samples) in a Monte-Carlo simulation framework.180

Different measures of risk can be used for the objective function in (1a).
The nominal profit approach is based on using, as objective function, the profit
of one single realization, which can be different from that of the true reservoir
model. The worst-case scenario approach is a conservative method in which the
lowest profit within the range of possible outcomes is considered as the objective
function. An alternative to the nominal and worst-case scenario approaches is
the certainty equivalence approach, in which the profit is obtained from the ex-
pected value of the uncertain parameters. The expected profit approach takes
the mean of the economic measure over model realizations. The main drawback
of this approach is that it is possible to have very low profit realization, while
the expected profit is high. To address this shortcoming, the mean variance
approach uses a weighted sum of the mean and variance of the profit over all
realizations, while the conditional value at risk approach maximizes the tail of
the profit distribution beyond a certain quantile level. The worst-case scenario
and conditional value at risk approaches are selected as appropriate risk mea-
sures for risk minimization in [8]. In this work, without loss of generality, we
use the expected profit approach, even though other measures can also be used
in the proposed random sampling strategy. The well placement problem under
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uncertainty may now be formulated as follows:

max
ζ

E(J(ζ,un, θ)) ≈ 1

Nr

Nr∑
i=1

J(ζ,un, θi), (2a)

subject to:

Cwl(ζ), Crb(ζ, θi), Cwo(ζ), Cwd(ζ) ≤ 0, i = 0, 1, · · · , Nr (2b)

x0(θi) = x0(θi), i = 0, 1, · · · , Nr (2c)

gn(xn+1,xn, ζ,un, θi) = 0, i = 0, 1, · · · , Nr, (2d)

n = 0, 1, · · · , N,

where the expectation E(J(·)) is approximated with averaging, and Nr is the
number of model realizations. Usually, the Net Present Value (NPV) is used as
the objective function, J , and is defined as:

J(ζ,un, θi) =

N−1∑
n=0

Ln(xn+1, ζ,un, θi), (3)

Ln(xn+1, ζ,un, θi) =
∆tn

(1 + α)tn

( Np∑
j=1

(
roq

j,n+1
o (ζ,un, θi) + rgq

j,n+1
g (ζ,un, θi)

)
−

Np∑
j=1

rwpq
j,n+1
wp (ζ,un, θi)−

Ni∑
j=1

rwiq
j,n+1
wi (ζ,un, θi)

)
,

where, for a waterflooding example, qj,n+1
o , qj,n+1

g , qj,n+1
wp , and qj,n+1

wi are the
flow rates of the oil, gas, water produced and water injected for well j at the
output interval n + 1, respectively, and ∆tn represents the length of each of
the N time steps. Here, the number of injectors and producers are denoted
by Ni and Np, respectively; and the oil price, gas price, and the cost of water185

produced and injected are denoted by ro, rg, rwp, and rwi, respectively. The
discount factor is represented by α.

In this work, we consider the placement of mono-bore wells (see e.g., [51] for
multi-bore well placement optimization). There are different types of trajecto-
ries for well locations: vertical, horizontal, and deviated wells. Optimization of190

vertical wells has been widely studied in the past [20, 34, 38, 52]. In optimizing
the location of vertical wells, it is common to parameterize the well locations
using x and y coordinates of each cell that intersects a well as two optimization
variables, assuming the wells are perforated in all of the layers. The location of
deviated or horizontal well bores, however, is parametrized in different ways in195

the literature. In [16], the wells are parametrized such that they can be perfo-
rated only in predefined directions of i, j, k (i.e., along the Cartesian axis). The
directions of the wells are determined in advance, and they are not included
as optimization variables. Therefore, the location and extent of the wells are
defined by the center point of the well trajectory (three variables) and length of200

each well. In [46], the trajectory of the wells is parametrized using multiple tra-
jectory points. Thus, the number of decision variables is three times the number
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of trajectory points. The authors also implement a smoothing procedure that
keeps the curvature of the trajectory less than a maximum value. In [14], the
Cartesian coordinates of the starting and end points of the deviated wells are205

used as decision variables. In [15], the trajectory of each well is parametrized in
terms of six optimization variables in which the first three variables define the
Cartesian coordinate of the center point of the well trajectory and the rest of
the variables represent the length of the well, orientation of the well trajectory
in the horizontal direction and the inclination angle of the well trajectory with210

respect to the vertical direction. Similarly in [51], the main bore is parametrized
by six optimization variables; three variables define the Cartesian coordinate of
the heel, while three variables define the length of the trajectory projected onto
the x− y plane, the orientation of the well in x− y plane, and the depth to the
trajectory end point.215

In this work we use the Cartesian coordinates of the wells as optimization
variables to avoid increasing the complexity of the overall constraint-handling
procedure. Therefore, six optimization variables per well are used to define
the toe and heel locations. For example, even though we could obtain a lin-
ear formulation of the well length constraint by using cylindrical or spherical220

coordinates, this would introduce highly nonlinear functions to describe the as-
sociated reservoir boundary constraint, thus increasing the overall complexity
of the problem (see [23] for further details).

3 SPSA

The SPSA algorithm is well-suited for optimization problems where noisy mea-
surements of the objective function are available, and/or when direct calcula-
tion of the objective function gradients is costly or infeasible. The basic un-
constrained SPSA algorithm updates the optimization variables through the
standard recursive form [45]:

ζk+1 = ζk − akĝk(ζk), (4)

where ζk is the vector of decision variables at the kth iteration, ĝk(ζk) is the225

simultaneous perturbation estimate of gradient g(ζ) = ∂f/∂ζ (f is the objective
function), and ak is a nonnegative scalar gain coefficient.

A key characteristic of the SPSA algorithm is how gradients are approx-
imated. A central finite difference method approximates the gradient by per-
turbing the elements of the decision variable vector one at a time and evaluating
the objective function for each perturbation. Thus, 2nζ (where nζ is the number
of decision variables) function evaluations are required for approximating the
gradients using a central finite difference scheme. However, the key idea behind
SPSA is to perturb all vector elements simultaneously. The SPSA algorithm
therefore only needs two function evaluations; one for a forward perturbation
and another for a backward perturbation of the variable vector, as follows:

ĝk(ζk) =
f(ζk + ck∆k)− f(ζk − ck∆k)

2ck
[∆−1k1 ,∆

−1
k2 , · · · ,∆

−1
knζ

], (5)
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where ∆k is a random perturbation vector, and ck is a nonnegative scalar.
The conditions specified for the perturbation vector ∆k are as follows [45]: (1)
the entries should have independent and symmetrical distribution, and (2) they230

should have finite inverse moment expectation E[|∆ki|−1]. A common and sim-
ple distribution that fulfills the above conditions is the symmetric Bernoulli (±1)
distribution. It is worth mentioning that symmetric, uniform and normal dis-
tributions do not have finite inverse moment expectation, and thus they cannot
be used with SPSA.235

Although the gradient approximation in (5) requires fewer function eval-
uations, it is important to note that due to the approximate nature of the
computed gradients the number of iterations required for the algorithm to con-
verge is expected to increase. It is shown in [42, 45] that in comparison with the
finite difference method, SPSA can achieve the same level of statistical accu-
racy under reasonably general conditions on the parameters even though it uses
only 1/nζ times the number of function evaluations used in the finite difference
method. The SPSA algorithm converges to a local optimum point ζ∗ under
certain conditions on the SPSA parameters (gain sequences), smoothness of the
objective function close to the optimum, and when the required properties of
the perturbation distribution ∆ (discussed above) are fulfilled. The conditions
for the gain sequences are as follows [42, 45]:

ak > 0, ck > 0, ak → 0, ck → 0,

∞∑
k=0

ak =∞,
∞∑
k=1

a2k/c
2
k <∞.

In [43], useful guidelines to select the gain sequence parameters (perturbation
size ck and step length ak) are provided. To satisfy the above conditions, ak
and ck are defined as follows:

ak =
a

(A+ k + 1)α
, (6a)

ck =
c

(k + 1)γ
, (6b)

where the recommended practical values for α and γ are 0.602 and 0.101, re-
spectively. Moreover, it is suggested in [43] to set A at or around 10% of the
maximum number of expected/allowed iterations. Parameter a can be chosen

such that ĝ0(ζ0)a
(A+1)α is approximately equal to the minimum desired changes to ζ

in the early iterations. Finally, a suggested rule-of-thumb is to set c at a level240

approximately equal to the standard deviation of the noise in computing the
objective function.

If the elements of ζ have very different magnitudes, [43] recommends to use
a matrix scaling of the gain αk. To construct such a scaling matrix, prior infor-
mation on the relative magnitude of the decision variables is required. However,245

if this information is not available, a second type of SPSA is suggested, namely,
the ASP. Spall [44] introduces ASP as a stochastic analogous of the Newton-
Raphson method, where scaling information is derived from the inverse of the
approximated Hessian matrix. ASP automatically scales the solution updates
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(ζ) whenever there is significant difference between the magnitudes of the ele-250

ments of ζ.
To approximate ζ and the Hessian matrix of f(ζ), the ASP algorithm uses

two parallel recursions:

ζk+1 = ζk − ak ¯̄H−1k ĝk(ζk), (7a)

¯̄Hk = Mk(H̄k), (7b)

H̄k =
k

k + 1
H̄k−1 +

1

k + 1
Ĥk, , (7c)

where the definitions of αk, and ĝk are similar to the definitions of the scalar gain
coefficient and the approximation of the gradient in the basic SPSA algorithm
in (4), respectively. Mk is a mapping function to cope with possible nonpositive
definiteness of H̄k. Ĥ is a per-iteration estimate of the Hessian, and can be
estimated as

Ĥk =
1

2
{∂Gk

2ck
[∆−1k1 ,∆

−1
k2 , · · ·∆

−1
knζ

] + (
∂Gk

2ck
[∆−1k1 ,∆

−1
k2 , · · ·∆

−1
knζ

])T }, (8)

where ck and ∆k have the same definitions as in the original SPSA algorithm,
and ∂Gk is given by

∂Gk = G
(1)
k (ζk + ck∆k)−G

(1)
k (ζk − ck∆k), (9)

where G
(1)
k is a one-sided approximation of the gradient. The use of a one-

sided approximation is suggested in [44] to keep the total number of function
evaluations low compared with the standard two-sided form. The one-sided
approximation is as follows:

G
(1)
k (ζk ± ck∆k) =

f(ζk ± ck∆k + c̃k∆̃k)− f(ζk ± ck∆k)

c̃k


∆̃−1k1
∆̃−1k2

...

∆̃−1knζ

 , (10)

where ∆̃k = [∆̃−1k1 , ∆̃
−1
k2 , · · · , ∆̃

−1
knx

] is chosen independently of ∆k, but both

∆̃k and c̃k satisfy conditions similar to those of ∆k and ck. Two function
evaluations, f(ζk ± ck∆k), are performed in (5) for gradient approximation.
Two additional function evaluations, f(ζk ± ck∆k + c̃k∆̃k), are needed for the255

Hessian approximation. Thus, only four function evaluations are required at
each iteration to approximate both the gradient and Hessian matrix.

The remaining aspect of the ASP implementation is to define the mapping
function Mk in (7b). Recall that Mk is used to map H̄k to a positive-definite

matrix. To compute ¯̄Hk = Mk(H̄k), Zhu and Spall [53] propose the following260

steps:
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• Perform eigenvalue decomposition of the Hessian matrix H̄k, and sort the
eigenvalues in descending order:

H̄k = PkΛkP
T
k , (11)

Λk = diag
[
λ1 λ2 · · · λq−1 λq λq+1 · · · λnζ

]
(12)

where Pk is the matrix containing the sorted eigenvectors in its columns
and Λk is the diagonal matrix with the corresponding eigenvalues, λ1 ≥
λ2 ≥ · · · ≥ λq > 0 and λnζ ≤ · · ·λq+1 ≤ 0.

• Replace the negative eigenvalues as follows:

λ̂q = δλq−1, λ̂q−1 = δλ̂q, · · · , λ̂nζ = δλ̂nζ−1, (13)

where δ is a small value in the range of (0, 1). Thus, the new eigenvalue
matrix Λ̂k has the following form:

Λ̂k = diag
[
λ1 λ2 · · · λq−1 λ̂q λ̂q+1 · · · λ̂nζ

]
(14)

• The mapping Mk can then be expressed as follows:

Mk(H̄k) = PkΛ̂kP
T
k (15)

The inversion of ¯̄Hk in (7c) can be computed easily using its eigenvalue
decomposition:

( ¯̄Hk)−1 = PkΛ̂−1k PTk (16)

The SPSA and ASP algorithms for performing n iterations are summarized265

in Algorithm 1. In our implementation, in addition to the basic SPSA algorithm,
we also add a blocking step and a line search method. In the blocking step,
the updated solution ζk+1 is blocked, if the objective function at the intended
value ζk+1 does not show improvement relative to ζk [45]. We also suggest
implementing a line search method to improve the objective function before270

blocking the step. However, only a few iterations of the line search method
are performed, as the gradient (and Hessian matrix) are approximated and the
descent direction might not have sufficient accuracy.

4 Solution approach

4.1 Well placement optimization275

The performance of a candidate solution for the well placement problem is typ-
ically evaluated over multiple realizations (Nr in (1)). To reduce computation
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Algorithm 1: SPSA [ASP] algorithm including a line search method.

Select a,A, c, α, γ, ρ, nl;
Set iteration number k = 0;
Initialize the optimization variable ζ0;
while k ≤ n do

Update ak and ck using (6); Generate ∆k [and also ∆̃k];
Calculate the gradient using (5); [Calculate and modify the Hessian
using (7b), (7c), and (8)-(10)];

Calculate ζk+1 using (4) [(7a)];
Set l = 0; while f(ζk+1) ≥ f(ζk) and l ≤ nl do

Calculate ζk+1 using (4) [(7a)];
l = l + 1;
ak = ρak;

end
if f(ζk+1) ≥ f(ζk) then

ζk+1 = ζk;
end
k = k + 1;

end

load, we propose approximating the expected performance (JT in (1)) using
only a small subset of randomly selected model realizations as follows:

JT (ζ) = ĴT (ζ) + ε, (17)

ĴT =
1

Ns

Ns∑
i=1

J(ζ,un, R(mi)), (18)

where Ns is the size of the subset (Ns � Nr), R is the set of randomly selected
realizations of uncertain parameters of the reservoir model (θ in (2)), while
R(mi) is the ith member of R, and ε denotes the approximation error. It is
important to note that the original number of realizations Nr approximates the
expected value of the objective function, and by using Ns < Nr, we increase the280

approximation level. In fact, if the original Nr realizations are sampled from the
probability distribution of the uncertain reservoir parameters to approximate
the cost function, it is reasonable to expect that another set of Ns could also
be used for the same purpose. That is, it is not necessary to approximate the
expected value of the cost function using the same set of realizations (although,285

in practice, for convenience, the same set of realizations are used). The idea
behind reduced random sampling is to use fewer samples to compute a noisier
version of the expected cost function, but randomly select those samples at each
iteration. In the extreme case where Ns = 1, this approach is equivalent to using
a randomized nominal profit (cost function). If the random sampling strategy290

is performed on a fixed set of realizations, after a certain number of iterations,
all realizations are expected to have been visited by the random selection. Since
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the SPSA algorithm uses approximate gradients, it is robust against moderate
levels of noise in the objective function [45]. The performance of the SPSA
algorithm when optimizing for a noisy objective function is investigated in our295

case studies.
For a well placement optimization procedure, where the expected perfor-

mance is computed using all of the realizations, a simple convergence criterion
is sufficient to assess the performance. In this case, the optimization procedure
terminates if the performance improvement is less than a user defined value.300

However, in the case where the performance is approximated using (18), a new
convergence criterion should be defined. In this paper, we propose to stop the
SPSA algorithm when the relative standard deviation of the objective function
improvement over a given number of iterations ls falls below a user defined value
ds. For example, we terminate the algorithm if the relative standard deviation305

of the NPV progression for 20 optimization iterations is less than 10%.
The well placement problem formulation (1) is a constrained optimization

problem. However, since SPSA is an unconstrained optimization algorithm, we
need to incorporate a constraint-handling procedure.

In this work, we implement a projection method to deal with the given well
placement constraints. For more details about different constraint handling
techniques for well placement problems see [23] and [22]. In [37], a projection
algorithm is proposed to handle inequality constraints given as explicit functions
of the parameters. The recursive form (4) is replaced by

ζk+1 = P (ζk − akĝk(ζk)), (19)

where P is the projection map that projects the candidate solution ζk+1 to the310

nearest feasible point. It is shown in [37] that the solution converges almost
surely to a Kuhn-Tucker point.

The SPSA implementation for the well placement problem under uncertainty
is summarized in Algorithm 2. Note that the ASP algorithm for the well place-
ment problem can be implemented by introducing the Hessian approximation315

as shown in Algorithm 1. Since the subset of realizations is randomly chosen at
each iteration, we need to re-evaluate the current solution for each new subset.
Otherwise, the blocking step is not valid, as the current and updated solutions
are evaluated differently. The implementation of the projection method is shown
in Algorithm 2.320

As additional comparison, we also implement a discrete version of the SPSA
algorithm that is proposed in [29]. In this type of SPSA, the step size of the
optimization line search is limited to a single grid block. At each iteration, a
random neighbor of the grid block is chosen. The NPV is evaluated for locating
a vertical well in this grid block as well as in the grid block in the opposite325

direction. The well is then moved to the grid block with the higher NPV.
It is important to note that the random selection may result in sampling bias

as some realizations may not be selected in a finite number of iterations, while
these realizations may contain significant features. Therefore, the solution may
not incorporate the effect of some realizations (due to randomness). One way330
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Algorithm 2: The SPSA algorithm for the well placement problem under
uncertainty using the projection algorithm.

Select a,A, c, α, γ, ρ, nl, ls, ds;
Set iteration number k = 0;
Initialize the optimization variable ζ0; Set subset size Ns;
while k < ls or dk ≥ ds do

Select Ns random realizations; Evaluate ĴT (ζk); Update ak and ck
using (6); Generate ∆k; Evaluate ĴT (ζk ± ck∆k) using (18);
Approximate the gradient ĝk using (5) where
f(ζk ± ck∆k) = ĴT (ζk ± ck∆k); Calculate ζk+1 using (19); Set

l = 0; while ĴT (ζk+1) ≥ ĴT (ζk) and l ≤ nl do
Calculate ζk+1 using (4); l = l + 1;
ak = ρak;

end

if ĴT (ζk+1) ≥ ĴT (ζk) then

ζk+1 = ζk; ĴT (ζk+1) = ĴT (ζk);
end
if k ≥ ls then

Calculate absolute value of the relative standard deviation of
[ĴT (ζk+1), ĴT (ζk), · · · , ĴT (ζk−ls+2)], and store it in dk+1;

end
k = k + 1;

end

to avoid sampling bias is by clustering the realizations based on a predefined
measure and ensure that at least one realization is selected from each cluster
at every iteration. There are different measures and algorithms for clustering
geologic model realizations based on their flow response predictions. In [2], a
ranking technique is suggested to cluster realizations based on the P10, P50, and335

P90 quantiles of the responses of interest. Ranking can be based on a statistical
measure defined for parameter realizations or the performance criterion (e.g.,
NPV). The ranking based on NPV may not correctly capture the performance
measure of the realizations for all possible well configuration scenarios. The
choice of a statistical measure that may be used for ranking should be considered340

carefully as some measures (e.g., oil in place) may have a poor correlation with
NPV or any other performance metric [39]. To find the similarity between
two realizations, a dissimilarity distance is defined in [39] based on streamline
simulation, which requires less computational time compared to full multi-phase
flow simulations. A kernel k-mean clustering approach is then used to cluster the345

realizations based on the dissimilarity distance. In [41], a weighted combination
of flow-based quantities and geological features of the realizations has been used
to represent the realizations and the k-mean algorithm is applied for clustering.

14



5 Case Studies

We present several numerical examples to evaluate the performance of the re-350

duced random sampling strategy and to compare different variants of the SPSA
algorithm and the PSO algorithm using projection constraint handling tech-
nique.

While PSO is a global method with differenct properties and SPSA is a lo-
cal search technique, our motivation for the comparisons is mainly regarding355

the computational efficiency. PSO has shown good performance for well place-
ment optimization. However, given its global nature, it requires hundreds of
simulation runs. Although SPSA is a local search approach in which gradients
are approximated, a reduced step-size approach can result in a large number of
iterations. Therefore, a comparison with PSO can provide a relative measure360

of computational demand of the proposed SPSA implementation. Moreover,
the well placement objective function is generally known to include several lo-
cal solutions with similar values. Therefore, it is possible for local methods to
find solutions that have objective function values that are close to the global
solution.365

The reservoir models used in our example include Model A, a deterministic
2-dimensional two-phase (oil-water) reservoir model; Model B, a 2-dimensional
two-phase model with uncertain permeability and porosity distributions; and
Model C, a 3-dimensional synthetic field model with realistic grid geometry,
porosity and permeability data.370

Model A is a reservoir discretized into a 60 × 60 2-dimensional grid. The
permeability and porosity fields for this case is a cut-off of layer 21 of the SPE
10 model [11]. Figure 1a depicts the resulting reservoir, which has a high-
permeability region that extends diagonally from the top left to bottom right
corner. The porosity distribution is shown in Figure 1b. Initial pressure and375

saturation distributions are calculated by establishing hydrostatic equilibrium.
The datum depth is equal to 1700m and the pressure at the datum depth is
set to 170barsa. The depth of the water-oil contact is 2200m. The simula-
tion model involves a two-phase oil-water flow (without including the capillary
pressure effects), running for 8 years. The remaining simulation parameters380

are summarized in Table 1. The oil and water relative permeability curves are
presented in Figure 2.

The parameters of the SPSA algorithm are initialized based on the recom-
mendation in [43] with α,γ, andA specified as 0.602, 0.101, and 100, respectively.
The line search coefficient ρ in Algorithm 2 is set to 2. We iterate on the line385

search loop three times (nl = 3). The rest of the parameters are initialized
differently in each case study.

There are extensive discussions about the tuning of the parameters of the
PSO algorithm in the literature. In this work, we follow the recommendations
in [9, 36], which are based on various trials for different benchmark problems390

(For more details see [22, 23]). The PSO algorithm is implemented using the
Generic Optimization Program (GenOpt), a software package developed by the
Lawrence Berkeley National Laboratory [50].
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Figure 1: (a) The permeability field of Model A (logarithm of permeability is
displayed). Production wells are represented as blue circles. (b) The porosity
field of Model A.

Table 1: Simulation parameters of Models A and B.

Grid block size 24m×24m×24m
Reference pressure (pi) 273barsa
Water formation volume factor at pi 1.03 rm3/sm3

Water viscosity at pi 0.31cP
Water density 1037 kg/m3

Oil formation volume factor at pi 1.74rm3/sm3

Oil viscosity at pi 0.8098cP
Oil density 786 kg/m3

Rock compressibility at 1 barsa 4.4× 10−5 (barsa)−1
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Table 2: Economic parameters.

Oil price ro 315 $/Sm3

gas price rg 3 $/Mscf
Water injection cost rwi 31.5 $/Sm3

Water production cost rwp 31.5 $/Sm3

Discount factor α 10%

The economic parameters for the NPV are given in Table 2. The cost func-
tions for Models A and B are computed by running reservoir simulations using395

the MATLAB Reservoir Simulation Toolbox (MRST), see [31]. The Eclipse
reservoir simulation software is used for calculating the cost function in Model
C.

Note that the numerical experiments are performed without including par-
allelization. This will, however, be commented towards the end of the paper.400

The first example considers the Rosenbrock function, while the remaining ex-
amples involve case studies related to the well placement optimization problem.
The Rosenbrock function is included as an initial testbench to provide easily
accessible comparisons between the three algorithms with different noise levels.

5.1 Case study 1: Rosenbrock function405

In this case study, we optimize a 20-dimensional Rosenbrock function of the
form:

f(x) =

5∑
i=1

100(x(2i)− x(2i− 1)2)2 + (1− x(2i− 1))2. (20)
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Figure 2: Relative permeability curves for the oil and water phases for Models
A and B.
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The Rosenbrock function has exactly one minimum inside a long, narrow, parabolic
shaped flat valley at x =

[
1 1 1 · · · 1

]
. Two different starting points are

considered, the first one is close to the optimum
(x0,c = [0.9 0.9 0.9 1 · · · 1]) and the other one is fairly far away from
the minimum (x0,f = [10 0.9 0.9 1 · · · 1]). Moreover, we also optimize410

a noisy version of the Rosenbrock function to illustrate the robustness of the
SPSA algorithm to noisy objective function calculations. A normal distributed
noise with zero mean and standard deviation equal to 5% of the magnitude of
the mean function value is added to the Rosenbrock function.

Given the stochastic nature of the algorithms, to draw reliable conclusions,415

for each case we perform 50 optimization experiments. Figures 3 and 4 show the
progress of the objective function versus number of function evaluations from the
starting point x0,c and x0,f , respectively. In Figure 3, when the starting point is
chosen close to the optimum, the progression of the SPSA and ASP algorithms
is faster than the PSO algorithm. However, when the starting point is chosen420

relatively far from the optimum (Figure 4), the mean curve corresponding to
the PSO algorithm exhibits a faster rate of convergence in the beginning of
the optimization. However, at later iterations PSO takes many more iterations
to pin down the exact solution. This behavior is consistent with the general
properties of global and local search methods; that is, global methods are more425

efficient in approaching the solution from distant point while they tend to be
slow in converging to the exact solution from nearby points. To mitigate the
slow progression of the PSO near the optimum, hybrid approaches that use the
PSO algorithm initially (during the exploration stage) and switch to a local
search algorithm (exploitation stage) near the solution have been suggested in430

the literature [19, 30, 32] (for more details, see [4]).
One observation from Figure 4 is that ASP converges faster than SPSA,

mainly because the elements of the solution have very different magnitudes and
ASP automatically scales them. In Figure 3, ASP converges more slowly than
SPSA. In this experiment, the optimization variables have the same magnitude435

and there is no need for a scaling matrix. However, ASP requires two-times the
number of simulation runs at each iteration to approximate the Hessian matrix.

Overall, we observe that the SPSA, ASP, and PSO algorithms in Figures
3 and 4 have similar performance in the noise-free compared to the noisy test
cases. Interestingly, in Figure (b), SPSA converges faster in the presence of440

noise.
Note that in this specific problem for which we know the global solution

and there are no local solutions in the vicinity of the global solution, initializing
the optimization closer to the global solution increases the chance of converging
to the global solution. In this example, the iterations are not converging to445

local solutions. Therefore, the statements that we make about this specific
example are indeed correct. In general, starting the optimization solution in
the neighborhood of the global solution will not guarantee convergence to the
global solution.

In Figure 5, the performance of the SPSA and ASP is shown when the level of450

noise is increased. When the level of noise is increased to 10% of the magnitude
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(a) Noise-free cost function.
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Figure 3: Minimization of the Rosenbrock function (20) starting close to the
optimum (x0,c).

of the objective function value, ASP converges with the same rate as in the case
with a noise increase of 5%, while SPSA converges to the optimum more slowly.
In the case of increasing the noise to 20%, both the SPSA and ASP algorithms
do not converge to the optimum, while the solution is still close to the optimum.455

5.2 Case study 2: Placement of a vertical well

Before presenting the results for the robust optimization, the convergence behav-
ior of PSO amd SPSA in a deterministic optimization problem that does not
involve geologic uncrtainty is explored. This case study considers well place-
ment optimization for Model A with the well configuration consisting of five460

wells. Four of these wells are vertical producers with fixed locations close to
the corners of the reservoir (these wells are shown as blue circles in Figure 1a).
The producers in this case are set to maintain a constant bottom-hole pressure
(BHP) of 90 barsa with an upper limit liquid rate of 2000Sm3/day, while the
injector is controlled with a constant BHP of 230 barsa without any rate limit.465

The fifth well is a vertical injector. In this example, we determine the optimal
location of a single vertical injector. The number of optimization variables is
equal to 2 (that is, the x and y coordinates of the well location). In the PSO
implementation, we use 16 particles and 100 generations. In the SPSA appli-
cation, we set a = 20, c = 10, and nl = 3. In this section, only a summary of470

observations is presented and details are deferred to Appendix A1.
In the following, a summary of our main observations for Case study 2 is pre-
sented (see Appendix A1 for details). The step length in the continuous SPSA
is user-defined and gradually decreases through iterations, while the step length
in the discrete SPSA is set to a single grid block. Therefore, we observe that475

the continuous SPSA outperforms the discrete SPSA algorithm. As noted be-
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Figure 4: Minimization of the Rosenbrock function (20) starting far from the
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fore, the SPSA algorithm is a local search method. Therefore, to explore the
search space globally, when using SPSA, it is recommended to either start the
optimization from different initial guesses or implement a hybrid approach. In
this case study, ASP provides slightly better performance than the other types480

of SPSA algorithms. This means that the Hessian information helps to improve
the approximation of the descent direction. Although, ASP requires two more
function evaluations per iteration compared to the SPSA algorithm. Finally,
the ASP method converges faster in terms of simulation runs than the PSO al-
gorithm, though parallelization can be used to improve the computational time485

of the PSO algorithm.

5.3 Case study 3: Placement of a horizontal well under
uncertainty

This case study considers well placement optimization of Model B. Model B is
a reservoir discretized into a 64 × 64 2-dimensional grid with Nr = 100 per-490

meability and porosity models that represent the uncertainty in the geological
model. The porosity distributions are selected to be proportional to the log-
permeability distributions. Figure 6 shows four sample log-permeability models
that exhibit distinct spatial variability. The initial water saturation and pres-
sure are equal to 0.1 and 170 barsa, respectively. The production time frame is495

18 years. The other simulation parameters are equal to those used in Model A
in Table 1.

The uncertainty in the model is represented with 100 realizations. The well
configuration consists of five wells. Four of these wells are vertical injectors with
fixed locations close to each corner of the reservoir. The fifth well is a horizontal500

producer with variable heel/toe location. Injectors I1, I2, I3, and I4 are set to
have a constant rate of 100, 200, 1300, and 600 m3/day, respectively. An upper
limit of 400 barsa is also defined for the BHP in the injectors. The producer is
controlled using reactive control with a constant liquid rate of 2200 m3/day, a
lower limit BHP of 90barsa and a maximum watercut limit of 80%. The latter505

constraint means that the producer is shut-in if its watercut exceeds the limit.
Both well length and inter-well distance constraints are implemented in this

case. The minimum and maximum well lengths are set to 200m and 600m, re-
spectively, while the minimum inter-well distance is set to 200m. The projection
method is implemented to handle the constraints. The projection method for510

the well length constraints works by moving the toe and heel apart an equal
distance along the direction of the well if the well is shorter than the minimum
length. In the case where the well is longer than the maximum well length, the
toe and heel are moved closer an equal distance along the direction of the well
[for more details see 33].515

In this example, we optimize the NPV by moving a single horizontal pro-
ducer. The number of optimization variables is equal to 4 (there are two pairs
of two variables to locate the toe and heel of the injector). We implement the
proposed Reduced Random Sampling Strategy (RRSS) in the SPSA and PSO
algorithms, using different sizes of subset Ns. Moreover, the effectiveness of the520
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Figure 6: Four sample log-permeability realizations out of 100 realizations of
Model B.
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decoder and the projection constraint-handling methods are compared for both
the PSO and SPSA algorithms.

In the implementation of the PSO algorithm, we use 25 particles and 50
generations. When the SPSA algorithm is used with the projection method,
we set a = 1467, c = 36, nl = 3, A = 100. When the objective function525

is noisy, the convergence parameters in Algorithm 2 are set to ls = 10 and
ds = 0.5%. However, in the case where all realizations are used to evaluate
a given well configuration in the SPSA algorithm, the objective function is
assumed to have no noise. We reiterate that 100 or even more realizations are
not sufficient to capture the range of variability in model parameters. However,530

for our discussion, we assume that the case with 100 realization represents a
noise-free reference case. We stop the SPSA algorithm if the improvement of
the output for a window of 20 iterations is less than 1%.

Table 3 compares the results of the PSO and SPSA algorithms. The table
shows two different strategies for selecting the subset of realization at each iter-535

ation, fixed realizations and randomly selected samples. In the reference case,
all realizations are used to evaluate the NPV objective function for a given well
configuration. In the RRSS, 5 and 16 realizations are selected randomly at each
iteration. We note that the results are averaged over 5 optimization experi-
ments, each with a different initialization. Therefore, we present the averaged540

number of simulation runs and iteration numbers.
For the reference case, the averaged expected NPV over 100 realizations ob-

tained by the PSO algorithm is approximately 2% greater than the result of the
SPSA algorithm. However, the SPSA algorithm converges to the optimum after
approximately 900 simulation runs per realizations, which is 37% less than the545

number of simulation runs per realization required by the PSO method. We also
observe from Table 3 that the standard deviation in all optimization experiments
is relatively small, which indicates that our results should be repeatable.

In Table 3, we note that, the required number of simulation runs for the
SPSA algorithm with the RRSS and Ns = 5 random realizations is 33 times550

less than the number of simulation runs used when applying the SPSA algo-
rithm with all 100 realizations. The SPSA algorithm with the RRSS converges
to an optimum with the corresponding E(NPV ) slightly higher than that ob-
tained for the SPSA with 100 realizations (note that in all cases the attained
E(NPV ) values are based on 100 realizations). For example, the RRSS with555

Ns = 16 requires 17 times less function evaluations than the required number
of simulation runs for the corresponding reference case. Comparison between
the performance of the SPSA using the RRSS and the reference case is indica-
tive of the robustness of the SPSA method. Using the RRSS yields significant
computational saving, while the optimum solution remains almost similar.560

Figure 7 shows the progression of the objective function for the SPSA algo-
rithm using the RRSS. Moreover, the progression of the corresponding averaged
NPV over 100 realizations is illustrated in the same figure. Note that for the
RRSS, the NPV evaluation for all the realizations is not required. However,
we calculate the E(NPV ) for illustration purposes. In Figure 7, we note that565

the fluctuations of the objective functions decrease as the iterations proceed
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Table 3: Comparison between the PSO and SPSA algorithms using the pro-
jection constraint-handling method and two different realization selections over
5 optimization experiments for Case study 3. E(NPV ) is the averaged of the
NPV over 100 realizations. σ(E(NPV )) is the standard deviation of the ob-
tained objective function over 5 optimization experiments.

Algorithm Selection # Rel. #Sim. #Itr. E(NPV ) σ(E(NPV ))
method (×108) (×107)

PSO Reference 100 125000 50 7.71 0.13

PSO RRSS 5 6250 50 7.64 0.27

SPSA Reference 100 90700 235 7.55 0.86

SPSA RRSS 5 2680 118 7.59 0.31

SPSA RRSS 16 5056 71 7.40 1.31

SPSA Fixed 16 2080 39 7.01 6.91

until the stopping criteria is satisfied. We also note from the same figure that
E(NPV ) may converge to different values than the objective function (e.g.,
Figures 7a-7b). The reason is that the objective function is defined as the mean
of NPV over a set of random realizations.570

Implementation of the RRSS in the PSO algorithm gives similar results as
in the SPSA algorithm. With the subset size of Ns = 5, the number of required
simulation runs reduced 20 times, while the obtained averaged NPV over 100
realizations is decreased less than 1%.

In the last rows of Table 3, 16 model realizations are selected as represen-575

tative of the parameter uncertainty by using the k-mean clustering method.
Therefore, the subset of 16 model realizations is fixed through the whole of the
optimization procedure. Comparing the results with the RRSS shows that using
the fixed subset leads to early convergence.

Remark 1: As for a rule of thumb for sample size selection, the main difficulty580

is that the minimum sample size is generally problem dependent. One approach
to determine the adequacy of the sample size is based on the magnitude of
forecast errors. For instance, one can consider a number of alternative well
configurations and study the approximate quality of the forecasts for various
sample sizes to determine an appropriate sample size. In addition, from Table 3,585

we observe that different sample sizes may result in different required iterations
for convergence, suggesting that the number of iterations may be adjusted to
account for the selected sample size.

Field oil production, field water production, and field water injection rates
for the initial and optimum well configurations are shown in Figure 8. On av-590

erage, the reservoir with the initial well configuration stops operation after 30
time steps, while the reservoir with the optimized well configuration continues
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Figure 7: The progression of the objective function of the SPSA method using
the RRSS (black lines) and the corresponding E(NPV ) over 100 realizations
(red lines) for both the decoder and projection constraint-handling techniques.

Table 4: Comparison of field fluid productions and water injections for the initial
and optimum well configurations in case study 3.

FOPT (m3) FWPT (m3) FWIT (m3) E(NPV) ($)

INT 2.3972e+06 2.3587e+06 6.4730e+06 4.7514e+08
OPT 3.5669e+06 2.4436e+06 9.012500e+6 7.6038e+08

production until 40 time steps. In Table 4, the total fluid productions and water
injections for the initial and optimum well configurations are compared. The
total oil production for the optimized case is approximately 1.5 times the cu-595

mulative production for the initial case, while the total water production is in
the same range in both cases. With the initial well configuration water injection
from the southwest and northeast wells leads to early water breakthroughs. Af-
ter optimization the water breakthrough and water production (from the south-
west and the northeast injectors) are reduced. Moreover, after optimizaiton the600

producer is placed closer to the northwest region to improve the sweep in that
area.

Figure 9 compares the location of the well through iterations of the RRSS
and the reference using SPSA. We can observe from this figure that the RRSS
converge to the same region as the reference after some iterations.605
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Figure 8: Comparison between field rates of the initial and optimum well config-
urations for Case study 3. The first and second rows show field rates of the initial
and the optimum well configuration, respectively. Rates of the realizations are
shown by gray, and the mean curves are illustrated by red.
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Figure 9: Comparison of well locations through iterations in Case study 3 when
using the SPSA with the reference and RRSS. The blue shows the RRSS solu-
tions and the red lines illustrates the reference candidate solution.
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5.4 Case study 4: Placement of a lateral well under un-
certainty

This case study considers well placement optimization for Model C.
Model C is a three phase synthetic reservoir model in which grid geometry,

and permeability and porosity distributions are taken from a North Sea field.610

The permeability and porosity distributions are modeled as uncertain param-
eters. The uncertainty in Model C is represented by 100 realizations of these
properties. Figures 10 and 11 show the permeability and porosity distributions
for one sample. The model has 14 layers, each containing 40 × 64 grid blocks
of which 27755 are active. The height of the cells range from 2 to 3m and the615

horizontal dimension of the grids is between 100m and 200m. Capillary pres-
sure effects are also neglected in this model. The relative permeability curves
for this model are shown in Figure 12. Figure 13 presents the gas formation
volume factor and the gas viscosity as functions of the gas pressure. In this
figure, the vaporized gas-oil ratios for saturated gas are equal to zero. Figure620

14 presents the oil formation volume factor and the oil viscosity as functions
of the bubble point pressure for different dissolved gas-oil ratios. The rest of
the simulation parameters are represented in Table 5. The depth of the water-
oil contact and gas-oil contact are 1705m and 500m, respectively. To calculate
the initial saturation and pressure using the equilibration facility in the Eclipse625

reservoir simulator, the pressure at datum depth of 2469m is set to 382barsa.
The initial oil saturation of the reservoir is shown in Figure 15. There is no free
gas initially.

The location of 7 vertical wells, 4 producers and 3 injectors, are fixed, while
the optimization problem is to find the optimal location of a single lateral pro-630

Figure 10: The permeability field of a sample of Model C with seven vertical
wells and one lateral producer well (OP-1).
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Figure 11: The porosity distribution of a sample of Model C.
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Figure 12: Relative permeability curves of Model C. The red curves are relative
permeability of oil versus oil saturation. Relative permeability of gas versus gas
saturation is illustrated by black. Relative permeability of water versus water
saturation is shown by blue.

Table 5: Simulation parameters for Model C.

Reference pressure (pi) 344.83barsa
Water formation volume factor at pi 1.0292 rm3/sm3

Water viscosity at pi 0.36cP
Water density 1001.1 kg/m3

Oil density 842.3 kg/m3

Gas density 0.9 kg/m3

Rock compressibility at 383 barsa 4.12× 10−5 (barsa)−1
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Figure 13: Model C: (a) The gas formation volume factor, (b) the gas viscosity.
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Figure 15: The initial oil saturation of Model C. The producers are located in
the oil zone and the injectors are located on the border between the oil and
water zones.
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Table 6: Comparison between the PSO using 100 realizations and SPSA algo-
rithms using two different realization selections over 5 optimization experiments
for Case study 4. E(NPV ) is the averaged of the NPV over 100 realizations.
σ(E(NPV )) is the standard deviation of the obtained objective function over 4
optimization experiments.

Algorithm Selection # Rel. #Sim. #Itr. E(NPV ) σ(E(NPV ))
method (×109) (×107)

PSO Reference 100 198000 55 5.86 0.5
SPSA Reference 100 22100 59 5.76 10.7
SPSA RRSS 5 1895 89 5.77 11.0

ducer (a lateral well instead of the vertical producer OP1 in Figure 15). There-
fore, the number of optimization variables is equal to 6 (there are two pairs of
three variables to locate the toe and heel of the injector). As shown in Figure 15,
the layers of the reservoir are undulated. This means each grid block in a given
layer has a different height. Therefore, for a specific planar coordinate a maxi-635

mum and minimum height is defined and vertical coordinates of any candidate
are mapped into this range. For more details about this map, see [23].

The producer is placed within the region defined by closest faults to the
initial guess. Moreover, we also include a well length constraint with a minimum
well length of 500m and a maximum of 2000m. In applying the PSO algorithm,640

we use 36 particles and 55 generations. In the implementation of the SPSA
algorithm, we set a = 6, c = 0.2, nl = 3. The stopping criteria are chosen using
the same approach to those in Case study 3. Note that results are averaged over
4 optimization experiments.

Table 6 compares the results of the PSO and SPSA algorithms using RRSS645

and the reference case. For RRSS, the size of the subset is set to 5. For the
reference case, the averaged expected NPV over 100 realizations obtained by
the PSO algorithm is slightly better than the results of the SPSA algorithm.
However, PSO requires 8 times more objective function evaluations compared to
the required simulation runs for the SPSA algorithm. In Table 6, we note that650

the required number of simulation runs for the SPSA algorithm with the RRSS
is 11 times less than the number of simulation runs when applying the SPSA
algorithm with the reference case. Moreover, the SPSA algorithm with the
RRSS converges to an optimum with the corresponding expected NPV slightly
higher than that obtained for the SPSA with the reference case.655

Figure 16 shows the optimal well configuration using different optimization
algorithms and different sampling strategies. The location of producer OP-1
converged to the same region for both algorithms. However, there is no guar-
antee that the solution of the approximate method would be the same as the
solution with large number of sample. Note that because the region correspond-660

ing to the producer OP-1 varies in the vertical direction, in Figure 16 part of
producer OP-1 appears to be located outside of the region.
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Remark 2: Note that the results may not hold, if other higher order statis-
tics of NPV are used. In general, sample mean converges to the population
mean much faster (with increasing sample sizes). However, it takes many more665

samples to have a good approximation of variance or standard deviation.
Remark 3: Regarding convergence analysis, we have indicated that the re-

quirements set forward in the original SPSA algorithm are not likely to be met
in complex problems where the objective functions involve complex nonlinear
mapping. Therefore, regardless of sample size, the convergence of the SPSA670

cannot be established. Hence, the main issues is whether a reduced (random)
sample size will lead to significant performance reduction. In this context, the
method should be viewed as an approximate approach to reduce the computa-
tional complexity of stochastic optimization. While the convergence analysis is
not applicable to our problem, the robustness of SPSA and the non-exact form675

of the calculated gradients offer an opportunity to exploit the algorithm and
develop computationally efficient (yet heuristic) methods for robust optimiza-
tion. As in other approximate methods, the solution should not be expected to
be the same. However, our results show that the solutions obtained from the
proposed approach are quite promising.680

Remark 4: In order to show the improvement related to randomizing the
sampling, we consider a simple 2-D reservoir model with 4 producers on the
corners and a single injector in the center. The reservoir has 21× 21 cells. The
NPV for all possible injector locations is calculated for 1000 different realizations
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Figure 16: Top view of the reservoir of Case study 4. The producers and
injectors are illustrated by red and blue circles, respectively. The initial guess of
the location of producer OP-1 is illustrated by blue line. The optimized locations
of producer OP-1 using the PSO and SPSA algorithms with the reference case
are illustrated by red and black lines, respectively. The optimized locations of
producer OP-1 using the SPSA algorithms with the RRSS method is illustrated
by green line.
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Figure 17: Mean of absolute value of error over all possible well configuration
as a function of sample size. The blue and red lines show the errors of mean of
NPV approximation using fixed and random sampling.

of permeability distribution. We cluster the realizations using k-mean clustering685

for different sample size. Then, for the same sample size, we compute the
mean of NPV once with fixed samples (using k-mean clustering of permeability
distributions) and once with random samples. The average relative error of the
expected NPV over all possible well configurations is compared using fixed and
random samples. Note that the results shown in Figure 17 are the average over690

10 experiments for the random sampling strategy. The random sampling has
a lower error of approximation than the fixed sample strategy does. Moreover,
one can see that the error is decreased by increasing the sample size up to a
certain size, where the reduction becomes less noticeable.
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6 Discussion and Conclusion695

In this paper, we proposed a reduced random sampling strategy for improv-
ing the computational complexity of robust well placement optimization under
geologic uncertainty. In the proposed method, at each iteration of the robust
optimization with the SPSA algorithm, a small subset of model realizations are
random selected from the full set to approximate the expected value of the objec-700

tive function. This strategy leads to significant reduction in computation while
introducing approximation in computing the objective function. The random
selection strategy is used to ensure that, after a certain number of iterations,
the full set of model realizations (i.e., geologic variability) is incorporated in the
optimization algorithm. Our experience suggests that when SPSA is adopted all705

the realizations are used multiple times throughout the iterations. Our results
also show that the use of reduced sampling with the proposed strategy tends
to have minimal impact on the performance of the optimization problem. An
important property of the SPSA algorithm that makes it a suitable candidate
for this approach is its robustness against noise in the objective function.710

We examined the effectiveness of the proposed strategy by implementing two
variants of the SPSA algorithm and comparing them with the PSO algorithm.
The motivation for comparison with PSO was primarily to provide a relative
measure of computational demand to state-of-the-art methods. to check the
computational Several numerical examples were used to evaluate the perfor-715

mance of the proposed approach, including the Rosenbrock function, a single
well placement problem for which the global solution was known through an
exhaustive search, as well as a field case study. The results from these examples
show that the proposed random selection method can lead to significant com-
putational saving while providing solutions (expected NPV values) that remain720

almost the same as in the case where all realizations are used. Comparing the
performance of different variants of the SPSA method with the PSO algorithm
indicates that the required number of simulation runs for the continuous and
adaptive variants of the SPSA algorithm are significantly less than the required
number of simulation runs for the PSO method. This is primarily because PSO725

is a global optimization algorithm that is known to be computationally very
demanding whereas the SPSA algorithm is a local search method in which the
performance is highly dependent on the initial solution. The robustness of the
SPSA algorithm against noise in the objective function is an important property
that can also contribute to the efficiency of SPSA in the reduced random sam-730

pling approach. Furthermore, we also observed that when the elements of the
solution have very different magnitude the rescaling effect of the ASP algorithm
results in a faster convergence rate than the standard SPSA algorithm.

The well placement examples that are presented in this paper consider an
infill drilling scenario for vertical and horizontal wells. If multiple wells are used,735

the dimension of the decision variable will increase proportionally. Another
important aspect is that the well controls are fixed in our example. Control
variables can significanlty increase the size of decision variables, especially when
time-depenent controls in life-cycle optimization are used. Our ongoing work is
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focused on implementing the proposed approach in high-dimensional problems740

that involve well controls and locations. It is also important to note that while
some of the realistic aspects can complicate the formulation of the original
optimization problem and result in more complex objective functions, a main
consideration in the proposed formulation (and in general robust optimization)
is the complexity of the geologic model as it controls the number of samples745

that must be used.
The use of SPSA was motivated by the robustness of this method to the

noise in the objective function, which is the case when very few samples are
used. The premise of a reduced sampling strategy, however, is that the number
of iterations should be large enough so that on average each sample is used750

a few (2-3) times in computing the objective function. In [? ], the authors
observed that a reduced sampling strategy did not produce good results in their
implementation. However, the implementation details, including the algorithm
used, number of iterations compared to the sample size used, geologic complexity
as it relates to sample size, and use of approximate covariances in computing the755

gradient in EnOpt, can affect the performance of the method, and the outcomes
reported in their study.

The results in this paper suggest that effective reduced sampling strategies
can reduce the computational burden of robust field development optimiza-
tion when geologic uncertainty is incorporated through several realizations of760

model parameters. In the examples of this paper, the objective function was
the expected value of NPV over model realizations, without including additional
statistical information (e.g., variance) in the objective function. In general, the
accuracy of the (sample) mean of a distribution is known to be less affected by
reduction in the number of realizations. Additional studies are needed to explore765

the performance of the reduced sampling method when the objective function
includes additional terms representing higher-order statistical information. Fur-
thermore, additional investigation is needed to examine the performance of the
developed approach in real applications where more complex wells, including
multiple horizontal/deviated wells, and various linear and nonlinear constraints770

are involved.

Appendix 1: Results from Case Study 2

The search space is the square defined by the four producers. We perform
an exhaustive search of all grid blocks inside this square to obtain the global
maximum of the NPV function. Figure A1 shows the resulting NPV surface775

for placing the single injector. The surface has low NPV values that extend
from north-west to south-east, corresponding to the high-perm zone in that
region. There are two zones with high NPV values in Figure A1; one to the
south and the other to the east of the reservoir. The highest NPV is equal to
5.77 × 108USD which corresponds to the injector being located in grid block780

(12,32) in the eastern region of the model. In the southern region we have a
local optimum located in grid block (33,17) with NPV equal to 5.09×108USD.
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Table A1: Case study 2: Comparison between the required number of iterations
(Itr.) and simulation runs (Sim.) for convergence of the different optimization
algorithm.

Algorithm Starting point 1 Starting point 2 Starting point 3 Starting point 4
Itr. Sim. Itr. Sim. Itr. Sim. Itr. Sim.

SPSA (Continuous) 52 260 160 800 - - 167 835

SPSA (Discrete) 130 390 422 1266 - - 207 621

ASP 25 175 78 546 109 763 99 693

PSO 96 1536 96 1536 97 1552 109 1744

Since the performance of local methods is dependent on the initial guess,
we start the optimization problem from several initial locations to have a valid
comparison between the SPSA/ASP and PSO algorithms. The different starting785

points are depicted by black dots in Figure A1 . We perform 50 optimization
experiments for each initial guess and optimization algorithms.

Figure A2 shows the progress of the mean NPV as a function of the number
of simulations over 50 optimization runs. Table A1 presents the average number
of iterations and simulation runs required by different algorithms.790

In Figure A2a, the search methods are initialized using starting point 1. Fig-
ure A3 compares the location of the well through iterations of different meth-
ods.In this case, the PSO algorithm and all types of the SPSA method converge
to the global optimum. The progression of the PSO algorithm is faster in the be-
ginning than those of the SPSA methods. However, the progression of the PSO795

0

10

20

30

40

50

60

0102030405060

×108

-2

-1

0

1

2

3

4

5

($)

1

4

2

3

Figure A1: Case study 2: Exhaustive search result of the NPV. Different starting
points for the optimization procedure are shown as black circles.
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(c) Starting point 3.
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Figure A2: Case 2: Comparison of mean NPV over 50 optimization runs be-
tween discrete SPSA, continuous SPSA, ASP, and PSO algorithms starting from
different initial guess location.
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Figure A3: Comparison of well locations through iterations in Case study 2 with
initial guess at Starting point 1.

slows down when closer to the optimum solution. It is also observed from Table
A1 that SPSA algorithms require fewer function evaluations compared with the
PSO algorithm. This can be explained by the different nature of the algorithms.
The PSO is a population-based method requiring many function evaluations to
update the positions of the particles towards the optimum, while SPSA requires800

only two objective functions to approximate the descent direction. Among the
different variants of the SPSA algorithm, the ASP algorithm requires the fewest
number of iterations and simulation runs. We also notice that the discrete ver-
sion of the SPSA algorithm converges at a slower rate than the continuous SPSA
and ASP, because it moves one grid block at each iteration.805

We can observe from Figure A3 that after 13 simulation runs candidate
solutions of different SPSA algorithms are located in the same area, while those
of the PSO is in another area. After 100 simulation runs, the continuous SPSA
and ASP converges to the global point, while the solution of the discrete SPSA is
also closer to the global optimum than the solution of PSO. After 600 simulation810

runs, all types of SPSA algorithm have converged to the global point, while the
PSO algorithm still searches. After 1800 simulation runs, PSO also converges.
Note that these locations are all from one of the optimization run, while the
NPV presented in A2 is the mean value over 50 optimization runs.

In Figures A2b, the optimization methods are initialized at starting point 2.815

All of the optimization methods converge successfully to the global optimum.
The convergence rates of the ASP, and PSO are almost similar in terms of the
number of iterations, see Table A1. However, the PSO algorithm requires 3
times more function evaluations than the ASP algorithm does. The continuous
SPSA method requires around 2 times less simulation runs than the PSO al-820

gorithm does. The discrete SPSA algorithm requires approximately 1.5 times
more function evaluations than is needed by the continuous SPSA algorithm.

We can observe from Figure A4 that after 13 simulation runs candidate
solutions of continuous SPSA and ASP are closer to the global optimum than
the solutions of discrete SPSA and PSO. After 100 simulation runs, ASP is825

only one grid block far from the optimum, the continuous SPSA is also close
to the global point. The discrete SPSA and PSO still search the search space.

39



10 20 30 40 50 60

10

20

30

40

50

60
Simulation Run 13

10 20 30 40 50 60

10

20

30

40

50

60
Simulation Run 100

10 20 30 40 50 60

10

20

30

40

50

60
Simulation Run 600

10 20 30 40 50 60

10

20

30

40

50

60
Simulation Run 1800

SPSA(Dis)

SPSA(Cont)

ASP

PSO

Global Optimum

Figure A4: Comparison of well locations through iterations in Case study 2 with
initial guess at Starting point 2.
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Figure A5: Comparison of well locations through iterations in Case study 2 with
initial guess at Starting point 3.

After 600 simulation runs, all type of SPSA almost converge to the global point,
while PSO still explore the search space. After 1800 simulation runs, PSO also
converges.830

In Figure A2c, we use starting point 3, located in the southern region. We
can observe from Figure A5 that only PSO converges to the global optimum.
The ASP algorithm converges to the local optimum, while the two other types
of the SPSA algorithms do not converge to the local optimum in some of the
experiments. The required number of simulation runs needed by ASP to con-835

verge to the local optimum is about half the number needed by PSO. We can
observe from Figure A5 that after 13 simulation runs, PSO is close to the global
solution, while all types of the SPSA are close to the local optimum. After 100
simulation runs, all algorithms explore close to the local optimum. After 600
simulation runs, the PSO algorithm is again close to the global optimum, and840

ASP is close to the local optimum, while the two types of SPSA algorithms are
still exploring the area around the local optimum. Finally, after 1800 simulation
runs the PSO algorithm converges to the global solution and ASP converges to
the local solution.

In Figure A2d, we start the search procedure from initial point 4. In this845

case, all of the algorithms converge to the global optimum. The convergence
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Figure A6: Comparison of well locations through iterations in Case study 2 with
initial guess at Starting point 4.

rates of the SPSA-based methods are approximately two times faster than the
progression of PSO in terms of the total number of simulation runs. We can
observe from Figure A6 that after 13 simulation run, all types of SPSA algorithm
are in a same area close to the initial guess while PSO explores the search850

space. After 100 simulation runs, PSO and ASP almost converge to the global
optimum, while the continuous SPSA is closer to the global optimum than the
discrete SPSA. After 600 simulation runs, all algorithms almost converge to the
global optimum. At simulation run 1800, all of the algorithms find the global
optimum.855

Finally, it is important to note that all methods include tuning parameters
that may affect the performance of the algorithms. In our examples, the tuning
parameters are either set based on trial and error or using suggested values from
the literature. The summary of our observations for Case study 2 are presented
in the text.860
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[49] Honggang Wang, David Echeverŕıa-Ciaurri, Louis J. Durlofsky, and Alberto
Cominelli. Optimal well placement under uncertainty using a retrospective
optimization framework. SPE Journal, 17(1):112–121, 2012. doi: 10.2118/
141950-PA.

[50] Michael Wetter. GenOpt, Generic Optimization Program. Simulation Re-1055

search Group, Building Technologies Department, Lawrence Berkeley Na-
tional Laboratory, Berkeley, CA 94720, 3.1.0 edition, 2011.

[51] Burak Yeten, Louis J. Durlofsky, and Khalid Aziz. Optimization of noncon-
ventional well type, location, and trajectory. SPE Journal, 8(3):200–210,
2003. doi: 10.2118/86880-PA.1060

[52] M. Zandvliet, M. Handels, G. van Essen, R. Brouwer, and J.D. Jansen.
Adjoint-based well-placement optimization under production constraints.
SPE Journal, 13(4):392–399, 2008. doi: 10.2118/105797-PA.

[53] Xun Zhu and James C. Spall. A modified second-order spsa optimization
algorithm for finite samples. International Journal of Adaptive Control and1065

Signal Processing, 16(5):397–409, 2002. doi: 10.1002/acs.715.

46


	Introduction
	Problem formulation
	spsa
	Solution approach
	Well placement optimization

	Case Studies
	Case study 1: Rosenbrock function
	Case study 2: Placement of a vertical well
	Case study 3: Placement of a horizontal well under uncertainty
	Case study 4: Placement of a lateral well under uncertainty

	Discussion and Conclusion

