
June 2008
Svein Johan Knapskog, ITEM
Christoph Birkeland, NorCERT
Lars Haukeli, NorCERT

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

PowerScan: A Framework for Dynamic
Analysis and Anti-Virus Based
Identification of Malware

Thomas Langerud
Jøran Vagnby Lillesand

Problem Description
This project will focus on aspects involving the automation of malware analysis. New malware
samples, in the form in which they are distributed, typically have a detection rate of 30%, on
average, among anti-virus products. By utilizing multiple products, and aggregating the results,
one would increase the chances of detecting and identifying the sample at hand, and get more
precise results as to what family of malware the sample belongs to. A growing number of malware
dictates the need for automation in the analysis process.

This assignment is divided into two phases, and the students should focus on the first phase
before moving on to the next.

Phase one will focus on automating surface analysis, in which the samples are scanned by anti-
virus products without being run. One way of doing this is to use multiple simulated environments,
where different anti-virus engines are installed on separate hosts, and results are aggregated in a
centralized host.

If time permits, phase two will focus on automating aspects of dynamic analysis. A first step could
build directly on the solution of phase one, by simply running the samples in environments where
anti-virus products are already operating. Malware which is not detected by the techniques of
phase one, may be detected when run. The next step would be to monitor what actions are being
performed by the malware on the system when executed.

Assignment given: 15. January 2008
Supervisor: Svein Johan Knapskog, ITEM

Abstract

This thesis describes the design and implementation of a framework, Pow-
erScan, which provides the ability to combine multiple tools in the analysis
of a malware sample. The framework utilizes XML configuration in order
to provide extendability so that new tools can be added post compilation
without significant effort. The framework deals with three major types of
malware analysis:

1. Surface scan of a sample with multiple on-demand anti-virus engines.

2. Execution of malware sample with real-time (on-access) anti-virus en-
gines running in the background.

3. Execution of malware sample with different dynamic analysis solutions
running. These tools may monitor the file system, registry, network or
other aspects of the operating systems during execution.

The reasoning behind each of these phases are:

1. Using multiple scanners increases the probability that at least one of
the vendors has created a detection signature for the given malware.

2. Executing the sample ensures that the malware code sooner or later will
be written to disk or memory. This should greatly enhance detection
rate for samples obfuscated using packers with encryption or other
techniques, as the code at some point must be deobfuscated before
execution. Additionally, on-demand scanners might use more advanced
(and resource consuming) techniques when monitoring files executed on
the system1. As for surface scanning, the odds of correctly identifying
the malware also increases when using more scanners.

3. Although several good sandbox analysis tools exist, the solution pre-
sented here allows the malware analyst to choose which analysis tools
to use - and even use different tool for analyzing the same aspect of the
execution.

1As these files definitely will infect the system if not stopped, opposed to the case when
the system is merely scanned, where files may infect the system if they are executed later
(or may already have infected the system).

i

A thorough description of both design, implementation and testing is given
in this report.

In addition to the implementation of the PowerScan framework described
above, the theory behind all involved components is presented. This in-
cludes description of the Microsoft Windows platform (which is used for
executing malware in PowerScan, and the one definitely most targeted by
malware at the time of writing), virtualization (which is used in the virtual
machines), anti-virus technology, malware hiding techniques and more. Sur-
veys of the usability of different anti-virus engines and dynamic analysis tools
in the framework have been conducted and are presented in the appendices,
together with a comprehensive user guide.

ii

Preface

The work on this thesis has been carried out at the Norwegian University
of Science and Technology during the tenth semester of the authors’ studies.
The thesis constitutes 30 ECTS per person and the work has been carried out
over a period of 20 weeks. Both authors are completing a master’s degree in
Telematics with specialization in information security under the study pro-
gram “Communication Technology” at the Norwegian University of Science
and Technology, Department of Telematics. Fields of study include com-
munication systems and networks, computer technology, services, systems
development and information security.

The issues addressed in this thesis have been suggested by the Norwegian
Computer Emergency Response Team (NorCERT), a unit resident with the
Norwegian National Security Authority (NSM) under the Department of De-
fence.

We wish to thank our supervisor Professor Svein Johan Knapskog at the
Department of Telematics, Norwegian University of Science and Technology
for his much valued assistance and guidance. We would also like to thank the
staff at NSM/NorCERT. Special thanks are given to Head of the NorCERT
department Dr. Ing. Christophe Birkeland and Senior Engineer Lars Haukli
from the Incident Handling team for their feedback on the structure and
technical details in the thesis. Thanks are also given to Chief Engineer Einar
Oftedal and Senior Engineer Simen Støvland at NorCERT for help during
the work.

Trondheim June 10th, 2008,

Jøran Vagnby Lillesand & Thomas Langerud

iii

iv

Contents

Abstract . i
Preface . iii
Figure listings . ix
Code listings . xi
Abbreviations, acronyms and definitions xiii

1 Introduction 1
1.1 Introduction . 2
1.2 Problems to be addressed . 4
1.3 Own contribution . 6
1.4 Document structure . 7
1.5 Methodology . 9
1.6 Introduction to malware concepts 10

1.6.1 Viruses . 10
1.6.2 Trojan horses . 11
1.6.3 Worms . 12
1.6.4 Rootkits . 12
1.6.5 Bots . 13

1.7 Related work . 14
1.7.1 OPSWAT Metascan 14
1.7.2 Hispasec Sistemas VirusTotal 16
1.7.3 Norman Sandbox Malware Analyzer 16
1.7.4 CWSandbox . 19
1.7.5 TTAnalyze and Anubis 20

2 Background and theory 21
2.1 Microsoft Windows architecture 22

2.1.1 The registry . 24
2.1.2 The file system . 26

v

2.1.3 Processes . 28
2.1.4 Networking . 29
2.1.5 Windows file formats 30

2.2 Virtualization . 32
2.2.1 CPU virtualization . 34
2.2.2 Memory virtualization 38
2.2.3 I/O and device virtualization 39

2.3 Hiding Virtualization . 40
2.4 Malware obfuscation . 43

2.4.1 Encrypted malware . 44
2.4.2 Oligomorphic code . 45
2.4.3 Polymorphic code . 45
2.4.4 Metamorphic code . 47
2.4.5 Behavior modification 47

2.5 Anti-virus technology . 50
2.5.1 Signature scanning - First generation scanners 51
2.5.2 Smart scanning - Second generation scanners 51
2.5.3 Algorithmic scanning 52
2.5.4 Code emulation . 52
2.5.5 Metamorphic malware detection 53
2.5.6 Heuristic analysis . 54
2.5.7 Memory scanners . 55

2.6 Malware naming and classification 56
2.6.1 CARO Virus Naming Convention 57
2.6.2 Common Malware Enumeration 59
2.6.3 The WildList Organization International 59
2.6.4 The VGrep database 60
2.6.5 Automated classification schemes 60

2.7 Sandboxing and code analysis 63
2.7.1 Post-mortem . 63
2.7.2 Static analysis . 64
2.7.3 Dynamic analysis . 64

2.8 Multiple Path Analysis . 66
2.9 Sandnets - network behavior analysis 68
2.10 API hooking . 70

3 Implementation 73
3.1 Preliminary development . 74

3.1.1 System description and requirements 74
3.1.2 Choice of high level architecture 77
3.1.3 Architecture description 80

vi

3.1.4 Pseudocode for system operations 81
3.2 Implementation description 84

3.2.1 Choice of programming language 84
3.2.2 Overall design . 85
3.2.3 Component description 87
3.2.4 Frameworks and third party code used 99
3.2.5 Operation description 103

3.3 System analysis and considerations 110
3.3.1 Requirement analysis 110
3.3.2 Functionality tests . 113
3.3.3 Requirements for added scan engines and tools 115
3.3.4 Security . 117
3.3.5 Performance . 118
3.3.6 Known weaknesses . 119

4 Conclusion 121
4.1 A look back . 122
4.2 Strengths . 123
4.3 Weaknesses . 125
4.4 Possible usages . 126
4.5 Lessons learned . 127
4.6 Further work . 128

A User Guide 133
A.1 Requirements . 134

A.1.1 Client . 134
A.1.2 Virtualization servers 134
A.1.3 Usage . 135

A.2 Environment Setup . 135
A.3 User Interface . 137

A.3.1 Graphical user interface 139
A.3.2 Command line usage 140

A.4 Malware sample scan . 141
A.5 Malware sample execution . 142
A.6 Malware sample analysis . 143
A.7 Update AV definition files . 144
A.8 Adding new anti-virus engines or tools 145
A.9 Saving console output . 146
A.10 Editing the XML configuration file 146

A.10.1 The “File” menu . 146
A.10.2 The “View” menu . 148

vii

A.10.3 The “Delete” menu . 148
A.10.4 The “Host/VM” view 148
A.10.5 The “AVE” view . 150
A.10.6 The “Tools” view . 153

A.11 Understanding the XML configuration file 153
A.12 Redirection of console output 158
A.13 Understanding the properties file 159
A.14 PowerScan files . 160
A.15 Understanding the log files . 161

B Compatibility testing of anti-virus engines 163
B.1 Introduction . 164
B.2 Anti-virus engine survey . 164
B.3 Summary . 170

C Dynamic malware analysis tool survey 173
C.1 Overview . 174
C.2 Sandbox solutions . 174
C.3 Registry monitors . 175
C.4 File system monitors . 176
C.5 Process monitors . 178
C.6 Network activity monitors . 179
C.7 Packages and tool sets . 181
C.8 System call analysis . 182
C.9 General analysis tools . 185

D Configuration file examples 187
D.1 Example XML config file . 188
D.2 PowerScan XML Schema Definition (XSD) 191
D.3 Description of PowerScan’s XML with respect to the XSD

schema . 194
D.4 Properties file example . 198

E Test case specifications 201
E.1 System test using command line interface 202
E.2 System test using graphical user interface 205
E.3 System test of the configuration editor 210

viii

List of Figures

1.1 Metascan application GUI . 15
1.2 Hispasec Sistemas VirusTotal submission interface 17
1.3 Hispasec Sistemas VirusTotal result list 18

2.1 Microsoft Windows architecture overview 23
2.2 The Windows registry . 25
2.3 Different techniques for implementing virtualization 33
2.4 Full virtualization using binary translation 36
2.5 Operating system assisted virtualization 37
2.6 Hardware assisted virtualization 38
2.7 “Scoopy” application run inside a virtual machine. 41
2.8 “Scoopy” application run outside a virtual machine. 42
2.9 Different placement of decryption code in encrypted malware . 44
2.10 Example of reordering of modules in the metamorphic virus

Badboy . 48
2.11 Part of a result output from the VxClass application 62

3.1 High-level sketch for the first (and unused) architecture. . . . 78
3.2 High-level sketch for the chosen architecture. 79
3.3 Overall package diagram of the PowerScan framework 85
3.4 Class diagram showing the entire PowerScan framework 86
3.5 Class diagram for the system package 88
3.6 Class diagram for the VMware package 93
3.7 Class diagram for the configbeans package 95
3.8 Class diagram for the configloader package 96
3.9 Class diagram for the GUI package 98
3.10 Sequence diagram showing malware execution with real-time

anti-virus software running . 105
3.11 Sequence diagram showing a threaded scan operation 107

ix

A.1 VMware Server Console status line 137
A.2 VMware Server network options 138
A.3 The PowerScan GUI main window 139
A.4 The PowerScan GUI “Help” menu 140
A.5 The PowerScan GUI “System” menu 141
A.6 Taking snapshot using VMware Server Console 145
A.7 The PowerScan GUI “Output” menu 146
A.8 The PowerScan GUI “Edit” menu 147
A.9 The PowreScan config editor main window in “Host/VM view” 147
A.10 The PowerScan GUI config editor “File” menu 149
A.11 The PowerScan GUI config editor “Delete” menu 149
A.12 The PowerScan config editor “View” menu 149
A.13 The PowerScan config editor “AVE” view 151
A.14 The PowerScan config editor “Tools” view 152

x

Code Listings

2.1 Illustration of a mutated simple XOR decryption routine of
the 1260 virus [1]. 46

3.1 Pseudocode for scan operation 81
3.2 Pseudocode for the execute malware operation 82
3.3 Pseudocode for the dynamic anlysis operation 82
3.4 Example of a JNA interface - VixInterface - with one function. 100
3.5 The AVEngineBean annotations 101
3.6 Apache Commons CLI usage example part I 102
3.7 Apache Commons CLI usage example part II 102
3.8 Apache Commons CLI usage example part III 103
A.1 The CLI help text . 140
A.2 Invocation of the PowerScan scan operation using the Com-

mand Line Interface. 142
A.3 Invocation of the PowerScan execute operation using the Com-

mand Line Interface. 142
A.4 Invocation of the PowerScan analyze operation using the Com-

mand Line Interface. 144
A.5 Invocation of the PowerScan update operation using the Com-

mand Line Interface. 144
A.6 Redirection of the update operation out using CLI. 146
A.7 Skeleton of the XML config file 153
A.8 The AV engine element of the XML config file 155
A.9 The AV log filter element of the XML config file 156
A.10 The analysis tools element of the XML config file 157
A.11 Redirection of Command Prompt output on a virtual machine 158
D.1 A sample XML configuration file 188
D.2 The W3C XML Schema definition 191
D.3 XSD PowerScan element . 194

xi

D.4 XSD VMwareHostList element 194
D.5 XSD VMwareHost element . 195
D.6 XSD VM element . 195
D.7 XSD avEngine element . 195
D.8 XSD avLogFilter element . 196
D.9 XSD avUpdateInfo element 196
D.10 XSD dynamicAnalysisTool element 197
D.11 Example PowerScan properties file 198

xii

Abbreviations, acronyms and definitions
Anti-virus Efforts made to detect and prevent spreading of malicious code.

In this definition of the term, malicious code refers to viruses, worms,
Trojans and other code written with malicious intent.

API Application Programming Interface. An interface that an operating
system, library or service provides to support requests from other com-
puter programs.

API hooking The term hooking represents a fundamental technique of get-
ting control over a particular piece of code execution. This can be
used to alter an OS’s or third party software’s behavior without hav-
ing access to the source code. The term API hooking then refers to
performing hooking on a given API.

Backdoor A malicious subroutine within a program that allows adversaries
to bypass security mechanisms without the knowledge of the users/own-
ers/administrators.

CARO Computer Anti-virus Researchers’ Organization.

CARO VNC A virus naming convention first adopted by CARO in 1991.

CLI Command Line Interface.

CME Common Malware Enumeration. A malware classification initiative
under the non-profit MITRE organization.

DDoS attack Distributed Denial of Service attack.

DLL Dynamic Linked Library. Microsoft’s implementation of the shared
library concept.

DTD Document Type Definition. Used to describe a class of XML docu-
ments. Has been superseded by the XSD standard.

Dynamic analysis In the context of malware analysis, dynamic analysis
refers to the technique of executing a suspected malware sample in
order to analyze its behavior during execution.

Emulation To make some system duplicate the functionality of another
system in such a manner that it appears to behave identical to the
original one.

xiii

Exploit A rogue code action that takes advantage of a security flaw in a
particular system or language.

Guest OS The operating system running on a virtual machine.

GUI Graphical User Interface.

Host OS The operating system running on the computer which hosts a
hypervisor and virtual machines.

Hypervisor A hypervisor is a virtualization platform that makes it pos-
sible to run different guest operating systems on top of it. A native
hypervisor (type 1) runs directly on top of the hardware, while a hosted
hypervisor (type 2) needs a host operating system to run on top of.

IAT Import Address Table. A section of the Portable Executable file format,
which is used as a lookup table when the executable code is calling an
imported API function.

IDT Interrupt Descriptor Table. A data structure in the x86 architecture
that describes correct responses to hardware interrupts, software inter-
rupts and processor exceptions.

In the wild A malware sample that is said to be “in the wild” if a malware
sample is spreading as a result of normal day-to-day operations on and
between the computers of unsuspecting users.

JNA Java Native Access. A library used for accessing native libraries from
Java.

JNI Java Native Interface. A programming framework used allowing Java
code to call and be called by by native applications.

LDT Local Descriptor Table. A memory table used in the x86 processor
architecture.

Malware Malware is short for malicious software. The term is used to refer
to any software designed to cause damage to computing unit or network
of computing units without the owners consent.

Malware family Malware is usually grouped into families based on similar-
ities of its code. The fact that a new malware is classified into a partic-
ular known family conveys that some of the detection and disinfection
methods for the other members of that family might be applicable to
the new malware.

xiv

Malware variant Part of malware naming used to distinguish between dif-
ferent malware programs that belong to the same family.

Malware sample A single file infected with malicious code.

NE New Executable. The predecessor of the Portable Executable file for-
mat. Highly outdated, last used in 16-bit Windows versions.

On-demand scanner The part of an anti-virus engine that can be in-
structed to scan single files or system objects at scheduled times or
as initiated by the user.

Packer An executable packer is a tool used to compress an executable file,
which combines the compressed data and the unpacker code into one
file. In malware context, a packer is often used to avoid the malicious
code being detected by signature scanners. The packing process may
also be combined with encryption, in which both the unpacking and
decryption code must be included in the final file.

PE Portable Executable. A file format used for among other executables and
DLLs in 32bit and 64bit versions of the Microsoft Windows operating
system.

Platform A computer platform is a hardware architecture and/or software
framework which allows other software to run.

Real-time scanner Also known as on-access scanner. The part of an anti-
virus engine that provides automatic malware protection by scanning
files and system objects as they are being used.

Static analysis In the context of malware analysis, static analysis refers to
manual analysis of the malware code in order to understand its full
behavior. In most cases, the malware code will be on the assembly
level. This is by far the most time consuming analysis technique.

stderr Standard Error, a preconnected output channel between a program
and the environment from which it is executed (typically the command
prompt or a *nix shell). Used as default output location for error
messages.

stdout Standard Out, a preconnected output channel between a program
and the environment from which it is executed (typically the command
prompt or a *nix shell). Used as default output location for non-error
messages.

xv

Surface analysis Refers to scanning the surface of a malware sample, look-
ing for a given signature which identifies the sample. This is the most
simple analysis technique and is employed by most anti-virus scanners.

Virtualization To create a virtual version of a computing resource. In this
context, it is used to allow several instances of an operating system to
run on a single physical computer.

VMM Virtual Machine Monitor. The portion of a Hypervisor responsible
for managing a single virtual machine.

XML Extensible Markup Language. A specification to create custom mark-
up languages to represent information in a human readable manner.

XSD W3C XML Schema Definition. XSD is based on XML and is a lan-
guage used to describe a class of XML documents.

Zero-day/0-day virus A previously unknown virus or malware for which
no specific anti-virus signatures are available.

xvi

Chapter 1
Introduction

“The man who moves a mountain begins by carrying away small
stones.”

- Confucius

2 1.1. INTRODUCTION

1.1 Introduction

Malicious code is a growing problem and reason for concern for every person,
business or institution utilizing computer systems. Malicious code attacks
can potentially do a lot of damage to computer systems, and in the worst
case render business critical systems unavailable. This does not only have
short term consequences in terms of loss of revenue during downtime and cost
to restore a system to working state, but could also have longer term impacts
on reputation which in turn could lead to loss of contracts, impact on stock
prices and other indirect consequences. Critical systems do not only include
systems directly interfacing customers, but also systems used by employees
during conduct of business. As more and more systems are connected to
the Internet, adversaries are given ever more possibilities to perform attacks.
Disruption of business is only one of the consequences following an attack.
Others include loss of confidential business information and sensitive personal
information about customers or employees.

A clear trend in the recent years is that malware creation has become a more
professionalized business. Up to recently, most malware was written by indi-
viduals with nothing or little to gain except status in relatively closed circles.
Although these individuals were often knowledgeable enough, many lacked
the skill and motivation1 required to create truly disastrous malware. Now,
with the dawn of malware released with political and economical intent com-
bined with the ever growing connectivity of the world wide web, both the
motivation and the possibility for creating wide-spreading malware is cer-
tainly present. This also means that one can expect that the whole malware
creation scene will be more obfuscated than before2. There has also been
example of both malware and networks of computers controlled by malware
(so-called botnets) being put out for sale3. Another example of the increasing
professionalism of malware creation and cybercrime in general is the reports
of North Korea setting up a “hacker school”4. Also, several reports indicate
that both malware creation5 and infections are on a steady rise.

1Not every underground malware creator is interested of having law enforcement agen-
cies world wide turn their attention towards her or him.

2Earlier it was not uncommon for malware source code to be published on public sites.
3See for example the article “Malware moves up, becomes commercial” at http://

arstechnica.com/news.ars/post/20060225-6264.html.
4See for example http://www.wired.com/politics/law/news/2003/06/59043.
5See for example F-Secure’s press release “ F-Secure Reports Amount of Malware

Grew by 100% during 2007” at http://www.f-secure.com/f-secure/pressroom/news/
fs_news_20071204_1_eng.html.

http://arstechnica.com/news.ars/post/20060225-6264.html.
http://arstechnica.com/news.ars/post/20060225-6264.html.
http://www.wired.com/politics/law/news/2003/06/59043
http://www.f-secure.com/f-secure/pressroom/news/fs_news_20071204_1_eng.html
http://www.f-secure.com/f-secure/pressroom/news/fs_news_20071204_1_eng.html

CHAPTER 1. INTRODUCTION 3

All in all, there is every reason to expect that malware will continue to
be an as big - if not bigger - problem in the future compared to today.
Therefore it is increasingly important to come up with new and efficient ways
to identify, analyze and classify malware. This thesis - and implementation
- attempts to contribute toward making classification and identification of
malware simpler and more accurate by providing a framework for effortlessly
combining multiple anti-virus engines and analysis tools and techniques.

4 1.2. PROBLEMS TO BE ADDRESSED

1.2 Problems to be addressed

When a new piece of malware is detected, it is desirable to analyze the sam-
ple as quickly and easily as possible to determine if it is a minor variation
of an already known malware, or if it is something new. It is also desirable
to analyze the behavior of malware as quickly as possible to be able to con-
struct countermeasures or take mitigating actions. The problem description
suggested in cooperation with NorCERT is the following:

This project will focus on aspects involving the automation of
malware analysis. New malware samples, in the form in which
they are distributed, typically have a detection rate of 30%, on
average, among anti-virus products. By utilizing multiple prod-
ucts, and aggregating the results, one would increase the chances
of detecting and identifying the sample at hand, and get more
precise results as to what family of malware the sample belongs
to. A growing number of malware dictates the need for automa-
tion in the analysis process.
This assignment is divided into two phases, and the students
should focus on the first phase before moving on to the next.
Phase one will focus on automating surface analysis, in which the
samples are scanned by anti-virus products without being run.
One way of doing this is to use multiple simulated environments,
where different anti-virus engines are installed on separate hosts,
and results are aggregated in a centralized host.
If time permits, phase two will focus on automating aspects of
dynamic analysis. A first step could build directly on the solution
of phase one, by simply running the samples in environments
where anti-virus products are already operating. Malware which
is not detected by the techniques of phase one, may be detected
when run. The next step would be to monitor what actions are
being performed by the malware on the system when executed.

As malware is continuously evolving and malware creators still come up with
new concepts, the proposed design will function as a framework rather than
an actual implementation of a set of tools. While an implementation of a set
of tools may quickly go out of fashion as new threats evolve, a framework
should (hopefully) be usable in its current form for a longer period of time.

CHAPTER 1. INTRODUCTION 5

This is also important as it is unlikely that any of the authors will be able
to provide support and updates of the implementation after its completion.

6 1.3. OWN CONTRIBUTION

1.3 Own contribution

The main contribution given by this thesis is the implementation of an ex-
tensible and configurable system able to run various anti-virus engines and
analysis tools and aggregate the results from these. Additionally, a thorough
discussion of the implementation is given, highlighting all central compo-
nents of the implementation. A significant number of tools, both anti-virus
engines and dynamic analysis tools, have also been investigated for their
usability with the solution offered here.

As can be seen from the related work presented in section 1.7, parts of what
is achieved in the framework presented here has been done already. However,
there are some aspects that separate PowerScan from existing solutions:

• PowerScan executes the malware sample with real-time anti-virus so-
lutions running in the background. This assures that the code is exe-
cuted and that the malicious code of the malware is decrypted (if it is
encrypted in the first place) and written either to memory or disk. Ad-
ditionally, this increases the chance that heuristic detection and other
similar techniques are utilized. This will be discussed further later in
this report.

• PowerScan is user extensible, meaning that it does not depend on au-
thor support for adding support for new tools and scan engines. This
also means that when new tools are released in the future, it is pos-
sible to add them to the PowerScan framework. It also means that a
malware analyst may set up an automated analysis environment based
on his or her favorite tools.

These elements will be discussed in detail later in the report.

CHAPTER 1. INTRODUCTION 7

1.4 Document structure

As this report consists of both a theoretical and practical section, it can
read in different ways, depending on the intent of the reader. If one is
interested in theory regarding automated malware identification, analysis
and classification on the Win 32 platform in general and Windows XP in
particular, the theory/background chapter will prove a good starting point.
For technical details about the implementation of the PowerScan framework,
the implementation chapter should be read and so on.

The main sections of this report are:

Chapter 1 - this chapter - contains some customary elements such as an
introduction to the problem domain, placement of this work in relation
to others and a description of the used methodology. Additionally, an
introduction to central malware concepts/types is given.

Chapter 2 gives an introduction to the different technologies/theory that
are relevant to the implementation described here. This includes an
introduction to the Win 32 platform, virtualization and problems with
its usage in malware analysis, anti-virus technology, malware techniques
for avoiding detection and so on. In general, it has been sought to
describe any theoretical area directly relevant to the implementation.

Chapter 3 describes the technical details regarding the implementation in
this thesis. It is further divided into three main sections, which deals
with what was done before, during and after the implementation respec-
tively. The first of these sections deals with planning of the implemen-
tation, such as requirement analysis, choice of high-level architecture
and programming language and so on. The second section deals with
how the implementation was done, and consists of package diagrams,
class diagrams and so on. Textual descriptions of all packages and most
classes are also given. The third and last section deals with evaluation
of the implementation. This includes an analysis of which requirements
were met, some testing, trade-offs and other simple analysis. Addition-
ally, known weaknesses of the implementation are described.

Chapter 4 contains a conclusion of the work described here. This includes
a summary of strengths and weaknesses of the implementation, sugges-
tions for suitable usages of PowerScan and lessons learned. Addition-
ally, some suggestions for further work are given.

8 1.4. DOCUMENT STRUCTURE

Additionally, the following appendices are included:

Appendix A describes how to set up and use the PowerScan framework.
This section can be used without reading the rest of the report.

Appendix B performs a survey of a significant number of anti-virus engines
with respect to usage in the PowerScan framework.

Appendix C performs a survey of a significant number of dynamic analysis
tools with respect to usage in the PowerScan framework.

Appendix D contains examples of configuration files used with the Power-
Scan framework.

Appendix E contains functional test documents for PowerScan.

CHAPTER 1. INTRODUCTION 9

1.5 Methodology

This section describes the methodology used during this thesis.

As the time span for writing this thesis is limited, some trade-offs must be
made. The optimal methodology would be to identify the research front,
assess the existing solutions and technology, then review all the components
that may be used in the implementation before finally starting the the actual
implementation work. This is not practically doable in the given time frame,
so a more pragmatic approach must be used. After an intensive initial re-
search period, a reasonable overview of the research front should be obtained,
state-of-the-art existing tools briefly analyzed and a handful of fundamen-
tally different ways of implementing the system identified6. Then, based on
this research, some initial choices can be made, so that the design and im-
plementation of the software solution can start immediately. This way, the
software development can run in parallel with theoretical investigations of
the components involved. This means that not all discovered weaknesses will
necessarily be covered in the implementation, but they will still be described
in the report.

The software development chosen is an agile-like approach, with focus on
building a core system first, and then expanding it iteratively by adding the
most important features first. Being an academic work, however, more em-
phasis is put on documentation than is usually the case in agile development.
Design artifacts to be used include high-level architecture overview, pseudo
code, package diagrams, class diagrams, sequence charts and test cases. For
more information about the usage of documentation, see chapter 3.

6Fundamentally different meaning so different that the decision would have to be taken
from “day 1” of implementation/design.

10 1.6. INTRODUCTION TO MALWARE CONCEPTS

1.6 Introduction to malware concepts

This section introduces some common malware terms, and points out features
that are specific to different kinds of malware. Instead of listing every single
type of malware (where the distinction often lies in what they do - their
purpose, such as is the case with dialers, spyware, adware and so on), the
focus is on giving an introduction to the different ways malware might work.
In this case, “work” refers to the fundamental way the malware functions
and propagates, without focusing too much on the finer details of its intent.
Here, malware is defined to be software which has malicious intent, meaning
that the definition focuses on the intent of the programmer. This means
that software which has bugs that can have harmful consequences is not
considered to be malware under this definition.

Note that in reality, the different categories are mostly pragmatic; actual
malware may overlap and display characteristics of several categories. For
example, a virus can display worm-like characteristics by attaching itself to
outgoing mails, while it still has all the normal characteristics of a virus.
Similarly, a Trojan may display rootkit traits when trying to conceal itself
from both the system itself and the user of a system. Hence, the following
characteristics are just characteristics and not mutual exclusive classifica-
tions.

1.6.1 Viruses

The earliest recorded use of the term “computer virus” was by Frederick
Cohen in 1984. His definition of a computer virus was a formal mathematical
mode, which will not be discussed in any further detail here. This model led
to a more informal definition, which is simple and easy to comprehend: “A
virus is a program that is able to infect other programs by modifying them to
include a possibly evolved copy of itself ” [1].

The main feature of computer viruses is that they spread from file-to-file or
file-to-sector on the machines they infect. Spreading between different com-
puters is typically done by infected files being copied and executed, either
with intent of an active attacker or unwittingly by an infected user. Other
spreading mechanisms can be by using characteristics of other types of mal-
ware, such as network spreading worms. Some computer viruses have what is
called a malicious payload, which is code that execute commands on comput-

CHAPTER 1. INTRODUCTION 11

ers such as deleting or corrupting files, disabling computer security software
or performing other malicious deeds [2]. Note that the virus does not neces-
sarily need to have a malicious payload, although in reality, they often have.
A virus usually modifies a host file or boot area, often with a complete copy
of the malicious code program [3]. This is, however, somewhat changed with
the introduction of more advanced techniques such as multi-staged attacks.
Multi-staged attacks is a term used to describe viruses that does not carry
the entire malicious code in its payload, but instead downloads the required
code from a web server or another resource when is has successfully spread
to a new victim.

Viruses typically consist of some common components. The first is a replica-
tion mechanism that allows the virus to find new potential victims and then
replicate itself onto that victim via some transport mechanism. This can for
example could be binary executables or office documents containing macros.
The second component is some sort of trigger mechanism that determines if
and when the malicious code should be run. Trigger events can be date and
time, presence of specific files, documents or availability of network access.
Trigger events could also be the presence of some other malware, such as a
back door, or a known weakness. Similarly, events and objects could also be
used to determine that a virus should not be triggered, such as the existence
of specific protection mechanisms, patches or even the presence of an analy-
sis environments. Finally the virus contains the malicious payload, or some
code to acquire the missing parts of the virus from a remote location.

Note that plain viruses are becoming less and less common. Most wide-
spread malware today use some Internet-based vector, such as for example
remote exploits or e-mail attachments.

1.6.2 Trojan horses

The term Trojan horse is in the computer security context used to describe
malicious code that allows its creators to execute commands on the infected
computer [2], often by opening network ports which allows the attacker to
control the machine remotely. A Trojan is a piece of code which tries to hide
its real purpose from the user. This is vital, as the Trojan often relies on a user
executing the program that the malicious code is hidden within. Trojans are,
opposed to viruses and worms, non-replicating. A Trojan does not necessarily
modify or infect other program files, but may install additional programs [3].
The motivation of hiding the malicious code within an apparently legitimate

12 1.6. INTRODUCTION TO MALWARE CONCEPTS

program is to trick the user into executing it and to hide its presence. Trojans
can be further divided into two subcategories; pure Trojan programs created
with the sole purpose of introducing the malicious code and Trojans hidden
within other programs. The latter can for example be distributed using
open-source applications, as attackers can download the original source code,
modify it to install the Trojan, compile it and then publish it as desired [1].

1.6.3 Worms

Worms are self-contained self-spreading malicious programs. A worm uses
its own program code to spread, and does (usually) not require any user
interaction. A worm might attach itself to a piece of outgoing email or use
a file transfer command between trusted systems. One way to discriminate
between worms and Trojans is that Trojans try to masquerade as an innocent
piece of program code whilst worms try to act invisibly in the system. While
a Trojan often attempts to trick the user into executing the file containing the
infection, a worm will often attempt to get in the “back door,” by exploiting
some bug or flaw in installed software. Worms do not, as opposed to viruses,
require a host program or document to infect, but is self-contained. As some
worms also employ file infection techniques, it is evident that the distinction
between viruses and worms is not always clear. Worms can be thought of as
a special subclass of viruses with main focus on spreading over networks [1].

1.6.4 Rootkits

A rootkit is a set of programs or code that allows a permanent, undetectable
presence on a computer. The main task of the rootkit is most often to
provide some unauthorized user access to perform operations as the root user
(or equivalent). Most of the tricks and techniques employed by a rootkit
are designed to hide code and data on a system. Rootkits comes in two
major variants; user mode rootkits that do not employ kernel modifications
but instead rely upon user-level services and kernel rootkits that employ
modifications to the OS kernel itself [4]. Kernel rootkits have a better chance
of concealing their presence, as user mode rootkits often can be detected by
kernel mode defense mechanisms [1]. A rootkit generally does not reproduce
itself automatically, but rather seeks to hide itself on the computer where it
is installed. This is a distinction from more traditional forms of malware,
such as viruses and worms, which often/always actively seek to reproduce

CHAPTER 1. INTRODUCTION 13

themselves. In the real world, rootkits are usually combined with other types
of malware, as a technique used to hide these once a system is infected.

1.6.5 Bots

The term bot, as used to characterize malware, comes from the word robot.
What is characteristic about bot malware is that it infects a computer, and
does nothing without being given orders. Typically, a bot malware may, once
it has been installed on the target, establish a connection to a web server,
FTP server or IRC server and then wait for orders by the bot master. Bots
obeying the same bot master are characterized as a botnet. Botnets are often
used for malicious deeds such as coordinated DDoS attacks, sending spam or
hosting phishing web sites. Botnets can consist of thousands of computers,
and capacity on botnets have been reported to be for rent on underground
markets.

14 1.7. RELATED WORK

1.7 Related work

This section describes software with similar functionality to that offered by
PowerScan. In general, these other solutions are more specialized and less
extendable. Typically, each solution presented below aims a solving a small
subset within malware identification and classification. In the cases where
the solutions are extendable, the authors are responsible for adding the extra
functionality, making the users dependent on the authors for providing future
updates.

1.7.1 OPSWAT Metascan

Metascan7 is a solution made by OPSWAT that functions as a common
front end for multiple anti virus engines. The program is able to scan files,
archives and data streams. The output of the program is a list of results from
the various AV engine with the suggested classification. The program also
includes functionality to trigger the update of signature files for all engines
simultaneously. The program includes queuing functionality so that multiple
files can be scanned in sequence.

The current release of Metascan includes the following anti-virus engines by
default:

• Norman Scan Engine

• MicroWorld scanning engine

• Eset scanning engine

• ClamAV

• eTrust Engine

• VirusBuster EDK

• F-Secure Anti-Virus Client Security

The Metascan program does not have the ability to perform any more ad-
vanced analysis than pure surface scan.

7Metascan, File Scanning API for Symantec/Norton, McAfee, Trend Micro, AVG -
http://www.opswat.com/metascan.shtml.

http://www.opswat.com/metascan.shtml

CHAPTER 1. INTRODUCTION 15

Figure 1.1: Metascan application GUI

16 1.7. RELATED WORK

In addition to the GUI front end, shown in figure 1.1, Metacan has an API
that allows for automation and integration with other applications. The
libraries are written in C++.

1.7.2 Hispasec Sistemas VirusTotal

Hipsasec Sistemas VirusTotal8 is a free online solution which performs on-
demand scan of submitted file samples with an impressive number of anti-
virus engines; at the time of writing 32 different scanners are used for sub-
mitted samples.

VirusTotal can be invoked using e-mail or a web-based interface, shown in
figure 1.2. The result is then presented as a list of the results reported by
the different engines, shown in figure 1.3.

VirusTotal does not offer any advanced capabilities other than simple surface
scan with the included engines; no dynamic analysis or sandboxed execution
of the files is performed.

1.7.3 Norman Sandbox Malware Analyzer

Norman Sandbox Malware Analyzer9 is a commercial product aimed at sim-
plifying dynamic analysis of malware in executable files. The product reports
back on

• Assumed malware category.

• Changes to the file system.

• Changes to registry.

• Network service usage, URLs and IRC servers contacted.

• Compression and executable type of the analyzed file.

8VirusTotal - Free Online Virus and Malware scan - http://www.virustotal.com/.
9Sandbox Malware Analyzer - http://www.norman.com/microsites/

malwareanalyzer/Products/analyzer.

http://www.virustotal.com/
http://www.norman.com/microsites/malwareanalyzer/Products/analyzer
http://www.norman.com/microsites/malwareanalyzer/Products/analyzer

CHAPTER 1. INTRODUCTION 17

Figure 1.2: Hispasec Sistemas VirusTotal web-based interface.

18 1.7. RELATED WORK

Figure 1.3: Hispasec Sistemas VirusTotal web-based interface.

CHAPTER 1. INTRODUCTION 19

The application can also create a log of API usage and give the analyst access
to the altered files from the Norman Sandbox Malware Analyzer virtual hard
drive.

The file that is to be analyzed is executed within a confined environment
which emulates a full computer with hardware access, network functionality,
file system and registry. However, no instructions from within the sandbox
are actually executed in the host system CPU.

Norman Sandbox Malware Analyzer also comes with a Pro version. This
application include the same sandbox environment as described above, but
also includes tools do perform real-time inspection of Win32 PE formatted
executable files and examine instructions at arbitrary memory addresses, cre-
ated threads and their status and the content of memory areas. It addition,
the Pro version include the ability to set breakpoints in the memory to halt
execution, and a Live Internet Communicator module that enables analysis
of content retrieved from the Internet.

1.7.4 CWSandbox

[5] presents a sandbox solution, CWSandbox, for the analysis of Win32
programs. CWSandbox employs dynamic analysis using API hooking and
DLL injection to hide its presence from the malware. It monitors system
calls to be able to report on what operations the malware is performing in
the operating environment, such as

• File accesses and changes.

• Changes to the Windows registry.

• Loaded DLLs.

• Virtual memory addresses accessed.

• Created processes.

• Network traffic; both destination and contents.

• Accesses to kernel services and device drivers.

20 1.7. RELATED WORK

The CWSandbox application consists of an executable that runs the sandbox
environment and a DLL file that is hooked into the target program. The
DLL is responsible for examining the API call parameters, calls the original
function and examines the return value. The DLL then reports back to
the sandbox using inter-process communication. The sandbox application
generates the XML formatted result report.

1.7.5 TTAnalyze and Anubis

TTAnalyze, presented in [6], is another tool made to perform dynamic analy-
sis of malware. It is constructed to analyze Win32 PE formatted executables,
and is able to monitor both Windows WIN32 API calls and native kernel calls
(these are explained later in this thesis). TTAnalyze focuses on being un-
detectable for the malware that is being analyzed, in order to prevent the
sample from modifying its behavior during analysis. Some of the techniques
utilized for this are usage of emulation software, Qemu, instead of a virtual
machine, registry and context switch monitoring instead of API hooking and
so on.

Support for the actual TTAnalyze implementation has now been discontin-
ued, to be replaced by its successor project Anubis10, which appears to be
based on the same principles. Anubis claims to support the following support
on their webpage11:

• Analysis of Registry Activities.

• Analysis of File Activities.

• Analysis of Process Acitivites.

• Analysis of Windows Services Activities.

• Analysis of Network Activities.

• Native API Aware Analysis.

• Unobtrusive analysis.

• Complete View of the PC System.

10Anubis: Analyzing unknown binaries - http://analysis.seclab.tuwien.ac.at/.
11Source: http://analysis.seclab.tuwien.ac.at/features.php. The page also

contains a comparison of Anubis, Norman Sandbox and CWSandbox.

http://analysis.seclab.tuwien.ac.at/
http://analysis.seclab.tuwien.ac.at/features.php

Chapter 2
Background and theory

“Victorious warriors win first and then go to war, while defeated
warriors go to war first and then seek to win.”

- Sun-Tzu

22 2.1. MICROSOFT WINDOWS ARCHITECTURE

2.1 Microsoft Windows architecture

The by far most widespread OS today is the 32-bit Windows platform1. For
this reason, most malware is directed at this architecture. To be able to ana-
lyze what actions a given malware sample performs, it is useful to have some
knowledge about the platform on which it is running. This section gives an
introduction to the Windows 32-bit architecture, including the most impor-
tant APIs, which are essential to understand in order to analyze malware
behavior and interaction with the OS. This introduction to the APIs aims
to give an understanding of the principles used by dynamic analysis tools on
the Win32 platform, where an important technique is hooking of the relevant
OS APIs. The concept of hooking is introduced in section 2.10. The material
presented here is mostly gathered from the Microsoft Developer Network2.

Generally, an Application Programming Interface (API) is a means for an
operating system, library or other component to expose its services to other
computer programs. The Win32 API gives applications the possibility to ex-
ecute services offered by the operative system, through a collection of system
calls made available to user mode applications. The core of the Windows
32-bit architecture is made up of a number of DLL files, each offering a set of
services. The set of DLL files called the Win32 API makes up the core sys-
tem which is the commonly used (and intended) interface toward the kernel.
These DLL files include3:

kernel32.dll handles processes, threads and file systems.

user32.dll contains most of the user interface functionality.

gdi32.dll contains most of the functionality for drawing graphics.

advapi32.dll contains registry and security related functions, service man-
agement and system start/stop/restart.

wininet.dll contains functionality for offering network and Internet related
services and can be used to for example managing FTP and HTTP
sessions.

1See for example w3schools’ statistics at http://www.w3schools.com/browsers/
browsers_os.asp.

2Especially from web pages starting at Win32 and COM Development - http://msdn.
microsoft.com/en-us/library/aa139672.aspx.

3From Microsoft TechNet: Windows Architecture - http://www.microsoft.com/
technet/archive/ntwrkstn/evaluate/featfunc/winarch.mspx.

http://www.w3schools.com/browsers/browsers_os.asp
http://www.w3schools.com/browsers/browsers_os.asp
http://msdn.microsoft.com/en-us/library/aa139672.aspx
http://msdn.microsoft.com/en-us/library/aa139672.aspx
http://www.microsoft.com/technet/archive/ntwrkstn/evaluate/featfunc/winarch.mspx
http://www.microsoft.com/technet/archive/ntwrkstn/evaluate/featfunc/winarch.mspx

CHAPTER 2. BACKGROUND AND THEORY 23

Figure 2.1: Microsoft Windows architecture overview, adapted from [7].

These libraries offer services by making calls to the kernel library ntdll.dll. It
is also possible to perform direct calls to ntdll.dll itself, although it is largely
undocumented4. The lack of documentation makes the ntdll.dll library espe-
cially interesting for malware authors, as these undocumented calls may be
exploited to avoid detection and perform other malicious operations. This
bypassing of the intended API and an overview of the Microsoft Windows
architecture is shown in figure 2.1.

Other important files include comdlg32.dll (Common Dialog Box lib), com-
ctl32.dll (Common Control lib) and shlwapi.dll (Windows shell).

By monitoring functions exposed by these APIs, it is possible to analyze in-
teractions between an application and the operating system. The following
sections look into some important system function calls that may be used to
influence and use the registry, file system, processes and network interface re-

4At least from an official point of view - in practice, many of the functions offered have
been attempted documented by the community.

24 2.1. MICROSOFT WINDOWS ARCHITECTURE

spectively. It is worth noticing that the API is not identical across Windows
NT, 2000 and XP. Functions might have the same name, but could possi-
bly return other values or require different arguments [3]. Some operating
systems support the Win32 API without implementing all the functionality.
An example of this is the Windows CE OS, developed for use on PDAs,
which supports both the Win32 API and the PE file format, but still lacks
implementation of a significant number of system calls. For this reason, some
malware will only function on certain Win32 OS versions. In malware naming
conventions, this is indicated by prefixing the names of malware by Win95,
WinNT and so on. The Win32 API is (at least) found the Windows 95, 98,
ME, NT, 2000, XP, 2003, CE and Vista versions. As 64 bit architectures
are introduced, there is also a new API collection called Win64 entering the
field. This should however not introduce any major changes with respect to
malware analysis.

The following sections present several critical parts of the Win32 API and for
each of them a number of especially relevant function calls which should be
monitored when analyzing malware. For more information about techniques
for monitoring function calls, refer to the introduction on API hooking in
section 2.10. Lastly, an introduction to windows file formats is given.

2.1.1 The registry

The Windows registry is a database native to Windows used by the OS and
other applications to store configuration data5, as an alternative to using
individual .ini configuration files. This opportunity is used by almost ev-
ery Windows application [3]. The Windows 32 registry is organized as 5
trees located under a common “My Computer” element, as shown in figure
2.2. Each node in a tree is called a key, and a key might have sub-keys
and data entries associated with it. A hive is a group of keys and data en-
tries, starting at a predefined node. A hive is stored in its own file, located
in the %SYSTEMROOT%\system32\config folder, except the files for the hive
HKEY_CURRENT_USER which is located in %SYSTEMROOT%\Profile\$¬
username. Among the functions using the registry is the Windows startup
feature; applications wishing to be executed at every boot need to write
their path into one of several possible keys. Another central feature using
the registry is file type association, which decides which application is to be

5Microsoft Developer Network: Registry (Windows) - http://msdn2.microsoft.com/
en-us/library/ms724871(VS.85).aspx.

http://msdn2.microsoft.com/en-us/library/ms724871(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/ms724871(VS.85).aspx

CHAPTER 2. BACKGROUND AND THEORY 25

Figure 2.2: Screenshot of the Windows registry, as presented in the Microsoft
Registry Editor application.

launched for files with a given extension. These are typical features which
malware may exploit in order become resident on an infected machine and
modify its behavior.

The Win32 hives6 can be seen in the following table:
Hive Contents
HKEY_CURRENT_CONFIG Info about current HW profile
HKEY_CURRENT_USER Env. variables, system and application preferences.
HKEY_LOCAL_MACHINE\SAM Security Access Manager. Virtual hive that contains security infor-

mation, user permissions and passwords.
HKEY_LOCAL_MACHINE\SECURITY Includes SAM as a subkey. Dedicated to the security of the computer.
HKEY_LOCAL_MACHINE\SOFTWARE Contains keys written by applications installed on the system.
HKEY_LOCAL_MACHINE\SYSTEM Information about system hardware drivers and services.
HKEY_USERS\.DEFAULT Default configuration for new users
HKEY_LOCAL_MACHINE\HARDWARE Information about drivers and other system properties related to

hardware.
HKEY_CLASSES\ROOT Contains among other things the file extension associations. Com-

bined view of two sources, namely HKEY_LOCAL_MACHINE\Software\¬
Classes and HKEY_CURRENT_USER\Software\Classes.

The following are some Win32 API function calls that can be used to ma-
nipulate the registry, and therefore would be interesting to monitor for a
malware analyst:

6Microsoft Developer Network: Predefined Keys (Windows) - http://msdn2.
microsoft.com/en-us/library/ms724836(VS.85).aspx.

http://msdn2.microsoft.com/en-us/library/ms724836(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/ms724836(VS.85).aspx

26 2.1. MICROSOFT WINDOWS ARCHITECTURE

From the advapi32.dll:

RegOpenKeyEx opens the specified registry key.

RegOpenKeyTransacted opens the specified registry key and associates it with a transaction.

RegCreateKeyEx creates the specified registry key. If the key already exists, the function opens it.

RegCreateKeyTransacted creates the specified registry key and associates it with a transaction. If
the key already exists, the function opens it.

RegSaveKey saves the specified key and all of its subkeys and values to a new file, in the standard
format.

RegSaveKeyEx saves the specified key and all of its subkeys and values to a registry file, in the specified
format.

RegLoadKey creates a subkey under HKEY_USERS or HKEY_LOCAL_MACHINE and loads the data from the
specified registry hive into that subkey.

RegCloseKey closes a handle to the specified registry key.

RegDeleteKey deletes a subkey and its values.

RegDeleteTree deletes the subkeys and values of the specified key recursively.

RegDeleteKeyEx deletes a subkey and its values from the specified platform-specific view of the reg-
istry.

2.1.2 The file system

The file system provides applications access to the permanent storage of the
computer. Windows XP, Vista, Server 2003 and 2000, which are the most
relevant versions today, support the FAT16, FAT32 and NTFS file systems.
As FAT16 and FAT32 has a maximum volume size of 4GB and 32GB respec-
tively7, NTFS is usually the preferred file system. File systems supported by
Windows contains the following logical entities; volumes, partitions, directo-
ries and files. A volume is the highest entity in the hierarchy, and contains
one or more partitions. A partition contains a file system, which is a col-
lection of directories and files8. A directory is a logical entity which is a
collection of other directories and files, while a file is a collection of data
belonging together. Most malware attempts to manipulate the file system
for purposes such as hiding itself, distribution/infection and much more.

7The theoretical limit of FAT32 is actually 2TB, but Windows XP only allows format-
ting of drives up to 32GB.

8Microsoft Developer Network: File Systems (Windows) - http://msdn2.microsoft.
com/en-us/library/aa364407(VS.85).aspx.

http://msdn2.microsoft.com/en-us/library/aa364407(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/aa364407(VS.85).aspx

CHAPTER 2. BACKGROUND AND THEORY 27

Directory management

A directory is a logical collection of directories and files. Directories can be
manipulated through the Win32 API using the following functions:

From kernel32.dll:

CreateDirectory creates a new directory. Implemented as ANSI version (CreateDirectoryW) UTF-8
version (CreateDirectoryA).

CreateDirectoryEx creates a new directory with the attributes of a specified template directory. Im-
plemented as ANSI version (CreateDirectoryExW) and UTF-8 version (CreateDirectoryExA).

RemoveDirectory deletes an existing empty directory. Implemented as ANSI version (RemoveDirec-
toryW) and UTF-8 version (RemoveDirectoryA).

File management

kernel32.dll defines the following file operations:

From the kernel32.dll:

FindFirstFile searches a directory for a file or subdirectory that matches the indicated file name.

CreateFile creates or opens a file, file stream, directory, physical disk, volume, console buffer, tape drive,
communications resource, mailslot, or named pipe. Implemented as ANSI version (CreateFileA)
and UTF-8 version (CreateFileW).

DeleteFile deletes an existing file. Implemented as ANSI version (DeleteFileA) and UTF-8 version
(DeleteFileW).

OpenFile creates, opens, reopens, or deletes a file. Note: Only use this function with 16-bit versions of
Windows. For newer applications, use the CreateFile function.

ReOpenFile reopen an already open file using new access privileges, flags or sharing mode.

ReadFile reads data from a file or I/O device, starting at the position that the file pointer indicates.
Can be used for both synchronous and asynchronous operations.

ReadFileEx reads data from a file or I/O device asynchronously. Lets the calling application perform
other actions during a file read operation.

CopyFile copies an existing file to a new file. Implemented as ANSI version (CopyFileA) and UTF-8
version (CopyFileW).

CopyFileEx same as CopyFile, but asynchronous.

MoveFile moves an existing file or a directory, including its children. Implemented as ANSI version
(MoveFileA) and UTF-8 version (MoveFileW).

MoveFileEx moves an existing file or directory, including its children, with various move options.

28 2.1. MICROSOFT WINDOWS ARCHITECTURE

WriteFile writes data to the specified file or I/O device at the position specified by the file pointer. This
function is designed for both synchronous and asynchronous operation.

WriteFileEx writes data to the specified file. Reports its completion status asynchronously, calling a
specified callback routine when writing is completed or canceled and the calling thread is in an
alertable wait state.

2.1.3 Processes

A running instance of an executable program is referred to as a process.
A process consist of one or more threads, which is an atomic unit when it
comes to processor time allocation. All threads that run in the context of a
given process share the same address space, security context and environment
variables [8]. A process executing in user mode, also known as unprivileged
mode, is restricted from making certain system calls without making a call
to functions running under strict control in privileged mode. Some operating
systems have three levels of privilege; kernel mode, system mode and user
mode. Windows only has two of these, kernel and user9. The thread oper-
ations are essential to understand the behavior of more complex malware,
which may use threading and/or try to interact with the address space of
other processes.

These are some of the critical system calls when it comes to process handling
that should be considered monitored when analyzing malware:

From the kernel32.dll:

CreateProcess creates a new process and its primary thread. The new process runs in the security
context of the calling process. Implemented as ANSI version (CreateProcessA) and UTF-8 version
(CreateProcessW).

CreateProcessAsUser Creates a new process and its primary thread. The new process runs in the
security context of the user represented by the specified token. Implemented as ANSI version
(CreateProcessAsUserA) and UTF-8 version (CreateProcessAsUserW).

OpenProcess opens an existing local process object.

CreateRemoteThread creates a thread that runs in the virtual address space of another process.

CreateThread creates a thread to execute within the virtual address space of the calling process.

ExitProcess ends the calling process and all its threads with an exit code.

ExitThread ends the calling thread.

TerminateProcess terminates the specified process and all of its threads without giving an exit code.

9Microsoft TechNet: Windows Architecture - http://www.microsoft.com/technet/
archive/ntwrkstn/evaluate/featfunc/winarch.mspx.

http://www.microsoft.com/technet/archive/ntwrkstn/evaluate/featfunc/winarch.mspx
http://www.microsoft.com/technet/archive/ntwrkstn/evaluate/featfunc/winarch.mspx

CHAPTER 2. BACKGROUND AND THEORY 29

2.1.4 Networking

The file I/O functions10 provide the basic interface for opening and closing
a communication resource handle and for performing read and write opera-
tions11. This means that when a process wishes to communicate through a
communication device, it can perform a call to CreateFile specifying COM1
or LPT1 or another valid device name, and then write to the returned han-
dle. The process can use the DeviceIoControl-call to send control codes to a
device. For more information about the functions that are identical for net-
work and file operations refer to the file management discussion in section
2.1.2. Several types of malware perform operations against the local network
and/or the Internet in order to infect other computers, receive updated mal-
ware code or interact with its creators. In order to analyze this behavior, it
is essential to monitor the calls from the malware to the network API.

The following system calls should be monitored:

From kernel32.dll:

CreateFile same as for file management.

ReadFile same as for file management.

ReadFileEx same as for file management.

WriteFile same as for file management.

WriteFileEx same as for file management.

DeviceIoControl sends a control code directly to a specified device driver, causing the device to perform
the corresponding operation.

In addition the low level I/O device communication API functions listed
above, the more high-level WinInet API contains many functions for HTTP
and FTP networking (as these are simpler to use, they are more likely to be
used by malware).

The following system calls should be monitored:

From wininet.dll:

InternetConnect opens an File Transfer Protocol (FTP), Gopher, or HTTP session for a given site.
Takes port number and host name or IP address, username and password as parameter. Imple-
mented as ANSI (InternetConnectA) or UTF-8 (InternetConnectW).

10CreateFile, CloseHandle, ReadFile, ReadFileEx, WriteFile and WriteFileEx.
11Microsoft Developer Network: About Communication Resources (Windows) - http:

//msdn2.microsoft.com/en-us/library/aa363140(VS.85).aspx.

http://msdn2.microsoft.com/en-us/library/aa363140(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/aa363140(VS.85).aspx

30 2.1. MICROSOFT WINDOWS ARCHITECTURE

InternetOpenUrl opens a resource specified by a complete FTP, Gopher, or HTTP URL. Implemented
as ANSI and UTF-8.

FtpFindFirstFile searches the specified directory of the given FTP session. Implemented as ANSI and
UTF-8.

FtpOpenFile initiates access to a remote file on an FTP server for reading or writing. Implemented as
ANSI and UTF-8.

FtpGetFile retrieves a file from the FTP server and stores it under the specified file name, creating a
new local file in the process. Implemented as ANSI and UTF-8.

FtpPutFile stores a file on the FTP server. Implemented as ANSI and UTF-8.

InternetWriteFile writes data to an open Internet file.

InternetReadFile reads data from a handle opened by the InternetOpenUrl, FtpOpenFile, GopherOpen-
File, or HttpOpenRequest function.

HttpOpenRequest creates an HTTP request handle. HttpOpenRequest takes an HTTP session handle
created by InternetConnect and an HTTP verb, object name, version string, referrer, accept types,
flags, and context value. The HTTP verb is a string to be used in the request. Common HTTP
verbs used in requests include GET, PUT, and POST.

InternetSetOption sets various internet options, including username and password, retries and time-
outs. Implemented as ANSI and UTF-8.

2.1.5 Windows file formats

Executable and DLL files for the Windows 32-bit system are usually in the
Portable Executable (PE) file format [9]. This file format is also used by
system components, device drivers, screen savers and ActiveX controllers.
For the 64 bit architectures, the file format is called PE+. The PE file format
has a data structure that contains information intended for the Windows
bootloader.

Older versions of Windows (16 bit) used the New Executable (NE) file format.
A NE file contains an old MZ DOS EXE header for compatibility, followed
by a new NE header [1]. An important difference between the NE and PE file
formats in this context is that the 16 bit version requires that functions calling
an external DLL must be relocated in memory. This is a time-consuming
operation that the system loader must perform before the code is executed.
When executing PE files, this relocation is not necessary because the PE file
has a data structure called an Import Address Table (IAT) which is used to
hold the addresses where the external functions are located. IAT is a feature
that is often exploited by malware, for example by modifying the IAT in such
a way that it transfers execution control to malicious code [1]. The header
of the PE files contains, among other, fields describing:

CHAPTER 2. BACKGROUND AND THEORY 31

• For which CPU architecture the file is intended.

• The size of the application given in number of sections.

• Characteristics, for example whether the file is an executable or a li-
brary.

• Offset of entry point, which is where the executable code begins.

• A checksum of the file; in executables this is often set to “0” (not used),
while in a DLL or a driver it is set to the actual checksum.

After the header, the files have a table that describes the different sections.
Sections in PE files are used to discriminate between code, data, global data,
debug information and so on. These sections are important in this context,
as malware often modify existing or add new sections containing the malware
code. Two important sections are the ones called “.idata” and “.edata”, which
contain the import and export tables respectively. The first one contains
a list of imported APIs12, the latter all API functions made available to
other executables. The section table also has a field called characteristics,
which holds labels for the sections describing if they are readable, writable,
executable and whether they contains data, code or other information.

12In other words, this is the IAT described earlier.

32 2.2. VIRTUALIZATION

2.2 Virtualization

The main reason for using virtualized environments today is that it offers
significant advantages when it comes to maintenance, performance and secu-
rity when operating multiple services on one physical machine. For example,
it offers the possibility of hosting both e-mail and several web servers on
one physical machine without a security breach in one affecting the others.
Similarly, virtualization can also be used to set up a secure environment in
which it is possible to handle malicious code without any significant risk of
the code spreading. In the implementation described in this thesis, VMware
Server is used for this purpose.

Virtualization is a relatively complex area, which covers several technologies
in both software and hardware. Oxford English Dictionary defines virtual-
ization as “to create a virtual version of (a computing resource or facility)”.
Another more concrete definition is given in [10], stating that “virtualiza-
tion is a framework or methodology of dividing the resources of a computer
into multiple execution environments, by applying one or more concepts or
technologies such as hardware and software partitioning, time-sharing, par-
tial or complete machine simulation, emulation, quality of service, and many
others”.

Virtualization can be implemented in several ways and on several system
layers. The different layers describe which resources are virtualized and thus
what abstraction is offered to the code running in the virtualized environ-
ment. It is possible to provide virtualization of hardware, OSs, applications
and high-level runtime environments, such as the Java virtual machine. One
of the most important features of virtualized systems is partitioning, which
means for example that several operating systems can co-exist on a single
physical system without interfering or even being aware of each other. An-
other important advantage is the possibility to create a pool of computing
resources that can be re-partitioned when needed.

Hardware level virtualization, which is what is used in PowerScan and thus
will be discussed here, is about presenting a virtual replica of hardware re-
sources to several operating systems. To achieve virtualization on the hard-
ware level, is necessary to insert a virtualization layer between the operating
system and the physical hardware. This virtualization layer is called a hy-
pervisor. The hypervisor typically contains some base functionality, such
as scheduling and support for hardware access. It also has containers that

CHAPTER 2. BACKGROUND AND THEORY 33

(a) Hypervisor type 1: Running hyper-
visor directly on top of hardware.

(b) Hypervisor type 2: Running hyper-
visor on top of host operating system.

Figure 2.3: Different techniques for implementing virtualization, inspired by
a figure in [11].

guest OSs13 can run within. Such a container is often referred to as a Vir-
tual Machine Monitor (VMM). Hypervisors can be divided into two major
groups:

Hypervisor type 1 uses a technique where the hypervisor runs directly on
top of the hardware. With this technology, the hypervisor must support
tasks that are usually performed by the host OS.

Hypervisor type 2 uses a technique where the hypervisor runs on top of
a host OS14, which provides access to the underlying hardware. (this
is also called middleware virtualization or hosted virtualization) [11].

These two architectures are illustrated in figure 2.3.

The following describes how access to the different physical resources are
administered when talking about virtualization, based on information found
in [12] and [13].

13The term “guest OS” refers to an operating system running inside a virtualized envi-
ronment, on a virtual machine.

14The host OS is an ordinary OS such as Windows or Linux running on top of the
hardware.

34 2.2. VIRTUALIZATION

2.2.1 CPU virtualization

CPU virtualization deals with how guest OS’s access to the CPU resources on
the physical machine is handled. One difference between hypervisor imple-
mentations is where the instructions of guest OSs are executed. Instructions
may be executed exclusively in the virtual machine software or there may be
a separation where some instructions are emulated in software while others
are executed in the physical CPU15. This is a typical safety vs. performance
trade-off, as emulation introduces significant overhead, while allowing critical
operations to execute directly on the CPU may allow an application running
on the virtual machine to break out of the virtualized environment and take
control over the host machine. Allowing the guest OS access to the processor
while the VMM maintains complete control is a relatively complex task [14].

One major issue when doing CPU virtualization is that many processor ar-
chitectures differentiate privileged and non-privileged instructions. The stan-
dard x86 architecture family has two modes, Ring 0 (“privileged mode” or
“kernel mode”) and Ring 3 (“unprivileged mode” or “user mode”). Ring 0
is usually used by the OS kernel and device drivers running in kernel mode,
Ring 3 by the applications. Trying to execute privileged instructions from a
program running in unprivileged mode will cause a general protection fault,
indicating that the operation failed due to lack of privilege. Privileged in-
structions can for example be operations manipulating the OS’s memory
area. Operating systems assume that they are able to perform these privi-
leged operations, although this will not be the case for OSs running on virtual
machines. Guest OSs are executed as applications on top of the host OS/hy-
pervisor. The x86 architecture operating systems were originally designed to
have complete ownership of the hardware, and were until 1998 thought to be
impossible to virtualize [13].

As mentioned, privileged instructions issued in non-privileged context cause
general protection faults, which can be caught by the hypervisor. The hy-
pervisor can then emulate the system call and return the result to the guest
OS, a technique known as “trap-and-emulate”. The problem with the x86
architecture is, however, that some instructions are sensitive, meaning that
the result might depend on the processor mode in which they are executed.
These instructions do not return general protection faults when executed in
non-privileged mode, but rather a different response than expected. A guest
OS issuing sensitive instructions will expect the instruction to be executed in

15Typically, one wishes to executa as many instructions as possible on the CPU for
performance reasons, while still keeping the system secure.

CHAPTER 2. BACKGROUND AND THEORY 35

privileged mode, while the guest OS is in fact running in non-privileged mode
and the reply will thus be that of a non-privileged call. As an example of
these challenges, Intel’s IA-32 architecture as implemented on their Pentium
processor family contains at least seventeen instructions that would cause
problems in a virtualization context [15].

To mitigate the issue of privileged and sensitive instructions, CPU virtu-
alization on x86 architecture can be done using one of the following three
techniques:

• Full virtualization using binary translation.

• OS-assisted virtualization - paravirtualization.

• Hardware-assisted virtualization.

Full virtualization using binary translation

This technique, also known as native virtualization, is used about a setup
where a hypervisor, type 1 or type 2, is doing the task of mediating between
an unmodified guest OS and the underlying hardware. This mediation is
done by the VMM component of the hypervisor. Full virtualization offers
the guest OSs access to the underlying hardware by simulating one instance
of the hardware resources to each of the guest OSs. Each instance of the
installed guest OSs will then see a full “normal” set of hardware, which it
believes it owns wholly. This means that any OS can be installed without
having any special virtualization support. A constraint is that the guest OS
must support the underlying hardware architecture (for example x86) so that
no instruction set emulation is necessary.

Full virtualization implementations must solve the problem with privileged
and non-privileged instructions. [13] describes a solution for this using binary
translation of instructions and address space. This way the guest OS per-
ceives that its operations are performed directly on the processor in privileged
mode, while it in reality is being controlled by the hypervisor. VMware’s
hypervisor performs binary translation for privileged code and executes un-
privileged instructions directly on the processor [16]. The binary translation
typically manipulates the address space instructions are allowed to access or
replace the system call with one or more other system calls, limiting one guest
OSs abilities to write to memory space owned by other virtual machines or
the host OS.

36 2.2. VIRTUALIZATION

Figure 2.4: Full virtualization using binary translation, from [13].

This principle is illustrated in figure 2.4.

In the test setup during the implementation in this thesis, Ubuntu Server
Edition was used as a host OS and VMware Server (former VMware GSX
Server) as a full virtualization environment.

OS-assisted virtualization - Paravirtualization

Paravirtualization is similar to full virtualization, but differs in one major
area. While the guest OS on a full virtualization system can be any oper-
ating system made for the appropriate processor instruction set, the guest
OS on a paravirtualization systems is modified to work with the hypervisor.
The gain is that the performance approaches that of non-virtualized systems.
The disadvantage is that paravirtualization systems does not natively sup-
port unmodified OSs. Instead of doing the relatively resource consuming
tasks of trap-and-emulate or binary translation, the OS is rewritten to make
calls to a special API in the hypervisor. This API implements the privi-
leged and sensitive instructions in a more efficient way than is the case with

CHAPTER 2. BACKGROUND AND THEORY 37

Figure 2.5: Operating system assisted virtualization, from [13].

full virtualization. This principle is illustrated in figure 2.5. VMware uses
elements of paravirtualization techniques in some of their products, like for
instance VMware Tools and the “Vmxnet” I/O device driver. Note, that this
is not CPU virtualization, although it uses the same technique of making
calls from the guest OS to the hypervisor.

Hardware-supported virtualization

To better be able to handle virtualization, both Intel and AMD offer pro-
cessors with hardware support for virtualization techniques, called Intel VT
and AMD-V, respectively. The hardware support includes some new in-
structions that help a VMM and a guest OS execute privileged instructions
in the appropriate level [12], and enable full virtualization without using bi-
nary translation. Intel VT offers support for 64-bit guest OS, and allows a
VMM and a guest OS to share access to the hardware using a new privi-

38 2.2. VIRTUALIZATION

Figure 2.6: Hardware assisted virtualization, from [13].

lege level/ring [15]. AMD introduces two new modes, called Host Mode and
Guest Mode, and a new instruction called VMRUN as an extension to their
AMD64 architecture [14]. The VMRUN command switches the processor
into Host Mode, which is used by the hypervisor to manage its guest OSs.
This principle is illustrated in figure 2.6.

2.2.2 Memory virtualization

Beyond the CPU, the memory is another important resource that needs to
be virtualized in virtualization systems. The available physical memory of
the host must be made available to the virtual machines when needed. The
virtualization technique used to share memory between virtual machines is
similar to the functionality that present day operating systems use to allocate
memory between its applications [13]. This virtual memory scheme allows
an application to see a contiguous address space, which does not necessarily
reflect the true physical address allocation. To make memory management
work in a virtualized environment, it is necessary to perform management
at two levels. The guest OS must perform memory management for the

CHAPTER 2. BACKGROUND AND THEORY 39

applications running within it in the regular manner of OSs, while the hy-
pervisor/VMM needs to manage memory mapping for the various virtual
machines. The latter level of virtualization is achieved by virtualizing the
Memory Management Unit (MMU) found on all modern x86 architecture
CPUs [13]. VMware uses shadow page tables to provide a mapping between
the virtual memory pages of the guest OSs and the actual pages in the phys-
ical memory. Using such shadow page files allows the linear address space
of the virtual machine to be mapped directly to the real machine addresses,
hence increasing the speed of memory operations. Another technique, used
for instance by the Xen hypervisor16, is to use a paravirtualized approach
to allow the guest OS partial direct access to the physical memory page
tables [17].

2.2.3 I/O and device virtualization

Device virtualization is about presenting each virtual machine with a set of
generic virtual devices, and translating the requests going to and from the
real hardware. When performing device virtualization, there are two main
decisions that have to be made; where to place the drivers for the physical
hardware and which virtual hardware should be presented to the virtual
machines. Regarding the first issue, VMware places the device drivers in
the hypervisor while for instance Xen uses an indirect architecture where the
drivers are placed within a privileged virtual machine17 [17]. The second will
typically be a configuration issue.

16Produced by XenSource Inc., now a part of Citrix Systems.
17Actually, Xen uses a back-end device driver in the privileged virtual machine and a

front-end device driver in the guest OS.

40 2.3. HIDING VIRTUALIZATION

2.3 Hiding Virtualization from Attackers and
Malware

Virtual machine environments are quite common tools for malware analy-
sis and classification [18]. However, it is an increasing trend that malware
authors include code to detect the presence of such environments [19]. The
consequence is that the malware might choose to hide its true behavior, or
even remove itself completely when detecting analysis environments. It is
likely, however, that as virtualization becomes more common in production
systems, malware will want to run in virtual environments as well.

[18] shows some possible techniques used by malware to detect whether it is
executed within a virtualized environment, emphasizing the VMware prod-
uct line. Two concrete techniques used to detect the presence of VMware,
and ways to mitigate these weaknesses, are described. The first detection
technique is to look for the presence of the VMware internal communica-
tion channel, which is used to communicate between the host and the guest
OSs. This channel is used to move data between host and guest when using
for example the clipboard application or simple drag-and-drop functionality.
The test is simply to look for a known value in specific registers, the pres-
ence of which indicate that the channel is being used. If this test is issued
on a non-VMware system, the instruction will trigger an exception handling
routine. [18] states that inserting execution of the malicious code into the
exception handling routines could be used to make sure that the malware is
only executed in a non-virtualized environment.

[18] also describes another detection technique using the location of tables
such as the Interrupt Descriptor Table (IDT), Global Descriptor Table (GDT)
and Local Descriptor Table (LDT). These tables are three of the four memory
management tables used for segmented memory management in the x86 ar-
chitecture. The GDT and LDT are tables that contain segment information
giving the base address, access rights, type, length and usage information
about memory segments. The LDT was used on early x86 architecture pro-
cessors that did not have any paging feature, and described privately held
memory per user process. The GDT data structure is used to hold informa-
tion about shared global memory segments, while the IDT holds information
about interrupts and exceptions. These tables are located at predictable ad-
dresses in the virtual machine that differs from the addresses found in the
host OS, due to the fact that the x86 architecture processors only has one
register to store the address of each data structure table. This causes prob-

CHAPTER 2. BACKGROUND AND THEORY 41

Figure 2.7: “Scoopy” application run inside a virtual machine.

lems when more than one OS tries to use the same registers. An OS running
in a virtual machine (thus in Ring 3) trying to write to any of these registers
will cause a general protection fault, which the VMM can handle. Reading
from the registers is however not restricted to Ring 0, and an OS in a VM
would get the information belonging to the host OS. To avoid this from hap-
pening, the VMM must provide each virtual machine with its own separate
virtual IDT, LDT and GDT register. For more information on register issues
with virtualization on Intel processors, see [20].

Examples of implementations that use the IDT detection technique are Red
Pill18 and Scoopy19. Usage of Scoopy in native Windows XP and in Windows
XP on VMware Server is shown in figures 2.7 and 2.8 respectively.

The author of the Scoopy program mention other characteristics that could
be used to detect the presence of VMware, including:

• Copyright notes/vendor strings in various files and registry keys.

• VMware specific hardware drivers, such as “VMware Virtual IDE Hard
Drive” or “VMware Virtual IDE CDROM Drive”.

• VMware specific BIOS.
18Invisiblethings.org - Red Pill - http://www.invisiblethings.org/papers/redpill.

html.
19trapkit.de . Scoopy Doo - http://www.trapkit.de/research/vmm/scoopydoo/

http://www.invisiblethings.org/papers/redpill.html
http://www.invisiblethings.org/papers/redpill.html
http://www.trapkit.de/research/vmm/scoopydoo/

42 2.3. HIDING VIRTUALIZATION

Figure 2.8: “Scoopy” application run outside a virtual machine.

• VMware specific MAC addresses, in the 00:0C:29 or 00:50:56 address
range.

• Installed VMware tools.

• Sensitive system calls that need to be trapped and emulated, will take
longer time when handled by the hypervisor than they would when
executed directly on the CPU. This requires some kind of baselining to
compare execution time. One such technique is described in [19].

For mitigation, [18] presents a list of VMware configuration options to alter
the memory relocation functionality and the binary translation functionality.
Some of these options are not documented by VMware, but the effect is
nevertheless that VMware is no longer detected by Red Pill or Scoopy. One
consequence of this is that the drag-and-drop and copy/paste functionality
is disabled. Another solution to the detection issue is to alter or remove the
magic value associated with the internal communication channel, but this
requires patching of the VMware binary and the VMware disk image and is
quite complex.

CHAPTER 2. BACKGROUND AND THEORY 43

2.4 Malware obfuscation

Malware authors mainly seek to obfuscate their code for two reasons, both
related to obscuring the malware’s true purpose and nature. The first is
related to hamper static analysis of the malware by malware experts such
as researchers and anti-virus vendors. The other is to avoid detection or
recognition by automated tools, typically anti-virus engines. In practice,
many of the same techniques are applied for both purposes, but only the
ones relevant for avoiding automated detection will be discussed here, as
manual malware analysis is outside the scope of this thesis. As malware
authors generally can be seen as a creative and heterogeneous group, the
listing given here is mainly an effort to give an introduction to the main
principles and techniques and is not necessarily complete.

This section is closely related to the anti-virus techniques discussed in sec-
tion 2.5; the techniques utilized for obfuscating malware are adapted to the
techniques for detecting malware and vice versa in a never-ending race.

The reason that these techniques are presented here is to show that a regular
signature based surface malware scan may often be insufficient even to iden-
tify relatively simple malware families; even well known malware may pass
surface scanning if it is obfuscated using one of the techniques listed below.

The techniques presented here are the ones given in [1], which are written
with viruses in mind, but the same techniques could very well be applied for
other kinds of malware (especially for other kinds of automatically reproduc-
ing code, but also for creating new species of existing malware).

The reason for executing the malware samples with real-time anti-virus scan-
ning software running in the background, is that known malware20 often is
distributed with a new packer, using for example polymorphic techniques21.
This means that samples that on the surface bears little or no resemblance
may in fact be the exact same malware. The reason for this is that malware
creators may use several packers (typically using encryption) on the same
sample, making old signatures for the malware family useless. Practical ex-
perience in this field shows that it may take a significant period of time before
the anti-virus vendors update their signatures to capture a new version of an
already known malware.

20Known malware is in this case malware that has already been analyzed and created a
signature for by anti-virus vendors.

21A introduction to polymorphic techniques will be given later.

44 2.4. MALWARE OBFUSCATION

2.4.1 Encrypted malware

Encryption is the simplest technique for malware obfuscation presented here.
The point of malware encryption is, obviously, to encrypt the malware body
so that it is not recognized as what it actually is. Additionally, the encryption
key may be changed between every infection (for self-copying malware), so
that creating a catch-all signature of the malware body may be non-trivial.

(a) Encrypted malware
with decryption header.

(b) Encrypted malware
with decryptor at the end.

(c) Malware encrypted in
layers.

Figure 2.9: Encrypted Malware with decryption header, adapted from [1].

Common to all encrypted malware is that it must, obviously, have some
means to decrypt itself prior to performing reproduction, execution, infection
and similar operations. This is done using a decryption header which is
attached to the decrypted body in some fashion (usually before as shown in
figure 2.9(a), but it might be placed other places to confuse analysts).

Several techniques can be utilized to make analysis and detection of en-
crypted malware harder (see for example the layered encryption shown in
figure 2.9(c)), but in the end detection of encrypted malware is relatively
simple; instead of creating a signature for the actual malware body (which
would be very difficult, as the body varies depending on the key), signa-
tures are created for the decryptors themselves, which at some point must
be a static recognizable header. The weakness with this technique is that
classification of the malware may be very inaccurate, as several viruses may

CHAPTER 2. BACKGROUND AND THEORY 45

use the same encryption/decryption code. Indeed, some malware packers are
distributed to the entire community, providing possibility to encrypt existing
unencrypted malware.

Another possibility is to include decryption routines for the most common
encryptors in the anti-virus engine, providing the engine with the possibil-
ity to perform on-the-fly decryption of the most commonly seen encryption
techniques. Obviously, this can be problematic if many malware creators cre-
ate their own encryption/decryption routines or employ advanced key hiding
schemes, but the general trend seems to be reuse of many of the same tech-
niques and implementations.

2.4.2 Oligomorphic code

Oligomorphic code is the next step in code protection and addresses the de-
tection technique for encrypted malware described in the previous section.
Oligomorphic malware has the possibility of replacing or altering its decryp-
tor in new generations. The malware typically carries a number of decryptors
it can use, and each time it reproduces it uses a different header. Due to
the limited number of decryptors available, signature based detection of the
header is still possible, although it can be somewhat risky as some of the
decryptors may be used more seldom and thus be missed during analysis.

As with encrypted malware, it is possible to use decryption routines in the
scan engine, especially if the behavior of the different decryptors are identi-
cal22.

2.4.3 Polymorphic code

Polymorphic code further reduces the effectiveness of signature based scan-
ners by introducing mutating decryptors. Polymorphic malware automati-
cally generates new decryptors for new generations. The algorithm remains
the same, but different techniques are applied to give the code a new appear-
ance. One typical technique for doing this is insertion of some kind of junk
operation, such as for example the assembler NOP instruction or manipulat-
ing registers or variables that are never used for anything useful. The actual

22It is, naturally, possible to create decryptors with identical factual behavior and dif-
ferent signatures.

46 2.4. MALWARE OBFUSCATION

decryptor code may only be single instructions padded with any number of
junk code on every side, making signature based detection very difficult, not
to say impossible. For an example of this, see code listing 2.1, which shows
how the garbage operations can be mixed with the real code. Notice that
there are hardly any occurrences of two consecutive non-junk instructions.

; Group 1 Ű Prolog Instructions
inc si ; optional , variable junk
mov ax ,0 E9B ; set key 1
clc ; optional , variable junk
mov di ,012A ; offset of Start
nop ; optional , variable junk
mov cx ,0571 ; this many bytes - key 2

; Group 2 Ű Decryption Instructions
Decrypt :
xor [di],cx ; decrypt first word with key 2
sub bx ,dx ; optional , variable junk
xor bx ,cx ; optional , variable junk
sub bx ,ax ; optional , variable junk
sub bx ,cx ; optional , variable junk
nop ; non - optional junk
xor dx ,cx ; optional , variable junk
xor [di],ax ; decrypt first word with key 1

; Group 3 Ű Decryption Instructions
inc di ; next byte
nop ; non - optional junk
clc ; optional , variable junk

Listing 2.1: Illustration of a mutated simple XOR decryption routine of the
1260 virus [1].

There are several possible ways to try to fight polymorphic code. A conceptu-
ally relatively simple way is to run the code through optimizers, which should
ideally remove all non-relevant instructions, such as NOP. However, this is
in practice not as simple as it sounds, as garbage instructions may include
pointless registry modifications and similar seemingly meaningful tasks, so
separating useful and garbage instructions may be a complex task.

A more reliable method is running the code in simple emulators23, and thus
letting the malware do the dirty work of decrypting the malware body itself.

23Which in a sense can be seen as minimized version of what is attempted done when
executing the malware on a virtual machine running real-time anti-virus software in the
implementation described later in this thesis.

CHAPTER 2. BACKGROUND AND THEORY 47

2.4.4 Metamorphic code

Metamorphic malware takes the process of modifying code all the way. While
polymorphic malware is able to obfuscate both its header and body, it will
always have the weakness of the decrypted malware body which sooner or
later will have to be written to disk or memory prior to execution. Through
either emulation or real-time monitoring, it will always be possible for anti-
virus software to detect this body. Metamorphic malware modifies its own
code more or less randomly in every generation, while still keeping the same
functionality. This modification can be done in several ways. The exam-
ple of inserting garbage code as described for polymorphic code is one way,
another is separating the code into blocks24 and recombining them using
jump instructions, as was done with the badboy virus shown in figure 2.10.
Metamorphic malware may also carry its original source code and randomly
modify it by generating junk code or performing other modification opera-
tions prior to recompiling with any appropriate compilator installed on the
infected system25.

When fighting metamorphic malware, traditional detection techniques are
rarely sufficient: the malicious code may look completely different from gen-
eration to generation, with the actual malicious operations being intermixed
between myriads of innocent (and useless) operations. Typically, detection
of metamorphic malware must be done by looking for the “typical malicious
behavior” such code will perform, such as infecting other files, performing
operations to hide itself and so on.

Note that it naturally is possible to combine all of the techniques above.
Such that polymorphic malware may also metamorphically drop a different
payload in every generation, in order to further hamper detection.

2.4.5 Behavior modification

The techniques above can also be combined with behavior modification to
further enhance the obfuscation. This will typically be related to detecting
virtualized and emulated environments and showing benign (or no) behavior
when such environments are detected. In the case of the techniques described

24These blocks should be too small or generic to be made signatures for.
25This is especially relevant to system which often come with pre-installed compilators,

such as *nix systems.

48 2.4. MALWARE OBFUSCATION

Figure 2.10: Example of reordering of modules in the metamorphic Badboy
virus, from [1].

CHAPTER 2. BACKGROUND AND THEORY 49

above, malware may choose not to decrypt itself if a virtualized environment
is detected. Both techniques for detecting virtualization and countermeasures
for detection are discussed in section 2.3. Luckily for the implementation
done here, VMware is being used more and more for hosting servers, and
can as such be expected to be a more and more likely target of attack itself.
This means that VMware detection in the long run is unlikely to be a high
priority for malware creators, as systems running on VMware may be seen
as desirable targets in themselves.

50 2.5. ANTI-VIRUS TECHNOLOGY

2.5 Anti-virus technology

This section gives an overview over the technologies and techniques used in
anti-virus solutions. Although combating malware consists of a myriad of
different instruments, including code quality assurance techniques, firewalls,
intrusion prevention systems, organizational policies and more, the focus will
be on detection techniques used in what is traditionally considered anti-virus
software. The reason that these techniques are described here is that anti-
virus engines are an essential part of the functionality of the PowerScan
framework.

Initially, note that there are relatively few good sources on just how com-
mercial anti-virus solutions work; the industry is highly competitive and any
new technology that can gain one vendor a few percents higher detection rate
than its competitors is unlikely to be published and shared. In addition to
the competition faced by other vendors, anti-virus software developers are
in a never-ending race with the malware creators, who are constantly trying
to come up with ever new ways to defeat the detection and prevention tech-
niques. These people will often use any knowledge about anti-virus software
to defeat it. Therefore, most of the information presented in this section is
based on [1], which appears to be one of the very few thorough presentations
on how anti-virus engines work.

Anti-virus detection techniques involve several different techniques with dif-
ferent complexity and different detection capacities, starting from simple
signature-based malware detection to detection of unknown malware and
malware that uses obfuscation techniques such as encryption, metamorphism
and polymorphism.

When talking about anti-virus scanning techniques, there are basically two
different kind of scanners that are employed; on-demand scanners and real-
time scanners. The on-demand scanners are executed by the user or some
kind of scheduling mechanism, and can usually be configured to scan differ-
ent parts of the file system or memory. The other type of scanner is the
real-time kind. This scanner is usually loaded into memory at system boot
time, and aims to scan every piece of code being read, written and executed.
This could be achieved for instance by hooking into system calls related to
opening, reading, writing or closing files, or memory read and write. Real-
time scanners can also hook directly into the file system. The scanner can
be implemented as an application or register itself as a device driver.

CHAPTER 2. BACKGROUND AND THEORY 51

2.5.1 Signature scanning - First generation scanners

Searching files or memory locations for byte sequences extracted from known
malware using simple string matching is one of the simplest malware de-
tection mechanisms. Signatures are made from sequences or patterns of
instructions that identify a malicious block. One important challenge with
using signature scanning is that the signature patterns must be long enough
to detect a malicious sequence uniquely, avoiding producing false positives.
A signature for one particular malware variant might detect other variants
or even new but closely related malware, given that the same signature is
present in both. However, there is also the possibility that other and com-
pletely different malware are incorrectly classified as a known malware even
if the overall behavior is different. Incorrect classification may again lead
to disinfection attempts resulting in corrupted files. If the code being disin-
fected is part of the boot sector or some way critical to the OS, the system
may crash or be rendered useless. To help improve accuracy of detection,
signature scanners may support wildcards in the signature pattern or allow
for several mismatches within the string. To speed up the string match-
ing process, scanners may employ optimizing techniques such as hashing of
code, scanning only the beginning and end of files or using information in
executable file headers to start scanning at the entry point of the code.

2.5.2 Smart scanning - Second generation scanners

Smart scanning manages to mitigate obfuscating techniques such as inserting
NOP or other bogus instructions in the assembly code. The smart scanning
technique ignores such instructions when applying the malware signature.
The same technique can be used with malicious code in textual format, such
as scripts, that is obfuscated by white spaces or newlines. Another smart
scanning-like technique, called “Skeleton detection,” works by removing all
non-essential instructions or code lines such that only important instructions
make up a signature. These bogus code removing operations can generally
be performed using assembly level optimizers on the code prior to performing
scan.

Some second-generation scanners use a technique known as “nearly exact
identification”, which makes use of more than one search string. The classi-
fication is then based on the number of matches found in a given file. Deter-
mining a correct match is essential if attempting disinfection. In the worst

52 2.5. ANTI-VIRUS TECHNOLOGY

case, erroneous identification may an incorrect disinfection routine being ini-
tiated, can cause corruption or deletion of benign files or system services.
Another method of doing “near exact identification” is relying on checksums
over parts of the malware code. Using hashes improves the scanning rate,
and is done by most scanners. “Exact identification” takes this technique
one step further, by taking checksums over all segments of a malware found
to be constant. This means that all parts of a malware sample containing
variable data must be identified and excluded. This is not a trivial task, as
code and data might be tightly intermixed.

2.5.3 Algorithmic scanning

If the standard search algorithm of a scanner is not able to detect a given
malware sample, there is a need for a more specialized detection algorithm.
This is often referred to as “algorithmic scanning” or “virus-specific detec-
tion”. This technique utilizes a scan definition language to define detection
routines for individual malware, which are executed in a predefined order
on the objects opened by the scanner. The detection routine might look for
numerous strings in one search, or perform address translation between vir-
tual and physical addresses. Algorithmic scanning is found in for instance the
Kaspersky and Norton anti-virus engines [1]. To speed up the scan operation,
filtering techniques might be used in combination with algorithmic scanning.
Filtering is justified in the fact that one type of malware will usually only
infect one or a few objects, such as for example only given files or the boot
sector. This means that the algorithm for detecting one type of malware is
only done on objects that it can infect.

Algorithmic scanning can also be used to attack malware obfuscated with
techniques such as encryption. An algorithm might detect known packers
(by using signatures for the decryptors) and perform decryption of the body
before applying normal signature scan. Attacking the encryption of code is
called “X-RAY scanning”.

2.5.4 Code emulation

It is also possible for scanners to perform code emulation in order to combat
malware obfuscation techniques. Code emulation in anti-virus engine is a
similar technique to the one implemented in this thesis. By using a minimal

CHAPTER 2. BACKGROUND AND THEORY 53

sandbox environment, the code can be allowed to execute for a short period
of time, so that any encrypted code will be decrpyted and written to memory
or disk. When code is written, it can be scanned using an ordinary signature
scanner.

The greatest limitation of code emulation solution is performance. For scan-
ning a single file running it in an emulator is no problem, but when performing
for example a complete system scan, doing a full emulated execution of every
single (executable) file is not a realistic option. One possible remedy for this
problem is to assume that the decryptor will be the first thing to execute in
the malware, and only execute the files for a very limited period of time. This
can be attacked by malware that executes some relatively significant number
of (processing expensive) garbage instructions prior to decrypting itself or by
using techniques such as staged/layered decryption. While an extra loading
time in the order of 1-3 seconds is insignificant for a single malware while
unpacking, it is intolerable for a scanner to allow each sample more than one
second when performing scan of a significant number of files (several tens
of thousands is definitely not unusual here). Additionally, ordinary sand-
box/emulation discovery techniques can be used to detect the sandbox and
hide the malicious behavior if an analysis environment is detected.

As mentioned earlier, there is released very little information about how
individual anti-virus engines works, so there is no way to accuratly assess how
widespread this technique is. However, considering the significant processing
required to set up a sandbox for every single executable file, it is unlikely
that all scanners use it for every file. As malware packers are very popular26,
it seems that they are still an efficient tool for trying to avoid detection
by anti-virus engines. This indicates that code emulation implementations
either are not being used to a large degree or are not efficient enough to
detect most packed malware. It also indicate, however, that the malware
packers themselves are being detected by the anti-virus products. This may
possibly be mitigated by creating custom packers.

2.5.5 Metamorphic malware detection

Providing reliable detection of metamorphic malware using the techniques
listed above is hard, so other techniques are required. Typically, it is nec-

26Reuters: BitDefender Lab’s top 10 malware list for April (2008) dominated
by malware packers - http://www.reuters.com/article/pressRelease/idUS166334+
09-May-2008+MW20080509.

http://www.reuters.com/article/pressRelease/idUS166334+09-May-2008+MW20080509
http://www.reuters.com/article/pressRelease/idUS166334+09-May-2008+MW20080509

54 2.5. ANTI-VIRUS TECHNOLOGY

essary to analyze the behavior of the malware instead of relying on given
strings existing in its code. This can for example be done by disassembling
the malware instructions and look for vital instructions, possibly combined
with a state machine in order to track the order of instructions. This way,
malware signatures can be built based on the central operations it performs
on the infected system, rather than on the actual strings it contains. Heuris-
tic analysis, presented in the next section, is a good example of a technique
that can be used against metamorhpic malware.

Once again, recall that knowledge about the inner workings of individual
anti-virus engines is hard to obtain, so different engines might have good
solutions for detecting metamorphic code.

2.5.6 Heuristic analysis

The principle of heuristic analysis is to look for malicious behavior, rather
than looking for known patterns of a given malware family based on previous
analysis. Instead of searching for string signatures, a heuristics scanner looks
for combinations of instructions, events and other indicators that a program
is not legitimate. The main reason for using this technique is to detect pre-
viously unknown malicious code for which there exists no specific signature.
In order to analyze behavior, heuristic scanners need to have access to the
unencrypted code of the malware. For this reason, heuristic engines need
to be combined with other techniques that can unpack (and, if needed, de-
crypt) packed code. Another possibility is to implement the heuristic engine
as a real-time service, which monitors executing threads and tracks their
operations on the system.

A heuristics engine usually combines parsers, flow analyzers and disassem-
blers in addition to a weighting or rule-based decision engine to evaluate how
likely a given file is to be malicious [21]. The first set of tools is used to scan
the code and correlate events and calls performed to determine how likely
the actual code is to be malicious, for example by looking for virus or worm
reproduction mechanisms. This can then be combined with other factors
which might imply that the program is malicious, such as presence of pack-
ers, anti-debugging techniques, memory-resident code and similar things [1].
The results from all of these operations are then fed to the weighting or rule-
based decision engine, which then adds up the “danger score” for the entire
situation and decides if action should be taken.

CHAPTER 2. BACKGROUND AND THEORY 55

It is worth noting that heuristic scan methods potentially may produce false
positives. This is justified by the fact that heuristics scanners have the ability
to detect previously unknown malware, which represents a significant advan-
tage compared to other techniques. The number of false positives can also
be adjusted by modifying the threshold of the decision engine.

Another problem with heuristic scanner is that they are (obviously) unable
to provide detailed classification of malware, so they will typically not be able
to provide disinfection strategies. For this reason, heuristic scanners will usu-
ally be most interesting to use in a real-time scanning context, as suspected
malware then may be blocked, preventing the infection from happening in
the first place.

2.5.7 Memory scanners

Some malware might avoid initial detection and get loaded into memory
and executed. Once it is there, it need not necessarily be executed as a
user-space application, but possibly also as kernel modules or device drivers.
Once loaded, malware can be memory resident, meaning that the code re-
mains active even after the application has seemingly been terminated. This
kind of malware is called Terminate and Stay Resident (TSR). Once mal-
ware is active in memory, the corresponding executable can not be deleted
from the file system, making disinfection using regular techniques impossible.
Moreover, a memory resident malware may hide itself from scanners using
stealth techniques, and also monitor its own system objects such as registry
keys, protecting them from manipulation or removal.

In order to detect and thus have a chance to remove such malware, memory
scanners are required. As TSR malware can run as kernel modules or device
drivers, a memory scanner should run in kernel mode in order to be able to
access all relevant memory pages. Once a memory scanner detects malicious
code executing, it should start a disinfection routine which will terminate
the thread or process and perform the required disinfection operations.

56 2.6. MALWARE NAMING AND CLASSIFICATION

2.6 Malware naming and classification

The lack of standardization of naming conventions is, especially for malware
analysts, a significant motivation for running a sample through several anti-
virus engines in order to accurately classify a malware sample. This section
gives an introduction to issues regarding naming conventions in the anti-virus
industry. First, some issues regarding malware classification are presented.
Then, a widely used [1] naming convention from the Computer Antivirus Re-
searcher Organization (CARO) is introduced before some malware classifica-
tion coordination efforts are presented. Lastly, some automated classification
schemes are presented.

Ideally, there should exist some unambiguous and preferably automated pro-
cess for classifying malware in such a manner that once a new sample is
found, its full and unique name is implicitly given. Unfortunately, creating
such a tool is practically impossible due to the immense diversity and vol-
ume of released malware. Some efforts have been made in this field, a few
of which will be presented later in this section. To date, however, all the
available tools solve only some subset of the problem27, lacks support for
intuitive human-readable format or has some other issue which discourages
its usage [22].

The will to attempt to coordinate classification efforts seems to be present
among most anti-virus vendors, but the tools to do so efficiently still seems
to be missing. Although manual naming conventions such as the CARO
Virus Naming Convention exists (and indeed are attempted used), anti-virus
researchers are still unable to coordinate their names fully. With tens of thou-
sands of new malware variants released monthly (or about 2500 daily [23]),
researchers have their hands full coping with designing detection for new
samples and have little or no time for coordinating names between vendors.
Obviously, with the amount of released malware, no central authority can
decide and assign names for all detected malware. As the vendors use their
names in several different places such as in the anti-virus engines, in security
bulletins and many other places, adapting to other vendors’ naming after a
name has been chosen is usually not desirable either.

Still, an established naming convention will provide a common standard and
understanding for the names of malware, and will contribute to reduce the

27For example, there are tools that can classify a malware sample in relation to others,
that can classify macro viruses and so on, but none that can create a unique, meaningful
name for any malware type.

CHAPTER 2. BACKGROUND AND THEORY 57

confusion and problems resulting from inconsistent naming.

2.6.1 CARO Virus Naming Convention

The CARO Virus Naming Convention was first introduced by CARO in
1991 [24] in order to try to coordinate the virus naming schemes of different
anti-virus vendors. As CARO is not a standardization body, the scheme
is not forced on the anti-virus vendors, but rather strongly recommended.
The original scheme was superseded by a revised version in 2002 [25], which
greatly expands the convention and attempts to adapt it to recent times. The
revised CARO NC is used to classify several types of malware. Although few
anti-virus vendors use the convention directly today, it still remains the only
convention that most anti-virus companies ever tried to adopt [1]. Elements
of the scheme can be clearly identified in almost every vendors’ scheme today.
The presentation given here is only a very simple overview of the relatively
complex conventions, for a full description refer to the original papers [24,25].
Note that CARO does not provide any central naming coordination authority,
but rather offers a common way of constructing names.

Unlike some other naming conventions, especially automated, the CARO
scheme relies on textual readable descriptions. The full name is constructed
as follows:

<malware_type>://<platform>/<family_name>.<group_name>
.<infective_length>.<variant><devolution><modifiers>

Of the fields here, <family_name> is the only one strictly required.

The following gives a short description of the fields. In [24] rules and advice
for the different fields are given as well, but this will largely not be discussed
here.

<malware_type> This part of the name indicates which type of malware
one is dealing with. This will typically be virus, trojan, backdoor and
so on.

<platform> This part of the name describes the minimum platform the
malware requires to function. If the malware can run on several plat-
forms, the set of platforms is given, such as for example {Linux,W32}.

58 2.6. MALWARE NAMING AND CLASSIFICATION

<family_name> The family name represents the minimum a virus scanner
must report when it detects malware in order to correspond to the
CARO naming convention. This is the component that is typically
seen as the name of the malware, such as for example MyDoom or
BadBoy.

<group_name> The group part of the malware name is used when a large
subset of a malware family contains members that are sufficiently sim-
ilar to each other and sufficiently different from other members of the
family. Usage of group name is deprecated in the revised convention.

<infective_length> This part of the name indicates the length of the
infection of mobile malicious code. It is used to distinguish malware
within a family or group based on their typical infective lengths, when
appropriate28.

<variant> This field separates minor variants of the same malware family
with the same infective length. The value of this field is typically A, B
and so on.

<devolution> Devolution indicates the opposite of evolution, and is used
to indicate a subset of the original malware which was created due to
a bug in the reproduction mechanism. This is valid for malware which
reproduces differently based on the environment, where the buggy re-
production is only one of the possible reproduction schemes. The de-
volution field adds a number behind the variant, typically beginning at
1.

<modifiers> The modifier field is used to convey any particularly impor-
tant information about the malware and the way it reproduces. This
can for example be locale (dependency of a specific language version
of the target platform), which medium it uses to spread (such as p2p
networks, an exploit, IRC and so on) or other characteristics (such as
fast-spreading mass-mailer, slow-spreading mass-mailer, macro and so
on).

28The infective length indicates the amount of data added to infected files.

CHAPTER 2. BACKGROUND AND THEORY 59

2.6.2 Common Malware Enumeration

The Common Malware Enumeration (CME)29 initiative is a project started
in 2005 by the private non-profit MITRE organization and is headed by
the US Computer Emergency Readiness Team (US-CERT). CME’s editorial
board consists of representatives from anti-virus vendors and other relevant
organizations. The central point of CME is that it does not aim at solving the
problem of malware naming, but rather seeks to provide a central identifier
during major malware outbreaks.

Malware indexed by the CME initiative is assigned an identifier on the form
CME-x, where x is a numeric identifier. By the time of writing, 39 outbreaks
have been assigned a CME identifier. As mentioned, the reason that there are
so few entries in the CME list is that it focuses on reporting major malware
outbreaks.

2.6.3 The WildList Organization International

The WildList Organization International30 is a non-profit research organiza-
tion founded in 1996. Its primary purpose is to identify, track, and report on
active computer virus threats. The WildList is a cooperative listing of pos-
itively identified and verified viruses reported as being in the wild by virus
professionals. The list is updated monthly, and consists of in the wild virus
outbreaks that are not confined to small regions.

WildList does not attempt to provide a naming scheme for listed viruses,
nor does it create names; the aim of WildList is to pick a name among those
available and assign it as the name for a given virus family or variant. The
organization attempts to adopt a CARO-formatted name if it can be verified
quickly enough. However, establishing a correct CARO name might take
too long time, as there is no central authority for verifying these names. In
these cases the most widely adopted name from the industry is used. If none
such is established relatively quickly, the name given by the first individual
or organization that discovered the virus is used.

There has been suggested that the WildList be expanded to also include
other kind of malware31.

29CME website - http://cme.mitre.org/.
30The WildList Organization International website - http://www.wildlist.org/.
31Is The Wild List too Tame? - http://www.appscout.com/2007/02/is_the_wild_

http://cme.mitre.org/
http://www.wildlist.org/
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php

60 2.6. MALWARE NAMING AND CLASSIFICATION

2.6.4 The VGrep database

The VGrep database32 is a database generated by scanning samples using
different anti-virus scanners from different vendors. The results are extracted
and added to a text database. This database can then be used to provide
cross reference between malware identification given by some of the more
popular anti-virus products. At the time of writing, the list includes 14
different anti-virus products33.

2.6.5 Automated classification schemes

Automatic classification schemes are, as the name implies, automatic ways to
classify a given malware sample. This can be done with two different goals in
mind; one is to compare different samples in order to classify them in relation
to each other, the other to create a unique ID in order to coordinate efforts.
The former can be used to simplify analysis of new samples which are similar
to existing ones (as the analyst will know that the new sample is a variant of
a given existing one).The latter can be used to create centralized databases
which can be used to coordinate manual naming or other coordination efforts
among anti-virus researchers and vendors.

In [26], an automated virus classification scheme which compares unknown
malware with existing samples and returns a possible match based on behav-
ior is described. This method is unable to classify metamorphic malware, as
it relies on the malware code being non-changing. Non-altering code is classi-
fied using the notion of basic blocks, which is a continuous section of code that
does not contain a jump instruction. To extract these, it is necessary to have
the code in a state where it is unencrypted, unpacked and not obfuscated.
A control flow graph is then constructed, relative addresses normalized and
external library code identified. Then, one of three distance algorithms (edit
distance, inverted index and bloom filters are the suggested algorithms) is
employed to calculate the distance between the content of these basic blocks
and the basic blocks of already analyzed malware. This way, the malware
sample is compared to the previously existing samples, and is thus classified
with respect to, and comparison with, these.
list_too_tame.php

32The VGrep database home at Virus Bulletin - http://www.virusbtn.com/
resources/vgrep/.

33List of anti-virus products used to produce the VGrep database - http://www.
virusbtn.com/resources/vgrep/which_products/.

http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.appscout.com/2007/02/is_the_wild_list_too_tame.php
http://www.virusbtn.com/resources/vgrep/
http://www.virusbtn.com/resources/vgrep/
http://www.virusbtn.com/resources/vgrep/which_products/
http://www.virusbtn.com/resources/vgrep/which_products/

CHAPTER 2. BACKGROUND AND THEORY 61

A commercial implementation that seems to utilize many of the principles de-
scribed in [26] has been created by Sabre Securities. Their VxClass34 software
automatically groups malware into families based on behavior. According to
their webpage, “VxClass can structurally compare executables and thus ignore
byte-level changes such as instruction reordering or string obfuscation. Small
changes in the code or changed compiler settings will not fool VxClass.” Vx-
Class automatically recognizes and removes most packers, before grouping
malware into families based on similarities of functionality. These similarities
are calculated by breaking down the malware into directed graphs consisting
of code/functionality blocks which are then compared. This way, VxClass
can identify whether a malware sample is something brand new or simply a
deviation of something existing (in which case existing analysis results to a
large degree can be reused). An example output from VxClass can be seen
in figure 2.11.

A system for creating a malware ID based on the changes a sample causes
on the infected system is suggested in [27]. This approach is different from
systems classifying the malware according to system calls issued, as it catches
the actual effects the malware has on the target system, rather than simply
its behavior. The presented technique is based on executing malware samples
in a virtualized environment and tracking alterations and creation of system
objects such as spawned processes, registry keys, files and network connec-
tions. These system state changes are the basis for fingerprint creation.
Similarly to the approaches present above, the authors of [27] proposes that
the malware can be grouped based on behavior and distance algorithms for
easier overview. Note that the implementation described uses VMware, and
as such is vulnerable to attacks on virtualization such as those described in
section 2.3 of this thesis.

34VxClass - http://vxclass.com/.

http://vxclass.com/

62 2.6. MALWARE NAMING AND CLASSIFICATION

Figure 2.11: Part of a result output from the VxClass application. Illus-
trates how malware from the same family is correctly grouped together. The
full figure, found at http://www.sabre-security.com/files/rwth_named_
colors.png also shows that other families are grouped together similarily.
Family and variant names have been assigned using the ClamWin anti-virus
engine.

http://www.sabre-security.com/files/rwth_named_colors.png
http://www.sabre-security.com/files/rwth_named_colors.png

CHAPTER 2. BACKGROUND AND THEORY 63

2.7 Sandboxing and code analysis

Sandboxing is a way of analyzing the behavior of an executable inside an
isolated environment. Sandboxing can be done in different granularity, for
example by looking at all system calls or just tracking the resulting changes
made to the sandbox environment. This section introduces malware analysis
in a controlled environment, as this is a technique utilized in this framework.
Focus will be on 32bit Windows systems, as this by far is the most widespread
platform, and thus the one targeted by most malware. An introduction to
the Windows architecture is given in section 2.1.

This section will give an idea about how dynamic analysis can be carried
out in a sandbox environment, and how the behavior of malicious code can
be studied. There are essentially three ways of mapping changes made to a
system by malicious code [28]:

Post-mortem Create an image of the system state before and after the
code is allowed to execute, and compare the images.

Static analysis Manually analyze the malicious code to recognize known
malware and determine what actions the code is supposed to take once
executed.

Dynamic analysis Monitor the actions taken by the code when executing
it.

2.7.1 Post-mortem

There exist several tools to take snapshots of file systems and registry for
the purpose of comparing a “before” image with an “after” image to detect
changes. Doing so gives the analyst information about what changes has
been made to the registry and file system by the malware. This post-mortem
approach has the disadvantage that temporary changes will not be detected.
One example of this is temporary files that are created and removed before
the malicious code terminates. One way to mitigate this is to track all
changes being done to a file system or registry, which also includes temporary
files being created and then deleted. This technique can for instance be
implemented using a VMware setup with undoable disks35. All changes are

35Which means that all changes to disks are tracked in log files rather than performed
directly on the virtual file system, giving the user the option to either commit or reject

64 2.7. SANDBOXING AND CODE ANALYSIS

in this case temporarily written to REDO-files, which can be monitored to
capture the changes. Another issue is that many changes to the registry and
file system are legitimate changes, meaning analysis and filtering is required
to pin-point the changes actually made by the malware.

2.7.2 Static analysis

Static analysis is a technique which is about manually analyzing the pro-
gram code of a malware sample. The challenge is to understand the true
nature of a program from looking at the available code. In most cases, the
uncompiled source code is not available to the analyst, leaving him or her
with the challenge of reconstructing the source code from a compiled binary
using disassemblers, decompilers and other tools. As malware authors have a
large arsenal of obfuscation techniques at hand, such as anti-debuggers and
encryption, reconstructing the source code can be hard. Even if no such
techniques have been used, decompilers can not be expected to recreate the
source code in a structured and easy-readable form. This will differ accord-
ing to the level of abstraction of the relevant programming language, but in
practice, analysts are usually left analyzing assembly language code. This
is especially the case for malware written in low-level languages. Utilizing
static analysis enables the analyst to understand much more of the program
details than what is gained by simply running the code and observing what
happens.

2.7.3 Dynamic analysis

Although static analysis of source code is the best way to ensure complete-
ness, it is often useful to execute the code and analyze its operation in order
to get an understanding of its behavior. To be able to do real-time intercep-
tion of system calls, it is necessary to hook the Windows APIs and redirect
the calls to customized code for logging. System call monitoring is about
looking at information crossing from a process to some part of the kernel.
This includes the name of functions calls, arguments and return values. In
Windows, calls both to the Windows Native API (ntdll.dll) and the user
mode Win32 API dll-files, described in more detail in section 2.1, yields a lot
of information about the behavior of the process that is being analyzed, such

the changes after performing some operation.

CHAPTER 2. BACKGROUND AND THEORY 65

as which files it creates, which registry entries it creates/manipulates, net-
work activities and so on. It is also possible to perform dynamic analysis at
the machine instruction level [28]. This is a very time consuming operation
which will not be explained any further in this thesis.

Available tools for dynamic analysis include debuggers, function call tracers,
emulators and also possibly network traffic analyzers. One challenge when
doing dynamic code analysis is that the code is actually executed and can
potentially cause harm to the host system. To be able to safely execute the
code and perform dynamic behavior, it is desirable to create a secure envi-
ronment to contain the malware and its actions - a sandboxed environment.
A sandbox can be implemented using different techniques, from using a real
system that can be restored to a system copy or similar to using an emulated
system where every system call is controlled by the software. A common way
of creating a sandbox is by using hardware or software virtualization to split
a computer system into several compartments (virtual machines) in which
the malware sample may be executed. Virtual machines might, in addition to
offering separation and isolation, have a snapshot functionality which allows
for easy recovery of a system back to a working state. To serve as a testing
environment for malicious code, it is vital that the sandbox offers complete
isolation from the host system and other virtual machines running on the
same host. It is also possible to employ system call hooking to restrict the
actions malicious code is allowed to perform in a host environment. This way
it is possible to execute the code and monitor its actions without giving the
code any chance to break confinement or do damage to the analysis system.

66 2.8. MULTIPLE PATH ANALYSIS

2.8 Multiple execution paths for dynamic
malware analysis

This section introduces an important issue when performing dynamic analy-
sis; the fact that running a program in a given environment often makes the
code follow only one of many possible paths of execution.

Program code can branch on a variety of different conditions during execu-
tion. This means that just running a suspected malware sample in an analysis
environment might not uncover the true nature of the code, and even may
end up mislabeling it as innocent. Branching conditions can for example be
availability of an Internet connection, existence of specific system objects,
files or registry entries, detection of specific AV engines, service packs, vir-
tualization technology and other information [29]. Other conditions may be
system time, the contents of a file or registry entry or the result of a URL
read operation or download.

[29] describes a test of 308 malware samples from the wild, and concludes
that 172 of these branch or make control flow decisions based on the exis-
tence of or result from interaction with objects such as system time, files or
network access. It also points out that some malware try to detect virtual-
ization or other analysis attempts in order to hide its presence and purpose
in such environments. It further describes an implementation of a framework
that attempts to run through as may executions paths as possible when per-
forming malware analysis.

The framework in [29] aims to broaden the test coverage when analyzing
malware. This is done using solution that tracks certain program input val-
ues and identifies points in the program flow where these input values are
used as branch conditions. The system is built as an extension to the TTAn-
alyze application presented in section 1.7.5, and uses TTAnalyze’s features
for analysis of operating system calls and appurtenant arguments and abil-
ity to filter out system calls originating from the code undergoing analysis.
Whenever a control flow decision is made, the system takes a snapshot of the
content of the process address space and the processor registers. The pro-
gram is then allowed to continue its original path. When the code reaches
a termination point, the system is reverted to the stored snapshot, and the
branch condition value inverted before execution starts again.

This approach has some weaknesses. For example, reverting to snapshot may
disrupt synchronization with external processes such as network protocols.

CHAPTER 2. BACKGROUND AND THEORY 67

The chosen solution to this is to intercept all network system calls and just
return a success code. A read operation from a network resource returns
a random sting. Obviously, this limits the solution’s possibility to deter-
mine behavior of malware employing staged downloaders and other malware
depending on input from the network.

Exploration of multiple execution paths may also be done manually by in-
strumenting the malware sample with a debugger and manually setting the
values of different variables as the code is executed. Doing this manually
can, however, require significant effort as the possible number of execution
paths can be significant. Still, it gives the analyst the opportunity to control
central critical branch conditions.

Note that this problem is not solved in PowerScan, and that this discussion
is only included for reference and information.

68 2.9. SANDNETS - NETWORK BEHAVIOR ANALYSIS

2.9 Sandnets - network behavior analysis

Knowing what actions a malware sample is taking locally on the computer on
which it is executed is important. However, some malware variants, such as
bots, worms, spyware and staged downloaders, may use a network connection
as part of their behavior. This can for example be to report back to the
malware creator, wait for commands, update itself, download new exploits
and so on. Although observing that a malware sample attempts to establish
a network connection gives some information about its behavior, discovering
how malware interacts with other network services, especially other Internet
services, may be essential to discovering its real behavior and intent.

Malware that downloads additional components that wholly or partly de-
pends on an Internet connection for operation is increasing in numbers [30].
Behavioral analysis of such malware samples is challenging, both because of
the multiple path issue discussed in section 2.8 and because samples require
interaction with resources outside control of the analyst. Ideally, the malware
should be allowed to connect to the required external resources and perform
its full exchange. However, doing this prior to having an idea of what is going
to happen may be somewhat risky from a security point of view36.

[30] introduces the concept of a Sandnet, which is a sandbox that can emulate
a full network - or even the entire Internet. The Sandnet concept is realized
by running the malware on a system connected to a Sandnet server that is
set up to respond to every IP packet and emulate protocols like TCP, UDP,
ICMP and DNS. The only configuration needed in the system to be infected is
to set the Sandnet server as default route and primary DNS server. Since the
malware does not receive any proper response to its packets37, the entire code
will probably not execute. Still, seeing which request the malware initially
sends once its TCP, UDP or similar session is establish helps the analyst a
long way toward understanding its behavior. If URLs and/or IRC server and
channels used by the malware are known, this information may be used to
manually investigate what they contain and how they would respond.

As for regular sandboxes, it is possible to perform detection of Sandnets.
This could for example be done by resolving a hostname corresponding to
a known IP in DNS, test ping RTT or IP TTL using traceroute or other

36For example, the malware may try to infect some other host, making it appear as if
the attack is originating from the home domain of the analyst!

37Obviously, the Sandnet is not able to provide the response the malware expects, it
only emulates the basic network protocols.

CHAPTER 2. BACKGROUND AND THEORY 69

diagnosis tools. However, this is not very likely to be implemented in real
malware, as the effort of writing reliable detection would probably outdo the
gain (as a malware analyst may simply just execute the sample, possibly
under the control of a debugger, in order to see its true behavior).

An example of an implemented Sandnet tool is the open source tool Truman38
from SecureWorks.

As for multiple path analysis, the Sandnet solution presented here is not im-
plemented in the PowerScan framework, but merely discussed for informa-
tion. It would also be possible to set up a Sandnet encompassing a virtual
machine running in PowerScan.

38http://www.secureworks.com/research/tools/truman.

http://www.secureworks.com/research/tools/truman

70 2.10. API HOOKING

2.10 API hooking

This section gives an introduction to the concept of API hooking, which
is a technique that can be used to monitor system calls on the windows
platform. This discussion is included as monitoring system calls is highly
relevant to performing dynamic analysis, which is one of the things that can
be done using the PowerScan framework. Obtaining an understanding of
API hooking can help simplify the process of choosing which tools to use for
dynamic analysis in PowerScan.

API hooking involves intercepting calls made to a, for the calling application,
external library. Once the call has been intercepted, the code execution flow is
usually transfered to a section of customized code. This code may for instance
perform logging of the API function name and parameters, manipulate input
parameters or perform any other optional action. The customized code which
is being run is referred as the hook. After the customized code has been
executed, control is transferred back to the original API function or the
calling function. On the Windows platform, hooking is usually done into
the Win32 API DLLs such as kernel32.dll, ntdll.dll, user32.dll and gdi32.dll
described in section 2.139. Rerouting of code execution is supposed to be
hard to detect for the malware function. There are, however, ways to detect
the hooking40, which might be employed by malware authors. The rest of
this section gives an introduction to ways of redirecting control and injecting
code in order to perform hooking.

A prepared library for redirecting system calls in Windows have been made
available by Microsoft41.

The following introduces some techniques for intercepting API calls:

Import table modification is achieved by overwriting the Import Address
Table (IAT) found in every Portable Executable (PE) file. The IAT
contains the entry-point addresses of all API functions that the exe-
cutable or library make use of and is used every time an external API is
called. By replacing the entry-point address of an API with the entry-
point address of the hook, control can be redirected to the replacement

39Note that it might be possible for malware to make calls directly to the undocumented
ntdll.dll API, so it might be desirable to hook this API as well.

40For an example implementation of an API hook detector, see http://www.security.
org.sg/code/apihookcheck.html.

41http://research.microsoft.com/sn/detours/

http://www.security.org.sg/code/apihookcheck.html
http://www.security.org.sg/code/apihookcheck.html
http://research.microsoft.com/sn/detours/

CHAPTER 2. BACKGROUND AND THEORY 71

code (the hook).42

Export table modification is an alternative to IAT modification. The
Export Address Table (EAT) is found in every DLL file and gives the
entry-point address of every function that is offered by the particular
DLL. This table can be modified to transfer control to the hook. Mod-
ifying the EAT of a DLL also causes the GetProcAddress API call to
return the entry-point address pointing to the hook. A process may
choose to use the Win 32 API GetProcAddress to get the entry-point
address of an API function instead of using the IAT. This way, the
EAT technique mitigates a potential weakness with IAT modification,
where the hooking can be bypassed using GetProcAddress.42

Overwrite beginning of API code in memory with a assembly language
JMP instruction. This simple technique redirects control to a section
of custom code. It does, however, require location of the API code in
memory and overwriting non-vital instructions.42

Using a proxy DLL with the same name as the real one. This proxy DLL
must implement all of the API functions of the original DLL. This
technique utilizes function forwarder feature. A function forwarder is
an entry in the DLLs export section that delegates a function call to
another function in another DLL.43

Note that the hook code will have to be injected into the context of the
application that is being hooked44 in order to avoid triggering a security ex-
ception. This can be done in several ways, but in general, it is about making
the application load the hook code into its context. This can for example be
done by using the CreateRemoteThread API call, which is used to create a
thread within the context of another application. This thread can then load
the hook code using the LoadLibrary API call. Another possible way of doing
this is to write the hook DLL into a given registry key (KEY_LOCAL_MACHINE¬
\Software\Microsoft\Windows NT\CurrentVersion\Windows\AppInit_¬
DLLs), which will be loaded by user32.dll (user32.dll loads all libraries at
the specified key during initialization). Obviously, this technique can only
be used for hooking applications which already use the user32.dll API.

42Technique described at http://www.security.org.sg/code/apihookcheck.html.
43Technique described at http://www.codeproject.com/KB/system/hooksys.aspx
44Within the context of an application means within the memory space allocated to it.

http://www.security.org.sg/code/apihookcheck.html
http://www.codeproject.com/KB/system/hooksys.aspx

72 2.10. API HOOKING

Chapter 3
Implementation

“The flim is okee-dokee.”

- The Swedish Chef (The Muppet Show)

74 3.1. PRELIMINARY DEVELOPMENT

3.1 Preliminary development

This section describes the general high-level considerations and decisions
made during the development of the PowerScan framework. This includes
interpretation of the problem description, derivation of concise requirements
for the implementation, choice of development process methodology, a brief
discussion of the high-level architecture and finally some pseudo-code for core
functionality.

3.1.1 System description and requirements

The main purpose of the system can be derived from the assignment text
given in section 1.2:

Phase 1 Create functionality for automatically scanning a file with several
anti-virus engines. The result should be aggregated and presented to
the user.

Phase 2, part 1 Execute the malware while running real-time anti-virus
software (on-access scanner). Aggregate and present the result.

Phase 2, part 2 Execute the malware and perform a dynamic analysis of
its actions on the environment in which it is run.

The following sections further specifies the requirements and wishes for each
of these phases.

Phase 1

Phase 1 does not offer any new functionality compared to existing products.
One example of software which supplies this functionality is OPSWAT’s
Metascan, described in section 1.7.1. Although the functionality required
here is relatively simple and could easily be implemented using one com-
puter, a more comprehensive solution using distributed scanning in several
virtual machines should be chosen, in order to accommodate for the later
phases.

The following core requirements are identified for this phase:

CHAPTER 3. IMPLEMENTATION 75

1. The application must accept a file input.

2. The application must be able to return scan results from a number of
different scan engines.

The following functionality should be implemented:

1. Result filtering for each anti-virus engine (meaning that the result
should be presented in some relatively easy-to-read manner).

2. Parallelization of scan operations.

3. Support for an arbitrary (and unrestricted) number of scan engines.

4. Possibility to plug in new anti-virus engines without recompiling code.

5. Extensibility to allow relatively simple transition to phase 2 (code-
wise).

6. Automatic update of virus definitions.

7. Registration and representation of date of last update of malware def-
initions when showing the scan results.

8. Time-outs for potentially blocking operations.

The following functionality may be implemented:

1. Graphical user interface.

2. Automatic setting of scan machines in ready state, i.e. with fully up-
dated virus definitions and ready to perform scans (powered up, logged
in and with fully updated definitions).

Phase 2, part 1

Given good design choices in phase 1, phase 2 part 1 should be relatively
simple to implement. Within a distributed environment, the necessary oper-
ations will be copying and executing files and reading results of operations.
The required operations are similar for these phases, only some details such
as the order of the operations and the set-up of the environment differs.

The following core requirements are identified for this phase:

76 3.1. PRELIMINARY DEVELOPMENT

1. The application must accept a malware sample and execute it while a
real-time anti-virus engine is running.

2. The application must be able to report the result of this operation for
a number of different anti-virus engines.

3. The application must reset the system after executing the malware to
prevent any permanent harm to the host system.

Additionally, the system should display the general characteristics described
for phase 1.

Phase 2, part 2

The following core requirements are identified for this phase:

1. The application must accept a malware sample, execute it and perform
dynamic analysis on some aspects of its execution.

The following functionality should be implemented:

1. Support for dynamic analysis of several aspects of the malware’s exe-
cution:

• Changes to the local file system.

• Registry changes.

• Network traffic (what is sent, which protocol is used and where is
it sent).

The following functionality may be implemented:

1. Support for extensible plug-in of command-line based dynamic analysis
tools.

CHAPTER 3. IMPLEMENTATION 77

3.1.2 Choice of high level architecture

In the early stages of the project, two distinct high level architectures are
discussed. The first relies on resident code in each guest OS, with the archi-
tecture shown in figure 3.1, while the second fully depends on VMware and
the functionality offered through the VMware VIX API, as shown in figure
3.2. Each architecture has its strengths and weaknesses, as discussed below.

The main strength of the first architecture, shown in figure 3.1, is that it does
not rely much on the underlying technology; all necessary code is custom
written as part of the application and the only external functionality needed
is the ability to capture and restore the state of the OS (before and after
running the malware, respectively). This also mitigates some of the prob-
lems discussed in section 2.3, where malware hides its functionality when it
detects that it is being run in a virtualized environment, as this architecture
does not require that the malware is executed in a virtual machine. In prac-
tice, however, running such a system without using virtualization would be
highly impractical, as the administrative overhead of maintaining snapshots
on several physical computers simultaneously would be significant. Weak-
nesses of the design also include the fact that resident code on the machine
on which the malware is copied and executed may be attacked and results
manipulated. Also, significant work would have to be put into implementing
functionality already offered by virtualization software such as VMware (file
transfer, file execution, state restoration and more).

The main strength of the second architecture, shown in figure 3.2, is that it
utilizes the already implemented functionality in VMware to perform tasks
that would be relatively time-consuming to implement from scratch. Also
it does not rely on any resident code in the guest OSs, leaving no code for
malware to attack. Thus the only way the system can be compromised when
allowing the malware to execute is through a direct attack on the virtualiza-
tion environment. Although possible, this is one of the things that environ-
ments such as VMware aim to prevent. A weakness of this design is that it to
a large degree relies on a vendor-specific implementation (namely VMware’s
VMware Server and VIX1). This can be mitigated somehow through com-
partmentalization of the design, which means that another virtualization so-
lution may be implemented without too much effort - typically by replacing
the VMware VIX API module and keeping the same interface2.

1VIX is an automation API for VMware Server and Workstation, described in some
more detail in section 3.1.3.

2Obviously, such a replacement operation would require that the new virtualization

78 3.1. PRELIMINARY DEVELOPMENT

Figure 3.1: High-level sketch for the first (and unused) architecture.

CHAPTER 3. IMPLEMENTATION 79

Figure 3.2: High-level sketch for the chosen architecture.

80 3.1. PRELIMINARY DEVELOPMENT

Although there exists several possible full machine emulators3 and virtualiza-
tion environments4, VMware’s solution is chosen, as it has a comprehensive
user community and therefore is likely to offer good security (which obviously
is vital when executing files known or suspected to contain malicious code
on the guest OSs) in addition to a well-documented API with automation
for the functionality needed.

3.1.3 Architecture description

As described in the previous section and shown in figure 3.2, the architec-
ture chosen for this system does not rely on any code residing on the OS
responsible for executing malware. The only requirement is that the virtual
machines have an add-on application called VMware Tools installed. This
program is part of the VMware application suite and not part of the Power-
Scan framework. In this manner, the PowerScan framework is independent
of the virtualization servers. The following elements can be identified from
the high-level architecture:

VMware VIX API The VMware VIX API5 is a library that offers auto-
mated access (meaning that it can be called from other applications)
to the functionality offered by VMware Server and VMware Worksta-
tion software. VIX comes in three different versions, one for C, one for
Perl and one for COM. Thus, an application using the library would
either have to use one of these languages or use some kind of binding.
A weakness with VIX is that it does not support interaction with the
GUI of the guest OSs, meaning that any tool used will have to support
command line usage.

Config loader The config loader is responsible for two different configura-
tion files; one XML file containing info about the operational environ-
ment (which anti-virus engines are running, which VMware hosts they
are running on, usernames, passwords, executable paths and so on) and
one file containing constants needed in the system (such as time-outs,
log paths and so on).

solution supports similar functionality to that of VIX.
3See for example Qemu at http://fabrice.bellard.free.fr/qemu/.
4See for example the Xen Hypervisor at http://www.xen.org/ or the Real-Time Sys-

tems Hypervisor at http://www.real-time-systems.com/real-time_hypervisor.
5The VIX API Reference Documentation can be found at http://pubs.vmware.com/

vix-api/ReferenceGuide/.

http://fabrice.bellard.free.fr/qemu/
http://www.xen.org/
http://www.real-time-systems.com/real-time_hypervisor
http://pubs.vmware.com/vix-api/ReferenceGuide/
http://pubs.vmware.com/vix-api/ReferenceGuide/

CHAPTER 3. IMPLEMENTATION 81

Frontend The frontend (in addition to the config loader) is responsible for
handling the interaction between the user and the system. Initially,
the frontend will be implemented as a command-line program which
accepts a number of command-line arguments and prints the result to
console. This component should be written in a fashion which makes
implementing other interfaces, such as a GUI, an overcomable task.

System The relatively undescriptivly named “system” component should
contain the logic needed to perform the desired tasks by combining
the other components of the application. An example of a typical
“system” operation would be to read in environment configuration from
the config reader, connect to the appropriate VMware hosts, copy a
malware sample to the guest OSs running on the hosts, perform scan
on the guest OS and return the result to the user.

3.1.4 Pseudocode for system operations

This section contains pseudo code showing the general system behavior for
some selected tasks. The abstraction level of the pseudo code is based on the
functionality offered by the VIX API [31] and thus shows how VIX can be
used to offer the desired functionality of the system.

Perform scan in guest OS

scan(scanEngine , malwareSample){
// Take snapshot to ensure that there exist a snapshot
// of the clean state .

if(noSnapshotPresent)
vix. takeSnapshot ();

vix. copyFileToGuestOS (malwareSample);

vix. executeFile (scanEngine +" "+ malwareSample +"> result .log");

resultFile = vix. copyFileFromGuestOS (" result .log");

vix. revertToSnapshot ();

result = LogFilter (resultFile);

return result ;
}

Listing 3.1: Pseudocode for scan operation

82 3.1. PRELIMINARY DEVELOPMENT

Execute malware in guest OS running real-time antivirus software

executeMalware (logLocation , malwareSample){
// Take snapshot to ensure that there exist a snapshot
// of the clean state with a real - time scanner running .
if(noSnapshotPresent)

vix. takeSnapshot ();

vix. copyFileToGuestOS (malwareSample);

// Assume real - time scanner is already running
vix. executeFile (malwareSample);

// Allow malware to execute some given time
sleep (executionTimer);

resultFile = vix. copyFileFromGuestOS (logLocation);

// Interrupt execution of malware sample by reverting to snapshot
vix. revertToSnapshot ();

result = LogFilter (resultFile);

return result ;
}

Listing 3.2: Pseudocode for the execute malware operation

Execute malware in guest OS running analysis tools

executeTools (malwareSample , tools , sleepTime){

// Take snapshot to ensure that there exist a snapshot
// of the clean state .
if(noSnapshotPresent){

vix. createSnapshot ();
}

// Copy the malware sample to the remote system
vix. copyFileToGuest (malwareSample , remotePath);

// Log in with the console user so that the running
// programs are visible to the operator .
vix. logInGUIConsoleUser ();

// Start tools
for(analysisTool in tools){

vix. runProgramInGuestNonBlocking (analysisTool);
}

if(malwareSampleNeedExplicitExecution){
vix. runProgramInGuestNonBlocking (malwareSample);

}

// Allow the operator time to interact with the
// analysis tool and the malware .
sleep (sleepTime);

CHAPTER 3. IMPLEMENTATION 83

for(analysisTool in tools){
results .add(vix. copyFileFromGuest (analysisTool . getResultFilePath ()));

}

vix. revertToSnapshot ();
}

Listing 3.3: Pseudocode for the dynamic anlysis operation

84 3.2. IMPLEMENTATION DESCRIPTION

3.2 Implementation description

This sections describes how the system was implemented and provides dis-
cussion on some of the decisions made during the implementation.

3.2.1 Choice of programming language

In a development project, deciding on the programming language to use for
the implementation is one of the first decisions that has to be made. Two
main factors influencing the choice in this implementation can be identified:

1. The chosen language must be able to communicate with the VIX API.

2. The developers’ (that is, the authors of this thesis) experience with the
language.

The first factor did not severely reduce the options; as mentioned in section
3.1.3, VIX is implemented in C, Perl and COM. A Python wrapper called
pyvix6 has been written for the C library, enabling Python support. Sim-
ilarly, a C++ application should be able to call the C library without too
much effort. Lastly, Java offers connectivity with (among others) C or C++
libraries through the usage of the Java Native Interface (JNI). There are
probably several other languages that could be used to call the C library
as well, but this is not discussed any further, as the number of languages
already identified should suffice.

The second factor was in reality far more limiting than the first; although
the developers possess some knowledge in C, C++ and Python, the team’s
programming experience is heavily biased toward Java. Although learning
more of one of these languages would have been an overcomable task, it
was decided that it was better to stick with the most well-known language
and thus be able to direct greater efforts at actually writing good code and
maintaining a good design. For connecting Java to the C library, external
code was decided used, as direct usage of JNI is a non-trivial task7. Two
third-party solutions were considered for this part; the commercial J/Invoke8

6http://sourceforge.net/projects/pyvix
7For example, it requires the programmer to program C or C++ code to create bindings

between different data types.
8J/Invoke - easy Java native interoperability, http://www.jinvoke.com.

http://sourceforge.net/projects/pyvix
http://www.jinvoke.com

CHAPTER 3. IMPLEMENTATION 85

Figure 3.3: Overall package diagram of the PowerScan framework.

and the open source Java Native Access (JNA)9. Both were tested, and it
was decided to use JNA as it is free and open source and offers almost the
exact same functionality and usage value as J/Invoke.

3.2.2 Overall design

The chosen architecture closely reflects the preliminary one discussed in sec-
tion 3.1.3. The overall composition of packages and external frameworks can
be seen in figure 3.3. For a more comprehensive description of each package
and its classes, refer to section 3.2.3.

9Java Native Access (JNA): Pure Java access to native libraries, https://jna.dev.
java.net.

https://jna.dev.java.net
https://jna.dev.java.net

86 3.2. IMPLEMENTATION DESCRIPTION

Figure
3.4:

C
lass

diagram
show

ing
the

PowerScan
fram

ework.

CHAPTER 3. IMPLEMENTATION 87

3.2.3 Component description

This section describes the different packages involved in the PowerScan sys-
tem implementation. The section is structured as follows; first, each package
is given as a separate section, which starts with an introduction to the pack-
age and its functionality. For each package/section, a description of the most
significant classes is given (if any are deemed significant enough to warrant a
separate introduction at all). Note that the Javadoc documentation describ-
ing the different methods in the various classes are attached this thesis.

System package

The system package corresponds to the system component described in sec-
tion 3.1.3; it contains the functionality needed to make the other components
work together. Although this sounds like a simple part, it definitely is not;
the system package is by far the most complex of the packages. This is in
reality not so surprising, as the main purpose of the PowerScan system is to
act as a framework and tie other components together. A class diagram of
the package is given in figure 3.5.

The following gives a description of the most significant classes in the system
package:

Scanner The Scanner class contains all logic associated with anti-virus en-
gines. It combines parameters read from the XML configuration file
with functionality offered by VMware VIX via the VMware package
described later in this section. Significant public methods offered by
Scanner include:

• scan() performs a scan operation of the supplied file with the as-
sociated anti-virus engine.

• startThreadedScan() starts a scan operation in a thread and re-
ports result to a given callback function. For more information
about threaded operations in PowerScan, see the discussion about
threading in section 3.2.5.

• updateAV() updates the anti-virus engine’s anti-virus definitions
(if automated updates are supported by the engine associated with
the scanner).

88 3.2. IMPLEMENTATION DESCRIPTION

Figure 3.5: Class diagram for the system package. Note that not all functions
and attributes are shown, only the ones deemed most relevant for understand-
ing the package.

CHAPTER 3. IMPLEMENTATION 89

• startThreadedAVUpdate() starts an update operation in a thread
and reports result to a given callback function.

• executeMalwareSample() executes a malware sample with a real-
time anti-virus scanner running in the background. The intention
of this operation is to increase the likelihood to detect and cor-
rectly classify malware employing the hiding techniques described
in section 2.4.

• startThreadedMalwareExecution() starts malware execution in a
thread and reports the result to a given callback function.

Executor The Executor class is similar to the scanner class, in that it repre-
sents the set of dynamic analysis tools running on one virtual machine.
Although this can also be seen as a difference; a Scanner object rep-
resents exactly one scanner running at exactly one virtual machine,
while an Executor represent an arbitrary number of tools running on
one virtual machine (this is done as different analysis tools usually are
not conflicting, while anti-virus engines usually are). Note that unlike
the Scanner class, the Executor class does not perform (or support)
operations in parallel. This is done to give the malware analyst the
possibility to interact with the system10 while the sample is running,
in order to manipulate both the analysis tools and the malware itself.
The sleep period that the system allows interaction is configurable, and
may be interrupted using the console or GUI when the system is run-
ning and the operator does not need any more interaction time. Some
important public methods in the Execution class include:

• executeTools() start execution of all the analysis tools registered
with one virtual machine.

• revertToSnapshot() reverts the virtual machine to a previously
stored snapshot.

PowerScan The PowerScan class is a central class used to tie the different
system components together. This typically means that it accepts UI
parameters such as paths to the configuration files from the Frontend,
instantiates the Connector (see description below), starts the appropri-
ate action (scan, update, execution or dynamic analysis) and returns
the result. This is the class that should be used if PowerScan is to
be used as a library. Significant public methods offered by PowerScan
include:

10This means logging in to the virtual machine using for instance the VMware Server
Console.

90 3.2. IMPLEMENTATION DESCRIPTION

• scan() performs a surface-scan on the given malware sample file
using the registered anti-virus engines.

• update() attempt to update all scanner registered in the system.
• getLastUpdate() get the date of the last call to PowerScan.update()

from this client.
• executeMalwareSample() execute the supplied malware sample on

all registered scanners.
• executeInAnalysisTool() run the supplied malware sample in all

the registered dynamic analysis tools.
• getLogger() returns a logger object for the calling class.

Connector The Connector is responsible for translating the simple config-
uration beans representation of the surrounding environment to actual
live and connected objects. This is done by reading information about
the available anti-virus engines, analysis tools and so on from the con-
figuration beans (which are created by the XMLParser class using the
Simple XML framework) and instantiating the corresponding objects.

ThreadHandler The ThreadHandler is responsible for managing threaded
scanner operations. This includes starting the requested operations
(such as for example scan), playing the role as callback function for the
threads when the operation finishes, keeping track of which scanners
has completed, keeping track of timeouts, performing necessary oper-
ations on timed out scanners (typically reverting them to previously
taken snapshots) and so on. Significant methods offered by Thread-
Handler include:

• performScan(), updateScanners() & executeMalware() which per-
form the self-explanatory operations on all Scanner objects regis-
tered with the ThreadHandler (“registration” of scanners is done
in the constructor).

• reportResult() which are two callback functions (with different pa-
rameters) used by the different scanner thread executions. The
functions are introduced through implementing two interfaces,
ScanThreadCallback and AVUpdateThreadCallback (these inter-
faces will not be discussed in any further detail).

LogFilter The LogFilter is a generic filter that can be used to filter results
from different operations performed by scanners. The log filter is pre-
sented with the result of an operation as a reference to a file containing

CHAPTER 3. IMPLEMENTATION 91

the log. The filter has three modes of operation; it can search for a line
containing a given string (a success indicator) and return the string
between some delimiters in that line (every line containing the success
indicator will be processed), it can search for a given success indicator
and return that entire line (every line containing the success indicator
will be returned) or it can return every line in the result (in which case,
its only functionality is to read a file to a string).

Frontend The Frontend represents a presentation layer between the user
and the PowerScan system. The Frontend class itself comes with a
command line interface, using the standard out stream (stdout) and the
standard error stream (stderr), but it can also be extended to support
other types of UI, such as for example GUI (and, indeed it has been
extended to use a GUI, for more information see the GUI package).
Significant classes of the Frontend are the different functions used for
presenting the user with info, such as:

• displayInfo() which displays a regular information message.
• displayWarning() which displays a warning message.
• displayError() which displays an error message.
• sleep() which is a method that halts execution of the running

thread for a given amount of seconds. This method is used when
executing the analysis tools to allow operator interaction. The
sleep method may be interrupter by user interaction.

• displayUpdateResults() which displays the results of the update
operations on each guest OS.

• displayScanResults() which displays the results of the scan oper-
ations on each guest OS.

• displayAnalysisToolsResult() which displays the results of the anal-
ysis operations on each guest OS.

It was considered separating the Frontend class from the system pack-
age into a separate package called UI (along with the GUIFrontend
and GUI classes), but as the different display functions of Frontend are
called from throughout the system package, it was decided that it can
be seen as a natural part of the system.
The Frontend is implemented using the singleton pattern, providing
a single point which all in- and output must pass through. This also
makes it relatively simple to implement other types of UIs as these can

92 3.2. IMPLEMENTATION DESCRIPTION

simply be returned by the singleton’s getInstance() function, as long
as they inherit from the Frontend11. Making calls to the Frontend’s
display methods from different locations in the code is also simple,
as it can be done on the form Frontend.getInstance().displayInfo(“The
scan is okee-dokee.”).

The System package also contains a subpackage, errors, which containd the
relevant exceptions that can be thrown from the system package. These are
simple self-explanatory exceptions which describe different error situations
and will not be discussed in further detail.

VMware package

The VMware package contains the logic needed to perform the needed oper-
ations against VMware hosts and virtual machines. This is done by calling
the VIX C API [31] using a JNA binding, as discussed in section 3.2.1. The
package only contains four classes, but it is still central to the operation of
the PowerScan framework; all the functionality offered by PowerScan requires
the usage of VMware Virtual Machines, and the VMware package contains
all the code needed to “talk to” VMware. For a class diagram of the VMware
package, see figure 3.6.

The classes of the VMware package are:

VixInterface The VixInterface is an interface for the functions from VIX
that are used in the system. This interface is required by JNA in order
for it to be able to do mapping between the C API and Java code. The
class simply contains skeleton functions corresponding to the similar
ones in VIX, only with Java data types. VixInterface is discussed in
some more detail in the JNA description in section 3.2.4.

GuestOS The GuestOS class represents an instance of a virtual machine
associated with the system. It implements a subset of the VIX API,
namely the subset which represents the (relevant) operations that can
be performed on a virtual machine. These functions include:

11Note that this was not as great a success in practice, as inheritance from singletons
is problematic (because private constructors can not be overridden). In consequence, the
Frontend has a protected constructor, which violates the singleton pattern. In retrospect,
it is seen that other solutions for this, such as the usage of a static class, should have been
researched.

CHAPTER 3. IMPLEMENTATION 93

Figure 3.6: Class diagram for the VMware package. Note that not all func-
tions and attributes are shown, only the ones deemed most relevant for un-
derstanding the package.

• powerOn() powers on the virtual machine.
• powerOff() powers off the virtual machine.
• login() logs in to the virtual machine with the username and pass-

word given in the constructor of the GuestOS class.
• copyFileFromGuest() copies a file from the virtual machine guest

OS to the client.
• copyFileToGuest() copies a file from the client computer to the

guest OS on the virtual machine.
• runProgramInGuest() runs a program in the guest OS.
• takeSnapshot() takes a snapshot.
• revertToSnapshot() reverts to snapshot.

The GuestOS class attempts to release all resources associated with it
in VIX in its destructor.

94 3.2. IMPLEMENTATION DESCRIPTION

VMwareServer The VMwareServer class represents a server on which vir-
tual machines are hosted. Similarly to GuestOS, each instance of
VMwareServer represents an instance of VMware Server running on
a physical server, and implements a subset of relevant operations on
VMware Servers from the VIX API. These operations are:

• connect() connects to the VMware Server.
• openVM() loads a given virtual machine running on the VMware

Server. This operation returns a GuestOS instance.
• disconnect() disconnects from the VMware Server.

CallbackProc The callback procedure is an implementation of the callback
functionality offered by the JNA API, which allows an operation to be
performed against VIX in a non-blocking manner. This allows the call-
ing function to perform other operations while waiting for the current
operation to finish. It can also be used to prevent the system from
locking in case the called operation never returns (which can happen
when using VIX). In practice, the common usage of this functionality
within PowerScan is to start one or more operations, then sleep for
some time, check whether the operation(s) has finished, if not, sleep
again. This is then repeated either until timeout or the operation(s)
finish(es).

Note that it would be possible to interact with the VIX API using only the
VixInterface class - the GuestOS and VMwareServer classes are there to add
object orientation and to simplify usage12.

Similarly to the system package, the VMware package has a subpackage
called errors which contains simple self-explanatory exceptions. These also
have the capability of carrying an error-code and the corresponding textual
description of the error, as returned from VIX.

configbeans package

The configbeans package13 contains simple beans which store an object ori-
ented view of the information represented in the XML configuration file. The

12Indeed, the introduction of these classes heavily simplifies the usage, as it allows the
programmer to ignore the finer details of the non-object oriented C API.

13Which in fact is a subpackage of the System package.

CHAPTER 3. IMPLEMENTATION 95

config beans are used as a means to be able to use the Simple framework dis-
cussed in section 3.2.4 to automatically parse the XML configuration. The
config beans are then later used by the Connector class of the system package
to instantiate the needed objects. The beans are built to closely reflect the
relations between different elements in the PowerScan in the same manner as
the XML. For a class diagram over the configbeans package, refer to figure
3.7.

Figure 3.7: Class diagram for the configbeans package. Note that the only
functions in this package are setters and getters, which are ommitted in this
diagram.

configloader package

The configloader package is the implementation of the config loader described
in the high level architecture discussed in section 3.1.3. Thus it is responsible
both for reading constant definitions from the properties file and parsing the
XML to a usable format for the system. The latter operation is definitely

96 3.2. IMPLEMENTATION DESCRIPTION

Figure 3.8: Class diagram for the configloader package. Note that not all
functions and attributes are shown, only the ones deemed most relevant for
understanding the package.

the most complex of the two, and involves the usage of the Simple framework
described in section 3.2.4 and the configuration beans described earlier in this
section. The package also contains functionality for verifying the correctness
of the XML using both the XSD and the DTD validation schemes. For a
class diagram of the config loader, refer to figure 3.8. A description of the
validation scheme used for the XML configuration can be found in section
3.2.5.

The most significant classes of the config loader package are:

PropertiesReader The PropertiesReader is responsible for reading prop-
erties from a Java properties file. For an example properties file and
a description of its fields, refer to section D.4. The properties reader
is implemented as a singleton, meaning that there can only exist one
instance of it at the time. The properties are either read from a explic-
itly given file given as an initialization parameter or attempted read
from the default properties file location (config\powerscan.proper-

CHAPTER 3. IMPLEMENTATION 97

ties14). The constants are read from the properties file using a key
and a hard coded default value (used in case the key can not be found
or the properties file can not be read), with different getter functions
based on the type of value (int, boolean and so on). The properties
reader is implemented as a wrapper with some extra functionality on
top of java.util.Properties.

XMLParser The XML parser is basically just a wrapper for the Simple
XML framework described in section 3.2.4 and does not provide much
extra functionality besides wrapping in the framework and calling the
validator. See section 3.2.4.

XMLValidator Performs validation an XML file based on an XSD or DTD
schema15. See section 3.2.4 for details.

GUI package

The GUI package provides a graphical user interface extension to the Fron-
tend class described in the system package. This includes a main window for
performing the major operations of PowerScan and a configuration editor.
The configuration editor provides a graphical user interface for editing the
XML configuration file which describes the operational environment of the
framework. This functionality is naturally closely integrated with the config
beans, which are used for storing information both as it is written to and
read from the GUI16. Using the config beans in this manner allows seamless
integration between the GUI and the actual XML file, utilizing the Simple
framework described in section 3.2.4 via the XMLParser class. Before XML
created or modified using the configuration editor is saved to file, it is val-
idated using the XMLValidator from the configreader package. The class
diagram for the GUI package is shown in figure 3.9.

The most important classes of the GUI package are:

GUI This GUI class contains all the code needed for the main GUI window.
14The separator is adjusted to the platform, so the default file will be read correctly on

other OSes as well.
15During implementation of the system, both XSD and DTD schemes were created, but

in the end only the XSD schema was used. XSD was chosen as it is the newest of the two
schemes and is generally perceived to be the most powerful.

16In fact, classes extending Java’s JPanel keeps references their related beans for easy
access.

98 3.2. IMPLEMENTATION DESCRIPTION

Figure 3.9: Class diagram for the GUI package. Note that not all functions
and attributes are shown, only the ones deemed most relevant for under-
standing the package.

CHAPTER 3. IMPLEMENTATION 99

It starts operations by making calls to the PowerScan class in the same
manner as the Frontend class. Additionally, it provides functionality for
storing the text written to the console window. Whenever an operation
is started from the GUI (such as scans, updates and so on) a new thread
is launched for execution. This is done to ensure that the GUI does
not lock up while the execution is controlled by the started operation,
and allows the GUI to display progress messages during execution. The
GUI has the following important public methods:

• appendInfo() is used by the GUIFrontend class to append infor-
mation messages to the user in the console text area.

• appendWarning() is used by the GUIFrontend class to append
warning messages to the user, by appending the messages to the
console text area.

• appendError() is used by the GUIFrontend class to append error
messages to the user, by appending the messages to the console
text area and in addition present the user with an error dialog
box.

GUIFrontend This GUIFrontend class extends the Frontend class, and
overrides the display methods defined there, so that the information
is shown in the GUI console area instead of being sent to the standard
out stream.

GUIConfigEditor This is the main class in the config editor system, which
also represents its main window. Additionally, it holds all the menu
items needed to edit the XML configuration.

3.2.4 Frameworks and third party code used

The PowerScan framework utilizes a number of third party frameworks in
order to offer the desired functionality. It has been sought to as often as pos-
sible use publicly available open-source frameworks which have been around
for a while, in order to minimize cost and maximize quality.

Java Native Access

As mentioned earlier, communication between the PowerScan framework and
the VMware virtual machines is achieved using the VMware VIX C API. To

100 3.2. IMPLEMENTATION DESCRIPTION

be able to communicate with the virtual machines, it was necessary to use
this API, available as a dll-file for Windows. The chosen solution was to write
a wrapper class in Java and call the VIX C API. Three solutions were con-
sidered for this problem; Java Native Interface17 (JNI), Java Native Access18
(JNA) or J/Invoke19. JNI requires knowledge of the languages on both sides,
as type conversions and so on must be done manually. JNA and J/Invoke
removes this knowledge requirement by largely performing conversion auto-
matically20. J/Invoke and JNA offers basically the same functionality, the
biggest difference being that J/Invoke is a commercial product, while JNA is
an open-source project. After performing some tests and realizing that both
products suited the needs here well, it was decided to use the open source
alternative.

JNA requires a wrapper class, used for conversion, which is written as a Java
interface. An example of how the wrapping can be done is shown below21:

public interface VixInterface extends com.sun.jna. Library {

VixInterface INSTANCE = (VixInterface) Native . loadLibrary ("vix",
VixInterface . class);

public int VixVM_Open (int hostHandle ,
String vmxFilePathName ,
Callback callbackProc ,
byte [] clientData);

}

Listing 3.4: Example of a JNA interface - VixInterface - with one function.

The actual implementation of the interface defines all relevant functions from
the vix.dll file, redefined to Java data types. The mapping and conversion of
Java data types to native C data types is done by the JNA framework.

17Sun Microsystems JDK6 Java Native Interface -related APIs and Developer Guides -
http://java.sun.com/javase/6/docs/technotes/guides/jni/index.html

18Java Native Access (JNA): Pure access to native libraries - https://jna.dev.java.
net/

19J/Invoke | easy Java native interoperability - http://www.jinvoke.com/
20Some mapping is required, but this is trivial compared to the effort required when

using JNI.
21Naturally, the actual interface contains more functions, the code listed is only used

for illustrating the principle.

http://java.sun.com/javase/6/docs/technotes/guides/jni/index.html
https://jna.dev.java.net/
https://jna.dev.java.net/
http://www.jinvoke.com/

CHAPTER 3. IMPLEMENTATION 101

Simple

According to the SimpleXML website, “Simple is a high performance XML
serialization and configuration framework for Java. Its goal is to provide
an XML framework that enables rapid development of XML configuration
and communication systems. This framework aids the development of XML
systems with minimal effort and reduced errors.” In other words, the Simple
framework focuses on providing an easy entry point to XML when using Java.
In this usage, this was initially a significant advantage, but it later turned
out that Simple may have been a bit too simple, as it did not provide any
functionality in terms of validation.

In PowerScan, Simple is used to deserialize XML to JavaBeans22 (located
in the configbeans package), which are then used by the Connector class
to instantiate the actual objects representing the entities used by the rest
of the system. It is also used for serialization by the XML config editor
in the GUI, when storing the entered information to file. Simple does not
require any configuration besides annotations in the config beans that tells
the framework which elements and attributes from the XML file maps to
which objects in the bean classes.

The following is an example of annotations from the AVEngineBean class,
which carries information about an anti-virus engine23:

@Attribute
private String name;

@Element (name=" avExecutablePath ")
private String executablePath ;

@Element (name=" avParameters ")
private String parameters ;

Listing 3.5: The AVEngineBean annotations

Apache Commons CLI

The Apache Commons Command Line Interface24 (CLI) is used to offer the
command line interface capability of PowerScan. The Apache Commons CLI

22JavaBeans are objects that are used to carry other objects, and contains no other
functions than setters and getters for the encapsulated objects.

23Note that the setters and getters are omitted.
24Apache Commons CLI home - http://commons.apache.org/cli/

http://commons.apache.org/cli/

102 3.2. IMPLEMENTATION DESCRIPTION

API provides a simple way to automatically parse command line parameters,
print help messages and more. The API is used by defining a set of command
line options, which can be optional or mandatory, may accept a parameter
and has a corresponding description. The following is an example of usage
of options taken from the Frontend class of PowerScan25:

Options options = new Options ();

options . addOption ("GUI", false , " Determines whether to use a GUI.");
options . addOption ("scan", true , " Performs a surface scan of the supplied

malware sample with all scan engines configured in the XML config file.
");

Listing 3.6: Apache Commons CLI usage example part I

After having defined the options, a parser is constructed to parse the Java
main function parameters against the options26:
public static void main(String [] args){

try{
CommandLineParser parser = new PosixParser ();
CommandLine cmd = parser . parse (options , args);

if(cmd. hasOption ("GUI")){
// Initialize GUI
return ;

}

if(cmd. hasOption ("SCAN")){
String malwareSample = cmd. getOptionValue (Frontend . AV_SCAN_OPTION);
// Perform scan operation
return ;

}

} catch (ParseException e){
// Inform user that parsing failed and print usage instructions .
new HelpFormatter (). printHelp ("java -jar powerscan .jar [arguments].",

options);
}

// If no recognized parameters was found , print usage information .
new HelpFormatter (). printHelp ("java -jar powerscan .jar [arguments].",

options)
}

Listing 3.7: Apache Commons CLI usage example part II

Execution would then result in the following output27:
25Note that the actual implementation contains more options than this example - it has

been shortened for simplicity.
26This is also heavily simplified compared to the implementation.
27Obviously, running the command line with the -GUI or -SCAN switches would produce

other outputs.

CHAPTER 3. IMPLEMENTATION 103

> java -jar powerscan .jar
usage : java -jar powerscan .jar [arguments] <malware sample >.

-GUI Determines whether to use a GUI.
-SCAN <arg > Performs a surface scan of the supplied malware

sample with all scan engines configured in the XML
config file.

Listing 3.8: Apache Commons CLI usage example part III

Apache Xerces XML Parser

The Apache Xerces Parser is used to perform validation of the XML configu-
ration file against a referred XML Schema Definition (XSD) file. This is done
by running the XML document through the Xerces parser with the validation
feature turned on. The validator will then check both that the XML docu-
ment is well-formed and that it is valid. A well-formed XML document is a
document that conforms to the XML language rules. This involves checking
that all tags are ended and that nesting of elements is done properly. Val-
idation, on the other hand, is done against a referred schema, and is about
verifying that the XML document conforms to the schema. Restrictions that
can be included in a schema are number of instances of an element or at-
tribute, whether the elements and attributes are required or optional and
allowed data types. If any of these these checks fail, an exception is thrown
and handled by the application according to the severity of the error.

Although Xerces could probably be used for parsing the XML as well, it
was decided to use Simple for this, as it provides the functionality in a very
hassle-free way. Unfortunately, Simple does not support any strict valida-
tion (although some validation is done using annotations), which is where
Xerces comes to its right. In a sense, using two frameworks for XML may be
unfortunate, but the decision has pragmatic reasons: the framework which
provided the desired functionality with the least effort was chosen in both
cases.

3.2.5 Operation description

This section describes how significant components in the PowerScan frame-
work works together to offer the functionality described in section 3.1. This
section will mostly be related to significant functionality which has not been

104 3.2. IMPLEMENTATION DESCRIPTION

described in sufficient detail in the package and framework descriptions, typ-
ically because it spans over several classes and/or packages.

Malware Execution

This section illustrates how execution of malware with a real-time anti-virus
solution running in the background is performed. This is the only operation
described here, as the others are conceptually similar, only with other pa-
rameters and function orders. The sequence chart can be seen in figure 3.10
and consists of the following phases28:

1. The Scanner object receives a call instructing it to start malware ex-
ecution, with the malware sample and two booleans as parameters.
The two booleans indicate whether snapshot should be taken before
execution and reverted to after.

2. The scanner optionally takes snapshot before starting the operations.

3. The malware sample is copied to the virtual machine.

4. A callback procedure is instantiated and the guest OS is instructed to
start execution of the malware sample and inform the callback proce-
dure when execution has finished. The VIX API (via JNA) will call a
given function in the callback procedure object once execution of the
malware thread has finished. The malware is allowed to execute either
until callback is received or until timeout.

5. The real-time anti-virus log file is then copied back to the PowerScan
client machine and written to the scanner log file. A filter with the
information given in the XML is then created and used to parse the log
file to obtain the desired result. Then, a snapshot is optionally taken
before the scan result is returned to the caller.

Note that the snapshot functionality of these functions are not used in or-
dinary PowerScan execution, as the ThreadHandler class handles snapshots
(to prevent these operations from delaying presentation of operation results).

28Note that the sequence has been simplified to only show the relevant operations.

CHAPTER 3. IMPLEMENTATION 105

Figure 3.10: Sequence diagram showing malware execution with real-time
anti-virus software running. Presumes that the system is already “up and
running”. Note that calls going to VixInterface and to/from the actual VIX
API are omitted.

106 3.2. IMPLEMENTATION DESCRIPTION

Threading

In order to be able to fully utilize the parallel nature of the involved virtual
machines, PowerScan performs certain operations in parallel. As PowerScan
supports an arbitrary number of virtual machines running on an arbitrary
number of VMware hosts, using the virtual machines in sequence would be
very inefficient. This section presents how scans are performed in parallel,
but the exact same principles are utilized when updating the anti-virus soft-
ware, executing malware samples with real-time anti-virus scanners running
in the background and performing non-blocking operations in VIX. Thus,
parallelization of the two latter operations will not be described in any fur-
ther detail. For reasons discussed is section 3.2.3, dynamic tool analysis of
malware is performed in sequence.

Figure 3.11 shows the (somewhat simplified) message sequence for a threaded
scan. Note that this figure presumes that the system is up and running,
meaning that the XML configuration has been parsed and objects has been
instantiated accordingly. Similarly, some functionality has been omitted for
readability. The operation consists of the following phases:

1. The Frontend class receives input from the user, instructing the system
to perform a scan of a given file. The Frontend forwards this request
to the central PowerScan class, which is responsible for “getting the
job done”. The PowerScan class then instantiates a ThreadHandler
instance, which is responsible for managing the threads that will later
be used for execution, and instructs it to start the scan.

2. The ThreadHandler instructs all registered scanners to start a threaded
scan of the supplied file. The ThreadHandler also supplies a reference
to itself, which will be used for sending callbacks when the threads
finish (this reference is not shown in the figure).

3. After having initiated scans in all scanners, the ThreadHandler polls
itself after a time interval (set in the properties file) to check whether
all scanners has completed. This is repeated either until timeout or
until all scanners are done (whichever occurs first).

4. If the timeout is reached before all the scanner threads have called back,
the ThreadHandler assumes the operation has timed out, and reverts
the virtual machines running any remaining scanners to its previously
taken snapshot before returning the results to the PowerScan class.

CHAPTER 3. IMPLEMENTATION 107

Fi
gu

re
3.
11
:
Se
qu

en
ce

di
ag
ra
m

sh
ow

in
g
a
th
re
ad

ed
sc
an

op
er
at
io
n.

Pr
es
um

es
th
at

th
e
sy
st
em

is
al
re
ad

y
“u

p
an

d
ru
nn

in
g,
”
m
ea
ni
ng

th
at

al
ls

ca
nn

er
s
ar
e
lo
ad

ed
an

d
re
ad

y.

108 3.2. IMPLEMENTATION DESCRIPTION

Logging

Most significant classes in the PowerScan framework implement logging. The
logging is implemented using the java java.util.logging package which comes
with Java Standard Edition. The logging uses three of the six default levels
supplied in Java, namely Info, Warning and Severe29. Logging classes fetch
a static reference to the appropriate loggers and write to these objects30.
Although the simple form log.info(“The scan is okee-dokee!”) can be used,
most logging objects define their own private logging function, as it is useful
to write some information about the context of the log message, especially
when several threaded instances of the same objects (for example different
Scanner objects) are writing to the same log file simultaneously. These pri-
vate logger help functions append some context information and write the
message to the log file.

XML config file

Configuration of the operational environment in the PowerScan framework
is represented in the form of an XML-formatted configuration file. XML
was chosen as configuration representation due to the fact that it is highly
extendable, structured and gives a good overview in that it gives a logical
presentation. It also allows the usage of validators to more or less automati-
cally verify that the XML document follows given rules. The chosen solution
for validation was to use W3C XML Schema Definition (XSD) as the de-
scription language, and hence the XML file is described with the help of an
.xsd file. The W3C XSD language is based on XML, and is a more powerful
and rich alternative to its predecessor, the Document Type Definition (DTD)
language.

A description of the PowerScan XML based on the XSD schema can be found
in section D.3. A description of the XMLParser and XMLValiator classes can
be found in section 3.2.3.

29 The log levels Config, Entering and Exiting are not used
30The Logger instance reference is fetched using the PowerScan class’ getLogger() func-

tion.

CHAPTER 3. IMPLEMENTATION 109

Properties file

The other configuration file, properties, is used to set timeout values for dif-
ferent operations and some global paths. This, among other things, includes
the log file paths to be used for the PowerScan log files on the local system.
The properties file is read by the PropertiesReader class, which can parse
the values from the properties file into strings, integers, doubles or booleans.
Every call to the config reader contains a default value, such that if the config
reader is unable to find the requested value the default value will be returned
and used.

An example properties file can be found in section D.4. A description of the
PropertiesReader class can be found in the component description in section
3.2.3.

110 3.3. SYSTEM ANALYSIS AND CONSIDERATIONS

3.3 System analysis and considerations

This section describes the characteristics of the implemented product. Where
section 3.2 dealt with how the system is implemented, this section focuses
on the implementation and its results and consequences.

3.3.1 Requirement analysis

This section performs a simple analysis of which of the initial requirements
formulated prior to starting this project has been met in the PowerScan
framework implementation.

Requirement analysis for phase 1

Recall the description of phase 1 identified in section 3.1.1: “Create function-
ality for automatically scanning a file with several anti-virus engines. The
result should be aggregated and presented to the user”. For a description of
each of the individual requirements, please refer back to section 3.1.1. The
following describes the fulfillment of core requirements identified for phase 1:

Core requirement 1 This requirement is fulfilled. The application can
accept any file input.

Core requirement 2 This requirement is fulfilled. The application can use
multiple scan engines at once.

The following describes the fulfillment of recommended requirements (re-
quirements that should be fulfilled):

Recommended requirement 1 This requirement is fulfilled. The appli-
cation supports simple string-based filtering which in most cases should
be sufficient to display the isolated result string.

Recommended requirement 2 This requirement is fulfilled. Scan opera-
tions are performed in parallel.

Recommended requirement 3 This requirement is fulfilled. Given a suf-
ficient number of servers running VMware, any number of scan engines
can be run at the time.

CHAPTER 3. IMPLEMENTATION 111

Recommended requirement 4 This requirement is fulfilled. New anti-
virus engines are plugged in using XML, and can thus be done without
recompiling.

Recommended requirement 5 This requirement is fulfilled. Usage of one
VMware virtual machine for each scan engine is an overkill for part 1,
but makes the transition to part 2 relatively trivial.

Recommended requirement 6 This requirement is partly fulfilled.
PowerScan supports automatic updates for most engines, although
some need user interaction. This is because PowerScan is only able
to perform operations via the command line.

Recommended requirement 7 This requirement is partly fulfilled.
PowerScan stores the time and date of the last initiation of the update
command in the registry of the client machine. Although this may not
be the last time and date of the actual update operation for each scan
engine, it should give a good estimate. This is especially true if only
one client computer is used, as the time and date then represents the
last time an update operation was explicitly initialized. It is, however,
worth noting that the time and date may not be correct, as some anti-
virus engines update automatically when given the chance and because
update operations may have been initiated through PowerScan on other
client machines.

Recommended requirement 8 This requirement is partly fulfilled.
The most likely operation to block, file execution, has been made non-
blocking. Other time-consuming operations such as file transfers are
not. This is because an unfinished (and thus aborted) file transfer is
deemed less critical than execution of malware on the virtual machine.

The following describes the fulfillment of optional requirements (requirements
that may be fulfilled):

Optional requirement 1 This requirement is fulfilled. Although not re-
ally planned implemented before the project started, a GUI has been
implemented. This is made possible partly through the extendable
implementation of the generic Frontend class.

Optional requirement 2 This requirement is fulfilled. Each time a Pow-
erScan operation is started, the virtual machines are powered on and

112 3.3. SYSTEM ANALYSIS AND CONSIDERATIONS

logged in to. If the virtual machines are powered on before the op-
eration starts, this step simply returns immediately. Performing the
update operation will power up all virtual machines, log in, perform
updates for all scan engines supporting this operation and then take a
snapshot. This will lead to the “ready state” described in the require-
ments.

Requirement analysis for phase 2, part 1

Recall the description of phase 2, part 1 identified in section 3.1.1: “Exe-
cute the malware while running real-time anti-virus software. Aggregate and
present the result”. For a description of each of the individual requirements,
please refer back to section 3.1.1. The following describes the fulfillment of
core requirements identified for phase 2, part 1:

Core requirement 1 This requirement is fulfilled. The system accepts a
file input and executes it on every registered virtual machine running
a scan engine that supports real-time scan.

Core requirement 2 This requirement is fulfilled. As for phase 1, Power-
Scan supports any number of scan engines.

Core requirement 3 This requirement is fulfilled. Both in case of success
and failure, PowerScan reverts every virtual machine to the previously
taken snapshot after performing its operations. This goes for all phases.

As the implementation is common, the system also display the characteristics
described for phase 1.

Requirement analysis for phase 2, part 2

Recall the description of phase 2, part 2 identified in section 3.1.1: Execute the
malware and perform a dynamic analysis of its actions on the environment
in which it is run. For a description of each of the individual requirements,
please refer back to section 3.1.1. The following describes the fulfillment of
core requirements identified for phase 2, part 2:

CHAPTER 3. IMPLEMENTATION 113

Core requirement 1 This requirement is fulfilled. PowerScan supports in-
sertion of dynamic analysis tools which can perform analysis of several
aspects of its execution.

The following describes the fulfillment of recommended requirements (re-
quirements that should be fulfilled):

Core requirement 1 This requirement is partly fulfilled. Due to the fact
that the majority of analysis tools are GUI based, finding such tools
which can be plugged easily into the PowerScan framework is some-
what problematic (see section C.1 for an analysis of some of the tools
available). Luckily, such tools as the Norman Sandbox Analyzer gives
a comprehensive analysis which can be copied back.

The following describes the fulfillment of optional requirements (requirements
that may be fulfilled):

Core requirement 1 This requirement was fulfilled. PowerScan uses the
same XML configuration for all phases, and thus any number of (com-
mand line interface based) dynamic analysis tools may be plugged in.

3.3.2 Functionality tests

When developing software, testing is a vital activity in all development
phases. The objecting of testing is to gain confidence within two areas;
validation and verification. Validation is about assuring that the software
has the right functionality; that the software is written according to the re-
quirement specifications. Verification is about testing that the implemented
functionality is done correctly; that it works as required and actually pro-
duces correct output without errors.

Testing should be carried out at different stages in a development process,
the most common being:

Unit testing Done at unit/class level and aims at testing all functions to
verify the correctness of the implemented functionality in each compo-
nent.

114 3.3. SYSTEM ANALYSIS AND CONSIDERATIONS

Integration testing After the various units/classes have been tested, in-
teraction between the different units is tested.

System testing Tests the entire system in its intended production environ-
ment. System testing can be divided into several sub tests focusing
on particular aspects of test system. Examples include security testing
and stress/high load testing.

Acceptance test Carried out by the users/customers before the product is
handed over from development to management/maintenance and put
in production.

Testing can be conducted in two different ways, namely black box and white
box testing. The former is carried out without any knowledge about the
internal structure and workings of the system; the point is to check if a given
input returns the expected output. The latter is planned and carried out
with knowledge about the internals of the system test target.

In this project, the various classes and components have been tested at three
different abstraction levels. First, classes and functions were tested during
the development process in a white box manner. Then integration testing was
performed as the components were combined into a system. These tests were
performed during development using the main functions in the classes being
tested. The main testing effort was however put in system tests, which have
mostly been carried out in a black box fashion. Test specifications have been
prepared and performed for testing the entire system using the command
line interface, shown section E.1 and the graphical user interface, shown in
section E.2. Additionally, tests were created for the GUI configuration editor,
which can be found in section E.3.

Bugs and weaknesses discovered during testing were, naturally, sought cor-
rected. Some weaknesses, however, were not rectified, either as they were
outside the scope of this implementation31 or because the effort required
to correct them outweighs the advantages based on the limited time scope.
These weaknesses are discussed in section 3.3.6.

31For example slight weaknesses in used frameworks and so on.

CHAPTER 3. IMPLEMENTATION 115

3.3.3 Requirements for external anti-virus software
and analysis tools

In order to be used seamlessly in the PowerScan framework, there are some
requirements that anti-virus software and dynamic analysis tools must fulfill.
These are described in the following sections.

Requirements for anti-virus software to be added

There are some requirements for an anti-virus engine in order for it to be
usable in the PowerScan framework. As the framework does not support
GUI interaction with scanners in any way, invocations of the engine or the
interpretation of the results must be doable via command line. This has
some consequences, as listed below.

Requirements for adding a new anti-virus engine to be used for surface scan
operations (phase 1):

1. It must be possible to initiate on-demand scan of a malware sample
by executing some file with the malware sample (and potentially some
other parameters) as a parameter.

2. Execution of the file that performs the scan must return the result
either to a log file or stdout/stderr.

3. The log file must be parsable in some manner, so that it is possible to
automatically extract a summary of the result.

Note that the above requirements does not heavily limit the range of scanners
that can be used; although not all anti-virus solutions support what would
be the most simple case, i.e. some “scanner.exe -file=malwaresample.exe”
syntax, most provide some combination of parameters that allows for on-
demand scan via the command line. Furthermore, it should be possible to
write macros that interact with the interface of purely GUI-based scanners
such that even these may be automated, although this may require consid-
erable effort and is not covered in any further detail here.

Requirements for performing automatic update of virus definitions in anti-
virus software (relevant for phase 1 and phase 2 part 1):

116 3.3. SYSTEM ANALYSIS AND CONSIDERATIONS

1. It must be possible to invoke a virus definition update by executing a
file on the remote OS with a given set of parameters.

2. The update operation should preferably indicate the result of the up-
date operation in some parsable manner, i.e. in a log file or written to
stdout/stderr (which could be redirected to file).

As for surface scan, these requirements are not too hard in most cases. How-
ever, the operation will often require some degree of work during set-up. This
may include operations like creating setup files32, investigating the involved
parameters and so on. Some engines do not support updating via the com-
mand line at all. In these cases it may be possible to use macros or write a
some simple code/script which connects to the update server, downloads the
definitions and writes them to the proper location (this would then be the
file that is executed to perform the update operation).

Requirements for executing malware with real-time anti-virus software run-
ning:

1. It must be possible to configure the anti-virus software to monitor the
system and output any incident (i.e. discovered infection) to a file.

2. The anti-virus software output must be written in a plain text format
which can be parsed as simple strings.

These requirements enforce somewhat stronger limitations on the possible
anti-virus solutions; as the monitoring process must be running in the back-
ground, it is very hard to interact with it and modify its behavior without
tampering with the source code. It might be possible to process any pop-ups
that appear upon executing a malware sample, but this is not investigated
in any further detail here. Most anti-virus engines write information about
real-time scan to log files, so the results could be parsed from these.

For an analysis of a relatively comprehensive set of anti-virus software and
their behavior according to the requirements above, refer to appendix B.

Requirements for dynamic analysis tools to be added

As for the former described operations, the dynamic analysis functionality
depends on interaction with one or more tools running in a guest OS in a

32Some tested solutions rely on setup files for updating.

CHAPTER 3. IMPLEMENTATION 117

virtual machine. Analysis tools that are to be plugged into this framework
need to have the following properties:

1. It must be possible to invoke the analysis tool from the command line,
or it must be possible to have it running as part of a snapshot.

2. The analysis tool must be able to report the result of their operation
to a file or to stdout/stderr (which may be redirected to a file).

The PowerScan framework can be configured to sleep its operations for some
period of time while analysis tools are being executed. Thus, it is actually
possible to use analysis tools which require human interaction in PowerScan.
This sleep period is configurable via the properties file. The sleep may be
interrupted at any time if the operator does not require any more time by
pressing the Cancel button on the progress monitor in the GUI or pressing
the Enter button when using the command line. When the sleep period is
over or interrupted, the result file is copied back to the local system and the
tools in the next virtual machine are executed. When all the analysis tools
have completed, the results are presented to the operator.

3.3.4 Security

When dealing with potentially harmful code33, it is very important that the
system as a whole is protected against the code taking control or causing
permanent harm. In PowerScan, the decidedly greatest risk is the execution
of the malware sample in the virtual machine, both for the purpose of ana-
lyzing it using dynamic analysis tools and for analyzing it using a real-time
anti-virus engine. Although virtualization greatly reduces the risk of harmful
code performing any real damage, there are a few things that can go wrong:

1. The malware can break out of the virtualized environment and attack
the host OS.

2. The malware can break out of the virtualized environment using the
network connection.

33Indeed, the code is not only potentially harmful - it is probably harmful!

118 3.3. SYSTEM ANALYSIS AND CONSIDERATIONS

Against risk 1, one will have to rely on the implementor of the virtualized
environment to prevent break-outs. In the case of VMware, this generally
should not be a big problem, as the software is very wide-spread and subject
to relatively close scrutiny from both the user community and the security
community in general. There has been a few incidents in the past34, but
hardly any of these apply to the usage described in this thesis. Should
malware targeting a flaw in VMware software be released, the weakness is
likely to be detected sooner rather than later, as VMware is also the weapon
of choice for many malware analysts. Keeping an eye for security advisories
and keeping VMware Server up to date should in general be sufficient to
mitigate this threat.

Risk 2 can easily be mitigated through disabling the network interface for the
guest OSs. A problem is that this process is not supported by the VIX API,
meaning that the user will have to manually enable the network interfaces
prior to performing update of virus definitions and then disable it again
before executing malware samples. Needless to say, forgetting this can have
dire consequences, as it may enable malware to spread on the local network
and even initiate attacks on other systems/networks.

In this implementation not too much emphasis has been put on protecting the
client itself, as it is supposed to be used in closed environments without being
exposed as an external service. Still, the client’s security is enhanced through
the usage of the inherently secure Java language. Additionally, the interface
to the client is relatively limited, and external users have few opportunities
to manipulating execution without being able to modify the configuration or
properties files.

3.3.5 Performance

This sections deals with performance related aspects of the implementation.
In general, the usage of virtual machines generally makes the system too
slow for anything but checking of critical files and usage related to malware
analysis. This is due to the fact that operations on the virtual machines
are done on an OS scale, meaning that they involve the entire dataset (disk
operations, storing of memory state and so on) of the OS. Examples of very
time consuming operations are powering on and off the virtual machines,

34For a list of issued VMware security advisories, see http://www.vmware.com/
security/advisories/., for security alerts, see http://www.vmware.com/security/
alerts/

http://www.vmware.com/security/advisories/.
http://www.vmware.com/security/advisories/.
http://www.vmware.com/security/alerts/
http://www.vmware.com/security/alerts/

CHAPTER 3. IMPLEMENTATION 119

taking snapshots and reverting from snapshots.

Scan

As the scan operation may be performed relatively often, all scans are per-
formed in parallel. This leads to significant performance improvement com-
pared to a simple sequential scan. As the virtual machines themselves are
parallel (and may even be executing on different physical serves) there is no
reason that the scanning should be performed in sequence. This goes for both
on-demand scan and execution of malware samples with real-time anti-virus
software running.

File copying

Copying files to virtual machines using VIX is a relatively slow operation.
For example, copying a file of 21ă751ă685 bytes to two virtual machines
running in parallel on the same host took 590 seconds, yielding a transfer
speed of approximately 38kB/s. This is not a very impressive feat given that
the actual bandwidth bottleneck is the 54Mbit WLAN interface of the client.
In most cases, however, this will not be a severely limiting factor, as malware
tend to be relatively small in size in order to be able to spread unnoticed.

3.3.6 Known weaknesses

During development and testing, some issues arised that may somewhat limit
the behavior and functionality of the framework. Some of these issues may
be possible to mitigate, but during the work on this thesis the time was not
sufficient to rectify all. This sections lists some of the known issues which
has not been rectified, some of which may be subject to further work.

Some threads may hang if a global timeout occurs. This comes from the fact
that the global timeout triggers enforced restoration to a previously taken
snapshot (to avoid inconsistencies in the scan machines), even though other
operations, such as file copying or file execution, are still processing. The
reason that the restoration of snapshots is done in such a “hard” manner is
that some operations may crash in a blocking manner without timing out,
depending on more or less unpredictable events in the virtual machine. When

120 3.3. SYSTEM ANALYSIS AND CONSIDERATIONS

this happens, simply kill the process manually (for example by pressing ctrl-
z in the shell), wait for the virtual machines to restore snapshots, edit the
settings file to a higher full timeout and retry. This is especially important
when processing large files as file copying is relatively slow when using VIX.

When result files use non-standard character encoding, the result will be
parsed incorrectly by Java. This means that the automatic filtering will fail,
and any output reported to the user will probably be garbled. A work-around
for this is to get the file name of the copy of the log file on the client machine
and inspect the file manually. The problem here is that file encoding is not
given explicitly for files, so if this is not known in advance it can be very hard
to determine (it must typically be done using stochastic methods). Different
solutions to this problem have been tested, but none satisfactory working
were found.

Directory names used with VIX may not contain special characters (for ex-
ample the Norwegian “æ”, “ø” and “å”).

The PowerScan system must be restarted between different operations when
using the optional GUI. The is probably due to state created in VIX when
reverting the virtual machines to snapshots. This issue has been attempted
resolved by closing all the connections to the VMware Server manually, but
it has not been successful.

The framework does not consider scan engine version. For some anti-virus
solutions this may lead to problems, as the newest signature may sometimes
require updates of the scan engine as well. Automatization of this process
would be challenging, both practically related to implementation but also
with respect to licensing for commercial products, where obtaining updates
and so on may not be free. As updates of the scan engine is something that
only needs being done at some interval (say, once a month), it can be done
manually without too much hassle.

During testing, there appeared to be some issues with the layout of the GUI,
resulting in that some of the input field and the console text area appeared
stretch outside the boundaries of the GUI window. However, this issue did
only show up on one of five computers when testing. Since this issue has not
been possible to reproduce on the other computers used during development
and testing, it is not suspected to cause any trouble in the future.

Chapter 4
Conclusion

“Have no fear of perfection, you’ll never reach it”

- Salvador Dali

122 4.1. A LOOK BACK

4.1 A look back

Recall the different phases of the implementation in this thesis from section
3.1.1:

Phase 1 Create functionality for automatically scanning a file with several
anti-virus engines. The result should be aggregated and presented to
the user.

Phase 2, part 1 Execute the malware sample while running real-time anti-
virus software. Aggregate and present the result.

Phase 2, part 2 Execute the malware sample and perform a dynamic anal-
ysis of its actions on the environment in which it is run.

As has been shown throughout chapter 3, all of these phases have been fully
implemented. By utilizing VMware’s VMware Server, a distributed environ-
ment of virtual machines is set up for hosting anti-virus software and analysis
tools, which can be used for analyzing malware samples. In this manner, a
sample can be scanned using on-demand surface scanners, executed while
running real-time anti-virus software and analyzed using dynamic analysis
tools. For all of these cases, any number of anti-virus scanners and analysis
tools may be used, greatly enhancing the probability of exact identification
and classification.

CHAPTER 4. CONCLUSION 123

4.2 Strengths

The PowerScan framework as implemented here has a number of strong sides.
Nearly all the requirements listed in section 3.1.1 were met. This means that
all the intended and desired functionality, and more, of the framework is
present in the final implementation. This includes:

High extensibility Usage of XML configuration allows high extensibility
when adding new servers, scanners and tools to the PowerScan frame-
work. This also includes support for any tool that can be used via
the command line, meaning that both present and future tools can be
plugged into the framework. The XML configuration can be modified
directly by accessing the file, or by using the GUI config editor offered
as part of the graphical user interface.

High customizability All relevant constants in PowerScan can effortlessly
be modified by editing the supplied properties file.

Wide interface support PowerScan comes with both graphical user inter-
face and command line interface support. Additionally, the system is
written in a way that allows usage of the services as a library by calling
the relevant functions in the PowerScan class.

Dependability PowerScan is written in a manner which makes sure that
virtual machines are always restored to a previously taken snapshot af-
ter performing potentially harmful operations, such as malware copying
and execution. As long as PowerScan is allowed to execute to an end,
meaning that it is not forcefully terminated, the virtual machines will
always be reverted to snapshot if a malware operation has been per-
formed.

Nifty extra features Additionally, PowerScan has a number of small con-
venient features which eases use, such as:

• User interaction during dynamic analysis tool execution. Pow-
erScan sleeps for a predefined amount of time for every virtual
machine used for analysis, allowing the analyst to interact both
with the malware itself and the analysis tools during execution.
This interaction period can also be skipped by pressing the cancel
button in the GUI or pressing enter in the command line interface.

124 4.2. STRENGTHS

• PowerScan is distributed, meaning that it supports multiple VM-
ware Server machines. This means that a server farm of several
less powerful machines can be used for analysis.

• PowerScan performs logging in all central classes, meaning that
execution and results can be inspected closely in case of unex-
pected behavior and/or results.

• PowerScan performs validation of the XML configuration file, in
order to verify that it conforms to the specified schema.

CHAPTER 4. CONCLUSION 125

4.3 Weaknesses

Despite the strong sides listed in the previous section, there are some weak-
nesses with the PowerScan implementation:

All used tools must support command line usage As PowerScan uses
VMware Vix for communication with the virtual machines, all tools
that are used must support interaction through the command line us-
age, as Vix does not provide any means for interacting with GUIs of
running programs. This limitation is also present in similar existing
commercial tools, such as VirusTotal described in the related work sec-
tion of this report1. It might be possible to write custom scripts for
interaction with the GUIs of individual tools, but this has not been
investigated any further.

Performance PowerScan requires every anti-virus scanner to run on a sep-
arate virtual machine and requires all virtual machines used to revert
to snapshot after operation. Naturally, this introduces a significant
processing overhead.

Additionally, some more specific known weaknesses of the implementation
are discussed in section 3.3.6.

1Stated in http://www.virustotal.com/sobre.html under credits.

http://www.virustotal.com/sobre.html

126 4.4. POSSIBLE USAGES

4.4 Possible usages

Considering the weaknesses listed, and particularly the performance part,
there are some limitations to the usage of PowerScan. As operations will
usually take a significant period of time, PowerScan is not well suited for
use in real-time systems such as personal computers or mail servers. How-
ever, in systems where accurate identification and classification is essential,
such as for example in malware analysis (which indeed is the intended us-
age of PowerScan) or at the border of highly sensitive networks or systems
PowerScan comes to its right. In such situations, accurate identification and
classification will usually be more important than real-time response.

Another interesting usage for PowerScan is comparison of anti-virus engines.
To date, there are relatively few good, objective comparisons of anti-virus
engines available. By using PowerScan as a library, it would be possible
to automate the process of comparing detection rates of several engines for
malware samples, both 0-day and older.

CHAPTER 4. CONCLUSION 127

4.5 Lessons learned

During development of PowerScan and writing of this report, some lessons
were learned. One such is that it is desirable to have close collaboration
and contact with the future users of the product. This goes for defining
concise requirements, holding regular demonstrations and receiving feedback
based on these and performing acceptance testing in the end. Due to time
constraints on both sides as well as geographical distance, this was not done
to as large a degree as desired during this implementation.

In general, one might also say that the approach to theory/background in this
thesis (and in particular this report) is sub-optimal. Because of the limited
timeframe, theoretical aspects were investigated in parallel with implementa-
tion, meaning that not all discovered aspects were implemented. Also, some
of the pure background theory may seem less relevant, as it only provides
understanding of the involved concepts, without actually being used in the
implementation.

On a more practical note, it can be argued in hindsight that other virtual-
ization/emulation environments than VMware should have been considered
before starting the implementation. As discussed several places in chapter 2,
there are some weaknesses with using VMware in a malware analysis context.
However, with the knowledge gained throughout the work, it is still hard to
see that any other environment could have provided a better overall package
with respect to security, programming interface, distributed capabilities and
so on.

As with most projects, there are some aspects that the authors feel should
have been done that were not due to lack of time. This especially goes for
doing a feasibility analysis of execution with real-time anti-virus scanners
running in the background as compared to on-demand scanning, which is
the established way of doing anti-virus scan today (see for example MetaScan
and VirusTotal in the related work section). Doing a comprehensive study of
detection rates of fresh samples using this technique compared to on-demand
scanning might have yielded some interesting results. For some suggestions
for further work, see the following section.

128 4.6. FURTHER WORK

4.6 Further work

The PowerScan framework is a prototype. This means that most of the
emphasis in this thesis has been on implementing the actual program, making
it work and documenting the theory behind it. There are quite a few aspects
of it that can still be investigated.

From an academic point of view, it would be interesting to assess how efficient
the malware execution with real-time anti-virus engine solution is compared
to a straight forward scan for fresh (0-day) malware samples. Using the
PowerScan framework it should be relatively straight forward to scan a sig-
nificant number of samples using several anti-virus engines in both real-time
and on-demand mode and compare the results.

Another interesting possibility for the future would be to try to integrate
solutions for some of the weaknesses of the analysis techniques used. In
the background section of this thesis, some shortcomings of PowerScan’s
setup are discussed and although mitigations techniques are described, none
of them have been implemented. An interesting task would be to try to
implement an automated solution to these challenges. Examples of these
challenges are malware that detects virtualized environments, discussed in
section 2.3 and multiple execution path analysis discussed in section 2.8.

Other possibilities include setting up the system for usage in a real environ-
ment such as a malware analysis lab or at the perimeter of a high-security
system. This would not require a lot of research work, but some effort would
still be required. Setup of the system is described in the user guide in ap-
pendix A.

Finally, a solution to the problem of PowerScan only supporting command
line tools could be created. This limitation of PowerScan reduces the number
of tools that can be plugged in, and decreases its overall value as a framework.
It should be possible to write relatively simple code for interacting with
relevant GUIs, but this has not been investigated in any detail in this thesis.

Bibliography

[1] P. Szor, The Art of Computer Virus Research and Defense. Addison
Wesly for Symantec Press, 20035.

[2] M. Erbschloe, Trojans, Worms, and Spyware: A Computer Security Pro-
fessional’s Guide to Malicious Code. Newton, MA, USA: Butterworth-
Heinemann, 2004.

[3] R. A. Grimes, Malicious mobile code: virus protection for Windows.
Sebastopol, CA, USA: O’Reilly & Associates, Inc., 2001.

[4] G. Hoglund and J. Butler, Rootkits: Subverting the Windows Kernel.
Addison-Wesley Professional, 2005.

[5] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic mal-
ware analysis using cwsandbox,” Security & Privacy Magazine, IEEE,
vol. 5, no. 2, pp. 32–39, March-April 2007.

[6] U. Bayer, C. Krugel, and E. Kirda, “TTAnalyze: A tool for
analyzing malware,” 2006. [Online]. Available: http://citeseer.ist.psu.
edu/bayer06ttanalyze.html

[7] S. Roman, “Microsoft technet windows architecture,” World Wide Web
electronic publication, Microsoft, Tech. Rep., 2000. [Online]. Avail-
able: http://www.microsoft.com/technet/archive/ntwrkstn/evaluate/
featfunc/winarch.mspx

[8] J. Bacon and T. Harris, Operating Systems : Concurrent and distributed
software design. Pearson Education Limited, 2003.

129

http://citeseer.ist.psu.edu/bayer06ttanalyze.html
http://citeseer.ist.psu.edu/bayer06ttanalyze.html
http://www.microsoft.com/technet/archive/ntwrkstn/evaluate/featfunc/winarch.mspx
http://www.microsoft.com/technet/archive/ntwrkstn/evaluate/featfunc/winarch.mspx

130 BIBLIOGRAPHY

[9] Microsoft Corporation, “Microsoft portable executable and common
object file format specification, revision 8.1,” World Wide Web
electronic publication, 2008. [Online]. Available: http://www.microsoft.
com/whdc/system/platform/firmware/PECOFF.mspx

[10] A. Singh, “An introduction to virtualization.” World Wide
Web electronic publication, 2004. [Online]. Available: http:
//www.kernelthread.com/publications/virtualization/

[11] IBM, “IBM Systems Virtualization,” 2005. [Online]. Available: http://
publib.boulder.ibm.com/infocenter/eserver/v1r2/topic/eicay/eicay.pdf

[12] M. T. Jones, “Virtual linux; an overview of virtual-
ization methods, architectures, and implementations.” World
Wide Web electronic publication, 2006. [Online]. Available:
http://www.ibm.com/developerworks/linux/library/l-linuxvirt/

[13] “Understanding full virtualization, paravirtualization and hardware as-
sist,” World Wide Web electronic publication, 2007. [Online]. Available:
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf

[14] A. Zeichick, “Processor-based virtualization, amd64 style, part
ii,” World Wide Web electronic publication, AMD, Tech. Rep.,
2006. [Online]. Available: http://developer.amd.com/TechnicalArticles/
Articles/Pages/630200615.aspx

[15] I. Cooperation, “Enhanced virtualization on intelő architecture-based
servers,” World Wide Web electronic publication, Intel Cooperation,
Tech. Rep., 2006. [Online]. Available: http://www.intel.com/business/
bss/products/server/virtualization_wp.pdf

[16] J. Lo, “VMware and CPU Virtualization Technology,” World
Wide Web electronic publication, 2005. [Online]. Available: http:
//download3.vmware.com/vmworld/2005/pac346.pdf

[17] VMware Inc., “Virtualization: Architectural considerations and
other evaluation criteria,” World Wide Web electronic publi-
cation, 2005. [Online]. Available: http://www.vmware.com/pdf/
virtualization_considerations.pdf

[18] M. Carpenter, T. Liston, and E. Skoudis, “Hiding virtualization from
attackers and malware,” Security & Privacy Magazine, IEEE, vol. 5,
no. 3, pp. 62–65, May-June 2007.

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.kernelthread.com/publications/virtualization/
http://www.kernelthread.com/publications/virtualization/
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/topic/eicay/eicay.pdf
http://publib.boulder.ibm.com/infocenter/eserver/v1r2/topic/eicay/eicay.pdf
http://www.ibm.com/developerworks/linux/library/l-linuxvirt/
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://developer.amd.com/TechnicalArticles/Articles/Pages/630200615.aspx
http://developer.amd.com/TechnicalArticles/Articles/Pages/630200615.aspx
http://www.intel.com/business/bss/products/server/virtualization_wp.pdf
http://www.intel.com/business/bss/products/server/virtualization_wp.pdf
http://download3.vmware.com/vmworld/2005/pac346.pdf
http://download3.vmware.com/vmworld/2005/pac346.pdf
http://www.vmware.com/pdf/virtualization_considerations.pdf
http://www.vmware.com/pdf/virtualization_considerations.pdf

BIBLIOGRAPHY 131

[19] P. Ferrie, “Attacks on virtual machine emulators,” World Wide Web
electronic publication, Symantec Advanced Threar Research, Tech.
Rep., 2006. [Online]. Available: http://www.symantec.com/avcenter/
reference/Virtual_Machine_Threats.pdf

[20] J. S. Robin and C. E. Irvine, “Analysis of the intel pentium’s ability
to support a secure virtual machine monitor,” in SSYM’00: Proceedings
of the 9th conference on USENIX Security Symposium. Berkeley, CA,
USA: USENIX Association, 2000, pp. 10–10.

[21] M. Schmall, “Heuristic techniques in av solutions: An overview,” World
Wide Web electronic publication, Tech. Rep., 2002. [Online]. Available:
http://securityfocus.com/infocus/1542

[22] V. Bontchev, “Current Status of the CARO Malware Naming Scheme.”
[Online]. Available: http://www.people.frisk-software.com/~bontchev/
papers/pdfs/caroname.pdf

[23] Symantec, “Symantec Global Internet Security Threat Report
Volume XII,” World Wide Web electronic publication, 2008. [Online].
Available: http://eval.symantec.com/mktginfo/enterprise/white_
papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.
en-us.pdf

[24] V. Bontchev, F. Skulason, and A. Solomon, “A Virus Naming
Convention,” World Wide Web electronic publication, 1991. [Online].
Available: http://www.caro.org

[25] N. FitzGerald, “A Virus by Any Other Name: The Revised CARO Nam-
ing Convention,” in Proceedings of the 5th Anti-Virus Asia Researchers
conference 2002, Seoul, 2002, pp. 141–166.

[26] M. Gheorghescu, “An automated virus classification system,” in Pro-
ceedings of the fifth annual Virus Bulletin conference 2005, 2005.

[27] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario, “Automated classification and analysis of internet malware,”
LNCS, vol. 4637, pp. 178–197, 2007.

[28] D. Farmer and W. Venema, Forensic Discovery. Addison-Wesley Pro-
fessional, 2005.

[29] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” 2007 IEEE Symposium on Security and Privacy,
vol. 00, pp. 231–245, 2007.

http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
http://securityfocus.com/infocus/1542
http://www.people.frisk-software.com/~bontchev/papers/pdfs/caroname.pdf
http://www.people.frisk-software.com/~bontchev/papers/pdfs/caroname.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/white_papers/b-whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf
http://www.caro.org

132 BIBLIOGRAPHY

[30] J. Stewart, “Behavioural malware analysis using Sandnets,” Computer
Fraud & Security, vol. 2006, no. 12, pp. 4–6, 2006.

[31] VMware, “Vix API Reference Documentation.” [Online]. Available:
http://www.vmware.com/support/developer/vix-api/

http://www.vmware.com/support/developer/vix-api/

Appendix A
User Guide

“The question of whether a computer can think is no more inter-
esting than the question of whether a submarine can swim.”

- E. W. Dĳkstra

134 A.1. REQUIREMENTS

This user guide describes how to set up and use the PowerScan analysis
framework and is intended to be as detailed as necessary to enable a user
to utilize the capabilities of the framework without knowledge of the source
code. The XML configuration and properties files are described in detail.

A.1 Requirements

To be able to use the PowerScan framework, there are some requirements
that will have to be fulfilled. The following are the system requirements for
the different components.

A.1.1 Client

The client is the computer that is to be used to run the PowerScan jar-file,
upload the malware samples and read the results. The following are the
requirements to the client:

• Java Runtime Environment: Minimum JRE 6.

• Operating system: Only Microsoft Windows XP has been tested, al-
though it will probably work on all Microsoft Windows platforms. The-
oretically, PowerScan should work on any platform as it is written in
Java, but this has not been tested.

A.1.2 Virtualization servers

The virtualization servers are the servers hosting the virtual machines used
by the PowerScan framework. The following are the requirements to the
virtualization servers:

• Operating system: The system has been tested with Ubuntu Server
Edition 7.10 with Linux kernel 2.6.22-14-server as host operating sys-
tem, although any OS supported by VMware Server should work.

• Virtualization software: The system requires VMware Server 1.x or
any other VMware Server version supported by VMware Vix. Has
been tested with VMware Server 1.0.6 for Linux.

APPENDIX A. USER GUIDE 135

A.1.3 Usage

The following requirements apply for the usage of the PowerScan framework:

• When the jar file is to be executed, it should be executed with the
directory containing the jar file as the working directory. This ensures
that relative references to configuration files etc. will work. The short-
cuts in supplied with PowerScan ensures the correct working directory
on Windows platforms.

A.2 Environment Setup

The PowerScan malware analysis framework is made up of an analysis envi-
ronment, an XML-formatted configuration file and a text formatted proper-
ties file in addition to the PowerScan jar-file running from a client worksta-
tion.

The malware sample scanning environment is made up of one or more hosts
running VMware Server. By default VMware Server listens on port 902, but
it is possible to use customized port numbers. Once the server(s) have been
set up, virtual machines need to be created and a Microsoft Windows OS
installed. PowerScan requires that VMware Tools are installed on each of
the virtual machines, which can be done via the VMware Server interface.
The system supports each virtual machine (and thus Windows installation)
running one anti-virus engine and/or one or more dynamic analysis tools. To
avoid the tools interfering with each other, it is recommended to use only one
anti-virus engine or a few tools on each virtual machine. After the anti-virus
engine and/or analysis tools have been installed, the corresponding paths
and parameters must be written into the XML config file.

The following is a step-by-step installation instruction:

1. Install VMware Server on hosts running x86 architecture OSs, such as
Microsoft Windows or Linux/Unix. The test setup during the imple-
mentation in this thesis used Ubuntu Server, which provided very good
performance and stability. Host system requirements can be found in
section “Host System Requirements” of chapter 1 of the VMware Server

136 A.2. ENVIRONMENT SETUP

Online Library1.

2. A serial number is needed when installing VMware Server, this is issued
by VMware when registering for download at Download VMware Server
- http://www.vmware.com/download/server . Note that there are
different serial numbers for Windows and Unix/Linux systems. Help
on installation may be found in chapter 2 of “Administration Guide”
on the VMware Server Online Library1.

3. Install VMware Server Console on the computer that should function
as the client. VMware Server Console is part of the “VMware Server
Windows client package”2. Requirements for the client is also found in
the “Administration Guide” on the VMware Server Online Library1.

4. Create as many virtual machines as desired on each host. Instructions
are given in chapter 2 of the “Virtual Machine Guide” on VMware
Online Library1.

5. Install Microsoft Windows XP3 as guest OS on the virtual machines.
Help on this operation may be found in the “Choosing and Installing
Guest Operating Systems” section of the “Guest Operating System
Installation Guide” on the VMware Online Library1. This guide also
lists known issues and compatibility between VMware products and
various guest OSs.

6. Create a user with administrator access on each guest OS. Note that
the users must have a password set in order to work with PowerScan.

7. Install the desired anti-virus engines and analysis tools on the desig-
nated virtual machines. This installation process is vendor specific, and
is not described here.

8. Take a snapshot of each VM using the VMware Server Console, as
shown in figure A.6. The snapshot should, for performance reasons,
be taken when the guest OS is running, the user logged4 in and no

1VMware Server 1 online library - http://pubs.vmware.com/server1/wwhelp/
wwhimpl/js/html/wwhelp.htm.

2VMware Server registration - http://register.vmware.com/content/download.
html.

3Or other supported OS. Although only tested with Win XP, PowerScan should work
with any Win NT OS. 64 bits guest OSs are also supported.

4If not, the virtual machine must be powered on and the user logged in every time
PowerScan is run.

http://www.vmware.com/download/server
http://pubs.vmware.com/server1/wwhelp/wwhimpl/js/html/wwhelp.htm
http://pubs.vmware.com/server1/wwhelp/wwhimpl/js/html/wwhelp.htm
http://register.vmware.com/content/download.html
http://register.vmware.com/content/download.html

APPENDIX A. USER GUIDE 137

Figure A.1: VMware Server Console status line.

windows open5.

9. Once the virtual machines are set up, an appropriate config file and
properties file must be prepared. An example XML file is shown in
section D.1. For an explanation of the XML, see section A.11.

Note that the VMware environment need to be secured before uploading any
suspected malware samples. In particular, the network feature of the virtual
machine must be set up properly. Typically, before a malware sample is
executed, it should be ensured that the virtual machine does not have access
to the Internet or any other potentially unsecured networks. The network
options, shown in figure A.2, are available by double clicking the “network
card” icon on the VMware Server Console status bar, as shown in figure A.1.
Before running a malware sample, the network should be set to “Host-only”,
so that the malware is unable to communicate with the Internet.

A.3 User Interface

The PowerScan framework currently supports two interfaces; a graphical
user interface (GUI), a command line interface (CLI) and an application
programming interface (API)6. The command line interface is invoked by
default when launching the application. When using the CLI, all output from
the program is written to stdout, meaning that it will usually be directed to
the command line console. When using GUI, all output will appear on the
console area of the GUI window.

5As open windows may cause real-time scanners to interfere with the on-demand scan
operation.

6The API can be called by using the PowerScan as a library and calling functions in
the edu.ntnu.item.jt.system.PowerScan class.

138 A.3. USER INTERFACE

Figure A.2: VMware Server network options.

APPENDIX A. USER GUIDE 139

Figure A.3: The GUI main window.

A.3.1 Graphical user interface

To use GUI, the application must be started with the “-GUI” command line
switch7 or by using the included Windows shortcut. The various areas of the
main GUI window are described below:

1. The menu line gives access to various options as shown in figures A.4,
A.5, A.7 and A.8. The various menu options are described later in this
document.

2. The Malware sample path area contains a field for manual path entry,
a “Clear” button to clear the field and an “Open” button that allows
the user to browse the client file system. This field must contain the
path to the malware sample file to be analyzed (unless the operation
to be performed is update).

7Meaning that PowerScan must be launched as java -jar powerscan.jar -GUI.

140 A.3. USER INTERFACE

Figure A.4: The GUI “Help” menu.

3. The Config file path area contains a field for manual path entry, a
“Clear” button to clear the field and an “Open” button that allows the
user to browse the client file system. This field must contain the path
to the XML config file described in section A.10 of this document.

4. The file properties path area contains a field for manual path entry, a
“Clear” button to clear the field and an “Open” button that allows the
user to browse the client file system. This field should contain the path
to the properties file described in section A.13 of this document.

5. The buttons in this area are used to invoke the various operations of
the PowerScan system.

6. The console text area is where the progress messages and result outputs
are printed.

A.3.2 Command line usage

The following is the text shown when using the CLI:
usage : java -jar powerscan .jar [arguments].

-ANALYZE <arg > Perform dynamic analysis of the supplied sample
with all (if any) registered dynamic analysis tools

from XML.
-c,-- CONFIG <arg > XML Config file location . Default location :

config \ config .xml
-EXECUTE <arg > Executes the supplied malware sample on any virtual

machine supporting real -time anti - virus detection and
extracts results .

-GUI Determines whether to use a GUI.
-s,-- SETTINGS <arg > Properties file location . Default location :

config \ powerscan . properties
-SCAN <arg > Performs a surface scan of the supplied malware

sample with all scan engines configured in the XML
config file.

-UPDATE Performs a update of all the AV engines listed in
the XML configuration file. If update can not be done

for a given scanner ,

APPENDIX A. USER GUIDE 141

Figure A.5: The GUI “System” menu.

the user will be instructed on how to perform it.

Listing A.1: The CLI help text

This shows that all operations are started by running the application with
an appropriate switch. The location of the XML config file and properties
file should also be given to the application using an argument. If not, the
default locations are assumed.

A.4 Malware sample scan

Performing a malware sample scan in PowerScan means scanning the sus-
pected malware sample with the on-demand scan feature of the installed
anti-virus scanners.

Starting a malware sample scan using GUI is performed using the following
steps:

1. Input the paths to the config and properties files in fields 3 and 4 shown
in figure A.3.

2. Input the path to the malware sample on the local system in field 2
shown in A.3.

3. To read the configuration and initialize the system, choose “Start” from
the “System” menu choice, shown in figure A.5.

4. Once “Now ready” appears in the text area, press the “Scan” button.

5. When the operation finishes, the result will appear in the text area.

142 A.5. MALWARE SAMPLE EXECUTION

Starting a malware sample scan using the CLI is done using the following
command:
> java -jar powerscan .jar -c <configFilePath > -s <propertiesFilePath >

-SCAN <malwareSamplePath >

Listing A.2: Invocation of the PowerScan scan operation using the Command
Line Interface.

A.5 Malware sample execution

Some malware samples may use packers and avoid detection by the on-
demand surface scan, but might be detected when executed under surveil-
lance of a real-time anti-virus scanner. Executing a malware sample in the
test environment requires the following steps:

1. Input the paths to the config and properties files in fields 3 and 4 shown
in figure A.3.

2. Input the path to the malware sample on the local system in field 2
shown in figure A.3.

3. To read the configuration and initialize, choose “Start” from the “Sys-
tem” menu choice in field 1, shown in figure A.5.

4. Once “Now ready” appears in the text field, press the “Execute” button.

5. When the operation finishes, the result will appear in the text area.

To start execution of a malware sample using the command line, use the
following command:
> java -jar powerscan .jar -c <configFilePath > -s <propertiesFilePath >

-EXECUTE <malwareSamplePath >

Listing A.3: Invocation of the PowerScan execute operation using the
Command Line Interface.

APPENDIX A. USER GUIDE 143

A.6 Malware sample analysis

When dynamic analysis tools are installed as a part of the testing environ-
ment, they can be used to analyze a malware sample. To execute the installed
analysis tools on the sample, requires the following steps:

1. Input the paths to the config and properties files in fields 3 and 4 shown
in figure A.3.

2. Input the path to the malware sample on the local system in field 2
shown in figure A.3.

3. To read the configuration and initialize, choose “Start” from the “Sys-
tem” menu choice in field 1, shown in figure A.5.

4. Once “Now ready” appears in the text field, click the “Dyn. analyze”
button.

5. When the operation finishes, the result will appear in the text area.

One important difference between the scan and execute operation on the one
hand, and the analysis operation on the other, is that while the scan and
execute operations are executed on all the virtual machines in parallel, the
analysis operation is carried out on one virtual machine at the time. This
means that first, all the tools registered on one virtual machine is started
and the malware sample optionally executed, before the system sleeps for
the indicated amount of time (given in the properties file). The result files
(if any) are copied back, and the virtual machine is reverted to snapshot.
While the first virtual machine is reverted to snapshot, the tools registered
with the next virtual machine are started, and a new sleep period is started.
This is done to allow an operator time to interact with the analysis tool
and/or malware sample at one virtual machine at the time. The interaction
sleep period is set in the properties file, but the sleep can be skipped at any
time by pressing the “Cancel” button in the GUI process monitor or pressing
the Enter key when using the command line.

When installing analysis tools, it is worth noting that some tools take the
name of the executable to be monitored as a parameter, while others need
to be started before the malware sample is executed on the system. In
the configuration file, there is an element associated with the analysis tool
that indicates whether the malware sample should be executed. For tools

144 A.7. UPDATE AV DEFINITION FILES

taking the path to the sample as part of their parameter, the placeholder
“$samplePath” should be used in the parameter string to indicate insertion
of the malware sample path.

To start execution of a malware sample using the command line, use the
following command:
> java -jar powerscan .jar -c <configFilePath > -s <propertiesFilePath >

-ANALYZE <malwareSamplePath >

Listing A.4: Invocation of the PowerScan analyze operation using the
Command Line Interface.

A.7 Update AV definition files

The definition files of the anti-virus engines needs to be updated relatively
frequently. This operation includes taking snapshot of the system after defini-
tion files have been updated8 To update the virus signature files, the following
steps should be performed:

1. Input the paths to the config and properties files in fields 3 and 4 shown
in figure A.3.

2. To read the configuration and initialize, choose “Start” from the “Sys-
tem” menu choice in field 1, shown in figure A.5.

3. Once “Now ready” appears in the text field, press the “Update” button.

4. When the operation finishes, the result will appear in the text area.

To initiate update of the anti-virus engines using the command line, use the
following command:
> java -jar powerscan .jar -c <configFilePath > -s <propertiesFilePath >

-UPDATE

Listing A.5: Invocation of the PowerScan update operation using the
Command Line Interface.

8This is done automatically unless otherwise is stated.

APPENDIX A. USER GUIDE 145

Figure A.6: Taking snapshot using VMware Server Console.

A.8 Adding new anti-virus engines or tools

Adding new tools to the analysis environment requires installing the anti-
virus engine or tool on a virtual machine, and taking a snapshot after the
installation is complete. The various configuration parameters must then be
added to the XML configuration file to enable the framework to utilize the
tool/scan engine. The installation in the guest OS should follow an ordinary
Windows installation process, and is not described in any further detail here.
Taking snapshot using the VMware Server Console is shown in figure A.6.

146 A.9. SAVING CONSOLE OUTPUT

Figure A.7: The GUI “Output” menu.

A.9 Saving console output

When using the GUI, it is possible to save the text output that is currently
in the console text area. This is done by choosing “Output” from the menu
and then “Save”, shown in figure A.7. This option saves the text currently
displayed in the text area to a file.

The similar operation when using the Command Line Interface would be
redirecting the output to file by appending “$>$ output.log” to the given
command so that for example the scan operation becomes:
> java -jar powerscan .jar -c <configFilePath > -s <propertiesFilePath >

-UPDATE > output .log

Listing A.6: Redirection of the update operation out using CLI.

A.10 Editing the XML configuration file

As the configuration file is written in XML, it is human-readable and could be
edited using any text editor as described in sectionA.11. Another, hopefully
more user friendly, means to edit the configuration is to use the built-in
graphical config file editor. The config editor is launched from the “Edit”
menu, and opens in a separate window. The main window is shown in figure
A.9. This figure shows the config editor in the “Host/VM” view.

The menus shown in field 1 of figure A.9 are described in the following sec-
tions.

A.10.1 The “File” menu

The “File” menu offers the following choices, as shown in figure figure A.10:

APPENDIX A. USER GUIDE 147

Figure A.8: The GUI “Edit” menu.

Figure A.9: The config editor main window in “Host/VM view”.

148 A.10. EDITING THE XML CONFIGURATION FILE

New config opens a new, empty configuration file.

Open config... launches a dialog box to select an XML file to edit.

Save config... launches a dialog box for saving the open XML file.

Exit closes the Config Editor.

A.10.2 The “View” menu

The “View” menu offers the following choices, shown in figure A.12:

Host/VM view brings the user back to the host and virtual machine overview
window.

A.10.3 The “Delete” menu

The “Delete” menu offers the following choices, shown in figure A.11:

Delete active host Only available in “Host/VM” view, this choice deletes
the host that is selected in the upper half of the window, field 2 in
figure A.9.

Delete active VM Only available in “Host/VM” view, this choice deletes
the virtual machine that is selected in the bottom half of the window,
field 3 in figure A.9

Delete active AVE Only available in “AVE” view, this choice deletes the
currently active anti-virus engine.

Delete active tool Only available in “Tools” view, this choice deletes the
currently active tool.

A.10.4 The “Host/VM” view

The “Host/VM” view shows the defined hosts in the upper half of the window,
field 2 in figure A.9, and the defined virtual machines defined for the selected

APPENDIX A. USER GUIDE 149

Figure A.10: The config editor “File” menu.

Figure A.11: The config editor “Delete” menu.

Figure A.12: The config editor “View” menu

150 A.10. EDITING THE XML CONFIGURATION FILE

host in the lower part, field 3. It is always possible to return to this view by
choosing the “View” menu on the menu bar and selecting “Host/VM view”.
Field 2 also contains buttons to add a new host, or to add a new virtual
machine to an already existing host. When a new host entry is created, a
new, empty virtual machine entry is also created, as a VMware host offers
no functionality in PowerScan unless it has a virtual machine registered.

When a host is selected in field 2, all the virtual machines that belong to
that particular host are shown in the field 3. A virtual machine may run an
anti-virus engine, and/or a set of analysis tools. If a host has an anti-virus
engine or tools entry registered, an “Edit AV engine” or “Edit analysis tools”
button is shown. If the host does not have an anti-virus engine or tool set
registered, field 3 will have an “Add AV engine” and an “Add analysis tool”
button.

Both the “Edit AV engine” and the “Add AV engine” button will change the
editor to the “AVE” view, described in section A.10.5. The “Edit analysis
tools” and “Add analysis tool” buttons change to the “Tools” view, described
in section A.10.6.

A.10.5 The “AVE” view

The config editor “AVE” view is shown in figure A.13. This view allows
editing of all elements related to an anti-virus engine. In addition to the
element fields, the view has a “Save changes” button that saves the changes
made within the view. Note that this does not write the changes to file - the
only way of permanently storing the changes is via the “Save config...” File
menu choice! If the “AVE” view is left using the “Host/VM” choice on the
“View” menu, the changes are discarded.

An entire “AVE” element can be deleted by choosing the “Delete active
AVE” command on the “Delete” menu. If no changes have been made,
or the changes have been saved by clicking the “Save changes” button, it is
possible to navigate back to the “Host/VM” view by selecting the “Host/VM”
command from the “View” menu.

APPENDIX A. USER GUIDE 151

Figure A.13: The config editor “AVE” view.

152 A.10. EDITING THE XML CONFIGURATION FILE

Figure A.14: The config editor “Tools” view.

APPENDIX A. USER GUIDE 153

A.10.6 The “Tools” view

The config editor “Tools” view is shown in figure A.14. This view allows
editing of all tools associated with a virtual machine. Switching between
different tools is done by selecting the appropriate tab at the top of the view
window. In addition to the element fields, the view has a “Save changes”
button that stores the changes in the system. Note that this does not write
the changes to file - the only way of permanently storing the changes is via
the “Save config...” File menu choice! If the “Tools” view is left using the
“Host/VM” choice on the “View” menu, the changes are discarded. This
view also has an “Add tool” button that adds a new tool element to the
configuration.

The currently active tool can be deleted by choosing the “Delete active tool”
command on the “Delete” menu. If no changes have been made, or the
changes have been saved by clicking the “Save changes” button, it is pos-
sible to navigate back to the “Host/VM” view by selecting the “Host/VM”
command from the “View” menu.

A.11 Understanding the XML configuration
file

As mentioned earlier, PowerScan uses an XML structured configuration file to
represent its execution environment (meaning the associated VMware hosts,
virtual machines, installed scanners, tools and so on). Although the file can
be manipulated in the config editor GUI, it is also possible to edit the XML
directly using any text editor. This section describes the different parts that
make up the XML, and how they should be interpreted.

The skeleton of the XML config file is shown below.
1: <PowerScan >
2: <VMwareHostList >
3: <VMwareHost host="">
4: <hostPortNumber ></ hostPortNumber >
5: <hostUsername ></ hostUsername >
6: <hostPassword ></ hostPassword >
7: <VM vmxPath ="">
8: <vmUsername ></ vmUsername >
9: <vmPassword ></ vmPassword >
10: <avEngine name="">
11: <avExecutablePath ></ avExecutablePath >
12: <avParameters ></ avParameters >

154 A.11. UNDERSTANDING THE XML CONFIGURATION FILE

13: <avLogFilePath ></ avLogFilePath >
14: <avLogFilter >
15: <avResultIdentifier ></ avResultIdentifier >
16: <avResultPrefix ></ avResultPrefix >
17: <avResultSuffix ></ avResultSuffix >
18: </ avLogFilter >
19: <avUpdateInfo >
20: <avUpdateExecutable ></ avUpdateExecutable >
21: <avUpdateParameters ></ avUpdateParameters >
22: <avUpdateLogPath ></ avUpdateLogPath >
23: <avUpdateSuccessIndicator ></ avUpdateSuccessIndicator >
24: </ avUpdateInfo >
25: <realTimeScan >
26: <rtLogPath ></ rtLogPath >
27: <rtResultIdentifier ></ rtResultIdentifier >
28: </ realTimeScan >
29: </ avEngine >
30: <analysisTools >
31: <dynamicAnalysisTool toolName ="">
32: <toolExecutablePath ></ toolExecutablePath >
33: <toolParameters ></ toolParameters >
34: <executeMalwareExplicitly ></ executeMalwareExplicitly >
35: </ dynamicAnalysisTool >
36: </ analysisTools >
37: </VM >
38: </ VMwareHost >
39: </ VMwareHostList >
40:</ PowerScan >

Listing A.7: Skeleton of the XML config file

The <PowerScan> element is the root element of the PowerScan XML
configuration and signifies that the XML indeed is a PowerScan configu-
ration file. It contains only one element; the <VMwareHostList>, which
is, as the name implies, a list containing one or more <VMwareHost> el-
ements. The <VMwareHost> element has a mandatory attribute “host”
which contains the host name or IP address of a host running VMware Server.
The <VMwareHost> element contains two elements, <hostUsername> and
<hostPassword>, which are required to connect to the server. Further, a
<VMwareHost> element contains one or more <VM> elements represent-
ing a virtual machine installed on the given host. The <VM> element has
a mandatory attribute “vmxPath”, which gives the path on the server to a
vmx file that contains configuration info for the VM. This path is needed to
be able to boot the VM without using the GUI-based VMware Server Con-
sole. A <VM> element contains a <vmUsername> and a <vmPassword>
element which contain user credentials for a user that must exist on the
virtual machine guest OS. In addition to the “vmxPath”, <vmUsername>
and <vmPassword> elements, a <VM> contains information about what
tools are installed on the virtual machine. A tool in this context can be
an anti-virus engine and/or one or more analysis tools. XML description of

APPENDIX A. USER GUIDE 155

the installed tools of the virtual machine are then given within the <VM>
element. The description of an anti-virus engine is shown below.
10: <avEngine name="">
11: <avExecutablePath ></ avExecutablePath >
12: <avParameters ></ avParameters >
13: <avLogFilePath ></ avLogFilePath >
14: <avLogFilter >
15: <avResultIdentifier ></ avResultIdentifier >
16: <avResultPrefix ></ avResultPrefix >
17: <avResultSuffix ></ avResultSuffix >
18: </ avLogFilter >
19: <avUpdateInfo >
20: <avUpdateExecutable ></ avUpdateExecutable >
21: <avUpdateParameters ></ avUpdateParameters >
22: <avUpdateLogPath ></ avUpdateLogPath >
23: <avUpdateSuccessIndicator ></ avUpdateSuccessIndicator >
24: </ avUpdateInfo >
25: <realTimeScan >
26: <rtLogPath ></ rtLogPath >
27: <rtResultIdentifier ></ rtResultIdentifier >
28: </ realTimeScan >
29: </ avEngine >

Listing A.8: The AV engine element of the XML config file

As can be seen, the <avEngine> element has a “name” attribute that is
used for identification of the engine. The value of this attribute could for
example be set to “F-secure” or “ClamWin”. Note that the element is only
used for visual identification, and can theoretically be set almost any value.
Then there follows four elements used when running an on-demand scan of
a sample file.

• The <avExecutablePath>element on line 11 gives the path to the ex-
ecutable used to initiate the on-demand scan.

• The <avParameters> element on line 12 holds any parameters or argu-
ments that should be passed to the executable. To insert the malware
sample path in the parameters, use the string “$samplePath”.

• The <avLogFilePath> on line 13 gives the path to a log file that is
retrieved from the VM after the scan has completed.

• The <avLogFilter> element on line 14 contains strings to look for in
the retrieved log file when parsing the result. These strings are used as
follows:

– The string given in the <avResultIndentifier> element on line 15
is used to fine the correct line in the log file. If this element is
empty, the entire log file is printed.

156 A.11. UNDERSTANDING THE XML CONFIGURATION FILE

– The string given in the <avResultPrefix> element on line 16 is
used to determine from which position in line the result is starting.
If this element is empty, it is assumed that the result text starts
at the beginning of the line. If the element is set, the text AFTER
the prefix is extracted.

– The string given in the <avResultSuffix> element on line 17 is
used to determine at which position in the line the result text
ends. If the element is empty, it is assumed that the result text
ends at the end of the line. If the element is set, the text starting
with the given string is removed.

For example, the interesting line in a log file may look like:

VIRUS FOUND: eicar_test_file found in selected file(s)

A filter definition like:
14: <avLogFilter >
15: <avResultIdentifier >VIRUS FOUND: </ avResultIdentifier >
16: <avResultPrefix >: </ avResultPrefix >
17: <avResultSuffix >found </ avResultSuffix >
18: </ avLogFilter >

Listing A.9: The AV log filter element of the XML config file

would give the result eicar_test_file.

The next part of the <VM> element is used to hold information needed
to run virus definition database updates on the anti-virus engines. The
<avUpdateInfo> element contains the following elements:

• The <avUpdateExecutable> element on line 20 should contain the
path to the executable that performs the update.

• The <avUpdateParameters> element on line 21 holds any parameters
required by the update executable.

• The <avUpdateLogPath> element on line 22 holds the path to the log
file where the result of the update operation is written. If this tag is
not present (or empty), the update operation is started and no further
action is taken9.

9This again means that the user will have to manually check the result of the update
operation. This might be desirable for updates performed on engines without support for
reporting the update result to stdout.

APPENDIX A. USER GUIDE 157

• The <avUpdateSuccessIndicator> element on line 23 contains a string
that is searched for in the log file to determine the result of the up-
date operation. If the success indicator is found, the operation is as-
sumed to have succeeded, and the line(s) containing the success indica-
tor are printed. If the <avUpdateLogPath> element is present, but no
<avUpdateSuccessIndicator>, the entire log file is printed for manual
analysis by the user.

The final element within the <avEngine> element is used when a malware
sample is executed in the OS installed on the virtual machine to see if the
sample is detected by the real-time functionality of an anti-virus engine. Fol-
lowing the convention of the other elements, the <realTimeScan> elements
contains a log file path and a result identifier. The <rtLogPath> element
holds the path to the real-time scanner log file, and the <rtResultIdentifier>
element a string used to find the line containing the result in the log file.

If a VM is used to perform dynamic analysis of malware, the <VM> ele-
ment needs to contain an <analysisTools> element. Although it is possible
for virtual machine to have both analysis tools and an anti-virus scanner,
it is generally recommended that they are installed on separate machines,
as they may interfere with each other. The <analysisTools> element is a
list containing information about one or more tools installed on the virtual
machine. The <analysisTools> element is shown below.
30: <analysisTools >
31: <dynamicAnalysisTool toolName ="">
32: <toolExecutablePath ></ toolExecutablePath >
33: <toolParameters ></ toolParameters >
34: <executeMalwareExplicitly ></ executeMalwareExplicitly >
35: </ dynamicAnalysisTool >
36: </ analysisTools >

Listing A.10: The analysis tools element of the XML config file

The <dynamicAnalysisTool> element is the elements that represents one
tool. As seen on line 31, the element has an attribute “toolName” that is used
for identification10. The elements contained within the <dynamicAnalysis-
Tool> elements are the following:

• The <toolExecutablePath> element holds the path to the tool exe-
cutable.

10As for anti-virus engines, the name is merely a visual identificator, and has no real
impact on the execution.

158 A.12. REDIRECTION OF CONSOLE OUTPUT

• The <toolParameters> element holds the parameters that are supplied
to the executable. An important feature with this string is that occur-
rences of the string “$samplePath” is replaced with the path to the
malware sample on the virtual machine.

• The <executeMalwareExplicitly> element is a boolean value, holding
either true or false. true indicates that the malware sample should be
executed on the remote system after the tools have been started. Some
tools do not require this, as they take the malware sample file as a
parameter. In the latter case, the value should be false. If there is
more than one tool installed on a single virtual machine, the malware
sample is executed after the tools have been started if any of the tools
have the <executeMalwareExplicitly> value true.

A.12 Redirection of console output

Some applications print their output to the command line console and use a
log file format that is not human readable. This can make interpretation of
the result hard. There is, however, a means for redirecting the command line
console text output to a file that can be copied back to the client for further
examination. This is done by running the application through the Microsoft
Windows Command Prompt on the virtual machine. The Microsoft Windows
Command Prompt executable, cmd.exe, has a switch that executes whatever
is given after the switch and terminates. What makes this useful is that the
Command Prompt allows for redirection of output from application run under
it using the “>” operator. The following is an example XML configuration
of a tool using output redirection11:

<dynamicAnalysisTool toolName =" ipconfig ">
<toolExecutablePath >c:\ windows \ system32 \cmd.exe </ toolExecutablePath >
<toolParameters >/C ipconfig .exe > c:\ ipconfig .log </ toolParameters >
<toolResultFilePath >c:\ ipconfig .log </ toolResultFilePath >
<executeMalwareExplicitly >false </ executeMalwareExplicitly >

</ dynamicAnalysisTool >

Listing A.11: Redirection of Command Prompt output on a virtual machine

11Note that the parameters contain both the file to be executed (ipconfig.exe) and the
> operator. Any tool can be launched via the Command Prompt in a similar manner.

APPENDIX A. USER GUIDE 159

A.13 Understanding the properties file

The properties file is a simple text-based configuration file that is used to set
global PowerScan constants. The format is a simple “key = value” scheme,
where the values are parsed from string to other data types by the system,
as shown in the table below. The following values are set in the properties
file:

Property Type Default Description
vmware.tools-
.timeout

int 60 Timeout for VMware Tools to start in the
Virtual Machines (VMware Tools are re-
quired for operation of PowerScan).

scanner-
.executionpath

string c:\\ Specifies where in the virtual machine the
malware should be copied (and executed).

snapshot.before.scan boolean false Specifies whether snapshots should be
taken before performing scans and mal-
ware execution. This is generally NOT
recommended, as storing snapshots is a
time consuming operation, which should
only be performed when changes are made
to the Virtual Machine.

polling.interval-
.minor

double 0.250 Sets polling interval for minor opera-
tions. This indicates how often the sys-
tem should check for completion of minor
non-blocking tasks, such as file execution.

polling.interval-
.major

double 1.000 Set polling interval for major opera-
tions. This indicates how often the sys-
tem should check for completion of major
non-blocking tasks, such as full scan oper-
ations.

scanner.timeout int 60 Maximum time to allow for individual scan
operations to finish.

update.timeout int 600 Maximum time to allow for updating to
finish.

full.scan.timeout int 600 Timeout for full scan. Used to prevent en-
tire system from crashing following failure
in a single scan thread. Should be greater
scanner.timeout value above, since copy-
ing of files etc. is included in this timeout
in addition to the actual scan.

malware.execution-
.timeout

int 25 Maximum time to allow malware to exe-
cute with real-time anti-virus scanner run-
ning in the background.

full.execution-
.timeout

int 240 Maximum total time for malware exe-
cution operation (for all registered scan-
ners). Used to prevent the entire system
from crashing following failure in a single
thread.

log.overwrite boolean false Specifies whether log files should be over-
written when program is executed. If set
to false, time and date are appended to
log files. Note that log files may take up
significant resources over time.

log.vmware string logs\\vmware.log Path for the VMware log file, where
VMware-related events are logged.

Continued on next page

160 A.14. POWERSCAN FILES

Property Type Default Description
log.system.scanner string logs\\scanner.log Path to the log file for Scanner operations.
log.system string logs\\system.log Log path for system classes.
log.system.executor string logs\\executor.log Log path for the executor class (dynamic

analysis tools log).
executor.execution-
path

string c:\\ The path on the virtual machines where
the malware sample is copied to and exe-
cuted from when using the dynamic anal-
ysis functionality.

executor.localResult-
Path

string results\\ Directory on the client machine where log
files should be copied when using the dy-
namic analysis functionality.

executor.overall-
.timeout

int 330 Sets the time the operator has to interact
with the analysis tool or malware sample
logging in to the virtual machine before
the result is copied back to local system.

xml.xsd.path string config.xsd Sets the path for the XSD file used to val-
idate the XML config file

All times are given in seconds. Note that backslashes (“\”) must be escaped
by another backslash, such that c:\program files\ becomes c:\\program
files\\. Also note that directories given on the remote machine must al-
ready be created on the virtual machine, as Vix 1.0 and 1.1 do not support
directory creation.

A.14 PowerScan files

The following files are found in PowerScan:

PowerScan.jar The PowerScan jar file. Contains the PowerScan code. Ex-
ecuted by running java -jar PowerScan.jar (requires that Java 6 or
newer is installed on the client machine). Note that the PowerScan file
must be executed with the root directory of PowerScan as the working
directory. In other words, the working directory must contain the other
files described in this section.

PowerScan GUI Microsoft Windows shortcut which launches the PowerScan
graphical user interface.

PowerScan CLI Microsoft Windows shortcut which launches the PowerScan
command line interface using cmd.exe.

APPENDIX A. USER GUIDE 161

vix.dll The Vix C library used for communication with VMware compo-
nents such as VMware Server hosts and virtual machines.

ssleay32.dll & libeay32.dll The OpenSSL toolkit for SSL/TLS. Exten-
sion used by Vix to enable secure communication.

userguide.pdf User manual of the PowerScan framework - this document.

eclipse_project.zip Eclipse project containing the needed files to import
PowerScan in Eclipse.

config\ Configuration related files.

powerscan.properties Default properties file for PowerScan, defining
constants.

config.xml Default XML configuration file for PowerScan.
config.xsd XML Schema Definition (XSD) file used to validate the

XML configuration.

lib\ External framework library files.

jna.jar Java Native Access framework, used to communicate with C
libraries.

simple-xml-1.7.1.jar Simple framework, used to serialize and dese-
rialize configuration to and from XML.

commons-cli-1.1.jar Apache Commons Command Line Interface frame-
work, used to offer the command line capability of PowerScan.

xercesImpl.jar Xerces Java Parser framework, used to validate the
XML configuration file against XSD.

logs\ Log files created by the PowerScan framework.

src\ The PowerScan source code.

javadoc\ The PowerScan javadoc files.

A.15 Understanding the log files

The PowerScan framework creates plain text formatted log file when exe-
cuting operations. Paths for the log files are given in the .properties-file,

162 A.15. UNDERSTANDING THE LOG FILES

see section A.13 for details. It is important to notice that the property
log.overwrite determines whether the log files should be overwritten, or if
new log files should be created every time the PowerScan program is exe-
cuted. Not overwriting the files is smart to keep history, but the number of
log files can easily become overwhelmingly large.

Log files are written to $workingDirectory\logs. Files with the following
prefixes are created:

system Used by the XML error handler, XML reader and Connector classes.
These files contain log messages containing information about function-
ality such as reading from configuration file, initialization and connec-
tions to the hosts.

executor Used by the Executor class. An Executor object is a representa-
tion of a virtual machine with analysis tools installed. Information in
these files includes copying of files, execution of programs and snapshot
handling.

scanner Used by the Scanner class. A Scanner object is a representation
of a virtual machine with an anti-virus engine installed. Execution of
files, on-demand scans and the copying of files to and from a virtual
machine is logged in these files.

vmware Used by GuestOS and VMwareServer classes. Contains informa-
tion about operations against virtual machines, such as power-ons, login
attempts, copying of files and the taking of and reverting to snapshots.

Appendix B
Compatibility testing of anti-virus
engines

“Reality is that which, when you stop believing in it, doesn’t go
away.”

- Phillip K. Dick

164 B.1. INTRODUCTION

B.1 Introduction

This appendix shows an overview of different commercial and non-commercial
anti-virus engines that were researched during the development of PowerScan
to get an idea of how well different anti-virus products fit into an automation
framework. Note that the list is in no way exhaustive; it is an effort to test
the solutions of the major vendors. However, a requirement for being in the
list is that a license could be obtained - trial or full.

The following table lists the anti-virus products that are tested:

Product Producer License
Avast! Home Edition Alwil Free
AVG AV Free Edition Grisoft Free
Avira Antivir Personal Ed. Avira Free
BitDefender Free Ed. Softwin Free
BullGuard Internet Sec. 8.0 BullGuard NOK 499/year
CA AntiVirus 2008 CA USD 39,99/year
ClamWin AV Open Source GPL
Comodo AV 2.0 beta COMODO Free
F-prot Frisk Software USD 29/year
F-secure AV 2008 F-secure NOK 595/year
Kaspersky AV 7.0 Kaspersky USD 39,95/year
McAfee virusscan McAfee £31,99/year
Norman AV Norman NOK 549/year
Norton AV 2008 Symantec NOK 559-649/year
Panda AV 2008 Panda Software €39,95/year
Sophos AV SBE Sophos £133/year (5 users)
Trend Micro AV 2008 Trend Micro £29,95/year
ZoneAlarmő AV CheckPointő €19,95/year

Prices are for a one PC one year subscription of the stand-alone installation
of the AV engine when applicable. Some licenses offer installation on several
computers. Different pricing models apply when the anti-virus engine is part
of protection packages including firewall, email filtering, pop-up blocker and
other features. Different pricing per unit also apply when buying licenses for
multiple installations.

B.2 Anti-virus engine survey

Mapping the possibility to trigger on-demand scan operations and anti-virus
definition file update using the command line is quite a time-consuming task;

APPENDIX B. COMPATIBILITY TESTING OF ANTI-VIRUS
ENGINES 165

each anti-virus engine must be downloaded and installed on a clean Windows
XP SP2 installation (for example running on virtual machines to avoid in-
terference between different installs). For each installation, command line
on-demand scan possibilities must be tested, and console output or log files
collected and analyzed in order to create scan log filters. The various com-
mands, switches and parameters must be mapped by using trial and error,
reading forum posts and guidelines and by issuing support request to the
various vendors’ customer support services.

On-demand scan is tested using a benign custom made file test.bat containing
a simple echo command and the “malicious” eicar.com standard virus test
file. Real-time scan is tested by downloading the eicar.com from http:
//www.eicar.org/anti_virus_test_file.htm onto the test machine. Log
files for on-demand scanners must then be located and reviewed.

The following sections describe the results obtained from the anti-virus engine
survey.

Avast! Home Edition

On-demand scan: .\Alwil Software\Avast4\ashQuick.exe $sample-
File. However, this does not report result to console.

On-demand update: .\Alwil Software\Avast4\ashUpd.exe vps /silent

Real-time log file: .\Alwil Software\Avast4\DATA\log\Warning

AVG AV Free edition

On-demand scan: On-demand scan can be initiated by using .\AVG\AVG¬
8\avgscanx.exe /SCAN $sampleFile

On-demand update: .\AVG\AVG8\avgupd.exe

Real-time log file: C:\Documents and Settings\All Users\Applica-
tion Data\avg8\Log\history.xml

Avira AntiVir

On-demand scan: .\Avira\AntiVir PersonalEdition Classic\avcls¬
.exe $sampleFile < c:\input.txt. This requires that the c:\in-

http://www. eicar.org/anti_virus_test_file.htm
http://www. eicar.org/anti_virus_test_file.htm

166 B.2. ANTI-VIRUS ENGINE SURVEY

put.txt file exists and contains a single DOS-style newline1. This is to
avoid hang at the “Please press the Enter key to exit” message. Note
that the avcls.exe program is an addition to the Avira AntiVir-suite
and needs to be downloaded separately from http://www.avira.com/
en/support/support_downloads.html.

On-demand update: .\Avira\AntiVir PersonalEdition Classic\pre-
upd.exe. This launches GUI, which closes automatically after 10 sec
(so no interaction is needed).

Real-time log file: C:\Documents and Settings\All Users\Applica-
tion Data\Avira\AntiVir PersonalEdition Classic\LOGFILES\¬
avguard.log

BitDefender

On-demand scan: C:\Program Files\Common Files\Softwin\BitDefender
Scan Server\bdc.exe $sampleFile /f

On-demand update: C:\Program Files\Common Files\Softwin\BitDe-
fender Scan Server\bdc.exe /update

Real-time log file:

Bullguard AV

On-demand scan: .\BullGuard Ltd\BullGuard\BgScan.exe $sample-
File

On-demand update: .\BullGuard Ltd\BullGuard\BullGuardUpdate.¬
exe

Real-time log file: C:\Documents and Settings\All Users\Applica-
tion Data\BullGuard\Logs\OnAccess.log

CA AV

On-demand scan: .\CA\CA Internet Security Suite\CA Anti-Virus¬
\caavcmdscan.exe $sampleFile

1Create new file and press the “enter” key once. This produces the CR+LF sequence.

http://www.avira.com/en/support/support_downloads.html
http://www.avira.com/en/support/support_downloads.html

APPENDIX B. COMPATIBILITY TESTING OF ANTI-VIRUS
ENGINES 167

On-demand update: .\CA\CA Internet Security Suite \ccupdate\¬
ccupdate.exe. Launches updater, but requires GUI user interaction.
.\CA\CA Internet Security Suite\CA Anti-Virus\caav.exe /¬
UPDATE also launches GUI. According to customer support, it is not
possible to update using only command line. However, it should be
possible to script this functionality2.

Real-time log file: C:\Documents and Settings\All Users\Applica-
tion Data\CA\Consumer\AV\RealTimeScannerLog.txt.

ClamWin

On-demand scan: .\ClamWin\bin\clamscan.exe $sampleFile. Requires
some additional parameters, such as redirection of output, path to
database files and so on.

On-demand update: .\ClamWin\bin\freshclam.exe. Requires a fresh-
clam.conf file in the same directory as the executable file. The .conf
file must at least contain the following lines:

DNSDatabaseInfo current.cvd.clamav.net
DatabaseMirror database.clamav.net
MaxAttempts 3

Real-time log file:

Comodo AV

On-demand scan: .\Comodo\Comodo AntiVirus\CAVSCons.exe $sample-
File

On-demand update: .\Comodo\Comodo AntiVirus\CavMUD.exe.
Launches updater, but requires GUI user interaction. Support stated
that stand-alone command line usage will be considered implemented
in the future.

Real-time log file: C:\Documents and Settings\All Users\Applica-
tion Data\Comodo\Comodo AntiVirus\Reports\OnAccessReport.¬
Log

2See http://homeofficekb.ca.com/CIDocument.asp?KDId=2898&Preview=
0&Return=0&GUID=51C871EC7AE74D04929BF0E824FE7D7F.

http://homeofficekb.ca.com/CIDocument.asp?KDId=2898&Preview=0&Return=0&GUID=51C871EC7AE74D04929BF0E824FE7D7F
http://homeofficekb.ca.com/CIDocument.asp?KDId=2898&Preview=0&Return=0&GUID=51C871EC7AE74D04929BF0E824FE7D7F

168 B.2. ANTI-VIRUS ENGINE SURVEY

F-prot

On-demand scan: .\FRISK Software\F-PROT Antivirus for Windows¬
\fpscan.exe -o logPath $sampleFile

On-demand update: Unknown, support has been contacted but no reply
received.

Real-time log file: F-prot logs all events to the Windows Event Viewer.

F-Secure AV Client Security

On-demand scan: C:\Program Files\F-Secure\Anti-Virus\fsav.exe $¬
sampleFile

On-demand update: C:\Program Files\F-Secure\Anti-Virus\getdb-
htp.exe -url=http://avupdate.f-secure.com/updates/ -gui=1 -
ver=FSAV6.

Real-time log file: C:\Program Files\F-Secure\common\LogFile.log

Kaspersky

On-demand scan: .\Kaspersky Lab\Kaspersky Anti-Virus 7.0\avp¬
.com SCAN "$sampleFile" /i0 /R:"$logPath"

On-demand update: .\Kaspersky Lab \Kaspersky Anti-Virus 7.0\¬
avp.com UPDATE

Real-time log file: Log files from on-demand scan is in ok format, however
the event log is not human readable (C:\Documents and Settings\¬
All Users\Application Data\Kaspersky Lab\AVP7\).

McAfee AV

On-demand scan: Command line is according to customer service not avail-
able in home-editions, but is possible in enterprise-edition with “some
modification”3.

3http://community.mcafee.com/showthread.php?t=215621

http://community.mcafee.com/showthread.php?t=215621

APPENDIX B. COMPATIBILITY TESTING OF ANTI-VIRUS
ENGINES 169

On-demand update:

Real-time log file:

Norman

On-demand scan: .\Norman\nvc\bin\Nvcc.exe /U /LF:$logFile $sam-
pleFile.

On-demand update: C:\Program Files\Norman\Npm\Bin\niu.exe

Real-time log file: Real-time scanner does not create any log files in the
current version. According to customer support, this is a planned fea-
ture in future versions4.

Norton

On-demand scan: According to customer support, command line on-demand
scan of individual files is not possible in home-version, without the GUI
being launched. Works with full system scan.

On-demand update:

Real-time log file:

Panda AntiVirus 2008

On-demand scan: Has a separate command line tool5.

On-demand update: The command line scanner does not seem to support
automatic update, but can be scripted6.

Real-time log file: An inquiry about the location of log files was sent to
customer support, but no reply has been received.

4See the norman support forum at http://forum.norman.com/viewtopic.php?p=
8640.

5Can be downloaded from http://research.pandasecurity.com/blogs/images/
pavcl.zip.

6An excellent description of how this can be done for Panda is found at http://
forums.theplanet.com/index.php?showtopic=42950. The script described in this post
can probably be used for other engines as well.

http://forum.norman.com/viewtopic.php?p=8640
http://forum.norman.com/viewtopic.php?p=8640
http://research.pandasecurity.com/blogs/images/pavcl.zip
http://research.pandasecurity.com/blogs/images/pavcl.zip
http://forums. theplanet.com/index.php?showtopic=42950
http://forums. theplanet.com/index.php?showtopic=42950

170 B.3. SUMMARY

Sophos

On-demand scan: Initiate on-demand scan: .\Sophos\Sophos Anti-¬
Virus\sav32cli.exe -p=$logFile $sampleFile

On-demand update: Automatic update can be scripted. Need to down-
load and execute a self-extracting executable archive file7.

Real-time log file: Real-time scan events are written to C:\Documents
and Settings\All Users\Application Data\Sophos\Sophos Anti¬
-Virus\logs\SAV.txt

Trend Micro AntiVirus plus AntiSpyware 2008

On-demand scan: Trend has a command line scanner,8, but is unable to
unpack the required files for testing. Received from customer support:
To run a Scan, use .\Trend Micro\Internet Security\UfNavi.exe
/a UfSNavi.ini.

On-demand update: Not possible.

Real-time log file: Not human readable.

ZoneAlarm Antivirus

On-demand scan: .\Zone Labs\ZoneAlarm\multiscan.exe $sampleFile.
This launches GUI. The application has no switch to disable GUI.

On-demand update:

Real-time log file: c:\windows\internet logs\ZALog.txt

B.3 Summary

The following table summarizes the anti-virus engine survey.
7See the Sophos knowledge base at http://www.sophos.com/support/

knowledgebase/article/10378.html
8http://esupport.trendmicro.com/support/viewxml.do?ContentID=en-117058

http://www.sophos.com/support/knowledgebase/article/10378.html
http://www.sophos.com/support/knowledgebase/article/10378.html
http://esupport.trendmicro. com/support/viewxml.do?ContentID=en-117058

APPENDIX B. COMPATIBILITY TESTING OF ANTI-VIRUS
ENGINES 171

Product Scana Updateb Real-time scanc Notes
Avast! Home Edition Y Y Y
AVG AV Free Edition Y Y Y
Avira AntiVir Personal Ed. Y Y Y
BitDefender Free Ed. Y Y N
BullGuard Internet Sec. 8.0 Y Y Y
CA AntiVirus 2008 Y Y Y
ClamWin AV Y Y N
Comodo AV 2.0 beta Y N Y *d

F-prot Y N N
F-Secure AV 2008 Y Y Y
Kaspersky AV 7.0 Y Y N *e

McAfee virus scan N N Y *f

Norman AV Y Y Y
Norton AV 2008 N N Y
Panda AV 2008 Y Y N *g

Sophos AV SBE Y Y Y *h

Trend Micro 2008 Y N N
ZoneAlarmő AV N N Y

aUsable on-demand command line scanner
bUsable on-demand command line update feature
cUsable real-time scanner with parsable log files
dOn-demand update not possible in current release, will be considered for further ver-

sions.
eEvent logs are written in a seemingly unparsable proprietary format, so the on-demand

scanner can not be used.
fAccording to customer support, no command line possibilities in home edition. Is

possible in enterprise edition with “some modification”.
gUses a separate command line tool, but this tool does not support automatic updates.

Automatic updates must be scripted so that the downloads are automatically downloaded
and installed.

hA guide for automatic updates can be found at http://www.sophos.com/support/
knowledgebase/article/10378.html.

http://www.sophos.com/support/knowledgebase/article/10378.html
http://www.sophos.com/support/knowledgebase/article/10378.html

172 B.3. SUMMARY

Appendix C
Dynamic malware analysis tool survey

“In the struggle for survival, the fittest win out at the expense of
their rivals because they succeed in adapting themselves best to
their environment.”

- Charles Darwin

174 C.1. OVERVIEW

C.1 Overview

There exist a lot of malware analysis tools. However, to be suitable for use
with the PowerScan framework, the tools should require low interaction and
have the ability be initiated via the command line and print results to file.
The following sections look into some different tools that have been tested
to see if they would fit into the framework. Note that the overview is in no
way exhaustive, but it still gives an introduction to the domain.

C.2 Sandbox solutions

The following presents an overview of the analysis of sandbox analysis tools:

Product Command line? Suitable?
CWSandbox Unknown Possibly
Norman Sandbox Analyzer Y Y
Norman Sandbox Analyzer Pro N N

CWSandbox

URL: http://www.cwsandbox.org/orhttp://www.sunbelt-software.com/
Developer/Sunbelt-CWSandbox/

Usage: On-line web interface is available. Has got quite high system re-
quirements for installation, see http://www.sunbelt-software.com/
Developer/Sunbelt-CWSandbox/Requirements/. Is likely possible to
run from the command line, but this has not been tested. Obtaining a
custom use license does not appear to be possible.

Note: Complete sandbox solution that uses API hooking and DLL code
injection to analyze behavior. Presents results in plain text or HTML.

Norman Sandbox Analyzer

URL: http://www.norman.com/microsites/malwareanalyzer/Products/
analyzer

http://www.cwsandbox.org/ or http://www.sunbelt-software.com/Developer/Sunbelt-CWSandbox/
http://www.cwsandbox.org/ or http://www.sunbelt-software.com/Developer/Sunbelt-CWSandbox/
http://www.sunbelt-software.com/Developer/Sunbelt-CWSandbox/Requirements/
http://www.sunbelt-software.com/Developer/Sunbelt-CWSandbox/Requirements/
http://www.norman.com/microsites/malwareanalyzer/Products/analyzer
http://www.norman.com/microsites/malwareanalyzer/Products/analyzer

APPENDIX C. DYNAMIC MALWARE ANALYSIS TOOL SURVEY 175

Usage: GUI, but also supports command line usage for automation. Com-
mand line parameters well documented in the user manual. Using
.\Norman SandBox Analyzer\analyzer.exe /a:$logPath /p:c:\¬
NSA\filter.ini /d:c:\nsa\ $samplePath

Note: Has summary view, but also API log, dropped files overview, IRC
server and visited URL view. Summary may be written in

Norman Sandbox Analyzer Pro

URL: http://www.norman.com/microsites/malwareanalyzer/Products/
analyzer-pro

Usage: GUI. User manual states: “Analyzer Pro is a highly specialized tool
that was never meant to be used as a command line or automation tool.
Analyzer Pro will accept a few parameters from the commandline.”

Notes: In addition to functionality of the Norman Sandbox Analyzer, the
Pro edition also include a disassembler view, created thread view, mem-
ory dump view and a Live Internet Communicator analyzer module.

C.3 Registry monitors

The following presents an overview of the analysis of registry monitors:

Product Command line? Suitable?
RegShot N Y
RegMon N Y
Registry Watch N Y
SpyMe Tools N Y

RegShot

URL: https://sourceforge.net/projects/regshot

Usage: GUI only.

http://www.norman.com/microsites/malwareanalyzer/Products/analyzer-pro
http://www.norman.com/microsites/malwareanalyzer/Products/analyzer-pro
https://sourceforge.net/projects/regshot

176 C.4. FILE SYSTEM MONITORS

Notes: Takes snapshots of the registry before and after an action, and com-
pares them producing a pure text or HTML formatted report on added
and deleted registry keys.

Sysinternal RegMon

URL: http://www.microsoft.com/technet/sysinternals/
ProcessesAndThreads/Regmon.mspx

Usage: GUI only.

Notes: Regmon have been replaced by Process Monitor on versions of Win-
dows starting with Windows XP SP2. Works by performing system call
hooking on registry related calls. Has filtering option to filter processes
regarding only one process, but this can not be given as parameter.
Log can be saved from GUI.

Easydesksoftware Registry Watch

URL: http://www.easydesksoftware.com/regwatch.htm

Usage: GUI only.

Notes: Compares snapshots of the registry. Produces text formatted report
showing old and new values of changed keys.

LC IBros Solutions SpyMe Tools

URL: http://www.lcibrossolutions.com/spyme_tools.htm

Usage: GUI only.

Notes: Compares two snapshots of the registry or file system, and produces
a differences list.

C.4 File system monitors

The following presents an overview of the analysis of file system monitors:

http://www.microsoft.com/technet/sysinternals/
ProcessesAndThreads/Regmon.mspx
http://www.easydesksoftware.com/regwatch.htm
http://www.lcibrossolutions.com/spyme_tools.htm

APPENDIX C. DYNAMIC MALWARE ANALYSIS TOOL SURVEY 177

Product Command line? Suitable?
System Change Log Y Y
DiskMon N N
FileMon N Y
hIOmon N N
Handle Y N

System Change Log

URL: http://www.greyware.com/software/systemchangelog/

Usage: Installs as a service. Look at http://support.microsoft.com/
?kbid=310399 for instructions on how to enable auditing in Win XP
Pro

Notes: This system runs as a service, and logs file system activity. Logs to
c:\windows\system32\scl.log

Sysinternals Disk Monitor (DiskMon)

URL: http://technet.microsoft.com/nb-no/sysinternals/
bb896646(en-us).aspx

Usage: GUI only.

Notes: Uses kernel event tracing. Monitors read and write operations to
hard drive sectors, not files and directories.

Sysinternals File Monitor (FileMon)

URL: http://technet.microsoft.com/nb-no/sysinternals/
bb896642(en-us).aspx

Usage: GUI only.

Notes: Uses a file system API hook. Filemon have been replaced by Pro-
cess Monitor on versions of Windows starting with Windows XP SP2.
Monitors operations performed on files in the Windows file system. It
is possible to filter on specific files or directories. Starting in version
4.1 FileMon is able to monitor named pipe and mail slot file system
activity on Windows NT/2K.

http://www.greyware.com/software/systemchangelog/
http://support.microsoft.com/?kbid=310399
http://support.microsoft.com/?kbid=310399
http://technet.microsoft.com/nb-no/sysinternals/
bb896646(en-us).aspx
http://technet.microsoft.com/nb-no/sysinternals/
bb896642(en-us).aspx

178 C.5. PROCESS MONITORS

hIOmon

URL: http://www.hyperio.com/hIOmon/hIOmon.htm

Usage: Requires GUI, the presentation client requires Java to run. Allows
exporting (to a CSV-formatted file) the file or disk I/O trace data that
it has collected.

Notes: Intended used as a performance monitor, but can be used for track-
ing file operations.

Sysinternals Handle

URL: http://technet.microsoft.com/nb-no/sysinternals/
bb896655(en-us).aspx

Usage: .\handle.exe -p \$sampleFile

Notes: Displays information about open file handles for any process in the
system. Only reports the current open handles without providing func-
tionality for tracing over time. Handle has to be started as the process
to be monitored is executing. Thus not that usable in our context.
Has a GUI version also, see http://technet.microsoft.com/nb-no/
sysinternals/bb896653(en-us).aspx.

C.5 Process monitors

Product Command line? Suitable?
Process Monitor Y Y
PsTools Y Y
PrcView Y Y

Sysinternals Process Monitor

URL: http://technet.microsoft.com/en-us/sysinternals/bb896645.
aspx

Usage: Example of .bat-file:

http://www.hyperio.com/hIOmon/hIOmon.htm
http://technet.microsoft.com/nb-no/sysinternals/
bb896655(en-us).aspx
http://technet.microsoft.com/nb-no/sysinternals/bb896653(en-us).aspx
http://technet.microsoft.com/nb-no/sysinternals/bb896653(en-us).aspx
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx

APPENDIX C. DYNAMIC MALWARE ANALYSIS TOOL SURVEY 179

set PM=C:\Progra~1\procmon\Procmon.exe
start %PM% /Quiet /minimized /backingfile $logPath\$logFile.pml
%PM% /waitforidle
$program_to_be_monitored.exe
%PM% /terminate
%PM% /saveas $logfile.xml /openlog $logPath\$logFile.pml

Notes: Possible to get log files in XML, but must be converted after monitor-
ing is completed. See Sysinternals forum - http://forum.sysinternals.
com/forum_posts.asp?TID=13843&KW=command+line&PID=64569#64569.
NB! Extensive logging!. This tool combines features of the legacy tools
Sysinternal Filemon and Regmon.

Sysinternals PsTools

URL: http://technet.microsoft.com/nb-no/sysinternals/
bb896682(en-us).aspx

Usage: .\pslist.exe -t > c:\pslist.log

Notes: The tool PsList in the PsTools-package has an option to get process
information from a remote computer. Can also be used to get prosess
tree from the local computer.

PrcView

URL: http://www.faratasystems.com/pview/prcview.htm

Usage: .\pv.exe [arguments]

Notes: This tool has a command line utility that allows the user to extract
extended information about running processes.

C.6 Network activity monitors

For list; see http://www.woodmann.com/collaborative/tools/index.php/
Category:Network_Sniffers

http://forum.sysinternals.com/forum_posts.asp?TID=13843&KW=command+line&PID=64569#64569
http://forum.sysinternals.com/forum_posts.asp?TID=13843&KW=command+line&PID=64569#64569
http://technet.microsoft.com/nb-no/sysinternals/
bb896682(en-us).aspx
http://www.faratasystems.com/pview/prcview.htm
http://www.woodmann.com/collaborative/tools/index.php/Category:Network_Sniffers
http://www.woodmann.com/collaborative/tools/index.php/Category:Network_Sniffers

180 C.6. NETWORK ACTIVITY MONITORS

Product Command line? Suitable?
TCPView Y Y
TCPDump Y Y
WireShark Y Y
Sniff Hit N Y

Sysinternals TCPView

URL: http://technet.microsoft.com/en-us/sysinternals/bb897437.
aspx

Usage: .\TcpView\tcpvcon.exe -a $sampleFile > $logFile

Notes: TCPView is a tool to monitor all open TCP and UDP endpoints.
The TCPView tool is based on a GUI, but contains a command-line
tool called Tcpvcon.

TCPDump for Windows (Windump)

URL: http://www.winpcap.org/windump/install/default.htm

Usage: C:\windump\WinDump.exe -i\$interfaceNr > \$logFile

Notes: Windump is Windows version of the tcpdump tool for Unix, and is
built on the Windows version of the Unix libpcap API.

WireShark

URL: http://www.wireshark.org/

Usage: .\wireshark.exe [options]

Notes: WireShark can be run from the command line, and supports a large
number of parameters. Output can be redirected to file (using the -
w switch) The filters will probably have to be prepared in advance.
Output files needs to be opened in WireShark for analysis.

http://technet.microsoft.com/en-us/sysinternals/bb897437.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897437.aspx
http://www.winpcap.org/windump/install/default.htm
http://www.wireshark.org/

APPENDIX C. DYNAMIC MALWARE ANALYSIS TOOL SURVEY 181

Sniff Hit

URL: http://labs.idefense.com/files/labs/releases/previews/map/
sniff_hit.html

Usage:

Notes: Is a HTTP, IRC, and DNS sniffer. Part of the iDefence Malcode
Analysis Pack.

C.7 Packages and tool sets

Product Command line? Suitable?
All-seeing Eye N N
Windows Resource Tool Kit Y N
SysAnalyzer N Y
Malcode Analysis Pack both Y

All-seeing Eye

URL: http://www.fortego.com/en/ase.html

Usage: Based on GUI, and requires user interaction to create rules. Shows
GUI warnings for events like loading of DLLs, registering of services
etc.

Notes: A tool that monitors processes, DLL usage, drivers and services, file
system, registry, browser helper objects and network sockets. Based on
a learning mechanism, the different modules tries to separate normal
behavior from malicious actions.

Windows Resource Kit Tools

URL: http://www.microsoft.com/downloads/details.aspx?FamilyID=
9d467a69-57ff-4ae7-96ee-b18c4790cffd&DisplayLang=en

Usage: Various command line tools.

Notes: Contains process monitoring tools, but is unable to redirect output.

http://labs.idefense.com/files/labs/releases/previews/map/sniff_hit.html
http://labs.idefense.com/files/labs/releases/previews/map/sniff_hit.html
http://www.fortego.com/en/ase.html
http://www.microsoft.com/downloads/details.aspx?FamilyID=9d467a69-57ff-4ae7-96ee-b18c4790cffd&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=9d467a69-57ff-4ae7-96ee-b18c4790cffd&DisplayLang=en

182 C.8. SYSTEM CALL ANALYSIS

iDefence SysAnalyzer

URL: http://labs.idefense.com/files/labs/releases/previews/
SysAnalyzer/

Usage: Requires GUI.

Notes: Works mainly by comparing system snapshots, this is due to effi-
ciency reasons. However, the tool also include some real-time logging
to avoid missing critical operations. Snapshots cover processes, net-
work endpoints, loaded system drivers, DLLs loaded into Explorer and
certain registry keys.

iDefence Malcode Analysis Pack

URL: http://labs.idefense.com/files/labs/releases/previews/map/

Usage:

Notes: Collection of various tools, including TCP client, sniff_hit1, mail
server capturer, fakeDNS spoofing tool, a hidden process detector and
various other shell tools.

C.8 System call analysis

Product Command line? Suitable?
KAM N Y
Strace 0.3 Y Y
StraceNT0.8 Y N
APIScan Y N
Detours Y Y
ListDLLs Y N
Omega Red syscall ?? N
Rohitab API mon N Y

1IRC, HTTP and DNS sniffer

http://labs.idefense.com/files/labs/releases/previews/
SysAnalyzer/
http://labs.idefense.com/files/labs/releases/previews/map/

APPENDIX C. DYNAMIC MALWARE ANALYSIS TOOL SURVEY 183

KaKeeware Application Monitor (KAM)

URL: http://www.kakeeware.com/i_kam.php

Usage: Requires GUI.

Notes: Is a DLL/API spy application.

Strace for NT 0.3

URL: http://www.woodmann.com/collaborative/tools/index.php/
Strace_for_NT

Usage: .\strace-0.3\app\Release\strace.exe -e [APIs to monitor]
-o $logFile $samplePath

Notes: Strace has preliminary support for Windows XP. On Windows XP, it
is necessary to set the registry key HKLM\SYSTEM\CurrentControlSet¬
\Control\Session Manager\Memory Management\EnforceWritePro-
tection to REG_DWORD 0. and reboot before using strace. This
disables the kernel from checking for errant memory overwrites, and is
not a good thing, in general. It is currently necessary for strace because
the system call table is write protected, and strace needs to modify it.
Shows some parameters as readable text. Filtering can be done using
the -e command line switch with the system call names as arguments.

IntellectualHeaven StraceNT 0.8

URL: http://www.intellectualheaven.com/default.asp?BH=
projects&H=strace.htm

Usage: .\strace\StraceNt.exe -f stFilter.txt $samplePath > $¬
logPath

Notes: Is possible to filter system calls via a separate text filter file, but
does not show arguments in human readable format.

APIScan

URL: http://www.woodmann.com/collaborative/tools/index.php/APIScan

http://www.kakeeware.com/i_kam.php
http://www.woodmann.com/collaborative/tools/index.php/
Strace_for_NT
http://www.intellectualheaven.com/default.asp?BH=
projects&H=strace.htm
http://www.woodmann.com/collaborative/tools/index.php/APIScan

184 C.8. SYSTEM CALL ANALYSIS

Usage: .\apiscan\APIScan.exe $samplePath

Notes: Creates a log file in the directory of the target application containing
all the API calles issued from that process. Does not show the APIs
in sequencial order, and does not show arguments passed with the API
calls.

Detours

URL: http://research.microsoft.com/sn/detours/

Usage:

Notes: Must be compiled from C++

ListDLLs

URL: http://technet.microsoft.com/nb-no/sysinternals/
bb896656(en-us).aspx

Usage: .\listdlls\Listdlls.exe $samplePath > $logFile

Notes: Must be run while the monitored process/application is running.
This means timing issue when automating.

Omega Red syscall

URL: http://ry.pl/~omega/progs/syscall.zip

Usage:

Notes: Have tried installation on several machines, but the program seems
to fail every time.

Rohitab API monitor

URL: http://www.rohitab.com/apimonitor/

Usage: Requires GUI

http://research.microsoft.com/sn/detours/
http://technet.microsoft.com/nb-no/sysinternals/
bb896656(en-us).aspx
http://ry.pl/~omega/progs/syscall.zip
http://www.rohitab.com/apimonitor/

APPENDIX C. DYNAMIC MALWARE ANALYSIS TOOL SURVEY 185

Notes: Seems to have good filtering capabilities, possible to filter both pro-
cesses and APIs. The arguments are in human readable form, and
status codes are given for errors.

C.9 General analysis tools

Product Command line? Suitable?
Red Curtain N Y

MANDIANT Red Curtain

URL: http://www.mandiant.com/redcurtain.htm

Usage: Requires .NET framework.

Notes: MRC examines executable files to determine how suspicious they
are based on a set of criteria such as the entropy (in other words,
randomness), indications of packing, compiler and packing signatures,
digital signatures, PE anomalies and other characteristics to generate
a threat score.

http://www.mandiant.com/redcurtain.htm

186 C.9. GENERAL ANALYSIS TOOLS

Appendix D
Configuration file examples

“Rules make the learner’s path long, examples make it short and
successful”

- Seneca (Roman philosopher, mid-1st century AD)

188 D.1. EXAMPLE XML CONFIG FILE

D.1 Example XML config file
<PowerScan >

<VMwareHostList >
<VMwareHost host="dhcp208 -210. ed.ntnu.no">

<hostPortNumber >902 </ hostPortNumber >
<hostUsername >XXXXXXX </ hostUsername >
<hostPassword >XXXXXXX </ hostPassword >
<vmList >

<VM vmxPath ="/var/lib/vmware - server / Virtual Machines / winxp_0 /
Windows XP Professional .vmx">

<vmUsername >XXXXXXX </ vmUsername >
<vmPassword >XXXXXXX </ vmPassword >
<avEngine name=" clamwin ">

<avExecutablePath >C:\ Program Files \ ClamWin \bin\ clamscan .
exe </ avExecutablePath >

<avParameters >--stdout --database ="c:\ program files \
clamwin \bin" --log=c:\ result .log "$ samplePath "</
avParameters >

<avLogFilePath >c:\ result .log </ avLogFilePath >
<avLogFilter >

<avResultIdentifier >FOUND </ avResultIdentifier >
<avResultPrefix >: </ avResultPrefix >
<avResultSuffix > FOUND </ avResultSuffix >

</ avLogFilter >
<avUpdateInfo >

<avUpdateExecutable >c:\ program files \ clamwin \bin\
freshclam .exe </ avUpdateExecutable >

<avUpdateParameters >--stdout --config -file="c:\ program
files \ clamwin \bin\ clamd .conf" --datadir ="c:\ program

files \ clamwin \bin" --log="c:\ update .log" </
avUpdateParameters >

<avUpdateLogPath >c:\ update .log </ avUpdateLogPath >
<avUpdateSuccessIndicator >Database updated </

avUpdateSuccessIndicator >
</ avUpdateInfo >
<realTimeScan >

<rtLogPath ></ rtLogPath >
<rtResultIdentifier ></ rtResultIdentifier >

</ realTimeScan >
</ avEngine >
<analysisTools >

<dynamicAnalysisTool toolName =" IPconfig ">
<toolExecutablePath >c:\ windows \ system32 \cmd.exe </

toolExecutablePath >
<toolParameters >/C ipconfig > c:\ ipconfig2 .log </

toolParameters >
<toolResultFilePath >c:\ ipconfig2 .log </

toolResultFilePath >
<executeMalwareExplicitly >false </

executeMalwareExplicitly >
</ dynamicAnalysisTool >
<dynamicAnalysisTool toolName =" Netstat ">

<toolExecutablePath >c:\ windows \ system32 \cmd.exe </
toolExecutablePath >

<toolParameters >/C netstat -a > c:\ netstat .log </
toolParameters >

<toolResultFilePath >c:\ netstat .log </ toolResultFilePath >
<executeMalwareExplicitly >false </

executeMalwareExplicitly >
</ dynamicAnalysisTool >

APPENDIX D. CONFIGURATION FILE EXAMPLES 189

</ analysisTools >
</VM >
<VM vmxPath ="/var/lib/vmware - server / Virtual Machines /

winxp_default / Windows XP Professional .vmx">
<vmUsername >XXXXXXX </ vmUsername >
<vmPassword >XXXXXXX </ vmPassword >
<avEngine name="F- Secure 7.10">

<avExecutablePath >c:\ Program files \f- secure \Anti - Virus \
fsav.exe </ avExecutablePath >

<avParameters >/ REPORT =c:\ result .log "$ samplePath "</
avParameters >

<avLogFilePath >c:\ result .log </ avLogFilePath >
<avLogFilter >

<avResultIdentifier >Infection </ avResultIdentifier >
<avResultPrefix >: </ avResultPrefix >
<avResultSuffix ></ avResultSuffix >

</ avLogFilter >
<avUpdateInfo >

<avUpdateExecutable >c:\ program files \f- secure \anti -
virus \ getdbhtp .exe </ avUpdateExecutable >

<avUpdateParameters >-url= http: // avupdate .f- secure .com/
updates / -gui =1 -ver= FSAV6 </ avUpdateParameters >

<avUpdateLogPath ></ avUpdateLogPath >
<avUpdateSuccessIndicator ></ avUpdateSuccessIndicator >

</ avUpdateInfo >
<realTimeScan >

<rtLogPath ></ rtLogPath >
<rtResultIdentifier ></ rtResultIdentifier >

</ realTimeScan >
</ avEngine >

</VM >
<VM vmxPath ="/var/lib/vmware - server / Virtual Machines / winxp_1 /

Windows XP Professional .vmx">
<vmUsername >XXXXXXX </ vmUsername >
<vmPassword >XXXXXXX </ vmPassword >
<avEngine name="AVG">

<avExecutablePath >c:\ Program files \avg\avg8\ avgscanx .exe </
avExecutablePath >

<avParameters >/ REPORT =c:\ report .txt /SCAN =$ samplePath </
avParameters >

<avLogFilePath >c:\ report .txt </ avLogFilePath >
<avLogFilter >

<avResultIdentifier >identified </ avResultIdentifier >
<avResultPrefix ></ avResultPrefix >
<avResultSuffix ></ avResultSuffix >

</ avLogFilter >
<avUpdateInfo >

<avUpdateExecutable >C:\ Program Files \AVG\AVG8\ avgupd .
exe </ avUpdateExecutable >

<avUpdateParameters ></ avUpdateParameters >
<avUpdateLogPath ></ avUpdateLogPath >
<avUpdateSuccessIndicator ></ avUpdateSuccessIndicator >

</ avUpdateInfo >
<realTimeScan >

<rtLogPath >C:\ Documents and Settings \All Users \
Application Data\avg8\Log\ avgrs .log </ rtLogPath >

<rtResultIdentifier >EID_Id_vir </ rtResultIdentifier >
</ realTimeScan >

</ avEngine >
</VM >

</ vmList >
</ VMwareHost >

190 D.1. EXAMPLE XML CONFIG FILE

<VMwareHost host=" 129.241.208.158 ">
<hostPortNumber >902 </ hostPortNumber >
<hostUsername >XXXXXXX </ hostUsername >
<hostPassword >XXXXXXX </ hostPassword >
<vmList >

<VM vmxPath ="C:\ Virtual Machines \ Windows XP Professional \ Windows
XP Professional .vmx">

<vmUsername >XXXXXXX </ vmUsername >
<vmPassword >XXXXXXX </ vmPassword >
<analysisTools >

<dynamicAnalysisTool toolName =" Norman Sandbox Analyzer ">
<toolExecutablePath >C:\NSA > analyzer .exe </

toolExecutablePath >
<toolParameters > /d:c:\nsa /a:c:\nsa.log $ samplePath </

toolParameters >
<toolResultFilePath >c:\nsa.log </ toolResultFilePath >
<executeMalwareExplicitly >false </

executeMalwareExplicitly >
</ dynamicAnalysisTool >

</ analysisTools >
</VM >

</ vmList >
</ VMwareHost >

</ VMwareHostList >
</ PowerScan >

Listing D.1: A sample XML configuration file

APPENDIX D. CONFIGURATION FILE EXAMPLES 191

D.2 PowerScan XML Schema Definition

The following listing shows the PowerScan XML Schema Definition (XSD),
which defines the rules for the PowerScan XML configuration file.

<?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>
<xsd:schema xmlns:xsd =" http: // www.w3.org /2001/ XMLSchema ">

<! -- Define the simple elements first -->
<xsd:element name=" hostPassword " type=" xsd:string "/>
<xsd:element name=" hostUsername " type=" xsd:string "/>
<xsd:element name=" avResultIdentifier " type=" xsd:string "/>
<xsd:element name=" avResultPrefix " type=" xsd:string "/>
<xsd:element name=" avResultSuffix " type=" xsd:string "/>
<xsd:element name=" avUpdateExecutable " type=" xsd:string "/>
<xsd:element name=" avUpdateParameters " type=" xsd:string "/>
<xsd:element name=" avUpdateLogPath " type=" xsd:string "/>
<xsd:element name=" avUpdateSuccessIndicator " type=" xsd:string "/>
<xsd:element name=" avExecutablePath " type=" xsd:string "/>
<xsd:element name=" avParameters " type=" xsd:string "/>
<xsd:element name=" avLogFilePath " type=" xsd:string "/>
<xsd:element name=" vmUsername " type=" xsd:string "/>
<xsd:element name=" vmPassword " type=" xsd:string "/>
<xsd:element name=" toolExecutablePath " type=" xsd:string "/>
<xsd:element name=" toolParameters " type=" xsd:string "/>
<xsd:element name=" toolResultFilePath " type=" xsd:string "/>
<xsd:element name=" rtLogPath " type=" xsd:string "/>
<xsd:element name=" rtResultIdentifier " type=" xsd:string "/>
<xsd:element name=" executeMalwareExplicitly " type=" xsd:boolean "/>
<xsd:element name=" hostPortNumber " type=" xsd:integer "/>

<! -- Define attributes -->

<xsd:attribute name="host" type=" xsd:string "/>
<xsd:attribute name="name" type=" xsd:string "/>
<xsd:attribute name=" vmxPath " type=" xsd:string "/>
<xsd:attribute name=" toolName " type=" xsd:string "/>

<! -- Define the complex elements -->

<xsd:element name=" VMwareHostList ">
<xsd:complexType >

<xsd:sequence >
<xsd:element maxOccurs =" unbounded " minOccurs ="1" ref=" VMwareHost "/>

</ xsd:sequence >
</ xsd:complexType >

</ xsd:element >

<xsd:element name=" VMwareHost ">
<xsd:complexType >

<xsd:sequence >
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" hostPortNumber "/>
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" hostUsername "/>
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" hostPassword "/>
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" vmList "/>

</ xsd:sequence >
<xsd:attribute ref="host" use=" required "/>

</ xsd:complexType >
</ xsd:element >

192 D.2. POWERSCAN XML SCHEMA DEFINITION (XSD)

<xsd:element name=" vmList ">
<xsd:complexType >

<xsd:sequence >
<xsd:element maxOccurs =" unbounded " minOccurs ="0" ref="VM"/>

</ xsd:sequence >
</ xsd:complexType >

</ xsd:element >

<xsd:element name=" avLogFilter ">
<xsd:complexType mixed ="true">

<xsd:sequence >
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" avResultIdentifier "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avResultPrefix "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avResultSuffix "/>

</ xsd:sequence >
</ xsd:complexType >

</ xsd:element >

<xsd:element name=" avUpdateInfo ">
<xsd:complexType mixed ="true">

<xsd:sequence >
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avUpdateExecutable "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avUpdateParameters "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avUpdateLogPath "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avUpdateSuccessIndicator

"/>
</ xsd:sequence >

</ xsd:complexType >
</ xsd:element >

<xsd:element name=" avEngine ">
<xsd:complexType mixed ="true">

<xsd:sequence >
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" avExecutablePath "/>
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" avParameters "/>
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" avLogFilePath "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avLogFilter "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avUpdateInfo "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" realTimeScan "/>

</ xsd:sequence >
<xsd:attribute ref="name" use=" required "/>

</ xsd:complexType >
</ xsd:element >

<xsd:element name=" realTimeScan ">
<xsd:complexType >

<xsd:sequence >
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" rtLogPath "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" rtResultIdentifier "/>

</ xsd:sequence >
</ xsd:complexType >

</ xsd:element >

<xsd:element name=" analysisTools ">
<xsd:complexType >

<xsd:sequence >
<xsd:element maxOccurs =" unbounded " minOccurs ="0" ref="

dynamicAnalysisTool "/>
</ xsd:sequence >

</ xsd:complexType >
</ xsd:element >

APPENDIX D. CONFIGURATION FILE EXAMPLES 193

<xsd:element name=" dynamicAnalysisTool ">
<xsd:complexType mixed ="true">

<xsd:sequence >
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" toolExecutablePath "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" toolParameters "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" toolResultFilePath "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" executeMalwareExplicitly "/

>
</ xsd:sequence >
<xsd:attribute ref=" toolName " use=" required "/>

</ xsd:complexType >
</ xsd:element >

<xsd:element name="VM">
<xsd:complexType mixed ="true">

<xsd:sequence >
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" vmUsername "/>
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" vmPassword "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avEngine "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" analysisTools "/>

</ xsd:sequence >
<xsd:attribute ref=" vmxPath " use=" required "/>

</ xsd:complexType >
</ xsd:element >

<! -- Define the overall structure -->
<! -- Starting with one VMwareHostList element -->
<xsd:element name=" PowerScan ">

<xsd:complexType >
<xsd:sequence >

<xsd:element maxOccurs ="1" minOccurs ="1" ref=" VMwareHostList "/>
</ xsd:sequence >

</ xsd:complexType >
</ xsd:element >

</ xsd:schema >

Listing D.2: The W3C XML Schema definition

194
D.3. DESCRIPTION OF POWERSCAN’S XML WITH RESPECT TO

THE XSD SCHEMA

D.3 Description of PowerScan’s XML with
respect to the XSD schema

This section describes the setup of PowerScan’s XML configuration file, with
respect to the defined XSD schema. It gives a description of the XML ele-
ments and their limitations, as they are described in the XSD. For the actual
XSD schema and an example XML file, refer to the sections above.

Schema languages are useful, as they can be used to verify that the given
XML config file is not only well-formed, meaning that it conforms to the
XML standard, but also that it conforms to specified rules concerning which
elements are optional, the number of allowed sub elements within elements
and so on.

When initiated, the PowerScan framework needs to be told how the lab
environment it is supposed to utilize is set up. The required information
includes how many VMware hosts are supposed to be used, their IP address
or host name, username and password for the host, how many VMware guest
OS instances are running and which AV engines or analysis tools are installed
on them and how the tools are to be executed. The layout of the XML file
is described below:

The XML file starts with one root element called <PowerScan>. A
<PowerScan> element is defined in XSD as follows:
<xsd:element name=" PowerScan ">

<xsd:complexType >
<xsd:sequence >

<xsd:element ref=" VMwareHostList " minOccurs ="0" maxOccurs ="1" />
</ xsd:sequence >

</ xsd:complexType >
</ xsd:element >

Listing D.3: XSD PowerScan element

This means that a <PowerScan> element contains one and only one element
of the type <VMwareHostList>. The <VMwareHostList> element is also a
complex element1, defined as
<xsd:element name=" VMwareHostList ">

<xsd:complexType >
<xsd:sequence >

<xsd:element ref=" VMwareHost " minOccurs ="1" maxOccurs =" unbounded " />
</ xsd:sequence >

</ xsd:complexType >

1A complex element is an element that contains other elements and/or attributes.

APPENDIX D. CONFIGURATION FILE EXAMPLES 195

</ xsd:element >

Listing D.4: XSD VMwareHostList element

This shows that a <VMwareHostList> element is a list containing at least
one but possibly an arbitrary high number of <VMwareHost> elements. The
<VMwareHost> element contains the following elements:
<xsd:element name=" VMwareHost ">

<xsd:complexType >
<xsd:sequence >

<xsd:element maxOccurs ="1" minOccurs ="1" ref=" hostPortNumber "/>
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" hostUsername "/>
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" hostPassword "/>
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" vmList "/>

</ xsd:sequence >
<xsd:attribute ref="host" use=" required "/>

</ xsd:complexType >
</ xsd:element >

Listing D.5: XSD VMwareHost element

As seen, a <VMwareHost> contains the password and username for the
host, and an element called <vmList>, which is a list one or more <VM>
elements. Each <VM> element represents a guest OS running Windows XP,
and has the following elements
<xsd:element name="VM">
<xsd:complexType mixed ="true">

<xsd:sequence >
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" vmUsername "/>
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" vmPassword "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avEngine "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" analysisTools "/>

</ xsd:sequence >
<xsd:attribute ref=" vmxPath " use=" required "/>

</ xsd:complexType >
</ xsd:element >

Listing D.6: XSD VM element

The last two elements of the <VM> shows that a guest OS can run one
AV engine, or one or more analysis tools. An AV engine has the following
configurable properties;
<xsd:element name=" avEngine ">

<xsd:complexType mixed ="true">
<xsd:sequence >

<xsd:element maxOccurs ="1" minOccurs ="1" ref=" avExecutablePath "/>
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" avParameters "/>
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" avLogFilePath "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avLogFilter "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avUpdateInfo "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" realTimeScan "/>

196
D.3. DESCRIPTION OF POWERSCAN’S XML WITH RESPECT TO

THE XSD SCHEMA

</ xsd:sequence >
<xsd:attribute ref="name" use=" required "/>

</ xsd:complexType >
</ xsd:element >

Listing D.7: XSD avEngine element

The AV engines are used for on-demand scan, and the first two parameters
are used to configure the command used to initiate the scan. The third
parameter, <avLogFilePath>, is the path to the log or result file in which
the result of the on-demand scan is written. This may be a standard log
file that the AV engine uses, or the console output piped to a temporary file.
The <avLogFilter> element is used to filter the result file looking for specific
words that indicate a malware hit. It is defined as follows:
<xsd:element name=" avLogFilter ">

<xsd:complexType mixed ="true">
<xsd:sequence >

<xsd:element maxOccurs ="1" minOccurs ="1" ref=" avResultIdentifier "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avResultPrefix "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avResultSuffix "/>

</ xsd:sequence >
</ xsd:complexType >

</ xsd:element >

Listing D.8: XSD avLogFilter element

At regular intervals, the AV engines need to update their definition/signature
database. This is hard to schedule using automatic updaters, as the guest
OSs are reverted to snapshot at unpredictable intervals (typically after each
use). To deal with this, PowerScan supports automatic update of all regis-
tered engines. The <avUpdateInfo> element contains path to the update
executable and parameters, a path to a log file and some word or words to
look for in the log that indicate a successful update operation. Note that this
element is optional, as some engines may not support automatic updates via
the command line.
<xsd:element name=" avUpdateInfo ">

<xsd:complexType mixed ="true">
<xsd:sequence >

<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avUpdateExecutable "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avUpdateParameters "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avUpdateLogPath "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" avUpdateSuccessIndicator

"/>
</ xsd:sequence >

</ xsd:complexType >
</ xsd:element >

Listing D.9: XSD avUpdateInfo element

APPENDIX D. CONFIGURATION FILE EXAMPLES 197

The <realTimeScan> element of the <avEngine> is, as the name indicates,
configuration parameters for the use of real-time scan functionality. The
malware sample is executed within the guest OS, and the real time scan
log is parsed to look for indicators showing the the executable has been
recognized as containing malware. Although real-time scanner alerts often
are shown in GUI pop-ups, PowerScan relies on parsing the log file of the
anti-virus solution in order to determine if an infection was noted. This is
because the Vix framework does not support GUI interaction.

In addition to scanning the malware sample with an AV scanner, it is also
possible to set up guest OSs running one or more analysis tools. These tools
are often executed with the malware sample as a parameter, but in some
cases the analysis tool is started before the sample is executed. The <VM>
element contains an <analysisTools> element, which is a list containing one
or more <dynamicAnalysisTool> elements. The <dynamicAnalysisTool>
element contains the configuration parameters for an analysis tool, and is
defined as
<xsd:element name=" dynamicAnalysisTool ">
<xsd:complexType mixed ="true">

<xsd:sequence >
<xsd:element maxOccurs ="1" minOccurs ="1" ref=" toolExecutablePath "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" toolParameters "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" toolResultFilePath "/>
<xsd:element maxOccurs ="1" minOccurs ="0" ref=" executeMalwareExplicitly "/

>
</ xsd:sequence >
<xsd:attribute ref=" toolName " use=" required "/>

</ xsd:complexType >
</ xsd:element >

Listing D.10: XSD dynamicAnalysisTool element

This element contains a path to start the tool, a string that may contain
parameters, a log file path to be able to copy back the result and an element
called <executeMalwareExplicitly> which is used to indicate whether the
malware should be executed explicitly, or if it is supplied as a part of the
parameter string. If the malware path needs to be included as part of the
parameters, it can be inserted using the string $malwarePath.

An example XML config file can be found in section D.1, and the appurtenant
XSD file in D.2.

198 D.4. PROPERTIES FILE EXAMPLE

D.4 Properties file example
VMware host setup
Note that all times are given in seconds .

Virtual machine setup
Specify timeout for waiting for tools to start in Virtual
Machines (tools is required for operation)
vmware . tools . timeout = 30

Scanner parameters
Specify the path on the virtual machines in which to execute the malware

sample .
Note that backslashes (\) will have to escaped by another backslash , such
that c:\ program files \ becomes c:\\ program files \\.
Also note that the directory must already be created on the virtual

machine ,
as VIX 1.0 and 1.1 does not support directory creation .
The execution path must end with a file separator (typically slash (/) or

backslash (\)).
scanner . executionpath = c:\\

Specify whether snapshots should be taken before performing scans .
This is generally NOT recommended , as storing snapshots is a time

consuming
operation , which should only be performed when changes are made to the

Virtual Machine .
It may also lead to instabilities in the virtual machines and cause scan

failures .
snapshot . before .scan = false

Set polling interval for minor operations
polling . interval . minor = 0.250

Set polling interval for major operations
polling . interval . major = 1.000

Maximum time to allow for individual scan operations to finish .
scanner . timeout = 60

Maximum time to allow malware to execute with real - time anti - virus scanner
running

malware . execution . timeout = 25

Maximum total time for malware execution operation (for all registered
scanners)

full. execution . timeout = 240

Maximum time to allow for updating to finish
update . timeout = 600

Timeout for full scan . Used to prevent entire system from crashing
following failure in a single thread .
full.scan. timeout = 600

Determine whether log files should be overwritten when program is executed
.

Note that log files may take up significant resources over time .
log. overwrite = false

Log files

APPENDIX D. CONFIGURATION FILE EXAMPLES 199

VMware calls
log. vmware = logs \\ vmware .log

Scanner log (scan logic)
log. system . scanner = logs \\ scanner .log

System log (main thread)
log. system = logs \\ system .log

Executor log
log. system . executor = logs \\ executor .log

Executor path to location of malware sample
Note that backslashes (\) will have to escaped by another backslash ,
such that c:\ program files \ becomes c :\\ program files \\.
Also note that the directory must already be created on the virtual
machine , as VIX 1.0 and 1.1 does not support directory creation .
The execution path must end with a file separator (typically slash (/) or

backslash (\)).
executor . executionpath = c:\\

Path to which the result files from the analysis tools should be copied
on the local system
executor . localResultPath = c:\\ test \\

Sets the time in seconds for which the operator is allowed to interact
with the malware sample / analysis tools
executor . overall . timeout = 30

Sets the path for the XSD file used to validate the XML config file
xml.xsd.path = config .xsd

Listing D.11: Example PowerScan properties file

200 D.4. PROPERTIES FILE EXAMPLE

Appendix E
Test case specifications

“The test is to recognize the mistake, admit it and correct it. To
have tried to do something and failed is vastly better than to have
tried to do nothing and succeeded.”

- Dale E. Turner

202 E.1. SYSTEM TEST USING COMMAND LINE INTERFACE

E.1 System test using command line inter-
face

Test specification for System test

Module system

Responsible for test specification Thomas Langerud

Date 19 May 2008

Estimated hours to carry out test

Objective of test Test the complete system, using the command line interface

Test sequence number 1

Comments This tests basic functionality using the command line interface. The special cases are

tested using the GUI (sequence 2).

Test carried out by Thomas Langerud

Date 23 May 2008

Build

Configuration file version 1.30

Properties file version 1.18

Comments

1.1 Test the scan functionality with multiple virtual machines on one host
Prerequisites System set up with Windows XP installed on virtual machines

[sequence number] [action] [expected result] [result, error no.]

1.1.1 Execute the system using

the following command

switches:

“-s

config/powerscan.properti

es –c config/config.xml –

SCAN c:\test\eicar.com”

The system executes the scan operation and the following

status messages should be printed to the console:

- Validating XML config

- Connected to VMware Host [host]

- Performing scan on [sample] using X scan engines.

- [anti-virus engine] starting scan.

The result of the scan operation should be printed.

- Successfully reverted virtual machine to snapshot for

[anti-virus engine]

OK

1.2 Test the update functionality
Prerequisites System set up with Windows XP installed on virtual machines

[sequence number] [action] [expected result] [result, error no.]

1.2.1 Execute the system using

the following command

switches:

“-s

config/powerscan.properti

es –c config/config.xml –

UPDATE”

The system executes the update operation, and the following

status messages should be printed to the console:

- Validating XML config.

- Connected to VMware Host [host].

- [anti-virus engine] starting update operation.

- Starting update of virus definitions for [anti-virus

engine].

- Automatic snapshot taken for VM running [anti-virus

engine].

The update result should be printed. The results will depend

on the command line capabilities of the anti-virus engine.

The following is an example:

- Successfully updated engines:

clamwin

Database updated (295835 signatures) from

database.clamav.net (IP: 62.236.254.228)

Engines that does not provide verbose update log and

should be reviewed manually:

F-Secure 7.10 running at [host] with OS login/pass

OK

APPENDIX E. TEST CASE SPECIFICATIONS 203

[username]/[password].

Please login to these virtual machines with the provided

usernames/passwords and assure that they are updated

and ready to perform scans. Remember to take snapshots

if any further changes are made.

1.3 Test the execute malware functionality
Prerequisites System set up with Windows XP installed on virtual machines

[sequence number] [action] [expected result] [result, error no.]

1.3.1 Execute the system using

the following command

switches:

“-s

config/powerscan.properti

es -c

config/config_with_new_t

est.xml -EXECUTE

c:\test\eicar.com”

The system executes the execute malware operation and the

following status messages should be printed to the console:

- Validating XML config

- Connected to VMware Host [host].

- Executing [sample] on X virtual machines.

- [anti-virus engine] starting execution of malware sample

at [sample].

The result of the execute malware operation should then be

printed.

- Reverted virtual machine running [anti-virus engine] to

snapshot.

OK

1.4 Test the dynamic analysis functionality, several tools in several VMs
Prerequisites System set up with Windows XP installed on virtual machines

[sequence number] [action] [expected result] [result, error no.]

1.4.1 Execute the system using

the following command

switches:

“-s

config/powerscan.properti

es -c

config/config_with_new_t

est.xml -ANALYZE

c:\test\eicar.com

The system executes the dynamic analysis operation and the

following status messages should be printed to the console:

- Validating XML config

- Connected to VMware Host [host].

- Executing dynamic analysis on file [sample].

- Copying sample file to VM [host]:[vmx path]

- Done copying sample file to guest OS.

- Tool [tool] is now running on VM [host]:[vmx path].

- All analysis tools have been started on VM [host]:[vmx

path], user interaction might be required. Log in to VM

using username/password [username]/[password]

- Now sleeping - awaiting user interaction.

Execution will now sleep for a configurable time period, and

the console will show countdown as:

- Slept X seconds of total Y

each 10 seconds

- Done sleeping - completing task.

If a result file is given, the file should be copied back,

showing the following status message:

- Copying result file back for tool [tool]

The sequence should then be repeated for the next VMs,

starting from “Copying sample file…”

After the last VM has completed copying back the result, the

VMs should be reverted to snapshot.

- Reverting VM with handle [handle] on host [host] to

snapshot

The result of the operation should then be printed. Depending

on whether the tool creates a log file, the result may look like:

- Tool [tool] completed. No result file is declared.

or

- Tool [tool] completed, result file is located at [local

OK

204 E.1. SYSTEM TEST USING COMMAND LINE INTERFACE

result file path].

1.4.2 Redo sequence 1.4.1,

cancel the sleep period

before it completes

The sleep period should be interrupted, and the system should

proceed with the next action.

OK

APPENDIX E. TEST CASE SPECIFICATIONS 205

E.2 System test using graphical user inter-
face

Test specification for System test

Module system

Responsible for test specification Thomas Langerud

Date 19 May 2008

Estimated hours to carry out test

Objective of test Test the complete system, using the graphical user interface

Test sequence number 2

Comments The scan test should be carried out using the EICAR test file.

Test carried out by Thomas Langerud

Date 23 May 2008

Build []

Configuration file version 1.30

Properties file version 1.18

Comments

2.1 Test the initialization functionality with one host
Prerequisites System set up with Windows XP installed on virtual machines

[sequence number] [action] [expected result] [result, error no.]

2.1.1 Start PowerScan with the

–GUI switch.

The GUI is shown, the “Open” and “Clear” buttons and the

three input fields are available. The Start, Edit, Output and

Help menus are available. The console text area displays Now

ready.

OK

2.1.2 Insert path to valid XML

config file and properties

file, choose Start from the

System menu.

The following status messages should be printed:

- Validating XML config

- Connected to VMware Host [host]

No error messages should appear, except for message

about virtual machines running both anti-virus engine

and tools.

- Now ready

The input fields for config and properties, and their

corresponding buttons, should now be unavailable, as

should the Start option on the System menu.

OK

2.2 Test the initialization functionality with multiple host
Prerequisites

[sequence number] [action] [expected result] [result, error no.]

2.2.1 Start PowerScan with the

–GUI switch

The GUI is shown, the “Open” and “Clear” buttons and the

three input fields are available. The Start, Edit, Output and

Help menus are available. The console text area displays

- Now ready.

OK

2.2.2 Insert path to valid XML

config file and properties

file, choose Start from the

System menu

The following status messages should be printed:

- Validating XML config

- Connected to VMware Host [host] should appear once

for each host in the config file

No error messages should appear, except for message about

virtual machines running both anti-virus engine and tools.

- Now ready

.

The input fields for config and properties files, and their

corresponding buttons, should now be unavailable, as should

the Start option on the System menu.

OK

2.2.3 Redo sequence 2.2.2 The following text should be printed to the console text area: OK

206 E.2. SYSTEM TEST USING GRAPHICAL USER INTERFACE

using an XML config file

which does not contain all

required elements or

attributes.

- Warning: XML validation failed: [error message]

2.2.4 Redo sequence 2.2.2

using an XML config file

which does not contain

correct information in the

‘host’ attribute.

If only one host in the config file, the following message

should appear:

- Error: No scanners were loaded from config

The system should then return to initial state.

If more than one host in the config file, the following

message should appear:

- Warning: unable to connect to VMware host at

[incorrect hostname]. Proceeding without given host.

The system should then return to ready state.

OK

[Failed: if the remaining host

contains only VMs with analysis

tools, the system would not run.

Status: solved]

2.3 Test the scan functionality with multiple virtual machines running on one host
Prerequisites Sequence 2.2

[sequence number] [action] [expected result] [result, error no.]

2.3.1 Input path to the eicar test

file on the local system.

Press the Scan button in

the GUI.

The console text area should show the following messages:

- Initiating scan

- Performing scan on [sample] using X scan engines.

- [anti-virus engine] starting scan.

The result of the scan operation should be printed.

- Successfully reverted virtual machine to snapshot for

[anti-virus engine]

OK

2.3.2 Redo sequence 2.3.1 with

an XML file where the

<avLogFilter> element is

missing from one or more

of the VM

As for sequence 2.3.1, but the result should be that the entire

log file is printed for the anti-virus engine that is missing the

<avLogFilter> element.

[Failed: a nullPointerException is

thrown when the element is

missing. Status: solved]

2.4 Test the malware execution functionality
Prerequisites Sequence 2.2

[sequence number] [action] [expected result] [result, error no.]

2.4.1 Input the path to the eicar

test file on the local

system. Press the Execute

button in the GUI.

The console text area should show the following messages:

- Malware execution is requested

- Executing [sample] on X virtual machines.

- [anti-virus engine] starting execution of malware

sample at [sample]

The result of the execute operation should be printed, e.g.:

- [anti-virus engine] running on [host] reported:

No infection detected.

For engines that does not have an on-access scanner, or does

not produce a human—readable log file, the following

message should be printed:

- [anti-virus engine] running on [host] reported:

Real-time scanning not supported.

- Reverted virtual machine running [anti-virus engine] to

snapshot.

OK

[Failed: the parsing of log files

seems to be a problem due to

character encoding issues. Status:

pending]

2.4.2 Redo sequence 2.4.1 with

an XML file containing

the <realTimeScan>

element without any data.

The system will then

The console text area should show the following messages:

- Malware execution is requested

- Executing [sample] on X virtual machines.

- [anti-virus engine] starting execution of malware

sample at [sample]

OK

APPENDIX E. TEST CASE SPECIFICATIONS 207

attempt to execute the

malware on the VM, but

will not be able to copy

the log file back to the

local system.

The AV engines with incorrect <realTimeScan> element will

cause the following warning message:

- Warning: Copy of malware sample to or result log file

from guest OS for virtual machine running [anti-virus

engine]. A common reason for this error is that the scan

operation failed to write the log output to file (i.e. the

file was not created). Error: One of the parameters was

invalid

The result of the execute operation should be printed, e.g.:

- [anti-virus engine] running on [host] reported:

No infection detected.

For the AV engines with incorrect <realTimeScan> element,

the following result line should be printed:

- [av engine] running on [host] reported:

Malware execution failed.

2.5 Test the dynamic analysis functionality with tools on one virtual machine.
Prerequisites Sequence 2.2.

[sequence number] [action] [expected result] [result, error no.]

2.5.1 Input path to the test file

in the malware path field.

Press the Dyn. Analyze

button.

As the operation executes, the console text area should

display the following status messages:

- Initiating dynamic analysis.

- Executing dynamic analysis on file [sample].

- Copying sample file to VM [host]:[vmx path]

- Done copying sample file to VM.

- Tool [tool] is now running on VM [host]:[vmx path]

If the malware sample is indicated to be executed

explicitly, the following messages should be printed:

- Malware sample now executed.

When all tools have been stated, the status messages

should state:

- All analysis tool have been started on VM [host]:[vmx

path], user interaction might be required. Log in to VM

using username/password [username]/[password]

- Now sleeping - awaiting user interaction

At this time, a dialog box counting down the specified sleep

period should pop up. Once the countdown is completed:

- Done sleeping - completing task

The result files (if indicated in config) are now copied back.

Status messages should state:

- Copying result file back for tool [tool]

The VMs are now supposed to be reverted to snapshot, status

message should say:

- Reverting VM with handle [vm handle] on host [handle]

to snapshot

The results of the analysis tool operation should be shown.

Dependent on whether the tool has a log file that is copied

back, the result may look like:

- Tool [tool] completed

or

- Tool [tool] completed, result file is located at [local

result file path.]

OK

2.5.2 Redo sequence 2.5.1

using an XML file with

analysis tool element

When trying to run an executable which does not exist, the

following error message should be printed:

- Warning: Unable to execute analysis tool on remote

[Failed: when one tool did not

execute properly, the other tools on

the same VM were not started.

208 E.2. SYSTEM TEST USING GRAPHICAL USER INTERFACE

containing an erroneous

path to the tool.

system Status: solved]

2.5.3 Redo sequence 2.5.1, but

press Cancel as the sleep

time counter dialog box is

showing.

- The sleep should be interrupted, and the system should

continue with the next operation.

OK

2.6 Test the dynamic analysis functionality with tools on several virtual machines.
Prerequisites Sequence 2.2

[sequence number] [action] [expected result] [result, error no.]

2.6.1 Using an XML file with

several analysis tools on

more than one VM, start

the analysis operation by

pressing the Dyn. Analyze

button.

The following status messages should be displayed in

console:

- Initiating dynamic analysis.

- Executing dynamic analysis on file [sample].

- Copying sample file to VM [host]:[vmx path]

- Done copying sample file to VM.

- Tool [tool] is now running on VM [host]:[vmx path]

The following should be printed once for each tool:

- Tool [tool] is now running on VM [host]:[vmx path]

After all tools have been started:

- All analysis tool have been started on VM [host]:[vmx

path], user interaction might be required. Log in to VM

using username/password [username]/[password]

- Now sleeping - awaiting user interaction

The progress bar should then be shown, counting up to the

indicated sleep time.

The result files (if indicated in config) are now copied back.

Status messages should state:

- Copying result file back for tool [tool]

The same sequence of status messages, starting from

“Copying sample path…”, should then be printed again for

the next virtual machine.

When the last VM has completed execution and the result

files are copied back, all the VMs should be reverted to

snapshot.

The results should then be printed.

- Tool [tool] completed. No result file is declared.

Or

- Tool [tool] completed, result file is located at [local

result file path].

OK

2.7 Test the antivirus definition update functionality
Prerequisites Sequence 2.2

[sequence number] [action] [expected result] [result, error no.]

2.7.1 Press the Update button in

the GUI.

The following status messages should be displayed in

console:

- [anti-virus engine] starting update operation.

- Starting update of virus definitions for [anti-virus

engine].

- Automatic snapshot taken for VM running [anti-virus

engine].

The result of the update operation should be printed. If any of

the engines do not have parsable log or output, the following

text should appear:

- Engines that does not provide verbose update log and

should be reviewed manually:

[anti-virus engine] running at [hostname] with OS

login/pass [username]/[password].

OK

APPENDIX E. TEST CASE SPECIFICATIONS 209

Please login to these virtual machines with the provided

usernames/passwords and assure that they are updated

and ready to perform scans. Remember to take

snapshots if any further changes are made.

2.7.2 Redo sequence 2.7.1 with

an XML file where one or

more AV engines does

not have any

<avUpdateInfo> element.

The following status messages should be printed:

- [anti-virus engine] starting update operation.

For those anti-virus engines that have an <avUpdateInfo>

element, the following should be printed:

- Starting update of virus definitions [anti-virus engine]

- Automatic snapshot taken for VM running [anti-virus

engine].

For those anti-virus engines that do not have an

<avUpdateInfo> element, the following should be printed:

- Automatic update not supported for [anti-virus engine].

The results of the update operations should then be printed.

For anti-virus engines that do not have a

<avUpdateLogPath> element, the result should be:

- Engines that does not provide verbose update log and

should be reviewed manually:

[anti-virus engine] running at [host] with OS login/pass

[username]/[password].

Please login to these virtual machines with the provided

usernames/passwords and assure that they are updated

and ready to perform scans. Remember to take

snapshots if any further changes are made.

For anti-virus engines that do not have a <avUpdateInfo>

element at all, the result should be:

- The following engines does not support automatic

updates and must be updated manually:

[anti-virus engine] running at [host] with OS login/pass

[username]/[password].

Please login to these virtual machines with the provided

usernames/passwords and perform manual update.
Remember to take snapshot after updating.

OK

210 E.3. SYSTEM TEST OF THE CONFIGURATION EDITOR

E.3 System test of the configuration editor

Test specification for System test

Module GUI Configuration editor

Responsible for test specification Thomas Langerud

Date 19 may 2008

Estimated hours to carry out test 2

Objective of test Test the functionality of the GUI configuration editor.

Test sequence number 3

Comments

Test carried out by Thomas Langerud

Date 27 May 2008

Build

Configuration file version

Properties file version

Comments

3.1 View/edit existing XML file
Prerequisites The PowerScan system is started with the –GUI switch.

[sequence number] [action] [expected result] [result, error no.]

3.1.1 In the GUI, select the

‘Config Editor’ choice

from the ‘Edit’ menu.

The configuration editor opens in a new window. OK

3.1.2 Open an existing XML

configuration file by

choosing ‘Open config’

from the ‘File’ menu.

The host(s) defined in the config file is shown in the upper

half of the window, while the virtual machines associated

with a host is shown in the lower half.

OK

3.1.3 Choose a random virtual

machine.

- Observe that the ‘Edit AV engine’ button is shown if the

VM has an anti-virus engine associated with it, or the

‘Add AV engine’ if it does not have one.

- Observe that the ‘Edit analysis tools’ button is shown the

VM has tools associated with it, or the ‘Add analysis

tools’ of it does not have any.

OK

3.1.4 Select the ‘Delete’ menu - Observe that the ‘Delete active host’ option is enabled.

- Observe that the ‘Delete active VM’ option is enabled.

- Observe that the ‘Delete active AVE’ and ‘Delete active

tool’ options are disabled.

OK

3.1.5 Select the ‘View’ menu - Observe that the ‘Host/VM view’ option is disabled. OK

3.1.6 Choose a VM with an

associated anti-virus

engine, and press the ‘Edit

AV engine’ button

The Edit AVE view is shown, listing all information about a

given anti-virus engine. Observe the following changes to the

menu:

- In the ‘View’ menu, the ‘Host/VM view’ choice in now

enabled.

- In the ‘Delete’ menu, the ‘Delete active AVE’ choice is

now enabled.

OK

3.1.7 From the ‘View’ menu,

choose ‘Host/VM view’.

The config editor returns to the previous view, showing the

hosts and virtual machines.

OK

3.1.8 - Redo sequence 3.1.6.

- From the ‘Delete’

menu, select the

‘Delete active AVE’

choice

The following should happen:

- The config editor returns to the Host/VM view.

- The ‘Edit AV engine’ button is now replaced with the

‘Add AV engine’ button.

OK

3.1.9 Choose a VM with one or

more associated analysis

tools and press the ‘Edit

analysis tools’ button

The Edit tools view is show, listing all information about a

given analysis tool, and when there are more than one tool it

is possible to switch between the different tools using tabs at

the top of the page. Observe the following changes to the

menu:

- In the ‘View’ menu, the ‘Host/VM view’ choice in now

enabled.

- In the ‘Delete’ menu, the ‘Delete active tool’ choice is

OK

APPENDIX E. TEST CASE SPECIFICATIONS 211

now enabled.

3.1.10 From the ‘View’ menu,

choose ‘Host/VM view’.

The config editor returns to the previous view, showing the

hosts and virtual machines.

OK

3.1.11 - Redo sequence 3.1.9

- From the ‘Delete’

menu, select the

‘Delete active tool’

choice.

If more than one tool are shown in the Edit tools view, the

following should happen:

- The config editor returns to the Host/VM view.

If only one tool is shown, the following should happen:

- The config editor returns to the Host/VM view.

- The ‘Edit tools engine’ button is now replaced with the

‘Add AV engine’ button.

OK

3.1.12 - Redo sequence 3.1.9

- Press the ‘Add tool’

button.

Return to the Host/VM

view, and then select ‘Edit

analysis tools’ on the

same VM

Observe that a new tab with the title ‘New tool’ appears.

Observe that the new tool is now available as a tab with the

name ‘Tool #’

OK

3.2 Add new host
Prerequisites The config editor launched, a config file is opened and the editor is in Host/VM view.

[sequence number] [action] [expected result] [result, error no.]

3.2.1 Press the ‘Add Host’

button.

Observe that a new host tab is added at the top of the page. OK

3.2.2 Select the newly added

host tab.

Observe that a new VM is added associated with the new

host.

OK

3.2.3 Save the file selecting the

‘Save config’ option on

the ‘File’ menu.

Review the saved XML file and verify that the new host and

VM is present.

OK

3.3 Add new virtual machine
Prerequisites The config editor launched, a config file is opened and the editor is in Host/VM view.

[sequence number] [action] [expected result] [result, error no.]

3.3.1 Press the ‘Add Virtual

Machine’ button.

Observe that a new host tab is added to the bottom half of the

window.

OK

3.3.2 Select another host, and

the select the host in

which the new VM was

just added.

Observe that the newly added VM tab is still present. OK

3.3.3 Save the file selecting the

‘Save config’ option on

the ‘File’ menu.

Review the saved XML file and verify that the new VM is

present.

OK

3.4 Add new anti-virus engine to a virtual machine
Prerequisites The config editor launched, a config file is opened and the editor is in Host/VM view.

[sequence number] [action] [expected result] [result, error no.]

3.4.1 Select a VM which does

not have an anti-virus

engine associated with it.

Press the ‘Add AV

engine’ button.

Enter text into some of the

fields.

A new, empty Edit AVE view window is shown.

OK

3.4.2 Return to the Host/VM

view selecting the

‘Host/VM view’ from the

‘View’ menu.

Observe that the ‘Add AV engine’ button is now replaced by

the ‘Edit AV engine’ button.

OK

3.4.3 Press the ‘Edit AV

engine’ button.

Observe that the previously entered text is still there. OK

3.4.4 Save the config file by

selecting the ‘Save

config’ option on the

‘File’ menu.

Review the saved XML file and verify that the newly added

anti-virus engine information is present.

OK

212 E.3. SYSTEM TEST OF THE CONFIGURATION EDITOR

3.5 Add new analysis tools to a virtual machine
Prerequisites

[sequence number] [action] [expected result] [result, error no.]

3.5.1 Select a VM which does

not have an analysis tools

associated with it.

Press the ‘Add analysis

tools’ button.

Enter text into some of the

fields.

A new, empty Edit tools view window is shown.

OK

3.5.2 Return to the Host/VM

view selecting the

‘Host/VM view’ from the

‘View’ menu.

Observe that the ‘Add analysis tool’ button is now replaced

by the ‘Edit analysis tools’ button.

OK

3.5.3 Press the ‘Edit analysis

tools’ button.

Observe that the previously entered text is still there. OK

3.5.4 Save the config file by

selecting the ‘Save

config’ option on the

‘File’ menu.

Review the saved XML file and verify that the newly added

analysis tool information is present.

OK

3.6 Create new XML file from scratch
Prerequisites The config editor is launched, no file is open.

[sequence number] [action] [expected result] [result, error no.]

3.6.1 Select ‘New config’ from

the ‘File’ menu.

A new, empty host with an empty VM is shown in the

Host/VM view.

OK

3.6.2 Select ‘Save config’ from

the ‘File’ menu.

Review the saved XML file and verify that the newly added

information is present.

OK

	Title Page
	Problem Description
	Abstract
	Preface
	Figure listings
	Code listings
	Abbreviations, acronyms and definitions
	Introduction
	Introduction
	Problems to be addressed
	Own contribution
	Document structure
	Methodology
	Introduction to malware concepts
	Viruses
	Trojan horses
	Worms
	Rootkits
	Bots

	Related work
	OPSWAT Metascan
	Hispasec Sistemas VirusTotal
	Norman Sandbox Malware Analyzer
	CWSandbox
	TTAnalyze and Anubis

	Background and theory
	Microsoft Windows architecture
	The registry
	The file system
	Processes
	Networking
	Windows file formats

	Virtualization
	CPU virtualization
	Memory virtualization
	I/O and device virtualization

	Hiding Virtualization
	Malware obfuscation
	Encrypted malware
	Oligomorphic code
	Polymorphic code
	Metamorphic code
	Behavior modification

	Anti-virus technology
	Signature scanning - First generation scanners
	Smart scanning - Second generation scanners
	Algorithmic scanning
	Code emulation
	Metamorphic malware detection
	Heuristic analysis
	Memory scanners

	Malware naming and classification
	CARO Virus Naming Convention
	Common Malware Enumeration
	The WildList Organization International
	The VGrep database
	Automated classification schemes

	Sandboxing and code analysis
	Post-mortem
	Static analysis
	Dynamic analysis

	Multiple Path Analysis
	Sandnets - network behavior analysis
	API hooking

	Implementation
	Preliminary development
	System description and requirements
	Choice of high level architecture
	Architecture description
	Pseudocode for system operations

	Implementation description
	Choice of programming language
	Overall design
	Component description
	Frameworks and third party code used
	Operation description

	System analysis and considerations
	Requirement analysis
	Functionality tests
	Requirements for added scan engines and tools
	Security
	Performance
	Known weaknesses

	Conclusion
	A look back
	Strengths
	Weaknesses
	Possible usages
	Lessons learned
	Further work

	User Guide
	Requirements
	Client
	Virtualization servers
	Usage

	Environment Setup
	User Interface
	Graphical user interface
	Command line usage

	Malware sample scan
	Malware sample execution
	Malware sample analysis
	Update AV definition files
	Adding new anti-virus engines or tools
	Saving console output
	Editing the XML configuration file
	The ``File'' menu
	The ``View'' menu
	The ``Delete'' menu
	The ``Host/VM'' view
	The ``AVE'' view
	The ``Tools'' view

	Understanding the XML configuration file
	Redirection of console output
	Understanding the properties file
	PowerScan files
	Understanding the log files

	Compatibility testing of anti-virus engines
	Introduction
	Anti-virus engine survey
	Summary

	Dynamic malware analysis tool survey
	Overview
	Sandbox solutions
	Registry monitors
	File system monitors
	Process monitors
	Network activity monitors
	Packages and tool sets
	System call analysis
	General analysis tools

	Configuration file examples
	Example XML config file
	PowerScan XML Schema Definition (XSD)
	Description of PowerScan's XML with respect to the XSD schema
	Properties file example

	Test case specifications
	System test using command line interface
	System test using graphical user interface
	System test of the configuration editor

