
June 2008
Bjarne Emil Helvik, ITEM

Master of Science in Communication Technology
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Telematics

Dependability modelling of Jgroup/ARM

Ane Sæstad

Problem Description
Distributed computing has the potential of providing highly dependable services by having replicas
of the server processes on several nodes in the network. This technology is relevant for network
internal services as well as external services. Keeping consistency between replicas is demanding
and introduces performance penalties. Fault transparency, one of the virtues of distributed
computing, also requires management functionality, which is critical for the QoS, both during fault
handling and normal operation.

Jgroup/ARM is a java based prototype system for providing such services. It is of interest to
perform an evaluation of the dependability attributes of the services provided by services built on
the Jgroup/ARM middleware. The assignment has the following elements:
 * A study of techniques for dependability modelling of distributed systems,
 * Identification of the elements that should be included in a system/service delivery model,
 * A state-diagram or Petri net dependability model shall be established for services provided
by the Jgroup/ARM system.
 * Evaluation of some simple scenarios is to be carried out by available tools.

Assignment given: 15. January 2008
Supervisor: Bjarne Emil Helvik, ITEM

Dependability modelling of
Jgroup/ARM

Ane Sæstad

Master thesis
Spring 2008

Supervisor: Bjarne E. Helvik

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and Electrical Engineering

Department of Telematics

Preface

This master thesis is written by Ane Sæstad in the 10th semester of a Master
of Science degree in Communication Technology at the Norwegian University
of Science and Technology. I would like to thank my supervisor Bjarne E.
Helvik for helpful advise during the semester.

Ane Sæstad

Trondheim, June 4, 2008

i

ii

Contents

Preface i

Contents vi

List of Figures vii

List of Tables ix

Acronym list xi

Abstract xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Scope and limitations . 2
1.4 Methodology . 2
1.5 Structure of report . 3

2 De�nitions 5
2.1 Distributed systems . 5
2.2 Dependability . 6

2.2.1 Dependability parameters 6
2.3 Dependability modelling . 8

3 Dependability modelling techniques 11
3.1 Dynamic models . 11

3.1.1 State-diagrams . 12
3.1.2 Petri nets . 15

3.2 Static models . 18
3.2.1 Fault trees . 18

iii

iv CONTENTS

3.2.2 Reliability block schemes 21
3.3 How can dependability characteristics be obtained? 23

3.3.1 Prototyping . 23
3.3.2 Simulation . 23
3.3.3 Mathematical analysis 24

3.4 Concluding remarks . 24

4 The Jgroup/ARM system 25
4.1 Overview Jgroup/ARM . 25
4.2 Jgroup middleware . 26

4.2.1 Partition-Aware Group Membership Service 27
4.2.2 Group Method Invocation 27
4.2.3 State Merging Service 28

4.3 Autonomous Replication Management 29
4.3.1 Replication Manager 29
4.3.2 Management Client . 29
4.3.3 Replication Management Policies 30
4.3.4 Object Factories . 30
4.3.5 Failure recovery . 30

4.4 Functionality of Jgroup/ARM 31

5 The Möbius modelling tool 33
5.1 The model components . 35
5.2 Initialization . 35

6 Methodology 37

7 System delivery model 39
7.1 Modelling Jgroup/ARM . 39

7.1.1 Suitable modelling techniques 39
7.1.2 Assumptions . 40
7.1.3 Partitioning . 41

7.2 Example system delivery model 42
7.2.1 State-diagram model of the MS 46
7.2.2 Petri net model of the MS 49

7.3 System delivery model . 49

8 The dependability model 53
8.1 Assumptions and simpli�cations 53
8.2 The model . 55

8.2.1 The hardware submodel 56

CONTENTS v

8.2.2 The service submodel 59
8.2.3 The replication manager submodel 64

8.3 The mapping problem . 66
8.4 System events . 67

8.4.1 Processor fail . 68
8.4.2 View update . 69
8.4.3 Processor repair . 70

8.5 Load sharing . 72
8.6 Extended place de�nitions . 72

9 Validation and veri�caion 77
9.1 Validation . 77
9.2 Veri�cation . 78

9.2.1 The hardware SAN . 79
9.2.2 The service SAN . 81
9.2.3 The RM SAN . 82
9.2.4 The composed system 83

9.3 States generated . 83

10 Example scenarios 85
10.1 Simulation environment . 85
10.2 Scenarios . 86
10.3 Dependability measures . 87

10.3.1 Availability . 87
10.3.2 Mean time between system failures 87
10.3.3 System down times . 88
10.3.4 Performablity . 88

10.4 Results . 88
10.5 Discussion . 89

11 Lessons learned 91
11.1 Modelling issues and di�culties 91
11.2 Design decisions and considerations 92
11.3 Möbius di�culties . 93

12 Conclusion and further work 97
12.1 Conclusion . 97
12.2 Further work . 99

References 103

vi CONTENTS

A Source code 105
A.1 The HW SAN . 105
A.2 The Service SAN . 110
A.3 The RM SAN . 120
A.4 The composed SAN . 133

B Transition matrix 139
B.1 Interpreting the transition matrix 140

C Simulation results 141
C.1 Veri�cation simulations . 141
C.2 Example scenarios . 147

List of Figures

2.1 Dependability tree . 7
2.2 Modelling and analysis activities and results, from [6] 8

3.1 State-diagram showing a system with 2 servers. Servers can
fail and be repaired. 13

3.2 Markov model of a system with 2 servers. Servers can fail and
be repaired. 14

3.3 Petri net example . 16
3.4 The boolean operators in fault trees. 19
3.5 Fault tree . 20
3.6 The reliability block structures 22

4.1 Jgroup/ARM architecture . 26

5.1 SAN model symbols . 33

7.1 Illustration of partitioning . 41
7.2 Partitioning state-diagram . 43
7.3 State-diagrams showing the view cardinality and number of

working replicas of a service in Jgroup/ARM, modi�ed from
[16]. 44

7.4 Normal trajectory for the MS 45
7.5 State diagram for a service in Jgroup/ARM 47
7.6 Petri net diagram for the MS 48

8.1 Model design . 56
8.2 Hardware submodel . 57
8.3 Hardware submodel interaction 58
8.4 Service submodel . 60
8.5 Service submodel interaction 62
8.6 Replication manager submodel 63
8.7 Replication manager submodel interaction 66

vii

viii LIST OF FIGURES

9.1 Markov model of simpli�ed HW SAN 80
9.2 Markov model of simpli�ed service SAN 81

10.1 System MTBF measurement 88

List of Tables

7.1 System assumptions . 40

8.1 Modelling assumptions . 54
8.2 Initial values of example Jgroup/ARM system 67
8.3 Processor failure consequences 68
8.4 View change consequences . 69
8.5 Processor repair consequences 71

9.1 Parameter values used in this section 78
9.2 Numerical and simulation results for Service SAN. 82
9.3 Numerical and simulation results for RM SAN. 83
9.4 Numerical and simulation results for the composed system. . . 83
9.5 States generated . 83

10.1 Steady state simulation parameters 85
10.2 The 4 scenarios simulated . 86
10.3 Simulation results for the four experiments 89

ix

x LIST OF TABLES

Acronym list

ARM Autonomous Replication Management

AS Additional Service

CPN Colored Petri Nets

DCS Distributed Computing System

DPS Distributed Processing System

DR Dependable Registry

EGMI External Group Method Invocation

FTA Fault Tree Analysis

GCS Group Communication System

GMIS Group Method Invocation Service

GMS Group Membership Service

GSPN Generalized Stochastic Petri Net

IGMI Internal Group method Invocation

JVM Java Virtual Machine

MC Management Client

MS Monitored Subsystem

MTBF Mean Time Between Failures

PGMS Partition-aware Group Membership Service

PN Petri Net

RM Replication Manager

xi

xii Acronym list

RMI Remote Method Invocation

SAN Stochastic Activity Network

SM Service Monitor

SMS State Merging Service

SPN Stochastic Petri Net

QOS Quality of Service

Abstract

In the later years, fault tolerant distributed systems have been applied to a va-
riety of network internal and external services. Keeping distributed systems
consistent and fault tolerant require management functionality. Jgroup/ARM
is a java based prototype system which automates this management function-
ality for fault tolerant distributed systems.

This thesis presents an evaluation of the dependability characteristics of the
Jgroup/ARM system. Both static and dynamic modelling techniques are
introduced, but the main focus is on the dynamic techniques; state-diagrams
and Petri net models. Previous work is evaluated to �nd an approach suitable
for dependability modelling of Jgroup/ARM.

A system delivery model for Jgroup/ARM is developed based on its func-
tionality. The monitored subsystem is de�ned to include the hardware (pro-
cessors), a given number of services in the system and the replication man-
agement functionality (ARM framework).

A Petri net model of Jgroup/ARM is developed in the Möbius modelling tool
based on the system delivery model. A model of a single service replicated
on a cluster of processors is developed, analyzed and expanded to include
multiple services and the ARM framework functionality.

The dependability of Jgroup/ARM is evaluated through simulating example
scenarios in Möbius. The results show that the system availability is very
high, even with a relatively high failure rate.

xiii

Chapter 1

Introduction

This chapter gives an introduction to the thesis. It gives the motivation,
objectives and methods used. Section 1.5 gives the structure of the report.

1.1 Motivation

Distributed computing has the potential of providing highly dependable ser-
vices by having replicas of the server processes on several nodes in the net-
work. This technology is relevant for network internal services (e.g. net-
work management) as well as network external services (e.g. e-commerce).
Keeping consistency between replicas is a demanding task which introduces
performance penalties. Fault transparency, one of the advantages of dis-
tributed systems, also requires management functionality. The management
functionality is important for the QoS both during fault handling and normal
operation.

Jgroup/ARM is a system that provides management services for distributed
systems. An evaluation of the dependability parameters of this system is of
interest.

1.2 Objectives

The objective of this thesis is to develop a dependability model for the
Jgroup/ARM middleware framework. This will be done by

1

2 1.3. SCOPE AND LIMITATIONS

• performing a theoretical study of techniques for dependability mod-
elling of distributed systems.

• developing a system/service delivery model for the Jgroup/ARM sys-
tem.

• establishing a state-diagram or a Petri net dependability model for the
Jgroup/ARM system.

• evaluating simple scenarios with the Möbius modelling tool.

1.3 Scope and limitations

The dependability of a distributed system is an increasingly important issue.
Keeping dependable systems consistent and fault tolerant requires manage-
ment information. However, as the management functionality is important
for the QoS, the Jgroup/ARM system was developed to automate it. The
focus in this thesis is on the dependability modelling of distributed systems
in general, and Jgroup/ARM in particular.

Basic knowledge about distributed systems and dependability are assumed,
hence only a short introduction to these concepts are given in the report.
Several modelling techniques are introduced in this thesis, but due to the
scope only a Petri net diagram is completed. The modelling assumptions
and simpli�cations made are described in Chapter 8.

1.4 Methodology

The project started with a literature study of both the Jgroup/ARM system
and the di�erent techniques for dependability modelling of distributed sys-
tems. A literature search was performed in the standard electronic databases1

to �nd background information.

Examples of existing dependability models were studied before a depend-
ability model of Jgroup/ARM was developed. The initial model was a state-
diagram of a simpli�ed system. As the state-diagrams are limited by state
explosion, the focus was changed to stochastic Petri net models where the

1IEEE Xplore Journals, ACM Digital Library and SpringerLink(MetaPress)

CHAPTER 1. INTRODUCTION 3

complete system was considered. A study of the Petri net modelling tech-
nique and the use of the Möbius modelling tool followed.

The knowledge of modelling techniques, Jgroup/ARM and the Möbius mod-
elling tool was applied to develop a Petri net diagram dependability model of
the Jgroup/ARM system. Di�culties encountered when modelling in Möbius
was solved by consulting the Möbius manual [21] and searching in on-line fo-
rums.

1.5 Structure of report

Chapter 1 gives the scope, motivation and methods for the project.
Chapter 2 de�nes terms used throughout the thesis.
Chapter 3 describes techniques for dependability modelling of distributed
systems and introduces some existing designs.
Chapter 4 describes the Jgroup/ARM system.
Chapter 5 outlines the functionality of the Möbius modelling tool.
Chapter 6 contains a description of the methodology used while modelling
Jgruop/ARM.
Chapter 7 gives the system delivery model based on knowledge from Chap-
ters 3 and 4.
Chapter 8 presents the resulting dependability model based on the system
delivery model from Chapter 7.
Chapter 9 includes validation and veri�cation of the dependability model
from Chapter 8.
Chapter 10 contains some example scenarios and their simulation results.
Chapter 11 describes the lessons learned and problems encountered during
the modelling process.
Chapter 12 concludes the thesis and proposes topics for further work.
Appendix A contains the source code for the SAN models developed in
Chapter 8.
Appendix B gives the results used for validation and veri�cation in Chapter
9.
Appendix C contains the complete simulation results of the example sce-
narios simulated in Chapter 10.

4 1.5. STRUCTURE OF REPORT

Chapter 2

De�nitions

The aim of this chapter is to introduce concepts that will be used throughout
the thesis. Previous knowledge about dependability and distributed systems
are assumed, for further details consult the textbooks [6, 3].

2.1 Distributed systems

A distributed system is a system where the processing servers are replicated
on several nodes in the network. The network nodes available to the dis-
tributed system is termed the target environment. As stated in [24], one of
the advantages of a distributed processing system is its ability to continue
operation even when some of its components fail. This is called fault tol-
erance. The client using a distributed service may not be aware of failures
in a system component, as long as a given number of components are still
functioning.

Fault transparency is an important property of distributed systems. As the
system functionality is replicated, replica failures can be hidden from the
user of the service as long as a given number of replicas are working. The
concept of fault transparency requires management functionality because the
count of working and failed replicas needs to be kept, and decisions on when
and where to create replicas must be made.

Keeping the di�erent replicas consistent is also a consuming task. Numerous
algorithms exist for this task; however, a description of these is beyond the
scope of this thesis. Basically, keeping the consistency of system replicas
requires an increase in the number of messages passed in the system. This

5

6 2.2. DEPENDABILITY

increase in complexity and capacity requirements is the main drawback of
distributed system processing. Hence, features as fault tolerance and replica
consistency increase the system complexity and introduce the need for man-
agement functionality.

Jgroup/ARM1 is a middleware framework that will perform these manage-
ment tasks automatically.

2.2 Dependability

Numerous de�nitions of dependability exist, but in [6] dependability is de-
�ned as the trustworthiness of a system, such that reliance can justi�ably
be placed on the service it delivers. The service delivered by the system is
de�ned as the system behavior as perceived by its users. In the context
of distributed systems, dependability is a collective term used to describe
availability, reliability and performance predictability [7].

The dependability of a system describes how the system behaves by its opera-
tional characteristics. The dependability is de�ned by internal characteristics
which can be measured. However, a system with given characteristics is not
necessarily dependable. The dependability de�nition can be extended to also
consider the threats to the system, means for improvement and attributes
that describe the system dependability. A dependability tree was developed
for illustration in [11] and is reproduced in Figure 2.1.

As shown in Figure 2.1 di�erent threats are faults, errors and failures. These
concepts are introduced in [6]. Means describes the e�orts; fault avoidance
and fault tolerance, that can be made to make a system more dependable.
And �nally attributes describes the dependability properties of the system.

The work in this thesis will be focused on modelling the dependability at-
tributes of Jgroup/ARM.

2.2.1 Dependability parameters

The most common dependability parameters are introduced below, further
details can be found in [6].

1introduced in Chapter 4

CHAPTER 2. DEFINITIONS 7

Figure 2.1: The di�erent aspects of dependability linked in a dependability
tree [11]

8 2.3. DEPENDABILITY MODELLING

Figure 2.2: Modelling and analysis activities and results, from [6]

Dependability is de�ned as the availability and reliability o�ered by mid-
dleware platforms.

Reliability is the likelihood that a middleware platform provides services
in a speci�ed way, even when applications or middleware fail.

Availability gives the fraction of time the middleware is operational.

Performance predictability is strongly related to availability. Ensures
that a client of a middleware platform can rely on a request being
performed within a given time.

Safety is de�ned as a system's ability to provide service without a catas-
trophic failure occuring.

Performability quanti�es the ability of a system to perform in presence of
faults [2].

2.3 Dependability modelling

Dependability modelling is an alternative to testing. It can be of great help
when evaluating important aspects of the behavior of a system, while the
unnecessary details are abstracted. By modelling, e�ects of design changes
can be evaluated without making any changes to the system [2].

Figure 2.2 presents a framework for dependability modelling. It can be seen
that the dependability modelling process consists of several tasks, each of
which produce di�erent results. The tasks are modelling (phase 1), quali-
tative analysis, modelling (phase 2) and quantitative analysis, all described
below [6].

CHAPTER 2. DEFINITIONS 9

Modelling, phase 1 transforms the system de�nition to a dependability
model by focusing on failures, fault handling and repairs. The phase
focuses on systemizing and concentration of system de�nition.

Qualitative analysis is a systematic deduction of the systems dependabil-
ity characteristics, from the dependability model developed in the mod-
elling phase.

Modelling, phase 2 describes the events in the system and their interre-
lation in terms of mathematical statistics. The process can be partly
dictated by the model from phase 1.

Quantitative analysis consists of a derivation of the dependability mea-
sures of the system, by measures from the operations and maintenance.
Also contains the dependability model and the dependability charac-
teristics of its elements. The quantitative analysis can be done either
by mathematical analysis or by simulation.

The main focus in this thesis is on the modelling, both phase 1 and phase 2.
Each of the activities yield results in form of documents describing the work
in its current state. The intermediate and end results are described below
[6].

System de�nition is the description of the system at its current state in
the development.

Dependability model is a description aimed at revealing the dependability
characteristics of a system. The dependability model is the focus of this
thesis. Di�erent models exist and will be described in Chapter 3.

Mathematical reliability model is a quantitative description of the de-
pendability characteristics and their interrelation.

Qualitative conclusions contains a catalog of e.g. critical components,
dependability bottlenecks and minimal cut-sets.

Quantitative conclusions provides the dependability performance of the
system in terms of the required measures (availability, reliability func-
tion, MTBF). From this document one can conclude whether the de-
pendability requirements of a system are met or not.

As illustrated by Figure 2.2 the modelling of a system consists of several
activities, all performed to get an idea of how the system will perform. A
modell is a simpli�cation of the real system. Hence, care must be taken not
to simplify the system too much. This thesis will focus on the dependabil-

10 2.3. DEPENDABILITY MODELLING

ity modelling with the quantitative analysis of the dependability model as
subsequent task.

Chapter 3

Dependability modelling
techniques

This chapter presents di�erent techniques for dependability modelling of dis-
tributed systems and highlights their strengths and weaknesses.

In general, things to consider when modelling a system are [6]:

• the size and complexity of the system to be modelled.

• primary dependability measures to be determined.

• the type of the subsequent analysis.

• available modelling support and analysis tools.

Two main classes of dependability models are introduces and described in
the following sections. Section 3.1 introduces the dynamic modelling tech-
niques, while the static techniques are introduced in Section 3.2. Section 3.4
concludes the Chapter.

3.1 Dynamic models

Common to the dynamic modelling techniques are their strength in describ-
ing the dynamic behavior of systems. That is, to describe systems where
dependencies exist between events and event system elements, and the time
between events and the sequence of events are important.

11

12 3.1. DYNAMIC MODELS

The two models described in this section, state machines and Petri nets are
essentially identical and a Petri net model can easily be converted to a state
diagram. Converting a state diagram into a Petri net is also possible, but
requires more work.

3.1.1 State-diagrams

This section will introduce the state machine as a tool for dependability
modelling of distributed systems. The state machine is the oldest known
formal model for sequential behavior, that is, behavior that cannot be de�ned
by the inputs only, but depends on the history of the inputs [26]. In fact, any
logic that determines the behavior of a system can be called a state machine.

A state machine can be represented by a state machine diagram or a state
machine table. However, the state machine diagrams (henceforth termed
state-diagrams) are easier to read and are the representation used in this
thesis.

A state-diagram is built up by states (circles), transitions and actions. The
state stores information about the input changes from system start to present.
A transition indicates a state change and is described by conditions that
would have to be ful�lled in order for the transition to be enabled. The
action is a description of the activity performed at the given moment. This
thesis will look at the event driven state-diagrams. In an event driven state-
diagram the system will "`wait"' for a system event before it changes state.

Figure 3.1 illustrate the state-diagram of a system consisting of 2 servers,
in which both the servers can fail and be repaired. The states are repre-
sented by circles and squares, where the circles represent up-states and the
square represents the down-state. The actions are "`server fail"' and "`repair
server"'. The current state and condition decide whether or not a transition
can change the system from one state to another.

A state-diagram can be either a Mealy or a More model, or a mix of both. The
Mealy type produces output as a function of the system state and the input.
The More type produces output as a function of input only. Henceforth, the
state-diagrams are assumed to be of the Mealy type.

In a state-diagram one can easily identify the operational states. The possible
next states, and by which rate they can be reached, can be identi�ed for each
of the system states. However, state-diagrams may become cumbersome even
for a relatively small system.

CHAPTER 3. DEPENDABILITY MODELLING TECHNIQUES 13

Figure 3.1: State-diagram showing a system with 2 servers. Servers can fail
and be repaired.

The rapid growth of the state space is called state explosion. The size of
the state space of a system tends to grow exponentially in the number of
its processes and variables, where the base of the exponentiation depends
on the number of local states a process has, the number of values a variable
may store and on some kind of tightness of the connection between system
components [25]. The state explosion limits the size of the system that can
be modeled.

As an example, consider the simple system of n processors, each with k
internal states. The state space of that simple system consists of nk states!
For a system of 5 processors each with 4 internal states the total state space
generated is 54 = 625 states. Increasing the number of processors to 10 will
increase the state space to 104 = 10000 states. Hence, state explosion occur
even for relatively simple systems.

Because state-diagrams are such a simple and e�cient tool, e�orts are made
to limit the state explosion. Several solutions are suggested, but are left out
of the discussion due to the scope of this thesis. Some examples can be found
in [25].

Markov models

To be able to analyze the dependability models numerically, the following
assumptions about the system are made [3].

• The system has the Markov property; next state depends only on cur-
rent state, not the history of states visited1.

• Failures and repairs occur according to a Poisson process2.

1A thorough introduction to Markov models can be found in [3, 19].
2Basic knowledge on Poison processes assumed known, introduction can be found in

[3] amongst others

14 3.1. DYNAMIC MODELS

Figure 3.2: Markov model of a system with 2 servers. Servers can fail and
be repaired.

• System components fail independent of each other.

Figure 3.2 illustrates the same system as Figure 3.1, the di�erence being that
Figure 3.2 models the system as a Markov model. It is assumed that the two
processors have independent failure and repair actions. All system times are
assumed to occur according to a Poisson process.

λ is the failure rate
µ is the repair rate

A mathematical analysis of this model gives the availability, A, of the system.
Where A = Pu = 1 - Pd, and Pu and Pd are the probability of being in a
working and a failed state respectively.

The Markov model is one of the most important analytical methods for de-
pendability modelling. However, as mentioned above, the system to be mod-
eled must be described at the state level. The number of states required may
be very large and the model quickly becomes incomprehensible [22]. State
lumping techniques exist, but are left out of the discussion due to the scope
of this thesis.

Previous work

Using state-diagrams to model distributed systems is a popular approach. It
is fairly comprehensible and �exible; consequently it is used in many forms.

Chen and He use Markov models to model a distributed system under the
occurrence of faults, recon�guration and repair in [27]. The models are de-
veloped generically such that they can be used to evaluate the risk, reliability
and availability of individual tasks in any homogeneous distributed system.
Eventually the study is extended to analyze the dependability of any hetero-
geneous system consisting of numerous homogeneous distributed systems.

CHAPTER 3. DEPENDABILITY MODELLING TECHNIQUES 15

In [10] Lai et al. the availability of a typical distributed software/hardware
system is modelled by a Markov model. In the system, identical copies of
the distributed application software run on identical processors. The arti-
cle considers both a two-host system and a general multi-host system. The
steady-state availability is found by developing the Markov model and deriv-
ing its balance equations.

The Markov models are also used for modelling in [5]. However, here Hariri
and Mutlu use several Markov models which is combined hierarchically in
two levels to represent the complete system. At the higher level (user level)
the availability of the tasks is analyzed using a graph-based approach. At
the lower level (component level) detailed Markov models are developed to
analyze the component availabilities. A systematic approach was developed
to apply the two-level hierarchical model to the availability evaluation of
processes and services provided by a distributed system.

The EURESCOM whitepaper [7] studies a dependability model of middle-
ware platforms. Two aspects of dependability are discussed: the dependabil-
ity of the generic functions provided by the middleware platform and how
the middleware platform supports the dependability of the distributed appli-
cations residing on it. A discrete state continuous time dependability model
is developed for a system replicated with active and passive replicas.

3.1.2 Petri nets

This section will �rst describe the general functionality of Petri nets and later
apply this general knowledge to the modelling of distributed systems.

Petri nets are a graphical and mathematical modelling tool which can be
used to model any area or system that can be described graphically, including
distributed systems [17]. They give an abstract, but formal, method to model
the information �ow in a program/system.

The Petri net graph models the static properties of a system, whilst the
execution of a Petri net model shows the dynamic system properties [9].

In a Petri net the conditions are represented by places (circles) and the events
by transitions (bars). As an example, a place can be the number of working
replicas in a system and transitions can be failure, view change or creation
events. A place can contain tokens that are moved to another place when a
transition �re. The places and transitions are connected by arcs. A place, p,
is called an input place for a transition, t, if there is an arc from p to t. If

16 3.1. DYNAMIC MODELS

Figure 3.3: Petri net for a system with two servers, both of which can fail
and be repaired independently.

the arc is from t to p, the place p is called the output place for the transition
t. t can be enabled by each of its input places containing a token. Once t
is enabled it can �re by moving a token from each input place and adding
it to the output place. An arc can require more than one token to �re, how
many are determined by the multiplicity of the arc. The number of tokens in
a place is called the marking of the place. A new marking is generated each
time a transition �res.

The Petri nets allows two di�erent kinds of transitions; timed and immediate
transitions. The timed transitions have �ring times with given distributions
and the immediate transitions �res as soon as they are enabled. By adding
features like enabling functions to a Stochastic Petri net (SPN) �exibility can
be added to its modelling power.

Stochastic Activity Networks (SANs) are a further generalization of the
SPNs. In SANs the use of input and output gates are enabled, further-
more, an extended place which allows for places to contain user de�ned data
structures can be used [21]. The input and output gates provide modelling
�exibility. If no input gate is speci�ed, the default input gate is represented
by a line from a place to a transition, and holds if there is at least one token in
the input place. A user identi�ed input gate supersedes the default gate [20].
As before, a transition is enabled, and takes a token from the input places,
when all input places hold. Correspondingly holds for the output gates. The
default output gate is represented by a line from the transition to the output
place and consists of a function that adds a token to its output place. Users
may de�ne output gates which supersede the default output gate as well.

Figure 3.3 shows the model from Figure 3.2 converted to a Petri net. The

CHAPTER 3. DEPENDABILITY MODELLING TECHNIQUES 17

two places ServersUp and ServersFailed contains a marking depending on
the state of the servers. Initially, the marking of ServersUp is set to 2 tokens
and the marking of ServersFailed to 0 tokens. Hence, only the transition
serverFail can �re initially, as ServersFailed contains no tokens. As in Fig-
ure 3.2 all actions are assumed to be exponentially distributed. Transition
serverFail �res with the rate λ, and serverRepair with the rate µ.

When serverFail �res, a token is moved from the input place (ServersUp)
to the output place (ServersFailed), creating a new marking. Now both
transitions are enabled and can �re. As with the system in 3.2, the system
is de�ned as not working when both servers have failed, hence when place
ServersFailed contains 2 tokens.

Petri nets are ideal to model distributed systems where multiple processes
occur concurrently. The probability of all the required programs being op-
erational de�nes the distributed system reliability [12]. The nature of Petri
nets is asynchronous; it has no measure of time. The only important factor
is the partial ordering of events. Hence, Petri nets are the best for systems
with asynchronous and independent events.

The modelling generality of the Petri nets must be weighted against their
analysis capability. A general model often grows too complex for analysis.
Furthermore, the information in Petri nets can only be communicated to
persons familiar with the technique, and for complex systems the Petri nets
may be incomprehensible to all but its author.

Previous work

A Stochastic Petri Net (SPN) dependability model of a distributed system is
suggested by Lopez-Benitez in [12]. SPNs are used to estimate both the reli-
ability and availability of programs in distributed systems. The distributed
system is considered available if a set of �les/programs are available.

A basic reliability model including node failures and repairs is modeled by
Petri net diagrams. Two possible models are introduced; the global repair
model and the local repair model. The former assumes a centralized repair
team and is used when analyzing the availability of programs subject to
hardware faults that are repaired globally. The latter assumes that repairs
are localized to the node where they occur, and can be used to evaluate
program reliability where hardware can fail and be repaired locally. Thus,
the normal operation of the system need not be interrupted.

18 3.2. STATIC MODELS

The models suggested can also be used to study performability related issues
and can easily be expanded to include faults related to communication and
software as well.

The dependability of a LEO satellite network is modelled in [1], using stochas-
tic activity networks (SANs) in Möbius. A model of an individual satellite is
designed and used to explore the external elements' e�ect on the model de-
pendability. The satellite model is used to develop a satellite network model.
The network model is used to analyze the satellite network's dependability
and performance.

3.2 Static models

This section introduces the two most commons techniques for static depend-
ability modelling of distributed systems. Other techniques exist as well but
are omitted due to the scope of this thesis.

The main strength of the static models is their simple graphic representation.
They are best suited for modelling and analyzing large systems. However,
from the name it can be deduced that static models mainly are able to model
the static dependability properties of a system and can not easily model a
sequence of events.

3.2.1 Fault trees

The fault tree is a graphical model used to deduct the structure function of
a system [3]. The function can be used to derive quantitative and qualitative
dependability measures. The focus of the fault trees are faults and errors.
Fault trees can be used to model system internal events and conditions and
events in the environment.

The combinatorial gates used in fault trees are or, and and more than gates.

• The symbol representation of an or gate is illustrated in Figure 3.4(a).
The output of an or gate is high (enabled) if one or more of the inputs
are high (enabled).

• The symbol representation of an and gate is illustrated in Figure 3.4(b).
The output of an and gate is high (enabled) if all of the inputs are high
(enabled).

CHAPTER 3. DEPENDABILITY MODELLING TECHNIQUES 19

(a) The or

gate
(b) The and

gate
(c) The more

than gate

Figure 3.4: The boolean operators in fault trees.

• The symbol representation of a more than gate is illustrated in Figure
3.4(c). The output of a more than gate is high (enabled) if more than
a given number (l) of inputs are high (enabled).

The leaf nodes of the fault tree represent the lowest level faults. The de�-
nition of the lowest level has to be considered in the modelling context. In
a distributed system the lowest level can be de�ned as a faulty PC, a faulty
disk or a faulty CPU. These faults are called primary faults and are symbol-
ized by a circle. Sometimes the primary event can not be determined due to
lack of information; these leaf nodes are called undeveloped errors and are
symbolized by a square.

Figure 3.5 illustrates the example from Section 3.1. The two servers are
combined by an and gate, as both servers have to fail for the system to fail.
An or gate combines the servers with the undeveloped error "`other faults"'.
For simplicity the failure of a server is the primary fault in this example.

The stepwise approach described below can be used to analyze the fault tree
(Fault Tree Analysis (FTA)) [23].

1. De�ne the top event to study.
The top event is the failure the system should be analyzed with respect
to. The top event may be obvious or hard to de�ne. However, the
di�culties mostly occur with lack of system knowledge. One top event
are de�ned for each FTA. As mentioned above, no two top events exist
in the same FTA.

2. Obtain an understanding of the system.

20 3.2. STATIC MODELS

Figure 3.5: Fault tree for a system with two processors.

When the top event is de�ned, system knowledge is used to study all
faults that may a�ect it. All the events are numbered and sequenced
in the number of appearance.

3. Construct the fault tree.
The event sequence built in step 2 is used to construct the fault tree.
The top event is broken in lower level events that combined will lead
to the top event. As illustrated in Figure 3.5 the tree is built up by
events, or and and gates.

4. Evaluate the fault tree.
The assembled fault tree is analyzed and evaluated for any possible
improvements.

5. Control the hazards identi�ed
After the hazards are identi�ed all possible methods are used to try to
minimize the occurrence of the top event.

As with other static modelling techniques, the fault trees can model the static
property of a system. However, it does not consider the sequence of events
causing the error. The greatest advantage of the fault tree is its ability to
model large systems. However, the fault tree is not capable of modelling
complex behavior as dependencies amongst components and repairable sys-
tems which do not have a separate repair crew for each component [8]. The
fault tree can be converted to a reliability block scheme.

CHAPTER 3. DEPENDABILITY MODELLING TECHNIQUES 21

3.2.2 Reliability block schemes

The reliability block schemes model the dependability structure of a sys-
tem by considering the operational state of system elements. Models based
on block schemes make it easier to deal with complex systems than what
is the case of the dynamic models described in Section 3.1. However, the
assumptions below might make the analysis less accurate [3, 6].

1. If the system is made up by more than one subsystem, each subsystem
fails independent of all other subsystems and independent of the state
of the system.

2. If a subsystem has failed, its services are restored independently of the
state of all other subsystems.

3. The system behaves as intended. The fault tolerance handles failures
until resources are exhausted, service restoration actions are always
successful, failures do not propagate from one subsystem to others.

The reliability block approach is based on the assumption that a system
structure can consist of a number of subsystems that may interact to provide
a set of services. If the system is fault tolerant, the system might be able to
deliver a service even if a subsystem fails.

The reliability block diagram can be used to analyze both the reliability and
the availability of the system. The de�nition of working is di�erent in the
two cases. In the former, working should be interpreted as "`providing a
service at a given instance of time"' and in the latter as "`the system has
provided uninterrupted service in the period (0,t)"' [6].

The basic building block of the reliability block diagram is the reliability
block. The reliability block is depicted as a square and represents a subsys-
tem. The probability of the block working is denoted Pblock.

Di�erent structures exist for reliability block schemes, the simplest being
a series structure, a parallel structure and a k-of-n structure. Figure 3.6
illustrates a system consisting of two (or in the case of 3.6(c) three) servers.
In Figure 3.6(a) both servers need to be up for the system to be up. Hence,
the probability of the series system being up is given by

Pseries =
n∏
i=1

Pserver = Pserver · Pserver (3.1)

22 3.2. STATIC MODELS

(a) The series structure. (b) The parallel structure.

(c) The k-of-n structure

Figure 3.6: The reliability block structures

Figure 3.6(b) shows the same system, but here only one of the servers needs
to be up to the system to be up. The probability of the parallel system being
up is given by

Pparallel = 1−
n∏
i=1

(1− Pserver) = 1− (1− Pserver) · (1− Pserver) (3.2)

The k-of-n structure is illustrated in Figure 3.6(c). The illustration represents
the case where 2 of the 3 servers is required to work for the system to be
up. The probability of a k-of-n system being up is given by (all subsystems
assumed to be identical)

Pk−of−n =
3∑
j=2

(3 nCr j)P j
server(1−Pserver)3−j = 3 ·P 2

server ·(1−Pserver) (3.3)

As can be seen from the illustrations, reliability block diagrams can be used
to model the dependability of system structures. However, it can not consider
dynamic behavior like a sequence of events.

CHAPTER 3. DEPENDABILITY MODELLING TECHNIQUES 23

3.3 How can dependability characteristics be

obtained?

This section will give an introduction to how dependability parameters can
be obtained from a dependability model.

3.3.1 Prototyping

The prototyping technique involves building a complete model of the system
in question. Hence, the prototyping technique is very costly. Thus, prototyp-
ing should not be used early in a system development phase but be developed
in the late stages.

3.3.2 Simulation

Using a simulator to determine dependability characteristics usually pose few
problems and gives freedom in choosing the level of detail to be simulated.
However, simulation has some drawbacks as well. The estimates can be
inaccurate and simulation times may be excessively long to obtain a su�cient
accuracy [6]. The latter problem increases with the introduction of fault
tolerance to the system, because a large number of events must take place
for every system failure observed. For some simulators this can be overcome
by using strati�ed sampling, as described below.

Fault injection

Helvik et al. suggested an approach based on strati�ed sampling3 with fault
injection to obtain dependability characteristics of a service deployed in the
Jgroup/ARM system in [16]. The strata is de�ned in terms of the number
of near-coincident failures injected; single failures, double near-coincident
failure and triple near-coincident failure. A near-coincident failure is a failure
that occurs before the previous is handled. Experiments are assigned to
strata after they are carried out.

3In strati�ed sampling each mutually exclusive subpopulation (stratum) is sampled
separately.

24 3.4. CONCLUDING REMARKS

The article performs an experimental evaluation which focuses on a service
o�ered by a triplicated server. Predictions on the dependability character-
istics of the service are obtained, consequently the work concludes that a
service in a Jgroup/ARM system can obtain a very high availability and
MTBF.

3.3.3 Mathematical analysis

To analyze dynamic dependability models mathematically, the theory of
stochastic processes is used [6]. By mathematical analysis a closed form
solution may be obtained. The closed form solution shows how the di�erent
system parameters, like failure rates and repair time, contribute to the sys-
tem dependability. However, in a real size system the closed form solution
might be di�cult, or even impossible, to derive and requires high mathemat-
ical skills from the analyzer. Another drawback of mathematical analysis is
the simpli�cations required to adapt the system to mathematically solvable
models.

3.4 Concluding remarks

As discussed in this chapter, no modelling techniques exist that can model
all aspects of the system dependability. However, the system tasks can be
split into subtasks which can be modeled independently by the best suited
technique. In [6] two di�erent approaches are given.

1. Two or more models are made, each focusing on separate aspects of the
system.

2. A hierarchical model is made. The model handles some complexity on
each level to prevent each level from being too complex.

Chapter 4

The Jgroup/ARM system

This chapter gives a short introduction to the components and services of
Jgroup/ARM. Further details can be found in [15]. This introduction to
Jgroup/ARM is based on [16, 15, 13, 14].

4.1 Overview Jgroup/ARM

Jgroup/ARM is a middleware framework based on object groups, designed
to simplify the development of dependable partition-aware applications.

Jgroup extends the Java Remote Method Invocations (RMI) through the
group communication paradigm and has been designed speci�cally for appli-
cation support in partitionable systems.

The Autonomous Replication Management (ARM) focuses on the deploy-
ment and operational aspects, where the gain in terms of improved depend-
ability is assumed to be the greatest. The main objective of ARM is to lo-
calize failures and to recon�gure the system according to application-speci�c
dependability requirements. Combining Jgroup/ARM can reduce the ef-
fort necessary for developing, deploying and managing dependable, partition-
aware applications.

The Jgroup/ARM framework is automated to help with the management
functions required when using distributed systems. It can handle both parti-
tionings and failures of nodes and processes. Jgroup/ARM has functionality
to merge the state of the partitions to a consistent state after short or long
term partitioning. It also keeps track of the system state and creates and

25

26 4.2. JGROUP MIDDLEWARE

Figure 4.1: Jgroup/ARM architecture, modi�ed from [15].

removes replicas when required. Figure 4.1 shows the architecture of the
Jgroup/ARM framework.

4.2 Jgroup middleware

Jgroup aims to support dependable application development through the
object group paradigm. In the object group paradigm a set of server objects
(replicas) form a group [15]. Client objects interact with the server objects
using External Group Method Invocation (EGMI). An EGMI corresponds
to the standard RMI. The interface of the server group is obtained from
a group proxy, and the group will to the client appear as a single server.
However, replicating the server will render a more dependable system where
servers can fail without the client being aware of the failure. The servers
cooperate and keep the consistency by communicating by Internal Group
Method Invocations (IGMIs).

Jgroup trades availability for consistency in that it allows all partitions to
operate, much unlike the primary partition approach where only one partition
is allowed to operate after a partitioning. Each object in a partition has a
consistent view of the other objects in its partition. When partitions are
reconciled, Jgroup has a State Merging Service (SMS) that merges the state
of the di�erent partitions.

CHAPTER 4. THE JGROUP/ARM SYSTEM 27

The core facilities of Jgroup are described below [15, 14].

4.2.1 Partition-Aware Group Membership Service

A group is a collection of servers that cooperate in providing a distributed
service [14]. The group size varies dynamically because servers can join and
leave the group. The membership of a group is the servers that have joined
the group and not yet left it. It is possible for di�erent members in the group
to have di�erent perceptions of the group membership due to asynchrony and
failures in the system.

The Partition-Aware Group Membership Service (PGMS) is responsible for
tracking the membership and handle voluntary (join- and leave-messages)
and involuntary (failures and repairs) variations. PGMS report the member-
ship information to the members through installation of views. An installed
view consists of a membership list and an identi�er. A view represents the
group membership as perceived by members included in the view.

PGMS must consider three issues;

1. The changes in group membership must be tracked accurately and
timely for the installed views to represent current information.

2. A view should be installed only after the servers included have reached
an agreement.

3. PGMS must guarantee that two views installed on di�erent servers
must be installed in the same order.

4.2.2 Group Method Invocation

Jgroup uses Group Method Invocation (GMI) for all types of communica-
tion, both within a group and between di�erent groups. This extends the
bene�ts of object orientation to internal communication as well. However,
Jgroup distinguish between internal and external communication. Clients
perform External GMI (EGMI) and servers perform Internal GMI (IGMI).
The reasons for this separation are the following

Visibility
Client should have access only to the service's public interface. The
service's method invocations should be kept hidden.

28 4.2. JGROUP MIDDLEWARE

Transparency
Clients should not be required to know whether they are sending invo-
cations towards a single server or a group of servers.

E�ciency
EGMI has weaker semantics than IGMI which results in a more scalable
system. If EGMI and IGMI were identical, a client would have to join
a group in order to perform invocations towards it. This would result
in a poor scalability, hence the separation.

All the internal methods of a service are collected to form the internal remote
interface of the server object and the external remote interface consists of the
external methods. An object performs a method invocation when it invokes
a method on a group. A server completes an invocation when it terminates
the execution of the associated method [14].

4.2.3 State Merging Service

Jgroup o�ers a service called State Merging Service (SMS). The SMS is
the Jgroup version of an application-speci�c state reconciliation service. By
state reconciliation is meant the process of constructing the state of merging
partitions, where the new state re�ects all non-con�icting concurrent updates
to state.

SMS drives the state reconciliation by requesting "`getting"' and "`merging"'
information about state from servers. The information collected is di�used
to the remaining servers by a coordinator elected by the SMS.

The SMS elects a coordinator when multiple partitions merge. The coordi-
nator is responsible for di�using the partition state to servers outside its own
partition. Servers receive the information and apply it to their own local
copy of state. For a server to be part of a partition-aware system it must be
able to act as a coordinator, which means that it must be able to maintain
the entire state and di�use this information to the other servers. The servers
must also be able to apply incoming updates.

SMS satis�es three important properties [15]; liveness, agreement and in-
tegrity. The liveness property gives that if there is a time after which two
servers install only views including each other, eventually each of them will
become up to date with respect to the other. Agreement means that servers
that install the same pair of views in the same order are guaranteed to receive
the same state information through invocations of their merging methods in

CHAPTER 4. THE JGROUP/ARM SYSTEM 29

the period occurring between two views. The integrity property states that
SMS will not initiate a state reconciliation without reason.

4.3 Autonomous Replication Management

The Autonomous Replication Management (ARM) framework is an extension
to Jgroup which decrease the manual interaction in management activities
by automatically performing tasks such as distributing replicas on nodes and
recovering from replica failures, amongst others. The following sections will
describe the components of ARM [15].

4.3.1 Replication Manager

The Replication Manager (RM) has four tasks.

1. Provide an interface for installing, updating and removing a service.

2. Distribute replicas in the target environment to meet operational poli-
cies for all services.

3. Collect and analyze information about failures.

4. Recover from failures.

The RM is implemented as a central controller, which means that it can
make consistent decisions on replica replacement and recovery actions. The
RM itself is replicated by ARM to improve its dependability. For clients
to communicate with the RM without joining the RM group, the RM has
two EGMI interfaces. One Management interface which enables clients to
request group creation, update and removal, and one Events interface which
enables external components to provide RM with events that are relevant
when performing its operations.

4.3.2 Management Client

The Management Client (MC) enables the system administrator to install,
remove or update services on demand. The MC is also equipped with an
interface, the Callback interface, which enables the MC to subscribe to system
events and provide feedback to the system administrator.

30 4.3. AUTONOMOUS REPLICATION MANAGEMENT

4.3.3 Replication Management Policies

A policy is a way for administrators to specify how a system should autonom-
ically react to changes in the target environment without human interaction.
ARM has two policies implemented; the distribution policy and the replica-
tion policy. The distribution policy describes how the service replicas should
be allocated onto the available sites and nodes. As input the policy needs the
target environment and the number of replicas to be allocated. The target
environment of an ARM deployment is the nodes available. The distribution
policy is speci�c to each ARM deployment.

The replication policy is speci�c for each service deployed through ARM. It
describes how the redundancy level of a service should be maintained. The
input needed by the replication policy is the target environment and the
initial and minimum redundancy level required.

4.3.4 Object Factories

In [15] it is de�ned that "`The purpose of the object factory is to facilitate
installation and removal of service replicas on demand."' Thus, each node in
the target environment must run a Java Virtual Machine (JVM) hosting an
object factory. The object factories work as bootstrap agents and enable the
RM to remove or install replicas and keep track of available nodes.

The object factories each keeps a list of available nodes which enable them
to respond to queries about which replicas are hosted on the node. Normally
each replica run in a separate JVM.

4.3.5 Failure recovery

The failure recovery is managed by the RM. As mentioned above, failure
recovery consists of three tasks.

1. Determine need for recovery.

2. Determine the nature of failure.

3. Recovery action.

Each RM has a Service Monitor (SM) which keeps track of installed replicas.
As a service is deployed, a timer is associated with it in the SM. Task 1 of

CHAPTER 4. THE JGROUP/ARM SYSTEM 31

failure recovery is done by monitoring the timers. If a timer expires the re-
covery algorithm is invoked. Each service has a separate timer. This enables
RM to handle multiple concurrent failures in separate services. This may
include the RM itself, as long as at least one RM replica is operational.

The two last tasks are managed by abstractions of the replication and dis-
tribution policy for the service in question. The RM keeps a speci�c replica-
tion policy for each deployed service and maintains the service's state. The
replication policy combined with the state information determines whether
a recovery action is needed.

A recovery action has three abstractions; restart, relocation and group failure
handling.

Restart is used when the node's factory is available.

Relocation is used when the node is unavailable.

Group failure handling is used only when all replicas of a service have
failed.

4.4 Functionality of Jgroup/ARM

What distinguishes Jgroup/ARM from other middleware platforms is the pol-
icy based autonomous replication management facility, support for partition
awareness and interactions based solely on RMI.

32 4.4. FUNCTIONALITY OF JGROUP/ARM

Chapter 5

The Möbius modelling tool

Möbius is a software modelling tool developed by the PERFORM group at
University of Illinois at Urbana-Champaign [21]. It allows for modelling of
di�erent submodels by di�erent modelling formalisms which can be combined
into a composed model. Hence, it can be used to model complex systems.

Möbius allows for the use of Stochastic Area Networks (SANs), as an exten-
sion to Stochastic Petri Nets. SANs o�ers new functionality such as input and
output gates, and an extended place which enables user de�ned structures
to be associated with a place in a Petri net [4].

The modelling and simulation in this thesis will be performed by Möbius
due to its modelling �exibility and strength in modelling complex systems.
Möbius generates C++ code from the models designed.

The SAN models in Möbius are built up by the following elements illustrated
in Figure 5.1:

• Place
The place represents the state of the system. The marking of a place
is decided by the number of tokens it contains.

Figure 5.1: Symbols used in Möbius

33

34

• Extended place
The extended place allows the model to handle representations such as
structures and arrays of primitive data types [21].

• Input gate
The input gate controls when a transition should be enabled and de�nes
the marking changes that will occur when the transition completes. An
input gate consists of an enabling predicate and an input function. The
enabling predicate contains a Boolean expression that controls whether
the connected transition is enabled. The input function de�nes the
marking changes. The input gate is connected to an input place and a
transition. A direct arc from an input place to a transition represents
the gate where the transition is enabled as long as the input place
contains one or more tokens.

• Output gate
As the input function the output gate de�nes the marking changes that
will occur when the transition completes. However, the output gate is
associated with a single case. A transition directly connected to an
output place corresponds to the output function that adds a token to
each of the output places.

• Timed transition
A timed transition is a transition which has a duration that a�ects
the dependability of the system modelled. Each timed activity has an
associated activity time distribution function associated with its dura-
tion. The distribution functions can be generally distributed random
variables.

• Instantaneous transition
Instantaneous transitions completes immediately when enabled in the
system.

C++ code can be placed in the input and output gates to de�ne more com-
plex functionality than removing a token from or adding a token to the input
place or output place respectively. When compiling the model designed,
Möbius generates C++ source code which is run during simulation or nu-
merical solution.

CHAPTER 5. THE MÖBIUS MODELLING TOOL 35

5.1 The model components

The dependability measures are de�ned in a reward model. The rewards are
de�ned on the SAN models de�ned. A study is created for each reward model,
to de�ne the values of the global variables used in the SAN models. Each
study can contain several experiments which can be activated and deactivated
as desired. A simulator or state space generator is created based on a study.

5.2 Initialization

Global variables may be used to de�ne rates, number of elements in the
system and so on. The global variables are initialized in a study. However,
if global variables are used to de�ne the size of an array or structure all the
elements are initialized to the same value. Möbius does not allow arrays
and structures to be dynamic. However, global variables can be used to set
the size of arrays and structures if the initialization is customized using the
"`Custom Initialization"' box in the menu bar.

Below is an example that initializes a matrix, ServiceParam, to its initial
values;

ServiceParam->Index(0)->Index(0)->Mark() = 3;

ServiceParam->Index(0)->Index(1)->Mark() = 3;

ServiceParam->Index(0)->Index(2)->Mark() = 1;

ServiceParam->Index(1)->Index(0)->Mark() = 2;

ServiceParam->Index(1)->Index(1)->Mark() = 2;

ServiceParam->Index(1)->Index(2)->Mark() = 1;

ServiceParam->Index(2)->Index(0)->Mark() = 3;

ServiceParam->Index(2)->Index(1)->Mark() = 3;

ServiceParam->Index(2)->Index(2)->Mark() = 2;

After initialization the matrix contains the following values:

ServiceParam =

 3 3 1
2 2 1
3 3 2



36 5.2. INITIALIZATION

Chapter 6

Methodology

This chapter describes the methods used to develop a dependability model
for Jgroup/ARM. The main goal of this thesis is to create a state-diagram
or a SPN model of the services provided by Jgroup/ARM.

As the Jgroup/ARM system is fairly complex, the �rst step in creating a de-
pendability model was to simplify the system. A simpli�ed system was mod-
eled both as a state-diagram and a Petri net. When using the state-diagram
modelling technique, the e�ects of the state explosion concept (introduced
in Chapter 3.1) could be observed by modelling even a simpli�ed system.
Consequently, it was decided to use a SPN model to model the dependability
of Jgroup/ARM.

An evaluation of available tools were made, and the choice landed on the
Möbius modelling tool (introduced in Chapter 5). At �rst a simple system
model was implemented. When the simple part was functioning correctly it
was incrementally extended to include the complete Jgroup/ARM function-
ality.

Möbius enables the use of SANs such that a model can consist of several
submodels. Hence, the Jgroup/ARM system was split in three; the hard-
ware functionality, the services and the replication management. This split
was made to simplify the modelling process and the resulting dependability
model. The modelling process was simpli�ed in that each part of the sys-
tem model could be created separately even with the dependencies between
the di�erent submodels. As the functionality was distributed in three SAN
submodels, each SAN became small and relatively comprehensible.

When the Petri net dependability model was �nished, the Möbius simulator

37

38

was used to simulate the dependability measures of the Jgroup/ARM system.
The thesis was concluded by an evaluation of the achieved simulation results.

Chapter 7

System delivery model

Section 7.1 describes the system assumptions made and the modelling tech-
nique chosen. Section 7.2 gives an example of a service delivery model for
a simpli�ed Jgroup/ARM system and Section 7.3 de�nes the elements that
should be included in a system delivery model of the complete Jgroup/ARM
system.

7.1 Modelling Jgroup/ARM

7.1.1 Suitable modelling techniques

Chapter 3 introduced the techniques for dependability modelling of dis-
tributed systems. When modelling Jgroup/ARM, it is desirable to include
the dynamic behavior of a system. Hence, one of the dynamic modelling tech-
niques should be chosen. In Section 7.2 a simpli�ed Jgroup/ARM system is
modeled using both a state-diagram and a Petri net model.

The state-diagram technique is used to perform dependability analysis of a
distributed system in [10]. However, due to state explosion and the complex-
ity of Jgroup/ARM the state-diagram grows rapidly. The hierarchical model
suggested in [5] could be used to combine independent Markov models to a
system.

A Petri net model for a distributed system is developed in [12]. The Petri net
models have a higher entry level for understanding than the state-diagrams.
However, it is a technique with strengths when it comes to describing the

39

40 7.1. MODELLING JGROUP/ARM

No Assumption
1 Identical processors
2 Uniform and independent failures and

repairs of replicas and processors
3 Assume that all replicas have the same

failure rate irrespective of which service
fails

4 All times exponentially distributed
5 Assume Markov properties
7 Assume one repair unit for all services
8 Assume manual repair of processors

and automatic repair of service and RM
replicas

9 Both replicas and processors only have
two states; working and failed (up and
down)

Table 7.1: System assumptions

dynamic behavior of the Jgroup/ARM system.

7.1.2 Assumptions

Certain assumptions about the system and system times are made to make
the Jgroup/ARM dependability model numerically solvable. Care must be
taken when making simplifying assumptions, as a change in the system be-
havior due to assumptions made is undesirable. The assumptions made are
summed up in Table 7.1 and discussed below.

First of all, it is assumed that all processors in the target environment are
identical and have identical capacity. They fail with the same rate and their
mean repair time is identical. The processors' failure and repair processes
occur independently.

The system services can be initialized with di�erent replication policies1.
However, all service replicas2 are assumed to have the same failure and repair
rate. It is assumed that all system times are exponentially distributed.

It is assumed that the next state of the system is dependent only on the

1The replication policy gives the initial and required number of replicas
2Including RM replicas.

CHAPTER 7. SYSTEM DELIVERY MODEL 41

Figure 7.1: Example trajectory of partitioning, from [15]

current state of the system and the events that occur and not on the history
of events in the system. Thus, it is assumed that the Markov property
applies to the system. We assume the Markov properties to be able solve the
problem numerically. However, both state-diagrams and Petri net models
are considered. Using Petri nets and simulation, the Markov assumption is
no longer necessary. Assuming Markov properties will still be possible, but
the distributions may also be changed.

It is assumed that the system contains one repair unit, and upon replica cre-
ation only one service replica is created. Two di�erent repairs exist, manual
and automatic repair. The former is used for processor failures and the latter
for restoring service and RM replicas. The mean duration of the former is
generally longer than the latter.

7.1.3 Partitioning

By partitioning it is meant that a failure in the communication medium
separates the target environment into two, or more, partitions. Jgroup/ARM
o�ers functionality for all partitions to continue operation and merge their
state when the partitioning is repaired. However, partitioning introduces an
enormous complexity to the system model.

Figure 7.1 from [15] illustrates a sample sequence of partitioning events, in
rapid succession, for a system of three processors; x, y and z. It can be seen

42 7.2. EXAMPLE SYSTEM DELIVERY MODEL

that a great number of possible sequences exist. Adding the partitioning
functionality to a state-diagram of Jgroup/ARM will explode the number of
states required.

A state-diagram showing parts of the state space of Jgroup/ARM considering
partitioning and view cardinality is presented in Figure 7.2[15]. The target
system has three processors; x, y and z. The replication policy initializes the
system with three replicas of the Monitored Subsystem (MS), and requires
two working replicas as a minimum for the system to deliver required services.

Each state is identi�ed by the number of replicas in each partition and the
number of members in the various views. A partition is illustrated by a |
symbol. The number of members in each view is given by the number in
parenthesis, concurrent views are possible and indicated by the + symbol.
As illustrated in the �gure, ARM will try ful�lling the replication policy of
the system. When all processors are partitioned, ARM will order creation of
a new replica in each of the partitions. The extra replicas are removed when
the partitions merge.

The system states might be stable or unstable, the stable states are bold in
Figure 7.2. A state is stable if ARM does not need to increase or decrease
the redundancy level.

The state-diagram does not consider factors such as replica or processor
failure/repair. Adding these dimensions to the diagram would explode the
number of states needed. However, the greatest problem with partitioning
is not its e�ects on dependability, but rather the complexity introduced by
all the extra signaling and the management functionality needed. Thus,
when designing a dependability model of Jgroup/ARM the partitioning is
not considered.

7.2 Example system delivery model

An evaluation of the dependability parameters of a service deployed in the
Jgroup/ARM system was presented in [16]. The system states entered while
running simulations was illustrated in a state-diagram3. An idealized version
of the state-diagram is depicted in Figure 7.3 and will be used as a basis for
a state-diagram and a SPN dependability model for a service deployed in
Jgroup/ARM.

3The state-diagram only included states and events relevant to the service monitored.

CHAPTER 7. SYSTEM DELIVERY MODEL 43

Figure 7.2: Example state-diagram considering partitioning and view cardi-
nality, modi�ed from [15]

44 7.2. EXAMPLE SYSTEM DELIVERY MODEL

Figure 7.3: State-diagrams showing the view cardinality and number of work-
ing replicas of a service in Jgroup/ARM, modi�ed from [16].

CHAPTER 7. SYSTEM DELIVERY MODEL 45

Figure 7.4: State diagram showing the normal trajectory of the MS, excerpt
from Figure 7.3

The target system, as introduced in [16], consists of a cluster of 8 identical
processors. However, the number of processors considered in the following
models is, for simplicity, 4. The service is the MS and needs 2 replicas to
deliver the required service. The initial number of replicas is 3.

Figure 7.3 illustrates two modelling dimensions; the number of working repli-
cas and the view cardinality of the group. However, the processor capacity
is assumed to be unbounded. The diagram illustrates only the state of the
MS, independently of the states of the ARM and additional services. Cir-
cles and squares represent available and unavailable states respectively. Each
state is identi�ed by X# and a tuple (x r,yv), where x is the number of in-
stalled replicas and y is the number of members in the current view of the
server group [16]. Only events that may a�ect the availability of the service
are considered in the diagram, that is view changes (View-i, where i is the
cardinality of the view), replica failures and replica creations.

The normal scenario is the sequence of events indicated by dashed arrows,
starting and ending in X0 as illustrated in Figure 7.4. When a replica failed
event occurs the MS state is changed from X0 to X1. A View-2 event changes
the state to X4, a replica created brings the MS to state X3. The new
replica has a singleton view and hence sends a View-1 event to the ARM
and consequently enters state X6. A View-3 event brings the MS state back
to X0. Further explanation of the model, from [16], exceeding the normal
trajectory is left out of this section as only the normal trajectory is modeled
in the following section.

In Figures 7.3 and 7.4 two important dimensions are left out of the model,

46 7.2. EXAMPLE SYSTEM DELIVERY MODEL

namely processor capacity and partitioning. With a limited number of pro-
cessors and a distribution policy stating that no two replicas of the same
service can reside on the same processor, the processor capacity is a limiting
dimension.

Jgroup/ARM o�ers support for partitioning and merging, as described in
4. However, this option introduces complexity that explodes the number of
system states. As discussed above partitioning is left out of the system model
due to the scope of this thesis.

7.2.1 State-diagram model of the MS

Figure 7.5 shows the state-diagram for the normal trajectory (Figure 7.4) of
a MS in a Jgroup/ARM system with a cluster of 4 processors. The initial
number of MS replicas is 3, 2 of which is required to be up for the service to
be up. The model has three dimensions; number of replicas vertically, view
cardinality horizontally and processor capacity diagonally. In these models
it is assumed that a working processor has inde�nite capacity.

Each state is identi�ed by a number, i, and (x r, yv, ze), where x is the
number of replicas, y is the view cardinality and z is the number of available
processors (i.e. processors that are up and currently not holding a replica of
the MS). Both the replicas and the processors may fail. It is assumed that a
replica residing on a failed processor is moved to one of the extra processors
if such a processor exists.

The �gure does not illustrate the complete state space for the system. As
a simpli�cation, di�erent failed states are merged to one failed state. How-
ever, in reality the system will enter di�erent failed states depending on the
number of replicas, the view and the number of additional processors. The
dotted lines illustrate that failures and repairs can occur even during a system
failure.

To �nd the model's dependability characteristics one can either solve the
model numerically (by assuming Markov qualities and creating balance equa-
tions) or solve it by simulation. However, the simplest tools for solving de-
pendability models are based Petri nets. Thus, in Section 7.2.2 the state
diagram is converted to a Petri net.

CHAPTER 7. SYSTEM DELIVERY MODEL 47

Figure 7.5: State diagram for a service in Jgroup/ARM

48 7.2. EXAMPLE SYSTEM DELIVERY MODEL

(a) The hardware submodel

(b) The service submodel

(c) The composed model

Figure 7.6: Petri net diagram for the MS

CHAPTER 7. SYSTEM DELIVERY MODEL 49

7.2.2 Petri net model of the MS

The Petri net in Figure 7.6 is a convertion of the state model in Figure 7.5.
As can be seen from the �gure, the conversion is not done directly. Using
direct conversion, with one place for each state, the model quickly grows
incomprehensible. Hence, the direct translation design in rejected. The use
of Möbius enables use of more re�ned models.

The system is separated in two parts; the hardware submodel (Figure 7.6(a))
which models the failure and recovery of a processors and the service sub-
model (Figure 7.6(b)) which models the view updates, failure and recovery of
service replicas. The two submodels are joined by a join-node in a composed
model (Figure 7.6(c)).

As can be seen from both Figures 7.5 and 7.6 even a simple scenario quickly
grown complex, even without considering the partitioning dimension.

7.3 System delivery model

When analyzing a system, the easiest way to de�ne a system's dependability
is to check whether or not the system delivers the services it is supposed to
deliver. This can be measured by the availability and the mean time between
failures (MTBF). The measurements could eventually be extended to include
the performability as well as system down times, with rate rewards for states
and pulse rewards for transitions.

Questions to be asked when evaluation the dependability of a system are
stated below.

• Does the system deliver the promised services?

• Does the system generate replicas as required?

• Does replica failures cause service unavailability, either due to failure
of all replicas or too many replicas?

• How long does it take from a replica fails to it is replaced by a new
replica?

• Does the system have enough resources to provide su�cient amount
of replicas to all the services? All services can not be replicated on
all processors, the resources must be distributed. Certain services are
needed for the system to be up and should be prioritized?

50 7.3. SYSTEM DELIVERY MODEL

For a Jgroup/ARM system to be working several components have to be up.
The �rst issue is the system resources. The processor cluster serving the
Jgroup/ARM system is of �nite size. Due to the de�ned distribution policy
in Jgroup/ARM, no two replicas of the same service can reside on the same
processor. A service replica can not be created without su�cient resources
in the system. Hence, concurrent failure in too many processors may lead to
system failure.

Certain de�ned services must also be up for the Jgroup/ARM system to be
working correctly. Thus, the service may become unavailable due to rapid
replica failures. If the system can not produce replicas fast enough, the
service will go down. If the service is amongst the services required by the
system, a service failure will result in system failure.

Coverage is the third issue. The system must be able to handle the failures
in the system elements/processes properly. Insu�cient failure handling may
also cause system down time. In Jgroup/ARM this functionality is main-
tained by the ARM framework. The replication manager itself is replicated
by Jgroup. However, too rapid failure in the RM replicas, or the processors
they reside on, might lead to system failure as well.

Thus, the Monitored Subsystem (MS) of the Jgroup/ARM system includes;

• Replication Management (ARM framework)

• Group membership service (view updates)

• Given services

• Processors

The core components of Jgroup/ARM and their interactions is illustrated
in Figure 4.1. The system requirements may vary from implementation to
implementation. In this thesis it is assumed that more than one processor,
more than one RM replica and one, or more, replicas of given services must
be available for the system to be available.

As described in Chapter 3 the static models can not be used to model the
dynamic behavior of the system. For this reason this thesis will focus on
the dynamic modelling methods; state-diagrams and Petri-nets. However, as
Section 7.2 showed, the state-diagrams rapidly grow complex when modelling
in more than one dimension. As the Jgroup/ARM framework requires four
dimensions, Petri net diagrams are the tool chosen for modelling. As men-
tioned above, the four necessary dimensions are view cardinality, processor
capacity, replication capacity and partitioning. Partitioning is left out of the

CHAPTER 7. SYSTEM DELIVERY MODEL 51

model due to the complexity it introduces, as described in Chapter 7.1.3.
The �rst three dimensions were illustrated in Figure 7.5.

A dependability model based on the factors de�ned in this chapter will be
developed in the following chapters.

52 7.3. SYSTEM DELIVERY MODEL

Chapter 8

The dependability model

This chapter will present the resulting dependability model, as modeled in
Möbius. In Section 8.1 the modelling assumptions are introduced.The model
used is described in Section 8.2 and the important places used are listed in
Section 8.6.

8.1 Assumptions and simpli�cations

As for modelling any system, certain assumptions are needed when develop-
ing a dependability model of Jgroup/ARM. The true system functionality is
to complex; hence assumptions are made to make the model solvable.

The number of replicas a processor can host is de�ned and assumed identical
for all processors in the target environment.

When modelling, it is assumed that the components of the ARM framework1

replicas are co-located on the same nodes. This assumption was also made
in [15] and is a reasonable assumption as neither RM nor DR can func-
tion correctly without the other. Hence, by assuming co-location the ARM
framework functionality is either up or down.

In [16] strati�ed sampling with fault injection is used to observe the states a
Jgroup/ARM system enters during operation. It is observed that some out-
dated view change events occur during system operation. However, an ideal
system is assumed when creating the dependability model of Jgroup/ARM.

1The Dependable Registry (DR) and the RM

53

54 8.1. ASSUMPTIONS AND SIMPLIFICATIONS

No Assumption
1 All processors have a capacity de�ned

by a global variable.
2 DR and RM are co-located.
3 Assume an ideal system with no out-

dated view-change events.
4 Partitioning is not considered.
5 A replica can only be created on a

processor that is up and currently not
holding a replica of the service consid-
ered.

6 No repair can not occur before the �rst
failure.

7 Upon service replica repair only one
replica is created at a time.

8 Can only create replica for a service
group with a correct view.

9 Never create more replicas than the ini-
tial number.

10 No communication delay.
11 Priority is not implemented.
12 Multicast and leadercast are not imple-

mented.
13 The services are not associated with a

given RM.
14 All replicas can send view update mes-

sages.
15 Both software and hardware have only

two states, up and down. This means
that only crash failures are considered.

Table 8.1: Modelling assumptions

CHAPTER 8. THE DEPENDABILITY MODEL 55

Thus, no outdated events will occur. It is assumed that all service replicas
can send view updates because no group leader selection is implemented.

In the model it is assumed that no repair of processor or service replica can
occur before a failure has occurred. Consequently, the number of replicas of
a given service will never exceed the initial number.

A service's group view cardinality needs to equal the actual number of cur-
rently active replicas for a service to be eligible for a new replica creation. A
replica can be created only by being assigned to working processors, and due
to the distribution policies of Jgroup/ARM no two replicas of the same ser-
vice can reside on the same processor. Hence, for a replica to be assigned to
a processor the processor must currently be working and contain no replicas
of the service in question.

In Jgroup/ARM, priority is given to creation of RM and other services in the
MS. However, this functionality has not been implemented in the depend-
ability model. The only di�erence between services and the RM is that the
services can not create a replica without "`approval"' from the RM. The RM
on the other hand can create a replica when the number of working replicas
is below a given threshold.

Jgroup/ARM has di�erent algorithms for external group method invocations;
anycast, multicast and leadercast. In the model developed only anycast is
implemented.

In the model it is assumed that all the RM replicas have knowledge on all
the service replicas. A given service is not associated with a RM replica, it
is assumed that any RM replica can monitor its status.

The communication substrate is assumed to be free from errors and delay.

The assumptions made when modelling Jgroup/ARM are listed in Table 8.1.

8.2 The model

The dependability modelling started with a model with four processor and
one single monitored service as in Section 7.2. When the elementary model
worked it was expanded to also cover several monitored services and the
ARM framework.

The system structure is broken down to three submodels. One SAN submodel
for the hardware (the processor failure and repair), one SAN submodel for

56 8.2. THE MODEL

Figure 8.1: Structure of the model in Möbius. One Join-node and three SAN
submodels.

the service monitored (replica failure, view change events) and one for the
replication management.

This split was made to simplify the model, as the functionality easily can
be classi�ed as hardware behavior, service related behavior or management
functionality.

The modelling tool used is the Möbius modelling tool which was described
in Chapter 5. Figure 8.1 shows the �nal design of the dependability model.
The three SAN models are composed to a complete system by a Join-node.
The source code for the SAN models are attached in Appendix A. The
functionality contained in the di�erent SANs is described in the following
sections. The main points are emphasized, followed by a detailed description.

8.2.1 The hardware submodel

Basically, the hardware SAN models the failure and repair of processors and
noti�es the other submodels of the state of the target environment. It con-
tains four extended places; Processors, ProcNrFailed, ProcNrFailedService
and ProcFixed. The places and transitions in the hardware SAN are de-
scribed below.

Processors - used to keep track of failed and working processors.

Processors is the main extended place of the submodel. It contains an array
with size equal to the numbers of processors in the processor cluster. 1 in
position i indicates that processor i is up. It is assumed that all processors
are up initially.

The number of processors currently working could also have been modeled by

CHAPTER 8. THE DEPENDABILITY MODEL 57

Figure 8.2: The hardware SAN.

a place with one token for each working processor. However, the extended
place containing an array is chosen because knowledge on the number of
failed and working processors is not su�cient when modelling Jgroup/ARM.
Information about currently failed processors is important, which is why an
array with one element for each processor is used.

ProcNrFailed and ProcNrFailedService - used to notify the RM
and the Service SANs of processor failure.

ProcNrFailed contains an array with two elements. The �rst element is ei-
ther 0 or 1, where the former represents no new processor failure and the
latter represents that a failure has occurred. The second element contains
the number of the failed processor. Both elements are initialized to 0. Proc-
NrFailed is used to notify the replication manager submodel of a processor
failure. Figure 8.3 illustrates how the HW submodel informs the RM and
Service submodels of a processor failure. ProcNrFailedService is identical to
ProcNrFailed, the only di�erence being that it is used to notify the service
submodel of the processor failure.

Thus, two di�erent places are used to notify the two submodels of processor
failure. This might seem bothersome, but the need for two places is caused
by the design of the model. When the places are given values they enable
instantaneous transitions in the two other submodels. How the other sub-
models react to the transitions will be described in Sections 8.2.2 and 8.2.3,

58 8.2. THE MODEL

Figure 8.3: The hardware submodel signals the RM and Service submodels
that a processor has failed

the main point here is that after some updates has occurred the output gates
of the respective transitions "`reset"' the values of the places. By using only
one place for both submodels only one of the submodels will react to the
processor failure. Hence, two places are used to notify both submodels when
a processor fails.

ProcFixed - used to notify the RM when a processor is repaired.

ProcFixed contains an array of two elements. The �rst is 0 when no processors
have been repaired and 1 when a processor has been repaired. The second
element is the number of the currently �xed processor. This extended place
is used to notify the RM that a processor is again available.

The submodel also contains a place called procFailed. This place is initialized
to zero and contains a token for every processor that is failed at any time. It
is incremented when a processor fails and decremented when it is repaired.

Failure and repair of processors are the two transitions in the SAN.

Two timed transitions are included in the hardware submodel; ProcessorFail
and ProcessorRepair. ProcessorFail has an input gate stating that for the
transition to be enabled one or more replicas need to be up. The �ring of
the transition has an exponential distribution with rate
(number of working processors + 1)· λproc. The output gate, FailGate1, de-
�nes the consequences of the transition. A processor, i, is chosen randomly
amongst the currently working processors. Element i in Processors is set
to 0, procFailed in incremented by 1 and ProcNrFailed is updated with the
currently failed processor. The reason for the "`+ 1"' in the failure rate is
that Möbius performs the de�ned functionality in both the input and out-
put gates before the transition �res. Hence, by the time the failure rate is

CHAPTER 8. THE DEPENDABILITY MODEL 59

calculated, the number of working processors has already been decremented.

The other timed transition, ProcessorRepair, is also exponentially distributed,
with rate µman which symbolizes manual repair. The transition can only �re
if one or more processors are currently failed. A processor, i, is randomly
selected amongst the failed ones and position i in Processors are set to 1.
Consequently, procFailed is decremented by one and ProcFixed is updated
with 1 in element 0 and the currently �xed processor number in element 1.

8.2.2 The service submodel

The service submodel basically keeps track of the failure and repair processes
of the services. The main functionality is to capture replica failures, inform
the RM of changes in the group's view and to react to replica creation orders
from the RM.

The choice of modeling all the services in one submodel, instead of modeling
one service in a SAN, and then use the replicate functionality in Möbius, is
done because it is desirable to be able to separate between the services. This
is necessary when de�ning reward models. The Jgroup/ARM system depends
on several services to be up for the system to be considered as working. The
design of the submodel is shown in Figure 8.4 and described below.

ServiceRepliceDist - matrix that maps service replicas to proces-
sors.

The extended place ServiceRepliceDist contains a matrix which maps service
replicas to processors. The number of rows correspond to the number of
services and the number of columns to the number of processors. The matrix
consists of 1's and 0's. 1 in element i, j represents service i having a replica
on processor j.

LoadDist - represents the load of each processor at any time.

The extended place LoadDist represents the load (the number of service repli-
cas) on the di�erent processors. The service and RM submodels increment
the marking of a given processor upon replica creation. The markings are
used by the replication manager to decide where to create a new service
replica, and hence it will be further described in Section 8.2.3.

newReplUp and viewNew - keeps the real replica count and the
current view of each service group respectively.

60 8.2. THE MODEL

Figure 8.4: The service SAN.

CHAPTER 8. THE DEPENDABILITY MODEL 61

newReplUp contains an array with the size of the number of services currently
in the system. Each array element represents the number of replicas of the
corresponding service. E.g if element i is 3, service i has 3 working replicas.

An extended place, viewNew, is used to store the cardinality each service has
of its view. It contains an array with one element for each service in the
system.

Replica failure can be caused by failure of the replica or by failure
of the processor the replica resides on.

Two di�erent events can cause failure of a service replica; software failure
and failure of the processor the replica resides on. The failure of a replica
due to software failure can occur as long as the given service has one or more
working replicas.

A random service, s, with one (or more) replica(s) is chosen in the input
gate of the transition replFail and its service number is stored in the place
serviceChosen. The failure transition, replFail, is exponentially distributed
with rate (newReplUp[s] + 1)·λrepl, because each of the working replicas fail
with rate λrepl.

In the output gate, a working replica, r, of the chosen service is randomly
selected and stored in replicaChosen. Consequently the output gate updates
the a�ected extended places. In newReplUp the element of the service chosen
is decremented by one, in LoadDist the element of the processor that con-
tained the chosen replica is decremented and �nally the ServiceReplicaDist is
updated by setting ServiceReplicaDist [s][r] = 0. This completes the replica
failure transition.

As mentioned above, replicas can also fail due to processor failure. This is
captured by the action procReplicaFail which is enabled by the �rst element
of ProcNrFailedService equaling one. When the enabling condition is true,
ServiceReplicaDist is scanned, and each service having a replica on the failed
processor gets its element in newReplUp decremented and the corresponding
element in ServiceReplicaDist set to zero, as the given processor is failed and
consequently no longer contains any replicas.

Creation - a queue used by RM to signal that a service can create a
replica. replicaCreation is the transition in the Service SAN which
creates a new replica.

To create a new replica, the service submodel needs to receive a "`signal"'
from the RM, as the RM decides which service creates a replica when and
where. The signal is sent by setting the elements of Creation to certain

62 8.2. THE MODEL

Figure 8.5: The service submodel signals the replication manager submodel
that a view change has occured and the replication manager enables the
service to create a replica.

values. The service submodel keeps a pointer, readPointer, which points to
the �rst element of the queue. Each row in Creation contains two columns
initialized to -1. The �rst column gives the number of the service that can
create a replica, the second element gives the processor the replica can be
created on. Figure 8.5 illustrates how the service submodel interacts with
the RM submodel.

The input gate of the timed transition replicaCreation checks that the �rst
element of the queue has a valid service value. The transition time has an
exponential distribution with rate µaut. The average time of a automatic
repair is normally shorter than the average time of a manual repair. It is
assumed that no manual action is required to create a new replica. Manual
repair is only required in processor repair as described in Section 8.2.1.

In the output gate of the transition, the chosen processor's element in Load-
Dist is incremented by one as a new replica now resides on that processor.
Consequently, newReplUp and ServiceReplicaDist are also updated. The for-
mer gets the element corresponding to the chosen service incremented by one,
and the latter gets the element of the chosen service on the chosen processor
set to one. To disable the instantaneous replicaCreation transition, both el-
ements of createReplica are reset to -1, and the readPointer is incremented
(modulo the number of rows) to point to the next element in the queue.

updateView - transition which updates a service's outdated view.
The Service SAN uses extended place viewChangeNew to notify
RM of a view change event.

The last transition in the service submodel is the view change transition.
For simplicity, a transition is made for each service in the system2. Hence, in
Figure 8.4 there are three viewChange transitions which performs the same
functionality. The input gate compares the view cardinality and the actual
numbers of replicas up (from viewNew and newReplUp respectively) and

2Due to di�culties changing the design in Möbius, as described in 11.3 on page 93

CHAPTER 8. THE DEPENDABILITY MODEL 63

Figure 8.6: The replication manager SAN.

enables the timed transition updateView if the two cardinalities di�er. The
transition time for service i is assumed to be exponentially distributed with
rate (replicasUp->Index(i)->Mark() + 1)· λview.

Next, the viewNew is updated for the chosen service to equal the current
working replicas for that service. For a given service i that means

viewNew [i] = newReplUp[i].

Consequently, the extended place viewChangeNew is updated. viewChangeNew
corresponds to the ProcNrFailedService place in the hardware model, and
contains an array of two elements. The �rst elements indicates a view change
by its �rst element equaling one. The second element the service in which
a view change has occurred. The place is used to notify the RM of the
occurred event, as the RM is the system component which reacts to view
change events.

64 8.2. THE MODEL

8.2.3 The replication manager submodel

The RM SAN contains the ARM framework functionality. The RM itself is
replicated and its replicas can fail and be repaired as other service replicas.
Additionally, the RM submodel reacts to view updates, processor failures
and processor repairs. The last important task of the RM submodel is to
signal to the services when and where a replica can be created. Figure 8.6
shows the design of the replication manager submodel.

RManag - maps RM replicas to processors.

The extended place RManag contains an array with one element for each
processor. The number of initial RM replicas is given by the global variable
initRM, and stored in the place rmUp, and the initialization of the array is
done in the custom initialization �eld. However, as with the service, 1 in
element i represents that a RM replica resides on processor i.

RM replica failure and repair - the RM can create a RM replica
as long as available processors exist.

As with a service replica, the RM replicas can fail and be repaired. The
RMfail transition is identical to the replica failure in the service submodel,
and thus will not be described in detail here. However, unlike in the service
submodel, there is only one replicated RM, and the only decision made is
which of the RM replicas fails. The places a�ected by this transition is
LoadDist where the element of the processor the chosen replica resided on
is decremented, rmUp which is decremented by one and RManag where the
chosen replica element is set to 0.

Unlike the creation of a service replica which needs a "`go-signal"' from the
RM to �re, a RM replica can be created as long as the number of working RM
replicas is less than the initial number of RM replicas. The repair process is
exponentially distributed with repair rate µman. A processor is chosen ran-
domly amongst the processors not currently holding a RM replica. However,
the processor chosen must have su�cient capacity to handle an additional
service replica. After �ring the transition, rmUp is incremented, LoadDist
for the chosen processor is incremented and the chosen processor element in
RManag is set to 1.

viewChangeNew - tells the RM submodel whether or not any new
view changes have occurred in the Service submodel. The RM
reacts to the view change if it is enabled.

The extended place viewChangeNew was introduced in Section 8.2.2. It

CHAPTER 8. THE DEPENDABILITY MODEL 65

contains an array of two elements, the �rst element is set to zero when there
is no new view change, and to one when there is. The second element is set to
the number of the service with a view change. The instantaneous transition
reactionToViewChange �res whenever the �rst element of viewChangeNew
equals one.

The output gate performs several actions. First of all, a new replica is only
created if the replica count of the given service does not exceed the initial
number of replicas. Secondly, an array of processors where the chosen service
(given by the second element in viewChangeNew) can create a replica is
updated. A processor is added to the array if it is currently working, its
current load does not exceed its de�ned maximal load and it does not contain
a replica of the chosen service. If there are several eligible processors in the
cluster, the one with the least heavy load is chosen, and the extended place
Creation is updated. The element pointed to by the pointer is set to the
number of the service to get a replica created and the second element gives
the number of the processor to create the replica on.

However, if there are no eligible processor, the service is added to a queue in
ServiceReplicaQueue (if it is not already in it). Every time a service is added
to the queue the place ServicesInQueue is incremented. This place will be
used to determine whether the queue is empty or not.

The �nal action in the output gate is to reset the viewChangeNew to disable
the instantaneous transition. Both the �rst and the second element of the
array is set to zero.

reactToProcFailed and ReactToProcFixed - transitions that handle
the failure and repair of processors in the target environment.

The e�ect of a failed processor is captured in the reactToProcFailed instan-
taneous transition. The transition is enabled by the �rst element of ProcN-
rFailed equaling one. The second element of ProcNrFailed gives the number
of the failed processor. This extended place was described in Section 8.2.1,
and the hardware model is also where its values are set. The output gate
of the transition immediately sets the LoadDist element of the failed proces-
sor to zero, as a failed processor can not hold any service replicas. RManag
is scanned to see if the failed processor contained any RM replicas. If so,
RManag is updated by setting the processor element in question to zero.

The last instantaneous transition in the RM submodel is ReactToProcFixed.
This transition is enabled when the �rst element of ProcFixed is 1. This
happens, as described in Section 8.2.1, when a processor is repaired. When
ReactToProcFixed �res it checks whether or not there are any services in the

66 8.3. THE MAPPING PROBLEM

Figure 8.7: The replication manager interacts with the two other submodels.

queue waiting for a processor to place a replica on. If there is, that is if
the mark of ServicesInQueue is greater than zero, createReplica is enabled
for the service �rst in line (FCFS) on the processor that has been repaired.
Reset ProcFixed to disable the instantaneous transition.

Adding a service to the model would require manually changing the initial-
ization of places ServiceReplicaDist and ServiceParam in the custom initial-
ization �eld, as Möbius does not support dynamic initialization of arrays
with size de�ned by global variables.

8.3 The mapping problem

To make the mapping of the services to distinct processors clearer, this section
presents an example mapping. All the time considering a system of four
processors, the array [1 1 1 1] in the Processor place will represent the state
where all four processors are up. This solves the problem of knowing which
processors are up at any given time.

As explained above the extended place serviceReplicaDist contains the distri-
bution of service replicas on processors. With all processors being operative
an example matrix may look like the one below. In this example three ser-
vices are considered. Service 0 has replicas on processors 0, 1 and 2, service
1 on processors 1, 2, and 3 and service 2 on processors 0, 2 and 3.

 1 1 1 0
0 1 1 1
1 0 1 1



CHAPTER 8. THE DEPENDABILITY MODEL 67

Place Initial value
Processors [1 1 1 1]
Rmanag [1 1 1 0]
LoadDist [3 3 4 2]

viewChangeNew [0 0]
ProcNrFailed [0 0]

ProcNrFailedService [0 0]
ProcNrFixed [0 0]
newReplUp [3 2 3]

viewNew [3 2 3]

ServiceParam

 3 3 1
2 2 1
3 3 2


ServiceReplicaDist

 1 1 1 0
0 1 1 0
1 0 1 1


Creation

 0 0
0 0
0 0


rmUp 3

procFailed 0
pointer 0

readPointer 0

Table 8.2: Initial values of example Jgroup/ARM system

Correspondingly, the RM replicas are associated with processors through the
extended place RManag. The place contains an array with one element for
each processor. Each element value indicates whether or not a RM replicas
resides on the respective processor. RManag = [1 1 1 0] represents a RM
having replicas on processors 0, 1 and 2.

Hence, the mapping problem is solved and the e�ects of processor failure can
be captured both in the service and the RM submodels.

8.4 System events

This section presents an example system and the main system events. The
system has a target environment with 4 processors, 3 services and 3 RM

68 8.4. SYSTEM EVENTS

Initiation submodel A�ected submodel
HW RM Service

Transition ProcessorFail ReactToProcFail ProcReplicaFail
Enabling
function

One or more processors
up

Failure of a proces-
sor ProcNrFailed en-
abled by HW

Failure of a proces-
sor ProcNrFailedService
enabled by HW

Places
changed

Processors, procFailed,
ProcNrFailed

LoadDist,
rmUp, RManag, procN-
rFailed

ServiceReplicaDist,
replicasUp

Table 8.3: Processor failure consequences

replicas. The initial marking is de�ned in Table 8.2. The following sections
will use this initial marking and demonstrate marking changes in the di�erent
submodels when a processor fails, a service group updates its view and a
processor is repaired.

Each section starts with a short summary of the changes caused by the system
event and ends with a detailed example of the event.

8.4.1 Processor fail

RM reacts immediately when a processor fails, as long as at least one RM
replica is up. It removes the RM replica residing on the failed processor and
changes the processor's load. The service SAN reacts in a similar matter. As
a processor has failed the service submodel removes every replica residing on
the failed processor and changes the replica count for the services which had
a replica on the failed processor.

Example

Now assume that processor 1 fails. As listed in Table 8.3 this will a�ect the
places Processors, ProcNrFailed, ProcNrFailedService and procFailed. The
latter is incremented and the two former are changed to re�ect the failed
processor;

Processors = [1 0 1 1], ProcNrFailedService = [1 1] and ProcNrFailed = [1 1].

Table 8.3 illustrates that the transition ReactToProcFailure in the RM sub-
model is enabled when the �rst element of ProcNrFailed equals 1. The actions

CHAPTER 8. THE DEPENDABILITY MODEL 69

Initiation submodel A�ected submodel
Service RM Service

Transition updateView reactionToViewChange replicaCreation
Enabling
function

One, or more, services
has an inconsistent view
of its group

Service enables
viewChangeNew

RM signals that a replica
can be created by en-
abling Creation

Places
changed

ViewNew,
viewChangeNew

pointer, serviceChosen,
servicesInQueue, Creation,
ServiceReplicaQueue

readPointer, LoadDist,
ServiceReplicaDist,
Creation, replicasUp

Table 8.4: View change consequences

taken are described in Section 8.2.3, and the resulting extended places are;

RManag = [1 0 1 0], LoadDist = [3 0 4 2], rmUp = 2 and ProcNrFailed = [0 0].

The service SAN also reacts to a processor failure. As illustrated in Table
8.3 the transition ProcReplicaFail is enabled by the �rst element of ProcN-
rFailedService equaling 1. The actions taken are described in Section 8.2.2.
The resulting extended places are; newReplUp = [2 1 3], viewNew = [3 2 3]
and

ServiceReplicaDist =

 1 0 1 0
0 0 1 0
1 0 1 1



8.4.2 View update

A view change event can occur when a service has a view cardinality that
di�ers from the actual number of working replicas. When a view change
occurs, the RM reacts immediately. The RM checks whether or not the
number of replicas of the given service has a su�cient number of replicas. If
not, the RM tries to �nd an available processor to create a new replica on. If
such a processor is found the RM tells the service to create a replica on the
chosen processor. If no such processor exists, the service is added to a queue
of services waiting for processors to become available.

Example continued

Continuing the example started above, a view change event can occur for
service 1 as its elements in viewNew and newReplUp di�er. Service 1's el-

70 8.4. SYSTEM EVENTS

ement in viewNew is set to equal its element in newReplUp and the RM is
told about the view change by enabling viewChangeNew.

Thus, viewNew = [3 1 3] and viewChangeNew = [1 1].

The reactionToViewChange transition in RM is enabled by a 1 in the �rst ele-
ment in viewChangeNew as illustrated in Table 8.4. RM �rst checks whether
or not the service already has an entry in the Creation array.

In this example, the queue is empty. It can be seen that the processors
eligible for hosting a replica of service 1 are processors 0 and 3. They are
both currently working and neither contains a replica of service 1. As the
load of processor 0 is 3 and the load of processor 3 is 2, processor 3 is chosen.
The entry is added to the Creation queue, and viewChangeNew is reset to
disable the instantaneous transition.

Pointer = 1, viewChangeNew = [0 0] and

Creation =

 1 3
0 0
0 0


The reaction in the service submodel is not immediate. With a rate of µaut
a service replica is created. The marking of the readPointer is used to �nd
the �rst service in the queue. Here, a new replica of service 1 will be created
on processor 3 and LoadDist, ServiceReplicaDist, replicasUp and Creation is
updated.

readPointer = 1, newReplUp = [3 2 3], LoadDist = [3 0 4 3],

ServiceReplicaDist =

 1 0 1 1
0 0 1 1
1 0 1 1


and

Creation =

 0 0
0 0
0 0


.

8.4.3 Processor repair

The RM reacts immediately upon the repair of a processor. It check the
queue to see whether any services are waiting for a replica to be created.

CHAPTER 8. THE DEPENDABILITY MODEL 71

Initiation submodel A�ected submodel
HW RM Service

Transition ProcessorRepair reactToProcFixed replicaCreation
Enabling
function

A processor is repaired Repair of processor
ProcNrFixed enabled by
HW

RM signals that a replica
can be created by en-
abling Creation

Places
changed

Processors, procFailed
and ProcNrFixed

LoadDist,
ServiceReplicaDist,
rmUp, RManag, Cre-
ation, ServicesInQueue,
ServiceReplicaQueue,
pointer, replicasUp,
procnrFixed

readPointer, LoadDist,
ServiceReplicaDist,
Creation, replicasUp

Table 8.5: Processor repair consequences

If the queue is not empty, and the newly repaired processor has not yet
reached its maximum capacity, the RM tells the services in the queue to
create a replica on it. Consequently, the services in the queue create their
replicas.

Example continued

The third system event, processor repair, is illustrated in Table 8.5. In this
example processor 1 is the only failed processor and hence, the only processor
that can be repaired. When processor 1 is �xed, the hardware submodel
changes the markings of the places Processors, procFailed and ProcNrFixed.
procFailed is decremented to re�ect that one less processor is now failed.

Processors = [1 1 1 1] and ProcNrFixed = [1 1].

The RM submodel reacts to a repaired processor as soon as the �rst element
of ProcNrFixed is set to 1. When it discovers that a processor is repaired it
checks the ServiceReplicaQueue to see whether or not it contains any services.
In this example it does not, and no changes are made other than resetting
ProcNrFixed to disable the instantaneous transition,

ProcNrFixed = [0 0].

As no services were in the queue, no new services are added to the Cre-
ation queue and hence, the repair of the processor will not a�ect the service
submodel.

72 8.5. LOAD SHARING

8.5 Load sharing

Load sharing has not yet been implemented in the model, but an example
solution will be outlined in this section. The load sharing in Jgroup/ARM
should be implemented in the RM SAN.

In this solution load sharing is assumed to occur in two cases; when a proces-
sor fails and when a processor is repaired. When a processor fails, all replicas
residing on that processor fail. However, when using load sharing these repli-
cas can be created on other processors, if such eligible processors exist. The
processor chosen is the available processor with the lightest load. For each
service, an entry is made in the Creation queue if an eligible processor exist.
The array elements contain the service chosen and the processor to create a
replica on. If no eligible processor currently exists, the service is added to
the ServiceReplicaQueue. The services in this queue wait for a processor to
become available.

Using the functionality in the RM submodel eliminates the need for the
place ProcNrFailedService in the HW and service submodels and the action
ProcReplicaFail in the service submodel.

The other case where load sharing could be implemented is when a processor
is repaired. As stated in [24], load sharing is advantageous if a processor
is very heavily loaded and other processors are relatively free to process
more jobs. When a new processor becomes available the RM will �rst create
a replica of the services in the ServiceReplicaQueue. After removing the
replicas from this queue, the load of the processors is inspected.

If the newly repaired processor has a signi�cantly lighter load than the other
processors, replicas are removed from their current processors and added to
the Creation array with the new processor as target processor. However, this
will only be done as long as the load of the newly �xed processor is below
some threshold value and the service in question currently has more than the
required number of working replicas.

8.6 Extended place de�nitions

The list below describes the extended places used in the dependability model.

Processors Contains an array initialized to [1 1 ... 1], where Processors[i] = 1

CHAPTER 8. THE DEPENDABILITY MODEL 73

represents that processor i is currently up and Processors[i] = 0 repre-
sents processor i being failed.

RManag Contains an array with size set to the number of processors.
RManag[i] = 1 gives that a RM replica resides on processor i.

replicasUp Contains an array with one element for each service in the sys-
tem. The initialization depends on the initial number of replicas of
a given service. An example initialization is [3 2 3]. Service 0 and 2
initially have 3 replicas, and service 1 has 2 replicas. At any time this
array will re�ect the current number of replicas that are up for each
service.

viewNew Initially replicasUp and viewNew are identical. This extended
place is used to keep track of the group view each service has. It is
updated by the updateView transition.

ServiceParam This extended place gives the replication policy for each of
the services, one row for each service. The �rst column contains the
initial view cardinality, the second column the number of initial replicas
and the last column the replicas required for the service to be available.
An example initialization is given below.

 3 3 1
2 2 1
3 3 2


ServiceReplicaDist The ServiceReplicaDist extended place contains a ma-

trix where each row represents a service and each column a processor.
If a given element is 1 it means that a replica of the service resides
on the processor. An example initialization is given below. It can be
seen that service 0 has replicas on processors 0, 1 and 2, service 1 on
processors 1 and 2 and service 2 on processors 0, 2 and 3.

 1 1 1 0
0 1 1 0
1 0 1 1


LoadDist Contains an array initialized according to the load on the di�erent

processors in the cluster. An example initialization is [2 2 3 2], the
size is given by the number of processors in the cluster. This array
represents a load of 2 service replicas on processors 0, 1 and 3, and 3

74 8.6. EXTENDED PLACE DEFINITIONS

service replicas on processor 2. This extended place is used to determine
which processor a service replica should be created on.

ProcNrFailed Contains an array initialized to [0 0]. 1 in the �rst element
represents that a processor has failed, while the second element repre-
sents which processor has failed. The extended place is shared by HW
and RM and is used to notify RM of a processor failure.

ProcNrFailedService Identical to ProcNrFailed, only di�erence being that
it is shared between the service and RM submodels.

ProcFixed This extended place contains an array of two elements. It is ini-
tialized to [0 0]. The �rst element gives whether a processor is repaired
or not by 1 or 0 respectively. The second element gives the number of
the repaired processor. Used by HW to notify the RM submodel of a
processor repair.

viewChangeNew Contains an array initialized to [0 0]. 1 in the �rst ele-
ment represents that a view change event has taken place. The second
position represents the number of the service which has changed view.
The extended place is shared among Service and RM and is used to
notify the RM when a group changes their view.

ServiceReplicaQueue The service queue is initially empty. As service
replicas and processors fail, the queue will be �lled with services wait-
ing for a processor to create a replica on. [1 2] represents services 1 and
2 waiting for a processor to become available.

Creation This extended place contains a matrix with one row for each ser-
vice and two elements in each row. The �rst element gives a service
number and the second element a processor number. The place is used
as a queue. Each row represents an element in the queue. Each service
is only added to the queue once, hence the matrix only needs one row
for each service. The �rst element gives the service to be replicated,
and the second element the processor the replica can be created on.

Pointers are used to read from and write to the queue. 1 2
−1 −1
−1 −1


The matrix illustrates the case where service 1 can create a replica on
processor 2. The extended place is shared between RM and service,

CHAPTER 8. THE DEPENDABILITY MODEL 75

and is used by RM to tell the given service that it can create a new
replica and on which processor that replica shall be created.

76 8.6. EXTENDED PLACE DEFINITIONS

Chapter 9

Validation and veri�caion

Validation and veri�cation is needed in order to prove the correctness of the
dependability model developed. Validation is the process of ensuring that
the model design is correct and builds the intended system. Veri�cation is
the process of ensuring that the output from a model simulation is feasible
[18]. Both approaches are applied to the Jgroup/ARM dependability model
as will be described in this chapter.

9.1 Validation

The development of the dependability model was done in an incremental or-
der. The model started out representing only a simple system, which could
easily be validated by checking the states generated by the state space gen-
erator and reading the trace �le of a simulation. The trace �les were used to
debug and eventually validate that the system behaved as intended. As the
simple system worked, the model was expanded.

For each piece of functionality added, simulations were run and the trajectory
in the trace �les validated. Additional places and variables were added to
the model to validate its operation. The actual number of failures of each
type were counted by the use of impulse rewards and compared to the failure
rates used. The two rates corresponded in a probable way, and the model
operation was assumed to be correct.

77

78 9.2. VERIFICATION

Parameter Value Description
Cap 4 Capacity of a processors
initRM 3 Initial number of RM repli-

cas
λProc 0.001 Processor failure rate
λRepl 0.002 Replica failure rate
λV iew 0.9 View update rate
µMan 0.2 Manual repair rate
µAut 2 Automatic repair rate
numFailed 0 Initial number of processors

failed
numProc 4 Number of processors
numServices 3 Number of services in the

system
replReq 1 Service replicas required for

service to work. Used in ini-
tial system.

Table 9.1: Parameter values used in this section

9.2 Veri�cation

The veri�cation of the dependability model was done by analyzing each of the
submodel SANs separately and comparing the results to theoretical solutions
of simpli�ed models.

During veri�cation steady state simulations were run in Möbius with an ini-
tial transient period of 500 hours, a batch size of 100 hours and minimum
number of batches set to 20 and maximum number to 100000. The actual
number of batches run was decided by Möbius. It will stop when the con�-
dence interval is within 10% of the mean 95% of the time. All the result �les
for the simulations in this chapter are attached in attachment C.1.

The system assumed here is a system with 4 processors, 3 RM replicas and
3 services with 3 initial replicas each. It has been assumed that 1 processor
and 1 replica of each service (the RM included) is required for the services
and the system to be up.

The parameters used are given in Table 9.1.

CHAPTER 9. VALIDATION AND VERIFICAION 79

9.2.1 The hardware SAN

Figure 9.1 shows the Markov chain for a system with 4 processors. Each
processor can fail with rate λ and be repaired with rate µ. One repair unit
is assumed.

In Möbius the solution to the model can be found either by simulation or by
generating the state space and solve the model by a numerical solver. The
HW submodel was expanded from the simple case in chapter 7.3 to the more
complex case in Chapter 8.2.1. However, when modelling the availability of
the processor cluster the simple model from Chapter 7.3 can be used. The
extra functionality added to the hardware SAN is for noti�cation purposes
only. Hence, the model used in simulation and numerical solution is depicted
in Figure 7.6(a).

Using the hardware submodel created in Möbius to simulate the system with
4 processors and parameters λ = 0.01 and µ = 0.5 1 yields a resulting mean
availability of 1, with a variance of 5.058·10−10.

Using the state space generator, 5 states is generated. This corresponds to
the 5 states in the state diagram in �gure 9.1. The state space generator
generates a transition matrix, attached in Appendix B, which is displayed in
(9.1).


0 1

25
0 0 0

1
2

0 3
100

0 0
0 1

2
0 1

50
0

0 0 1
2

0 1
100

0 0 0 0 1
2

 (9.1)

The numerical solver also gives the availability, A = 0.9999867 with con�-
dence interval +/-1.332395·10−5.

The availability of the processor cluster can be found numerically by deriving
the balance equations for the system in Figure 9.1. The steady state proba-
bility of being in each state is denoted Pi, where i is the number of working
processors. Hence, the set of balance equations is

4λ · P4 = µ · P3 (9.2)

1Due to some issues in Möbius as described in Chapter 11.3

80 9.2. VERIFICATION

Figure 9.1: Markov model for a system with 4 processors, 1 of which is
required to be up for the system to be up.

3λ · P3 + µ · P3 = 4λ · P4 + µ · P2 (9.3)

2λ · P2 + µ · P2 = 3λ · P3 + µ · P1 (9.4)

λ · P1 + µ · P1 = 2λ · P2 + µ · P0 (9.5)

µ · P0 = λ · P1 (9.6)

P4 + P3 + P2 + P1 + P0 = 1 (9.7)

The availability of a system is the fraction of time the system is available.
Hence, the availability, A, is the sum of all the up-states.

A = P4 + P3 + P2 + P1 (9.8)

The unavailability of the system is the time the system spends in the down
state, P0. Denoting the unavailability U gives U = P0. We also know that
A = 1 - U. Hence, we can �nd the availability of the system by calculating
A = 1 - U = 1 - P0.

Solving the set of equations with the given values yields the results

A = 1− P0 = 1− 3.539 · 10−6 = 0.999996461 (9.9)

Thus, the model for the hardware subsystem works correctly.

CHAPTER 9. VALIDATION AND VERIFICAION 81

Figure 9.2: Markov model for a system with 3 service replicas, 1 of which is
required to be up for the system to be up.

9.2.2 The service SAN

Figure 9.2 illustrates the Markov model of a service with three replicas. This
is a simpli�ed model of the dependability model created. Its focus is only on
replica creation and failure. It only considers automatic repair, as the pro-
cessor failure and repair are not included in this simple model. However, the
numerical solution of this simple model will be compared to the simulation
results of the Service SANs developed in Chapters 7.3 and 8.2.2.

The balance equations for Figure 9.2 is given by the balance equations 9.10
to 9.14.

3λ · P3 = µ · P2 (9.10)

2λ · P2 + µ · P2 = 3λ · P3 + µ · P1 (9.11)

λ · P1 + µ · P1 = 2λ · P2 + µ · P0 (9.12)

µ · P0 = λ · P1 (9.13)

P3 + P2 + P1 + P0 = 1 (9.14)

The availability of a system is the fraction of time the system is available.
Hence, the availablity, A, is the sum of all the up-states.

A = P3 + P2 + P1 (9.15)

The unavailability of the system is the time the system spends in the down
state, P0. Denoting the unavailability U gives U = P0. We also know that

82 9.2. VERIFICATION

Model Mean availability Con�dence interval
Numerical solution of
simpli�ed model

0.999444651

System with one service and
four processors

1.0000 +/- 2.3807178826·10−9

Availability of one service in
full system model

0.99997384464 +/- 5.1264511701·10−5

Table 9.2: Numerical and simulation results for Service SAN.

A = 1 - U. Hence, we can �nd the availability of the system by calculating
A = 1 - U = 1 - P0.

Solving the set of equations with the given values yields the results

A = 1− P0 = 0.999444651 (9.16)

Simulation of the model with one service and no RM using the parameters
and batches as described in the introduction yields an availability of 1.0000
with a con�dence interval of +/- 2.3807178826·10−9.

Simulation of the �nal model from Chapter 8, where the reward model esti-
mates the availability of one given service in the system, yields a availability
of 0.99997384464 and a con�dence interval of +/- 5.1264511701·10−5.The
results are listed in Table 9.2.

9.2.3 The RM SAN

The theoretical model of a RM is identical to that of the service SAN, as
neither consider other events in the system and both have the same number
of replicas and the same failure and repair rates.

The RM does not exist in the model from Chapter 7.3, so the only simulation
result for the RM is the one from the �nal dependability model developed in
Chapter 8. The mean RM availability when simulating the system is 1.0000.
A reason for the higher availability of a RM than a service might be that the
RM does not need a signal to create a replica, whilst the service needs the
RM to assign the service replica to a processor before it can create a new
replica.

CHAPTER 9. VALIDATION AND VERIFICAION 83

Model Mean availability Con�dence interval
Numerical solution of
simpli�ed model

0.999444651

Availability of one service in
full system model

1.0000 0.000

Table 9.3: Numerical and simulation results for RM SAN.

9.2.4 The composed system

Table 9.4 lists the simulation results for the composed system using both the
simple model of Chapter 7.2 and the complete model from Chapter 8.2.

Model Mean availability Con�dence interval
System with one service and
four processors

0.99911384121 +/- 1.2638266619·10−3

Availability of one service in
full system model

1.0000 +/- 5.0586753828·10−10

Table 9.4: Numerical and simulation results for the composed system.

9.3 States generated

Table 9.5 gives the number of states generated for the simpli�ed system from
Chapter 7.3. As described above, this model consists of four processors and
one service. As there is only one service, the RM has not yet been introduced.

For the HW SAN, the availability results will be the same when expanding
to the full system described in Chapter 8. This is because the HW submodel
does not depend on the RM to function. However, the number of states
generated by the state space generator is increased to 120 for the full model.
This is caused by the additional places used to notify the other submodels.

SAN States generated
Hardware 5

Service 50
Composed 230

Table 9.5: Number of states generated for system with four processors, 1
service and no RM.

84 9.3. STATES GENERATED

In Chapter 3.1 the concept of state explosion was introduced. As described
above, the state space of the hardware SAN model increase from 5 to 120
by adding the functionality to notify the Service and RM SANs on processor
failure. The state space of one service with three initial replicas was 50
states. However, adding the complexity necessary to model more services in
one SAN also increase the state space of the model.

Finding an upper bound on the number of possible system states can be done
using combinatorics. Assuming that all processors are working, the extended
place ServiceReplicaDist contains an array of 12 elements2 all of which can
be 1 or 0. The number of markings possible are 212 = 4096. Hence, the
number of states possible considering only that place is 4096. As the Service
SAN model consists of several other places as well a theoretical upper bound
on the number of possible states is 301989888. Solving a state diagram of
that size is bothersome. Considering that this number of states represents
the state space of the Service SAN only, it is obvious that the state space of
the composed model will be incomprehensible. Henceforth, state-diagrams
are left out of this thesis due to the size of the state space.

2Assuming a system of 4 processors and 3 services.

Chapter 10

Example scenarios

This chapter presents four di�erent modelling scenarios, simulated by the
Möbius modelling tool. It describes how the di�erent dependability parame-
ters are obtained and �nally it presents and discusses the simulation results.

10.1 Simulation environment

Möbius can be used to solve a model for several di�erent scenarios.

The Möbius modelling tool needs some parameters to de�ne the simulator.
These are given in Table 10.1. As explained in Chapter 9.2, the simulator uses
the batch means method and will run batches until the con�dence interval is
within 10% of the mean 95% of the time. This can be changed if a more/less
accurate value is desired. The simulations used in the experiments in this
thesis are all steady-state interval simulations. Hence, the duration of each
batch has to be long enough to assume normal distribution.

Simulation parameter Value
Initial period 500 hrs

Batch duration 10000 hrs
Minimum number of batches 20
Maximum number of batches 10000

Table 10.1: Steady state simulation parameters

85

86 10.2. SCENARIOS

Parameter Experiment 1 Experiment 2 Experiment 3 Experiment 4
Cap 3 3 3 3

initRM 3 3 3 3
λProc 0.0001 0.0001 0.001 0.001
λRepl 0.0002 0.0002 0.002 0.002
λV iew 1.0 1.0 1.0 1.0
µMan 0.5 0.1 0.5 0.1
µAut 12.0 6.0 12.0 6.0

numFailed 0 0 0 0
numProc 4 4 4 4

numServices 3 3 3 3

Table 10.2: The 4 scenarios simulated

10.2 Scenarios

[16] experimentally obtains service dependability characteristics of a service
in the Jgroup/ARM system. These values were originally used to form exam-
ple scenarios in Möbius. However, di�culties were encountered when using
these values for simulation1. Thus, a set of values, given in Table 10.2, was
chosen for four di�erent scenarios. The time unit used is hours and the
di�erent parameters were introduced in Table 9.1.

Most of the parameters common to all the experiments are pretty self-
explanatory. However, λV iew might need an introduction. It is assumed
that a view change update is sent once every hour. This rate can be opti-
mized in future work, as sending updates too often will congest the system.
However, using a too low rate might lead to stale state information being
used. Hence, the view update rate should be optimized in the future.

Experiment 1 considers the case where processors and replicas fail once and
twice every 10000 hours respectively. The mean repair time of a manual
repair is 2 hours and the mean time automatic replica repair is 5 minutes.
The repair times are changed to 10 hours and 10 minutes respectively in
Experiment 2.

Experiments 3 and 4 consider a system where the failure of processors occurs
once every 1000 hours and the replicas fail twice ever 1000 hours. In Exper-
iment 3 the mean time for manual repair is assumed to be 2 hours and the
mean time for replica repair 5 minutes. The repair times are changed to 10

1The problems are described in Chapter 11.3

CHAPTER 10. EXAMPLE SCENARIOS 87

hours and 10 minutes respectively in Experiment 4.

The simulation results are given in Table 10.3, and the complete result �les
are attached in Appendix C.2.

10.3 Dependability measures

The reward models in Möbius are used to measure the desired dependability
measures. This section describes how the di�erent measures are obtained.

10.3.1 Availability

The Jgroup/ARM framework is de�ned to be available (working) when at
least two processors and two or more RM replicas are up. However, for clients
certain services may be required for the system to be considered available. It
is assumed that service 0 is a necessary service and needs at least one replica
to perform its operations. Hence, the availability condition is that at least
two processors, two RM replicas and one replica of service 0 is working.

The simulation type is steady-state simulation with simulation parameters
as de�ned in Table 10.1. The availability can be found by de�ning a rate
reward which returns 1 when the availability condition is true.

10.3.2 Mean time between system failures

Estimating the Mean Time Between system Failures (MTBFsystem) can be
done by adding functionality for capturing system failure to the dependability
model and using impulse rewards to count the number of system failures.
Figure 10.1 shows the additional transition added to the RM SAN. The
transition is instantaneous and enabled every time the marking of the place
systemFailedBool is 1. This marking is set by the three submodels. The
system fails when too many processors fail (the marking of procFailed exceeds
a given threshold, in the case simulated numProc - 1), when there are only
one or less functioning RM replicas or when all replicas of service 0 fail (as
in Section 10.3.1). This means that some additional functionality is added
to the output gates of transitions replicaFail, RMfail and processorFail. The
marking of systemFailedBool is set to 1 if either of the transitions causes

88 10.4. RESULTS

Figure 10.1: Additional functionality needed to measure system MTBF.

system failure. After the transition systemFailure has �red, the marking of
systemFailedBool is reset to 0.

With this new functionality implemented an impulse reward can be de�ned
on transition systemFailure. The impulse reward returns 1 each time the
transition �res and uses this to �nd the arrival rate of system failures. The
simulation type is steady-state and de�ned by the parameters given in Table
10.1. It is known that MTBFsystem = 1

λsystem
, thus MTBFsystem can be found.

10.3.3 System down times

From [3] we know that the mean down time (MDT) of a system can be found
by the relationship U = MDT/MTBF. We also know that U = 1 - A, hence
the mean down time of the system can be found by

MDT = U ·MTBF = (1− A) ·MTBF

10.3.4 Performablity

The system performability can be measured by de�ning a service level and
measuring the time the system performs at this level or better. However, due
to problems with Möbius2 this measure has not been implemented.

10.4 Results

All the experiments have been evaluated using simulation, because the num-
ber of states will make it infeasible, if not impossible, to solve the model
numerically as described in Chapter 9.3.

2Chapter 11.3

CHAPTER 10. EXAMPLE SCENARIOS 89

Dependability
measure

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Availability (A) 0.999999157764 0.99999815674 0.99999805405 0.999990935
Availability con-
�dence interval
(+/-)

1.95905665·10−6 4.287414964·10−6 4.919364903·10−6 2.463865820·10−5

λsystem 5.597014925·10−4 5.326370757·10−4 4.98500·10−3 5.654545455·10−3

λsystem con�dence
interval (+/-)

5.593950630·10−5 5.325941890·10−5 3.209132042·10−4 4.629330891·10−4

MTBFsystem
(hrs)

1786.666347 1877.45098 200.6 176.848875

MDTsystem (hrs) 1.50472·10−3 3.46063·10−3 3.90358·10−4 1.603135·10−3

Batches
completed

670 766 200 110

Table 10.3: Simulation results for the four experiments

Table 10.3 shows the simulation results of the four example scenarios simu-
lated. The MTBFsystem and MDTsystem are calculated from the values of the
obtained rate and impulse rewards. The result �les generated by the Möbius
simulator is attached in Appendix C.2.

10.5 Discussion

As can be seen from Table 10.3, the availability of the Jgroup/ARM system
is very high for all the experiments.

Comparing Experiment 1 and Experiment 2, the parameters changed are the
repair rates. As the mean repair times of Experiment 1 are shorter than those
of Experiment 2, it is expected that the availability of Experiment 1 is higher
than that of Experiment 2. The results in Table 10.3 re�ect this expected
property. The same argument can be used when comparing Experiments 3
and 4.

Comparing Experiments 1 and 3, and 2 and 4, the repair times are identical
for each experiment pair. However, as failures occur less frequently in Ex-
periments 1 and 2 the availability of Experiment 1 is expected to be higher
than that of Experiment 3 and the availability of Experiment 2 higher than
that of Experiment 4. Table 10.3 con�rms these expectations.

90 10.5. DISCUSSION

Thus, the availability of the Jgroup/ARM system with one necessary service
is very high for all the experiments conducted. As more services are added
to the MS the availability will decrease, as more replicas are required to be
working for the system to be available.

The estimated MTBFsystem is high for Experiments 1 and 2, and relatively
low for Experiments 3 and 4. However, this is easily explained by the failure
rates of the di�erent experiments. Experiments 3 and 4 fail with rates 10
times those of Experiments 1 and 2.

For the pair of Experiment 1 and Experiment 2, MTBFsystem is highest for
Experiment 2, which has the highest average repair times. In the case of Ex-
periment 3 and Experiment 4, MTBFsystem is highest for Experiment 3, which
has the lowest average repair times. Hence, it can be seen that there is no gen-
eral monotonous connection between the repair times and the MTBFsystem.
The di�erences observed in MTBFsystem can be caused by stochastic and
systematic variations.

Chapter 11

Lessons learned

This chapter describes the di�culties encountered while modelling Jgroup/ARM,
the design decisions made and the problems encountered while using Möbius.

11.1 Modelling issues and di�culties

Modelling such a complex system as the Jgroup/ARM framework introduces
several issues. How the di�erent issues are solved is given in the model
description in Chapter 8, whilst the design decisions are discussed in Sec-
tion 11.2. The main problems of making a dependability model of the
Jgroup/ARM system are summarized in the list below.

• The need to keep track of which processors are up and which are down
at any given time.

• How to map service replicas and RM replicas to processors?

• Functionality for handling processor failure in both service and RM
submodels.

• The RM has to decide which service creates a replica when and where.

• Which components are necessary for a Jgroup/ARM system to be avail-
able (de�ned in Chapter 7).

• What happens to the load of a processor when it fails? Load shar-
ing functionality needs to be implemented, and reallocation of service
replicas must occur when processors fail and when a single node has
heavier load than the other nodes.

91

92 11.2. DESIGN DECISIONS AND CONSIDERATIONS

• The processors do not have inde�nite capacity, hence each service can
not be replicated on all processors.

• How to model the ARM framework? Can it be assumed that the RM
and the DR services are co-located?

• In Jgroup/ARM there are two types of failures; replica failure and
processor failure. The model needs to capture the e�ect of a processor
failure on all service replicas residing on it.

• What is the availability criterion of the system?

• Which values can be used for failure and repair rates?

11.2 Design decisions and considerations

When developing a dependability model for Jgroup/ARM there are several
design issues to be considered. The �rst issue is to de�ne the services and
components that need to be included in the model. This was done in the
system delivery model described in Chapter 7. The chapter concluded that
the elements and services to be included in the monitored subsystem are
the processor cluster (hardware), a number of services (both monitored and
additional), the PGMS (view updates), DR and the RM (DR and RM func-
tionality co-located) functionality.

Several possible model designs were considered. The �rst approach used was
to convert the state-diagram in Figure 7.5 directly to a Petri net model.
However, this model got unintelligible even for the MS with one service and
no RM. Due to the complexity and dependencies in the system state, the
decision made was to split the model in three submodels; service, replication
manager and hardware. The model design with 3 SANs has been chosen to
simplify the complexity of the Jgroup/ARM model. It makes the model more
comprehensible when each system part is modeled independently, as Möbius
contains functionality to create a composed model of several SANs.

The modelling started with a simple system with one replicated service and
four processors. When this system worked, it was expanded to include multi-
ple services and the replication management as well. To be able to associate
RM and service replicas with distinct processors neither of the SANs uses
replication. By not using replication the state space is limited as well. The
design chosen uses extended places to map between RM replicas and proces-
sors and between service replicas and the processors they reside on. Parts

CHAPTER 11. LESSONS LEARNED 93

of the system complexity are moved from the model into code in input and
output gates.

However, to be able to address distinct services the design chosen models
all services in one SAN by a matrix, as described in Chapter 8. This is
done to be able to distinguish between the services, both when it comes to
the distribution on processes and when de�ning reward models, as di�erent
services may have di�erent replication policies.

Because of dependabilities the di�erent submodels need to be able to ex-
change information about their states. As described in Chapter 8 this is
done by setting extended places to de�ned values when important events
occur.

The state space size may be reduced [21] by sharing places between di�erent
SAN submodels. State lumping can be achieved i.e. when a processor fails.
When the processor fails there is no longer need to keep the state of the
service replicas residing on that particular computer. Their elements are set
to 0 and there is no possibility for a replica failure of a replica on a failed
computer. Hence, the state space is reduced. The same argument is valid
for RM replicas.

11.3 Möbius di�culties

The Möbius modelling tool is a university developed tool used with no guar-
antees for support. Encountering problems when using Möbius, solutions can
be found in the user manual [21], by emailing the development group or by
searching the Möbius forum1.

Technical problems such as how to use extended places, rate reward and
arrays was easily be solved by reading postings on the forum or search the
user guide. A couple of questions were also directed to the development
group by email. For these simple questions it was relatively easy to �nd the
solution. However, as the model grew more complex some problems occurred.

The �rst issue occurred when trying to add more than one experiment to
one study. The simulator would �nish the �rst experiment and start on the
second. The results of the second experiment would converge and the simula-
tion of the experiment stop, but the simulator would not start simulating the

1http://www.crhc.uiuc.edu/archive/html/mobius-users/

94 11.3. MÖBIUS DIFFICULTIES

third experiment. Hence, each experiment had to be de�ned in a separate
study.

Another, the main, di�culty that occurred was never really solved. When
simulating or using the state space generator, for some values, an error mes-
sage occurred and the simulation/state space generation was aborted. The
error message reads:
"`<name of simulator/state space generator>_Windows_debug.exe has en-
countered a problem and needs to close. We are sorry for the inconvenience.
If you were in the middle of something, the information you were working on
might be lost. Please tell Microsoft about this problem."'

The cause of this error was never really discovered. It occurred sporadically,
and the simulations failed in di�erent states each time. The error did not
occur during compilation, it only showed when running a simulation or using
the state space generator. The error was experienced when

1. Parameter values in the study used had been changed. Some-
times changing the values in a study caused the error message to occur.
However, this did not apply to all parameters. E.g. the �rst experi-
ments, based on values from [16] had to be rejected, but the values in
Table 10.2 gave valid results.

2. The initialization of RManag had been changed. Due to the
capacity limitations set on the processors, it was desirable to change
the initial distribution of the RM replicas. The initial distribution
was [1 1 1 0]. The change desired was to move the RM replica on
processor 2 to processor 3. However, making this change in the custom
initialization led to the error.

3. Functionality had been changed or added. Adding to, or chang-
ing, the de�ned behavior of the model might provoke the error. Al-
though it did not occur every time a line of code was added, some
alterations were successful. However, in some cases even removing the
newly added functionality would not remove the error. In those cases
the project had to be deleted and resaved before it would again func-
tion correctly. It was also experienced that by adding and removing
the lines of code several times, compiling the model between each in-
sertion/deletion, the model eventually worked correctly.

4. The simulation experiment had been changed. As described
above, di�culties were encountered while trying to simulate more than
one experiment in one simulation. Hence, separate studies and simula-
tions were created for each experiment.

CHAPTER 11. LESSONS LEARNED 95

It was also experienced that certain services and simulators would all of a
sudden stop working. The �le objects in Möbius could no longer be opened.
Trying to do so would lock Möbius. The studies and simulators had to be
deleted and created again.

However, the four experiments in Table 10.2 were simulated and the desired
results eventually obtained. Lots of time and e�ort were put into �nding the
solution, but the cause of the Möbius problems still remains unknown.

96 11.3. MÖBIUS DIFFICULTIES

Chapter 12

Conclusion and further work

This chapter concludes this thesis and suggests topics for further work.

12.1 Conclusion

The main objective of this thesis was to develop a dependability model for
the Jgroup/ARM system. This task was divided into several subtasks in the
introduction;

• Perform a theoretical study of techniques for dependability
modelling of distributed systems

Di�erent techniques for dependability modelling of distributed systems
were introduced in Chapter 3. A study of existing dependability models
of distributing systems limits the modelling techniques feasible for mod-
elling Jgroup/ARM to state-diagrams and Petri nets. The Petri nets
will normally scale better for large systems, whilst the state-diagrams
are easier to understand.

• Develop a system/service delivery model

The system/service delivery model for Jgroup/ARM was de�ned in
Chapter 7. In the system dependability model created, several com-
ponents were required to be operational for the system to deliver the
required services. First of all, more than one working processor is
needed in the target environment. Second, the ARM framework is also
required for the Jgroup/ARM system to deliver the required services.
Hence, the DR and RM functionality is co-located and more than one

97

98 12.1. CONCLUSION

copy of the framework is required for the system to be up. The third
factor included in the MS is that given services in the system may be
necessary for system availability. In the model created one given ser-
vice is required to have at least one working replica for the system to
be considered up.

However, the MS could be changed, either by adding more necessary
services, by adding/removing required service to/from the MS, or by
changing the number of required processors/replicas.

• Establish a state-diagram or a petri net dependability model
for the Jgroup/ARM system

Due to the advantages of Petri nets, a Petri net dependability model is
developed for the Jgroup/ARM system in chapter 8.

The Möbius modelling tool developed by the PERFORM group at Uni-
versity of Illinois at Urbana-Champaign was used to create the depend-
ability model. Using the tool, complex functionality can be hidden from
the model by adding C++ code. The complete model consists of three
SANs combined using the Möbius modelling tool. The model design is
illustrated in Figures 8.1, 8.2, 8.4 and 8.6.

As some problems occurred when using Möbius there are still some
shortcomings in the dependability model developed. However, the
model proposed in Chapter 8 re�ects the basic functionality of the
Jgroup/ARM system and suggested solutions for parts of the remain-
ing functionality are given.

Section 12.2 suggests topics for further development of the model de-
veloped.

• Evaluate simple scenarios with the Möbius modelling tool

Some simple scenarios are evaluated by running simulations of the de-
pendability model in Chapter 10. In the scenarios run, the failure rate
of processors and service/RM replicas are varied. For all the scenarios
the resulting system availability is very high.

It is seen that the MTBFsystem is high for the experiments with low com-
ponent failure rates. As the failure rates are increased, the MTBFsystem
is decreased. The results also show that the MDTsystem is shorter for
the experiments with shorter repair times. Hence, the dependability
parameters behaves as expected. Consequently it can be concluded
that Jgroup/ARM is a very dependable system.

CHAPTER 12. CONCLUSION AND FURTHER WORK 99

12.2 Further work

• Expand the dependability model

The dependability model should be expanded to include the Jgroup/ARM
functionality omitted from this model. Load sharing, partitioning and
priority are examples of functionality not included in the current de-
pendability model. An example solution as to how the load sharing
could be implemented is given in Chapter 8.5. The view update rate
should be optimized to prevent message �ooding and use of stale infor-
mation.

• Simulate more complex scenarios

The scenarios simulated in this thesis are fairly simple. The system
simulated provides three services and contains only four processors in
the target environment. By increasing the system size more complex
scenarios could be simulated. The number of services in the system,
and in the monitored subsystem, could be changed to increase the load
of the processors in the target environment. The number of processors
in the target environment should also be varied.

100 12.2. FURTHER WORK

References

[1] Eleftheria Athanasopoulou, Purvesh Thakker, and William Sanders.
Evaluating the dependability of a leo satellite network for scienti�c ap-
plications. In Second International Conference on the Quantitative Eval-
uation of Systems (QEST'05). IEEE Computer Society, 2005.

[2] J. A. Couvillion, R. Freire, R. Johnson, II Obal, W. D. I. I. A. Obal
W. D., M. A. A. Qureshi M. A. Qureshi, M. A. Rai M. Rai, W. H. A.
Sanders W. H. Sanders, and J. E. A. Tvedt. Performability modeling
with ultrasan. Software, IEEE, 8(5):69�80, 1991.

[3] Peder J. Emstad, Poul E. Heegaard, and Bjarne E. Helvik. Pålitelighet
og ytelse med simulering. tapir akademiske forlag, 2004.

[4] Q. Gan and B. E. Helvik. Dependability modelling and analysis of
networks as taking routing and tra�c into account. In B. E. Helvik,
editor, Next Generation Internet Design and Engineering, 2006. NGI
'06. 2006 2nd Conference on, page 8 pp., 2006.

[5] S. Hariri and H. Mutlu. Hierarchical modeling of availability in
distributed systems. Software Engineering, IEEE Transactions on,
21(1):50�56, 1995.

[6] Bjarne E. Helvik. Dependable Computing Systems and Communication
Networks - Design and Evaluation. 2006.

[7] Sune Jakobsson, Erik Berg, Bertrand Mathieu, Yvon Gourhant, Remi
Kerboul, Marcin Solarski, and Christian Egelhaaf. White paper on mid-
dleware platforms scalability and dependability, 2001.

[8] Allen M. Johnson Jr. and Malek Miroslaw. Survey of software tools
for evaluating reliability, availability, and serviceability. ACM Comput.
Surv., 20(4):227�269, 1988. 50062.

101

102 REFERENCES

[9] Vinod Kumar and K. K. Aggarwal. Petri net modelling and reliability
evaluation of distributed processing systems. Reliability Engineering &
System Safety, 41(2):167�176, 1993.

[10] C. D. Lai, M. Xie, K. L. Poh, Y. S. Dai, and P. Yang. A model for avail-
ability analysis of distributed software/hardware systems. Information
and Software Technology, 44(6):343�350, 2002.

[11] Jean-Claude Laprie. Dependability: Basic concepts and associated ter-
minology. Dependable Computing and Fault Tolerant Systems, 5, 1992.

[12] N. Lopez-Benitez. Dependability modeling and analysis of distributed
programs. Transactions on Software Engineering, 20(5):345�352, 1994.

[13] Hein Meling and Bjarne E. Helvik. Performance consequences of in-
consistent client-side membership information in the open group model.
In Performance, Computing, and Communications, 2004 IEEE Inter-
national Conference on, 2004.

[14] Hein Meling and Alberto Montresor. Jgroup tutorial and programmer's
manual, 2002.

[15] Hein Meling, Alberto Montresor, Bjarne E. Helvik, and Ozalp Babaoglu.
Jgroup/ARM: A distributed object group platform with autonomous
replication management. Software: Practice and Experience, page 39,
2007.

[16] Alberto Montresor, Bjarne E. Helvik, and Hein Meling. An ap-
proach to experimentally obtain service dependability characteristics
of the Jgroup/ARM system. In Mario Dal Cin Pataricza, Mohamed
Kaaniche, and Andras, editors, European Dependable Computing Con-
ference (EDCC-5), 2005.

[17] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541�580, 1989.

[18] Balci Osman. Principles and techniques of simulation validation, veri�-
cation, and testing, 1995. 224456 147-154.

[19] Sheldon M. Ross. Introduction to probability models. 2003.

[20] W. H. Sanders and II Obal, W. D. Dependability evaluation using ultra-
san. In II Obal, W. D., editor, Fault-Tolerant Computing, 1993. FTCS-
23. Digest of Papers., The Twenty-Third International Symposium on,
pages 674�679, 1993.

[21] William H. Sanders. Möbius manual, 1994.

REFERENCES 103

[22] William H. Sanders and Luai M. Malhis. Dependability evaluation using
composed san-based reward models. Journal of Parallel and Distributed
Computing, 15(3):238�254, 1992.

[23] Michael Stamatelatos, William Vesely, Joanne Dugan, Joseph Fragola,
Josepd Minarick, and Jan Railsback. Fault tree handbook with
aerospace applications. Technical report, 2002.

[24] Satisk K. Tripathi, David Finkel, and Erol Gelenbe. Load sharing in
distributed systems with failures. Acta Informatica, 25:677�689, 1988.

[25] Antti Valmari. The state exposion problem. Lecture notes in computer
science, 1996. Spredte bind utgjør samtidig bind i underserien Lecture
notes in arti�cial intelligence og Lecture notes in bioinformatics.

[26] F. Wagner and P. Wolstenholme. Misunder standings about state ma-
chines. Computing & Control Engineering Journal, 15(4):40�45, 2004.

[27] Chen Yinong and He Zhongshi. Dependability modelling of homoge-
neous and heterogeneous distributed systems. In He Zhongshi, edi-
tor, Autonomous Decentralized Systems, 2001. Proceedings. 5th Inter-
national Symposium on, pages 176�183, 2001.

104 REFERENCES

Appendix A

Source code

The source code for the SAN models created in Möbius is attached in this
Appendix. An archived version of the dependability model, containing ex-
ecutable models, exist and is attached electronically in DAIM. In order to
view the model Möbius is needed. To open the project, it �rst has to be
unarchived and resaved by Möbius commands.

A.1 The HW SAN

// This C++ file was created by SanEditor

#include "Atomic/HW/HWSAN.h"

#include <stdlib.h>

#include <iostream.h>

#include <math.h>

/***

HWSAN Constructor

**/

HWSAN::HWSAN(){

Activity* InitialActionList[2]={

&ProcessorFail, //0

&ProcessorRepair // 1

};

105

106 A.1. THE HW SAN

BaseGroupClass* InitialGroupList[2]={

(BaseGroupClass*) &(ProcessorFail),

(BaseGroupClass*) &(ProcessorRepair)

};

procFailed = new Place("procFailed" ,0);

systemFailure = new Place("systemFailure" ,0);

int temp_Processorsprocvalue = 1;

Processors = new proc("Processors",temp_Processorsprocvalue);

profFailedAr_state temp_ProcNrFailedprofFailedAr = {0,0};

ProcNrFailed = new profFailedAr("ProcNrFailed",temp_ProcNrFailedprofFailedAr);

toService_state temp_ProcFixedtoService = {0,0};

ProcFixed = new toService("ProcFixed",temp_ProcFixedtoService);

profFailedAr_state temp_ProcNrFailedServiceprofFailedAr = {0,0};

ProcNrFailedService = new profFailedAr("ProcNrFailedService",

temp_ProcNrFailedServiceprofFailedAr);

BaseStateVariableClass* InitialPlaces[6]={

procFailed, // 0

systemFailure, // 1

Processors, // 2

ProcNrFailed, // 3

ProcFixed, // 4

ProcNrFailedService // 5

};

BaseStateVariableClass* InitialROPlaces[0]={

};

initializeSANModelNow("HW", 6, InitialPlaces,

0, InitialROPlaces,

2, InitialActionList, 2, InitialGroupList);

assignPlacesToActivitiesInst();

assignPlacesToActivitiesTimed();

int AffectArcs[8][2]={

{0,0}, {1,0}, {2,0}, {3,0}, {5,0}, {0,1}, {2,1}, {4,1}

};

for(int n=0;n<8;n++) {

AddAffectArc(InitialPlaces[AffectArcs[n][0]],

InitialActionList[AffectArcs[n][1]]);

}

int EnableArcs[2][2]={

{0,0}, {0,1}

};

for(int n=0;n<2;n++) {

AddEnableArc(InitialPlaces[EnableArcs[n][0]],

InitialActionList[EnableArcs[n][1]]);

}

for(int n=0;n<2;n++) {

InitialActionList[n]->LinkVariables();

}

CustomInitialization();

}

void HWSAN::CustomInitialization() {

}

HWSAN::~HWSAN(){

for (int i = 0; i < NumStateVariables-NumReadOnlyPlaces; i++)

delete LocalStateVariables[i];

APPENDIX A. SOURCE CODE 107

};

void HWSAN::assignPlacesToActivitiesInst(){

}

void HWSAN::assignPlacesToActivitiesTimed(){

ProcessorFail.procFailed = (Place*) LocalStateVariables[0];

ProcessorFail.systemFailure = (Place*) LocalStateVariables[1];

ProcessorFail.Processors = (proc*) LocalStateVariables[2];

ProcessorFail.ProcNrFailed = (profFailedAr*) LocalStateVariables[3];

ProcessorFail.ProcNrFailedService = (profFailedAr*) LocalStateVariables[5];

ProcessorRepair.procFailed = (Place*) LocalStateVariables[0];

ProcessorRepair.Processors = (proc*) LocalStateVariables[2];

ProcessorRepair.ProcFixed = (toService*) LocalStateVariables[4];

}

/***/

/* Activity Method Definitions */

/***/

/*======================ProcessorFailActivity========================*/

HWSAN::ProcessorFailActivity::ProcessorFailActivity(){

TheDistributionParameters = new double[1];

ActivityInitialize("ProcessorFail",0,Exponential, RaceEnabled, 5,1, false);

}

HWSAN::ProcessorFailActivity::~ProcessorFailActivity(){

delete[] TheDistributionParameters;

}

void HWSAN::ProcessorFailActivity::LinkVariables(){

procFailed->Register(&procFailed_Mobius_Mark);

systemFailure->Register(&systemFailure_Mobius_Mark);

}

bool HWSAN::ProcessorFailActivity::Enabled(){

OldEnabled=NewEnabled;

NewEnabled=((procFailed->Mark()<4));

return NewEnabled;

}

double HWSAN::ProcessorFailActivity::Rate(){

return (numProc-(procFailed->Mark())+1)*lambdaProc;

return 1.0; // default rate if none is specified

}

double HWSAN::ProcessorFailActivity::Weight(){

return 1;

}

bool HWSAN::ProcessorFailActivity::ReactivationPredicate(){

return false;

}

bool HWSAN::ProcessorFailActivity::ReactivationFunction(){

return false;

}

double HWSAN::ProcessorFailActivity::SampleDistribution(){

return TheDistribution->Exponential((numProc-(procFailed->Mark())+1)*lambdaProc);

108 A.1. THE HW SAN

}

double* HWSAN::ProcessorFailActivity::ReturnDistributionParameters(){

TheDistributionParameters[0] = Rate();

return TheDistributionParameters;

}

int HWSAN::ProcessorFailActivity::Rank(){

return 1;

}

BaseActionClass* HWSAN::ProcessorFailActivity::Fire(){

;

#include <cstdlib>

//Create an array of all operative processors.

int a;

int b;

int i;

int n=0;

int o = numProc-procFailed->Mark();

int Up [o];

for(i=0; i<numProc; i++){

if(Processors->Index(i)->Mark()==1){

Up[n]=i;

n++;

}

}

//Pick one random processor that failes.

a = (rand() % o);

b = Up[a];

Processors -> Index(b) -> Mark() = 0;

//Notify RM and Service submodels of Processor failure

ProcNrFailed ->Index(0)->Mark() = 1;

ProcNrFailed ->Index(1)->Mark() = b;

ProcNrFailedService ->Index(0)->Mark() = 1;

ProcNrFailedService ->Index(1)->Mark() = b;

procFailed->Mark() ++;

//Capture system failures

if(procFailed->Mark() >= (numProc-1)){

systemFailure->Mark() =1;

}

return this;

}

/*======================ProcessorRepairActivity========================*/

HWSAN::ProcessorRepairActivity::ProcessorRepairActivity(){

TheDistributionParameters = new double[1];

ActivityInitialize("ProcessorRepair",1,Exponential, RaceEnabled, 3,1, false);

}

HWSAN::ProcessorRepairActivity::~ProcessorRepairActivity(){

delete[] TheDistributionParameters;

APPENDIX A. SOURCE CODE 109

}

void HWSAN::ProcessorRepairActivity::LinkVariables(){

procFailed->Register(&procFailed_Mobius_Mark);

}

bool HWSAN::ProcessorRepairActivity::Enabled(){

OldEnabled=NewEnabled;

NewEnabled=((procFailed->Mark()>0));

return NewEnabled;

}

double HWSAN::ProcessorRepairActivity::Rate(){

return muMan;

return 1.0; // default rate if none is specified

}

double HWSAN::ProcessorRepairActivity::Weight(){

return 1;

}

bool HWSAN::ProcessorRepairActivity::ReactivationPredicate(){

return false;

}

bool HWSAN::ProcessorRepairActivity::ReactivationFunction(){

return false;

}

double HWSAN::ProcessorRepairActivity::SampleDistribution(){

return TheDistribution->Exponential(muMan);

}

double* HWSAN::ProcessorRepairActivity::ReturnDistributionParameters(){

TheDistributionParameters[0] = Rate();

return TheDistributionParameters;

}

int HWSAN::ProcessorRepairActivity::Rank(){

return 1;

}

BaseActionClass* HWSAN::ProcessorRepairActivity::Fire(){

;

#include <cstdlib>

int a;

int b;

int i;

int n=0;

int fail = procFailed->Mark();

int Down [fail];

//Create an array of failed processors

for(i=0; i<numProc; i++){

if(Processors->Index(i)->Mark()==0){

Down[n]=i;

n++;

}

}

110 A.2. THE SERVICE SAN

//Pick random failed processor to be repaired

a = (rand() % procFailed->Mark());

b = Down[a];

Processors -> Index(b) -> Mark() =1;

//Notify RM

ProcFixed ->Index(0)->Mark() = 1;

ProcFixed ->Index(1)->Mark() = b;

procFailed->Mark() --;

return this;

}

A.2 The Service SAN

// This C++ file was created by SanEditor

#include "Atomic/Service/ServiceSAN.h"

#include <stdlib.h>

#include <iostream.h>

#include <math.h>

/***

ServiceSAN Constructor

**/

ServiceSAN::ServiceSAN(){

Activity* InitialActionList[6]={

&ProcReplicaFail, //0

&replFail, //1

&updateView0, //2

&updateView1, //3

&updateView2, //4

&replicaCreation // 5

};

BaseGroupClass* InitialGroupList[6]={

(BaseGroupClass*) &(replFail),

(BaseGroupClass*) &(updateView0),

(BaseGroupClass*) &(updateView1),

(BaseGroupClass*) &(updateView2),

(BaseGroupClass*) &(replicaCreation),

(BaseGroupClass*) &(ProcReplicaFail)

};

procFailed = new Place("procFailed" ,0);

serviceChosen = new Place("serviceChosen" ,0);

viewServiceChosen = new Place("viewServiceChosen" ,0);

APPENDIX A. SOURCE CODE 111

repairChosen = new Place("repairChosen" ,0);

readPointer = new Place("readPointer" ,0);

systemFailure = new Place("systemFailure" ,0);

int temp_Processorsprocvalue = 1;

Processors = new proc("Processors",temp_Processorsprocvalue);

hvor_state temp_ServiceReplicaDisthvemhvahvorvalue = 0;

ServiceReplicaDist = new hvemhvahvor("ServiceReplicaDist",

temp_ServiceReplicaDisthvemhvahvorvalue);

int temp_viewNewviewArrayvalue = 0;

viewNew = new viewArray("viewNew",temp_viewNewviewArrayvalue);

int temp_LoadDistprocLoadvalue = 0;

LoadDist = new procLoad("LoadDist",temp_LoadDistprocLoadvalue);

profFailedAr_state temp_ProcNrFailedServiceprofFailedAr = {0,0};

ProcNrFailedService = new profFailedAr("ProcNrFailedService",

temp_ProcNrFailedServiceprofFailedAr);

toService_state temp_viewChangeNewtoService = {0,0};

viewChangeNew = new toService("viewChangeNew",temp_viewChangeNewtoService);

int temp_replicasUpreplUpvalue = 0;

replicasUp = new replUp("replicasUp",temp_replicasUpreplUpvalue);

NY_state temp_CreationKOvalue = {-1,0};

Creation = new KO("Creation",temp_CreationKOvalue);

hvor_state temp_ServiceParamhvemhvahvorvalue = 0;

ServiceParam = new hvemhvahvor("ServiceParam",temp_ServiceParamhvemhvahvorvalue);

BaseStateVariableClass* InitialPlaces[15]={

procFailed, // 0

serviceChosen, // 1

viewServiceChosen, // 2

repairChosen, // 3

readPointer, // 4

systemFailure, // 5

Processors, // 6

ServiceReplicaDist, // 7

viewNew, // 8

LoadDist, // 9

ProcNrFailedService, // 10

viewChangeNew, // 11

replicasUp, // 12

Creation, // 13

ServiceParam // 14

};

BaseStateVariableClass* InitialROPlaces[0]={

};

initializeSANModelNow("Service", 15, InitialPlaces,

0, InitialROPlaces,

6, InitialActionList, 6, InitialGroupList);

assignPlacesToActivitiesInst();

assignPlacesToActivitiesTimed();

int AffectArcs[26][2]={

{10,0}, {7,0}, {9,0}, {12,0}, {0,0}, {1,1}, {12,1}, {5,1},

{7,1}, {9,1}, {14,1}, {8,2}, {12,2}, {11,2}, {8,3}, {12,3},

{11,3}, {8,4}, {12,4}, {11,4}, {3,5}, {4,5}, {13,5}, {12,5},

{9,5}, {7,5}

};

for(int n=0;n<26;n++) {

AddAffectArc(InitialPlaces[AffectArcs[n][0]],

InitialActionList[AffectArcs[n][1]]);

}

int EnableArcs[11][2]={

{7,0}, {10,0}, {12,1}, {8,2}, {12,2}, {8,3}, {12,3}, {8,4},

112 A.2. THE SERVICE SAN

{12,4}, {4,5}, {13,5}

};

for(int n=0;n<11;n++) {

AddEnableArc(InitialPlaces[EnableArcs[n][0]],

InitialActionList[EnableArcs[n][1]]);

}

for(int n=0;n<6;n++) {

InitialActionList[n]->LinkVariables();

}

CustomInitialization();

}

void ServiceSAN::CustomInitialization() {

}

ServiceSAN::~ServiceSAN(){

for (int i = 0; i < NumStateVariables-NumReadOnlyPlaces; i++)

delete LocalStateVariables[i];

};

void ServiceSAN::assignPlacesToActivitiesInst(){

ProcReplicaFail.ServiceReplicaDist = (hvemhvahvor*) LocalStateVariables[7];

ProcReplicaFail.ProcNrFailedService = (profFailedAr*) LocalStateVariables[10];

ProcReplicaFail.LoadDist = (procLoad*) LocalStateVariables[9];

ProcReplicaFail.replicasUp = (replUp*) LocalStateVariables[12];

ProcReplicaFail.procFailed = (Place*) LocalStateVariables[0];

}

void ServiceSAN::assignPlacesToActivitiesTimed(){

replFail.replicasUp = (replUp*) LocalStateVariables[12];

replFail.serviceChosen = (Place*) LocalStateVariables[1];

replFail.systemFailure = (Place*) LocalStateVariables[5];

replFail.ServiceReplicaDist = (hvemhvahvor*) LocalStateVariables[7];

replFail.LoadDist = (procLoad*) LocalStateVariables[9];

replFail.ServiceParam = (hvemhvahvor*) LocalStateVariables[14];

updateView0.viewNew = (viewArray*) LocalStateVariables[8];

updateView0.replicasUp = (replUp*) LocalStateVariables[12];

updateView0.viewChangeNew = (toService*) LocalStateVariables[11];

updateView1.viewNew = (viewArray*) LocalStateVariables[8];

updateView1.replicasUp = (replUp*) LocalStateVariables[12];

updateView1.viewChangeNew = (toService*) LocalStateVariables[11];

updateView2.viewNew = (viewArray*) LocalStateVariables[8];

updateView2.replicasUp = (replUp*) LocalStateVariables[12];

updateView2.viewChangeNew = (toService*) LocalStateVariables[11];

replicaCreation.readPointer = (Place*) LocalStateVariables[4];

replicaCreation.Creation = (KO*) LocalStateVariables[13];

replicaCreation.repairChosen = (Place*) LocalStateVariables[3];

replicaCreation.replicasUp = (replUp*) LocalStateVariables[12];

replicaCreation.LoadDist = (procLoad*) LocalStateVariables[9];

replicaCreation.ServiceReplicaDist = (hvemhvahvor*) LocalStateVariables[7];

}

/***/

/* Activity Method Definitions */

/***/

/*======================ProcReplicaFailActivity========================*/

ServiceSAN::ProcReplicaFailActivity::ProcReplicaFailActivity(){

ActivityInitialize("ProcReplicaFail",5,Instantaneous , RaceEnabled, 5,2, false);

APPENDIX A. SOURCE CODE 113

}

void ServiceSAN::ProcReplicaFailActivity::LinkVariables(){

procFailed->Register(&procFailed_Mobius_Mark);

}

bool ServiceSAN::ProcReplicaFailActivity::Enabled(){

OldEnabled=NewEnabled;

NewEnabled=(((ServiceReplicaDist->Index(0)->Index(

ProcNrFailedService->Index(1)->Mark())->Mark()== 1 ||

ServiceReplicaDist->Index(1)->Index(

ProcNrFailedService->Index(1)->Mark())->Mark()== 1 ||

ServiceReplicaDist->Index(2)->Index(

ProcNrFailedService->Index(1)->Mark())->Mark()== 1) &&

ProcNrFailedService->Index(0)->Mark()==1));

return NewEnabled;

}

double ServiceSAN::ProcReplicaFailActivity::Weight(){

return 1;

}

bool ServiceSAN::ProcReplicaFailActivity::ReactivationPredicate(){

return false;

}

bool ServiceSAN::ProcReplicaFailActivity::ReactivationFunction(){

return false;

}

double ServiceSAN::ProcReplicaFailActivity::SampleDistribution(){

return 0;

}

double* ServiceSAN::ProcReplicaFailActivity::ReturnDistributionParameters(){

return NULL;

}

int ServiceSAN::ProcReplicaFailActivity::Rank(){

return 1;

}

BaseActionClass* ServiceSAN::ProcReplicaFailActivity::Fire(){

;

//React to processor failure

int procFailed = ProcNrFailedService->Index(1)->Mark();

int i;

//All services with replicas on failed processor must looses the replica

for(i=0; i<3; i++){

if(ServiceReplicaDist->Index(i)->Index(procFailed)->Mark()==1){

ServiceReplicaDist->Index(i)->Index(procFailed)->Mark()=0;

LoadDist->Index(procFailed)->Mark() = 0;

replicasUp->Index(i)->Mark()--;

}

}

ProcNrFailedService->Index(0)->Mark() = 0;

ProcNrFailedService->Index(1)->Mark() = 0;

114 A.2. THE SERVICE SAN

return this;

}

/*======================replFailActivity========================*/

ServiceSAN::replFailActivity::replFailActivity(){

TheDistributionParameters = new double[1];

ActivityInitialize("replFail",0,Exponential, RaceEnabled, 6,1, false);

}

ServiceSAN::replFailActivity::~replFailActivity(){

delete[] TheDistributionParameters;

}

void ServiceSAN::replFailActivity::LinkVariables(){

serviceChosen->Register(&serviceChosen_Mobius_Mark);

systemFailure->Register(&systemFailure_Mobius_Mark);

}

bool ServiceSAN::replFailActivity::Enabled(){

OldEnabled=NewEnabled;

NewEnabled=((replicasUp->Index(0)->Mark() > 0 || replicasUp->Index(1)->Mark() > 0 ||

replicasUp->Index(2)->Mark() > 0));

return NewEnabled;

}

double ServiceSAN::replFailActivity::Rate(){

return (replicasUp->Index(serviceChosen->Mark())->Mark()+1)*lambdaRepl;

return 1.0; // default rate if none is specified

}

double ServiceSAN::replFailActivity::Weight(){

return 1;

}

bool ServiceSAN::replFailActivity::ReactivationPredicate(){

return false;

}

bool ServiceSAN::replFailActivity::ReactivationFunction(){

return false;

}

double ServiceSAN::replFailActivity::SampleDistribution(){

return TheDistribution->Exponential((replicasUp->Index(

serviceChosen->Mark())->Mark()+1)*lambdaRepl);

}

double* ServiceSAN::replFailActivity::ReturnDistributionParameters(){

TheDistributionParameters[0] = Rate();

return TheDistributionParameters;

}

int ServiceSAN::replFailActivity::Rank(){

return 1;

}

APPENDIX A. SOURCE CODE 115

BaseActionClass* ServiceSAN::replFailActivity::Fire(){

int up[3];

int counter;

int n=0;

//Create array of services with working replicas

for(counter = 0; counter<3; counter ++){

if(replicasUp->Index(counter)->Mark() > 0){

up[n] = counter;

n++;

}

}

//Pick service to experience replica failure

int temp= (rand() % n);

serviceChosen->Mark() = up[temp];

#include <cstdlib>

//Create an array of all operative replicas.

int a;

int b;

int i;

int o = replicasUp->Index(serviceChosen->Mark())->Mark();

n=0;

int Up [o];

for(i=0; i<numProc; i++){

if(ServiceReplicaDist->Index(serviceChosen->Mark())->Index(i)->Mark()==1){

Up[n]=i;

n++;

}

}

//Pick one random replica that failes.

a = (rand() % n);

b = Up[a];

ServiceReplicaDist->Index(serviceChosen->Mark()) -> Index(b) -> Mark() = 0;

LoadDist->Index(b)->Mark() --;

replicasUp->Index(serviceChosen->Mark())->Mark() --;

//Capture system failure

if(replicasUp->Index(0)->Mark()> ServiceParam->Index(0)->Index(2)->Mark()){

systemFailure->Mark() = 1;

}

return this;

}

/*======================updateView0Activity========================*/

ServiceSAN::updateView0Activity::updateView0Activity(){

TheDistributionParameters = new double[1];

ActivityInitialize("updateView0",1,Exponential, RaceEnabled, 3,2, false);

}

ServiceSAN::updateView0Activity::~updateView0Activity(){

delete[] TheDistributionParameters;

}

116 A.2. THE SERVICE SAN

void ServiceSAN::updateView0Activity::LinkVariables(){

}

bool ServiceSAN::updateView0Activity::Enabled(){

OldEnabled=NewEnabled;

NewEnabled=((viewNew->Index(0)->Mark() != replicasUp->Index(0)->Mark()));

return NewEnabled;

}

double ServiceSAN::updateView0Activity::Rate(){

return (replicasUp->Index(0)->Mark()+1)*lambdaView;

return 1.0; // default rate if none is specified

}

double ServiceSAN::updateView0Activity::Weight(){

return 1;

}

bool ServiceSAN::updateView0Activity::ReactivationPredicate(){

return false;

}

bool ServiceSAN::updateView0Activity::ReactivationFunction(){

return false;

}

double ServiceSAN::updateView0Activity::SampleDistribution(){

return TheDistribution->Exponential((replicasUp->Index(0)->Mark()+1)*lambdaView);

}

double* ServiceSAN::updateView0Activity::ReturnDistributionParameters(){

TheDistributionParameters[0] = Rate();

return TheDistributionParameters;

}

int ServiceSAN::updateView0Activity::Rank(){

return 1;

}

BaseActionClass* ServiceSAN::updateView0Activity::Fire(){

;

viewNew->Index(0)->Mark() = replicasUp->Index(0)->Mark();

//Notify RM of view change

viewChangeNew->Index(0)->Mark() = 1;

viewChangeNew->Index(1)->Mark() = 0;

return this;

}

/*======================updateView1Activity========================*/

ServiceSAN::updateView1Activity::updateView1Activity(){

TheDistributionParameters = new double[1];

ActivityInitialize("updateView1",2,Exponential, RaceEnabled, 3,2, false);

}

APPENDIX A. SOURCE CODE 117

ServiceSAN::updateView1Activity::~updateView1Activity(){

delete[] TheDistributionParameters;

}

void ServiceSAN::updateView1Activity::LinkVariables(){

}

bool ServiceSAN::updateView1Activity::Enabled(){

OldEnabled=NewEnabled;

NewEnabled=((viewNew->Index(1)->Mark() != replicasUp->Index(1)->Mark()));

return NewEnabled;

}

double ServiceSAN::updateView1Activity::Rate(){

return (replicasUp->Index(1)->Mark()+1)*lambdaView;

return 1.0; // default rate if none is specified

}

double ServiceSAN::updateView1Activity::Weight(){

return 1;

}

bool ServiceSAN::updateView1Activity::ReactivationPredicate(){

return false;

}

bool ServiceSAN::updateView1Activity::ReactivationFunction(){

return false;

}

double ServiceSAN::updateView1Activity::SampleDistribution(){

return TheDistribution->Exponential((replicasUp->Index(1)->Mark()+1)*lambdaView);

}

double* ServiceSAN::updateView1Activity::ReturnDistributionParameters(){

TheDistributionParameters[0] = Rate();

return TheDistributionParameters;

}

int ServiceSAN::updateView1Activity::Rank(){

return 1;

}

BaseActionClass* ServiceSAN::updateView1Activity::Fire(){

;

viewNew->Index(1)->Mark() = replicasUp->Index(1)->Mark();

//Notify RM of view change

viewChangeNew->Index(0)->Mark() = 1;

viewChangeNew->Index(1)->Mark() = 1;

return this;

}

/*======================updateView2Activity========================*/

ServiceSAN::updateView2Activity::updateView2Activity(){

TheDistributionParameters = new double[1];

ActivityInitialize("updateView2",3,Exponential, RaceEnabled, 3,2, false);

}

118 A.2. THE SERVICE SAN

ServiceSAN::updateView2Activity::~updateView2Activity(){

delete[] TheDistributionParameters;

}

void ServiceSAN::updateView2Activity::LinkVariables(){

}

bool ServiceSAN::updateView2Activity::Enabled(){

OldEnabled=NewEnabled;

NewEnabled=((viewNew->Index(2)->Mark() != replicasUp->Index(2)->Mark()));

return NewEnabled;

}

double ServiceSAN::updateView2Activity::Rate(){

return (replicasUp->Index(2)->Mark()+1)*lambdaView;

return 1.0; // default rate if none is specified

}

double ServiceSAN::updateView2Activity::Weight(){

return 1;

}

bool ServiceSAN::updateView2Activity::ReactivationPredicate(){

return false;

}

bool ServiceSAN::updateView2Activity::ReactivationFunction(){

return false;

}

double ServiceSAN::updateView2Activity::SampleDistribution(){

return TheDistribution->Exponential((replicasUp->Index(2)->Mark()+1)*lambdaView);

}

double* ServiceSAN::updateView2Activity::ReturnDistributionParameters(){

TheDistributionParameters[0] = Rate();

return TheDistributionParameters;

}

int ServiceSAN::updateView2Activity::Rank(){

return 1;

}

BaseActionClass* ServiceSAN::updateView2Activity::Fire(){

;

viewNew->Index(2)->Mark() = replicasUp->Index(2)->Mark();

//Notify RM of view change

viewChangeNew->Index(0)->Mark() = 1;

viewChangeNew->Index(1)->Mark() = 2;

return this;

}

/*======================replicaCreationActivity========================*/

ServiceSAN::replicaCreationActivity::replicaCreationActivity(){

TheDistributionParameters = new double[1];

ActivityInitialize("replicaCreation",4,Exponential, RaceEnabled, 6,2, false);

APPENDIX A. SOURCE CODE 119

}

ServiceSAN::replicaCreationActivity::~replicaCreationActivity(){

delete[] TheDistributionParameters;

}

void ServiceSAN::replicaCreationActivity::LinkVariables(){

readPointer->Register(&readPointer_Mobius_Mark);

repairChosen->Register(&repairChosen_Mobius_Mark);

}

bool ServiceSAN::replicaCreationActivity::Enabled(){

OldEnabled=NewEnabled;

NewEnabled=((Creation->Index(readPointer->Mark())->Index(0)->Mark()>-1 &&

Creation->Index(readPointer->Mark())->Index(1)->Mark()>-1));

return NewEnabled;

}

double ServiceSAN::replicaCreationActivity::Rate(){

return muAut;

return 1.0; // default rate if none is specified

}

double ServiceSAN::replicaCreationActivity::Weight(){

return 1;

}

bool ServiceSAN::replicaCreationActivity::ReactivationPredicate(){

return false;

}

bool ServiceSAN::replicaCreationActivity::ReactivationFunction(){

return false;

}

double ServiceSAN::replicaCreationActivity::SampleDistribution(){

return TheDistribution->Exponential(muAut);

}

double* ServiceSAN::replicaCreationActivity::ReturnDistributionParameters(){

TheDistributionParameters[0] = Rate();

return TheDistributionParameters;

}

int ServiceSAN::replicaCreationActivity::Rank(){

return 1;

}

BaseActionClass* ServiceSAN::replicaCreationActivity::Fire(){

;

repairChosen->Mark() = Creation->Index(readPointer->Mark())->Index(0)->Mark();

replicasUp->Index(repairChosen->Mark())->Mark() ++;

int choise = Creation->Index(readPointer->Mark())->Index(1)->Mark();

LoadDist->Index(choise)->Mark()++;

//Create a replica of the chosen service on chosen processor.

120 A.3. THE RM SAN

ServiceReplicaDist->Index(repairChosen->Mark())->Index(choise)->Mark()=1;

Creation->Index(readPointer->Mark())->Index(0)->Mark() = -1;

Creation->Index(readPointer->Mark())->Index(1)->Mark() = -1;

readPointer->Mark() = ((readPointer->Mark()+1)%(numServices));

return this;

}

A.3 The RM SAN

// This C++ file was created by SanEditor

#include "Atomic/RM/RMSAN.h"

#include <stdlib.h>

#include <iostream.h>

#include <math.h>

/***

RMSAN Constructor

**/

RMSAN::RMSAN(){

Activity* InitialActionList[6]={

&reactToProcFailed, //0

&reactToProcFixed, //1

&reactioToViewChange, //2

&Instantaneous_Activity1, //3

&RMfail, //4

&RMrepair // 5

};

BaseGroupClass* InitialGroupList[6]={

(BaseGroupClass*) &(RMfail),

(BaseGroupClass*) &(RMrepair),

(BaseGroupClass*) &(reactToProcFailed),

(BaseGroupClass*) &(reactToProcFixed),

(BaseGroupClass*) &(reactioToViewChange),

(BaseGroupClass*) &(Instantaneous_Activity1)

};

rmUp = new Place("rmUp" ,3);

procFailed = new Place("procFailed" ,0);

APPENDIX A. SOURCE CODE 121

viewServiceChosen = new Place("viewServiceChosen" ,0);

ServicesInQueue = new Place("ServicesInQueue" ,0);

pointer = new Place("pointer" ,0);

queuePointer = new Place("queuePointer" ,0);

readQueuePointer = new Place("readQueuePointer" ,0);

systemFailed = new Place("systemFailed" ,0);

systemFailure = new Place("systemFailure" ,0);

int temp_RManagRMvalue = 0;

RManag = new RM("RManag",temp_RManagRMvalue);

hvor_state temp_ServiceReplicaDisthvemhvahvorvalue = 0;

ServiceReplicaDist = new hvemhvahvor("ServiceReplicaDist",

temp_ServiceReplicaDisthvemhvahvorvalue);

card_state temp_ServiceParamservvalue = {0,0,0};

ServiceParam = new serv("ServiceParam",temp_ServiceParamservvalue);

int temp_LoadDistprocLoadvalue = 0;

LoadDist = new procLoad("LoadDist",temp_LoadDistprocLoadvalue);

int temp_Processorsprocvalue = 1;

Processors = new proc("Processors",temp_Processorsprocvalue);

int temp_viewNewviewArrayvalue = 3;

viewNew = new viewArray("viewNew",temp_viewNewviewArrayvalue);

toService_state temp_viewChangeNewtoService = {0,0};

viewChangeNew = new toService("viewChangeNew",temp_viewChangeNewtoService);

profFailedAr_state temp_ProcNrFailedprofFailedAr = {0,0};

ProcNrFailed = new profFailedAr("ProcNrFailed",temp_ProcNrFailedprofFailedAr);

int temp_ServiceReplicaQueueSRQvalue = 10000;

ServiceReplicaQueue = new SRQ("ServiceReplicaQueue",temp_ServiceReplicaQueueSRQvalue);

toService_state temp_ProcFixedtoService = {0,0};

ProcFixed = new toService("ProcFixed",temp_ProcFixedtoService);

int temp_replicasUpreplUpvalue = 0;

replicasUp = new replUp("replicasUp",temp_replicasUpreplUpvalue);

NY_state temp_CreationKOvalue = {-1,0};

Creation = new KO("Creation",temp_CreationKOvalue);

BaseStateVariableClass* InitialPlaces[21]={

rmUp, // 0

procFailed, // 1

viewServiceChosen, // 2

ServicesInQueue, // 3

pointer, // 4

queuePointer, // 5

readQueuePointer, // 6

systemFailed, // 7

systemFailure, // 8

RManag, // 9

ServiceReplicaDist, // 10

ServiceParam, // 11

LoadDist, // 12

Processors, // 13

viewNew, // 14

viewChangeNew, // 15

ProcNrFailed, // 16

ServiceReplicaQueue, // 17

ProcFixed, // 18

replicasUp, // 19

Creation // 20

};

BaseStateVariableClass* InitialROPlaces[0]={

};

initializeSANModelNow("RM", 21, InitialPlaces,

0, InitialROPlaces,

6, InitialActionList, 6, InitialGroupList);

122 A.3. THE RM SAN

assignPlacesToActivitiesInst();

assignPlacesToActivitiesTimed();

int AffectArcs[32][2]={

{16,0}, {9,0}, {12,0}, {1,0}, {5,1}, {6,1}, {3,1}, {18,1},

{17,1}, {20,1}, {4,2}, {3,2}, {5,2}, {15,2}, {20,2}, {13,2},

{10,2}, {12,2}, {19,2}, {11,2}, {17,2}, {8,3}, {7,3}, {0,4},

{8,4}, {9,4}, {12,4}, {1,5}, {0,5}, {13,5}, {9,5}, {12,5}

};

for(int n=0;n<32;n++) {

AddAffectArc(InitialPlaces[AffectArcs[n][0]],

InitialActionList[AffectArcs[n][1]]);

}

int EnableArcs[8][2]={

{9,0}, {16,0}, {18,1}, {15,2}, {0,2}, {8,3}, {0,4}, {0,5}

};

for(int n=0;n<8;n++) {

AddEnableArc(InitialPlaces[EnableArcs[n][0]],

InitialActionList[EnableArcs[n][1]]);

}

for(int n=0;n<6;n++) {

InitialActionList[n]->LinkVariables();

}

CustomInitialization();

}

void RMSAN::CustomInitialization() {

RManag->Index(0)->Mark() = 1;

RManag->Index(1)->Mark() = 1;

RManag->Index(2)->Mark() = 1;

RManag->Index(3)->Mark() = 0;

if (numServices == 3){

ServiceParam->Index(0)->Index(0)->Mark() = 3;

ServiceParam->Index(0)->Index(1)->Mark() = 3;

ServiceParam->Index(0)->Index(2)->Mark() = 1;

ServiceParam->Index(1)->Index(0)->Mark() = 2;

ServiceParam->Index(1)->Index(1)->Mark() = 2;

ServiceParam->Index(1)->Index(2)->Mark() = 1;

ServiceParam->Index(2)->Index(0)->Mark() = 3;

ServiceParam->Index(2)->Index(1)->Mark() = 3;

ServiceParam->Index(2)->Index(2)->Mark() = 1;

int i;

for(i=0; i<numServices; i++){

replicasUp->Index(i)->Mark()= ServiceParam->Index(i)->Index(1)->Mark();

}

int j;

for(j=0; j<numServices; j++){

viewNew->Index(j)->Mark() = ServiceParam->Index(j)->Index(0)->Mark();

}

ServiceReplicaDist->Index(0)->Index(0)->Mark() = 1;

ServiceReplicaDist->Index(0)->Index(1)->Mark() = 1;

ServiceReplicaDist->Index(0)->Index(2)->Mark() = 1;

ServiceReplicaDist->Index(0)->Index(3)->Mark() = 0;

ServiceReplicaDist->Index(1)->Index(0)->Mark() = 0;

APPENDIX A. SOURCE CODE 123

ServiceReplicaDist->Index(1)->Index(1)->Mark() = 1;

ServiceReplicaDist->Index(1)->Index(2)->Mark() = 1;

ServiceReplicaDist->Index(1)->Index(3)->Mark() = 0;

ServiceReplicaDist->Index(2)->Index(0)->Mark() = 1;

ServiceReplicaDist->Index(2)->Index(1)->Mark() = 0;

ServiceReplicaDist->Index(2)->Index(2)->Mark() = 1;

ServiceReplicaDist->Index(2)->Index(3)->Mark() = 1;

int k;

for(k=0; k<numProc; k++){

LoadDist->Index(k)->Mark() = (ServiceReplicaDist->Index(0)->Index(k)->Mark()

+ServiceReplicaDist->Index(1)->Index(k)->Mark()

+ServiceReplicaDist->Index(2)->Index(k)->Mark()

+RManag->Index(k)->Mark());

}

}else if (numServices == 4){

ServiceParam->Index(0)->Index(0)->Mark() = 3;

ServiceParam->Index(0)->Index(1)->Mark() = 3;

ServiceParam->Index(0)->Index(2)->Mark() = 1;

ServiceParam->Index(1)->Index(0)->Mark() = 2;

ServiceParam->Index(1)->Index(1)->Mark() = 2;

ServiceParam->Index(1)->Index(2)->Mark() = 1;

ServiceParam->Index(2)->Index(0)->Mark() = 3;

ServiceParam->Index(2)->Index(1)->Mark() = 3;

ServiceParam->Index(2)->Index(2)->Mark() = 1;

ServiceParam->Index(2)->Index(0)->Mark() = 4;

ServiceParam->Index(2)->Index(1)->Mark() = 4;

ServiceParam->Index(2)->Index(2)->Mark() = 2;

int i;

for(i=0; i<numServices; i++){

replicasUp->Index(i)->Mark()= ServiceParam->Index(i)->Index(1)->Mark();

}

int j;

for(j=0; j<numServices; j++){

viewNew->Index(j)->Mark() = ServiceParam->Index(j)->Index(0)->Mark();

}

ServiceReplicaDist->Index(0)->Index(0)->Mark() = 1;

ServiceReplicaDist->Index(0)->Index(1)->Mark() = 1;

ServiceReplicaDist->Index(0)->Index(2)->Mark() = 1;

ServiceReplicaDist->Index(0)->Index(3)->Mark() = 0;

ServiceReplicaDist->Index(1)->Index(0)->Mark() = 0;

ServiceReplicaDist->Index(1)->Index(1)->Mark() = 1;

ServiceReplicaDist->Index(1)->Index(2)->Mark() = 1;

ServiceReplicaDist->Index(1)->Index(3)->Mark() = 0;

ServiceReplicaDist->Index(2)->Index(0)->Mark() = 1;

ServiceReplicaDist->Index(2)->Index(1)->Mark() = 0;

ServiceReplicaDist->Index(2)->Index(2)->Mark() = 1;

ServiceReplicaDist->Index(2)->Index(3)->Mark() = 1;

ServiceReplicaDist->Index(2)->Index(0)->Mark() = 1;

ServiceReplicaDist->Index(2)->Index(1)->Mark() = 1;

ServiceReplicaDist->Index(2)->Index(2)->Mark() = 1;

ServiceReplicaDist->Index(2)->Index(3)->Mark() = 1;

124 A.3. THE RM SAN

int k;

for(k=0; k<numProc; k++){

LoadDist->Index(k)->Mark() = (ServiceReplicaDist->Index(0)->Index(k)->Mark()

+ServiceReplicaDist->Index(1)->Index(k)->Mark()

+ServiceReplicaDist->Index(2)->Index(k)->Mark()

+RManag->Index(k)->Mark());

}

}

}

RMSAN::~RMSAN(){

for (int i = 0; i < NumStateVariables-NumReadOnlyPlaces; i++)

delete LocalStateVariables[i];

};

void RMSAN::assignPlacesToActivitiesInst(){

reactToProcFailed.RManag = (RM*) LocalStateVariables[9];

reactToProcFailed.ProcNrFailed = (profFailedAr*) LocalStateVariables[16];

reactToProcFailed.LoadDist = (procLoad*) LocalStateVariables[12];

reactToProcFailed.procFailed = (Place*) LocalStateVariables[1];

reactToProcFixed.ProcFixed = (toService*) LocalStateVariables[18];

reactToProcFixed.queuePointer = (Place*) LocalStateVariables[5];

reactToProcFixed.readQueuePointer = (Place*) LocalStateVariables[6];

reactToProcFixed.ServicesInQueue = (Place*) LocalStateVariables[3];

reactToProcFixed.ServiceReplicaQueue = (SRQ*) LocalStateVariables[17];

reactToProcFixed.Creation = (KO*) LocalStateVariables[20];

reactioToViewChange.viewChangeNew = (toService*) LocalStateVariables[15];

reactioToViewChange.rmUp = (Place*) LocalStateVariables[0];

reactioToViewChange.pointer = (Place*) LocalStateVariables[4];

reactioToViewChange.ServicesInQueue = (Place*) LocalStateVariables[3];

reactioToViewChange.queuePointer = (Place*) LocalStateVariables[5];

reactioToViewChange.Creation = (KO*) LocalStateVariables[20];

reactioToViewChange.Processors = (proc*) LocalStateVariables[13];

reactioToViewChange.ServiceReplicaDist = (hvemhvahvor*) LocalStateVariables[10];

reactioToViewChange.LoadDist = (procLoad*) LocalStateVariables[12];

reactioToViewChange.replicasUp = (replUp*) LocalStateVariables[19];

reactioToViewChange.ServiceParam = (serv*) LocalStateVariables[11];

reactioToViewChange.ServiceReplicaQueue = (SRQ*) LocalStateVariables[17];

Instantaneous_Activity1.systemFailure = (Place*) LocalStateVariables[8];

Instantaneous_Activity1.systemFailed = (Place*) LocalStateVariables[7];

}

void RMSAN::assignPlacesToActivitiesTimed(){

RMfail.rmUp = (Place*) LocalStateVariables[0];

RMfail.systemFailure = (Place*) LocalStateVariables[8];

RMfail.RManag = (RM*) LocalStateVariables[9];

RMfail.LoadDist = (procLoad*) LocalStateVariables[12];

RMrepair.rmUp = (Place*) LocalStateVariables[0];

RMrepair.procFailed = (Place*) LocalStateVariables[1];

RMrepair.Processors = (proc*) LocalStateVariables[13];

RMrepair.RManag = (RM*) LocalStateVariables[9];

RMrepair.LoadDist = (procLoad*) LocalStateVariables[12];

}

/***/

/* Activity Method Definitions */

/***/

/*======================reactToProcFailedActivity========================*/

APPENDIX A. SOURCE CODE 125

RMSAN::reactToProcFailedActivity::reactToProcFailedActivity(){

ActivityInitialize("reactToProcFailed",2,Instantaneous , RaceEnabled, 4,2, false);

}

void RMSAN::reactToProcFailedActivity::LinkVariables(){

procFailed->Register(&procFailed_Mobius_Mark);

}

bool RMSAN::reactToProcFailedActivity::Enabled(){

OldEnabled=NewEnabled;

NewEnabled=((RManag->Index(ProcNrFailed->Index(1)->Mark())->Mark()== 1 &&

ProcNrFailed->Index(0)->Mark()==1));

return NewEnabled;

}

double RMSAN::reactToProcFailedActivity::Weight(){

return 1;

}

bool RMSAN::reactToProcFailedActivity::ReactivationPredicate(){

return false;

}

bool RMSAN::reactToProcFailedActivity::ReactivationFunction(){

return false;

}

double RMSAN::reactToProcFailedActivity::SampleDistribution(){

return 0;

}

double* RMSAN::reactToProcFailedActivity::ReturnDistributionParameters(){

return NULL;

}

int RMSAN::reactToProcFailedActivity::Rank(){

return 1;

}

BaseActionClass* RMSAN::reactToProcFailedActivity::Fire(){

;

//React to processor failure

if(ProcNrFailed->Index(0)->Mark()==1){

int procFailed = ProcNrFailed->Index(1)->Mark();

int i;

RManag->Index(procFailed)->Mark() = 0;

LoadDist->Index(procFailed)->Mark() = 0;

ProcNrFailed ->Index(0)->Mark() = 0;

ProcNrFailed ->Index(1)->Mark() = 0;

}

return this;

}

/*======================reactToProcFixedActivity========================*/

RMSAN::reactToProcFixedActivity::reactToProcFixedActivity(){

126 A.3. THE RM SAN

ActivityInitialize("reactToProcFixed",3,Instantaneous , RaceEnabled, 6,1, false);

}

void RMSAN::reactToProcFixedActivity::LinkVariables(){

queuePointer->Register(&queuePointer_Mobius_Mark);

readQueuePointer->Register(&readQueuePointer_Mobius_Mark);

ServicesInQueue->Register(&ServicesInQueue_Mobius_Mark);

}

bool RMSAN::reactToProcFixedActivity::Enabled(){

OldEnabled=NewEnabled;

NewEnabled=((ProcFixed->Index(0)->Mark() == 1));

return NewEnabled;

}

double RMSAN::reactToProcFixedActivity::Weight(){

return 1;

}

bool RMSAN::reactToProcFixedActivity::ReactivationPredicate(){

return false;

}

bool RMSAN::reactToProcFixedActivity::ReactivationFunction(){

return false;

}

double RMSAN::reactToProcFixedActivity::SampleDistribution(){

return 0;

}

double* RMSAN::reactToProcFixedActivity::ReturnDistributionParameters(){

return NULL;

}

int RMSAN::reactToProcFixedActivity::Rank(){

return 1;

}

BaseActionClass* RMSAN::reactToProcFixedActivity::Fire(){

;

//check queue to see if it contains any services. FCFS.

int i;

int fixed = ProcFixed->Index(1)->Mark();

if(ServiceReplicaQueue->Index(queuePointer->Mark())->Mark()<numServices){

int ServiceCreation = ServiceReplicaQueue->Index(0)->Mark();

Creation->Index(ServiceCreation)->Index(0)->Mark() = 1;

Creation->Index(ServiceCreation)->Index(1)->Mark() = fixed;

for(i=0; i<numServices; i++){

if(ServiceReplicaQueue->Index(i)->Mark()<numServices){

ServiceReplicaQueue->Index(i)->Mark() = ServiceReplicaQueue->Index(i+1)->Mark();

if(ServiceReplicaQueue->Index(i+2)->Mark()>numServices){

ServiceReplicaQueue->Index(i+1)->Mark() = 11000;

}

}

}

APPENDIX A. SOURCE CODE 127

readQueuePointer->Mark() = ((readQueuePointer->Mark()+1)%numServices);

ServicesInQueue->Mark() --;

}

//Load sharing functionality; not yet implemented

//int j;

//for(j=0; j<numProc; j++){

//if(LoadDist->Index(fixed)->Mark() < numServices){

// if(LoadDist->Index(j)->Mark() > ((numServices+1)/2)){

//tjenesten som velges må ha flere enn en replica!

//

//endre servicereplicaDist for valgt tjeneste!

// int possible[numServices];

// int n=0;

// int k=0;

// for(k=0; k<numServices; k++){

// if(ServiceReplicaDist->Index(k)->Index(j)->Mark()==1 &&

replicasUp->Index(k)->Mark()>1){

// possible[n] = k;

// n++;

// }

// }

// if(n>0){

//

//Velger en tilfeldig av de mulige tjenestene

// int choise = possible[(rand() % n)];

// LoadDist->Index(j)->Mark() --;

// ServiceReplicaDist->Index(choise)->Index(j)->Mark() = 0;

// replicasUp->Index(choise)->Mark() --;

// Creation->Index(pointer->Mark())->Index(0)->Mark() = fixed;

// Creation->Index(pointer->Mark())->Index(0)->Mark() = choise;

// pointer->Mark() = ((pointer->Mark()+1)%numServices);

// }

// }

//}

//}

ProcFixed->Index(0)->Mark() = 0;

ProcFixed->Index(1)->Mark() = 0;

return this;

}

/*======================reactioToViewChangeActivity========================*/

RMSAN::reactioToViewChangeActivity::reactioToViewChangeActivity(){

ActivityInitialize("reactioToViewChange",4,Instantaneous , RaceEnabled, 11,2, false);

}

void RMSAN::reactioToViewChangeActivity::LinkVariables(){

rmUp->Register(&rmUp_Mobius_Mark);

pointer->Register(&pointer_Mobius_Mark);

ServicesInQueue->Register(&ServicesInQueue_Mobius_Mark);

queuePointer->Register(&queuePointer_Mobius_Mark);

128 A.3. THE RM SAN

}

bool RMSAN::reactioToViewChangeActivity::Enabled(){

OldEnabled=NewEnabled;

NewEnabled=((viewChangeNew->Index(0)->Mark()==1 && rmUp ->Mark() > 0));

return NewEnabled;

}

double RMSAN::reactioToViewChangeActivity::Weight(){

return 1;

}

bool RMSAN::reactioToViewChangeActivity::ReactivationPredicate(){

return false;

}

bool RMSAN::reactioToViewChangeActivity::ReactivationFunction(){

return false;

}

double RMSAN::reactioToViewChangeActivity::SampleDistribution(){

return 0;

}

double* RMSAN::reactioToViewChangeActivity::ReturnDistributionParameters(){

return NULL;

}

int RMSAN::reactioToViewChangeActivity::Rank(){

return 1;

}

BaseActionClass* RMSAN::reactioToViewChangeActivity::Fire(){

;

int ytre;

int n= 0;

//finner hvilken tjeneste som har endret view

int servChosen = viewChangeNew->Index(1)->Mark();

int procChosen;

int load;

int possible[numProc];

int counter;

//Add creation to creationQueue if not allready in it.

int k;

int inQueue=0;

for(k=0; k<numServices; k++){

if(servChosen == Creation->Index(k)->Index(0)->Mark()){

inQueue = 1;

APPENDIX A. SOURCE CODE 129

}

}

//Add service to creation queue, if it is not already in it.

if(inQueue==0){

//Array of processors the replica can be created on

for(counter = 0; counter < numProc; counter++){

if((Processors->Index(counter)->Mark() == 1) &&

(ServiceReplicaDist->Index(servChosen)->Index(counter)->Mark()==0 &&

LoadDist->Index(counter)->Mark() < Cap)){

if(replicasUp->Index(servChosen)->Mark() <

ServiceParam->Index(servChosen)->Index(1)->Mark()){

possible[n]= counter;

n++;

}

}

}

if(n>0){

//Find the processor with the lightest load

int j;

int temp = 100000;

for(j=0; j<n; j++){

if(LoadDist->Index(possible[j])->Mark()<temp){

temp = LoadDist->Index(possible[j])->Mark();

procChosen = possible[j];

}

}

Creation->Index(pointer->Mark())->Index(0)->Mark() = servChosen;

Creation->Index(pointer->Mark())->Index(1)->Mark() = procChosen;

pointer->Mark()= ((pointer->Mark()+1)% numServices);

}else{

//Add service to queue if it is not allready in it

int x;

int test;

for(x=0; x<ServicesInQueue->Mark(); x++){

if(servChosen == ServiceReplicaQueue->Index(

queuePointer->Mark())->Mark()){

test= 1;

}

}

if(test==0){

ServiceReplicaQueue->Index(queuePointer->Mark())->Mark() =

servChosen;

ServicesInQueue->Mark()++;

queuePointer->Mark() = ((queuePointer->Mark()+1)%numServices);

}

}

}

viewChangeNew->Index(0)->Mark()=0;

viewChangeNew->Index(1)->Mark()=0;

return this;

}

/*======================Instantaneous_Activity1Activity========================*/

130 A.3. THE RM SAN

RMSAN::Instantaneous_Activity1Activity::Instantaneous_Activity1Activity(){

ActivityInitialize("Instantaneous_Activity1",5,Instantaneous , RaceEnabled, 2,1,

false);

}

void RMSAN::Instantaneous_Activity1Activity::LinkVariables(){

systemFailure->Register(&systemFailure_Mobius_Mark);

systemFailed->Register(&systemFailed_Mobius_Mark);

}

bool RMSAN::Instantaneous_Activity1Activity::Enabled(){

OldEnabled=NewEnabled;

NewEnabled=((systemFailure->Mark() == 1));

return NewEnabled;

}

double RMSAN::Instantaneous_Activity1Activity::Weight(){

return 1;

}

bool RMSAN::Instantaneous_Activity1Activity::ReactivationPredicate(){

return false;

}

bool RMSAN::Instantaneous_Activity1Activity::ReactivationFunction(){

return false;

}

double RMSAN::Instantaneous_Activity1Activity::SampleDistribution(){

return 0;

}

double* RMSAN::Instantaneous_Activity1Activity::ReturnDistributionParameters(){

return NULL;

}

int RMSAN::Instantaneous_Activity1Activity::Rank(){

return 1;

}

BaseActionClass* RMSAN::Instantaneous_Activity1Activity::Fire(){

;

systemFailure->Mark() = 0;

systemFailed->Mark() ++;

return this;

}

/*======================RMfailActivity========================*/

RMSAN::RMfailActivity::RMfailActivity(){

TheDistributionParameters = new double[1];

ActivityInitialize("RMfail",0,Exponential, RaceEnabled, 4,1, false);

}

RMSAN::RMfailActivity::~RMfailActivity(){

delete[] TheDistributionParameters;

}

void RMSAN::RMfailActivity::LinkVariables(){

rmUp->Register(&rmUp_Mobius_Mark);

APPENDIX A. SOURCE CODE 131

systemFailure->Register(&systemFailure_Mobius_Mark);

}

bool RMSAN::RMfailActivity::Enabled(){

OldEnabled=NewEnabled;

NewEnabled=((rmUp->Mark()>0));

return NewEnabled;

}

double RMSAN::RMfailActivity::Rate(){

return (rmUp->Mark()+1)*lambdaProc;

return 1.0; // default rate if none is specified

}

double RMSAN::RMfailActivity::Weight(){

return 1;

}

bool RMSAN::RMfailActivity::ReactivationPredicate(){

return false;

}

bool RMSAN::RMfailActivity::ReactivationFunction(){

return false;

}

double RMSAN::RMfailActivity::SampleDistribution(){

return TheDistribution->Exponential((rmUp->Mark()+1)*lambdaProc);

}

double* RMSAN::RMfailActivity::ReturnDistributionParameters(){

TheDistributionParameters[0] = Rate();

return TheDistributionParameters;

}

int RMSAN::RMfailActivity::Rank(){

return 1;

}

BaseActionClass* RMSAN::RMfailActivity::Fire(){

;

#include <cstdlib>

//Create an array of all operative rmReplicas.

int a;

int b;

int i;

int n=0;

int o = rmUp->Mark();

int Up [o];

for(i=0; i<numProc; i++){

if(RManag->Index(i)->Mark()==1){

Up[n]=i;

n++;

}

}

if(n>o){

132 A.3. THE RM SAN

//Pick one random replica that failes.

a = (rand() % o);

b = Up[a];

RManag -> Index(b) -> Mark() = 0;

LoadDist->Index(b)->Mark() --;

}

rmUp->Mark() --;

//Capture system failure

if(rmUp->Mark() <= 1){

systemFailure->Mark() = 1;

}

return this;

}

/*======================RMrepairActivity========================*/

RMSAN::RMrepairActivity::RMrepairActivity(){

TheDistributionParameters = new double[1];

ActivityInitialize("RMrepair",1,Exponential, RaceEnabled, 5,1, false);

}

RMSAN::RMrepairActivity::~RMrepairActivity(){

delete[] TheDistributionParameters;

}

void RMSAN::RMrepairActivity::LinkVariables(){

rmUp->Register(&rmUp_Mobius_Mark);

procFailed->Register(&procFailed_Mobius_Mark);

}

bool RMSAN::RMrepairActivity::Enabled(){

OldEnabled=NewEnabled;

NewEnabled=((rmUp->Mark()<initRM));

return NewEnabled;

}

double RMSAN::RMrepairActivity::Rate(){

return muAut;

return 1.0; // default rate if none is specified

}

double RMSAN::RMrepairActivity::Weight(){

return 1;

}

bool RMSAN::RMrepairActivity::ReactivationPredicate(){

return false;

}

bool RMSAN::RMrepairActivity::ReactivationFunction(){

return false;

}

double RMSAN::RMrepairActivity::SampleDistribution(){

return TheDistribution->Exponential(muAut);

}

APPENDIX A. SOURCE CODE 133

double* RMSAN::RMrepairActivity::ReturnDistributionParameters(){

TheDistributionParameters[0] = Rate();

return TheDistributionParameters;

}

int RMSAN::RMrepairActivity::Rank(){

return 1;

}

BaseActionClass* RMSAN::RMrepairActivity::Fire(){

;

//Create an array with the size of the number of processors a

new replica can be created on

//Add the matches (the processor) to the array (processor up, no replica)

//Take a random processor

//Create replica on that processor

int i;

int possibleMatch = (numProc-procFailed->Mark()) - (rmUp->Mark());

int Match [possibleMatch];

int counter=0;

for(i=0; i<numProc; i++){

if(Processors->Index(i)->Mark()==1 && RManag->Index(i)->Mark()==0 &&

LoadDist->Index(i)->Mark()<Cap){

Match[counter]=i;

counter++;

}

}

int random;

random = (rand() % counter);

int rmToBeRepaired = Match[random];

RManag->Index(rmToBeRepaired)->Mark()= 1;

LoadDist->Index(rmToBeRepaired)->Mark() ++;

rmUp->Mark()++;

return this;

}

A.4 The composed SAN

#include "Composed/compNew/compNewRJ.h"

char * compNewRJ__SharedNames[] = {"Creation", "LoadDist", "ProcFixed",

"ProcNrFailed", "ProcNrFailedService", "Processors", "ServiceReplicaDist",

"procFailed", "replicasUp", "systemFailure", "viewChangeNew", "viewNew", "viewServiceChosen"};

compNewRJ::compNewRJ():Join("System", 3, 13,compNewRJ__SharedNames) {

HW = new HWSAN();

ModelArray[0] = (BaseModelClass*) HW;

ModelArray[0]->DefineName("HW");

Service = new ServiceSAN();

134 A.4. THE COMPOSED SAN

ModelArray[1] = (BaseModelClass*) Service;

ModelArray[1]->DefineName("Service");

RM = new RMSAN();

ModelArray[2] = (BaseModelClass*) RM;

ModelArray[2]->DefineName("RM");

SetupActions();

if (AllChildrenEmpty())

NumSharedStateVariables = 0;

else {

//************** State sharing info **************

//Shared variable 0

Creation = new KO("Creation");

addSharedPtr(Creation, "Creation");

if (Service->NumStateVariables > 0) {

Creation->ShareWith(Service->Creation);

addSharingInfo(Service->Creation, Creation);

}

if (RM->NumStateVariables > 0) {

Creation->ShareWith(RM->Creation);

addSharingInfo(RM->Creation, Creation);

}

//Shared variable 1

LoadDist = new procLoad("LoadDist");

addSharedPtr(LoadDist, "LoadDist");

if (Service->NumStateVariables > 0) {

LoadDist->ShareWith(Service->LoadDist);

addSharingInfo(Service->LoadDist, LoadDist);

}

if (RM->NumStateVariables > 0) {

LoadDist->ShareWith(RM->LoadDist);

addSharingInfo(RM->LoadDist, LoadDist);

}

//Shared variable 2

ProcFixed = new toService("ProcFixed");

addSharedPtr(ProcFixed, "ProcFixed");

if (HW->NumStateVariables > 0) {

ProcFixed->ShareWith(HW->ProcFixed);

addSharingInfo(HW->ProcFixed, ProcFixed);

}

if (RM->NumStateVariables > 0) {

ProcFixed->ShareWith(RM->ProcFixed);

addSharingInfo(RM->ProcFixed, ProcFixed);

}

//Shared variable 3

ProcNrFailed = new profFailedAr("ProcNrFailed");

addSharedPtr(ProcNrFailed, "ProcNrFailed");

if (HW->NumStateVariables > 0) {

ProcNrFailed->ShareWith(HW->ProcNrFailed);

addSharingInfo(HW->ProcNrFailed, ProcNrFailed);

}

if (RM->NumStateVariables > 0) {

ProcNrFailed->ShareWith(RM->ProcNrFailed);

addSharingInfo(RM->ProcNrFailed, ProcNrFailed);

}

//Shared variable 4

ProcNrFailedService = new profFailedAr("ProcNrFailedService");

addSharedPtr(ProcNrFailedService, "ProcNrFailedService");

APPENDIX A. SOURCE CODE 135

if (HW->NumStateVariables > 0) {

ProcNrFailedService->ShareWith(HW->ProcNrFailedService);

addSharingInfo(HW->ProcNrFailedService, ProcNrFailedService);

}

if (Service->NumStateVariables > 0) {

ProcNrFailedService->ShareWith(Service->ProcNrFailedService);

addSharingInfo(Service->ProcNrFailedService, ProcNrFailedService);

}

//Shared variable 5

Processors = new proc("Processors");

addSharedPtr(Processors, "Processors");

if (HW->NumStateVariables > 0) {

Processors->ShareWith(HW->Processors);

addSharingInfo(HW->Processors, Processors);

}

if (Service->NumStateVariables > 0) {

Processors->ShareWith(Service->Processors);

addSharingInfo(Service->Processors, Processors);

}

if (RM->NumStateVariables > 0) {

Processors->ShareWith(RM->Processors);

addSharingInfo(RM->Processors, Processors);

}

//Shared variable 6

ServiceReplicaDist = new hvemhvahvor("ServiceReplicaDist");

addSharedPtr(ServiceReplicaDist, "ServiceReplicaDist");

if (Service->NumStateVariables > 0) {

ServiceReplicaDist->ShareWith(Service->ServiceReplicaDist);

addSharingInfo(Service->ServiceReplicaDist, ServiceReplicaDist);

}

if (RM->NumStateVariables > 0) {

ServiceReplicaDist->ShareWith(RM->ServiceReplicaDist);

addSharingInfo(RM->ServiceReplicaDist, ServiceReplicaDist);

}

//Shared variable 7

procFailed = new Place("procFailed");

addSharedPtr(procFailed, "procFailed");

if (HW->NumStateVariables > 0) {

procFailed->ShareWith(HW->procFailed);

addSharingInfo(HW->procFailed, procFailed);

}

if (Service->NumStateVariables > 0) {

procFailed->ShareWith(Service->procFailed);

addSharingInfo(Service->procFailed, procFailed);

}

if (RM->NumStateVariables > 0) {

procFailed->ShareWith(RM->procFailed);

addSharingInfo(RM->procFailed, procFailed);

}

//Shared variable 8

replicasUp = new replUp("replicasUp");

addSharedPtr(replicasUp, "replicasUp");

if (Service->NumStateVariables > 0) {

replicasUp->ShareWith(Service->replicasUp);

addSharingInfo(Service->replicasUp, replicasUp);

}

if (RM->NumStateVariables > 0) {

replicasUp->ShareWith(RM->replicasUp);

136 A.4. THE COMPOSED SAN

addSharingInfo(RM->replicasUp, replicasUp);

}

//Shared variable 9

systemFailure = new Place("systemFailure");

addSharedPtr(systemFailure, "systemFailure");

if (HW->NumStateVariables > 0) {

systemFailure->ShareWith(HW->systemFailure);

addSharingInfo(HW->systemFailure, systemFailure);

}

if (Service->NumStateVariables > 0) {

systemFailure->ShareWith(Service->systemFailure);

addSharingInfo(Service->systemFailure, systemFailure);

}

if (RM->NumStateVariables > 0) {

systemFailure->ShareWith(RM->systemFailure);

addSharingInfo(RM->systemFailure, systemFailure);

}

//Shared variable 10

viewChangeNew = new toService("viewChangeNew");

addSharedPtr(viewChangeNew, "viewChangeNew");

if (Service->NumStateVariables > 0) {

viewChangeNew->ShareWith(Service->viewChangeNew);

addSharingInfo(Service->viewChangeNew, viewChangeNew);

}

if (RM->NumStateVariables > 0) {

viewChangeNew->ShareWith(RM->viewChangeNew);

addSharingInfo(RM->viewChangeNew, viewChangeNew);

}

//Shared variable 11

viewNew = new viewArray("viewNew");

addSharedPtr(viewNew, "viewNew");

if (Service->NumStateVariables > 0) {

viewNew->ShareWith(Service->viewNew);

addSharingInfo(Service->viewNew, viewNew);

}

if (RM->NumStateVariables > 0) {

viewNew->ShareWith(RM->viewNew);

addSharingInfo(RM->viewNew, viewNew);

}

//Shared variable 12

viewServiceChosen = new Place("viewServiceChosen");

addSharedPtr(viewServiceChosen, "viewServiceChosen");

if (Service->NumStateVariables > 0) {

viewServiceChosen->ShareWith(Service->viewServiceChosen);

addSharingInfo(Service->viewServiceChosen, viewServiceChosen);

}

if (RM->NumStateVariables > 0) {

viewServiceChosen->ShareWith(RM->viewServiceChosen);

addSharingInfo(RM->viewServiceChosen, viewServiceChosen);

}

}

Setup();

}

compNewRJ::~compNewRJ() {

if (!AllChildrenEmpty()) {

APPENDIX A. SOURCE CODE 137

delete Creation;

delete LoadDist;

delete ProcFixed;

delete ProcNrFailed;

delete ProcNrFailedService;

delete Processors;

delete ServiceReplicaDist;

delete procFailed;

delete replicasUp;

delete systemFailure;

delete viewChangeNew;

delete viewNew;

delete viewServiceChosen;

}

delete HW;

delete Service;

delete RM;

}

138 A.4. THE COMPOSED SAN

Appendix B

Transition matrix

1

5

1

2

4.0000000000e-002

0

2

1

5.0000000000e-001

3

3.0000000000e-002

0

3

2

5.0000000000e-001

4

2.0000000000e-002

0

4

3

5.0000000000e-001

5

1.0000000000e-002

0

5

4

139

140 B.1. INTERPRETING THE TRANSITION MATRIX

5.0000000000e-001

0

B.1 Interpreting the transition matrix

The �rst two rows indicate the number of states. The matrix is given as a
sparse matrix with a zero separating the outgoing states (rows of the matrix).
The matrix represented above corresponds to the matrix in equation 9.1 on
page 79.

For each state the successor states are listed, followed by the rate of the
event.

Due to the size, the transition matrices for the other submodels and composed
models are left out of the appendix.

Appendix C

Simulation results

The simulation results of the simulations run for veri�cation in chapter 9
is attached in Appendix C.1 and Appendix C.2 contains the results of the
simulations run in chapter 10.

C.1 Veri�cation simulations

This section provides the complete result �les generated during the simula-
tions in Chapter 9.

Simpli�ed system HW SAN results

_______________________________Simulator Results______________________________

Date: Fri May 09 11:12:42 CEST 2008

____________________________Simulator Configuration___________________________

Simulation Type: Steady State

Project Name: ForsteVersjonVirker

Study Name: test

Random Number Generator: Lagged Fibonacci

Random Number Seed: 31415

Maximum Batches: 100000

Minimum Batches: 10000

Data Reporting Frequency: 1000

Display Update Frequency: 1000

141

142 C.1. VERIFICATION SIMULATIONS

BuildType: Optimize

Runname: Results

Output File: Results_output.txt

Results File: Results_results

Jackknife Variance: On

Processors Per Experiment: 1

Maximize Processor Usage: false

Processors Selected for Simulation:

labbetull03 x86

_________________________________Experiment 1_________________________________

Start Time: Fri May 09 11:12:41 CEST 2008

Finish Time: Fri May 09 11:12:42 CEST 2008

Elapsed Running Time: 0.671

Total CPU Time: 0.281

Batches Completed: 10000

Experiment Name: Experiment 1

Global Variable Settings:

double lambdaProc 0.01

double muMan 0.2

int numFailed 0

int numProc 4

_________________________________Mean Results_________________________________

Name Time Mean Confidence

Interval

availability 1,0000000000E00 +/- 5,0586753828E-10

_______________________________Variance Results_______________________________

_______________________________Interval Results_______________________________

_____________________________Distribution Results_____________________________

<END_MOBIUS_RESULTS>

APPENDIX C. SIMULATION RESULTS 143

Final HW SAN results

_______________________________Simulator Results______________________________

Date: Fri May 09 11:10:32 CEST 2008

____________________________Simulator Configuration___________________________

Simulation Type: Steady State

Project Name: MS

Study Name: HWstudy

Random Number Generator: Lagged Fibonacci

Random Number Seed: 31415

Maximum Batches: 10000

Minimum Batches: 20

Data Reporting Frequency: 1000

Display Update Frequency: 1000

BuildType: Optimize

Runname: Results

Output File: Results_output.txt

Results File: Results_results

Jackknife Variance: On

Processors Per Experiment: 1

Maximize Processor Usage: false

Processors Selected for Simulation:

labbetull03 x86

_________________________________Experiment 1_________________________________

Start Time: Fri May 09 11:10:31 CEST 2008

Finish Time: Fri May 09 11:10:32 CEST 2008

Elapsed Running Time: 0.797

Total CPU Time: 0.031

Batches Completed: 1000

Experiment Name: Experiment 1

Global Variable Settings:

double lambdaProc 0.01

double muMan 0.2

int numFailed 0

int numProc 4

int numServices 3

_________________________________Mean Results_________________________________

Name Time Mean Confidence

144 C.1. VERIFICATION SIMULATIONS

Interval

availHW 9,9950366924E-01 +/- 3,7653408127E-04

_______________________________Variance Results_______________________________

_______________________________Interval Results_______________________________

_____________________________Distribution Results_____________________________

<END_MOBIUS_RESULTS>

Simpli�ed system results

_______________________________Simulator Results______________________________

Date: Fri May 09 11:14:49 CEST 2008

____________________________Simulator Configuration___________________________

Simulation Type: Steady State

Project Name: ForsteVersjonVirker

Study Name: composedAvail

Random Number Generator: Lagged Fibonacci

Random Number Seed: 31415

Maximum Batches: 10000

Minimum Batches: 20

Data Reporting Frequency: 1000

Display Update Frequency: 1000

BuildType: Normal

Runname: Results

Output File: Results_output.txt

Results File: Results_results

Jackknife Variance: On

Processors Per Experiment: 1

Maximize Processor Usage: false

Processors Selected for Simulation:

labbetull03 x86

_________________________________Experiment 1_________________________________

Start Time: Fri May 09 11:14:40 CEST 2008

APPENDIX C. SIMULATION RESULTS 145

Finish Time: Fri May 09 11:14:49 CEST 2008

Elapsed Running Time: 8.547

Total CPU Time: 7.234

Batches Completed: 10000

Experiment Name: Experiment 1

Global Variable Settings:

int initRepl 3

double lambdaProc 0.0010

double lambdaRepl 0.0020

double lambdaView 0.9

double muAut 2.0

double muMan 0.2

int numFailed 0

int numProc 4

int replReq 1

_________________________________Mean Results_________________________________

Name Time Mean Confidence

Interval

availab 1,0000000000E00 +/- 2,3807178826E-09

ServiceAvail 1,0000000000E00 +/- 5,0586753828E-10

_______________________________Variance Results_______________________________

_______________________________Interval Results_______________________________

_____________________________Distribution Results_____________________________

<END_MOBIUS_RESULTS>

Final system results

_______________________________Simulator Results______________________________

Date: Fri May 09 11:07:42 CEST 2008

____________________________Simulator Configuration___________________________

Simulation Type: Steady State

146 C.1. VERIFICATION SIMULATIONS

Project Name: MS

Study Name: System

Random Number Generator: Lagged Fibonacci

Random Number Seed: 31415

Maximum Batches: 100000

Minimum Batches: 20

Data Reporting Frequency: 1000

Display Update Frequency: 1000

BuildType: Normal

Runname: Results

Output File: Results_output.txt

Results File: Results_results

Jackknife Variance: On

Processors Per Experiment: 1

Maximize Processor Usage: false

Processors Selected for Simulation:

labbetull03 x86

_________________________________Experiment 1_________________________________

Start Time: Fri May 09 11:07:35 CEST 2008

Finish Time: Fri May 09 11:07:42 CEST 2008

Elapsed Running Time: 6.531

Total CPU Time: 5.14

Batches Completed: 1000

Experiment Name: Experiment 1

Global Variable Settings:

short Cap 4

int initRM 3

int initRepl 3

double lambdaProc 0.0010

double lambdaRepl 0.0020

double lambdaView 0.9

double muAut 2.0

double muMan 0.2

int numFailed 0

int numProc 4

int numServices 3

short repChos 0

int replReq 1

_________________________________Mean Results_________________________________

Name Time Mean Confidence

APPENDIX C. SIMULATION RESULTS 147

Interval

systemAvail 9,9911384121E-01 +/- 1,2638266619E-03

serviceAvail 9,9997384464E-01 +/- 5,1264511701E-05

HWavail 1,0000000000E00 +/- 0,0000000000E00

_______________________________Variance Results_______________________________

_______________________________Interval Results_______________________________

_____________________________Distribution Results_____________________________

<END_MOBIUS_RESULTS>

C.2 Example scenarios

This section provides the complete result �les generated during the simula-
tions in Chapter 10.

Experiment 1 results

_______________________________Simulator Results______________________________

Date: Mon May 26 14:22:07 CEST 2008

____________________________Simulator Configuration___________________________

Simulation Type: Steady State

Project Name: MS

Study Name: FinalExp1

Random Number Generator: Lagged Fibonacci

Random Number Seed: 395

Maximum Batches: 10000

Minimum Batches: 20

Data Reporting Frequency: 1

Display Update Frequency: 1

BuildType: Optimize

Runname: Results

Output File: Results_output.txt

148 C.2. EXAMPLE SCENARIOS

Results File: Results_results

Jackknife Variance: On

Processors Per Experiment: 1

Maximize Processor Usage: false

Processors Selected for Simulation:

labbetull03 x86

_________________________________Experiment 1_________________________________

Start Time: Mon May 26 14:22:06 CEST 2008

Finish Time: Mon May 26 14:22:07 CEST 2008

Elapsed Running Time: 0.453

Total CPU Time: 0.359

Batches Completed: 670

Experiment Name: Experiment 1

Global Variable Settings:

short Cap 4

int initRM 3

int initRepl 3

double lambdaProc 1.0E-4

double lambdaRepl 2.0E-4

double lambdaView 1.0

double muAut 12.0

double muMan 0.5

int numFailed 0

int numProc 4

int numServices 3

short repChos 0

int replReq 1

_________________________________Mean Results_________________________________

Name Time Mean Confidence

Interval

systemAvail 9,9999915776E-01 +/- 1,9590566490E-06

MTBF 5,5970149254E-04 +/- 5,5939506295E-05

_______________________________Variance Results_______________________________

_______________________________Interval Results_______________________________

APPENDIX C. SIMULATION RESULTS 149

_____________________________Distribution Results_____________________________

<END_MOBIUS_RESULTS>

Experiment 2 results

_______________________________Simulator Results______________________________

Date: Mon May 26 14:23:39 CEST 2008

____________________________Simulator Configuration___________________________

Simulation Type: Steady State

Project Name: MS

Study Name: FinalExp2

Random Number Generator: Lagged Fibonacci

Random Number Seed: 395

Maximum Batches: 10000

Minimum Batches: 20

Data Reporting Frequency: 1

Display Update Frequency: 1

BuildType: Optimize

Runname: Results

Output File: Results_output.txt

Results File: Results_results

Jackknife Variance: On

Processors Per Experiment: 1

Maximize Processor Usage: false

Processors Selected for Simulation:

labbetull03 x86

_________________________________Experiment 2_________________________________

Start Time: Mon May 26 14:23:38 CEST 2008

Finish Time: Mon May 26 14:23:39 CEST 2008

Elapsed Running Time: 0.843

Total CPU Time: 0.437

Batches Completed: 766

Experiment Name: Experiment 2

Global Variable Settings:

short Cap 4

int initRM 3

int initRepl 3

double lambdaProc 1.0E-4

150 C.2. EXAMPLE SCENARIOS

double lambdaRepl 2.0E-4

double lambdaView 1.0

double muAut 6.0

double muMan 0.1

int numFailed 0

int numProc 4

int numServices 3

short repChos 0

int replReq 1

_________________________________Mean Results_________________________________

Name Time Mean Confidence

Interval

systemAvail 9,9999815674E-01 +/- 4,2874149635E-06

MTBF 5,3263707572E-04 +/- 5,3259418897E-05

_______________________________Variance Results_______________________________

_______________________________Interval Results_______________________________

_____________________________Distribution Results_____________________________

<END_MOBIUS_RESULTS>

Experiment 3 results

_______________________________Simulator Results______________________________

Date: Mon May 26 14:31:41 CEST 2008

____________________________Simulator Configuration___________________________

Simulation Type: Steady State

Project Name: MS

Study Name: FinalExp3

Random Number Generator: Lagged Fibonacci

Random Number Seed: 395

Maximum Batches: 10000

Minimum Batches: 20

APPENDIX C. SIMULATION RESULTS 151

Data Reporting Frequency: 1

Display Update Frequency: 1

BuildType: Optimize

Runname: Results

Output File: Results_output.txt

Results File: Results_results

Jackknife Variance: On

Processors Per Experiment: 1

Maximize Processor Usage: false

Processors Selected for Simulation:

labbetull03 x86

_________________________________Experiment 3_________________________________

Start Time: Mon May 26 14:31:40 CEST 2008

Finish Time: Mon May 26 14:31:41 CEST 2008

Elapsed Running Time: 1.469

Total CPU Time: 0.141

Batches Completed: 200

Experiment Name: Experiment 3

Global Variable Settings:

short Cap 4

int initRM 3

int initRepl 3

double lambdaProc 0.0010

double lambdaRepl 0.0020

double lambdaView 1.0

double muAut 12.0

double muMan 0.5

int numFailed 0

int numProc 4

int numServices 3

short repChos 0

int replReq 1

_________________________________Mean Results_________________________________

Name Time Mean Confidence Interval

systemAvail 9,9999805405E-01 +/- 4,9193649033E-06

MTBF 4,9850000000E-03 +/- 3,2091320419E-04

_______________________________Variance Results_______________________________

152 C.2. EXAMPLE SCENARIOS

_______________________________Interval Results_______________________________

_____________________________Distribution Results_____________________________

<END_MOBIUS_RESULTS>

Experiment 4 results

_______________________________Simulator Results______________________________

Date: Mon May 26 14:33:08 CEST 2008

____________________________Simulator Configuration___________________________

Simulation Type: Steady State

Project Name: MS

Study Name: FinalExp4

Random Number Generator: Lagged Fibonacci

Random Number Seed: 395

Maximum Batches: 10000

Minimum Batches: 20

Data Reporting Frequency: 1

Display Update Frequency: 1

BuildType: Optimize

Runname: Results

Output File: Results_output.txt

Results File: Results_results

Jackknife Variance: On

Processors Per Experiment: 1

Maximize Processor Usage: false

Processors Selected for Simulation:

labbetull03 x86

_________________________________Experiment 4_________________________________

Start Time: Mon May 26 14:33:06 CEST 2008

Finish Time: Mon May 26 14:33:06 CEST 2008

Elapsed Running Time: 0.469

Total CPU Time: 0.063

Batches Completed: 110

Experiment Name: Experiment 4

Global Variable Settings:

APPENDIX C. SIMULATION RESULTS 153

short Cap 4

int initRM 3

int initRepl 3

double lambdaProc 0.0010

double lambdaRepl 0.0020

double lambdaView 1.0

double muAut 6.0

double muMan 0.1

int numFailed 0

int numProc 4

int numServices 3

short repChos 0

int replReq 1

_________________________________Mean Results_________________________________

Name Time Mean Confidence

Interval

systemAvail 9,9999093500E-01 +/- 2,4638658198E-05

MTBF 5,6545454545E-03 +/- 4,6293308908E-04

_______________________________Variance Results_______________________________

_______________________________Interval Results_______________________________

_____________________________Distribution Results_____________________________

<END_MOBIUS_RESULTS>

	Title Page
	Problem Description
	masteroppgave.pdf

