
August 2007
Peter Herrmann, ITEM
Dinko Hadzic, FFI

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Efficient Web Services on Mobile
Devices

Lars Johnsrud

Problem Description
Web Services are becoming a de facto technology for implementing applications based on a
Service Oriented Architecture (SOA), and achieving interoperability between different systems.
Today, Web Services are usually realized on computer systems where processing resources and
network band width are not a limitation.

It is also desirable to allow mobile devices to access the growing Web Services infrastructure.
Although mobile devices are getting more advanced and powerful, the large information overhead
of Web Services is a significant challenge and limitation in the context of mobile devices.

The thesis should identify and evaluate techniques that can improve the performance of Web
Services on mobile phones, and discuss the potential advantages and disadvantages of such
techniques. Binary XML, currently being standardized by W3C, and general data compression
seem to be promising methods to reduce the processing, memory and network band width
requirements, thus allowing more efficient realizations of Web Services on mobile devices.

A prototype application should also be developed, and it may be tested both in an emulated
environment, and on real mobile device. The prototype case is a company’s internal phonebook,
made available to employees through a Web Service mobile application.

Assignment given: 25. January 2007
Supervisor: Peter Herrmann, ITEM

- i -

Abstract

Efficient solutions for Web Services on mobile devices would allow truly global, platform
independent and interoperable information access, anywhere and at any time. While Web
Services are continuously gaining ground, they are commonly reserved for use on personal
computers and high-capacity servers, even though mobile devices are continuously becoming
more advanced in terms of processing resources and wireless communication capabilities.

This thesis identifies several challenges of accessing Web Services from mobile devices, and
evaluates and discusses methods for creating more efficient solutions. Some of the challenges
are the limited bandwidth and high communication latency. Reducing the size of XML
information transferred and optimizing the communication protocol stack are identified as
possible solutions to overcome these challenges. Additionally, as the communication cost
correlates with the amount of data transferred, more efficient Web Services solutions are
clearly beneficial for the end-user.

The approaches described to reduce the size of XML files are traditional compression,
alternative representation of the files, and binary XML. Binary XML is a compact
representation of information that keeps the desirable structure of XML intact. The Efficient
XML Interchange format currently being standardized by W3C is studied in more detail.
Furthermore, optimizing the protocol stack has also been evaluated.

A prototype Web Service system has been developed and tested in both simulated
environments and in real surroundings using GPRS, EDGE and UMTS network connections.
The results from the measurements show that both compression and the use of binary XML
reduce the size of the information significantly and thereby the cost. Time needed to transfer
the information is also reduced, and this effect is most apparent when the original files are
large. Binary XML may however be the desirable format since it enables direct interaction
with the information and keeps the memory footprint small. To reduce the time needed to
transfer the information further, removing the HTTP protocol and optimizing the transport
protocol, seems to minimize the effect of the latency.

- ii -

- iii -

Preface

This master thesis is written at the Department of Telematics at the Norwegian University of
Science and Technology (NTNU) in the spring semester of 2007. It was carried out at the
Norwegian Defence Research Establishment (FFI).

I would like to use this opportunity to thank my academic supervisor at the Department of
Telematics, Professor Peter Herrmann. Special thanks go to my supervisor at FFI, Dinko
Hadzic, for his guidance and suggestions during the work with this thesis

Furthermore, I would like to thank Anne Kibsgaard for her proofreading effort.

Hamar, August 2007

Lars Johnsrud

- iv -

Table of Content

Abstract .. i

Preface ..iii

Table of Content .. iv

List of Figures .. vi

List of Tables...vii

List of Abbreviations...viii

1 Introduction .. 1
1.1 Background and Motivation... 1
1.2 Thesis Scope and Limitations .. 2
1.3 Related Work.. 2
1.4 Outline.. 3

2 Web Services on Mobile Devices... 4
2.1 Web Services and the Big Picture .. 4
2.2 Mobile Devices .. 4
2.2.1 The Java ME Platform.. 7

2.3 Focus of this Thesis.. 8

3 Methods for Optimizing Web Services... 10
3.1 Possible Approaches .. 10
3.1.1 Compression Vs. Binary XML... 10
3.1.2 Stack Optimization... 11

3.2 Compression... 12
3.2.1 Deflate Compression .. 12
3.2.2 GZIP and ZLIB .. 13
3.2.3 XMill .. 13

3.3 Binary XML ... 14
3.3.1 Efficient XML Interchange Format.. 15
3.3.2 Efficient XML.. 15
3.3.3 Abstract Syntax Notation One.. 15
3.3.4 Fast Infoset ... 16

3.4 Final Words about Compression and Binary XML ... 16
3.5 The Web Service Protocol Stack.. 16
3.5.1 IP and the Layers Below .. 17
3.5.2 The Application Layer ... 18
3.5.3 The Transport Layer... 18
3.5.4 Remarks on Stack Optimization... 19

- v -

4 Architecture and Design of the Prototype Service .. 20
4.1 The chosen Optimization Method .. 20
4.2 Architecture .. 21
4.3 Basic Functionality of the Service ... 22
4.4 Prototype Service Goals ... 22
4.5 The return format ... 24
4.6 Main design .. 26
4.6.1 Server Design ... 26
4.6.2 Client Design.. 27
4.6.3 WSDL file for the Address Book Web Service ... 29

5 Implementation... 31
5.1 Hardware and Software .. 31
5.1.1 The server platform .. 31
5.1.2 The client platform ... 32

5.2 The test data ... 32
5.3 The Address Book Web Service .. 33
5.4 The Address Book Web Service Client.. 37
5.4.1 The Web Service Communication on the Client.. 37
5.4.2 The Functionality of the Client .. 39
5.4.3 Processing of the Information .. 42

5.5 Problems during Implementation ... 43

6 Results and Discussion ... 45
6.1 Measurements... 45
6.1.1 File Sizes .. 45
6.1.2 Data Transfer Prices ... 46
6.1.3 Round Trip Times .. 46

6.2 The test data ... 48
6.3 File Sizes .. 49
6.4 Prices .. 52
6.5 Round Trip Times results ... 54
6.5.1 UMTS results ... 54
6.5.2 EDGE results.. 56
6.5.3 GPRS results .. 58

6.6 Final Words on the Results .. 60

7 Conclusion... 62
7.1 Future Work ... 63

Bibliography ... 64

Appendix A WSDL File for the Phonebook Web Service.. 69

Appendix B Source Code for the Phonebook Web Service ... 72

Appendix C Test Data Used for Measurements.. 73

- vi -

List of Figures

Figure 2.1 Illustration of how Java ME hides the underlying OS and device........................... 6
Figure 2.2 Java ME technology stack [14].. 7
Figure 2.3 The link characteristics related to a mobile device that access a Web Service. 8

Figure 3.1 XML file which represent address information. .. 11
Figure 3.2 Illustration of how compression works. ... 12
Figure 3.3 The protocol stack most commonly used for Web Services.................................. 17

Figure 4.1 The architecture of the phonebook Web Service. .. 21
Figure 4.2 Usage pattern of the AddressBook Web Service ... 22
Figure 4.3 XML Schema, which defines the information returned by the AddressBook Web
Service. ... 25
Figure 4.4 XML address information for the AddressBook Web Service............................... 25
Figure 4.5 Usage pattern of the AddressBook Web Service.. 26
Figure 4.6 Class diagram for the AddressBook Web Service.. 27
Figure 4.7 Basic class diagram for the AddressBook Web Service client............................... 28
Figure 4.8 Class diagram for the AddressBook Web Service client.. 29
Figure 4.9 The essential parts of the AddressBook WSDL file... 30

Figure 5.1 Code in AddressBook1Skeleton considering the DataRepository. 34
Figure 5.2 The method skeleton for the Web Service operations in AddressBook1Skeleton.. 34
Figure 5.3 The method getNumberEfxAsString in AddressBook1Skeleton............................ 35
Figure 5.4 Code for reading in the test data to the DataRepository. 36
Figure 5.5 Method to retrieve information from the DataRepository. 36
Figure 5.6 The run method in WsThread, used to access the AddressBook Web Service from
the mobile device ... 38
Figure 5.7 Emulated phone displaying the opening screen of the AddressBook Web Service
client. .. 40
Figure 5.8 Emulated AddressBook client showing the result screen....................................... 41
Figure 5.9 Code fo the XML parser in SonyMidlet. .. 42
Figure 5.10 EFX parser code in SonyMidlet. .. 43

Figure 6.1 Setup for measurements of RTT in simulated environment. 47
Figure 6.2 Setup for measurements of RTT in real environment.. 47
Figure 6.3 The Address format that forms the basis for the measurements 48
Figure 6.4 File sizes of the test data represented in different formats..................................... 50
Figure 6.5 The percentage of the original XML file size when different techniques for
reducing the file size are applied.. 51
Figure 6.6 Price to transfer File 1, the smallest file in the test set, in different places in the
world... 52
Figure 6.7 Prices of different formats based on the test set named File 14. 53
Figure 6.8 Results of UTMS simulation. .. 55
Figure 6.9 UMTS times from measurements in real networks. .. 56
Figure 6.10 Results for the EDGE simulation... 57
Figure 6.11 Results from the GPRS simulation. ... 58
Figure 6.12 Average times of the real GPRS network. ... 59

- vii -

List of Tables

Table 2.1 Comparison of Mobile device and PC Characteristics.. 5
Table 2.2 Listing of mobile device OS’s [9]. .. 5

Table 4.1 Addressbook Web Service request and response messages 23

Table 5.1 Update methods in SonyMidlet.. 40

Table 6.1 Prices for transmitting data in mobile networks in Norway [1]. 46
Table 6.2 Network parameters used for simulation of RTT [16]. ... 46
Table 6.3 The test data used in the measurements... 49

- viii -

List of Abbreviations

Abbreviation Meaning

ADSL Asymmetric Digital Subscriber Line

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

CLDC Connected Limited Device Configuration

CPU Central Processing Unit

EDGE Enhanced Data for GSM Evolution

EFX Efficient XML

EXI Efficient XML Interchange

FFI Norwegian Defence Research Establishment

GB Gigabyte

GPRS General Packet Radio Service

HSDPA High-Speed Downlink Packet Access

HTTP Hypertext Transfer Protocol

IP Internet Protocol

ITU International Telecommunication Union

ITU-T International Telecommunication Union - Standardization

Java ME Java Micro Edition

JDK Java Development Kit

JSR Java Specification Request

KB Kilobyte

LAN Local Area Network

MB Megabyte

MIDP Mobile Information Device Profile

MIME Multipurpose Internet Mail Extensions

NIST National Institute of Standards and Technology

NOK Norwegian Krone

NTNU Norwegian University of Science and Technology

OMTP Open Mobile Terminal Platform

OS Operating System

PC Personal Computer

RFC Request for Comment

RTT Round Trip Time

SDK Software Development Kit

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

W3C World Wide Web Consortium

WIFI Wireless Fidelity

WSDL Web Services Description Language

WTP Web Tools Platform

- ix -

XML eXtensible Markup Language

XSD XML Schema Definition

 Efficient Web Services on Mobile Devices

Introduction

- 1 -

1 Introduction

1.1 Background and Motivation

Today, people expect to have access to information anywhere and at anytime. Web Services
have proven themselves to be a good solution for achieving this when using computers
connected to high bandwidth networks. By developing applications based on Serviced
Oriented Architecture (SOA) as Web Services, one may achieve the desirable goals of
interoperability, platform independency and reuse of services.

Mobile devices have the potential of enabling global, wireless access to services from small,
handheld, battery powered devices. Even though mobile devices are becoming more powerful
almost every day, they still are subject to some major challenges. Bandwidth and cost are two
areas that are subject to limitations when adopting Web Services for mobile devices. Another
thing to be considered is processing resources, in terms of Central Processing Unit (CPU),
memory resources and battery consumption.

A challenge with bandwidth is the lack of it in many situations. Even though mobile devices
may be connected to Universal Mobile Telecommunications System (UMTS) or even
Wireless Fidelity (WIFI) networks in populated areas, they may encounter network
connection of Enhanced Data for GSM Evolution (EDGE) or General Packet Radio Service
(GPRS) in less populated areas. This may again lead to a significant loss in performance of
many services. Even though the services are still functioning as intended, the time needed to
transfer the data may lead to a bad user experience, and hence the services may be considered
to be useless. One solution to this problem might be to reduce the amount of data being
transferred, and by this reducing the time used to transfer the data needed by the service. By
sending and receiving less data, lower battery consumption may also be achieved.

Even if the Web Services are working properly, there are other reasons for reducing the
amount of data being transferred, namely the cost. Since the cot of transferring data is
determined by the amount of data being transferred, the network operators would prefer if
their costumers transfer large data amounts, while the costumers would prefer services that
transfer as little data as possible. This picture gets even clearer when the abroad costs are
taken into consideration. Currently (spring 2007), the Norwegian telecommunication
company Telenor is charging 43,75 Norwegian Krone(r) (NOK) for each Megabyte (MB)
transferred in Western European countries [1]. NOK is the currency in Norway, and one Euro
is approximately eight NOK. These rates are even higher in many countries outside Europe.

With this in mind, the motivation for developing solutions that lead to less bandwidth
consumption should be clear. If the amount of data that has to be transferred can be reduced, it
would make Web Services a more suitable technology for bringing services to the mobile
user.

 Efficient Web Services on Mobile Devices

Introduction

- 2 -

1.2 Thesis Scope and Limitations

The focus of this thesis is on eXtensible Markup Language (XML) Web Services and
methods for improving their usability on mobile devices. Mobile devices usually connect to
Web Services over wireless links. These wireless links lead to higher response times due to
limited bandwidth and higher latency compared to wired links. In addition, connection over
these links is in many cases charged based on the amount of data transferred. This thesis
identifies and studies methods that reduce the amount of data being transferred via wireless
links between a Web Service and a Web Service client on a mobile device. Doing this may
lead to an improved response time due to less impact of the limited bandwidth. Secondly, the
cost will be reduced on links that are charged on a per byte basis. Stack optimization is also
evaluated as it also may yield better response time, and also possible cost savings.

A prototype phonebook service will be developed to get a real-life experience of the effect of
reducing the amount of data being transferred. Based on this prototype several measurements
will be performed both in a simulated environment and on wireless links used by real-life
mobile devices. The obtained results will be discussed and evaluated both in terms of
response time and reduced cost. Stack optimization is not explored in the prototype and
measurements.

Although this thesis focuses less on processing resources on a mobile device, and thus the
related considerations, these are issues that have to be taken into account when developing
services targeted at these devices. The writer is well aware of the importance of these areas,
but the time constraint gives no room to look thoroughly into these areas.

1.3 Related Work

Accessing Web Services from mobile devices are continuously getting more attention. At the
same time the problems related to the wireless links used to achieve this, are becoming more
evident. In [2] the performance of Simple Object Access Protocol (SOAP) over wireless links
are studied, one of the main facts it identifies, is that protocols underlying SOAP can be
improved significantly in conjunction with wireless links. The same observation is also done
in [3] where the effect of sending SOAP messages over User Datagram Protocol (UDP) is
exploited. It reports that this scheme gives an increase in throughput compared to the more
commonly used SOAP over Hypertext Transfer Protocol (HTTP).

Another extensive work was performed by World Wide Web Consortium (W3C) in their job
with standardizing a Binary XML format. In [4] they present measurements related to
processing efficiency and other properties for a set of formats they evaluated as a basis for a
Binary XML format. In this thesis the possible benefits of such a format is studied in terms of
reduced response time of Web Services on mobile devices.

 Efficient Web Services on Mobile Devices

Introduction

- 3 -

1.4 Outline

CHAPTER TWO describes several challenges related to Web Services on mobile devices. It
also presents the technology that enables access to Web Services from mobile devices.

CHAPTER THREE focuses on two different ways to optimize Web Services for mobile
devices; reducing the size of XML information and protocol stack optimizations.

CHAPTER FOUR presents the design of the prototype Phonebook service. In this chapter the
framework for the measurements of performance of compact XML representations is also
presented.

CHAPTER FIVE gives a brief description of the most important parts of the implementation.

CHAPTER SIX presents the measurements and results related to reducing the size of XML
for use with Web Services on mobile devices. It also discusses these results.

CHAPTER EIGHT gives a conclusion of the study, and outlines possible future work.

 Efficient Web Services on Mobile Devices

Web Services on Mobile Devices

- 4 -

2 Web Services on Mobile Devices

2.1 Web Services and the Big Picture

SOA is an architectural concept that recommends and advises the use of loosely coupled
services. SOA is more than just services, SOA is about business functionality and how the
information technology could be integrated into this [5]. The Web Services technology is
commonly used to realize SOA.

Web Services work well today in the way that they form a base for services that are
interoperable, platform independent and have clearly defined service interfaces. In [6] it is
stated like this:

“Based on XML standards, Web Services can be developed as loosely coupled
application components using any programming language, any protocol or any
platform.”

By using Web Services instead of legacy systems, a business can be more adaptable. New
services can be created by combining old ones, and inefficient services can be rewritten as
long as the service interface is kept unchanged. In big monolithic legacy systems it is often
easier to upgrade hardware than to make the software perform better. However, in today’s
world this is not the way to do it. One has to make the business service logic, easy to use and
easy to access from a vide variation of devices. In addition to this, the adaptation has to be
quick to perform.

Since the service interfaces are clearly defined and the communication is performed over
standardized protocols, the way that a service should be accessed is thus defined. The result of
this is that the code needed to access a service from other platforms or a mobile device can be
automatically generated based on the interface and protocol. This again leads to a quick and
easy way to combine services into new services and to access services from all kinds of
devices.

There are, however, reasons to believe that the designers of Web Services did not predict that
mobile devices that were initially meant to be a peripheral voice call devices, has now become
a small computer that is expected to do almost anything anywhere [7]. The fact that Web
Services and mobile devices that initially were meant to exist apart from each other, now have
to work together has led to great challenges for application developers. Now we will have a
closer look at these challenges.

2.2 Mobile Devices

Even though the mobile devices have become very advanced, they are still very limited
compared to ordinary computers. To get a clear picture of this it can be useful to compare the

 Efficient Web Services on Mobile Devices

Web Services on Mobile Devices

- 5 -

mobile device with a spaceship. They can both go to almost any place, but their performance
at these locations is restrained by their initial capabilities. Moreover, there is no way for the
spaceship to add more fuel as it is impossible for the mobile device to get more battery power
at a location, and one can not add another person at a remote planet to perform more tasks, in
the same way as one can not add more processing power to the mobile device.

So let us now take a look at some of the challenges related to mobile devices. Compared to
personal computers, the two most obvious limitations are the size of the screen and the
keyboard. Both of these two limitation post challenges on the user interface of an application.
The mobile devices also have less available processing power, so computations will take
longer time than on a Personal Computer (PC). These devices also depend on wireless data
connections, which lead to both reduced bandwidth for data transfer and higher latency, in
addition to the transfer of data via such links is charged based on the amount of data
transferred. Finally, the mobile devices are battery powered, which naturally constraints the
operational time of the devices.

Table 2.1 shows the characteristics of a mobile device compared to a typical PC. One of the
things that should be noticed is that the CPU in the Nokia N95 is 32 bit while the one in the
computer is 64 bit. In addition, it should be noted that Nokia N95 is one of the most advanced
mobile phones on the market today. In other words, the PC will have at least 10 times faster
CPU, 20 times more memory and 100 times more storage than the currently most advanced
mobile phone. Even though the mobile devices are becoming very advanced they are still
quite limited compared to a PC.

Table 2.1 Comparison of Mobile device and PC Characteristics.

Model NOKIA N95 [8] PC typical

CPU 330 MHz 2 GHz

Memory 64 MB, ~ 22 MB free 1024 MB

Storage 160 MB + 2 GB optional 250 GB

The huge amount of different devices and platforms leads to yet other challenges when
developing applications targeted at mobile devices. The mobile devices have different
capabilities, for instance some may have a camera and some may not. Above this again they
run different Operating Systems (OS). Table 2.2 below shows some of the OS that are run on
mobile devices today. The result of this diversity is that the application developer has to deal
with many different platforms to adopt the application to.

Table 2.2 Listing of mobile device OS’s [9].

Mobile Device OS name

Symbian OS

Linux

Windows Mobile

RIM BlackBerry

Palm OS

 Efficient Web Services on Mobile Devices

Web Services on Mobile Devices

- 6 -

One way to deal with this problem is to develop applications based on the Java Micro Edition
(Java ME). The Connected Limited Device Configuration (CLDC) specification [10] urges to
“Focus on application programming rather than systems programming”. The meaning of this
is that the Java ME platform hides the complexity of the underlying system, and provides the
developers with a programming environment that is independent of the platform and the
device. This is illustrated in Figure 2.1 below.

Figure 2.1 Illustration of how Java ME hides the underlying OS and device.

The facts mentioned above make the Java ME platform an excellent environment for
developing applications for mobile devices. In addition, the platform is massively deployed
already; in a paper [11] from January 2006 Open Mobile Terminal Platform (OMTP) points
out that it was estimated that there were over 800 million mobile devices supporting the Java
ME platform. It also states that applications developed for this platform has generated
revenues of over $1 billion annually. By now, it can be expected that both of these numbers
have increased. With the introduction of the optional Web Service package it should be
expected that new markets will adopt this platform, and thereby increase the revenues
substantially. Last but not least, the Java ME platform is currently becoming open source. The
process of releasing the open source code is expected to be completed by the end of 2007
[12].

Based on the advantages mentioned in this chapter the Java Me platform was chosen to be
used in the work described in this report.

Symbian OS

Linux
Windows
Mobile

Other OS

Java ME

Device and vendor specific hardware platform

Java ME provides device and OS independent API

 Efficient Web Services on Mobile Devices

Web Services on Mobile Devices

- 7 -

2.2.1 The Java ME Platform

Now let us have a look at the architecture that makes up the Java ME platform that will be
used. The Java ME technology stack consists of the configuration, profile and optional
packages in combination with a java virtual machine [13]. For mobile devices the
configuration is called CLDC. It consists of the virtual machine and some low-level libraries
that form a standardised layer against the mobile devices that support this configuration.
CLDC is intended for devices with as little as 192 KB of total memory and upwards. Other
characteristics of typical devices are low processing capabilities, they are battery powered and
have low bandwidth wireless network connection [10]. The Mobile Information Device
Profile is a layer above the CLDC and provides a set of Application Programming Interfaces
(APIs) for a set of devices with the same capabilities. In this way, the application developers
are provided with a common way to develop applications for a set of devices, and optional
packages can further extend the functionality. Figure 2.2 below shows the relationship
between the different parts of the stack.

Figure 2.2 Java ME technology stack [14].

The applications developed will be placed on top, and use libraries both from the Mobile
Information Device Profile (MIDP) profile and the optional packages. Applications targeted
at this platform are called MIDlets. These applications have some special constraints related
to their lifecycle, but they are not important here, so the interested reader is advised to go to
other literature for information.

The Java Specification Request (JSR) 172 specifies the Java ME Web Services API [15]. This
is an optional package that enables access to Web Services from mobile devices. JSR 172 has
been derived from the original API for the Java Standard Edition, and provides a subset of

 Efficient Web Services on Mobile Devices

Web Services on Mobile Devices

- 8 -

that API [15]. This reduction enables it to run on Java Me devices on the cost of some
features.

In order to develop applications for this platform, a wireless toolkit was needed. This is a set
of tools that enables easier development towards mobile devices. One important tool is the
emulator, which lets the developer emulate the target device on the computer and test the
application without uploading it to the device. Since the target device for this work was a
Sony Ericsson device, the toolkit was downloaded from their site. The toolkit used to
implement the prototype phonebook service in this thesis was the Sony Ericsson Software
Development Kit (SDK) 2.2.4 for the Java(TM) ME Platform [14].

Above the most essential technologies to access Web Services from mobile devices have been
presented. In order to develop and run the fully functional phonebook prototype Web Service,
more software and hardware are needed. Since these are of less interest and are highly related
to the implementation of the phonebook Web Service, they are presented in chapter 5,
Implementation.

2.3 Focus of this Thesis

This thesis focuses on the challenges related to the wireless links used by mobile devices to
access Web Services. In this chapter some facts about these links and comparison with wired
links will be presented to clarify these challenges.

Problems that are introduced by wireless links are illustrated in Figure 2.3. The wireless link
that is illustrated is a UMTS link. The characteristics for UMTS are obtained from [16], and
for Asymmetric Digital Subscriber Line (ADSL) the number are based on the writer’s access
to the Internet. Latency is obtained by using the ping command on a Windows system. It
should also be clear that this parameter is related to the distance the data will be transferred.

Figure 2.3 The link characteristics related to a mobile device that access a Web Service.

Today, the UMTS is the best link that is available in Norway if one does not have access to a
WIFI network. However, High-Speed Downlink Packet Access (HSDPA) is currently being
deployed and this network performs quite a bit better than UMTS. HSDPA is the next
technology used in mobile networks for data transmission, and provides download bandwidth

WS

server

Mobile

base station

Mobile

device

Wireless link Wired link

UMTS:

Upload: ~128 Kbps
Download: ~300 Kbps

Latency: ~150 ms

ADSL:

Upload: ~550 Kbps
Download: ~3500 Kbps

Latency: ~30 ms

 Efficient Web Services on Mobile Devices

Web Services on Mobile Devices

- 9 -

up to 3,6 Mbps [16]. There are also situations where one will experience networks that
perform worse than UMTS, and this situation will persist for a long time to come.

This thesis will look at the effect of the limited bandwidth and the high latency introduced by
wireless links. Other characteristics like bit errors etc., will only be studied when they have
an impact in connection with the limitations mentioned. In the next chapter, techniques that
may reduce the effect of these limitations will be proposed. In later chapters, one of these
techniques will be applied in an implementation of a prototype service. Measurements based
on this prototype will then be carried out to illustrate the possible benefits of this technique.
The limited processing capabilities and small screens are also constraints that are very
interesting and pose challenges that should be investigated thoroughly. However the
timeframe of this thesis do not permit this.

 Efficient Web Services on Mobile Devices

Methods for Optimizing Web Services

- 10 -

3 Methods for Optimizing Web Services

3.1 Possible Approaches

The previous chapter identifies limited bandwidth and high latency of wireless links as
limitations when accessing Web Services from a mobile device. These factors lead to high
response time in addition to data transfer being charged by the amount of data transferred. In
this chapter we will look at two approaches to try to make Web Services more suitable for
wireless links. These two approaches overlap partially, but their main focus is quite different
from each other, as will be clear throughout this chapter. It should be mentioned that none of
the two approaches are believed to be the only solution, but rather a combination of the two.

3.1.1 Compression Vs. Binary XML

The first approach that was taken was to reduce the size of XML files. It is a fact that XML
documents contain a huge overhead. By overhead it is meant the information that does not
carry actual information, but rather describes the actual information. Overhead is sometimes
called meta information, and the tags in XML described below are examples of overhead. If
the size of the XML documents transferred could be reduced, it should lead to better response
time and cheaper transfer.

To better understand the problem with overhead, the XML address format developed and
described in chapter 4.5 will be used. This format is utilized in the Phonebook prototype
service presented in chapter four through five. As can be seen in Figure 3.1 the tags used in
XML lead to a huge overhead. One of the design goals stated in Extensible Markup Language
1.0 [17] published by W3C is as follows; “XML documents should be human-legible and
reasonably clear”. The consequence of this statement is documents with more information
than needed. Another requirement for XML is that every tag also shall have a corresponding
end tag. An example from the figure is the pair: <contacts> and </contacts>. This leads to a
large overhead and a high amount of redundancy. Every contacts element below has about
twice as much metadata as data. In other words, it is fair to say that in our example; only
about one third of the XML file size is carrying “real” information.

 Efficient Web Services on Mobile Devices

Methods for Optimizing Web Services

- 11 -

Figure 3.1 XML file which represent address information.

The most obvious way to reduce the XML file size would be to reduce the size of the tags.
For example the contact tag could be reduced to <c> and </c>, the phoneNumber tag could
be <pN> and </pN> etc. This solution alone would most likely lead to a significant reduction
of the file sizes. However, the suggested solution would also dramatically reduce the
“readability” which is an important objective for XML. The readability of XML is in fact one
of the reasons why XML has become such a popular format. We will thus look at other ways
to reduce the size of XML files, namely compression and binary XML.

Compression means preserving all the information, but reducing the size of it. The original
file size can be obtained by reversing the compression algorithm. This method is described in
chapter 3.2 below.

The second method that will be looked into is alternative ways to represent the information in
order to obtain a more compact format that is faster to process. In contrast to compression, the
original representation can usually not be obtained. Another fact about these formats is that
they do not add the processing overhead introduced by compression and decompression. If
these representations are well formed and have a good structure, they are often referred to as
Binary XML. It can be said that Binary XML is a format that relates to XML but does not
meet all the requirements of XML.

3.1.2 Stack Optimization

Next, a solution that both deals with latency and bandwidth will be looked at, namely stack
optimization. By taking away or changing one or more layers in the protocol stack of Web
Services, the number of messages that have to be exchanged between the server and the client
may be reduced. If the number of messages is reduced, the effect of the latency of the wireless

 <contacts>

 <firstName>Elin</firstName>

 <lastName>Borgen</lastName>

 <phoneNumber>95903263</phoneNumber>

 <eMail>borgen88@stud.ntnu.no</eMail>

 <Address>Hordnesvegen 293</Address>

 <PostalCode>5244</PostalCode>

 <Town>Fana</Town>

 </contacts>

 .

 .

 <contacts>

 <firstName>Elin</firstName>

 <lastName>Gudmundsen</lastName>

 <phoneNumber>94864723</phoneNumber>

 <eMail>gudmundsen14@gmail.com</eMail>

 <Address>Munkedamsveien 98</Address>

 <PostalCode>0270</PostalCode>

 <Town>Oslo</Town>

 </contacts>

 Efficient Web Services on Mobile Devices

Methods for Optimizing Web Services

- 12 -

links will also be reduced. If it is possible to remove one or more layer of the stack, the
amount of data that have to be transferred is also reduced since every layer adds overhead.
This would be advantageous in relation to the limited bandwidth. This approach is presented
in chapter 3.5.

3.2 Compression

The basic idea behind compression is that information by applying an encoding algorithm can
be represented in a smaller way. By applying the reversed algorithm for decoding, the original
information can be obtained again. The fact that makes this possible is that information
usually contains a lot of redundant information. One example of this is the abbreviation OS
for Operating System used in this thesis. This can be said to be a compression since the
amount of data used to represent it is reduced. Figure 3.2 below illustrates this example. As
can be seen the amount of data being transferred between the encoding and decoding is much
smaller than the original information.

Figure 3.2 Illustration of how compression works.

3.2.1 Deflate Compression

The Deflate Compression method was introduced in the PKZIP 2 archiving tool released in
1993 [18]. After this it has become the de facto standard for lossless data compression and the
method is used by many compression formats, amongst others the widely used ZIP format. It
has later been specified in the Request for Comment (RFC) 1951 [19]. The compressed data
will consist of a set of arbitrary seized blocks. Each block is compressed using a combination
of the LZ77 algorithm and Huffman coding. A brief overview of the RFC is given below.

The LZ77 compression algorithm was introduced by Ziv and Lempel in the article: A
Universal Algorithm for Sequential Data Compression [20]. This algorithm works in the way
that it looks for duplicated strings in the previous data, and if a match is found a back
reference pair is inserted instead of the matching string. This pair consists of the length and
the backward distance. The backward distance indicates where the previous identical string
started and the length indicates how long it is. The deflate format limits the backward distance
to 32K bytes and the length to 258 bytes [19], so the implementation must keep track of the

Encoding

Compression

Decoding

Decompression

Operating System OS Operating System

 Efficient Web Services on Mobile Devices

Methods for Optimizing Web Services

- 13 -

last 32K bytes of uncompressed data to perform the matching. The matching can however be
performed across the compressed blocks.

Each block of compressed data is represented using Huffman coding. For each block a new
Huffman tree is built, and this tree gives the coding for the block it is embedded in. Huffman
coding is a coding scheme where the symbols or characters that are most frequently used in
the data are coded with few bits and the ones that do not appear that often are coded with
more bits [21]. This technique alone will in many cases give great compression. To decode
the data, the reversed step has to be applied. The Huffman coding is removed and the
references are replaced with the actual data.

This is by no means a complete description of the deflate format, but it describes the method
in a short form. This method seems to have great potential since it searches for duplicated
information. In conjunction with the tags in XML which introduce a great amount of
duplicated data, this should reduce the size quite a bit. In addition the savings of the Huffman
coding alone can be expected to be between 20 % and 90 % [21]. The deflate method
described here is used in many compression utilities, amongst others ZIP, GZIP and ZLIB
[22].

3.2.2 GZIP and ZLIB

GZIP was initially developed to produce a compression utility that was independent of any
patents, and its file format is specified in RFC 1952 [23]. The main idea behind the
compression is the deflate method described above. ZLIB is an abstraction of GZIP, and it is
specified in RFC 1950 [24]. ZLIB is a free library that can be used to perform compression in
other applications, and is currently used in more than 500 applications [22]. Both GZIP and
ZLIB were written by Jean-loup Gailly (compression) and Mark Adler (decompression).
Because of easy integration into applications through its library, ZLIB was chosen as the
compression format that would form the basis for the compression to be used in the
implementation of the prototype Web Service described later in this report.

3.2.3 XMill

XMill is a compression tool specially targeted at compressing XML, and its implementation is
a result of work done at the AT&T Labs Research in New Jersey, USA, in 1999 [25]. The
basic idea in XMill is to group XML content with similarities, such content can for example
be all the integers in a document. These similarities can then be exploited to achieve better
compression. In [25] it is reported that this method may lead to a compression that is down to
half the size of the same XML document compressed with GZIP. However, this improved
compression comes at the cost of added processing time, so there has to be a tradeoff between
compression ratio and processing time.

 Efficient Web Services on Mobile Devices

Methods for Optimizing Web Services

- 14 -

3.3 Binary XML

As mentioned in the introduction to chapter 3, another solution in order to compact data could
be to represent the XML information in different ways. If this representation is well formed, it
can be said to be Binary XML. The most basic alternative representation could be a
semicolon-separated string. The first contact from Figure 3.1 would then look like this:

 ;Elin;Borgen;95903263;borgen88@stud.ntnu.no;Hordnesvegen 293;5244;Fana;

This would be a much more compact representation than the original XML. A format on this
form would, however, lack many of the good qualities of the XML format. The first thing to
notice is that a developer who wishes to use this format in his/her application would have to
have additional information regarding the format. It would be essential to know what kind of
information could be expected and how to process it. XML on the other hand will be fairly
self-describing if the element names are wisely chosen, and thereby there is no need for more
documentation to understand it. An additional fact is that the format illustrated above is a flat
format. This makes it both hard to represent in an application and hard to operate on. By hard
to operate on, it is meant that operations like search, insert, delete, alter, etc. would demand an
extensive amount of processing. XML on the other side is represented through a well formed
hierarchic structure. This makes it a lot easier to build a data model in an application, and the
operation mentioned above is much easier to perform. All the facts mentioned here make the
XML less prone to errors than the semicolon-separated format illustrated above.

XML has been widely adopted and has proven itself to be a good way to represent and
exchange information. However, one size does not fit all, and XML is not an ideal format for
message exchange between a Web Service and a mobile device. To overcome this challenge
different proprietary formats have surfaced from a number of developers and organizations.
This has lead to a number of alternative representations that are not interoperable [26].

The W3C XML Binary Characterization Working Group [27] was created to investigate the
need and possibility for a more efficient representation of XML, or in other words, Binary
XML. In XML Binary Characterization [28] Binary XML is defined as follows:

“a format which does not conform to the XML specification yet maintains a well-
defined, useful relationship with XML. By "useful" we mean that practical systems
may take advantage of this relationship with little additional effort. For example, it
may be useful to convert a file from XML to Binary XML.”

The XML Binary Characterization Working Group ended successfully with a series of
publications in mach 2005. In their document XML Binary Characterization [28] it is
concluded that there is a need for Binary XML, and that it is feasible to develop such a
format. This working group was followed up by the W3C Efficient XML Interchange (EXI)
Working Group [29], which should specify such a format based on the conclusion from the
XML Binary Characterization Working Group. In July 2007 they published the first public
working draft of the EXI Format specification [30]. The Efficient XML format developed by
AgileDelta [31] forms the basis for this format. This format is examined in chapter 3.3.1,
whereas chapter 3.3.4 presents the International Telecommunication Union - Standardization
(ITU-T) format Fast Infoset [32] which is another example of Binary XML.

 Efficient Web Services on Mobile Devices

Methods for Optimizing Web Services

- 15 -

These formats may satisfy the needs in conjunction with mobile devices for a format that is
more compact, smaller in size and at the same time has many of the properties that has made
XML to the huge success it has become

3.3.1 Efficient XML Interchange Format

W3C is currently standardizing a format to meet some of the shortcomings of XML. This
format has been given the name EXI Format [33]. The first W3C Working Draft for EXI was
published in July 2007, and is the only current document. Hence this specification is not
complete, but the overall idea is ready.

The main idea with EXI is to encode the part that is most likely to appear in an XML
document with the fewest bit and hence obtain a more compact representation. The event
codes in the EXI stream are encoded with codes that are similar to Huffman code, but simpler
[33]. The algorithm that performs the encoding is kept as simple as possible and the number
of data types is kept low. These facts should lead to a format that is compact and possible to
process on devices with limited capabilities. Additionally EXI is kept highly interoperable
with the current XML technologies to facilitate an easy adoption.

3.3.2 Efficient XML

Efficient XML (EFX) was one of the formats the W3C XML Binary Characterization
Working Group [28] investigated during their work with requirements for a binary XML
format. It was later adopted by the W3C Efficient XML Interchange Working Group as the
basis for the specification of the EXI format. EFX was developed by AgileDelta [31] and
provides a very compact representation of XML information. AgileDelta states that it
produces considerably smaller files, as much as 370 times smaller than standard XML and 27
times smaller than WinZip in the best cases [34]. It is also stated that it is faster compared to
compression since applications can read and write it directly and do not need to compress and
uncompress.

3.3.3 Abstract Syntax Notation One

Abstract Syntax Notation One (ASN.1) is the most used notation for defining protocols [35].
Today ASN.1 is covered by the International Telecommunication Union (ITU) X.680 series
of specifications. In short the ASN.1 defines a set of universal types, meaning that an ASN.1
type compiled on one machine will be the same when it is decompiled on another. These
types can then be combined to get more complex structure [35]. In ITU-T Rec. X.693 [36]
ASN.1 is described as “a notation for definition of messages to be exchanged between peer
applications”. It should now be clear that ASN.1 and XML have many of the same properties,
and by this they are related. In fact the X.693 recommendation gives the rules for encoding
ASN.1 types using XML. In addition the X.694 [37] recommendation specifies how W3C
XML Schema Definition (XSD) can be mapped into an ASN.1 schema.

 Efficient Web Services on Mobile Devices

Methods for Optimizing Web Services

- 16 -

To sum up, ASN.1 can be used to make a compact binary representation of XML, and this
would be highly preferable in conjunction with limited bandwidth. It would also be faster to
process than traditional XML. However, it leads to a format that lacks the self-describing
feature of XML [38]. This feature is one of the reasons XML has become such a popular
format, and would be a significant loss.

3.3.4 Fast Infoset

Fast Infoset is specified in ITU-T rec. X.891 [32], and is an ASN.1 representation that
integrates with XML. It is a binary representation based on ASN.1 that retains the self-
describing property of XML. The result of this is a format that is more compact and faster to
parse than traditional XML [39].

The Fast Infoset format can be used as the basis for information exchange in the Web Service
framework. Currently it is possible to choose it as the format to be used in the Java Web
Service Developer Pack [39] and hence to make Web Services more efficient. It should be
noted that Fast Infoset was one of the formats that W3C considered as the basis for their
standardization of a binary XML format. It was, however, not considered to meet W3Cs
requirements for a Binary XML format as well as EFX.

3.4 Final Words about Compression and Binary XML

Even though this report focuses on the limited bandwidth and high latency of wireless links,
other considerations have to be taken into account. From the link’s point of view, the internal
structure of the information is of no interest. The less data that has to be transferred, the faster
it can be done. However, in conjunction with mobile devices, the processing of the data has to
be considered. The problem with compressed data is that it is an intermediate format which
has to be compressed and decompressed before and after sending. This adds time used to
processing and thereby to higher battery consumption. In addition, the uncompressed data has
a memory footprint as big as the original data, which is undesirable considering the limited
memory of mobile devices. For these reasons, Binary XML may be preferred over
compression, even though compression gives the smallest data.

3.5 The Web Service Protocol Stack

All applications which communicate over a network, needs some common understanding of
how the communication should be performed, and this is what protocols are all about. Each
protocol defines some rules that dictate the communication when that protocol is used.
Different protocols perform different tasks and have different characteristics. For that reason,
a combination of protocols will in most cases be needed to achieve the desired
communication. The combination of different protocols is often referred to as the protocol
stack.

 Efficient Web Services on Mobile Devices

Methods for Optimizing Web Services

- 17 -

The protocol stack used for communication between the Web Service and its client will be
examined in this chapter, the aim being to make the stack perform better over wireless links
used by mobile devices. The Web Service and Web Service client communicate by using the
SOAP protocol. SOAP is an application layer protocol which is used to exchange XML
messages between peer applications [40]. Though SOAP is independent of the underlying
transport protocol, HTTP is by far the most commonly used transport protocol [41]. HTTP
again is in most cases delivered over Transmission Control Protocol (TCP) and Internet
Protocol (IP). Below the IP layer there are necessary protocols to make the physical
transmission between adjacent nodes. Figure 3.3 shows the protocol stack used in most Web
Service implementations today.

Figure 3.3 The protocol stack most commonly used for Web Services.

3.5.1 IP and the Layers Below

The IP protocol gives the necessary information to route a data packet between the peer
applications. Since it is connectionless, every packet carries address-information that has to be
processed on every node along the way from the sender to the receiver [35]. This is illustrated
in the middle of Figure 3.3 in the previous section. The IP layer does not provide any end-to-
end functionality, and it has no way to now if packets get lost or arrive at the receiver out of
order etc. Such functionality has to be provided by the layer above IP in the stack. However,
as IP and the layers below are necessary to transmit data packets from the sender to the
receiver and moreover can not easily be changed or altered, they will not be examined closer
in this study.

SOAP

HTTP

TCP

IP

PHYSICAL

App.

IP

PHYSICAL

IP

PHYSICAL

SOAP

HTTP

TCP

IP

PHYSICAL

App.

 Efficient Web Services on Mobile Devices

Methods for Optimizing Web Services

- 18 -

3.5.2 The Application Layer

The topmost arrow represents the communication that is needed for the peer applications to
execute the proper behavior. In this case the applications are a Web Service and a Web
Service client. This communication is performed by using the SOAP protocol. This layer is
required by Web Services so it can not be removed. As described above it is based on XML,
and for that reason it should be possible to encode it as Efficient XML or Fast Infoset which
are described in chapter 3.3.2 and 3.3.4. Such encoding would significantly reduce the size of
the messages exchanged and hence increase the performance of Web Services.

The protocol below SOAP is HTTP which itself is an application protocol. The most common
argument for using HTTP as a tunneling protocol is its ability to traverse firewalls [2]. By
using this tunneling, SOAP can be passed through firewalls without additional work. This is
also mentioned as one of the reason why SOAP has been widely adopted. In [2] it is shown
that removing the HTTP layer and ship SOAP directly over TCP is possible, but this approach
will need additional work to give a satisfying solution. One benefit of such solution is that the
overhead introduced by HTTP is removed, and hence less data has to be transferred.

3.5.3 The Transport Layer

The Transport Layer is the lowest layer that may provide end-to-end functionality. The most
common protocol on this layer is TCP. TCP provides a connection-oriented service to the
layer above [35], and thereby it detects lost and corrupted packets, and packets that arrive out
of order. In other words, it performs the necessary tasks to deliver the complete and right data
to the layer above. The TCP could be replaced by UDP, which is a lighter protocol that
provides a connectionless service to the layer above. However, the UDP does not guarantee
that complete or perfect data is given to the layer above. This is acceptable for voice-like
services where imperfect data is acceptable in contrast to data that arrives later because of
retransmission.

Wireless links that are used by mobile devices are subject to quite high bit error rates
compared to wired links, and this leads to both lost and corrupted data packets. Because of
this, UDP seems to be unsuitable in conjunction with Web Services since it does not
guarantee the delivery of perfect data. The problem is that TCP does not perform well under
these conditions either. Most TCP implementations has been optimized for wired networks
with very low bit error rate, and this has given a congestion control algorithm that performs
bad on wireless links [42]. When this algorithm times out because packets have not arrived,
most of the implementations assume that this is because there are congestion in the network.
It will then reduce the sending of data in order not to worsen the situation. This is a good
solution when the transmission is made only over wired links where congestion is a more
likely reason than lost packet due to bit error. However, on a wireless link the most likely
reason for time outs are lost packets due to bit errors, and the algorithm described above leads
to an unnecessary decrease in performance. What is desired is that the lost data is
retransmitted as soon as possible in stead of a reduction of data transmission because it is
assumed that there is congestion in the network.

 Efficient Web Services on Mobile Devices

Methods for Optimizing Web Services

- 19 -

In [42] two solutions to overcome this problem are presented: The first solution, called
indirect TCP, brake the TCP connection in two at the base station for the wireless link. On the
wireless link, lost packets should be assumed to be a result of bit errors, and on the wired line
out of the base station, congestion should be assumed. The disadvantages of this approach are
the added processing at the base station and the violation of the end-to-end integrity of the
transport protocol. The second solution caches the TCP information at the base station and has
a snooping agent that investigates this information. If the snooping agent concludes that
information is lost on the wireless link, it will try to recover from this before the congestion
control at the end node times out. This solution does not violate the end-to-end integrity of the
TCP connection, but if the wireless link leads to much lost data, the congestion-control at the
end node will be triggered. A more extensive explanation can be found in the referred to
literature.

3.5.3.1 Reflection about the Transport Layer

A transport protocol that delivers complete and correct information to the layer above is
needed on the transport layer. TCP does this job, but as described earlier it has potential
performance problems on wireless links. Methods to overcome this problem are proposed, but
it is uncertain whether or not they are feasible and give the desired results. With the increasing
number of mobile devices that connects to the Internet over wireless links, there might be a
need for a new transport protocol that deals better with lost data. One way to do this could be
to have a better error-correction code that would give less retransmission.

3.5.4 Remarks on Stack Optimization

Several ways to optimize the Web Service protocol stack for mobile devices have been
proposed. It should be noticed that not all are guaranteed to give an increase in performance.
They do, however, all seem to give a reduction in the response time for Web Services on
mobile devices. Measurements are needed to give any conclusion on the possible benefits of
the proposed changes.

 Efficient Web Services on Mobile Devices

Architecture and Design of the Prototype Service

- 20 -

4 Architecture and Design of the Prototype Service

The main objective of the prototype service developed was to demonstrate a way to optimize
Web Services for use on mobile devices. The service should also provide functionality to
measure the effect of the implemented optimization. The prototype service implemented to
demonstrate this concept was a company’s internal phonebook. Throughout this chapter the
architecture and design of the service will be presented.

4.1 The chosen Optimization Method

In chapter 3, reducing the size of XML information and optimizing the protocol stack are
identified as methods that may improve the performance of Web Services on mobile devices.
After considering the two methods, reducing the size of XML information was chosen as the
one to be studied more thoroughly in the prototype service. The reason for this choice was
that it seemed to potentially both reduce the cost and the time of the transfer. The cost should
be reduced since the wireless links utilized by mobile devices are usually charged based on
the amount of data transferred, thus the smaller the transferred data size is, the less is the cost
of transfer. The time needed for the transfer should also be reduced since this also is
correlated to the amount of data transferred. Although the time should be reduced on both
wired and wireless links, the effect is more obvious on wireless links. This is due to the fact
that wireless links have limited bandwidth, meaning that it will take longer time to transfer an
amount of data compared to a wired link.

As reducing the size of XML information was chosen as the optimization method, it was time
to turn the attention to which techniques to apply in order to achieve this reduction. Chapter 3
outlines two fundamentally different techniques; compression and binary XML. To get a good
fundament for comparison, both techniques were explored in the prototype service in addition
to original XML.

ZLIB was chosen as the compression method. The reason for this was that it performs
approximately equal to any other general purpose compression, and was available as an open
source library. It should however be noted that compression utilities like XMill that are
optimized for XML, achieve better compression. These utilities are, however, not that
common, and add some processing overhead which is one of the disadvantages related to
compression on mobile devices.

The choice of Binary XML format was between Efficient XML (EFX) and Fast Infoset
studied in chapter 3.3. They are both backed by serious standardization organizations, namely
W3C and ITU. Seeing that W3C rejected Fast Infoset in favor of EFX as their basis for
standardizing their Binary XML format, EXI, EFX is thought to integrate better with XML.
For this reason EFX is chosen as the Binary XML format in this implementation. Based on
this connection between XML and EFX in conjunction with the success of XML, it can be
expected that the format standardized by W3C will be the most widely adopted in the future.

The last format that was implemented, was EFX which had been compressed. This format
was given the abbreviation EFX_ZIP.

 Efficient Web Services on Mobile Devices

Architecture and Design of the Prototype Service

- 21 -

With the optimization methods in place, it was time to turn the attention to the architecture
and design of the phonebook prototype service that should implement these methods.

4.2 Architecture

The starting point of the service development was to identify the main parts of the service and
the infrastructure needed to achieve the desired service goal. Figure 4.1 presents the main
architecture of the phonebook application. We can take a closer look at each part of the
architecture to get a clearer picture of the service. At the right hand side of the figure we have
the data repository. It is responsible for storing all the address information the company
keeps. The phonebook service is a Web Service that offers the ability to search the data
repository for phone numbers. In principal this can be realized in many ways. Two possible
solutions would be either to realize the data repository as a database on another machine or to
implement it as a part of the Web Service. To the left in the figure we can see the mobile
device which has a phonebook application installed. This application performs requests of
phone numbers to the phonebook Web Service.

Figure 4.1 The architecture of the phonebook Web Service.

In Figure 4.1 there are three arrows which all indicate possible network links. The one to the
right may or may not exist, and if it exists it should be a high performance link with almost no
impact on the complete implementation. The arrow in the middle indicates a link between the
phonebook Web Service placed on a server on the company’s site and the mobile network.
This link will in most cases be over the Internet and should be expected to have great
performance, meaning that the bandwidth will not cause any problems, but as with all links
some delay has to be expected. Under heavy load, the performance on this link could be poor.

The link that causes some of the challenges related to mobile devices is the one to the left in
the figure. It is a wireless link, indicated by the broken arrow. Wireless links will in most

Server

Mobile device

with WS client

Phonebook
service exposed

as a WS

Radio tower
for the mobile

network

Data

repository

 Efficient Web Services on Mobile Devices

Architecture and Design of the Prototype Service

- 22 -

cases have considerable larger delay and lower bandwidth than wired links. A lot of the links
intended for mobile devices perform poor from a data transfer point of view.

4.3 Basic Functionality of the Service

The prototype service used in this study was a phonebook Web Service. The service provides
an interface which takes a name as input and returns the phonebook entries which satisfy that
name, to the Web Service client. Figure 4.2 shows this usage pattern. The figure uses the term
AddressBook rather than PhoneBook since this is a more general term, and services like this
in most cases will provide more than just phone numbers. It will in fact be necessary in most
cases to provide addresses in conjunction with the phone number to enable a positive
identification of the right person.

Figure 4.2 Usage pattern of the AddressBook Web Service

Now that basic functionality for the service is explained, we can have a closer look at how the
desired functionality was achieved, and how the proposed optimization methods were
realized.

4.4 Prototype Service Goals

The objective of the service was to show how different techniques to reduce the size of XML
information affect the performance of Web Services on mobile devices. Though there has
been less focus on developing a fully functional service, the service should provide functions
that emulate a real life service. A phonebook service, as chosen, forms a good platform for
these objectives. First, it is realistic, and therefore the information transferred from the service
to the mobile device forms a great base for comparison between formats. On the other hand it
is fairly simple, and it was easy to keep the functionality at a minimum and remaining focused
on the measurements that should be performed. There are several different methods and

AddressBook WS client AddressBook WS AddressBook Data repository

getNumeber (String name)
findPersons (String name)

foundPersons (String [] persons)

getNumberResponse (String [] enries)

 Efficient Web Services on Mobile Devices

Architecture and Design of the Prototype Service

- 23 -

techniques to reduce the size of XML. The methods that were chosen to implement were
original XML, ZLIB, EFX and EFX_ZIP as described in sub-chapter 4.1.

One decision that had to be made was the type of the returned result. The original XML data
fit easily into the XML based SOAP messages, whereas the three other formats are all binary,
which leads to problems related to Web Services on mobile devices as described below. In
most cases this would be a problem that would be solved during implementation, but because
of the impact this has, it was chosen to deal with it at an earlier stage. The target platform for
the implementation on the mobile device was the Java ME and its Web Service extension, the
JSR 172. The problem with this API is that it neither supports byte arrays nor SOAP
messages with attachments based on the Multipurpose Internet Mail Extensions (MIME)
multi-part message types [15]. In [43] a solution to this problem was outlined; it suggests that
the binary data can be encoded as a base64 string. The drawback of this is that it introduces an
increase in size of 1/3 of the original size. It was, however, decided that as long all formats
were encoded in the base64 format, the comparison would still be fair, and hence this was
chosen as the solution.

The next decision that had to be made was whether to have one message for each of the
formats, or to have one message and to distinguish between the desired return formats based
on a parameter in the request message. It was decided to have a request response pair of
messages for each format. The reason for this choice was that it would be much clearer than
to hide such information inside a parameter, and therefore less error prone and easier to
debug. One possible drawback of such a solution is that it does not permit future addition of
other formats. To deal with this, an extra request response pair of messages was included for
later extensions.

So, in short, the service should have five operations and hence five request return pairs of
messages corresponding to each format as shown in Table 4.1.

Table 4.1 Addressbook Web Service request and response messages

Encoding Request message Response message

PLAIN getNumberPlainAsString(
 String name)

getNumberPlainAsStringResponse(
 String numberPlainAsString)

ZLIB getNumberZlibAsString(
 String name)

getNumberZlibAsStringResponse(
 String numberZlibAsString)

EFX getNumberEfxAsString(
 String name)

getNumberEfxAsStringResponse(
 String numberEfxAsString)

EFX_ZIP getNumberEfxAndZipAsString(
 String name)

getNumberEfxAndZipAsStringResponse(
 String numberEfxAndZipAsString)

For future

use

getNumberNotInUse(
 String name)

getNumberNotInUseResponse(
 String numberNotInUseAsString)

 Efficient Web Services on Mobile Devices

Architecture and Design of the Prototype Service

- 24 -

Each of the formats have an own request message to send requests to the Web Service for
address information. The name of the person one wants address information about, is sent
with these messages and the address information corresponding to that name is then returned
in the requested format in a response message. There is one response message for each
format, and this indicates the encoding used for the address information it relays. So if the
same name is requested in different types of messages, the same result will be returned in
different formats by different messages.

With most of the service functionality in place, it was time to have a look at the basis for the
address format that should be returned.

4.5 The return format

The return format is the format in which the address information is returned by the
AddressBook Web Service when it receives a request from a client as described above. This
format is initially encoded as classic XML content, and is presented in this sub-chapter. The
four different formats that are returned by the Web Service are all derived from this original
content.

The idea behind the original format was that it should be fairly simple, but at the same time
form a realistic set of information for an address book service. With this in mind, it was
decided that the format should consist of first name, last name, phone number, email, address,
postal code and town. It is possible to argue that this is too little information; however it was
felt that this forms a good basis and at the same time keeps it as simple as possible. It is
important to keep in mind that this is a prototype service and is not meant to provide a
complete functionality. The XML schema derived based on these constraints is shown in
Figure 4.3. The schema consists of a ContactBook root element. This element can have many
contacts children of type Contact. The complexType Contact constraints the information that
can and has to be stored with each contact. An example of a XML file based on this schema is
shown in Figure 4.4. As indicated, the file can have any number of contacts stored in it. The
other representations of the information that are needed for the measurements are either based
on this format or derived from this. The way this was done will be presented in more detail
later in this report.

 Efficient Web Services on Mobile Devices

Architecture and Design of the Prototype Service

- 25 -

Figure 4.3 XML Schema, which defines the information returned by the AddressBook Web Service.

Figure 4.4 XML address information for the AddressBook Web Service.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://johnsrud.no/AddressBookSh"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://johnsrud.no/AddressBookSh">

 <xs:element name="ContactBook">

 <xs:complexType>

 <xs:sequence>

<xs:element name="contacts" type="tns:Contact"

minOccurs="0" maxOccurs="unbounded"></xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="Contact">

 <xs:sequence>

<xs:element name="firstName" type="xs:string"> </xs:element>

 <xs:element name="lastName" type="xs:string"></xs:element>

 <xs:element name="phoneNumber" type="xs:int"></xs:element>

 <xs:element name="eMail" type="xs:string"></xs:element>

 <xs:element name="Address" type="xs:string"></xs:element>

 <xs:element name="PostalCode" type="xs:int"></xs:element>

 <xs:element name="Town" type="xs:string"></xs:element>

 </xs:sequence>

 </xs:complexType>
</xs:schema>

<?xml version="1.0" encoding="UTF-8"?>

<tns:ContactBook xmlns:tns="http://johnsrud.no/AddressBookSh"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://johnsrud.no/AddressBookSh xsd0.xsd" >

 <contacts>

 <firstName>Anne</firstName>

 <lastName>Borgundvaag</lastName>

 <phoneNumber>98032836</phoneNumber>

 <eMail>borgundvaag67@stud.ntnu.no</eMail>

 <Address>Uranienborgv. 11 E</Address>

 <PostalCode>0351</PostalCode>

 <Town>Oslo</Town>

 </contacts>

 <contacts>

 <firstName>Anne</firstName>

 <lastName>Clausen</lastName>

 <phoneNumber>94332503</phoneNumber>

.

.

 <eMail>wikborg75@stud.ntnu.no</eMail>

 <Address>Haukelibakken 8</Address>

 <PostalCode>0775</PostalCode>

 <Town>Oslo</Town>

 </contacts>
</tns:ContactBook>

 Efficient Web Services on Mobile Devices

Architecture and Design of the Prototype Service

- 26 -

4.6 Main design

Now that most of the fundamental choices have been described, it is time to have a look at the
overall design of the service. The service has two main parts, namely the server side and the
client side. Both of these can in the next round be divided in two. Each side will have one part
related to Web Service communication, in addition the server side will have business
functionality and the client will have user interaction functionality.

The Web Service part on both the server and client side is almost completely depended on the
targeted platform and the Web Services Description Language (WSDL) file. Platforms that
support Web Services will in most cases provide a utility to generate the most essential code
related to the Web Service based on the WSDL file. Since this was the case for the service
described here, the design will not describe the internal structure of the generated code, but
instead treat it as one class. The description of the generated code will be given in more detail
in the chapter related to the implementation later in this report. The design of the server and
the client side will now be described separately.

4.6.1 Server Design

Since the focus of this study was to investigate the performance on the mobile device it was
decided to keep the server side as simple as possible. The straightforward way to do this, was
to include the data repository as a class on the server. In Figure 4.5 one of the five message
exchanges already described are presented.

Figure 4.5 Usage pattern of the AddressBook Web Service.

WS: AddressBookSkeleton

DataRepository
Initiate ()

getNumberPlainAsString (String name)
getPlain (String name)

String plainAsString

getNumberPlainAsStringResponse (String plainAsString)

AddressBook WS

 Efficient Web Services on Mobile Devices

Architecture and Design of the Prototype Service

- 27 -

The part that is restricted by the box labeled AddressBook Web Service, is the part that makes
up the server side. The class diagram for the server side is shown in Figure 4.6. The Web
Service part is represented by the AddressBookSkeleton. This is the only automatically
generated class on the server side which has to be modified. In addition one more class was
needed, the DataRepository. The initData() method reads all the address information into the
data repository and stores it in an array for each format. The information was divided by
names, meaning that the data repository has a finite set of test data that was separated based
on first name of the persons stored. For each of these sets the necessary processing was
performed to store the information in the four formats under study. This means that when a
request is received for some information in one of the formats, the only job that had to be
done was to look for this information in the array which stores this format. To retrieve some
information from the data repository, four methods were supplied; one for each format. In this
way, all the information was preprocessed and should take as little time as possible to return.
By designing the data repository in such a manner, it should not have any significance on the
time to retrieve information from the address book Web Service.

Figure 4.6 Class diagram for the AddressBook Web Service.

4.6.2 Client Design

Now that the design of the server side is in place, it is time to turn our attention to the client
side of the service that was to be deployed on the mobile device.

As described earlier, the Web Service related communication that had to be performed on the
client side would be performed by classes that had been generated from the WSDL file. On
the client side, the class that enables the communication with the server is denoted the stub,
and for this specific service, AddressBookStub. The application can make calls on the stub and
when the communication with the Web Service is finished the stub will return the result [44].
Since the stub will block until the call is finished, all calls on the stub should be performed in
an own thread. In addition, it was identified early that a good solution would be to have an
own class to keep control of the application, handle the user input and process the results
retrieved from the service. It was also concluded that it would be a good solution to have a

-rep: DataRepository : Object = 1

AddressBookSkeleton

+initData ()
+getPlain (in name : String) : String
+getZlib (in name : String) : String
+getEfx (in name : String) : String
+getEfxZip (in name : String) : String

- plain : String []
- zlib : String[]
- efx : String[]
- efxZip : String []

DataRepository 1 1

 Efficient Web Services on Mobile Devices

Architecture and Design of the Prototype Service

- 28 -

class that presented the results on the screen. The above requirements lead to the class
diagram shown in Figure 4.7.

Figure 4.7 Basic class diagram for the AddressBook Web Service client.

A typical usage scenario for the application will lead to the following behavior on the client
side:

1. The user types a name to find information about on his/her device.
2. The user selects and activates the button corresponding to the method of interest.
3. The SonyMidlet class starts a WsThread and supplies it with information about type of

method to use and the name that should be looked up.
4. The WsThread performs a call according to the supplied information on the

AddressBookStub.
5. The AddressBookStub performs the necessary action to retrieve the information from

the service.
6. The call on the AddressBookStub returns in the WsThread, and the WsThread relays

this information to the SonyMidlet.
7. The SonyMidlet performs the necessary processing of the result and presents it on the

ResultScreen.

One important aspect of this service was to measure the time it took to retrieve information
from the service. This time is measured from the call on the stub is performed in number 3
until it returns in number 6. A class diagram that describes the main parts of the client is
presented in Figure 4.8.

SonyMidlet ResultScreen

AddressBookStub

WsThread

1 1

1

1

1

1

 Efficient Web Services on Mobile Devices

Architecture and Design of the Prototype Service

- 29 -

Figure 4.8 Class diagram for the AddressBook Web Service client

The design presented in this sub-chapter forms the basis for the implementation of the address
book client presented in the next chapter.

4.6.3 WSDL file for the Address Book Web Service

As the name Web Service Definition Language, WSDL, indicates, this is a file that describes
the Web Service. WSDL is a XML format that is used in order to define how to access Web
Services. In short it describes where a service is and how to access it [6]. Below, a brief
description of the design of the WSDL file for the Address Book Web Service is given.

+ updatePlain (in result : String)
+ updateZlib (in result : String)
+ updateEfx (in result : String)
+ updateEfxZip (in result : String)
+ buttonPushed (in button)
+ updateMeasurements (in measure : String)

SonyMidlet

+ clean ()
+ addAddress (in address : String)

ResultScreen

+ getNumberPlainAsString (in name : String) : String

+ getNumberZlibAsString (in name : String) : String

+ getNumberEfxAsString (in name : String) : String

+ getNumberEfxZipAsString (in name : String) : String

AddressBookStub

+ preapare (in name : String , in type : Integer)

+ run ()

- PLAIN : Integer
- ZLIB : Integer
- EFX : Integer
- EFX _ZIP : Integer
- TEST : Integer
- name : String

WsThread

1 1

1

1

1

1

:

1

 Efficient Web Services on Mobile Devices

Architecture and Design of the Prototype Service

- 30 -

The WSDL file was designed using Eclipse SDK [45], and its Web Tools Platform (WTP)
[46]. This tool provides a good graphical user interface for developing Web Services. A
screenshot of the design of the WSDL file is given in Figure 4.9.

Figure 4.9 The essential parts of the AddressBook WSDL file.

As can be seen in Figure 4.9, the tool provides a straightforward way to design a WSDL file.
An approach like this is also less error prone compared to writing the WSDL file without any
tool assistance. To the left in the figure the SOAP port is specified, in the middle the binding
is specified and to the right the operations are added. Each operation has one input and one
output message corresponding to those given earlier in Table 4.1. By following the arrows to
the right in the figure the content of the messages can be specified. The textual representation
of the WSDL file can be found in appendix A.

With all the parts of the design in place it is time to have a look at how it was realized in the
implementation. Throughout the next chapter the implementation will be presented.

 Efficient Web Services on Mobile Devices

Implementation

- 31 -

5 Implementation

The implementation phase included the implementation of the client and the server, as well as
generating the test data. In this chapter the implementation phase will be presented in detail.
The Eclipse tool [45] was used for the development, mainly because it is an open
development platform

5.1 Hardware and Software

Both the hardware and software that formed the target of the service is available off-the-shelf.
The hardware and software are not the main focus, but are however required, so a brief review
will be provided.

5.1.1 The server platform

The computer that served as the server had the following hardware configuration;

• AMD Athlon 64 3200+ CPU
• 512 MB RAM
• Network interface card of 100 Mbps.
• Internet connection with download speed approximately 3400 kbit/s and upload speed

approximately 600 kbit/s.

The operating system on the server was Microsoft Windows XP professional version 2002.
This formed the environment for the rest of the software, and was a natural choice both
because of its widely use and the writer’s previous experience with it.

In conjunction with the Web Service development, the choices were more open. Because of
the writers’ previous experience with it, and that the client should be written in it, java was
chosen as the development language. However it should be clear that the fact that the client
should be written in java itself does not dictate that the server should. The fact that the
communication is totally platform independent is one of the main strengths of Web Services.
So with the target language in place the search for the necessary software could start. The first
additional software that was installed was the java SDK [47]. This consists of the java run
time environment that forms the platform to run java applications and tools that enables the
development of java applications. During the work the Java Development Kit (JDK) 1.6.0
was used.

The writer has had good experience with software released by the Apache Software
Foundation [48] from earlier projects. This foundation develops open-source software for
many different purposes. Their latest Web Service engine at the time of performing this work
was the Apache Axis 2 [49], which also has a code generation plug-in for the Eclipse which
was the development tool of choice. The version of Axis 2 used, was the 1.1.1. The Apache
Tomcat servlet container served as the container for Axis 2. Apache Tomcat version 5.5.20
was used during this work.

 Efficient Web Services on Mobile Devices

Implementation

- 32 -

After all the installations were done the setup was tested by pointing a web browser to the
address of the server, and the response showed that all were functioning as intended.

5.1.2 The client platform

With the server up and running it is time to have a look at what formed the platform on the
client side. The client should be targeted at a mobile device, and at time of performing the
implementation the writer was in possession of a Sony Ericsson K610i. After some
investigation it was clear that this device would do the job. The K610i has the ability to access
the Internet both by GPRS and UMTS connections [50], and thereby it can access the server.
It also supported both the Java ME profile MIDP 2.0 and the JSR 172 Web Service API [50].

In addition three additional libraries were needed to implement the functionality described in
the design. First of all, the information retrieved from the server should be presented as a
base64 encoded string. There was no initial support for this in the platform, so a decoder that
would run on the MIDP 2 profile was downloaded from the Internet [51]. In addition, both
ZLIB and EFX needed some external libraries to be processed on the mobile device. A java
ZLIB implementation was therefore downloaded from the Internet [52]. As this
implementation depended on the class FilterInputStream which was not part of MIDP 2
profile, another search on the Internet was needed and the file was found [53]. This file was
added to the same package as the ZLIB to ensure that the compression algorithm functioned
as intended. The last library that was needed was the efficient XML libraries. These were
needed to parse the binary XML format, efficient XML, on the mobile device. A 30 days full
functional trial version of these libraries was downloaded from their publisher AgileDelta
[31]. All the tools and libraries mentioned above formed the basis for the development of the
client side of the Web Service.

5.2 The test data

To perform the measurements described in the following chapter 6, there was a need for quite
a lot of test data. This data should be in the format described in chapter 4.5. In order to get
realistic sets of data, vCards from the Norwegian Internet page www.telefonkatalogen.no [54]
were downloaded. vCard is a standardized digital format for storing and exchanging
information like name, phone number and address about individuals [30].

For each test set a search was made on a name, for example Anne. Based on the results from
this search, the vCard for as many people as needed to get the desired size of the test set was
downloaded to an own directory. This procedure was then repeated until the desired number
and size distribution of the test sets were reached.

A small utility java class was written to read the vCards and convert them into the desired
XML format. This utility class also generated the email addresses since almost none of the
vCards had this information. The email addresses were generated based on the last name and
a number. Each one of the test sets was represented as its own XML file.

 Efficient Web Services on Mobile Devices

Implementation

- 33 -

In addition to original XML, the information should also be represented in three more
formats; ZLIB, EFX and the combination of EFX and ZIP. It was decided that the XML files
should be compressed to ZLIB as they were read into the data repository of the Web Service.
The efficient XML SDK retrieved from AgileDelta [31], included a command line tool to
convert XML files to booth EFX and EFX_ZIP. Since this would do the job and was the
straightforward way, it was the method of choice.

When the efficient XML SDK was set up properly, it provided the necessary command line
tools to do the job. Efficient XML provides two methods to encode the information. It can
either encode the XML files without any more information, or it can encode them by using an
efficient XML schema. The difference between the two methods, is that when a schema is
supplied the resulting efficient XML file becomes smaller. The solution that required a
schema was chosen here to get as small files as possible. The GettingStarted manual for the
Efficient XML SDK described how the encoding should be done [55]. The first thing that had
to be done was to compile the Efficient XML schema. This schema was based on the original
XML schema that is described in chapter 4.5. The original schema was named
AddressBookSh.xsd. The GettingStarted manual for the efficient XML described how to
compile the schema. The following command had to be executed in the directory that stored
the AddressBookSh.xsd:

schemac AddressBookSh.xsd

The result of this command was the AddressBookSh.cxs, which is the efficient XML schema
for the format. This schema again can be used to encode the XML files to the smallest
possible efficient XML files. The way this was done, was to stand in the directory that hold
the XML files and execute the following command:

 efx -schema AddressBookSh.cxs Anne.xml –o Anne.xml.efx

The result of this command is that the file Anne.xml is encoded to the efficient XML file
Anne.xml.efx which resides in the same directory as the original file. The last format that was
needed was the combination of efficient XML and ZIP. This could be done using the same
command by adding the zip option. The command to encode to EFX with ZIP is as follow:

 efx -zip -schema AddressBookSh.cxs Anne.xml –o Anne.xml.efx

The command to encode to EFX and EFX with ZIP was executed for all the files in the test
set. The result of this was that all the test data were encoded in XML, EFX and EFX_ZIP. The
server only had to read them in.

5.3 The Address Book Web Service

Most of the code of the address book Web Service was generated from the WSDL file. The
axis 2 had a code generation plug-in for Eclipse, and this was used to generate the Web
Service skeleton. It also generated a build.xml file that could be used to build the final service.
The class that interfaced the functionality of the service got the name AddressBook1Skeleton.
Some code had to be added in this to make the service act as intended. The first thing that was

 Efficient Web Services on Mobile Devices

Implementation

- 34 -

done was to add an instance of the data repository. The code added is shown in Figure 5.1.
The result of this addition is that the Web Service has a way to contact the data repository.
Since the skeleton holds an instance of the data repository it can make method calls right on it
when number requests arrive at the Web Service. The skeleton was also generated with empty
methods for each of the operations described in the previous chapter.

Figure 5.1 Code in AddressBook1Skeleton considering the DataRepository.

In Figure 5.2 it is shown how the skeleton handles the requests. When a request arrives at the
Web Service a method in the skeleton will be called.

Figure 5.2 The method skeleton for the Web Service operations in AddressBook1Skeleton.

The first three lines in Figure 5.2 give the method signature for the Web Service operation
getNumberEfxAsString in the class AddressBook1Skeleton. The method should return an
object of type GetNumberEfxAsStringResponse. This object holds all the information that was
needed in the return message of the Web Service. The class that forms this object is also
automatically generated based on the WSDL file. Also the parameter object, in this case
GetNumberEfxAsString param20, was generated from the WSDL file. This object holds all
the information received in the request message to the Web Service. The code in the
getNumberEfxAsString that was needed to perform the intended functionality is shown in
Figure 5.3.

public no.johnsrud.addressbook1.GetNumberEfxAsStringResponse

getNumberEfxAsString

 (no.johnsrud.addressbook1.GetNumberEfxAsString param20)

 {

 //Todo fill this with the necessary business logic

throw new java.lang.UnsupportedOperationException("Please

implement " + this.getClass().getName() +

"#getNumberEfxAsString");

 }

 private DataRepository rep;

 public AddressBook1Skeleton(){

 rep = new DataRepository();

 }

 Efficient Web Services on Mobile Devices

Implementation

- 35 -

Figure 5.3 The method getNumberEfxAsString in AddressBook1Skeleton.

The code in Figure 5.3 is pretty straightforward. In line one the name is extracted from the
parameter supplied in the method call. Line two through four instantiate the return object. The
main part of the functionality is performed in line five where a call to the data repository is
performed. The name is provided as a parameter in the getEfx call. The call returns the result
as a base64 encoded string. This result is then appended in the return object in line six and
returned in line seven. The actual functionality was delegated to the data repository, and is
performed when the getEfx call is performed in line five. The three other operations that
represent the other formats are all implemented in the same way.

With the skeleton in place it was time to implement the data repository. The data repository
has one method for each format, which takes a name as a parameter, and returns the addresses
related to that name as in the corresponding format encoded as a base64 string. The
information in the data repository is prepared at start-up of the service. For the PLAIN, EFX
and EFX_ZIP format, the only thing that had to be done was to read them in from a directory
and encode them as base64 strings. When the PLAIN format was read in, it was cloned and
ZLIB compression was applied, and this way the ZLIB format was obtained. Base64 encoding
was applied and then all the formats were ready. The prepared information is then stored in an
array representing that format, and each test set is stored as an own entry in each array.

The main part of the initializing of the test data will now be described. Figure 5.4 presents
some pieces of the code. The code shown was for the data represented as EFX, but the code
for the other formats was pretty much the same. In line one the array that stores the EFX test
sets is initialized and in line two a counter that indicates which set is the current, is prepared.
Line three gives the directory where the test data was stored. The method that starts on line
five should be called one time for each test set, and the parameter name indicates the test set
that should be read in. This method read the equivalent data in the different formats and stored
them in the appropriate array. For clarity, only the code for the EFX format is shown. In line
six the EFX encoded file is read in from the directory and in line seven it is encoded as a
base64 string and stored in the appropriate location in the EFX array.

public no.johnsrud.addressbook1.GetNumberEfxAsStringResponse

 getNumberEfxAsString

 (no.johnsrud.addressbook1.GetNumberEfxAsString param20)

 {

1 String name = param20.getName();

2 no.johnsrud.addressbook1.GetNumberEfxAsStringResponse res;

3 res =

4 new no.johnsrud.addressbook1.GetNumberEfxAsStringResponse();

5 String result = rep.getEfx(name);

6 res.setNumberEfxAsString(result);

7 return res;

 }

 Efficient Web Services on Mobile Devices

Implementation

- 36 -

Figure 5.4 Code for reading in the test data to the DataRepository.

When the data was ready, it was time to implement the methods that were needed in order to
retrieve the information from the data repository. Since the data were ready, it was only a
matter of finding the right test set and return it. A part of the code to do this is shown in
Figure 5.5.

Figure 5.5 Method to retrieve information from the DataRepository.

The code extracts the information from the appropriate place in the array based on the name
in question, and returns this information. An equivalent method was implemented for each
format, namely; getZlib, getEfx and getEfxZip. When this was done the service could be built

1 private String[] efx = new String[14];

2 private int set = 0;

3 String baseUrl = "z:/master/dev/data/";

4

5 private void preapere(String name){

6 byte[] inBytesEfx = readFile(baseUrl+name+".xml.efx");

7 efx[set]= encodeBase64(inBytesEfx);

8 set++;

9 }

 public String getPlain(String name){

 String res="feil";

 if(name.equalsIgnoreCase("lars")){

 res = plain[2];

 }

 else if(name.equalsIgnoreCase("per")){

 res = plain[12];

 }

 else if(name.equalsIgnoreCase("ole")){

 res = plain[13];

 }

 .

 .

 .

 else if(name.equalsIgnoreCase("ida")){

 res = plain[11];

 }

 return res;

 }

 Efficient Web Services on Mobile Devices

Implementation

- 37 -

with the build.xml file, and the service could be deployed on the server. With this in place it
was time to turn the attention to the client side of the service.

5.4 The Address Book Web Service Client

5.4.1 The Web Service Communication on the Client

As for the server side, a lot of the code could be generated from the WSDL file. The wireless
toolkit described earlier had a utility called Stub Generator. This utility takes a WSDL file as
input and outputs the required classes to communicate with the Web Service. On the client
side, the class that interfaces with the rest of the application is the stub, in this particular case
it had the name AddressBook1PortType_Stub. Classes representing the messages that are
exchanged are also generated. However in this case it only was one string that was exchanged
in the messages both ways, so there was no need for additional classes to represent complex
message structures. The stub class provides methods for each operation the Web Service
provides. In this case the name of the “person” one wants to retrieve information about, is
provided in the message call on the stub, and the person corresponding to the name is returned
by the method.

Since these methods perform communication over wireless networks, the potential of
messages being lost or the occurrences of large delays are present. For this reason all the calls
on the stub is performed in an own thread. This thread is created in the main class in the
application named SonyMidlet. When a request to the Web Service is required, the main class
creates a WsThread and calls its prepare method. The prepare method sets the type and name
variable in the WsThread, indicating what call should be performed on its stub. When this was
done the thread was started. Based on the information supplied in the prepare method the
required task was performed. The code for this is shown in Figure 5.6.

 Efficient Web Services on Mobile Devices

Implementation

- 38 -

Figure 5.6 The run method in WsThread, used to access the AddressBook Web Service

from the mobile device

Most of the code in Figure 5.6 is self-describing, but there are a few lines that need a bit of
explanation. A call on the stub is for example the line:

result=wsStub.getNumberPlainAsString(name);

The variables startT and stopT in Figure 5.6 are used for measurements. The startT is set
right before a method call on the stub is performed, and the stopT is set when the call returns.
By subtracting the startT from the stopT, as shown in the line below, the time to retrieve the
information is obtained;

this.parent.updatePlainAsString(result, stopT-startT, name);

This line updates the main class, SonyMidlet, with the retrived information and the
measurement. The SonyMidlet provides methods to process the results retrieved from the
service. Here the method to update the PLAIN format is shown, but there are equivalent
methods for the three other formats also. The result encoded as a base64 string, the time to
retrieve the information and the name that was searched for, are provided with the method.
When these methods are called, the main class processes the result.

The type TEST also needs some explanation. When this type is set the WsThread method test
is called. This is a method that goes thoroughly through the test sets, and retrieves the
information corresponding to that test set in all the four formats the given number of times.
For each time, the time to retrieve the information is measured and logged. When the test is

public void run() {

 long startT = 0;

 long stopT= 0;

 String result="";

 try {

 if (type==PLAIN_STRING){

 startT = System.currentTimeMillis();
 result= wsStub.getNumberPlainAsString(name);

 stopT = System.currentTimeMillis();

 this.parent.updatePlainAsString(result, stopT-startT,

name);

 }

 else if(type==ZLIB){

 startT = System.currentTimeMillis();

 result=wsStub.getNumberZlibAsString(name);

 //System.out.println();

 stopT = System.currentTimeMillis();
 this.parent.updateZlib(result, stopT-startT, name);

 .

 .

 .

 else if(type==TEST){

 test(50);
 }

 Efficient Web Services on Mobile Devices

Implementation

- 39 -

finished, the measurements are written to a file. This type was added to make the
measurements more effective.

5.4.2 The Functionality of the Client

The above section describes the most important parts of the Web Service communication on
the client side. The attention will now be turned towards the SonyMidlet class which can be
said to control the application. When the application starts up, the SonyMidlet class initializes
the first screen. This screen has a TextField where the name of the person one wants to find
address information about, can be typed in. In addition this screen has one button for each
format, labelled PLAIN, ZLIB, EFX and EFX_ZIP. By pressing one of these buttons, the
information would be retrieved in the format corresponding to the button that was pushed. In
Figure 5.7 an emulated phone with the first screen open is shown. One more button was
applied to the opening screen, named TEST. The test button starts the test described above.

When a user wants to find address information about another person, he or she types in the
name of that person and pushes one of the buttons to retrieve the information in the format
corresponding to the button pushed. The SonyMidlet class listens for action events and when
they arrive, investigates them and performs the appropriate action. In the case of an address
lookup, the SonyMidlet calls the prepare method of the WsThread and starts it. The code for
this is standard Midlet code, and for that reason it will not be looked into its details here.

 Efficient Web Services on Mobile Devices

Implementation

- 40 -

Figure 5.7 Emulated phone displaying the opening screen of the AddressBook Web Service client.

The WsThread will then wait until the message with the result from the search is received.
The reception of this message leads to a method call in the SonyMidlet according to the
format of the result. The methods with which SonyMidlet processes the result, are shown in
Table 5.1.

Table 5.1 Update methods in SonyMidlet.

Format Method

PLAIN updatePlainAsString

ZLIB updateZlib

EFX updateEfx

EFX_ZIP updateEfxAndZip

These methods should process the information and present them on an own result screen. The
result screen was implemented by a class named Result. The Result class is initiated at start-
up of the application and the SonyMidlet class keeps a reference to it. The Result class has

 Efficient Web Services on Mobile Devices

Implementation

- 41 -

two methods that are worth mentioning, clean and addEntry. When any of the four methods in
Table 5.1 are called, the first thing that is done is that they call the clean method. This
removes any previous information from the result screen, and makes it ready to display new
results. The addEntry method adds address information about one person, and is typically
called numerous times when a result is processed. When the processing of a result is finished,
the result screen is set as the one that should be shown on the mobile device.

Figure 5.8 shows the result of the search for the person Anne on the screen of an emulated
phone. The arrows in the middle of the bottom of the screen indicate that there is more
information both above and below what is currently presented on the screen. The call option
in the lower, right corner of the screen can be used to place a call to the marked number. The
back option in the low left can be used to return to the search screen.

Figure 5.8 Emulated AddressBook client showing the result screen.

 Efficient Web Services on Mobile Devices

Implementation

- 42 -

5.4.3 Processing of the Information

Now that the way the results are presented is in place it is time to have a look on the way the
results retrieved from the Web Service is processed in the SonyMidlet. The first thing that had
to be done for all the four formats was to decode the base64 string. The result from this
decoding was a raw byte array representation of the format in question. This application
should be able to parse two different representations of the formats, namely the PLAIN XML
format and the EFX XML format. The ZLIB and EFX_ZIP formats are both based on the
other format with applied compression. In conjunction with the ZLIB format, this meant that
the data had to be uncompressed with the ZLIB algorithm, and after that, the exact same
parsing as with the PLAIN format had to be done. The EFX_ZIP format, however, resulted in
a problem that is described in chapter 5.5.

Since the parsing of the PLAIN and EFX format are the most interesting, we will have a
closer look at their implementation. The two parsers used here works in different ways. The
parser used for the PLAIN format was the sax parser, which is a push parser, while the one
used for EFX was a pull parser. Let us first take a look at the sax parser which was used for
the PLAIN format. The most essential code for this parser is presented in Figure 5.9.

Figure 5.9 Code for the XML parser in SonyMidlet.

The first line in Figure 5.9 makes an InputStream of the byte array that represents the PLAIN
XML format. In the two next lines the SAXParser is obtained and in the fourth line the
parsing is performed. The method parse is called on the SAXParser. This method takes two
parameters; the first is the InputStream that holds the information that should be parsed and
the second, ContactHandler, is the class that implements methods the parser calls when it has
parsed some information. For example, the parser calls the ContactHandlers method
startElement every time it finds a start element in the XML document. The ContactHandler
class is responsible for performing the necessary action every time this happens. The parser
pushes information on the ContactHandler, and every time the ContactHandler concludes
that it has information about a whole new contact it updates the result screen. The last line in
Figure 5.9 displays the information on the screen.

In contrast to the sax parser, the parser for the EFX fomat is a pull parser, which means that
the information has to be pulled out of the parser. Now let us have a look at some of the
necessary codes to do this. In Figure 5.10 the first line creates the EFXFactory, and the
second creates an InputStream of the EFX byte array. The third line creates an
EFXStreamReader to parse the EFX document. This document is supplied as an InputStream

ByteArrayInputStream bais = new ByteArrayInputStream(plainBytes);

SAXParserFactory fac = SAXParserFactory.newInstance();

 SAXParser saxP =fac.newSAXParser();

saxP.parse(bais, new ContactHandler(this));

d.setCurrent(resScreen);

 Efficient Web Services on Mobile Devices

Implementation

- 43 -

when the EFXStreamReader is created. The fourth line reads something from the document,
and this line shows the main difference compared to the SAX parser used for the PLAIN
format. Here the next method is called on the EFXStreamReader to pull information out of the
document. The SAX parser would have pushed this on the application through method calls in
the ContactHandler.

Figure 5.10 EFX parser code in SonyMidlet.

To read all the necessary information, the next method with different parameters has to be
called a series of times inside a loop. For each walk through the loop, one contact is extracted,
and added to the result screen. When all the contacts are extracted the last line in the figure
shows the screen with the result.

This concludes the most essential parts of the implementation, however there were some
problems during the implementation as described in chapter 5.5.

5.5 Problems during Implementation

The first problem encountered during the implementation phase, was related to the message
sent from the server to the client. When there was no information in the header tag in the
message, axis2 returned the tag;

<soapenv:Header />.

This tag is opened and closed in one line. After some search on the Internet, a forum
explained the problem [56]. The parser supplied with the Java ME implementation did not
support this kind of a tag, and reported a missing end tag when the SOAP message containing
this tag was received. The way this was solved was to remove this tag. In the class
AddressBook1MessageReceiverInOut that was automatically generated by axis2, the
following line was added to remove the tag before the message was sent to the client:

envelope.getHeader().detach();

This solution solved the problem and the client could now exchange messages with the Web
Service.

efx = EFXFactory.newInstance();
bais = new ByteArrayInputStream(efxBytes);

readEfx = efx.createEFXStreamReader(bais);

 readEfx.next(EFXStreamReader.START_ELEMENT);

.

.
d.setCurrent(resScreen);

 Efficient Web Services on Mobile Devices

Implementation

- 44 -

The next problem was related to the message size the Java ME application could receive.
Initially it was the intention to have some large test sets, but during the testing of the
application, it became evident that the Java ME application did not support SOAP messages
larger than about 32 KB. Though the writer was not able to find any good explanation for this,
it gave a restriction on the size of the test data, and actually led to a good result. Since the
Java ME platform does not support bigger SOAP messages, it would be a good idea to use the
EFX format since this can provide the same information in a much smaller format. Hence this
format gives the ability to transfer much more information in one message than plain XML
does.

The next problem was related to special characters and the EFX parser. In the Norwegian
language the special letters æ, ø and å are used. During the conversion of the XML documents
to the EFX representation, it was observed that the EFX parser did not support these
characters and halted every time it reached one of them. There was also some other special
characters that seemed to bring the parser to a halt. This was solved by removing the
information that contained these letters, and then it functioned as it should. This solution is
adequate for the purpose of this paper, but for a commercial service other solutions would be
necessary.

Another obstacle was to get the EFX format to work on the mobile device. Since this was an
external library with no initial support on the device, it had to be packed with the application.
The problem was that if it was not packed with the application, the application would still
work in the emulator, but on the actual device a ClassNotFoundException was thrown. This
was solved by telling Eclipse to pack this library with the application.

Finally, there was a problem related to parsing the EFX_ZIP format. This format was created
by setting an option that told the EFX parser to apply ZIP on the file. When the
implementation on the client side was performed, the corresponding ZIP property was set to
tell the parser that the document was compressed. This, however, did not work and a mail was
sent to AgileDelta support with a question about this problem [57]. In the response mail, it
was revealed that this property was not yet supported in the Java ME version of the EFX
library. There was nothing in the documentation that indicated that this should not work. The
documentation regarding this issue could therefore have been better.

With the implementation in place it was time to turn the attention to the measurements that
are presented in the next chapter. More information about the source code can be found in
appendix B.

 Efficient Web Services on Mobile Devices

Results and Discussion

- 45 -

6 Results and Discussion

The main focus of this thesis was to identify and evaluate techniques that improve the
performance of Web Services on mobile devices. Performance in this context is a reduction in
the time needed to retrieve the information from the Web Service. This time is highly related
to the limited bandwidth and high latency of the wireless links mobile devices use to access
Web Services. A reduction in the cost of data transfer would also improve the user-experience
of Web Services.

In order to evaluate different techniques, a prototype service was developed. The prototype is
thoroughly described in chapter four and five. In this chapter the measurements produced by
that prototype will be presented and evaluated.

6.1 Measurements

The measurements presented in this chapter and implemented in the prototype service, are
based on the approach described in chapter 3.2 and 3.3. This means that all results presented
in this chapter have to be evaluated in conjunction with XML compression and Binary XML.
In other words, none of the results presented here are related to stack optimization.

Four different types of data representation were implemented in the prototype service and
form the basis of the measurements presented in this chapter. Plain XML format, by this it is
meant pure XML as we all know it, is denoted PLAIN in all the results. The second format
that is looked into is ZLIB, which is a pure compression of the PLAIN files and the data itself
is not manipulated in any way. This format is labeled ZLIB throughout the results. The two
last data formats are both based on efficient XML. One of these formats, labeled EFX, is a
pure efficient XML representation, whereas the other format in addition to efficient XML
representation also has ZIP compression applied, and is labeled EFX_ZIP.

In the following sub-chapters, 6.1.1. to 6.1.3, a short description of the three different sets of
measurements is given. Each of these measurements presents some aspects of Web Services
and performance related to the data being transferred. The results from these measurements
are presented in chapter 6.3, 6.4 and 6.5.

6.1.1 File Sizes

The results related to file sizes presents the file sizes for the four different representation
techniques which were studied. In other words, this measure shows how much smaller the test
data becomes when applying different techniques for reducing the size of the data represented
in the PLAIN format.

 Efficient Web Services on Mobile Devices

Results and Discussion

- 46 -

6.1.2 Data Transfer Prices

Many people would not think that the service price for data transfer to and from a mobile
device is a factor with significant importance. Such an assumption is only partly true. At the
moment, the prices of transferring data in UMTS, EDGE and GPRS networks are depending
hugely on whether you are inland or abroad.

The prices used to compare the cost of different compressions are based on the prices of the
Norwegian company Telenor [1]. These prices are presented in Table 6.1 below, and are from
spring 2007.

Table 6.1 Prices for transmitting data in mobile networks in Norway [1].

Place NOK/MB NOK/KB

Norway* 20 0,01953125

Scandinavia 25 0,02441406

Europe 40 0,0390625

Rest of the world 112,50 0,10986328

 * In Norway the users will not be charged more than 50 NOK
per day. 1 EURO is about 8 NOK, June 2007.

6.1.3 Round Trip Times

The measurement set, named the Round Trip Time (RTT), measures the time from the Web
Service call is performed from the mobile device until all the information is received back at
the mobile device’s Web Service client. This can also be understood as the response time for
the service. The results from these measurements show the benefit in time, of compressing the
data that will be transferred. There were performed both simulated and real mobile network
measurements in relation to the RTT.

The simulated measurements were obtained by use of the National Institute of Standards and
Technology (NIST) Net emulator. NIST Net makes it possible to emulate almost any kind of
network [58]. To achieve the desired behavior of a network, the parameters corresponding to
that network have to be supplied. The parameters used for the simulation of GPRS, EDGE
and UMTS presented here are obtained from Teknisk Ukeblad [16], and are given in Table
6.2.

Table 6.2 Network parameters used for simulation of RTT [16].

Network Upload bandwidth Download bandwidth One-way delay

UMTS 128 Kbps 300 Kbps 120 ms

EDGE 50 Kbps 200 Kbps 200 ms

GPRS 30 Kbps 50 Kbps 350 ms

 Efficient Web Services on Mobile Devices

Results and Discussion

- 47 -

The measurements for both the simulated and real mobile network were obtained by running
the phonebook application on an emulated phone on a laptop. For the simulated
measurements the laptop was connected through a Local Area Network (LAN) connection of
100 Mbps to the NIST Net network emulator. This setup is illustrated in Figure 6.1.

Figure 6.1 Setup for measurements of RTT in simulated environment.

When measuring the effect from a real mobile network, a mobile network card was plugged
into the laptop. This gives the same network connection as a real phone utilizes, as illustrated
in Figure 6.2.

Figure 6.2 Setup for measurements of RTT in real environment.

The results from the RTT measurements are presented in chapter 6.5

Laptop running the
phonebook Web

Service client

Mobile network

base station

Server running the
phonebook Web

Service

Connection
through the

Internet

UMTS and GPRS

connection

Laptop running the
phonebook Web

Service client

Computer running
the NIST Net

network emulator

Server running the
phonebook Web

Service

100 Mbps LAN 100 Mbps LAN

 Efficient Web Services on Mobile Devices

Results and Discussion

- 48 -

6.2 The test data

To be able to perform the different measurements there was a need for some amount of test
data. This data was based on the address format described in chapter 4.5, and is shown in
Figure 6.3.

Figure 6.3 The Address format that forms the basis for the measurements

The data used for measurements was XML files with different size on the PLAIN format as
presented in Figure 6.3. A description of how these test sets were obtained is given in chapter
5.2. Initially, the files were in the PLAIN format only, and the ZLIB, EFX and EFX_ZIP
formats were generated from this. The names and sizes of the test sets in the different formats
are presented in Table 6.3. The sizes of the test sets in the different formats are important
results in themselves, and are presented and discussed more thoroughly in sub-chapter 6.3.
They do, however, also form the basis for the results presented in sub-chapter 6.4 and 6.5, and
for that reason they are presented here. For a complete presentation of these files the reader
can take a look in appendix C.

<?xml version="1.0" encoding="UTF-8"?>

<tns:ContactBook xmlns:tns="http://johnsrud.no/AddressBookSh"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://johnsrud.no/AddressBookSh xsd0.xsd" >

 <contacts>

 <firstName>Anne</firstName>

 <lastName>Borgundvaag</lastName>

 <phoneNumber>98032836</phoneNumber>

 <eMail>borgundvaag67@stud.ntnu.no</eMail>

 <Address>Uranienborgv. 11 E</Address>

 <PostalCode>0351</PostalCode>

 <Town>Oslo</Town>

 </contacts>

 <contacts>

 <firstName>Anne</firstName>

 <lastName>Clausen</lastName>

 <phoneNumber>94332503</phoneNumber>

.

.

.

.

 <eMail>wikborg75@stud.ntnu.no</eMail>

 <Address>Haukelibakken 8</Address>

 <PostalCode>0775</PostalCode>

 <Town>Oslo</Town>

 </contacts>
</tns:ContactBook>

 Efficient Web Services on Mobile Devices

Results and Discussion

- 49 -

Table 6.3 The test data used in the measurements.

Test set PLAIN Size

in bytes

ZLIB Size in

bytes

EFX Size in

bytes

EFX_ZIP Size

in bytes

File 1 507 303 69 69

File 2 1 556 485 295 246

File 3 2 081 595 427 346

File 4 4 471 972 979 691

File 5 6 347 1 183 1 329 908

File 6 8 769 1 567 1 902 1 252

File 7 11 883 1 892 2 485 1 580

File 8 12 913 2 063 2 690 1 719

File 9 15 291 2 425 3 303 2 046

File 10 16 280 2 482 3 558 2 060

File 11 18 134 2 591 3 805 2 264

File 12 19 125 3 033 4 209 2 596

File 13 23 608 3 301 4 903 2 874

File 14 24 309 3 584 5 267 3 127

6.3 File Sizes

The most important factor regarding improved Web Service on mobile devices is probably
related to file size. The reason for this is that all the other results are somehow related to how
big the data is. One of the big problems in adopting Web Services to mobile devices, is the
huge overhead of traditional XML. XML files contain a considerable quantity of overhead
data, so a relatively large decrease of the file size should be expected independently of which
technique is being applied. In this chapter we will have a look at the effect on the file sizes of
the different methods that have been studied.

The first thing that can be looked into is the size of the test data represented in different
formats and with applied compression. In Figure 6.4, it is clear that all other representation
than the original XML, PLAIN, produce smaller files.

 Efficient Web Services on Mobile Devices

Results and Discussion

- 50 -

0

5000

10000

15000

20000

25000

Fi
le
 1

Fi
le
 2

Fi
le
 3

Fi
le
 4

Fi
le
 5

Fi
le
 6

Fi
le
 7

Fi
le
 8

Fi
le
 9

Fi
le
 1
0

Fi
le
 1
1

Fi
le
 1
2

Fi
le
 1
3

Fi
le
 1
4

Test set

N
u
m
b
e
r
o
f
b
y
te
s

PLAIN:

ZLIB:

EFX:

EFX_ZIP:

Figure 6.4 File sizes of the test data represented in different formats.

At first sight, it might seem that the ratio between the PLAIN files and the other
representations increases with the file size. However, by calculating the percentage of the
original file sizes, as shown in Figure 6.5, the picture alters. As could be expected, the ZLIB
format performs poor when the file is small, but performs better and better the larger the
original file is. Compression algorithms need a certain amount of data before their algorithms
reduce the data sizes. The next approach shown in the same figure as EFX, takes a
fundamentally different approach by representing the information in the efficient XML
format. The principal of this format is that a lot of the overhead introduced by traditional
XML is removed, which has been thoroughly described in chapter 3.3. As can be seen, this
alone leads to a representation that is more than 70 % smaller than the original size.

The last method to reduce the file size is to apply compression on the EFX representation and
hence both utilize the advantage of smaller original file and compression. This format is
shown as EFX_ZIP in Figure 6.5, and is the one that performs best. This was as expected
since it is a combination of the two other methods described.

 Efficient Web Services on Mobile Devices

Results and Discussion

- 51 -

10

20

30

40

50

60

50
7

1
55
6

2
08
1

4
47
1

6
34
7

8
76
9

11
 8
83

12
 9
13

15
 2
91

16
 2
80

18
 1
34

19
 1
25

23
 6
08

24
 3
09

Size of PLAIN format in bytes

P
e
rc
e
n
ta
g
e
 o
f
th
e
 P
L
A
IN
 f
o
rm
a
t

ZLIB:

EFX:

EFX_ZIP:

Figure 6.5 The percentage of the original XML file size

 when different techniques for reducing the file size are applied.

All in all there is nothing surprising with the obtained results. EFX removes a lot of the
overhead and therefore initially produces much smaller data. However, no compression is
applied so it will be possible to perform better. In this case the ZLIB compression performed
better than EFX when the original PLAIN format exceeded about 5000 bytes. The EFX_ZIP
format performs best at all file sizes since it utilizes the benefits of both of Binary XML and
compression.

One other important discovery that was made during the implementation and testing of the
prototype service, was that mobile devices might not support big files. The target device for
the prototype service developed in this thesis, the Sony Ericsson K610i, did not support http
documents larger than approximately 32 KB. This alone was an important result, because it
tells us that by reducing the size of the information transferred a lot more usable information
can be transferred.

 Efficient Web Services on Mobile Devices

Results and Discussion

- 52 -

6.4 Prices

The price of the data transfers alone constitutes a good reason for reducing the size of the data
transferred between Web Services and mobile devices. In Norway, the use of services that
transfer data are currently charged based on the amount of data being transferred. This
principal prevails regardless of whether the users are in their own country or abroad. The only
difference is that each MB transferred in an abroad country has a higher price, as previously
shown in Table 6.1. Even though a lot of people would not consider this a big problem at the
first glance, they might be shocked when the bill arrives after spending some time abroad,
either on a business travel or on a vacation. To reduce this impact, it might be a good idea to
apply different compression techniques on the data that will be transferred to a Web Service
client on a mobile device. Figure 6.6 and 6.7 illustrates the effect in NOK of the different
formats studied in this thesis. The prices in Figure 6.6 are based on the file, File 1, of size 507
bytes in the PLAIN format.

0

0,01

0,02

0,03

0,04

0,05

0,06

Norway Scandinavia Europe Rest of the world

Place of the transfer

P
ri
c
e
 o
f
th
e
 t
ra
n
s
fe
r
in
 N
O
K

PLAIN:

ZLIB:

EFX:

EFX_ZIP:

Figure 6.6 Price to transfer File 1, the smallest file in the test set, in different places in the world.

In Figure 6.7 the equivalent prices are presented, but this time it is the biggest file in the test
set, File 14, of size 24 309 bytes in the PLAIN format that is presented.

 Efficient Web Services on Mobile Devices

Results and Discussion

- 53 -

0

0,5

1

1,5

2

2,5

3

Norway Scandinavia Europe Rest of the world

Place of the transfer

P
ri
c
e
 o
f
th
e
 t
ra
n
s
fe
r
in
 N
O
K

PLAIN:

ZLIB:

EFX:

EFX_ZIP:

Figure 6.7 Prices of different formats based on the test set named File 14.

As can be seen above, there is a huge advantage in applying any of the techniques to reduce
the size of the data being transferred. For both the smallest and the largest file, illustrated in
Figure 6.6 and 6.7, the difference between the EFX with ZIP, EFX_ZIP, and plain XML,
PLAIN, is at least a factor of 7. This means that you have to pay more than seven times more
if you use a Web Service that is based on plain XML compared to one that uses a combination
of efficient XML and ZIP. As can be seen in the figure, the difference between the three
techniques applied to reduce the size of the data is less significant. This indicates that if one
has to choose one of the techniques, other factors should be taken into account. More
generally it should be understood that the price is related to the file size, and for a more
general comparison of the formats, the reader is advised to read the chapter 6.3 about file size.

The single most important thing that should be noticed is that for all the test data used in this
thesis, there is always one technique that reduces the size of the data, and thereby the price of
the transfer by at least a factor of seven. If the amount of data being consumed by the Web
Service client is huge, this would lead to a significant amount of money being saved.

 Efficient Web Services on Mobile Devices

Results and Discussion

- 54 -

6.5 Round Trip Times results

In the following sub-chapters, we will have a look at the time it takes to retrieve the
information from the service in the different formats that are implemented in the prototype
service. We will have a look at the three most widely deployed technologies for data transfer
to mobile devices today, namely UMTS, EDGE and GPRS. Many people will argue that
GPRS is an obsolete technology, this is however not the case. An example might be a user
contacting a weather service from his or her cabin high up on the mountain. In situations like
this, GPRS might be the only possible connection for data transfer. RTT measurements from
both real connections as well as simulated connection will be presented. The parameters used
for simulation in this sub-chapter are given in Table 6.2 in sub-chapter 6.1.3, but are presented
here as well for readability.

6.5.1 UMTS results

For UMTS both measurements in the real network and in a simulated environment were
performed. The parameters employed for the simulation were:

• upload speed: 128 Kbps
• download speed: 300 Kbps
• one-way delay: 120 ms

These parameters led to results that were very close to the ones obtained in the real
network. The diagram for the simulated result can be seen in Figure 6.8, and is based on
the average of 6 measurements.

 Efficient Web Services on Mobile Devices

Results and Discussion

- 55 -

600

800

1000

1200

1400

1600

Fi
le
 1

Fi
le
 2

Fi
le
 3

Fi
le
 4

Fi
le
 5

Fi
le
 6

Fi
le
 7

Fi
le
 8

Fi
le
 9

Fi
le
 1
0

Fi
le
 1
1

Fi
le
 1
2

Fi
le
 1
3

Fi
le
 1
4

Test set

T
im
e
 t
o
 r
e
ri
e
v
e
 i
n
fo
rm
a
ti
o
n
 i
n
 m
s

PLAIN:

ZLIB:

EFX:

EFX_ZIP:

Figure 6.8 Results of UTMS simulation.

The results for the real UMTS network were obtained by using an UMTS card in a laptop. For
each format and data set, 200 measurements were performed. The averages of these
measurements are presented in Figure 6.9.

 Efficient Web Services on Mobile Devices

Results and Discussion

- 56 -

600

800

1000

1200

1400

1600

Fi
le
 1

Fi
le
 2

Fi
le
 3

Fi
le
 4

Fi
le
 5

Fi
le
 6

Fi
le
 7

Fi
le
 8

Fi
le
 9

Fi
le
 1
0

Fi
le
 1
1

Fi
le
 1
2

Fi
le
 1
3

Fi
le
 1
4

Test set

T
im
e
 t
o
 r
e
ri
e
v
e
 i
n
fo
rm
a
ti
o
n
 i
n
 m
s

PLAIN:

ZLIB:

EFX:

EFX_ZIP:

Figure 6.9 UMTS times from measurements in real networks.

As can be seen in both Figure 6.8 and 6.9 above, the PLAIN XML files are the only ones that
separate themselves. With the largest test data, File 14, the time to transfer the data in the
PLAIN format was twice the time of all the three other formats studied. For the three other
formats the main part of the transfer time seems to be related to the latency.

6.5.2 EDGE results

Regarding the EDGE measurements, there did not exist any way to lock the data card in the
laptop to the EDGE service, so the results presented here are based on the simulated
measurements. The parameters used for the simulation were:

• upload: 50 Kbps
• download: 200 Kbps

 Efficient Web Services on Mobile Devices

Results and Discussion

- 57 -

• one-way delay: 200 ms

The results of this simulation, as an average of 6 measurements of each format, are shown in
Figure 6.10.

500

1000

1500

2000

2500

Fi
le
 1

Fi
le
 2

Fi
le
 3

Fi
le
 4

Fi
le
 5

Fi
le
 6

Fi
le
 7

Fi
le
 8

Fi
le
 9

Fi
le
 1
0

Fi
le
 1
1

Fi
le
 1
2

Fi
le
 1
3

Fi
le
 1
4

Test set

T
im
e
 t
o
 r
e
ri
e
v
e
 i
n
fo
rm
a
ti
o
n
 i
n
 m
s

PLAIN:

ZLIB:

EFX:

EFX_ZIP:

Figure 6.10 Results for the EDGE simulation.

The first thing to take notice of in Figure 6.10, is that the time for the smallest test data,
File 1, has increased with about 200 ms compared to the UMTS results. The main part of this
can be expected to be a result of the added time related to the one-way delay, which increased
from 120 ms to 200 ms for EDGE. This alone led to an 80 ms increase in the time for each
message transferred. For the biggest file in the test data, File 14, the picture is a bit different.
For the PLAIN format, the time has increased with 750 ms compared to UMTS, almost all of
this is expected to be a result of the reduced bandwidth. For the ZLIB, EFX and EFX_ZIP
formats, the file sizes are kept small for all the data in the test sets, and hence the major
difference between transfer in UMTS and EDGE networks is related to the delay.

 Efficient Web Services on Mobile Devices

Results and Discussion

- 58 -

6.5.3 GPRS results

The last RTT that was looked into was GPRS. As for UMTS, both simulated and real network
measurements were performed. The parameters used for the simulation were:

• upload: 30 Kbps,
• download: 50 Kbps
• one-way delay: 350 ms.

The measurements in the real network were performed on a laptop with a mobile data card
locked to the GPRS network. The results of the simulation are based on the average of 6
measurements for each file in each format, and are presented in Figure 6.11.

1500

2500

3500

4500

5500

6500

Fi
le
 1

Fi
le
 2

Fi
le
 3

Fi
le
 4

Fi
le
 5

Fi
le
 6

Fi
le
 7

Fi
le
 8

Fi
le
 9

Fi
le
 1
0

Fi
le
 1
1

Fi
le
 1
2

Fi
le
 1
3

Fi
le
 1
4

Test set

T
im
e
 t
o
 r
e
ri
e
v
e
 i
n
fo
rm
a
ti
o
n
 i
n
 m
s

PLAIN:

ZLIB:

EFX:

EFX_ZIP:

Figure 6.11 Results from the GPRS simulation.

 Efficient Web Services on Mobile Devices

Results and Discussion

- 59 -

In the real GPRS network 30 measurements were performed for each file in each format. The
average of these measurements is presented in Figure 6.12, and as can be seen, the results
from the simulation and the real network did not give the same results.

1500

2500

3500

4500

Fi
le
 1

Fi
le
 2

Fi
le
 3

Fi
le
 4

Fi
le
 5

Fi
le
 6

Fi
le
 7

Fi
le
 8

Fi
le
 9

Fi
le
 1
0

Fi
le
 1
1

Fi
le
 1
2

Fi
le
 1
3

Fi
le
 1
4

Test set

T
im
e
 t
o
 r
e
ri
e
v
e
 i
n
fo
rm
a
ti
o
n
 i
n
 m
s

PLAIN:

ZLIB:

EFX:

EFX_ZIP:

Figure 6.12 Average times of the real GPRS network.

When comparing the results in Figure 6.11 and Figure 6.12 one can notice only is a slight
difference in the elapsed time for the smallest test data, which indicates that the delay is
correct. However, for the largest transfer, the simulated result takes more than 2000 ms more
to finish. This tells us that the download bandwidth for these measurements is higher than
those used in the simulation. So a user can expect a download bandwidth that is higher than
50 Kbps.

A closer look at the results obtained from the real GPRS network paints much of the same
picture as for UMTS and EDGE. Initially, the largest part of the time is related to the delay,
which in this case adds up to more than 1500 ms. For all the three formats that are alternative

 Efficient Web Services on Mobile Devices

Results and Discussion

- 60 -

representation of the original xml files, the delay is the major part of the RTT. The RTT
increases slightly as the size of the test data increases, but not nearly as much as for the
original xml files. For the largest file in the test data, File 14, the PLAIN format takes more
than 2000 ms more, or about twice the time to transfer than the three other formats.

6.6 Final Words on the Results

Throughout chapter 6.3 to 6.5 the executed measurements related to representing XML in
other formats have been presented. First, the benefits in term of reducing file sizes were
shown. It was demonstrated that both compression, ZLIB, and Binary XML, EFX, give
considerably smaller files. However, ZLIB needs a certain amount of data to perform as well
as EFX. If compression is applied to the EFX format, a format that produces the smallest files
for all the data in the test set is achieved.

Two facts that indicate that EFX should be the preferred format over ZLIB are the limited
processing power and memory on mobile devices. ZLIB is an intermediate format that needs
decompression before it can be further processed, thereby leading to processing overhead that
consumes time and battery lifetime. In contrast, EFX can be processed immediately. The
other problem with ZLIB is that when it is decompressed, the resulting data has the same
memory footprint as the original XML, whereas EFX produces a much smaller memory
footprint. The latter is the preferred situation on mobile devices with limited memory.

In relation to the cost of Web Services use, ZLIB, EFX and EFX_ZIP all give a significant
saving over the PLAIN format. EFX_ZIP will reduce the cost with at least a factor of 7 for all
the data in the test set used here. It should be noted that the ZLIB format does not perform
well when it is applied on small data. For this reason it should be avoided in conjunction to
cost when the Web Service client and server mainly exchange small amount of data.

The impact the different formats had on the RTT, or response times, were also investigated.
The first thing that was noted, was that for the small test files all the formats took almost the
same time to retrieve the information. This was confirmed both by measurements in real
UMTS and GPRS networks and in simulated UMTS, EDGE and GPRS networks. This tells
us that when the data that are transferred by a Web Service mainly consists of small messages,
the possible benefit, in term of reduced response time, is limited in conjunction with
representing the data in other formats to reduce the size of the messages. To get a better
response time in these situations, stack optimization may be the solution. However, when the
data in the test files got larger, the response time was significantly reduced when representing
the data in ZLIB, EFX or EFX_ZIP. For the largest file in the test set, the response time for all
these formats were about half that of the PLAIN format for all the networks. Both the
simulated and real networks confirmed this. So the possible benefits of more compact
representation of the information increases as the amount of data transferred increases.

To achieve better response time, both for small and large files, the possible optimization to the
stack proposed in chapter 3.5 should be investigated further. If for example the number of
messages exchanged between the server and client could be reduced from 4 to 2, it would
probably lead to a reduction to almost half the response time. However, further study and
measurements are needed to say anything certain about this. The processing times needed for

 Efficient Web Services on Mobile Devices

- 61 -

the different formats should also be studied in detail to give a good foundation for choice of
the most appropriate format for different situations.

 Efficient Web Services on Mobile Devices

Conclusion

- 62 -

7 Conclusion

Mobile devices which were initially meant to be peripheral voice call devices have now
become small computers that are expected to do almost anything anywhere. In connection
with this, the desire to employ Web Services from mobile devices has increased considerably.
However, there are issues that need to be addressed in order to obtain satisfactory services.
Although there has been an introduction of high-speed mobile packet-switched networks like
EDGE and UMTS, the large information overhead of XML and the protocol stack of Web
Services may cause an unacceptable response time. The reason for this is the limited
bandwidth and high latency of wireless links. In addition, the usage of these networks is
usually charged based on the amount of data transferred, which may lead to high cost of use
for Web Services. This thesis identifies two main approaches to overcome these challenges;
reducing the size of XML information and optimizing the communication stack.

Several techniques to reduce the size of the XML exchanged between the Web Service and
the mobile device have also been examined. Three methods were applied on the original XML
information to reduce its size; ZLIB compression, EFX binary XML, and EFX_ZIP, the latter
being a combination of binary XML and compression. The effect this had was studied in a
phonebook prototype Web Service developed for measurements use. ZLIB, EFX and
EFX_ZIP all produced files that were smaller than 25 % of the original files, with an
exception for the combination of small files and ZLIB. The immediate effect of a reduction of
data size is reduced costs of transfer. Data transfer on mobile devices is usually charged per
byte, and therefore less data sent and received leads to reduced costs. Furthermore, it was
identified that the mobile device used in this study, had limitations regarding how large files it
could handle. By utilizing one of the smaller formats proposed, much more information can
be transferred before this limit is reached.

The measurements of the response time showed that ZLIB, EFX and EFX_ZIP had almost the
same response time. However, these formats led to about half the response time of the PLAIN
format for the largest files in the test. This shows that when the files are large, the limited
bandwidth contributes to a significant part of the response time and implies that one of the
smaller formats should be used. This difference between the formats decreased as the file size
decreased, and for the smallest files, the PLAIN and the other three formats had almost the
same response time. Both the simulated and the real network measurements confirmed these
results for UMTS, EDGE and GPRS networks. Since the response time is about equal for all
the formats for small files, this indicates that the main part of the response time is caused by
the latency in this situation. To reduce the response time more, protocol stack optimization
seems to be the solution. Since SOAP is independent of underlying protocols it should be
possible to remove unnecessary protocols from the stack; HTTP might be one protocol that
can be removed. In addition, TCP does not perform well over wireless links, so it should
either be optimized for such links or be replaced by a protocol that better meets the challenges
of such wireless links.

Concerning the cost of using Web Services from mobile devices, all the formats, ZLIB, EFX
and EFX_ZIP reduce the cost as well as the response time compared to the PLAIN format.
However, this thesis cannot conclude that one of the formats is better than the others. To draw
such a conclusion more investigation of the processing times, memory footprints etc. have to
be studied. The EFX format does, however, seem to have great potential since it is not an

 Efficient Web Services on Mobile Devices

Conclusion

- 63 -

intermediate format such as ZLIB. Thereby it can be processed directly, it is kept small and
does not increase in size like the ZLIB format does after decompression.

Reducing the size of XML is concluded to be a good solution both for reducing the cost and
the response time when accessing Web Services from mobile devices, however, stack
optimization should be investigated to clarify its potential to further increase the performance.

7.1 Future Work

This report illustrates the possibly huge benefits of reducing the size of XML information
both in terms of response time and costs. There is, however, a need to study other
characteristics of the formats dealt with in this thesis. Processing times for all the formats are
one area that is very important in conjunction with their usability on mobile devices. The
proposed optimization of the stack should also be studied. Especially optimizing TCP for
wireless links, or even change it with another protocol, seems to have great potential for
reducing the response time of Web Services. This should be implemented, and measurements
should be performed to identify possible benefits. It was also identified that the parser used
for Efficient XML did not handle the Norwegian letters æ, æ and å, and this should also be
investigated.

 Efficient Web Services on Mobile Devices

Bibliography

- 64 -

Bibliography

[1] Telenor. “Priser for bruk av GPRS, EDGE og UMTS i utlandet”. Norway: Telenor.

http://telenormobil.no/priser/iutlandet/gprs/

[2] Kangasharju, J., Tarkoma, S., Raatikainen, K. “Comparing SOAP Performance for
Various Encodings, Protocols, and Connections“. Finland: Helsinki Institute for
Information Technology. (File included)

[3] Lai, K. Y., Phan, A. K. T., Tari, Z. “Efficient SOAP binding for mobile Web

services”. Australia: IEEE, 2005.

[4] White, G., Kangasharju, J., Brutzman, D., Williams, S. “Efficient XML Interchange
Measurements Note”. W3C: July 2007.

 http://www.w3.org/TR/exi-measurements/

[5] IBM. “Extend the value of your core business systems”. USA: IBM, September 2006.
 (File included)

[6] Nagappan, R., Skoczylas, R., Sriganesh, R. P. “Developing Java Web Services”. USA:

Wiley Publishing Inc., 2003.

[7] Thanh, D. V. “Guest editorial - Future mobile phones”. Norway: Telektronikk, vol.

101 No. 3/4, page 1 - 2, 2005.

[8] Jerz, M. “Nokia N95 review”. My-Symbian.com., February 2006.

http://my-symbian.com/s60v3/review_n95.php, visited 10.08.07.

[9] Wikipedia. “Smartphone”. Wikipedia., 2007.
http://en.wikipedia.org/wiki/Smartphone, visited 05.06.07.

[10] Sun Microsystems. “Connected Limited Device Configuration”. USA: Sun
Microsystems., March 2003. (File included)

[11] Open Mobile Terminal Platform. “OMTP Java with focus on CDC: Definition and

Requirements”. OMYP Ltd. January 2006. (File included)

[12] Howorth, R. “Sun details open-source plan for J2ME”. IT Week, August 2006.

http://www.itweek.co.uk/itweek/news/2162369/sun-details-open-source-plan, visited
01.06.07

[13] Sun Microsystems. “CLDC Hot Spot Implementation Virtual Machine”. USA: Sun
Microsystems, February 2005. (File included)

[14] Sun Microsystems. “Mobile Information Device Profile”. USA: Sun Microsystems,

April 2006. (File included)

 Efficient Web Services on Mobile Devices

Bibliography

- 65 -

[15] Oritz, C. E. “Understanding the Web Services Subset API for Java ME”. Sun
 Microsystems, March 2006.

[16] Valmot, O. R. “Mobilt internet med fart”. Norway: Teknisk Ukeblad, vol. 16, page 26

- 27, 2007.

[17] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F. “Extensible

Markup Language (XML) 1.0 (Fourth Edition)”. W3C, September 2006.

[18] Wikipedia. “PKZIP”. Wikipedia, 2007.
 http://en.wikipedia.org/wiki/PKZIP, visited 18.04.07.

[19] Deutsch, P. “RFC 1951: DEFLATE Compressed Data Format Spesification version

1.3”. IETF, May 1996.

[20] Ziv, J., Lempel, A. “ A Universal Algorithm for Sequential Data Compression”. IEEE

transactions on information theory, vol. IT-23, No. 3, May 1977.

[21] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. “ Introduction to Algorithms”.

USA: The MIT Press, 2001.

[22] Adler, M. “ZLIB Home Site”. ZLIB, 2007.
 http://www.zlib.net/, visited 19.04.07.

[23] Deutsch, P. “RFC 1952: GZIP file format specification version 4.3”. IETF, May 1996.
 http://tools.ietf.org/html/rfc1952.

[24] Deutsch, P., Gailly, J-L. “RFC 1950: ZLIB Compressed Data Format Spesification

version 3.3”. IETF, May 1996.
 http://tools.ietf.org/html/rfc1950.

[25] Suciu, D., Liefke, H. “XMill: An Efficient Compressor for XML”. XMill, 2004.
 http://www.liefke.com/hartmut/xmill/xmill.html, visited 23.04.07.

[26] Cokus, M., Pericas-Geertsen, S. “XML Binary Characterization Use Cases”. W3C,

March 2005.
 http://www.w3.org/TR/xbc-use-cases/.

[27] W3C. “XML Binary Characterization Working Group Public Page”. W3C, 2005.
 http://www.w3.org/XML/Binary/.

[28] Goldman, O., Lenkov, D. “XML Binary Characterization”. W3C, March 2005.
 http://www.w3.org/TR/xbc-characterization/.

[29] W3C. “Efficient XML Interchange Working Group”. W3C, 2007.
 http://www.w3.org/XML/EXI/.

 Efficient Web Services on Mobile Devices

Bibliography

- 66 -

[30] Dawson, F., Howes, T. “RFC 2426: vCard MIME Directory Profile”. IETF,
September 1998.

 http://www.ietf.org/rfc/rfc2426.txt.

[31] AgileDelta. “AgileDelta Home Site”. AgileDelta, 2007.
 http://www.agiledelta.com/, visited 08.06.07.

[32] ITU-T Study Group 17. “ITU-T rec. X.891 Information technology – Generic

applications of ASN.1: Fast infoset”. ITU-T, May 2005. (File included)

[33] Schneider, J., Kamiya, T. “Efficient XML Interchange (EXI) Format 1.0”. W3C, July

2007.
http://www.w3.org/TR/exi/.

[34] AgileDelta. “Performance and Features Site”. AgileDelta, 2007.
 http://www.agiledelta.com/efx_perffeatures.html, visited 03.07.07.

[35] Audestad, J. A. “Protocol Design: Principles and Methods”. Norway: Tapir

Akademiske Forlag, 2004.

[36] ITU-T Study Group 17. “ITU-T rec. X.693 Information technology – ASN.1

enccoding rules: XML Encoding Rules (XER)”. ITU-T, December 2001. (File
 included)

[37] ITU-T Study Group 17. “ITU-T rec. X.694 Information technology – ASN1 encoding

rules: Mapping W3C XML schema definitions into ASN.1”. ITU-T, January 2004.
(File included)

[38] Sandoz, P., Pericas-Geertsen, S., Kawaguchi, K., Hadley, M., Pelegeri-Llopart, E.

“Fast Web Services”. Sun Developer Network, August 2003.
http://java.sun.com/developer/technicalArticles/WebServices/fastWS/index.html,
visited 09.06.07.

[39] Sandoz, P. “Fast Infoset and the Pragmatic SOA Approach”. Sun Developer Network,
October 2005.
http://java.sun.com/developer/technicalArticles/WebServices/soa2/fastinfoset-soa.htm,
visited 09.06.07.

[40] Mitra, N., Lafon, Y. “SOAP Version 1.2 Part 0: Primer (Second Edition)”. W3C, April
2007.
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/.

[41] Hirsch, F., Kemp, J., Ilka, J. “Mobile Web Services, Architecture and
Implementation”. England: John Wiley & Sons, Ltd., 2006.

[42] Tanenbaum, A. S. “Computer Networks”. USA: Prentice Hall PTR, 1996.

[43] Thanh, D. V., Jørstad, I., Thuan, D. V. “Fetching home music - Sending photos home”

Norway: Telektronikk, vol. 101 No. 3/4, page 123 - 130, 2005.

 Efficient Web Services on Mobile Devices

Bibliography

- 67 -

[44] Sun Microsystems. “Java 2 Platform, Micro Edition (J2ME) Web Services”. USA:

Sun Microsystems, July 2004.

[45] Eclipse. “Eclipse – an open development platform Home Site”. Eclipse, 2007.
 http://www.eclipse.org/, visited 13.03.07.

[46] Eclipse. “Web Tools Platform (WTP) Project Site”. Eclipse, 2007.
 http://www.eclipse.org/webtools/main.php, visited 15.03.07.

[47] Sun Developer Network. “Java SE at a Glance”. Sun Developer Network, 2007.
 http://java.sun.com/javase/, visited 04.03.07.

[48] The Apache Software Foundation. “The Apache Software Foundation Home Site”.

The Apache Software Foundation, 2007.
 http://www.apache.org/, visited 28.03.07.

[49] The Apache Software Foundation. “ Apache Axis2/Java Site”. The Apache Software

Foundation, 2007.
 http://ws.apache.org/axis2/index.html, visited 01.04.07.

[50] Sony Ericsson Mobile Communications AB. “K610 White Paper”. Sony Ericsson

Mobile Communications, July 2006. (File included)

[51] Source-Code.biz. “Base64 encoder/decoder in Java”. Source-Code.biz, 2007.
 http://www.source-code.biz/snippets/java/2.htm, visited 02.05.07.

[52] JCraft. “JZlib – zlib in pure Java”. JCraft, 2005.
 http://www.jcraft.com/jzlib/, visited 11.05.07.

[53] Docjar. “java.io Class FilterInputStream”. Docjar, 2007
 http://www.docjar.com/docs/api/java/io/FilterInputStream.html, visited 12.05.07.

[54] Telefonkatalogen. “Finn telefonnummer i Norges største telefonkatalog”.

Gulesider.no, 2007.
 http://www.gulesider.no/tk/index.c, visited 17.06.07.

[55] AgileDelta. “Getting Started with Efficient XML 2.0”. AgileDelta, 2006. (File

included)

[56] Sun Developer Network forum. “Error when invoking WebService from WTK 2.5

client”. Sun Developer Network, December 2006.
http://forum.java.sun.com/thread.jspa?threadID=793461&tstart=135, visited 16.04.07.

[57] Efficient XML Support. “Email from: efx@agiledelta.com regarding EFXProperty,
ZIP, in J2ME”. AgileDelta, May 2007.

 Efficient Web Services on Mobile Devices

Bibliography

- 68 -

[58] Carson, M., Darrin, S. “NIST Net – A Linux-based Network Emulation Tool”.
National Institute of Standards and Technology. (File included)

The files marked File included can be found in the directory literature/ in the ZIP file
Lars_Johnsrud_master_files.zip, which follows this report.

- 69 -

Appendix A WSDL File for the Phonebook Web Service

This is the WSDL file that forms the basis for the Phonebook Web Service described in
chapter 4 and 5.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns2="http://johnsrud.no/AddressBook1/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="AddressBook1"

targetNamespace="http://johnsrud.no/AddressBook1/">

 <wsdl:types>

 <xsd:schema targetNamespace="http://johnsrud.no/AddressBook1/">

 <xsd:element name="getNumberPlainAsString">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="name" type="xsd:string"></xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="getNumberPlainAsStringResponse">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="numberPlainAsString"

type="xsd:string"></xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="getNumberZlibAsString">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="name" type="xsd:string"></xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="getNumberZlibAsStringResponse">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="numberZlibAsString"

type="xsd:string"></xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="getNumberEfxAsString">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="name" type="xsd:string"></xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="getNumberEfxAsStringResponse">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="numberEfxAsString"

type="xsd:string"></xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="getNumberEfxAndZlibAsString">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="in" type="xsd:string"></xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="getNumberEfxAndZlibAsStringResponse">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="out" type="xsd:string"></xsd:element>

- 70 -

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="getNumberNotInUse">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="in" type="xsd:string"></xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="getNumberNotInUseResponse">

 <xsd:complexType>

 <xsd:sequence>

<xsd:element name="out" type="xsd:string"></xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

</xsd:schema>

</wsdl:types>

 <wsdl:message name="getNumberPlainAsStringRequest">

<wsdl:part name="parameters" element="tns2:getNumberPlainAsString"></wsdl:part>

 </wsdl:message>

 <wsdl:message name="getNumberPlainAsStringResponse">

<wsdl:part name="parameters" element="tns2:getNumberPlainAsStringResponse"></wsdl:part>

 </wsdl:message>

 <wsdl:message name="getNumberZlibAsStringRequest">

<wsdl:part name="parameters" element="tns2:getNumberZlibAsString"></wsdl:part>

 </wsdl:message>

 <wsdl:message name="getNumberZlibAsStringResponse">

<wsdl:part name="parameters" element="tns2:getNumberZlibAsStringResponse"></wsdl:part>

 </wsdl:message>

 <wsdl:message name="getNumberEfxAsStringRequest">

<wsdl:part name="parameters" element="tns2:getNumberEfxAsString"></wsdl:part>

 </wsdl:message>

 <wsdl:message name="getNumberEfxAsStringResponse">

<wsdl:part name="parameters" element="tns2:getNumberEfxAsStringResponse"></wsdl:part>

 </wsdl:message>

 <wsdl:message name="getNumberEfxAndZlibAsStringRequest">

<wsdl:part name="parameters" element="tns2:getNumberEfxAndZlibAsString"></wsdl:part>

 </wsdl:message>

 <wsdl:message name="getNumberEfxAndZlibAsStringResponse">

<wsdl:part name="parameters"

element="tns2:getNumberEfxAndZlibAsStringResponse"></wsdl:part>

 </wsdl:message>

 <wsdl:message name="getNumberNotInUseRequest">

<wsdl:part name="parameters" element="tns2:getNumberNotInUse"></wsdl:part>

 </wsdl:message>

 <wsdl:message name="getNumberNotInUseResponse">

<wsdl:part name="parameters" element="tns2:getNumberNotInUseResponse"></wsdl:part>

 </wsdl:message>

 <wsdl:portType name="AddressBook1">

 <wsdl:operation name="getNumberPlainAsString">

<wsdl:input message="tns2:getNumberPlainAsStringRequest"></wsdl:input>

<wsdl:output message="tns2:getNumberPlainAsStringResponse"></wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getNumberZlibAsString">

 <wsdl:input message="tns2:getNumberZlibAsStringRequest"></wsdl:input>

 <wsdl:output message="tns2:getNumberZlibAsStringResponse"></wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getNumberEfxAsString">

 <wsdl:input message="tns2:getNumberEfxAsStringRequest"></wsdl:input>

 <wsdl:output

message="tns2:getNumberEfxAsStringResponse"></wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getNumberEfxAndZlibAsString">

<wsdl:input message="tns2:getNumberEfxAndZlibAsStringRequest"></wsdl:input>

<wsdl:output message="tns2:getNumberEfxAndZlibAsStringResponse"></wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getNumberNotInUse">

 <wsdl:input message="tns2:getNumberNotInUseRequest"></wsdl:input>

 <wsdl:output message="tns2:getNumberNotInUseResponse"></wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

- 71 -

 <wsdl:binding name="AddressBook1SOAP" type="tns2:AddressBook1">

 <soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="getNumberPlainAsString">

<soap:operation

 soapAction="http://johnsrud.no/AddressBook1/getNumberPlainAsString" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getNumberZlibAsString">

 <soap:operation

 soapAction="http://johnsrud.no/AddressBook1/getNumberZlibAsString" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getNumberEfxAsString">

 <soap:operation

 soapAction="http://johnsrud.no/AddressBook1/getNumberEfxAsString" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getNumberEfxAndZlibAsString">

 <soap:operation

 soapAction="http://johnsrud.no/AddressBook1/getNumberEfxAndZlibAsString"

/>

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getNumberNotInUse">

 <soap:operation

 soapAction="http://johnsrud.no/AddressBook1/getNumberNotInUse" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="AddressBook1">

 <wsdl:port binding="tns2:AddressBook1SOAP" name="AddressBook1SOAP">

 <soap:address location="http://82.147.56.98:8080/axis2/services/"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

- 72 -

Appendix B Source Code for the Phonebook Web Service

The source code related to this thesis can be found in the ZIP file
Lars_Johnsrud_master_files.zip, which follows this report. All the development has been
performed with the Eclipse development tool.

Server: The source code for the server can be found in the directory:
development/AddressBook3.

Client: The source code for the client can be found in the directory:
development/AddressBook3Client.

- 73 -

Appendix C Test Data Used for Measurements

The test data used in the measurements performed in this thesis can be found in the ZIP file
Lars_Johnsrud_master_files.zip, which follows this report.

The files shown in Table C.1 can be found in the directory data/. Each file is in the PLAIN,
EFX and EFX_ZIP format in this directory. The files have file extensions corresponding to
their format.

Table C.1 Test data used in the measurements

Test set Name PLAIN Size

in bytes

ZLIB Size

in bytes

EFX Size

in bytes

EFX_ZIP Size

 in bytes

File 1 Fredrik.xml 507 303 69 69

File 2 Anne.xml 1 556 485 295 246

File 3 Lars.xml 2 081 595 427 346

File 4 Elin.xml 4 471 972 979 691

File 5 Jostein.xml 6 347 1 183 1 329 908

File 6 Susanne.xml 8 769 1 567 1 902 1 252

File 7 Harald.xml 11 883 1 892 2 485 1 580

File 8 Kristian.xml 12 913 2 063 2 690 1 719

File 9 Trine.xml 15 291 2 425 3 303 2 046

File 10 Marianne.xml 16 280 2 482 3 558 2 060

File 11 Mathias.xml 18 134 2 591 3 805 2 264

File 12 Ida.xml 19 125 3 033 4 209 2 596

File 13 Per.xml 23 608 3 301 4 903 2 874

File 14 Ole.xml 24 309 3 584 5 267 3 127

