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Abstract 
Every production process consists of a large number of dependent and independent variables, which substantially influence 
the quality of the machined parts. Due to the large impact of process variabilities, it is difficult to design optimal models for 
the machining processes. Mathematical or numerical models for production processes are resource driven which are not cost 
effective approaches in terms of computation and economical production. In this article, a new artificial neural network (ANN) 
based predictive model, is introduced which exploits particle swarm optimization (PSO) algorithm to minimize the root mean 
square errors (RMSE) for the network training. This approach can effectively obtain an optimized predictive model that can 
calculate precise output responses for the production processes. In order to verify the proposed approach, two case studies are 
considered from literature and shown to produce significant improvements. Further, the proposed model is validated on 
abrasive water jet machining (AWJM) with industrial garnet abrasives and optimal machining conditions have been obtained 
with optimized responses, which are substantially improved while compared with grey relational analysis (GRA). 

Keywords: Machining process optimization; Predictive model; ANN; PSO; GRA 

1. Introduction 
Optimal designing of production processes has gained tremendous interest from researchers in recent past. In 
industrial production scenario, it is not easy to obtain optimized conditions for production process since a large 
number of design variables are involved which need to be correctly selected for improved responses. 
Interdisciplinary collaborative techniques are followed while producing complex engineering products (Cook and 
Chiu 1998). These require complicated design space due to the nonlinearities exist in mutual relationships among 
dependent and independent process variables. Therefore, it is a difficult process to frame these complex 
relationships in the form of mathematics (Afazov 2013). Accuracy of certain production process is subject to the 
expensive experimental machining data, which is correlated with machining costs, tool cost, labor costs, overhead 
costs, and scrap costs etc. Therefore, data driven models, machine-learning techniques, meta-model or data driven 
approaches could be appropriate in such scenarios (Gröger, Niedermann, and Mitschang 2012). 

The complexities of production of engineering products increase with the number of dependent and independent 
process variables. These type of problems are also termed as NP-Hard or combinatorial problem, which could 
have many near optimal solutions (Bruzzone et al. 2012). For an example, CNC milling machining includes a 
number of design variables such as spindle speed, feed rate, depth of cut, tool diameter, surface roughness, applied 
cutting forces, tool wear, material removal rate etc. For this type of problems, process specific optimization 
approaches are required and universal formulations or models are not prominently available in literature 
(Mukherjee and Ray 2006). Optimization of production process is practically the adjustment of the independent 
design variables in order to obtain better scores for performance indicators. The values of machining variables 
could be obtained from a pre-defined design space defined by the specifications and tolerance values of tools and 
machines.  

Hence, the aim of this article is to portray some suitable hybrid optimization approach, which is process 
independent and obtains optimal solutions promptly. To cater the purpose, Artificial Neural Network (ANN) based 
predictive model is proposed which requires a small amount of process data for the training purpose and a popular 
bio-inspired algorithm called Particle-Swarm Optimization (PSO) is coupled to fine-tune the proposed predictive 
model. The proposed hybrid algorithm takes various design parameters as inputs and produces optimally trained 
predictive model, which is capable of producing improved process output. Root Mean Square Error (RMSE) is 
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used as the performance metric for the predictive models. The proposed algorithm is tested and validated with 
three cases out of which two cases (CNC micro milling and water-in-diesel emulsification processes) are collected 
from literature and one (abrasive water jet machining) has been conducted in laboratory. Rest of the article is 
divided as, a detailed literature survey discussed in section #2, proposed predictive model portrayed in section #3, 
experimentations and results are demonstrated in section #4, followed by conclusions in section #5. 

2. Related Works      
Automated machining processes have modernized the production companies drastically since past few decades.  
Traditional production jobs take the materials with limited tolerance conditions as inputs; whereas non-traditional 
techniques could process raw materials beyond this limitations. Due to technological advancement, cutting tool 
materials have become harder with higher spindle speed and improved tool drive. Therefore, high speed and 
precision based machining has become possible these days. The result is improved material removal rates (MRR) 
with reduce surface roughness (Ra) for work piece. Thus, complex geometry could be achievable in inexpensive 
ways. Tool life has been considered as an important performance indicator for high speed machining. Hard 
machining is one of such machining processes that consider relatively hard materials (Velayudham 2007). CNC 
turning (Dureja et al. 2016), micro-milling (Beake et al. 2015), cylindrical grinding (Mitrofanov and Parsheva 
2017), hard boring (Ngo, Chu and Nguyen 2018), abrasive water jet machining (Patel and Tandon 2015) etc. are 
examples of hard machining processes.  

2.1. Parametric design of manufacturing processes 

Mostly the machining process variables are set based on user experience or guidance provided by process manual, 
which might not be the optimal settings to the machining. Consequently, the production volume decreases with 
inferior quality and increased waste. Therefore, an optimal level of parametric settings is necessary for better 
production throughput. In this study, some of the critical machining processes are considered and discussed such 
as CNC drilling, micro-milling, and abrasive water jet machining, and parametric designs of the said processes. 
Next few subsections present an in-depth discussion on related works and the need of deep learning based 
predictive models for production process optimization. 

2.1.1. Drilling Process 

Drilling is a traditional cutting process of materials using drill bit as a cutting tool, which makes circular holes on 
workpiece. The chosen tool rotates along the axis and often used as a multi-point tool which put force against the 
work-piece while in rotation (100-10000 rpm). This phenomenon removes material as chips with certain rate while 
generating the desired shape. Drilling operation could create some low residual stresses around the cut hole and 
accumulate highly deformed material on the generated surface. Hence, a finish operation could be required after 
drilling operation to avoid corrosions (Anand et al. 2018). In general spindle speed, feed rate, and drill diameter 
are considered as important process parameters for drilling process, whereas surface roughness (Ra), material 
removal rate (MRR), thrust force, and torque generated during drilling process are most important performance 
indicators. Various Design of Experiments (DOE) methods such as Factorial Design, Taguchi’s Method, Response 
Surface Method (RSM), and Grey Relational Analysis (GRA) are applied yet for optimization of the drilling 
process parameters (Onwubolu and Kumar 2006; Anand et al. 2018). 

2.1.2. Micro-milling process 

Micro-milling process is exclusively developed to make tiny components with greater geometric complexities and 
highest level of precisions. Application of micro-milling could be seen in aerospace, electronics, biomedical, and 
robotics (Lu et al. 2018). This process considers end mill tool (dia in the range of 90-450 µm) and edge radius (0-
5 µm). In micro-milling the overall machining is reduced from 100 µm/tooth feed rates and 1 mm depth of cut to 
1 µm/tooth feed rates and 100 µm depth of cut due to the miniature models. Primarily the micro-milling and 
traditional milling follow similar physics however, they differ in the operational sizes (Wu et al. 2013). 
Optimization of process parameters in micro-milling is an important area of study that helps finding optimal 
performance indicators.  Achieving minimum Ra in micro-milling is an essential objective. To attain optimal set 
of values for process parameters, different design of experiment (DOE) methods such as RSM, full factorial design 
and Taguchi methods were practiced in past literature (Kuram and Ozcelik 2013; Wang, Kweon, and Yang 2005; 
Vázquez et al. 2010). Recently Khalilpourazari and Khalilpourazary (2018) developed a hybrid algorithm, 
SCWOA, for parameter optimization problem of multi-pass milling process which minimizes total production 



3 
 

time. The SCWOA utilizes local and global search abilities to achieve optimality. Analysis of cutting force signal 
is critical for micro-milling since smaller cutting force signals could be affected by moderately larger noise. 
Therefore, filtration of the force signal is required (Zhu et al. 2008). A large number of process parameters of 
micro-milling machining could influence tool wear, cutting force and Ra greatly, which are spindle speed, depth 
of cut (radial and axial), tool diameter, composition of workpiece, feed per tooth etc. (La Fe et al. 2018). 

2.1.3. Abrasive Water Jet Machining (AWJM) Process 

Abrasive Water Jet Machining (AWJM) is a rapidly growing technology, which could be practiced in industry for 
a large number of applications such as plate profile cutting and machining of various materials including glasses, 
ceramics, metals etc. Cutting of glasses generates surfaces and shapes that could be unattainable with other 
techniques. This type of machined glass material could be used in different glass works such as aesthetic design 
of tabletop insets, tainted glass designs, looking glasses, glass based jewelries etc. (Momber and Kovacevic 2012). 
Due to the natural fragility of glass materials, the primary grooves are fabricated with low pressure (450-780 bars). 
This pressure is increased gradually with the cutting speed. Therefore, proportional pressure control mechanism 
is required, which is obtained using the intensifier pump AWJM of glass materials. Armağan and Arici (2017) 
demonstrated the benefits of the AWJM process as,  

• molten or solidified material does not accumulate on the cutting surface due to absence of the heat-
affected zones 

• assembly fixtures are unnecessary for holding of the material since cutting forces have no impact on the 
cutting tools 

• due to the use of pressurized water and abrasive material mix it is fairly easy to obtain complex geometry 
with lesser efforts  

• it is an eco-friendly  process and the cutting surface has a two-step mechanism, which includes cutting 
wear and deformation wear zones. 

As in the case of every machining process, the quality of AWJM cut is significantly affected by the process 
parameters. There are several process parameters such as size of abrasive (AS), abrasive concentration (AC), Feed 
rate (FR), standoff distance (SOD), water pressure (WP) are of great importance. The main performance indicators 
are MRR, kerf width (KW) and Ra etc. In order to effectively control and optimize any machining processes 
discussed above, specially designed tools and techniques are required. In next subsection, works related to 
optimization methods for machining process parameters are discussed.  

2.2. Optimization of machining process parameters  

In order to optimize the machining process parameters without having actual knowledge of solid mechanics, exact 
mathematical models or data driven models are practiced in past literature (Mukherjee and Ray 2006). This type 
of optimization problems are classified as NP-Hard problems in the theory of computer science as these problems 
could have many objectives and multiple near optimal solutions in polynomial time (Woeginger 2003). Statistical 
and soft computing based techniques are well suited for this type of problems and primarily classified as regression 
based response surface techniques, Taguchi’s Method based Grey Relational Analysis (GRA), ANN based 
algorithms and evolutionary and bio-inspired methods etc. (Chandrasekaran et al. 2010).  

2.2.1. Regression based technique 

Regression based methods successfully approximate the correlation among variables and performance indicators 
related to production processes. With the help of probability distribution function, it is possible to portray the 
variations of the design variables in close neighborhood of the state space for output variables. Regression based 
modeling of machining processes, is a heavily explored area (Tosun and Ozlar, 2002; Srivastava and Garg 2017). 
Various DOE based approaches are considered while designing the input space such as Taguchi’s method, RSM, 
factorial design etc. (Vellaiyan and Amirthagadeswaran 2016; Armağan and Arici 2017; Baligidad et al. 2018; 
Verma and Sahu 2017). Tangjitsitcharoen, Thesniyom and Ratanakuakangwan (2017) proposed a multiple 
regression analysis model to estimate the surface quality for the ball-end milling machining, which exploits the 
ratio of cutting forces.  

García et al. (2018) portrays regression models to approximate physical quality indicators in a tube extrusion 
process based on data collected from manufacturing company. This model utilized k nearest-neighbor and support 
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vector (SVM) regression technique which accurately estimates the internal and external dia of an extruded tube. 
Hadad (2015) demonstrates a predictive model for minimization of surface roughness and grinding force based 
on a new semi-analytical regression model. Full factorial design is used as the DOE tool and regression equations 
were obtained successfully using RSM. The major drawback of regression-based techniques, is, it is not suitable 
when non-linearity increases in the considered machining process. If the number of process parameters, is large 
and many objectives are considered, it is difficult to assume the functional relationships among objectives and 
design variables beforehand. Due to the limitations of DOE design space and increased costs of running pre-
defined sets of experiments, other approaches such as GRA, evolutionary algorithms and deep learning techniques 
are preferred over these. 

2.2.2 Grey Relational Analysis (GRA) 

To overcome the shortcomings of regression based techniques various other methods are considered in literature. 
DOE coupled GRA is one such technique. DOE tools such as Taguchi’s method, Latin hypercube sampling, Box–
Behnken design etc. are essential for optimization of process parameters or experimental design variables, which 
holds the practice under control with some trade-off between process variations and product quality (Taguchi 
1990). These approaches are being used in selection of machining parameters heavily since past few decades. 
These also reduce the number of experimental runs substantially. For that matter, a quality loss function could be 
employed which controls the digression between the experimental and desired values of variables. This loss 
function is then converted into a signal-to-noise (S/N) ratio. These tools are suitable for single response or single 
objective design. For multi-objective design approach, the grey relational analysis (GRA) has been developed 
which has the ability to exploit DOE design space (Deng 1989) and approximate the degree of the correlation 
between experimental runs using grey relational grade (GRG) (Lin 2004). Steps of GRA are, 

Step1: The data are normalized to reduce inconsistency, which transforms the data values to be restricted in the 
range {0, 1}. When the performance objective is to be minimized smaller-the-better (equation 1) rule is applied, 
else larger-the-better (equation 2) rule is applied, 

𝑦𝑦𝑖𝑖∗(𝑥𝑥) =
𝑦𝑦𝑖𝑖0(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚 −𝑦𝑦𝑖𝑖0(𝑥𝑥)

𝑦𝑦𝑖𝑖0(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑖𝑖0(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚
                                                                     (1) 

𝑦𝑦𝑖𝑖∗(𝑥𝑥) =
𝑦𝑦𝑖𝑖0(𝑥𝑥)−𝑦𝑦𝑖𝑖0(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚

𝑦𝑦𝑖𝑖0(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑖𝑖0(𝑥𝑥)𝑚𝑚𝑚𝑚𝑚𝑚
                                                                     (2) 

 Where, i∈ [1, m] and x∈ [1, N], m is the number of experimental runs and N is the number of response objectives. 
yi

0(x)max and yi
0(x)min are the largest and smallest values of yi

0(x), normalized data and yi
*(x) is the original data.  

 
Step2: Compute grey relational coefficient (GRC) using equation (3), 
 

𝜀𝜀𝑖𝑖(𝑥𝑥) =
𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜀𝜀 × 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚
𝛿𝛿𝑖𝑖0(𝑥𝑥) − 𝜀𝜀 × 𝛿𝛿𝑚𝑚𝑚𝑚𝑚𝑚

                                                                  (3) 

 
Where𝛿𝛿𝑖𝑖0(𝑥𝑥) = 𝑦𝑦𝑖𝑖0(𝑥𝑥) − 𝑦𝑦𝑖𝑖∗(𝑥𝑥), δi

0(x) is the deviation coefficient, yi
0(x) is the normalized data and yi

*(x) is the 
original data. 
 
Step3: Calculate grey relational grade (GRG) using equation (4), 
 

𝛾𝛾𝑖𝑖 =
1
𝑁𝑁

× �𝜀𝜀𝑖𝑖(𝑥𝑥)                                                                              (4)
𝑁𝑁

𝑘𝑘=1

 

 
GRG depicts the overall quality index and the degree of correlation between the normalized data and the original 
data. The values of GRG determine the ranking of experimental runs and obtain optimal set of variables. 
 
Step4: Calculate the analysis of variance to find out the sensitivity of the variables to the design process at 95% 
confidence level and obtain the response table. This includes ranks based on delta statistics, which compare the 
relative magnitude of effects. The delta statistic shows the difference between the largest and the smallest average 
for each variables. It finally indicates the most sensitive variables to the design process. 
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Jeyapaul, Shahabudeen and Krishnaiah (2005) and Ghan, Hashmi and Dhobe (2017) have presented an exhaustive 
review on multi-response process optimization based on Taguchi’s method. It is shown that the amount of research 
works done on multi-response process optimizations are not many till that time. Recently Deepanraj, 
Sivasubramanian and Jayaraj (2017), Angappan, Thangiah and Subbarayan (2017), Wojciechowski el al. (2018), 
Anand et al. (2018), and many other researchers are focusing on multi-response process optimizations using 
Taguchi’s design coupled GRA approaches, which is proved to be very efficient tool. 
In this paper, this approach is adopted to find the optimal set of design parameters for the industrial AWJM process 
optimization. 
 
2.2.2. ANN based deep learning algorithms 

Artificial neural network (ANN) is considered as highly capable computing system that provides a framework for 
various deep learning techniques to interact with each other while processing big data. Training can be delivered 
to the system for ‘learning’ or acquiring knowledge based on previous experience about the process. This ability 
of ANN is sufficient to ‘learn’ the nonlinearity of the machining processes and interactions among design variables 
and process responses with precision. The simplest form of ANN consists of interconnections among an input 
layer of neurons that processes data or design variables to the network and output layer of neurons that produces 
responses, with one or more hidden layers in between for training. ANNs are illustrated using their topology 
functions, weight vectors, and activation functions among the hidden and output layer of neurons (Zurada 1992). 
In every iteration or epoch of learning, the ANN could be trained with a subset of data and validated with another 
subset of data while trying to minimize mean square error (MSE) calculated using target responses and obtained 
responses. ANN is an ideal deep learning tool for predictive analysis or functional approximation (Zhang, Patuwo 
and Hu 1998). A large number of ANN models have been developed since decades. Out of these, mostly explored 
models are the multi-layer perceptron (MLP) and redial basis function (RBF) for machining process modeling. 
The outputs obtained from any network need not be the functions of the process variables. More precisely these 
are approximation towards target values. MLPs have sequence of interconnected layers consisting of a number of 
neurons in each layer. MLPs could be simple feed forward or cascading type. Sometimes MLPs use back 
propagation (BP) training algorithm (these often known as BPNNs). The RBF network consists of three layers: 
an input layer, a single hidden layer with nonlinear processing neurons, and an output layer. During training 
process, ANNs adjust their weights to minimize the MSE between the target and obtained outputs. ANNs are 
capable of handling complex nonlinear relationships among the process parameters and responses with higher 
precision. As a computing tool, ANNs are quick and easy to model. 

ANN based techniques are being used in machining process modeling since decades. Dagli (1994) has elaborated 
a comprehensive study on ANN based intelligent process design. Yarlagadda (2000) has proposed an ANN model 
to approximate the process parameters for the pressurized die casting process. This is an alternative way to replace 
expensive, time taking experimental approach to obtain the process parameters by examining a physical model of 
the pressurized die casting process. Recently Shakeri et al. (2016) portrayed a regression based process model and 
BPNN based predictive model for wire electro-discharge machining (WEDM) to obtain better Ra and MRR. 
Process variables considered are, pulse current, frequency of pulse, wire and servo speed. ANN based method 
shows better performance. Arnaiz-González et al. (2016) demonstrated the ball-end milling process models using 
MLP and RBF. RBF is shown to obtain better predictive model than MLPs achieving higher precision. Khorasani 
and Yazdi (2017) proposed a Ra monitoring system for milling process considering following input variables, 
cutting speed, rate of feed, cut depth, type of materials, and coolant fluid; and mechanical vibrations, white noise, 
and Ra as process responses. Thereafter testing and recall/verification procedures are utilized to achieve higher 
accuracy. Pfrommer et al. (2018) developed a surrogate-based optimisation model and Finite Element (FE) model 
for composite textile draping process. The ANN based surrogate model, is used as a prediction tool of the shear 
angle of textile elements. Xiang and Zhang (2016) depicted a prediction model based on BPNN and Support 
Vector Machine (SVM) for milling process modeling, and proposed an optimization technique using SVM and 
NSGA-II. D’Addona, Sharif Ullah and Matarazzo (2017) developed applications of ANN and DNA-based 
computing (DBC) to model tool-wear. Tool-wear images are processed as data to train the ANN. The DBC can 
distinguish the image similarity or dissimilar. Recent research trend shows that ANN based methods are very 
popular and useful as predictive models and being used heavily by the researchers. However, very few studies are 
proposed on the development of predictive, metamodels, or surrogate models that can be used as a replacement 
of empirical or mathematical functions for optimization. 

2.2.3. Evolutionary and bio-inspired methods  
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In recent past, a number of review articles have appeared based on evolutionary and bio-inspired techniques 
applied in production or machining process optimization (Mukherjee and Ray 2006; Chandrasekaran et al. 2010; 
Yusup, Zain and Hashim 2012). These are exclusively genetic algorithms (GA) (Cook, Ragsdale and Major 2000 
; Dereli, Filiz, and Baykasoglu, 2001; Zhou and Turng 2007; Xiang and Zhang 2016; Sangwan and Kant, 2017), 
Tabu Search (TS) (Kolahan and Liang 2000), Simulated Annealing (SA) (Asokan, Saravanan and Vijayakumar 
2003; Chen et al. 2010), Ant Colony Optimization (ACO) (Kadirgama, Noor, and Alla 2010; Vijayakumar et al., 
2003), particle swarm optimization (PSO) (Ciurana, Arias, and Ozel., 2009; Farahnakian et al. 2011; Zhou, Ren 
and Yao 2017), Artificial Bee’s Colony (ABC) (Pawar, Vidhate and Khalkar 2018) etc. These techniques are 
proven methods and particularly capable of attaining global best solutions within limited time frame. Evolutionary 
algorithms or bio-inspired techniques coupled with ANN based approaches are substantially robust tools while 
achieving optimal predictive process models. Nevertheless, these type of approaches are seldom practiced for 
manufacturing process optimization except some (Farahnakian et al. 2011).  

Hence, in this study, the multi-response machining process based generic predictive model is developed, which 
utilizes MLP network. It has the ability to approximate outputs (performance indicators) from given inputs 
(process variables). It also uses a PSO based optimization technique to fine-tune the obtained predictive by 
minimizing the root mean square values (RMSE) (the error between target values and obtained values). Finally, 
the proposed optimal predictive model is analyzed based on three distinct cases, out of which, two are collected 
from past literature to training and testing. The third one is collected from industry, which is used for validation 
of the proposed iterative predictive model and successfully compared with GRA.   

3. Research Approach     
In this study, the focus is put on the MLP. The MLP networks are suitable for predictive modeling because of 
their natural ability of finding correlations among random inputs and outputs (Arnaiz-González et al. 2016). The 
default MLP architecture is also known as Feed Forward MLP ANN (FFNN) as depicted in Figure 1(a), has n 
input neurons, m hidden layers neurons, and two output neurons.  

 
(a) Feed Forward ANN (FFNN) 

 
(b) Cascade Forward ANN (CFNN) 

 

Figure 1. MLP architecture 

The output equation of FFNN is, 

𝑦𝑦𝑖𝑖 =  𝑍𝑍𝑖𝑖𝑜𝑜𝑜𝑜 ��𝑤𝑤𝑗𝑗𝑗𝑗𝑜𝑜𝑜𝑜 × 𝑍𝑍𝑘𝑘ℎ𝑎𝑎 ��𝑤𝑤𝑗𝑗𝑗𝑗ℎ𝑎𝑎𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

�
𝑚𝑚

𝑗𝑗=1

�                                                (5) 

Where Zi
oa is denoted as activation function for ith output yi, wji

oa is the weight from jth hidden layer neuron to ith 
output node, Zk

ha is the activation function for jth hidden layer neuron, wjk
ha is the weight from kth input to jth hidden 

layer neuron, and xk is the kth input signal. Further, if some bias is added to input layer, the equation (5) becomes, 

  

𝑦𝑦𝑖𝑖 =  𝑍𝑍𝑖𝑖𝑜𝑜𝑜𝑜 �𝛽𝛽𝑖𝑖 + �𝑤𝑤𝑗𝑗𝑗𝑗𝑜𝑜𝑜𝑜 × 𝑍𝑍𝑘𝑘ℎ𝑎𝑎 �𝛽𝛽𝑗𝑗 + �𝑤𝑤𝑗𝑗𝑗𝑗ℎ𝑎𝑎𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

�
𝑚𝑚

𝑗𝑗=1

�                                                (6) 
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Where βi is the weight from bias to the ith output layer neuron and βj is the weight from bias to jth hidden layer 
neuron.  

Another variant of MLP network is known as cascade forward MLP ANN (CFNN) (Figure 1(b)) which has some 
additional direct connections among inputs and outputs. The equations (5) and (6) for CFNN become, 

  

𝑦𝑦𝑖𝑖 =  �𝑍𝑍𝑖𝑖𝑘𝑘 × 𝑤𝑤𝑗𝑗𝑘𝑘𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

+ 𝑍𝑍𝑖𝑖𝑜𝑜𝑜𝑜 ��𝑤𝑤𝑗𝑗𝑗𝑗𝑜𝑜𝑜𝑜 × 𝑍𝑍𝑘𝑘ℎ𝑎𝑎 ��𝑤𝑤𝑗𝑗𝑗𝑗ℎ𝑎𝑎𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

�
𝑚𝑚

𝑗𝑗=1

�                                                (7) 

𝑦𝑦𝑖𝑖 =  �𝑍𝑍𝑖𝑖𝑘𝑘 × 𝑤𝑤𝑗𝑗𝑘𝑘𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

+ 𝑍𝑍𝑖𝑖𝑜𝑜𝑜𝑜 �𝛽𝛽𝑖𝑖 + �𝑤𝑤𝑗𝑗𝑗𝑗𝑜𝑜𝑜𝑜 × 𝑍𝑍𝑘𝑘ℎ𝑎𝑎 �𝛽𝛽𝑗𝑗 + �𝑤𝑤𝑗𝑗𝑗𝑗ℎ𝑎𝑎𝑥𝑥𝑘𝑘

𝑛𝑛

𝑘𝑘=1

�
𝑚𝑚

𝑗𝑗=1

�                                                (8) 

Where Zi
k is the activation function and wj

k is the weight from inputs to outputs. The network weight in cascade 
forward network is approximated based on the neurons in the input layer. In this study, both types of MLP 
networks are used to obtain the predictive models. 

3.1. Performance metric 

Root mean square error (RMSE) is used as the evaluation function for the trained predictive models. RMSE is an 
improved metric, which accurately measures regression errors (Willmott 1981). If the model produces the output 
response y and the target response is t. The RMSE is calculated using, 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
1
𝑁𝑁�

�(𝑦𝑦𝑖𝑖 − 𝑡𝑡𝑖𝑖)2
𝑖𝑖

                                                                             (9) 

Where i is the sample data point index. These obtained MLP based predictive models are further fine-tuned using 
PSO based nature-inspired optimization algorithm, which is demonstrated in next subsection. 

3.2. Particle Swarm Optimization (PSO) 

Eberhart and Kennedy (1995) first proposed PSO, which is a nature-inspired population based optimization 
technique. PSO mimics the behavior of bird flocking. PSO starts with a population of randomly generated pattern 
based solutions or particles (birds) and directs the searching of best solutions in the region of picks or downs for 
optima with multiple iterations. In PSO, the particles follow the best one in the swarm and fly through the problem 
space for convergence. Initially the particles starts flying across the solution space with randomly generated 
individual position and velocity. Positions are evaluated by the fitness function or objective function and objective 
values are stored. The velocity and position are updated using following expressions, 

𝑣𝑣𝑖𝑖𝑡𝑡 = 𝑤𝑤 × 𝑣𝑣𝑖𝑖𝑡𝑡−1 + 𝑐𝑐1 × [𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑥𝑥𝑖𝑖𝑡𝑡−1] + 𝑐𝑐2 × [𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑥𝑥𝑖𝑖𝑡𝑡−1]                                        (10) 

𝑥𝑥𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑖𝑖𝑡𝑡−1 + 𝑣𝑣𝑖𝑖𝑡𝑡                                                                                             (11) 

In every iteration, each particle is updated by two optimal values, the first one, is the local best solution of the 
particle, termed as Pbest. Another one is the best value obtained so far by the whole swarm, is a global best 
solution or Gbest. In this study, a novel PSO based approach is considered, which efficiently obtains optimal 
predictive model based on MLP for machining process optimization. The proposed approach works in the 
following mode, 

Step 1. The MLP based initial models with fixed number of hidden layer neurons (number=10) are trained using 
case data considered separately. Learning rate is considered as 0.1, Error target goal is set as 0, and number of 
epochs is set to 500. Machining process parameters are provided as inputs to the models. 70% test data are used 
for training purposes. The process responses are considered as outputs. Once the models are trained, remaining 
30% data are used for testing and validation. This 70-30 rule for training, testing and validation is recommended 
by ANN researchers. The error between target and obtained responses are computed using RMSE (Equation 9). 
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Step 2. The proposed MLP based predictive models are used as input solutions (particles) to the PSO. Initially an 
entire population of MLP based predictive models are generated and trained. For every solution (MLP model), 
random velocity is generated. Each MLP based model in swarm is utilized for testing and validation and obtained 
RMSE scores are stored against respective predictive model. Thereafter the model with lowest RMSE is selected 
from the swarm and marked as local best (Pbest) and global best solution (Gbest). 

Step 3. In each iteration of the proposed PSO based technique, the ANN models are modified using equations (10) 
and (11). The velocity associated with each ANN model is updated using equation (10). Thereafter the 
modifications to the ANN models are done in MLP training function with small change in the number of neurons 
in the hidden layers of the MLPs. RMSE scores are updated according to the modifications in the networks and 
the new smallest RMSE score is compared with previous Pbest. If the new RMSE score is better than Pbest, the 
associated ANN model with new RMSE score is stored as Pbest. The Gbest is updated in the similar way after 
each iteration. This update module is illustrated in following pseudocode, 

for h1 = 1: population_size 
        Velocity = networks (h1).velocity + c1*rand*(localbestrmse - networks (h1).rmse) + c2*rand*(globalbestrmse - 
networks (h1).rmse);  
        if velocity holds negative value 
            net = cascadeforwardnet(5,'trainlm'); 
            net.trainParam.epochs=500; 
            net.trainParam.goal=0; 
            net.trainParam.lr=0.1; 
            net.trainParam.showWindow = false; 
            [net, tr]=train(net,x',t'); 
            y11=net(xt'); 
            t1=tt'; 
            e1=t1-y11; 
            rmse_NN=sqrt(mse(e1)); 
            networks (h1).network=net; 
            networks (h1).rmse=rmse_NN; 
        else 
            net =cascadeforwardnet(15,'trainlm'); 
            net.trainParam.epochs=500; 
            net.trainParam.goal=0; 
            net.trainParam.lr=0.1; 
            net.trainParam.showWindow = false; 
            [net, tr]=train(net,x',t'); 
            y11=net(xt'); 
            t1=tt'; 
            e1=t1-y11; 
            rmse_NN=sqrt(mse(e1)); 
            networks (h1).network=net; 
            networks(h1).rmse=rmse_NN; 
        end 
        if networks(h1).rmse <= localbestrmse 
            localbestrmse = networks(h1).rmse; 
            localbestnetwork = networks(h1).network; 
        end 
    end 
 

Step 4. The algorithm stops once the maximum number of iterations is reached. The final Gbest ANN model is 
the best ANN model selected with lowest RMSE score.       

3.3. ANN Coupled PSO pseudocode  

1. START 
2. Set values to maxIT=50, w=0.5, c1= c2=0.25, Psize=50, 
3. Initial solution is obtained as described in step 1 of subsection #3.2 and provided as an input to PSO 
4. The initial solution is the seed of the initial population called P of size Psize 
5. Along with initial solution, its velocity v is also generated randomly  
6. Fitness value of initial solution is computed using equation (9)  
7. Set Gbest = Fitness (initial solution) 
8. Set BestIndiv = initial solution 
9. Generate initial population Pinit in the neighborhood of BestIndiv 
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10. i = 0 
11. While (i ≠ Psize) 
12. i = i+1 
13. Do 

→ Fitness_Pinit(i) = Fitness (Pinit(i)) 
→ Pbest(i)=Pinit(i) 
→ If Fitness (Pinit(i))< Gbest 
→ Set BestIndiv = Pinit(i) 

14. Initialize fitnessVals array 
15. Set iter = 0 
16. While (iter ≠ maxIT) 
17. iter = iter+1 
18. Do 

→ i = 0 
→ While (i ≠ Psize) 
→ i = i+1 
→ Do 

⇒ fitnessVals(i)= Fitness (P(i)) 
⇒ if min(fitnessVals) < Gbest 
⇒ set Gbest = min(fitnessVals) 
⇒ set BestIndiv = ANN model x of min(fitnessVals) 

→ i = 0 
→ While (i ≠ Psize) 
→ i = i+1 
→ Do 

⇒ v(i) = w×v(i) + c1×w× (pbest(i) – P(i)) + c2×w× (BestIndiv – P(i)) 
⇒ update ANN model using step 3 in subsection #3.2 

→ NewP=P 
⇒ fitnessVals(i)= Fitness (NewP(i)) 
⇒ if min(fitnessVals) < Gbest 
⇒ set Gbest = min(fitnessVals) 
⇒ set BestIndiv = ANN model x of min(fitnessVals) 

19. STOP with Gbest and BestIndiv as output 

4. Results and Discussion 
In this study three different cases are considered for training, testing and validation of the proposed predictive 
models, (1) CNC micro-milling operation on Al7075 material with ball nose end mill (Kuram and Ozcelik, 2013), 
(2) CNC drilling operation on CFRP composite (Krishnamoorthy et al. 2012), (3) abrasive water jet machining 
(AWJM) of commercial soda-lime-silica glass (experiments carried out in industry). All the cases are briefly 
described in next subsections. 

4.1. Micro-milling Operation 

The experiments were carried out using a DECKEL MAHO DMU 60 PCNC milling machine. Al7075 material 
is used (Vickers hard-ness of 139) as a work piece material, which had a dimension of 15×10×20 mm3.  

Table 1. Input parameters and the performance characteristics for micro-milling (Kuram and Ozcelik, 2013) 

SS FPT DC TW Fx Fy Ra 
10000 0.5 50 5.41 1.33 0.71 0.33 
10000 1.0 75 13.51 1.63 0.86 0.47 
10000 1.5 100 16.22 2.02 1.02 0.71 
11000 0.5 75 27.02 1.62 1.08 0.32 
11000 1.0 100 32.43 2.03 1.49 0.59 
11000 1.5 50 14.86 2.65 1.52 0.58 
12000 0.5 100 45.95 2.10 1.36 0.27 
12000 1.0 50 27.03 2.99 1.66 0.35 
12000 1.5 75 32.43 3.55 1.81 0.58 

 

The chemical compositions of material are given as, Li < 0.0002 wt%, Si 0.92 wt %, Mn 0.348 wt%, P <0.001 
wt%, Sr <0.0001 wt%, Cr 0.093 wt%, Ni 0.057  wt%, Na 0.003 wt%, Al 89.0 wt%, Cu 1.71 wt%, Co <0.001 wt%, 
Ti 0.048 wt%, Be 0.0003 wt%, V 0.009  wt%, Fe 0.55, Pb wt%, 0.018 wt%, Mg 2.00 wt%, B 0.0017 wt%, Sn 
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0.008 wt%, Zn 5.22wt%, Ag 0.0022 wt %, Bi 0.0018 wt%, Ca 0.0027 wt%, Cd 0.0031 wt%, and Zr 0.0078 wt%. 
Spindle speed (SS) (5000-15000 rpm), feed per tooth (FPT) (0.5-1.5 µm/tooth) and depth of cut (DC) (50-100 
µm) were considered as design parameters and tool wear (TW), cutting forces (Fx and Fy), and surface roughness 
(Ra) were selected as process responses. For experimental design, Taguchi’s L9 orthogonal array is chosen and 
displayed in Table 1. 

4.2. CNC Drilling Operation 

The material used for experimentation is CFRP plates manufactured through hand layup process using carbon 
fibre and resin. The properties are described as, thickness of carbon fibre in the form of filaments is 0.050 mm, 
Tensile strength (GPa) - 3.5, Tensile modulus (GPa) - 230, Density (g/ccm) - 1.75, Specific strength (GPa) - 2.00. 
Properties of the material EPON resin 8132 are described as, Viscosity (poise) 5–7, Weight per epoxide - 192–
215, Density (lb/gal) - 9.2. The thickness of the plate is 3 mm and the holes to be drilled were all of a uniform 
diameter of 6 mm. The drilling tool used in experimentation was made of high-speed steel (HSS). The process 
parameters used here are, spindle speed (SS) (rpm), point angle (PA) (°), and feed rate, (FR) (mm/min) chosen 
for this experimentation. Five performance characteristics are chosen, which are, thrust force (TF) (N), torque 
(Nm), entry-delamination factor (EnDF), exit-delamination factor (ExDF) and eccentricity (Ecc) (mm). For 
experimental design, Taguchi’s L27 orthogonal array is chosen and displayed in Table 2. 

4.3. Abrasive water jet machining (AWJM) 

Soda-lime-silica glass is the most prevalent type of glass used for windowpanes, and glass containers for 
beverages, food, and some commodity items. Glass bake ware is often made of tempered soda lime glass. Soda 
lime glass accounts for about 90% of manufactured glass. Soda lime glass is relatively inexpensive, chemically 
stable, reasonably hard, and extremely workable. Since it is capable of being re-softened and re-melted numerous 
times, it is ideal for glass recycling. Soda-lime glass is prepared by melting the raw material, such as sodium 
carbonate (soda), lime, dolomite, silicon dioxide (silica), aluminium oxide (alumina) and small quantities of fining 
agents (e.g., sodium sulphate, sodium chloride) in a glass furnace at temperatures locally up to 1650°C. 

 

Table 2. Input parameters and the performance characteristics for CNC drilling (Krishnamoorthy et al. 2012) 

SS PA FR TF Torque EnDF ExDF Ecc 
1000 100 100 99.69 0.73 1.3418 1.4378 0.0728 
1000 100 300 165.2033 0.84 1.3759 1.6373 0.0619 
1000 100 500 198.3633 1.12 1.4368 1.541 0.0609 
1000 118 100 156.25 0.99 1.3921 1.2628 0.0517 
1000 118 300 253.2933 1.34 1.44 1.4658 0.0431 
1000 118 500 310.4667 1.37 1.5211 1.4137 0.0619 
1000 135 100 155.4333 1.37 1.3398 1.1851 0.0437 
1000 135 300 261.23 1.52 1.3587 1.3692 0.0302 
1000 135 500 310.06 1.87 1.4756 1.2739 0.0251 
2000 100 100 92.3667 0.48 1.39 1.4455 0.0623 
2000 100 300 154.01 0.68 1.3439 1.51 0.0815 
2000 100 500 192.8733 0.87 1.3817 1.3607 0.1113 
2000 118 100 140.1767 0.57 1.4287 1.4 0.0652 
2000 118 300 231.5233 0.92 1.43 1.4562 0.0821 
2000 118 500 271.81 0.93 1.4474 1.3794 0.0799 
2000 135 100 150.7533 0.64 1.4021 1.3296 0.0671 
2000 135 300 234.78 0.94 1.3798 1.3585 0.0655 
2000 135 500 299.1833 0.95 1.411 1.45 0.0671 
3000 100 100 84.23 0.39 1.4287 1.41 0.0156 
3000 100 300 152.3867 0.47 1.3974 1.3807 0.0322 
3000 100 500 165.8133 0.6 1.36 1.1688 0.0588 
3000 118 100 130.6167 0.4 1.4347 1.3534 0.0308 
3000 118 300 191.8567 0.54 1.4098 1.51 0.0342 
3000 118 500 270.3867 0.7 1.4224 1.4 0.0411 
3000 135 100 143.6367 0.48 1.4601 1.44 0.0448 
3000 135 300 226.0333 0.55 1.4264 1.51 0.0601 
3000 135 500 283 0.78 1.4018 1.4774 0.077 
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The temperature is only limited by the quality of the furnace superstructure material and by the glass composition. 
In this study, the experiments are carried out in industrial set up with AWJM Nanojet model. A 60 HP pump was 
used to generate the required water pressure. The machining process was numerically controlled by Siemens 
controller (802D SL), garnet sand have been used as abrasive materials. In these experiments, size of abrasive 
(AS), abrasive concentration (AC), Feed rate (FR), standoff distance (SOD) are considered as input process 
parameters. The Surface roughness (Ra) was measured by a non-contact profiler (Contour GT-I). The main 
performance indicators considered, are material removal rate MRR, top kerf width (TKW), bottom kerf width 
(BKW) and Ra. For experimental design, Taguchi’s L9 orthogonal array is selected and displayed in Table 3. 

4.4. Computational Experimentations  

To analyze the proposed MLP based PSO approach, abovementioned cases are considered. The proposed 
algorithm is programmed in MATLAB R2018a on Intel 8650U @1.90 GHz laptop. PSO parameters are set with 
the following values, maxIT = 50; Psize = 20; c1 = 0.15; c2 = 0.25; w = 0.5. Since two types of ANN models are 
used based on FFNN and CFNN, thus, the results obtained are compared with each other and the best predictive 
model is elected. The results obtained using CFNN is shown to outperform the FFNN. Due to the nature of NP-
Hardness of the problem, attaining solution is not an easy task. Therefore, Computational time is an important 
factor in this research. Computing time increases drastically with the size of population and number of iterations 
in PSO. Figure (2a) and (2b) demonstrate that, computing time is exponentially related to the size of population 
and has some interesting relation with iteration numbers. 

The complexity of the predictive models could increase with the number of design variables and responses of the 
machining processes. Table 4 presents the comparison among two predictive models and reveals that the ANN-
PSO is an improved model on the basis of RMSE scores. Based on computing time both the models exploit more 
or less equal time. It is hard to point out, which one is fastest. 

 
(a) 

 
(b) 

Figure 2. Computational time curve with respect to PSO parameters (CNC drilling example)  

Both the predictive models follow strict convergence properties as portrayed in figure 3. Convergence plots also 
confirm that the CFNN-PSO model performed better than FFNN-PSO. 

Table 3. Input parameters and the performance characteristics for AWJM 

AS SOD AC FR MRR TKW BKW Ra 
100 2 120 80 2.09 1.94 0.89 9.11 
100 5 180 120 2.29 1.81 0.85 9.42 
100 8 240 160 2.35 1.79 0.85 9.48 
150 2 180 160 1.54 1.69 0.76 9.86 
150 5 240 80 2.11 1.95 0.90 9.09 
150 8 120 120 2.19 1.91 0.86 9.54 
200 2 240 120 1.52 1.89 0.79 9.54 
200 5 120 160 1.75 1.77 0.80 10.05 
200 8 180 80 1.95 2.05 0.90 9.17 
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Figure 3. Convergence curves obtained for all the data 

Therefore, the most near optimal ANN model, which is obtained using CFNN-PSO, is used further to obtain 
optimal sets of parameters and responses for the considered cases. Fitted curves obtained using the CFNN model 
are portrayed in Figure 4-6 for each of the case studies. These curves visually portray the approximation capability 
of CFNN-PSO model. The new experimental design space is obtained using random function and predefined 
range for the process parameters. 

For micro milling, the optimal published result is experimental run# 1 in Table 1. In this study, the most promising 
solutions, obtained using CFNN-PSO, are, (1) SS= 9373.596, FPT= 1.219, DC= 57.163, TW= 4.040, Fx= 2.799, 
Fy= 1.723, Ra= 0.198 and (2) SS= 11257.000, FPT= 0.153, DC= 86.430, TW= 4.494, Fx= 2.047, Fy= 1.863, Ra= 
0.181.  

Table 4. Comparison between ANN models 

Cases 
RMSE Computing Time (Sec.) 

CFNN-PSO FFNN-PSO CFNN-PSO FFNN-PSO 
Micro-Milling Operation 0.4386 0.5622 106.09 94.97 
CNC drilling Operation 3.9946 4.3849 86.47 94.49 

AWJM Operation 0.0627 0.1271 71.74 81.01 
 

For CNC drilling, the optimal published result is experimental run# 19 in Table 2. In this study, the most promising 
solutions, obtained using CFNN-PSO, are, (1) SS=3834.203892, PA=144.4841355, FR=549.8807477, 
TF=314.5818615, Torque=0.092778617, EnDF=1.376816667, ExDF=1.55836835, Ecc=0.003916968 and (2) 
SS=1663.575273, PA=141.8324067, FR=118.9348359, TF=163.5448858, Torque=0.88063403, 
EnDF=1.452188722, ExDF=1.228260178, Ecc=0.010853929. 

 
Figure 4. Curve fitting for micro-milling data 
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Figure 5. Curve fitting for CNC drilling data 

 

These results reflect that the CFNN-PSO has the ability to attain better solutions than the published one. This 
predictive model is used further to obtain optimal solutions for AWJM process and compared with the results 
obtained using GRA method. Factors (process parameters) and levels (values) for AWJM are portrayed in Table 
5. Where, A = size of abrasive (AS), B= stand-off distance (SOD), C= abrasive concentration (AC), D= feed rate 
(FR). L9 orthogonal array is chosen to apply Taguchi’s design. DOE and responses are portrayed in Table 3.  

Table 5. Parameters and their levels for L9 design 

Symbols Abbreviation Units Level 1 Level 2 Level 3 
A AS Grit 100 150 200 
B SOD mm 2 5 8 
C AC gram 120 180 240 
D FR mm/min 80 120 160 

 

 
Figure 6. Curve fitting for AWJM data 

 

Using Eq. (1)-(4) the GRA is performed on Surface Roughness (Ra), Material Removal Rate (MRR), Top Kerf 
Width (TKW), and Bottom Kerf Width (BKW). Then GRC and GRG values are obtained for the trial runs for 
AWJM. The results are depicted in Table 6. The GRG response table (Table 7) portrays the mean of each response 
characteristic for each level of the parameters. It also depicts delta statistical analysis while comparing the relative 
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importance of outcomes. It portrays the difference between the largest and the smallest means of the parameters. 
Ranks are allotted based on the obtained Delta values. Using the level means in the response table optimal set of 
levels of the parameters could be selected for optimal performance of AWJM. 

Table 6.  GRA scores for the AWJM responses 
Original Responses Normalized Responses Deviation Sequence GRC GRG 

Ra MRR TKW BKW Ra MRR TKW BKW Ra MRR TKW BKW Ra MRR TKW BKW 
9.11 2.09 1.94 0.89 0.985 0.688 0.308 0.042 0.015 0.312 0.692 0.958 0.971 0.615 0.419 0.343 0.587 
9.42 2.29 1.81 0.85 0.659 0.925 0.664 0.331 0.341 0.075 0.336 0.669 0.595 0.869 0.598 0.428 0.623 
9.48 2.35 1.79 0.85 0.598 1.000 0.726 0.345 0.402 0.000 0.274 0.655 0.554 1.000 0.646 0.433 0.658 
9.86 1.54 1.69 0.76 0.201 0.022 1.000 1.000 0.799 0.978 0.000 0.000 0.385 0.338 1.000 1.000 0.681 
9.09 2.11 1.95 0.90 1.000 0.713 0.286 0.025 0.000 0.287 0.714 0.975 1.000 0.635 0.412 0.339 0.596 
9.54 2.19 1.91 0.86 0.528 0.812 0.410 0.272 0.472 0.188 0.590 0.728 0.514 0.726 0.459 0.407 0.527 
9.54 1.52 1.89 0.79 0.528 0.000 0.440 0.749 0.472 1.000 0.560 0.251 0.515 0.333 0.472 0.666 0.496 
10.05 1.75 1.77 0.80 0.000 0.270 0.773 0.697 1.000 0.730 0.227 0.303 0.333 0.406 0.688 0.623 0.513 
9.17 1.95 2.05 0.90 0.916 0.523 0.000 0.000 0.084 0.477 1.000 1.000 0.856 0.512 0.333 0.333 0.508 

 
According to Table 7, AS has the greatest importance, FR is the next most significant parameter, followed by AC 
and SOD. The main effects plot of Figure 7 shows that the optimal set of parameters are AS = 100, SOD = 2, AC 
= 180, and SOD =160 (λ is prefixed to 0.5) respectively. Therefore the optimal values of responses would be, 
Ra=9.728, MRR=1.6796, TKW=1.7372, and BKW=0.7731. The proposed CFNN-PSO predictive model obtains 
at least two solutions that are better than the result produced by GRA for at least three objectives. Confirmatory 
tests were carried out based on the obtained results and the results are, (1) AS= 127.5329695, SOD= 7.151323334, 
AC= 235.9500566, FR= 68.0973149, Ra= 9.090608246, MRR= 2.111026969, TKW= 1.950732338, BKW= 
0.895640667 and (2) AS= 120.0688976, SOD= 7.802102857, AC= 235.5413261, FR= 58.7592643, Ra= 
9.089430108, MRR= 2.110525813, TKW= 1.951125582, BKW= 0.895787245. Results obtained by CFNN-PSO 
have better Ra and MRR scores, which is desirable and this completes the validation of the proposed CFNN-PSO 
predictive model for parameter optimizations of machining processes. 
 

Table 7. Response Table for Means of GRG 
Level AS SOD AC FR 

1 0.6227 0.5881 0.5422 0.5641 
2 0.6013 0.5772 0.604 0.5485 
3 0.5058 0.5645 0.5837 0.6172 

Delta 0.1169 0.0237 0.0618 0.0687 
Rank 1 4 3 2 

 

 

Figure 7. GRG Main effect plot for the parameters of AWJM 

5. Conclusions 
This article demonstrates an efficient iterative predictive modeling approach based on PSO and ANN, which have 
the abilities to train themselves with a small amount of experimental data obtained from machining processes on 
shop floor. An effective PSO based algorithm is also introduced, which is capable of optimizing the ANN models 
further while minimizing the RMSE score for the ANN models. This hybrid approach obtains a well-trained 
CFNN-PSO predictive model with very low RMSE score dedicated to the associated machining process. To verify 
the performance of the CFNN-PSO, three multi-response cases are portrayed, out of which, two are collected from 
past literature, based on micro-milling and CNC drilling processes. Training and validation of the proposed 
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CFNN-PSO model prove that the model is capable of obtaining better results than the published one. Thereafter, 
the third case based on AWJM cutting of glass materials, is collected from industry and the CFNN-PSO predictive 
model is tested on it. The results obtained, are compared with the results obtained using GRA method. It is shown 
that the proposed CFNN-PSO technique could achieve at least two solutions, which are better than the GRA result 
for at least three objectives. This CFNN-PSO predictive model could be further extended as an objective function 
for many-objective optimization techniques such as NSGA III or MOEA/D in future.        
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