Maël Ariel Grosse

Integrative Taxonomy Reveals Hidden Diversity in the Genus Chaetozone (Annelida, Cirratulidae) in Norwegian Waters

Master's thesis in Biology
Supervisor: Torkild Bakken
May 2019

Integrative Taxonomy Reveals Hidden Diversity in the Genus Chaetozone (Annelida, Cirratulidae) in Norwegian Waters

Master's thesis in Biology
Supervisor: Torkild Bakken
May 2019
Norwegian University of Science and Technology
NTNU University Museum
Department of Natural History

- NTNU

Norwegian University of Science and Technology

Acknowledgements

I would like to first thank my supervisors, Torkild Bakken, Maria Capa and Jon Anders Kongsrud, for introducing me to the fascinating world of polychaetes. They let me express my ideas on this project and make it mine while keeping me reasonable and on the right track all along the thesis. Their constant support, especially in the last weeks of writing, was very appreciated.

I am also particularly thankful to Arne Nygren for his support to this project. Without his contribution, this thesis wouldn't have been the same.

Thanks to Forbio for giving me the opportunity to attend so many interesting courses, meeting colleagues from all over Norway and a great conference in Trondheim. Thanks also to the people of the Museum of Bergen for welcoming me in their labs, and particularly to Katrine Kongshavn for her invaluable help with the SEM.

Thanks to Jonathan and Nathalie as fellow Nabis students and taxonomists who were with me for these two years and for the courses we took together. Thanks to all the people at NTNU University Museum for two great years of science, cake Fridays, beers and fun in our own little world. In particular, sincere thanks to Ingrid and Kari, my great officemates, for their perpetual good mood, tea cups, and brightening my days at the Museum. Thanks to Adrian and Lasse, we went through these thesis together, and made it. Good job guys. Thanks to Tuva for her continuous support, all the laughs we shared and great games of "which phylum?".

And finally, thanks to Elisabeth, for being there, always, and keeping me sane, sometimes.

Abstract

The polychaetes of the family Cirratulidae (Annelida) are common inhabitants in offshore benthic sediments and considered as an important group in environmental monitoring. Amongst them, the genus Chaetozone is the most species-diverse worldwide. Seven species of Chaetozone have been recorded in Norway, although these records should be considered cautiously as species delineation is challenging with morphological means. In order to determinate the number of species present in Norway and their distribution, 306 specimens from Norwegian and adjacent waters were DNA sequenced (the universal mitochondrial barcoding region COI, and D1-D2 regions of the nuclear 28 S rDNA) and datasets investigated after phylogenetic and species delimitation analyses such as ABGD, mPTP and GMYC. These molecular analyses were used as a frame to re-examine the morphological diagnostic features of each of the species.

Over 130 new COI barcodes are obtained, and a total of 16 species are recovered in the analyses. This includes sequences from specimens of the type locality of the type species of the genus, Chaetozone setosa, and its distribution was confirmed to be limited (in Norway) to Arctic waters. The morphology and nomenclature of all species are discussed.

This is a first molecular approach to resolve the species delineation, evolutionary relationships and geographic structure of members of Chaetozone, a genus which taxonomy has proven to be difficult. It provides a tool for both molecular and morphological identification and demonstrates the considerable underestimation of the diversity of Chaetozone, in the North East Atlantic. This also gives a taste of what is to be expected for the rest of the elusive systematics of the family Cirratulidae.

Table of Contents

List of abbreviations. xi

1. Introduction 1
1.1 Twenty Thousand Leagues Under the Seas, the Adventure Continues 1
1.2 Annelida - Cirratulidae 2
1.3 Bitentaculate Cirratulidae - Chaetozone. 6
1.4 Molecular Data and Associated Species Delimitation Tools 10
1.5 Aims 11
2. Material and Methods 13
2.1 Specimens and Study Area. 13
2.2 Molecular data retrieval 15
2.3 Phylogenetic Analyses 18
2.3.1 Alignments and Datasets 18
2.3.2 Data Partition And Model Selection 19
2.3.3 Maximum Likelihood 20
2.3.4 Bayesian Inference 21
2.4 Species Delimitation 23
2.4.1 ABGD 23
2.4.2 mPTP 24
2.4.3 GMYC 24
2.4.4 STACEY 24
2.5 Morphological Analyses 25
2.6 Specimens Occurrences 26
3. Results 27
3.1 Molecular Analyses 27
3.1.1 Data Retrieval, Partition and Model Selection 27
3.1.2 Phylogeny of Cirratulidae - Monophyly of Chaetozone. 27
3.1.3 Species Delimitation in Norwegian Chaetozone. 30
3.2 Morphological and Geographical Analyses 36
3.2.1 Species Previously Recorded in Norway 38
3.2.2 Species Found in Norwegian Waters 54
3.2.3 The Specimens from Jan Mayen. 80
4. Discussion 85
4.1 On the Phylogeny of Cirratulidae 85
4.2 Species Discovery and Identification Through Molecular Analyses, Integrative Taxonomy 87
4.3 Describing Species, Diagnostic Characters 88
4.4 Naming Species 91
4.5 Comments on the Diversity of Chaetozone in Norwegian Waters 92
5. Conclusion 95
6. References 97

List of abbreviations

br Branchiae
cO Ciliated organ
dCr Dorsal crest
dT Dorsal tentacles
nuO Nuchal organ
per Peristomium
pr Prostomium
Seg Segment
Set Setiger (= chaetiger)
vGr Ventral groove

1 Introduction

1.1 Twenty Thousand Leagues Under the Seas, the Adventure Continues

In the $21^{\text {st }}$ century, it might seem that no exploration is left to be done on Earth. The new mysteries to be solved are now that of Space, and the new explorers target Mars. There is however still one exciting adventure ongoing on lands and (20 000 leagues) under seas, as grand and noteworthy as the exploration of outer space, and that is the quest of discovering and inventorying the incredible and fascinating variety and of living organisms on Earth.

Though estimates of the biodiversity on Earth vary (Mora et al. 2011), most studies agree that a majority of it remains to be discovered and described. This is especially true in the marine environment (Appeltans et al. 2012), as it is more challenging to explore (Earle 1991), in a way similar to space conquest when it comes to its deepest parts. However, quite unlike the Moon, we do find, if not aliens, a number of uncommon and enigmatic creatures under the sea. Bryozoans, corals, ascidians, hydrozoans, molluscs, annelids, and even the occasional mud dragons are but a few examples of the often poorly known but wonderful world hidden under the surface of the ocean.

Systematics is the study of biological diversity, a process that includes taxonomy, the science that aims to describe, name and classify organisms, and phylogeny, that investigates evolutionary relationships between them (Simpson 1961, Mayr 1969, Wilson 1985, Winston 1999). To name something is the first step towards understanding it. Therefore, and though the pursuit of knowledge of all organisms around us is a worthy and noble goal in itself, taxonomy is a fundamental basis to biology research. Whether it is to investigate the history of life, or understand the global and complex ecosystem in which we live, being able to accurately identify organisms is crucial.

The increasing availability of molecular data such as DNA sequences has transformed taxonomy and systematics, opening new perspectives for species discovery, delineation and identification (Bickford et al. 2007). Mitochondrial and nuclear genes sequences, such as the now omnipresent barcode (Hebert et al. 2003a,b) combined with bioinformatics have become
a primary tool to assess the delimitation of species, defined as "separately evolving metapopulation lineages" (De Quieroz, 2007). These tools allow us to investigate the diversity of various groups for which the morphological characters visible to human eye (even under a microscope) may not reflect the aforementioned lineages, and thus lead to a classification that do not represent an evolutionary history nor reality (Schander \& Willassen 2005).

When the species boundaries recovered through careful analyses of DNA sequences are then combined to detailed morphological analyses we refer to a work of integrative taxonomy (e.g. Dayrat 2005, Padial et al. 2010, Schlick-Steiner et al. 2010). They can be used as a reference to study a number of morphological characters and potentially find the ones that reliably reflects the different lineages and will make possible the morphological identification of the different species.

1.2 Annelida - Cirratulidae

Annelida, or segmented worms, is a vast and diverse group that includes, amongst others, earthworms, leeches, echiurids, sipunculids and polychaetes. The polychaetes, or bristle worms, are a paraphyletic group which segments typically bear, as their name indicates, many bristles (also called chaetae or setae). They are a very diverse group of mostly marine animals, coming in all shapes, sizes and colors, with or without eyes or jaws, a variety of tentacles, cirri or branchiae, and of course all kinds of bristles.

Polychaetes belonging to the family Cirratulidae Ryckholt, 1851 (Fig. 1) are elongate worms. Their parapodia (the part on both side of each segment bearing the chaetae, or bristles) are in most cases very little developed, looking like simple ridges or bumps along the segments. Their most striking features are the long filament-like branchiae that most bear on many segments and their grooved dorsal tentacles (Fig. 1\& 2). The tentacles can either be numerous tentacular filament, or a pair of thick tentacular palps, and are used for feeding. Along them is a ciliated groove, used to bring food particles to the mouth (Blake \& Magalhães 2017).

They are deposit feeder, collecting particles around them with their tentacles, and all but one genus that lives in holes it bores in calcareous structures, live in sediments from the shallow
inter-tidal area to the abyss (Chambers \& Woodham 2003). Cirratulidae are typically burrowed just under the surface of the sediments, with only their branchiae and tentacles exposed above the surface, and some species are known to build tubes (Blake \& Magalhães 2017). They are amongst the most common and abundant polychaetes in offshore habitats and are also often present in great numbers in organically rich sediments, and can be used as indicators of organic pollution (Pearson 1976, Pearson \& Rosenberg 1978, Rygg 1985).

Cirratulidae are mostly placed in two distinct, though unofficial, groups depending on the nature of their tentacles. The grooved tentacles of the genera Cirratulus Lamarck, 1818, Cirriformia Hartman, 1936, Timarete Kinberg 1866, Fauvelicirratulus Çinar \& Petersen, 2011 and Protocirrineris Czerniavsky, 1881, take the shape of numerous tentacular filaments arising from one or several anterior segments. These genera are referred to as "multitentaculate" Cirratulidae (Fig. 1). They typically have a broad and wedge-shaped prostomium (the anterior part of the head), and include the largest specimens of the family, up to 20 cm long.

The tentacles of the genera Aphelochaeta Blake, 1991, Caulleriella Chamberlin, 1919, Chaetocirratulus Blake, 2018, Chaetozone Malmgren, 1867, Kirkegaardia Blake, 2016 and Tharyx Webster \& Benedict, 1887, arise as two long thick processes, usually from the back or the posterior margin of the peristomium (the posterior part of the head), owning them the name of "bitentaculate" Cirratulidae (Fig. 1). They usually have a narrow and conical prostomium, and are smaller worms that rarely size above a couple of centimeters.

One genus in the family, Dodecaceria, Ørsted, 1843, is left in his own group as it bores into calcareous structures like shells. It's tentacles are also a pair thick processes, but arising laterally. Cirratulidae belonging to this genus are thus often referred to as the "hard-bottom bitentaculate" Cirratulidae (Fig. 1), as opposed to the "soft-bottom" bitentaculate Cirratulidae.

These genera are the ones traditionally included in Cirratulidae and fitting the current description of the family. However, the few molecular studies providing information about the phylogeny of Cirratulidae show that the Ctenodrillidae (Kennel 1882) are nested within Cirratulidae (Weidhase et al. 2016). Despite these results, the family and its description have yet to be revised. There is no information on the monophly (or paraphyly) of these groups.

Figure 1 - Family Cirratulidae, main morphotypes and characteristics: A, multitentaculate Cirratulidae (Cirratulus sp.); B, soft-bottom bitentaculate Cirratulidae (Chaetozone sp.); C, hardbottom bitentaculate Cirratulidae (Dodecaceria sp.); 1, prostomium; 2, peristomium; 3, eyes; 4, nuchal organ; 5, grooved tentacles (various shapes); 6, branchiae; 7, parapodia; 8, capillary chaetae; 9, modified posterior segments (cinctures); 10, acicular spines. (Maël Grosse, original illustration).

1.3 Bitentaculate Cirratulidae - Chaetozone

Amongst the 304 extant species of Cirratulidae, 201 are bitentaculate (Read \& Fauchald 2019), with no less than 80 species and one new genus described in the past 10 years, and many species probably left to discover (e.g. Elías et al. 2017, Munari et al. 2017), including in the North East Atlantic (Chambers 2000, Chambers \& Woodham 2003).

Of the six genera of bitentaculate Cirratulidae, Chaetozone is the most diverse with 62 species worldwide. Chaetozone is distinguished from the other bitentaculate Cirratulidae by having posterior segments modified into cinctures created by elevated parapodia bearing fascicles of numerous unidentate spines (Fig. 1\&2), sometimes with a few bidentate hooks (Fig. 2) (Blake 2018). The nature and arrangement of chaetae are the main characters differentiating the bitentaculate genera as Aphelochaeta bears only smooth capillary chaetae (Fig 2), Kirkegaardia bears both smooth and serrated capillary chaetae (Fig 2), Caulleriella bears capillary chaetae and bidentate hooks (Fig. 2), Tharyx bears capillary chaetae and knobby tipped spines (Fig. 2) and Chaetocirratulus bears capillary chaetae and a few unidentate spines not arranged in cinctures (Blake 2018, Blake and Magalhães 2017).

Important characters for species identification include the general shape of the body, the presence or absence of a dorsal or a ventral groove or ridge along all or part of the body, the shape of the prostomium and of the peristomium, the nature of the first segment, the position of the paired tentacles, the position of the first branchiae, the nature and arrangement of the chaetae, the shape of the posterior modified segments or the shape of the pygidium (Blake 2017).

Seven species of Chaetozone are recorded in Norwegian waters by the Norwegian Biodiversity Information Center: C. setosa Malmgren, 1867, C. christiei Chambers, 2000, C. jubata Chambers \& Woodham, 2003, C. gibber Woodham \& Chambers, 1994, C. vivipara (Christie, 1984), C. abranchiata (Hansen, 1878), C. caputesocis (De Saint-Joseph, 1894). Caulleriella zetlandica (McIntosh, 1911) has previously been described within Chaetozone (McIntosh 1911, Southern 1914) and is also reported from Norway.

However, geographical and historical considerations incite then to caution regarding these records. Indeed, the understanding of the group's morphology and number of characters employed to describe and diagnose the different species has significantly increased since the first description of Chaetozone setosa. The boundaries and definition of the bitentaculate genera has been the subject of many changes and discussions (e.g. Hartman 1961, Blake 1991, Blake 2018), and many species have now been placed in a different genus than the one they were originally described in (examples in Table 1). In the light of today's knowledge of the group, their description is also often too succinct for accurate and confident identification. Chaetozone setosa for instance, has been reported from nearly all over the world (Chambers 2000), but is now believed to be probably only present in arctic and sub-artic waters, while the other records would be of different species (Blake 1996).

Figure 2 - Cirratulidae chaetae and processes: A, Segmented capillary chaetae $(\sim 100 \mu \mathrm{~m})$; B, Smooth capillary chaetae $(\sim 100 \mu \mathrm{~m})$; C, Bidentate hook $(\sim 15 \mu \mathrm{~m})$; D, Knobby tipped spine $(\sim 15 \mu \mathrm{~m})$; E, serated capillary chaetae $(\sim 70 \mu \mathrm{~m})$; F, unidentate spine $(\sim 70 \mu \mathrm{~m})$; G, Detail of a branchia ($\sim 1 \mathrm{~mm}$); H, Grooved tentacle (of a bitentaculate Cirratulidae, $\sim 2 \mathrm{~mm}$) (Maël Grosse, original illustration).

 I：t86I GZ NHNNG ：ədKıoloH	uodn әןSеэмә			рıрd！̣！̣ диоzодวрчว
of to－ 06 I I NHNWS ： sad Kıered 	preqie＾S＇uәpıo§sI	วиоzоддчว		рsодаs วиоzодวрчว
S000 Z000＊LEで666I ZSWN ：sədKıexe 	раихчว риепәчS－әогәв	วиоzоддчว		pұрqn！วиоzодวрчว
6290日dXL－VI－NHNW＇600｀ 66I $^{\circ}$ Z＇MNN ‘と\＆ち O＋LZt「て66I NHWG＇88＇Z66I＇Z＇SNN sədKie．s．${ }_{\text {d }}$ 		วиоzоддрว		
9009ㅣㅇㅜ66I Z＂MWN 	 	วиоzоддчว		
8ع60日d		snıи！วо．วдว H		s！วosวฉndpı วuоzołวฉчว
имоиуй	Krmion isam	sпппıри！${ }^{\text {a }}$	8L8I＇＇uəsury	
	К！！$_{\text {¢ ¢оо }}{ }^{\text {әd }}{ }_{\text {L }}$	 	ıочın	${ }^{\text {a }}$－${ }^{\text {N }}$

Valid nominated species need to have a representative specimen, or type, deposited in a public institution (Table 1). A type specimen links the species to which it belongs to a species name that can then be given to any specimen identified as belonging to the same species as the type. This type is then of crucial importance to accurately identify material. This type specimen can be accompanied by other specimens from the type locality (the place from which the type specimen originates and from which the species is described) used in the original descriptions of the species, called paratypes. Though they do not have the function of name-bearer, having an almost certain probability to belong to the same species as the type specimen, these paratypes are also extremely valuable in the identification of new material.

1.4 Molecular Data and Associated Species Delimitation Tools

From single genes to whole genomes, a wide range of molecular data is now available for Biosystematics. Many studies have revealed unknown or "cryptic" diversity in different polychaete groups using molecular data for taxonomical investigation following the process of integrative taxonomy described earlier (e.g. Nygren 2014, Nygren \& Pleijel 2011, Brasier et al. 2016, Capa et al. 2013, Aguado et al. 2019). Typically, DNA sequences of one or several gene fragments, also called markers, are used to recover information about lineages. Several of this gene fragments are widely used across organisms, like mitochondrial gene cytochrome oxidase I (COI) which is the "universal barcode" (Hebert et al. 2003a, b), or parts of the 28S rRNA nuclear gene.

Many methods have been designed to use the information contained in this DNA to study evolutionary relationships between species, and specifically for taxonomy. Though the methods differ, the motivation behind them is always the same: statistically differentiate two or more separately evolving lineages. Distance based methods assume that, due to the presence of gene flow within one lineage and the absence of it between lineages (which is the meaning of "separately evolving" and equivalent to the absence of reproduction between members of two distinct species), molecular markers will show distinctly less variability within species than between species. Different tree based methods use the branch lengths and
topology of a previously inferred tree to establish a threshold between intra- and inter-specific relationships.

In the family Cirratulidae, the multitentaculate genus Timarete has been the subject of some molecular studies at the species level (Magalhães et al. 2014, Seixa et al. 2017, Choi et al. 2018), in complement of morphological descriptions. No such technique however, has been used to investigate bitentaculate Cirratulidae.

1.5 Aims

The main aims of this study is (i) to assess the numbers of species of the genus Chaetozone in Norwegian waters using molecular data. This includes (ii) testing the monophyly of Chaetozone, by (iii) producing a phylogeny of the family Cirratulidae with said molecular data. The last aim is to (iv) re-examine the diagnostic features of each species found.

2 Material and Methods

2.1 Specimens and Study Area

Around 1500 specimens were examined in this study, most from the collections of the University Museum of Bergen (ZMBN) and NTNU University Museum (NTNU-VM). This material was either fixed and preserved in 96% ethanol or fixed in 10% formalin and preserved in 75% ethanol.

Material from the Mediterranean Sea (Mallorca, Spain) were also made available for the study. This material was collected by grab and fixed and preserved in 96% ethanol.

Additional specimens were collected for this study in the Trondheimsfjord by dredging of sediments and fixed in 96\% ethanol.

The study area covered by these specimens was divided in six biogeographic regions according to their different oceanographic and topographic characteristics (Blindheim \& Rey 2004, OSPAR 2010, Yashayaev et al. 2015, Nygren et al. 2018). The Greenland Sea (Fig. 3, cyan stars) is a deep cold water area and the Barents Sea (Fig. 3, purple dots) is a shallow cold water area. The Norwegian coast and shelf (Fig. 3, red pentagons), the Skagerrak (Fig. 3, orange triangles) and the North Sea (Fig. 3, blue squares) are shallow waters areas ($<600 \mathrm{~m}$) with warmer water, while the Norwegian Sea (Fig. 3, green diamonds) is a deep water area.

Type material of Chaetozone setosa, C. christiei, C. gibber, C. jubata, C. vivipara and Caulleriella zetlandica (McIntosh 1911) was made available by the Swedish Natural History Museum, Stockholm, Sweden (SMNH), the National Museums of Scotland, Edinburgh, UK (NMSZ) and the British Museum (Natural History), London, UK (BMNH).

Figure 3 - Sampling sites for molecular studies and biogeographic regions: Delimited by red lines; Greenland Sea (cyan stars), Barents Sea (purple dots), Norwegian Sea (green diamonds), Norwegian coast and shelf, (red pentagons), Skagerrak (orange triangles), North Sea (blue squares). Type localities of Chaetozone. setosa, C. christiei, C gibber, C. caputesocis,C. jubata, C. abranchiata, C. vivipara and Caulleriella zetlandica are indicated by black arrows.

2.2 Molecular data retrieval

In total, 306 ethanol fixed specimens were selected for molecular work across the geographic area (see above) and across the range of depth covered by the different materials (from 6 to 1256m).

Tissue samples of 95 of these specimens were sent to the Canadian Center for DNA Barcoding, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, that performed sequencing on both strands using the primer pairs polyLCO/polyHCO or ZplankF1_t1/ZplankR1_t1 (Table 2). The rest of the samples were processed in the facilities of the NTNU University Museum as follow.

To extract DNA from the specimens, a few parapodia, or a few of the posterior-most segments for the smallest specimens, were placed into $50 \mu \mathrm{~L}$ of QuickExtract (Epicentre) and heated at $65^{\circ} \mathrm{C}$ for 60 minutes followed by 3 minutes at $95^{\circ} \mathrm{C}$ in a thermos-shaker at 300 rpm .

The method above produces very impure DNA extracts potentially containing high concentration of PCR inhibitors, and the manufacturer indicates a very short preservation time of the raw extracts. Diluting these extractions in EB buffer was a solution to both problems. Testing of the most efficient dilution was done with qPCR (quantitative polymerase chain reaction) over 16 extractions. These samples were used undiluted, diluted 1:5 or diluted 1:10 in EB buffer. qPCR mixes contained $1 \mu \mathrm{~L}$ of each primer jgLCO1490 or $\mathrm{jgHCO} 2198,1 \mu \mathrm{~L}$ of SYBRgreen, $7 \mu \mathrm{~L}$ of MQ- $\mathrm{H}_{2} 0,12 \mu \mathrm{~L}$ of MyTaq Red Mix (Bioline) and $3 \mu \mathrm{~L}$ of DNA template, either not diluted, diluted $1: 5$ or diluted $1: 10$, for a total volume of $25 \mu \mathrm{~L}$. The $1: 5$ dilution resulted a much higher number of successful products than using the undiluted samples and showed a much earlier amplification than using the undiluted or diluted $1: 10$ samples. As a results, all extractions were eluted in $200 \mu \mathrm{~L}$ EB buffer.

Amplification of the markers was done by Polymerase Chain Reaction (PCR). PCR mixes contained $0.30 \mu \mathrm{~L}$ of each primers, $1.4 \mu \mathrm{~L}$ of DNA template and $10 \mu \mathrm{~L}$ of RedTaq 1.1x MasterMix $2.0 \mathrm{mM} \mathrm{MgCl} 2_{2}$ (VWR) for reaction volume of $12 \mu \mathrm{~L}$. The different pairs of primers
used (jgLCO1490/jgHCO2198, CirrCOIF/CirrCOIR, polyLCO/polyHCO, 28SC1'/28SD2) are presented with their respective cycles in Table 2.
$1.5 \mu \mathrm{~L}$ of each PCR products was run for 45 minutes on a 1% agarose gel electrophoresis containing SYBR safe (Invitrogen) for DNA detection and visualized using GeneSnap from SynGene software (Version 6.08, Cambridge, UK). All the successful PCR products left were purified with illustra ExoProStar 1-Step (GE Healthcare, Litlle Chalfont, UK). Cycle sequencing was performed on both strands by Eurofins Genomics DNA Sequencing Department (Ebersberg, Germany).

218 published and unpublished sequences of COI (209 sequences) and 28S D1-D2 (9 sequences) were downloaded from the Barcode of Life Data (BOLD, Ranasingham \& Hebert 2007) and GenBank (Benson et al. 2008). These sequences were from specimens identified as belonging to the genera Aphelochaeta, Caulleriella, Chaetozone, Cirratulus, Cirriformia, Ctenodrilus, Dodecaceria, Kirkegaardia, Protocirrineris, Raricirrus, Tharyx, and Timarete. Most of these sequences belong to specimens not collected in the area of interest in this study. They were however included in the analyses in order to get a better overview of the diversity and phylogeny of the family.

The whole dataset is presented in table Appendix I. To facilitate the use of two different genes for several specimens in some analyses, specimens are, whenever possible, referred to by their voucher number. When no voucher is provided to accompany a sequence, either GenBank or BOLD accession number is used (when such a sequence is used, no other sequence coming from the same voucher can be found).

Table 2 - PCR Primers: The different primer pairs used to amplify both markers used in this study and their respective cycles.

2.3 Phylogenetic Analyses

2.3.1 Alignments and Datasets

Forward and reverse reads were merged into consensus sequences using Geneious 11.0.5 (https://www.geneious.com).

COI fragments sequences were aligned with MUSCLE (Edgard 2004) implemented in Aliview (Larson 2014). 28S D1-D2 fragments were aligned on MAFFT online version (Katoh et al. 2017) with the algorithm Q-INS-i, that considers the secondary structure of RNA, using the $200 \mathrm{PAM} / \mathrm{k}=2$ scoring matrix and a gap penalty of 1.53 .

The complete COI dataset contains all 436 sequences either produced for this study and downloaded from BOLD or GenBank. The complete 28S dataset contains all 153 sequences either produced for this study and downloaded from Genbank (Table 3).

To perform distance-based species delimitation analyses, all sequences in the dataset must share a common domain as no distance can be calculated between two specimens for which sequences cover two different non-overlapping parts of the gene. Some short sequences were removed from the complete COI dataset to create a dataset suitable for distance analyses.

One species delimitation method requires that all sequences in the alignment are unique. To that effect, some sequences were removed from the complete COI dataset and the complete 28 S dataset to produce two additional datasets (Table 3).

All five dataset had some missing data in flanking regions, and the 28 S datasets presented several ambiguous regions where no satisfactory alignment and homology statement could be made. The softwares Gblocks (Castresana 2000) removes positions missing a certain amount of data, and/or poorly aligned. It was used on all COI datasets with default parameters, and on the 28 S datasets with softest parameters, to produce five additional datasets allowing us to test the influence of this missing data (Table 3).

A combined dataset was obtained by concatenating the complete COI and 28 S alignments. Some sequences were removed from this dataset to produce a second combined dataset with only unique sequences.

Norwegian species of Chaetozone were identified through analyses of all these datasets (COI, 28S, combined, with and without removing the poorly aligned positions and divergent regions with Gblocks). Some conflicts detected between both genes were identified as possible contamination. In these cases vouchers were re-examined to verify their identity. While a mislabeled or contaminated sequence does not affect phylogenetic inference over a single gene, these conflicts locally created poorly supported topologies and branch length in combined phylogenetic analyses, which in turn affect downstream species delimitation analyses. The aforementioned sequences were removed to perform additional analyses of the combined dataset without them.

Outgroups included in the alignments for ML inference were Glyphanostomum sp., Flabelliger affinis and Polycirrus cf eximius (Weidhase et al. 2016, Rouse \& Pleijel 2001). No outgroups were included the the datasets for Bayesian inference (Drummond \& Bouckaert 2015).

2.3.2 Data Partition And Model Selection

PartitionFinder2 (Lanfear et al. 2016, Guindon et al. 2010) was used to test partitions and find the best model for phylogenetic analyses using the Bayesian Information Criterion for both markers.

2.3.3 Maximum Likelihood

Maximum Likelihood inference was performed with PhyML (Guidon et al. 2010), on the 28S dataset before and after Gblocks, to test the impact of the missing data and ambiguous positions, as well as on the complete COI dataset also before and after Gblocks, to test the importance of missing data in species delimitation analyses, and on the COI dataset with short terminals removed, to compare the different species delimitation analyses, distance and tree based, also before and after Gblocks with default parameters, again to see the effect of missing data. A GTR $+\Gamma$ model with 4 four category count was used for the COI dataset and an TN93 $+\Gamma$ model with four Γ category counts was used for the 28 S dataset. Support values were estimated with a 100 bootstrap replicates.

Analysis of the concatenated datasets were performed with IQ TREE on Cypres Science Gateway (Miller et al. 2010), A GTR $+\Gamma$ model with four Γ category count was used for the COI partition and an TN93 $+\Gamma$ model with four Γ category counts was used for the 28 S partition. Each partition was allowed to have its own set of branch length. Support values were estimated with a 1000 bootstrap pseudoreplicates.

Trees were visualized and edited using FigTree 1.4.4 (Rambaut 2018) and LibreOffice Draw.

This makes a total of eight analyses, four with the COI data, two with the 28S data, one on the complete combined dataset, and one with the combined dataset of Norwegian Chaetozone.

2.3.4 Bayesian Inference

Bayesian inference was performed with BEAST2 (Bouckaert et al. 2014) on Cypres Science Gateway (Miller et al. 2010), on the 28S dataset before and after Gblocks, with duplicate sequences removed, on the COI dataset before and after Gblocks, with duplicate sequences removed, and on the combined dataset of all COI sequences and all 28 S sequences with duplicate sequences removed. A GTR $+\Gamma$ model with four Γ category count was used for the COI dataset/partition and an TN93 $+\Gamma$ model with four Γ category counts was used for the 28 S dataset/partition. A strict clock was assumed for both datasets/partitions. A Yule model was used as Tree Prior with a default Γ distribution as birth rate prior for both datasets/partitions. A lognormal distribution with $\mathrm{M}=1.0$ and $\mathrm{S}=1.25$ for kappa parameters prior of the 28 S dataset/partition (Drummond \& Bouckaert 2015). Trees of both partitions were linked for the combined analysis. All analyses were run with a chain length of 50000000 .

Convergence of each run and parameter was checked using Tracer 1.7.1 (Rambaut et al. 2018). A maximum clade credibility was obtained with Treeannotator (Bouckaert et al. 2014) after discarding 10% of the trees as burnin for single gene trees, and 20% for the combined analysis.

Trees were visualized and edited using FigTree 1.4.4 (Rambaut 2018) and LibreOffice Draw.

This makes a total of six analyses, two with the COI data, two with the 28 S data, one on the complete combined dataset (Table 3), and one and the Norwegian Chaetozone combined dataset.
Table 3 - Molecular datasets: Characteristics of the datasets and analyses performed with them. For the combined datasets, the number of terminal in the complete combined datasets is indicated first, then the number of terminals in the Norwegian Chaetozone combined datasets.

Dataset	Characteristics				Analyses					
	Number of Terminals	Number of positions	Number of partitions	Best model	ML	BI	ABGD	GMYC	mPTP	STACEY
Complete COI	436	658	1	GTR $+\Gamma$	x				x	
Complete COI Gblocks	436	453	1	GTR $+\Gamma$	x				x	
COI No Duplicates	331	658	1	GTR $+\Gamma$		x		x	x	
COI Gblocks No Duplicates	199	453	1	GTR $+\Gamma$		x		x	x	
Distance COI	423	658	1	GTR $+\Gamma$	x		x		x	
Distance COI Gblocks	423	457	1	GTR $+\Gamma$	x		x		x	
Complete 28S	153	919	1	TN $+\Gamma$	x		x		x	
Complete 28S Gblocks	153	679	1	TN $+\Gamma$	x		x		x	
28 S No Duplicates	92	802	1	TN $+\Gamma$		x		x	x	
28S Gblocks No Duplicates	84	679	1	TN $+\Gamma$		x		x	x	
Combined	492-225	1610-1491	2	$\begin{aligned} & \text { COI: GTR }+\Gamma \\ & \text { 28S: TN }+\Gamma \end{aligned}$	x				x	x
Combined No Duplicates	383-182	1460-1436	2	$\begin{gathered} \text { COI: GTR }+\Gamma \\ 28 \mathrm{~S}: \mathrm{TN}+\Gamma \end{gathered}$		x		x	x	

2.4 Species Delimitation

Four different species delimitation methods were used in this study, one distance method and three different tree based methods. COI was the selected target gene for species delimitation analyses and the three methods primarily chosen are designed for single gene analyses (e.g. Vogler \& Monaghan 2006, Vitecek et al. 2017, Nygren et al 2018, Aguado et al. 2019). 28S was selected to try to infer a fully resolved robust phylogeny (e.g. Rousset et al. 2007, Osborn \& Rouse 2011). As many sequences of 28 S were obtained for Chaetozone, these analyses were also tested on this gene, and an additional multi-loci tree based species delimitation method was tested.

2.4.1 ABGD

The Automatic Barcode Gap Discovery (ABGD, Puillandre et al. 2012) is a method designed to find the "barcode gap" within a dataset, following the assumption that interspecific variability is significantly higher than intraspecific variability (Hebert et al. 2003). This means that the genetic distance between two individuals in a dataset belongs to one of two distinct set of values, one composed of small short distances, representing intraspecific variability, and one composed of higher distances, representing interspecific variability, with no intermediate values. As this model was proposed on what is now used as the "universal barcode", this absence of intemediate values allowing us to discriminate between the intraspecific and interspecific variation is called the "barcode gap".

ABGD calculates simple pairwise distances or substitution-corrected distances (using either JC69 or K2P models) between aligned sequences and tests a range of prior intraspecific divergence to infer a limit to intraspecific variability. The barcode gap is the first significant gap detected after this limit. The data is partitioned a first time using this barcode gap and the method is then repeated inside each partition found to refine the partitions. The partitions found after this step are the species hypotheses.

ABGD was used with a range of 30 priors from 0.001 to 0.5 on JC69 distance matrixes from the two COI datasets for distance analyses, and on the two complete 28 S datasets.

2.4.2 mPTP

The multi-Rate Poisson Tree Process (mPTP, Kapli et al. 2017) is a tree based species delimitation method. It partitions a tree into sets of tips. The branch lengths of each species is fit to an exponential distribution that can be different for each set. It then finds the partition of the dataset that maximizes the likelihood score of the partition of branch lengths.
mPTP was applied through its on-line version to all 14 trees inferred previously (Table 3).

2.4.3 GMYC

The General Mixed Yule Coalescent method (GMYC, Fujisawa and Barraclough 2013) is a tree based species delimitation method that maximizes the likelihood score of an ultrametric tree by separating the branches of this tree between within-species-branches (coalescent events) and between-species-branches (speciation events) under the GMYC model (Pons et al. 2006).

GMYC was implemented in R (R Core Team 2015) with the packages ape (Paradis \& Schliep 2018), MASS (Venables \& Ripley 2002), Paran (Dino 2018) and splits (Ezard et al. 2017) on the six ultrametric Bayesian trees inferred previously (Table 3). Both the single and (experimental) multiple threshold methods were tested.

2.4.4 STACEY

Species Tree And Classification Estimation, Yarely (STACEY, Jones 2014) is a species delimitation method under the multi-species coalescent model. It is a Bayesian inference of a species tree from gene trees where tips can be merged into "minimal clusters" or species.

Stacey was implemented as a species package in BEAST2. A GTR $+\Gamma$ model with four Γ category count was used for the COI dataset/partition and an TN93+ Γ model with four Γ
category counts was used for the 28 S dataset/partition. A strict clock was assumed for both datasets/partitions with a lognormal prior. The tree prior was a fossilized birth/death model. The collapse height was of $1 \mathrm{e}-4$. The collapse weight was estimated with a beta prior $(1,1)$ around $[0,1]$ and a start value of 0.5 . A $1 / \mathrm{X}$ prior was used for the Growth rate. A lognormal distribution with $\mathrm{M}=1.0$ and $\mathrm{S}=1.25$ was used for kappa parameters prior of the 28 S dataset/partition and the population scaling factor (Drummond \& Bouckaert 2015, Vitecek et al. 2017). The chain length was of 300000000 .

STACEY was used on the combined dataset of Norwegian Chaetozone.

Convergence of each run and parameter was checked using Tracer 1.7.1 (Rambaut et al. 2018).

2.5 Morphological Analyses

The material was examined a first time to make a preliminary sorting in order to select specimens from all different morphologies present for DNA sequencing. After the molecular analyses, the DNA vouchers were examined more carefully in order to look for morphological patterns representative of each species.

The aim of this second analysis was not to write formal complete species descriptions or redescriptions, but to find, when possible, diagnosis characters enabling researchers to sort and distinguish the different species, even though it may not be possible to name them yet.

All specimens were examined using a Leica M165C stereomicroscope and a Leica DM250 compound microscope. Detailed pictures of specimens were taken with a Leica MC170HD camera mounted on a Leica M165C stereomicroscope or Leica DFC420 camera mounted on a Leica MZ16A stereomicroscope. All specimens were stained in a solution of Shirlastain A (SDL International LTD). Shirlastain A is used to enhance contrast at the surface of the specimens and allow an easier and more precise observation of the external morphology. Some specimens were stained in a solution of Methyl Blue. Methyl Blue, like Methyl Green, stains glandular tissues that may be present following a distinct pattern in some species.

Parapodia of some specimens, usually an anterior and a posterior one, or complete segments, were mounted on slides in Euparal and photographed with a Leica DFC420 camera mounted on a Leica DM60000 B compound microscope.

Some specimens were examined with a Zeiss SUPRA 55VP scanning electron microscope (SEM) at the electron microscopy lab of the University of Bergen. To be certain to link the right morphological characters to the right species previously determined through molecular analyses, some of the DNA vouchers had to be used. The specimens were critically point dried with a Polaron critical point dryer (Watford, England) and coated with gold (40\%) and palladium (60\%) with a Polaron SC502 coater.

Figures, pictures and ink handmade illustrations were edited with with GIMP 2.10 (GNU Image Manipulation Program), LibreOffice Draw and an Intuos3 Pen Tablet (Wacom).

2.6 Specimens Occurrences

Specimens occurrences and species distributions were investigated with QGIS 2.14 (QGIS Development Team 2016).

3 Results

3.1 Molecular Analyses

3.1.1 Data Retrieval, Partition and Model Selection

A total of 144 new 28S (58\%) and 177 new COI sequences (57\%) were obtained. PCR success was of 67% for 28 S and 69% for COI. Sequencing success was of 86% for 28 S and 82% for COI.

Partition Finder 2 found a GTR $+\Gamma$ as the best model for the COI partition. No additional codon partition was found within the COI alignment. A TRN $+\Gamma$ was found as the best model for the 28 S partition and no additional codon partition was found within the 28 S alignment either.

3.1.2 Phylogeny of Cirratulidae - Monophyly of Chaetozone

In both the Maximum Likelihood and Bayesian Inference of the combined dataset (COI+28S), Chaetozone is recovered monophyletic with strong support (posterior probability of 1 and bootstrap value of 89) (Fig. 4).

Ctenodrillus and Raricirrus are also recovered monophyletic and strongly supported as such in both combined analyses (with respective posterior probabilities of 0.8819 and 0.9999 and bootstrap values of 99 and 95) (Fig. 4).

Dodecaceria is supported as monophyletic in the Maximum Likelihood analysis (bootstrap value of 74), but not in the Bayesian Inference (posterior probability of 0.3648) (Fig. 4).

Cirratulus is supported as monophyletic only in the Bayesian Inference. In the Maximum likelihood analysis, it is paraphyletic in regard to Cirriformia and Timarete but only one terminal falls out of Cirratulus, with very low support (Fig. 4).

However, Aphelochaeta and Tharyx are recovered paraphyletic and mixed with one another. Cirriformia and Timarete are in the same situation (Fig. 4).

The Bayesian Inference strongly supports both the bitentaculate Cirratulidae (Chaetozone, Aphelochaeta and Tharyx) and the multitentaculate Cirratulidae (Cirratulus, Cirriformia and Timarete) as monophyletic (with respective posterior probabilities of 0.9735 and 1). Dodecaceria, Ctenodrillus and Raricirrus form a third supported monophyletic group (with a posterior probability of 0.9921). The relationship between these three groups is unresolved (Fig. 4).

The Maximum Likelihood analysis however, supports Chaetozone as sister to the rest of Cirratulidae. Dodecaceria, Ctenodrillus and Raricirrus are again supported as a monophyletic group, as well as the multitentaculate Cirratulidae (Cirratulus with Cirriformia and Timarete) (with respective bootstrap values of 79 and 100). The relations of these two groups together and with the group formed by Aphelochaeta and Tharyx are unresolved (Fig 4.).

0.02

Figure 4 - Phylogeny of Cirratulidae: A, Bayesian Inference of the complete combined dataset, posterior probabilities above 0.6 are indicated above branches. B, Maximum Likelihood inference of the complete combined dataset, bootstrap values above 60 are indicated above/under branches.

3.1.3 Species Delimitation in Norwegian Chaetozone

All analyses performed on the COI datasets recovered the same number and composition of 16 species. The 28S datasets did not respect the assumption of the barcode gap and ABGD failed to produce meaningful results on these datasets. Tree based analyses of the 28S dataset recover between 4 and 8 species, not counting the important number of singletons or cluster of 2-3 specimens made within two of the species recovered by analyses of the COI datasets. No 28 S sequences were obtained for three of the species recovered by analyses of the COI datasets. Tree based analyses of the combined dataset recover between 11 and 16 species, not counting the important number of singletons or cluster of 2-3 specimens made within two of the species recovered by analyses of the COI datasets in some of them (Fig. 5). The few sets of priors tested for STACEY did not allow it to converge and so no result is presented here. The use of Gblocks to remove missing data in some datasets had no impact on the general tree topologies or the species delimitation within Norwegian Chaetozone.

A consensus of 16 species is made from the different species delimitation analyses (Fig. 5):

- Species 1 (21 specimens) is recovered with all analyses but for mPTP on Maximum Likelihood analysis of 28 S where is is lumped with species $2,3,14,15$ and 16.
- Species 2 (13) is recovered with all analyses, but for mPTP on Maximum Likelihood analysis of 28 S where it is lumped with species $2,3,14,15$ and 16 . It is also further divided in GMYC with multiple threshold on Bayesian Inference of 28 S .
- Species 3 (14 specimens) is recovered in all COI analyses and mPTP analyses of both the Maximum Likelihood and Bayesian Inference of the combined dataset. It is lumped with species $1,2,14,15$ and 16 in mPTP on Maximum Likelihood analysis of 28 S , and with species 14 only in GMYC and mPTP on Bayesian Inference of 28S and GMYC on Bayesian Inference of the combined dataset.
- Species 4 (10 specimens) is recovered in all COI analyses and combined analyses but for GMYC with single threshold on Bayesian Inference of the combined dataset where it is lumped with species 5 . It is also further divided in GMYC with multiple threshold on Bayesian Inference of 28 S . No 28S sequences were obtained in this species.
- Species 5 (3 specimens) is recovered in all COI analyses and combined analyses but for GMYC with single threshold on Bayesian Inference of the combined dataset where it is lumped with species 4 . No 28 S sequences were obtained in this species.
- Species 6 contains one specimen for which only a COI sequence was obtained, and two specimens for which only a 28 S sequence was obtained. These three specimens form a monophyletic group in all combined analyses. GMYC and mPTP on the Bayesian Inference of the combined dataset cluster these specimens together. mPTP on the Maximum Likelihood analysis of the combined dataset separates them. Without any common marker to link them, it difficult assess the status of these specimens as one or two species. It is decided to leave them as a single species until more data corroborating one or the other hypothesis can be obtained.
- Species 7 (69 specimens) is recovered in all COI analyses. It is lumped together with species 8 in GMYC on the Bayesian Inference of the combined dataset, and divided in two sister groups in mPTP on the Bayesian Inference of the combined dataset. It is divided in a number of singletons or groups of a few specimens, sometimes paraphyletic with species 8 in analyses of 28 S and in mPTP on the Maximum Likelihood analysis of the combined dataset.
- Species 8 (42 specimens) is recovered in all COI analyses. It is lumped together with species 7 in GMYC on the Bayesian Inference of the combined dataset, and mostly recovered in mPTP on the Maximum Likelihood Inference of the combined dataset. It is divided in a number of singletons or groups of a few specimens, sometimes paraphyletic with species 7 in analyses of 28 S and mPTP on the Bayesian inference of the combined dataset.
- Species 9 (5 specimens) is recovered in all COI analyses and combined analyses but for GMYC with single threshold on the Bayesian Inference of the combined dataset where it is lumped with species 10 . Is also lumped with species 10 in all analyses of the 28 S datasets.
- Species 10 (11 specimens) is recovered in all COI analyses and combined analyses but for GMYC with single threshold on the Bayesian Inference of the combined dataset where it is lumped with species 9 . Is also lumped with species 9 in all analyses of the 28S datasets.
- Species 11 (2 specimens) is recovered in all COI analyses and combined analyses but for GMYC with single threshold on the Bayesian Inference of the combined dataset where it is lumped with species 12 . Is also lumped with species 12 in all analyses of the 28 S datasets but for GMYC with multiple threshold.
- Species 12 (21 specimens) is recovered in all COI analyses and combined analyses but for GMYC with single threshold on Bayesian Inference of the combined dataset where it is lumped with species 11 . Is also lumped with species 11 in all analyses of the 28 S datasets but for GMYC with multiple threshold.
- Species 13 (4 specimens) is recovered in all COI analyses and all combined analyses. No 28 S sequence was available for this species.
- Species 14 (2 specimens) is recovered in all COI analyses and mPTP on both the Maximum Likelihood and Bayesian Inference on the combined dataset. It is lumped with species 1, 2, 3, 15 and 16 in mPTP on the Maximum Likelihood analysis of 28S, and with species 3 only in GMYC and mPTP on the Bayesian Inference of 28 S and GMYC on the Bayesian Inference of the combined dataset
- Species 15 and 16 are each composed of a unique specimens for which both COI and 28 S sequences were obtained. They are recovered in all analyses but for mPTP on the

Maximum Likelihood analyses of 28 S where they are lumped together with species $1,2,3$ and 14 .

Figure 5: Species delimitation in Norwegian Chaetozone: From left to right: Bayesian tree from the combined dataset; Results of the different analyses on the COI datasets (green), 28S datasets (blue) and combined datasets (red); Final species hypotheses. White indicates missing data. Grey bars indicate division in a high number of singletons or groups of few specimens. Posterior probabilities are indicated above branches.

3.2 Morphological and Geographical Analyses

In total, 9 morphogroups could be identified in the material. Each one of the genetic species 1, $3,5,6,11$ and 12 described above presents a unique combination of diagnostic characters allowing its morphological identification. The species 7 and 8 together form a seventh morphogroup or species complex. The species 2,4 and 13 together form an eighth morphogroup or species complex. The species 9 and 10 together form a ninth morphogroup or species complex.

Two of the species complexes above can be further delimited by geographical analyses. Species 7 and 8 have different distribution areas, which allow their identification to species. Though species 2 and 4 are present in the same localities, species 13 lives in a different area at a different depth, which allows its identification to species.

Species 14,15 and 16 were revealed in later analyses and the vouchers of species 15 and 16 were not examined and are not described here. The unique voucher of species 16 could be superficially examined and present a distinct morphology from all other species but is not described here.

In total, 11 genetic species are identifiable using to a combination of morphological and geographical data.

Only one species could be assigned a name. The name Chaetozone setosa is assigned to species 8 .

A diagnosis or description of each species previously recorded in Norway is given first. A brief description of the different species or species complexes found in this study is then given.

Chaetozone Malmgren, 1867

Chaetozone Malmgren, 1867: 96, pl.14, Fig: 84; Chambers 2000: 588-589; Blake 2015: 504; Blake 2018: 69.

Type species - Chaetozone setosa Malmgren, 1867, by monotypy.

Diagnosis - (From Blake 2018: 69). "Prostomium blunt to conical, peristomium elongate to short, usually lacking eyespots, with a pair of small nuchal slits or depressions at posterior edge; with a single pair of grooved dorsal tentacles arising from posterior edge of peristomium, or sometimes more posterior on an asetigerous anterior segment, or rarely on an anterior setiger. First pair of branchiae arising from an achaetous segment or first setiger; sometimes with first two pairs of branchiae on a single anterior segment. Body usually expanded anteriorly and narrowed posteriorly, rarely with middle or posterior body segments beaded or moniliform; posterior end often expanded. Setae include capillaries on most setigers and sigmoid acicular spines in neuropodia and notopodia, with spines typically concentrated in posterior segments forming distinct cinctures with spines carried on elevated membranes; cinctures with few to many spines sometimes encircling entire posterior end, accompanied with none to many alternating capillaries; bidentate spines sometimes present in juveniles or occasionally in ventral-most position of far posterior setigers of adults, accompanying unidentate spines in cinctures; some species with long, natatory-like capillary notochaetae, sometimes limited to gravid individuals. Pygidium a simple lobe, disk-like, or with long, terminal cirrus."

Remarks - SEM revealed the presence of ciliated branchiae on all the species examined with this method. The branchiae usually appear divided in two parts. They are cylindrical and horizontally wrinkly in their proximal half, and flattened in their distal half, with a row of cilia along each edge (Fig. 7 B). One mention of these cilia is made for Chaetozone by De Saint-Joseph (1894). There are no references about the function of these cilia. Small, round ciliated organs were revealed using SEM on all the specimens. They are around 4 to $6 \mu \mathrm{~m}$, present on the surface of nearly the whole body and particularly abundant on the head (Fig. 7 C-D). Their function is unknown.

3.2.1 Species Previously Recorded in Norway

Chaetozone (?) abranchiata (Hansen, 1879)

Cirratulus (?) abranchiata Hansen, 1879: 10-11, Pl VII Fig 3-7.
Chaetozone (?) abranchiata : Moore, 1903: 470-471.

Description - (From Hansen 1882: 40). "Three specimens, measuring 14mm in length and 3 mm in breadth. Body, oblong and pointed at the extremities, built up of slender segments, bearing long, delicate bristles. The head a small obtuse cone, without either eyes or appendages; posterior to the head 1 broad and 2 narrow, naked segments, which along with the head constitute an acuminate projection on the posterior broader bristle-bearing segments. The buccal aperture on under surface of the head. Each bristle bearing segment having on either side an elongate projection, furnished with a small mammilliform tubercle both at the upper an lower extremity, in which are seen the two fascicles of exceedingly long, slender and perfectly smooth capillary bristles. There is no separate pharynx; the intestine passes straight through the body to which it is attached by slender membranous filaments. No blood-vessels were detected, or segmental organs.

Of the branchiae distinguishing this genus, there is indeed not a trace in the animal here described; but it general structure nevertheless brings it nearest to the Cirratulidae."

Remarks - Moore (1903) examined material from the Pacific coast of Japan, that he judged similar to that of Hansen's from the Norwegian Sea, but placed them within Chaetozone. This placement was obviously uncertain. The type material was not available for this study and neither Hansen's nor Moore's materials were examined. The status of this species is still uncertain. None of the Norwegian material examined fit Hansen's description.

Chaetozone caputesocis (De Saint-Joseph, 1894)

Heterocirrus caput esocis De Saint-Joseph, 1894: 53-54, Pl. III, Fig. 58-60.
Chaetozone caputesocis Petersen 1999.

Description - (Translated from De Saint-Joseph, 1894: 53-54). " Often collected during dredging. The body slightly yellowish brown, 15 to 17 mm long and 0.8 mm large for 84 segments. The very characteristic head has the shape of a pike snout slightly flattened at the front with two big black eyes placed on the posterior part, on the cerebral ganglions. On each side of the head, slightly lower than the eyes and near to the limit of the the buccal segment, a small vibrating depression opens. The buccal segment, elongated and achaetous, is followed by a second achaetous segment, barely distinct from it and that bears on its dorsal part two big muscular tentacles with a ciliated groove, 1.70 mm long, reminding of the tentacles of the spionids. Under each tentacle there is a branchial filament three times thinner which has two vessels, while the tentacles have only one as we previously said. The short and bilobed trunk comes sometimes out of the mouth when the animal is compressed. The $3^{\text {rd }}$ segment, which is chaetigerous, and the the next have nearly all, but for the 14-26 last, shortly above the dorsal chaetigerous mount, a pair of ciliated branchial filaments, thin and long, lacking more often when going further from the head. Each segment have in their upper mount 8-9 very thin capillary chaetae, to which joins in the last 23 segments 1 to 4 acicular chaetae, less curved and shorter than the acicular crotchets from the ventral mount described next. The lower mount has in the 10 to 12 first segments simple chaetae thicker than that of the dorsal mount and slightly curved, which, in the next segments, take the shape of shorter acicular chaetae, slightly more curved and ending in a little hook, barely marked; first there are 2 , then 5 to 7 , and from the $30^{\text {th }}$ segment there are 9 ; everywhere these chaetae alternate with capillary chaetae.

The anal segment, smooth on the dorsal side, is divided in five lobes on the ventral side (Fig. $60)$. The intestine is full of sand.

I often find the H. caput esocis full of grey eggs or spermatozoa. The eggs, that have a diameter of 0.12 mm , show from the $14^{\text {th }}$ segment and lack in the last 18 .

The specimens arrived at perfect maturity have in their upper mount 4 to 5 chaetae thinner and four times longer that the others.

The pair of big segmental anterior organs, 0.96 mm long, each composed of two branches interiorly ciliated, curved and joined together, occupying the five first chaetigerous segments, opens on each side of the body on the ventral side of the first chaetigerous segment. One of these branches, colourless, opens on a vibrating auricle in the inside of the body at the second achaetous segment and the other, slightly brown, communicates with the exterior through a ciliated pore.

This species is neighbour to the Heterocirrus multibranchis Gr., but this one only has capillary chaetae."

Remarks - This is a direct translation of the original description by De Saint-Joseph and his description was not interpreted in terms of modern knowledge and terminology. The paragraph at the end describing "the pair of big segmental organs" is particularly confused and convoluted in the original work.

The status of this species is unclear (Woodham \& Chambers, 1994). This species was moved to Chaetozone by Petersen (1999), in a table's footnote, without further detail than: "The species is in good agreement with the genus Chaetozone as defined by Blake (1996)". Though the type material of this species was not examined during this study, none of the Norwegian material examined seems to fit its description or accompanying illustrations.

Chaetozone christiei Chambers, 2000

Chaetozone christiei Chambers, 2000: 592-594, Fig. 2.

Material examined - Three specimens. North Sea: Holotype, 55.32'N, 1.36'W, 3 November 1982 (1, NMSZ.1998. 122), paratypes, (2, NMSZ.1998.123).

Description - (From Chambers, 2000). "Largely based on the holotype (NMSZ, 1998.122) and other material from the type locality. Maximum body length 12 mm for 110 chaetigers. Body surface smooth, narrowly pointed anterior region widens to mid-body and posterior region. Ventral surface flattened with a longitudinal groove. Anterior dorsal surface rounded, gradually flattening posteriorly. Segments narrow and crowded in anterior region, difficult to distinguish, becoming wider and more obvious in posterior region. Segment divisions in posterior 30 segments slightly narrow 4-5ths width of segment, to give stretched 'concertinalike' appearance. Color of material preserved in alcohol creamy white with iridescent sheen.

Prostomium conical with long acutely pointed tip and a pair of shallow nuchal grooves above the mouth. No eyes. Peristomium achaetous, smooth, partially divided into three annuli, with a ventral mouth, pair of grooved tentacular palps originating from dorsal surface of posterior annulus extending approximately a third of the total body length. The first pair of branchiae arising on the first chaetiger and only slightly posterior and lateral to the bases of the tentacular palps, and extending approximately a third of the body length. Second pair of branchiae arising behind first pair of branchiae on second chaetiger and dorsal to notopodial lobes. Branchiae occurring on every chaetiger in anterior region, occurring less regularly in mid-body region and absent posteriorly from approximately 40th segment. Branchial filaments simple.

Parapodia all biramous with notopodial and neuropodial chaetae, parapodial lobes flattened ridges hardly extending from the body wall. Notopodial and neuropodial lobes separated in mid-lateral line with chaetae arranged in a single fan-shaped row. Chaetae directed posteriorly and laterally in anterior and mid-body region and both anteriorly and posteriorly in the posterior region.

Chaetae all simple, unidentate of three types: (1) awl-shaped capillaries in both notopodia and neuropodia on anterior body region to approximately 50th segment; (2) fine capillaries, 2-3 times longer than awl-shaped capillaries, 3-4 present in notopodia and neuropodia from approximately 20th chaetiger to end of body; (3) spines, 2-3 present in notopodia and neuropodia from 30th segment; 4-5 spines alternating with capillaries in notopodia and neuropodia in posterior body from approximately 50th segment. Pygidium rounded flattened leaf-like lobe, anal opening dorsal."

Remarks - The holotype of Chaetozone christiei is conform to the original description by Chambers (2000). The first pair of branchiae arise from the first chaetiger, which is also the first segment, just under the tentacles. The tentacles arise from the posterior margin of the dorsal crest (hinted at but not clearly described in the original description), and slightly overlapping the first segment. A thin marked dorsal groove is present on the anterior half of the specimen. One of the paratypes is also close to the original description. On the second paratype however, another pair of branchiae is present beside and slightly anterior to the tentacles and anterior to the first chaetiger. It is unclear however whether these branchiae arise between the peristomium and the first chaetiger, which would then also be the first segment, or whether they arise from an indistinct achaetous first segment. This second paratype is more similar to a population described by Christie (1985) from Holy Island (Susan Chambers, personal communication).

Chaetozone gibber Woodham \& Chambers, 1994

Chaetozone gibber Woodham \& Chambers, 1994: 308-310, Fig. 1\& 3.

Material examined - Three specimens. Channel: Paratypes (3, NMSZ.1992.88).

Description - (From Woodham \& Chambers 1994). "Length of body up to 20 mm for approximately 200 segments. Body surfaces smooth; dorsal surface swollen anteriorly between chaetigers 7-30 approximately, giving a characteristic hump-backed appearance; ventral surface flattened with a longitudinal groove; posterior region bluntly tapered, dorsoventrally compressed with lateral surfaces somewhat flattened giving almost rectangular shape in cross section. Segments broad, short and crowded in anterior region, becoming narrower and longer posteriorly, without intersegmental constrictions. Colour of preserved material (in alcohol) creamy white.

Prostomium conical with acutely pointed tip. Pair of subdermal eyes, round to elongate, near lateral posterior margins; shallow nuchal groove below and behind each eye. Peristomium achaetous, smooth, partially divided into 3 annuli, pair of grooved tentacular palps originating from dorsal surface of posterior annulus, measuring approximately $1 / 3$ of body length. First pair of branchiae arising immediately posterior to tentacular palps, on first chaetiger. Mouth ventral.

Parapodia all biramous with notochaetae and neurochaetae; parapodial lobes flattened mounds, extending further from the body posteriorly. Pair of branchiae arising dorsal to notopodial lobes on every chaetiger in anterior region, occurring less regularly in mid-body region and absent posteriorly (precise occurrence of branchiae uncertain as frequently only scars remain in preserved specimens); branchial filaments simple, cylindrical and smooth, of variable length up to approximately 2 mm , thickest and longest in anterior region.

Notopodia and neuropodia slightly separated with chaetae arranged in single dorsal-ventral rows. Chaetae directed laterally in anterior and mid-body regions and more anteriorly in
posterior third of body. Chaetae of three types: i) slender capillaries in both rami of all chaetigers; ii) stout awl-shaped capillaries in notopodia between approximately segments 40 and 90 iii) spines with unidentate tips in notopodia from mid-body (segments $90-100$) to end of body and in neuropodia from anterior region (segments 50-80) to end of body; number of spines in each ramus increasing posteriorly from 1 to 4; each ramus in posterior region of body typically with four unidentate spines and four slender capillaries alternating with each other; left and right chaetal rows well-separated, spines not forming complete rings around segments.

Pygidium with small ventral lobe."

Remarks - Three specimens designated as paratypes of C. gibber were made available for this study. All three of them were very fragile, in several pieces and in overall poor condition. The anterior end of one of them could not be found. Detailed examination was made difficult by their fragility, but one of them seemed to fit the original description by Woodham and Chambers (1994).

Chaetozone jubata Chambers, 2003

Chaetozone jubata Chambers, 2003: 43-45, Fig. 2.

Material examined - Two specimens. Faroe-Shetland channel: Paratypes, 61.5.57’N, 2.4093’W, July 1996, 710 m (2, NMSZ.1999.237.4-5).

Description - (From Chambers, 2003). "Mostly based on holotype (NMSZ.1999.237.0001) and paratype material (NMSZ.1999.237. 0002 and 0003). Body length up to 8 mm for about 50 chaetigers. Body surfaces smooth; anterior and mid-body regions wider than posterior region; ventral surface rounded with longitudinal groove; dorsal surface flattened in anterior and mid-body regions. Chaetigers in anterior and mid region easily distinguished; posterior 10 chaetigers well-separated with obvious constrictions between them. Colour of preserved material (in alcohol) creamy white.

Prostomium conical with pair of shallow nuchal grooves above mouth (not seen using light microscopy but obvious with scanning electron microscopy). No eyes. Peristomium achaetous, smooth and very indistinctly divided into three annuli; pair of grooved tentacular palps (only bases present in holotype) originating from dorsal surface of posterior margin of posterior annulus. Mouth ventral. First pair of branchiae arising on first achaetous segment and directly behind palps. Parapodia all biramous with notochaetae and neuro-chaetae. Pair of branchiae arising dorsal to notopodia and occurring on every chaetiger in anterior region, more sporadically in mid-body; absent in posterior body region. Branchial filaments simple. In anterior region, parapodial lobes low ridges hardly extending from body wall; notopodial and neuropodial lobes very slightly separated in mid-lateral line with chaetae arranged in fanshaped rows. In posterior region, parapodial lobes very thin and antero-posteriorly flattened. Chaetae all simple, unidentate of three types:

1. Very long capillaries, length two to three times anterior body width, width at base approximately $4.2 \mu \mathrm{~m} ; 4-10$ present in notopodia only from second chaetiger to about $25^{\text {th }}$ chaetiger, gradually reducing in number to $1-2$ in posterior chaetigers.
2. Short capillaries, less than a quarter the length of long capillaries, width at base approximately $4.2 \mu \mathrm{~m} ; 1-2$ in notopodia and $4-8$ in neuropodia from 2 nd chaetiger to end of body.
3. Spines, width at base approximately $6.3 \mu \mathrm{~m}$, present in notopodia and neuropodia from about 25th chaetiger, alternating with capillaries; gradually increasing from 2-4 in the mid-body region to $12-14$ in each ramus of posterior chaetigers.

Pygidium with ventral, thin, scoop-shaped lobe (Fig. 2D); anal opening terminal."

Remarks - The paratypes were only superficially examined but seem conform to this description.

Chaetozone setosa Malmgren, 1867

Chaetozone setosa Malmgren, 1867: 96, pl.14, Fig: 84; Chambers 2000: 589-591, Fig. 1; Blake 2015: 504-507, Fig. 1\&2.

Material examined - Svalbard: lectotype, Isfjord, 06 June 1864, 55m (1, SMNH 1493-03), paratypes (172, SMNH 1493-04 to 175).

Description - (From Blake 2015: 504-507). "A moderately sized species, lectotype a complete ovigerous female, 20.2 mm long, 1.7 mm wide for 90 setigerous segments; complete paralectotypes up to 28 mm long, 2 mm wide for 94 setigerous segments.

Body of most preserved specimens curled into a C-shape, but not strongly coiled. Body thickened in middle, narrowing anteriorly and posteriorly. Anterior setigers short, wide, becoming up to 2 times longer in middle body segments, but always narrower than wide except for some segments on ovigerous specimens. Dorsal groove weakly developed, narrow, often limited to anterior setigers; ventral groove well-developed, visible along most of body, absent in far posterior cinctured segments. Color in alcohol brown or grey; no distinct pigmentation.

Prostomium conical, narrow, bluntly pointed anteriorly; eyes absent; nuchal organs narrow diagonal slits, not pigmented. Peristomium with two large, distinct rings best visible laterally, overlain dorsally by swollen peristomial crest with peristomial annulations weakly developed or not apparent on crest, crest overlapping prostomium anteriorly, narrowing posteriorly, extending to near anterior margin of achaetous segment. Dorsal tentacles arising from notch at posterior margin of peristomium; first pair of branchiae typically positioned posterior to tentacles on posterior margin of incomplete achaetous segment; second pair of branchiae on setiger 1 .

Setiger 1 of approximately same size as preceding achaetous segment and subsequent setigers; parapodial lobes reduced, inconspicuous ridges in anterior and middle setigers; enlarged with elevated ridges in posterior cinctured segments bearing conspicuous armature;
posterior segments separated by deeply cut intersegmental furrows and with highly elevated membranous podial lobes from which spines and capillaries emerge, forming full cinctures; notopodial spines directed ventrally, neuropodial spines directed dorsally.

Noto- and neurochaetae from setiger 1 , setae of anterior segments all limbate capillaries, numbering about $7-10$ per fascicle; long, natatory-like notochaetae present from about setiger 18-21, continuing posteriorly. Capillaries thin throughout, some with fibrils along edge, but not consistent; natatory-like setae capillaries, very long, flattened in cross section numbering $2-5$ per notopodium mainly restricted to lower part of setal fascicle. Based on data from 16 types in Table 1, with 63-93 setigerous segments (mean $=83.9 \pm$ SD 7.7), acicular spines begin from setiger $35-65$ in neuropodia (mean $=51.7 \pm$ SD 7.6) and setiger 43-71 in notopodia (mean $=58.7 \pm$ SD 7.1). Lectotype with neuroacicular spines from setiger 57 and notoacicular spines from setiger 63. Spines numbering 1-3 at first, accompanied by narrow limbate capillaries, increasing to $10-13$ in each ramus in fully developed and complete posterior cinctures, with 20-26 spines on a side with alternating capillaries; spines sometimes overlapping at dorsal midline; when long natatory-like setae occur within posterior cinctures, they accompany ventral-most notopodial spines and sometimes dorsal-most neuropodial spines. Spines brownish or brassy in appearance, round in cross section with weak narrow notch at point of emergence, with slightly curved or sigmoidal shape narrowing to a bluntly pointed tip; shafts with thick borders and fine internal striations.

Last few cinctured setigers tapering to narrow posterior end; pygidium with terminal anus and small flattened ventral lobe."

Remarks - The lectotype and paratypes agree with that description. The dorsal crest however is rarely as distinct and prominent as on Blake's (2015, Fig. 1,2) illustrations.

Chaetozone vivipara (Christie, 1984)

Tharyx vivipara Christie, 1984: 70, Fig. 1\&2.
Chaetozone vivipara Petersen, 1999.

Material examined - 29 specimens. North Sea: holotype, $55.06^{\prime} \mathrm{N}, 1.257^{\prime}$ W, 4 April 1978, $3.5-7 \mathrm{~m}$ (1, BMNHN1984.1), paratypes (10, BMNH 1984.2-11); paratypes $55.84{ }^{\prime} \mathrm{N}$, $1.31^{\prime} \mathrm{W}$, 31 October 1978, 9-13m (10, BMNH 1984.12-21); paratypes, $55,202^{\prime} \mathrm{N}, 1.349$ ’W, 31 October 1978, 1-4m (4, BMNH 1984.22-25); paratypes, 54.378^{\prime} N, 1.97 ’W, 24 September 1981 (2, BMNH 1984.26-27); paratypes, $53.353^{\prime} \mathrm{N}, 0.50^{\prime}$ W, July 1982, 3m (2 , BMNH 1984.28-29).

Description - (From Christie, 1984: 70). "The holotype is 8.5 mm long and 1.0 mm wide, with 44 setigers and is complete except for some missing palps and branchiae. The body is short and spindle-shaped; it is broadest in the middle and tapers anteriorly and posteriorly. Prepygidial segments are not inflated. The prostomium is a small, acutely pointed, lobe without eyes. The buccal region consists of three asetous segments; segmentation is visible laterally but the dorsal surface is slightly inflated and smooth. A pair of tentacular palps arises on the posterior margin of segment III. When attached, the palps are relatively short and rarely exceed one half of the body length. Branchiae begin on segment IV; branchial scars on each segment indicate their presence along the entire body. They are attached directly above the notopodial idge and there is never more than one pair to each segment.

Anterior and posterior segments are short and narrow whereas middle segments are longer and wider. Notopodia and neuropodia are separate, throughout the body; all setae are short capillaries. Anterior and middle segments possess slender capillary setae with finely tapering tips; posterior segments possess slightly thicker capillary setae with abruptly tapering tips. In anterior segments, the notopodia and neuropodia possess 6-8 an in posterior segments 3-6 setae. The pygidium is short and round with a dorsal anus and a small ventral lip.

The middle segments of mature specimens are swollen due to the presence of numerous embryos within the coelom. Just prior to the release of the embryos, the epithelium becomes very thin and in preserved specimens is often ruptured revealing the embryos beneath."

Remarks - The holotype fits the description an illustration by Christie (1984). However, he describes the peristomium as three achaetous segments, rather than with three annular rings which based on Day (1967) is not correct (see discussion). He also states that the first pair of branchiae arise from "segment IV" (first segment), but the holotype and some of the paratypes show clear branchial scars arising from the posterior margin of the peristomium, or between the peristomium and the first segment, just below the tentacles. These scar is sometime only present on one side, like on the holotype. Some of the paratypes lack this pair of branchiae. It is unknown whether this shows the presence of several species or intraspecific variation.

This species was moved to the genus Chaetozone by Petersen (1999), in a table's footnote with the following explanation: "Posterior segments of smaller specimens contain slender acicular chaetae alternating with the capillaries, as in Chaetozone; The species has also been identified as Chaetozone because of its general appearance." Though the chaetae in the posterior segments are spread in a distinct fascicle or armature creating a slightly elevated membrane and low incomplete cinctures, no spine or chaetae thicker than the others were observed in the type material.

The parapodia of this species are characteristic in that each neuropodia and notopodia is a short, small rounded lobe rather than a low straight mount or ridge.

Chaetozone (?) zetlandica (McIntosh, 1911)

Chaetozone zetlandica McIntosh 1911: 161
Chaetozone zetlandica Southern 1914: 115, Pl. 12-13, Fig. 29 A-K.
Caulleriella zetlandica Woodham \& Chambers 1994: 311, Fig. 2 \& 4.

Material examined - One specimen. St Magnus Bay, Shetland, UK: holotype, 170m (1, BMNH 1921.5.1.3232).

Description - (From Woodham \& Chambers 1994). "Length of body up to 24 mm for approximately 154 segments. Body surfaces smooth, slightly iridescent. Dorsal surface of anterior half of body rounded, becoming flatter posteriorly ; ventral surface flattened with longitudinal groove; posterior region bluntly tapered, dorso-ventrally compressed to give an oval shape in cross section. Segments of relatively even length, without intersegmental constrictions.

Prostomium conical with long, acutely pointed tip. Pair of subdermal eyes, round to elongate, near lateral posterior margin; shallow nuchal groove posterior to each eye. Peristomium achaetous, smooth, partially divided into three annuli, pair of tentacular palps originating from dorsal surface of posterior annulus (only stumps present on all specimens). First pair of branchiae originate immediately posterior to tentacular palps, on first chaetiger. Mouth ventral.

Parapodia all biramous with neurochaetae and notochaetae; parapodial lobes flattened mounds, extending further from body posteriorly. Pair of branchiae arising dorsal to notopodial lobes and occurring on every chaetiger in anterior region then irregularly in midbody and posterior regions (precise occurrence of branchiae uncertain as frequently only scars remain in preserved specimens); branchial filaments simple, smooth, of variable length up to approximately 4 mm .

Notopodia and neuropodia slightly separated, with chaetae arranged in single dorsal-ventral rows, directed latero-posteriorly in anterior and mid-body regions and more anteriorly in
posterior third of body. Chaetae of 5 types: i) slender capillaries in notopodia only in ail chaetigers; ii) stout awl-shaped capilIaries of medium length, occurring in both rami of all chaetigers; iii) short stout awl-shaped capillaries, in mid-body neuropodia only; iv) spines with unidentate tips in neuropodia of posterior region; v) spines with bidentate tips in neuropodia of juvenile or small specimens only. Spines with bidentate tips found in individuals $4-5 \mathrm{~mm}$ long, although those in dorsal position of same neuropodia approach unidentate forms. All spines in larger individuals with unidentate tips only.

Pygidium with small ventral button-like lobe."

Remarks - This species was originally described as Chaetozone zetlandica from a posterior fragment that is in poor condition and lacks most chaetae. One neuropodia is complete and shows spines arranged in a distinct armature on an elevated membrane. Nothing could be seen from the notopodia. Southern (1914) describes a number of whole specimens from Scotland he identified as Chaetozone zetlandica based on the original fragment from McIntosh. Woodham and Chambers (1994) also examined material from Scotland that they attributed to this species, but placed it in the genus Caulleriella. They formed this new combination as they did not see any spines on the notopodia, and observed some bidentate spines in neuropodia of small specimens. They however show what they called "awl-shaped" capillary chaetae, as thick as the acicular spines, but longer, and indeed terminating into thin capillary instead of having a blunt tip. These "awl-shaped" capillary chaetae are also shown arranged in a distinct armature, with alternating capillary chaetae on an elevated membrane. As Blake (2018) states that the chaetae of Caulleriella are not arranged in cinctures and as the "awl-shaped" capillary chaetae of this species might indeed just be spines, Caulleriella zetlandica is strongly suspected to actually be Chaetozone zetlandica. Moreover, two of the species found in this study (9 and 10) closely resemble Caulleriella zetlandica (and indeed some specimens were identified as such in the collections) and are sister to some species clearly fitting the diagnosis of Chaetozone. In particular, they show the same type of long spines thinning into a capillarylike shape distally as is figure in Woodham and Chambers (1994).

The materials examined by Southern (1914) and Woodham and Chambers (1994) has however not been examined in this study and in any case the status of Chaetozone (?) zetlandica needs to be re-assessed. As stated previously, the diagnosis of either or both Chaetozone and Caulleriella might need revision.

3.2.2 Species Found in Norwegian Waters

Species 1

Material examined - Six specimens. Norwegian coast and shelf: $59.56729^{\prime} \mathrm{N}, 5.21568^{\prime} \mathrm{E}$, 26 April 2017, 328m (1, ZMBN125786); 62.35117’N, 6.16178’E, 21 July 2012, 243m (1, ZMBN125783); 60.2593'N, 5.13703'E, 13 June 2017, 248m (1, ZMBN116562); 61.37705’N, 2.11215'E, 280m (1, ZMBN98250); 59.99’N, 5.35’E, 27 June 2007, 250m (2, MG332, MG334, NTNU-VM unregistered).

Description - A big species, $\sim 2 \mathrm{~cm}$ long, $\sim 1.5 \mathrm{~mm}$ wide ~ 56 segments. Body elongate, larger anteriorly, narrowing towards the head and in posterior half, oval to flattened oval in cross section anteriorly, round in cross section posteriorly. Anterior segments narrow and crowded, 5-6 times as high and wide as long, lengthening and enlarging progressively after the first 1015 segments to two times as high as long in posterior segments. A light dorsal groove over the first 10-15 segments (Fig. 6 H).

Prostomium conical blunt, as long as peristomium, fused with peristomium. Peristomium short, long like 3 segments, without any rings, in continuity of prostomium, in large specimens much narrower than first segments giving the whole head a characteristic "drop shape" clearly set off the rest of the body. Nuchal organs lateral slits on anterior end of the peristomium. Paired tentacles on achaetous first segment, not completing on top, in large specimens, larger than peristomium but not as wide as second segments which can cover it on the side so that it is only "facing forward". $1^{\text {st }}$ pair of branchiae on second achaetous segment, aligned with following ones. $2^{\text {nd }}$ pair of branchiae on third chaetiger, dorsal to notopodia, subsequent branchiae similarly placed (Fig 6 A).

Parapodia biramous, low mount or ridges in anterior segments, developping into full cintures in posterior segments, with deep constrictions between the segments (Fig. 6 F,H).

Very long capillary chaetae present in notopodia from the $3^{\text {rd }}-4 \mathrm{t}^{\mathrm{h}}$ setiger until the $25^{\text {th }}$, segmented, each segment like a cylinder diagonally cut in cross section, difficult to see with light microscopy but obvious with SEM, ~ 7 in anterior notopodia (Fig. 6 B). Smooth short
capillary chaetae present in neuropodia and notopodia of all setigers, ~ 7 to 12 in anterior neotopodia, ~ 12 in anterior neuropodia (Fig 6 C,G). Acicular spines long, with a broad flattened elongated leaf shaped blade, slightly folded along the length, up to 20 per parapodia in posterior segment with alternating short capillary chaetae, nearly totally encircling them, spines of left and right notopodia crossing over dorsum (Fig 6 D, F).

Pygidium with a rounded ventral lobe. (Fig. 6 E)

Methyl Blue staining pattern - None.

Remarks - The size and volumes of the head and the first segments varies in some specimens, which don't exhibit the characteristic "drop shaped" head and enlarged anterior segments shown on Fig. 6, or sometimes only slightly. The prostomium and peristomium are however always fused, and the pattern of implementation of the paired tentacles and firsts pairs of branchiae is always the same. This species is in that regard similar to species 2 and 4 , and is distinct from them by its characteristics segmented chaetae.

This species is found on the Norwegian Coast ans shelf, offshore and in the Fjords, South of Trondheim around 200-300m deep.

Figure 6 - Species 1: A-E SEM. F-G, : light photography. A, head in lateral view; B detail of long segmented notocapillary; C, detail of smooth capillary; D, notopodial spine; E, Pygidium in lateral view; F cross section of posterior modified segment; G, anterior parapodia; H, full specimen in lateral view.

Species 2 \& 4

Material examined - 12 specimens. Norwegian coast and shelf: Species 2: $61.42736^{\prime} \mathrm{N}$, 7.47479'E, 18 November 2012, 332m (1, ZMBN125800); 62.48183'N, 4.46550’E, 10 March 2012, 211 m (1, ZMBN125823); 61.0501’N, 5.40055’E, 03 May 2017, 1236m (1, ZMBN117820); 62.482'N, 4.466'E, 03 October 2012, (1, ZMBN94537); 61.11299'N, $5.14124^{\prime} \mathrm{E}, 22$ July 2012, 354 m (1, MG329). Species 1: 61.42736'N, 7.47479’E, 18 November 2012, 332m (3, ZMBN125796-125798); 61.21307'N, 5.03809’E, 14 July 2015, 379 m (1, ZMBN 125776); 64.804'N, 10.111'E, 08 October 2013, 378m (ZMBN94483); $62.06827^{\prime} \mathrm{N}, 5.03811^{\prime} \mathrm{E}, 20$ July 2012, 334m (1, ZMBN125781). 61.11299'N, 5.14124’E, 22 July 2012, 360m (2, MG326, MG333, NTNU-VM unregistered).

Description - This species are in all aspects similar to Species 1, but for the presence of smooth long chaetae instead of segmented long chaetae. Though none of the specimens available in these two species present the degree of enlargement of the first segments that can be observed in some specimens of species 1 , there is too much intraspecific variability for these differences to be significant. The prostomium and peristomium in species 4 may also appear more distinctly separated than in the other species but not significantly so (Fig. 7).

Methyl Blue staining pattern - None.

Remarks - Species 2 and 4 are both found on the Norwegian coast and shelf, offshore and in the Fjords where they occupy a wide range of depth from around 200 to 1200 m deep. They can sometimes be found at the same stations.

Figure 7 - Species 4: A-D SEM; A head in dorsal view; B detail of a branchiae lateral row of ciliae; C, detail of the head epidermis; D, detail of ciliated organ; E, neuropodial spine.

Species 3

Material examined - 13 specimens. Norwegian coast and shelf: $60.173^{\prime} \mathrm{N}, 5.003$ ' $\mathrm{E}, 22$ April 2011, 6m (1, ZMBN95707). Barents Sea: 71.056'N, 29.655667’E, 21 Avril 2014, 337m (9, MG316-324, NTNU-VM unregistered); 71.187833'N, 28.943167’E, 23 April 2014, 380m (2, MG312-313, NTNU-VM unregistered).

Description - A small species, $4-5 \mathrm{~mm}$ long, $1 / 4 \mathrm{~mm}$ large for 46 segments. Body elongate, without any distinct enlargement, rather round in cross section, flattening a bit in posterior half, anterior segments 4 times as high as long, posterior segments two times as high as long, posterior most segments developing in full cinctures. Dorsal groove on posterior half, ventral ridge all along (Fig. 8 A).

Prostomium conical as long as peristomium, twice as long as high. Peristomium short, long as two segments, sometimes appears partially divided in two rings, one anterior to the mouth and one bearing the mouth. Nuchal organs present on both sides, posterior to prostomium. Paired tentacle arising from first achaetigerous segment, very distinct from peristomium. First pair of branchiae arising from second achaetigerous segment, often undistinct from the first and third segments. 2nd pair of branchise arising dorsal to notopodia on chaetiger 1 (Fig. 8 B). Subsequent branchiae similarly placed. Branchiae or branchial scars present on most segments until apparition of cinctures.

Parapodia biramous, low mount or ridge in anterior and middle part, arising to full complete cinctures with elevated membranes in posterior segments (Fig 8 A,C).

Smooth short capillary chaetae present in neuropodia and notopodia of all setigers, ~ 13 per parapodia. Some long chaetae in anterior notopodia. Acicular spines with a flattened blade, slightly curved, up to ~ 22 per parapodia in posterior segment, with alternating capillaries (Fig. 8 C).

Methyl Blue staining pattern - None.

Remarks - Though no egg was observed, the presence of long chaetae (several times the body width) may indicate that the specimens were mature (Blake 2018) which would mean that this species is indeed quite small.

This species is found in the Barents Sea, around 400 m deep. One specimen is from the Norwegian coast at 6 m deep.

Figure 8 - Species 3: A, D light microscopy, stained with Shirlastain A; B-C SEM; A, full specimen in lateral view; B head in lateral view; C, detail of posterior notopodia.

Species 5

Material examined - Three specimens. Norwegian coast and shelf: 61.04889 'N, 4.9723'E, 15 July 2015, 161m (1, ZMBN125777); 60.32652'N, 5.14085’E, 02 September 2014, 75m (1, ZMBN125802); 60.50728'N, 5.00028'E, 30 November 2015, 66m (1, ZMBN125907).

Description - A medium species, $\sim 8 \mathrm{~mm}$ long, $\sim 1 \mathrm{~mm}$ large, ~ 70 segments. Body elongate, narrowing progressively anteriorly, two to three times wider at anterior third than at anterior segments. Round in cross section anteriorly, widening progressively to a flatten oval at anterior third. Anterior segments 5 times higher and wider than long. Mid segments 10 times wider and 5 times higher than long. Posterior segments 2.5 times higher and 3 times wider than long. A thin shallow groove dorsally; a wide shallow ventral groove all along (Fig. 9 C).

Prostomium conical, rounded, nearly as long as the peristomium. Peristomium short, long like 3 segments, 2 times as high and wide as long, 3 distinct rings, middle one complete, long like 1.5 segment, bearing the mouth, anterior one long like one segment ventrally, not completing dorsally, where the middle ring joins the prostomium, posterior one not completing ventrally, overlapping the top of the first segment. Paired tentacles arising from the distinct first achaetigerous segment. First pair of branchiae arising from the second achaetigerous segment, less distinct as partially fused to chaetiger 1 . Second branchiae arising from chaetiger 1 , dorsal to parapodia (Fig. 9 A). Subsequent branchiae similarly placed. Branchiae or branchial scars present on most chaetigers until posterior modified segments.

Parapodia biramous low mounts or ridges in anterior and middle segments, developing into higher ridges in posterior segments. No specimens is complete so there is no information on the presence or absence of cinctures in posterior segments.

Smooth capillary chaetae present in neuropodia and notopodia of all setigers, $\sim 10-12$ per parapodia in anterior segments (Fig. 9 D). Short acicular spines unidentate, 7 per parapodia in available segments (the posterior part of all specimens is missing) (Fig 9 B).

Methyl Blue staining pattern - None.

Remarks - This species is easily differentiable from other species of Chaetozone in Norway by its distinct peristomium, which present a complete middle ring, an dorsally incomplete anterior ring, and a ventrally incomplete posterior ring.

This species is found on the Norwegian coast and shelf, around 60 to 160 m deep.

Figure n-Species 5: A,C light microscopy, stained with Shirlastain A; B,D SEM; A, head in lateral view; B , detail of neuropodial spine; C whole specimen in lateral view; D, detail of capillary chaetae.

Species 6

Material examined - One specimen. Norwegian coast and shelf: 60.39590 ' $\mathrm{N}, 5.14920^{\prime} \mathrm{E}$, 19 May 2014, 171m (1, ZMBN 125778).

Description - An incomplete specimen, small, $\sim 3 \mathrm{~mm}$ long, $\sim 0.3 \mathrm{~mm}$ wide, ~ 60 segments, curled in circle. Anterior segments short and crowded, ~ 5 times as large as long and 5 times as wide as long, enlarging around $30^{\text {th }}$ chaetiger to twice the length of anterior ones, no distinct dorsal groove or ridge, ventral ridge all along.

Prostomium conical, blunt, long like a third of the peristomium. Peristomium twice as long as wide, long like 7 anterior segments; 3 distinct rings, anterior two as wide as long, posterior one half as long as anterior ones, anterior one slightly enlarged, narrowing towards prostomium, middle one with a small dorsal lobe partially overlapping posterior one, a few weak less distinct annulations along middle ring. Dorsal tentacles arising from the $3^{\text {rd }}$ peristomial ring. First pair of branchiae posterior to tentacles on first achaetigerous segment rather distinct, aligned with following branchiae. Second pair of branchiae on chaetiger 1.

Parapodia biramous, inconspicuous ridges in visible chaetigers. No modified posterior chaetigers present.

Smooth short capillary chaetae present in neuropodia and notopodia of all chaetigers.

Pygidium absent.

Methyl Blue staining pattern - None.

Remarks - Three specimens were clustered in species 6 by molecular analyses. Only one (ZMBN 125778) was examined in detail and is described here from the Norwegian coast.

Species 7

Material examined - 20 specimens. Norwegian coast and shelf: $59.76022^{\prime} \mathrm{N}, 5.49682^{\prime} \mathrm{E}, 08$ June 2014, 40m (1, ZMBN125787); 59.02985’N, 5.44881’E, 10 June 2014, 59m (1, ZMBN125789); 60.90389N, 7.16813’E, 17 November 2012, 115m (1, ZMBN125795); $60.60332^{\circ} \mathrm{N}, 5.09513^{\prime} \mathrm{E}, 6$ March 2017, 94 m (1, ZMBN125780); $60.21440^{\prime} \mathrm{N} 5.34560$ e, 20 January 2016, 65 m (1, ZMBN125825); 59.28789’N, 5.32506’E, 08 June 2014, 76m (1, ZMBN125790); 3/2-16, 58.24753'N, 6.53673'E, 03 February 2016, 155m (1, ZMBN125824); 63.26852'N, 10.37638'E, 08 February 2018 (1, MG040); 60.28158'N $5.20288^{\prime} \mathrm{E} 05$ December 2007 (1, MG330 NTNU-VM unregistered); 60.269686'N, 5.197750 'E, 26 July 2014, 120m (3, MG349-350, MG352, NTNU-VM unregistered). Skagerak: $59.6562^{\prime} \mathrm{N}, 10.6081$ 'E, 20 October 2014, 31m (1, ZMBN 125756); 59.6444N, 10.6192'E, 21 October 2014, 106m (3, MG343-MG345 NTNU-VM unregistered); $59.05485^{\prime} \mathrm{N}, 10.250467$ 'E, 29 May 2011, 70 m (1, MG341, NTNU-VM unregistered); 58.866667 'N, 11.1 'E, 2005, 70 m (2, MG347-MG348, NTNU-VM unregistered). Barents Sea: $70.262^{\prime} \mathrm{N} 31.083833$ 'E, 16 April 2014, 126m (1, MG325, NTNU-VM unregistered).

Description - These specimens fit the description of Chaetozone setosa by Blake (2015), and are similar to the lectotype and paratypes of this species (Fig. 10).

Remarks - This species is distributed all along the Norwegian coast, the East coast of Sweden and in the North Sea North-East of Scotland, from around 30 to 160 m deep. One specimen is recorded from Finmark where it may have a common area with species 8 (Fig. 11 red pentagons).

Figure 10 - Species 7: A-B,D SEM. C light microscopy stained with Shirlastain A. A, head in dorsal view; B , Pygidium in lateral view; C cross section of posterior segment, stained with Shirlastain $\mathrm{A} ; \mathrm{D}$, detail of posterior modified segments and spines.

Figure 11 - Distribution of species 7 and 8: Occurence of species 8 (Chaetozone setosa) is indicated by blue circles, occurrence of species 7 is indicated by red pentagons.

Species 8

Material examined - 14 specimens. Svalbard: 78.14872^{\prime} N, 13.12559’E, 13 May 2015 (6, ZMBN125766-125769, 125837-125838); 79.55130N 11.22970E, 30 August 2007, 91m (2, ZMBN125815-125816); 78.32855’N, 15.14712’E, 07 May 2015, 266m (1, ZMBN125811, ZMBN125813); 79.70829’N 18.17362’E, 10 May 2015, 407m (2, ZMBN125817-125818); $79.68089^{\prime} \mathrm{N}$ 11.13989’E, 09 May 2015, 180m (1, ZMBN125770); 79.58854N, 18.63483'E, 10 May 2015, 242m (1, ZMBN 125812) - Barents Sea: 71.61528’N 32.99719E, 9 August 2013, 305m (1, ZMBN 125764);

Description - These specimens fit the description of Chaetozone setosa by Blake (2015), and are similar to the lectotype and paratypes of this species (Fig. 12).

Remarks - The specimens belonging to this species are from the Barents Sea only, from around 80 to 400 m . All the specimens from Svalbard, the type locality of Chaetozone setosa, belong to this species 8 (Fig. 11 blue circles). Other specimens from other areas fit also the description of Chaetozone setosa and are similar to its type material, but belong to the species 7. Sequences of specimens from the Canadian arctic identified as Chaetozone setosa were present in the dataset and belong to a distinct clade from clades 7 and 8 . This is a strong indication that This species 8 is Chaetozone setosa and that Cetosa is restricted to the Barents Sea. Southern records of Chaetozone setosa in Norway are actually of species 7.

Figure 12 - Species 8: A-D SEM. C light photography. A, head in lateral view; B, detail of anterior neurochaetae; C , detail of nuchal organ; D modified posterior segments; C cross section of modified posterior segments.

Species 9 \& 10

Material examined - 7 specimens. Norwegian coast and shelf: Species 9: 59.75777’N $5.49778^{\prime} \mathrm{E}, 08$ June 2014, 60 m (2, ZMBN 125774-125775). Species 10: 60.54973’N, 5.22897'E, 20 April 2017, 37m (1, ZMBN125779); 60.17295'N, 5.00315’E, 24 April 2014, 6 m (2, ZMBN 125819-125820); 60.51035’N, 5.19158’E, 30 November 2015, 32m (1, ZMBN125808); 60.173'N, 5.003'E, 23 April 2014, 6m (1, ZMBN95386).

Description - Two big species, up to $\sim 2 \mathrm{~cm}$ long, $\sim 3 \mathrm{~mm}$ large, $\sim 2 \mathrm{~mm}$ high ~ 130 segments. Body elongate, slightly widening after the middle before narrowing and flattening in posterior $1 / 4^{\text {th }}$, round-oval in cross section anteriorly; anterior and middle segments approximately all the same length, all very short, ~ 10 times as high as long; posterior segments 6 times as large as long and 3 times as high as long; A thin dorsal groove and a larger ventral one (Fig. 14 E).

Prostomium short, $1 / 3^{\text {rd }}$ of peristomium, conical, blunt; nuchal ogans simple slits posterior to prostomium; reddish pigmented spots visible around the nuchal organs with light microscopy, not apparent using SEM. Peristomium short, long as 5 segments, higher than long, dorsum rounded, 2 rings approximately equals, the second one shorter ventrally and extending dorsally posteriorly between paired tentacles, posterior one thinner than a segment. Paired Tentacles arising from first incomplete achaetous segment. First pair of branchiae beside or directly posterior to paired tentacles, on achaetous first segment. Second pair of branchiae on chaetiger 1, just above notochaetae (Fig. $13 \mathrm{~A} ; 14 \mathrm{~A}, \mathrm{~B}$) subsequent chaetigers with branchiae similarly placed, branchiae or branchial scars on all chaetigers including posterior modified ones.

Chaetiger 1 of approximately same size as following segments. Parapodia biramous, low mounds or ridges in anterior and middle regions, developed in incomplete cinctures encircling only the sides of posterior segments (Fig. 14 C,F).

Smooth short thick capillary chaetae present in neuropodia and notopodia of anterior and middle segments, in tight bundles of 11 to 15 chaetae, arranged in two rows in anterior segments, in notopodia only in posterior segments (Fig. 13 D; 14 D). Smooth short thin chaetae present in neuropodia and notopodia in middle and posterior segments, alternating
with thick capillaries in middle segments, with pointy-tipped acicular spines in posterior neuropodia, and long capillary-tipped acicular spines in posterior notopodia (Fig 13 B, 13 C,F).

Pygidium opening posteriorly, with short ventral lobe and dorsal mound overlapping last two chaetigers.

Methyl Blue staining pattern - On one specimen, lines of small dark blue dots along segment on ventral side could be observed. The peristomium and prostomium stained slightly, but for a distinctly non stained area forming like a "mask" around the "eyes".

Remarks - These species are easily distinguishable from other Chaetozone by their typical very narrow segments throughout, the presence of branchiae or branchial scars on all segments, the flat posterior end, and the conspicuous red spots on the side of the peristomium. They both closely resemble Caulleriella zetlandica (McIntosh, 1911). See the remarks associated to this species for discussion.

These species are found on the Norwegian coast ans shelf, and in the North Sea North-East of Scotland, from around 6 to 30 m deep.

Figure 13-Clade 9: A-D SEM. A, head in lateral view; B, details of neurospine; C, detail of nuchal organ; D , details of anterior neuropodia.

Figure 14 - Species 10: A-D SEM. E-F light microscopy, stained with Shirlastain A. A, detail of dorsal tentacle and first branchiae; B, head in lateral view; C, neuropodial posterior spines; D, anterior parapodia and capillary setae; E, full specimen in lateral view; F, cross section of posterior parapodia.

Species 11

Material examined - 1 specimen. Norwegian coast and shelf: $67.323^{\prime} \mathrm{N}, 14.473 \mathrm{E}$, (1, ZMBN98242).

Description - A moderate sized specimen, $\sim 8 \mathrm{~mm}$ long, $\sim 1 \mathrm{~mm}$ large ~ 76 segments. Body elongate, narrowing anteriorly, thicker in the middle, flattening in posterior $1 / 4^{\text {th; }}$ Anterior segments about 5 times as wide and high as long; Posterior segments, 3 times as wide as long and as high as long, with slightly deeper grooves between them but no elevated parapodia; Thin shallow dorsal groove anteriorly, wider ventral groove anteriorly.

Prostomium conical, long as $1 / 3$ of peristomium. Peristomium short, long as 5 segments, fused with prostomium, with 2-3 indistinct weakly developed rings laterally, peristomial crest on top, posteriorly overlapping chaetiger 1 , distinctly separated from chaetiger 2 on top. Paired tentacles arising from posterior margin of peristomial dorsal crest, above $2^{\text {nd }}$ pair of branchiae. First pair of branchiae arising between the peristomium and the first segment, anterior to tentacles, below tentacles and slightly below $2^{\text {nd }}$ pair of branchiae. $2^{\text {nd }}$ pair of branchiae arising dorsal to notopodia, behind it on chaetiger 1, just below tentacles. Subsequent chaetigers with branchiae similarly placed.

Parapodia biramous, low mount or ridge throughout, covering the whole height of posterior flattened segments, but not highly elevated.

Smooth short capillary chaetae present in neuropodia and notopodia of all chaetigers, ~ 16 per parapodia. Most of these specimen's chaetae are broken.

Methyl Blue staining pattern - None.

Remarks - The specimen described here is from a littoral of Northern Norway. Another specimen was clustered with this one in molecular analyses, from a littoral of Northern Scotland.

Species 12

Material examined - 5 specimens. North Sea: 51.354333 ' $\mathrm{N}, 2.796667^{\prime} \mathrm{E}$, 2010, 22m (3, MG308-310, NTNU-VM unregistered); 57.777177 ’N, 2.905357 ’E, 17 July 2008, 37m (1, MG367, NTNU-VM unregistered); 58.274250’N, 2.644216’E, 18 July 2008, 56m (1, MG379, NTNU-VM unregistered).

Description - A moderate size species $\sim 13 \mathrm{~mm}$ long, ~ 114 segments. Body elongate, narrowing anteriorly and posteriorly, anterior and middle segments 5-6 times as high as wide and long, posterior segments 1.5 times as high as wide and long, dorsum and venter rounded, both with distinct grooves.

Prostomium short, conical, blunt, long like $1 / 4^{\text {th }}-1 / 3^{\text {rd }}$ of the peristomium; nuchal organs slits at its posterior margin. Peristomium long like 4-5 segments, sometimes with 3 distinct rings, more or less of equal size, anterior lobe slightly overlapping prostomium above nuchal organs, partially fused with $1^{\text {st }}$ chaetiger posteriorly. Dorsal tentacles arising from the posterior margin of the peristomium. First pair of branchiae arising between peristomium and first chaetiger, just beside tentacles; second pair of branchiae arising from posterior margin of first chaetiger, dorsal to notochaetae (Fig 15 B-C). Subsequent setigers with branchiae similarly placed.

Parapodia biramous, low mount or ridges in anterior and middle segments; parapodia developing posteriorly to form low incomplete cinctures in posterior $4^{\text {th }}$ of the body (Fig 15 A,D).

Smooth short capillary chaetae present in neuropodia and notopodia of all chaetigers, ~ 20 per anterior parapodia, thicker and darkly pigmented anteriorly while the acicular spines appear transparent. Short acicular spines unidentate, pointy, slightly curved, ~ 13 per parapodia in posterior cinctures, alternating with capillaries up to three times longer than the spines (Fig 15 A,C).

Pygidium with triangular ventral lobe.

Methyl Blue staining pattern - None.

Remarks - These species is recorded from the North Sea North-East of Scotland and off Belgium, and in the Skagerrak, from around 20 to 60 m deep.

Figure 15 - Species 12: A-B SEM. C-D light microscopy, stained with Shirlastain A. A, detail of posterior neuropodia; B, head in dorso-lateral view; C head in lateral view; D, cross section of posterior parapodia.

Species 13

Material examined - Greenland Sea: 79.06483’N, 4.181’E, 27 June 2016, 2462m (ZMBN unregistered); 79.14028’N, 4.91056’E, 08 July 2016, 1540m (ZMBN unregistered); $79.05616^{\prime} \mathrm{N}, 3.59867^{\prime} \mathrm{E}, 28$ June 2016, 3356m (ZMBN unregistered); 78.84983’N, 3.964’W, 01 July 2016, 1970 (ZMBN unregistered); 78.9333’N, 4.64433’W, 01 July 2016, 1548m (ZMBN unregistered); 79.056’N, 3.73067’E, 28 June 2016, 2865m (ZMBN unregistered); $78.98883^{\prime} \mathrm{N}, 5.432^{\prime} \mathrm{W}, 02$ July 2016, 995 m (ZMBN unregistered).

Description - Due to their small size, whole specimens were used for DNA extractions in previous work, thus no voucher was available to match the sequences. However, the material from which the specimens used for sequencing was selected still contains several specimens probably of the same species, but this material was in too poor condition to produce a useful description. All the specimens are small and incomplete. The arrangement of the tentacles and first branchiae, as well the head general shape seems however most similar to that of species 1,2 and 4 , Though this species appears smaller.

Remarks - Contrary to species 1,2 and 4, species 13 is a deep sea species ($\sim 2500 \mathrm{~m}$) from the Greenland sea. It may also be much smaller.

3.2.3 The Specimens from Jan Mayen

Many specimens from Jan Mayen were available in the collection of NTNU University Museum. However these specimens were fixed in formalin and could not be sequenced. As such, they cannot be associated with any of the species above, and though they may present similar morphology to previously described species or species complexes, they cannot be reliably assigned to any of the group identified by molecular method, and are presented separately. Two distinct morphogroups were found in this material

Morphogroup A

Chaetozone setosa Bakken et al. 2010: 11-12.

Material examined - 326 specimens. Jan Mayen: 70.0234 'N, 8.4523 'W, 14 September 1999, 46m (69, NTNU-VM 36857-36859); 70.5861'N, 8.4641 'W, 14 September 1999, 109m (255, NTNU-VM 36852-36856, 36790); $71.0938^{\prime} \mathrm{N}, 8.0663^{\prime} \mathrm{W}$, 15 September 1999, 44m (1, NTNU-VM 36860); 70.3887^{\prime} N, 9.2233^{\prime} W, 17 Sptember 1999, 599 m (1, NTNU-VM 36851).

Description - This group fits the description of Chaetozone setosa/species 8 and is similar to its lectotype. It is also similar to species 7.

Methyl Blue staining pattern - None.

Remarks - Though it is likely that all the specimens presenting this morphology in this material belong to one species, it is not possible to know if they belong to Chaetozone setosa/species 8 , species 7 or a third species presenting the same morphology as these two.

Figure 16 - Morphogroup B: A-B light photography, stained with Shirlastain A. A, anterior end in lateral view; B , anterior end in dorsal view.

Morphogroup B

Chaetozone christiei Bakken et al. 2010: 11-12.

Material examined - 568 specimens. Jan Mayen: 70.0234 'N, 8.4523 'W, 14 September 1999, 46 m (559, NTNU-VM 36788-36789); $70.5861^{\prime} \mathrm{N}, 8.4641$ 'W, 14 September 1999, 109m (2, NTNU-VM 427); 71.0938^{\prime} N, 8.0663^{\prime} W, 15 September 1999, 44m (7, NTNU-VM 36786).

Description - This group is similar to species 11 and a paratype of Chaetozone christiei showing an additional pair of branchiae between the prostomium and the first segment.

Methyl Blue staining pattern - None.

Remarks - Some variation is observed within this group on the position of the paired tentacles. On some specimens they arise from the peristomial crest directly above the first branchiae, before the first chaetiger, while on other they seem to grow from the peristomial crest all the way to the second chaetiger from where they detach from the body. As this seems to be a continuous variation, this might simply be intra-specific variation, but it is not possible to exclude that this morphogroup is composed of several species.

Figure 17 - Morphogroup B: A-B light photography, stained with Shirlastain A. A, anterior end in lateral view; B, anterior end in dorsal view.

4 Discussion

4.1 On the Phylogeny of Cirratulidae

Weidhase et al. (2016), is the most extensive molecular phylogeny of Cirratulidae, using COI sequences of 9 genera. It recovered the multitentaculate Cirratulidae as monophyletic, if including Raricirrus (Hartman, 1961) and Ctenodrillus (Claparède, 1863), both members of the family Ctenodrilidae (Kennel 1882) and respectively sister to a group formed by the multitentaculate Cirratulidae and to Dodecaceria. The sister relationship between Dodecaceria and Ctenodrillus has been shown in several other studies including Cirratulidae sequences (e.g. Bleidorn et al. 2003, Rousset et al. 2007). In this study, analyzing a combination of two genes, COI and 28 S , by both Maximum Likelihood and Bayesian Inference (which are the two analyses referred to in this discussion), Dodecaceria and Ctenodrillus are also recovered as sister groups. Raricirrus is also recovered as part of Cirratulidae, but as sister to Dodecaceria and Ctenodrillus rather than to the multitentaculate Cirratulidae (Fig. 4).

The multitentaculate Cirratulidae (Cirratulus, Cirrifomia and Timarete) are also recovered as monophyletic in this study (Fig. 4). However, they are recovered paraphyletic in the Maximum Likelihood analysis, and while Cirratulus is supported as monophyletic in the Bayesian analysis, Cirriformia and Timarete are also recovered paraphyletic (Fig. 4). The multitentaculate Cirratulidae are nonetheless proposed as a monophyletic group.

In this study bitentaculate Cirratulidae are recovered in the Bayesian analysis, but not in the Maximum likelihood analysis, similar to results found previously (Weidhase et al. 2016). Also, while Chaetozone is recovered as monophyletic, Tharyx and Aphelocaheta are recovered paraphyletic.

However, it must be taken into account that most of the outgroup sequences used in this study (belonging to members of genera outside the scope of the aims) were downloaded from BOLD or GenBank, and therefore their identification could not be verified. As misidentification, even at the genus level, is common in Cirratulidae, it is likely that some of
the sequences used were wrongly labeled and some of the paraphyly within genera described above might be an artifact. Several cases of such probable misidentification were observed throughout the phylogeny. For example, all sequences identified as Chaetozone are recovered as monophyletic in this study, but a few sequences labeled differently are nested within this group with very strong support. These sequences include one species identified as Tharyx sp., one sequence identified as Aphelochaeta sp., and two sequences identified as Caulleriella sp. None of these sequences was produced for this study or belong to a specimen from Norwegian waters. The vouchers for the sequences labeled as Caulleriella could be checked but were in so poor condition that it was impossible to identify them to genus level, it was then assumed that they were indeed Chaetozone. The vouchers for the sequences labeled as Tharyx and Aphelochaeta could not be checked, but were also assumed to be misidentification.

For many of these sequences, a voucher was not indicated. This is a major issue as linking a sequence (or any type of molecular data) to a specimen makes it available to the scientific community and is crucial for accurate taxonomic work (Funk et al. 2005, Pleijel et al. 2008). The availability of vouchers is particularly important in integrative taxonomy as it allows to link molecular data to morphological data.

Moreover, only seven genera out of the total eleven currently considered valid Cirratulidae genera (Blake and Magalhães), as well as two genera of Ctenodrillidae (which are now known to be part of Cirratulidae even if no formal revision has been made) were included in this study with relatively extensive sampling. Therefore it is possible that the phylogeny of the family described here, or the monophyly of some of the genera or informal groups like multitentaculate Cirratulidae might be challenged when including more taxa.

In further studies, including only sequences from reliably identified specimens, as well as increasing the number of taxa, might be needed to fully resolve the genera relationships within Cirratulidae and potentially revise their boundaries and descriptions if necessary.

4.2 Species Discovery and Identification Through Molecular Analyses, Integrative Taxonomy

One particular marker, COI, and three species delimitation analyses were primarily chosen in this study to investigate the diversity of Chaetozone in Norwegian waters. The choice of the appropriate molecular marker is crucial for accurate species delimitation (Vitecek et al. 2017) and the number and composition of these species is well supported by the three species delimitation methods used on the target gene COI. This shows the robustness of the dataset and gives confidence in this species delimitation. 28 S was chosen to infer a well supported and resolved phylogeny at the family level and indeed performed poorly in most analyses when compared to COI. However the number of sequences was also low compared to COI which may account for some of the differences observed. Analyses of the combined datasets were tested with the same methods as for the single genes and are mostly congruent with the analyses of COI.

STACEY has been advocated as an accurate method in some groups when several genes are available (e.g. Jones 2014, Vitecek et al. 2017), and was tested as an additional method in this study but further investigation is required for the use of this method in this group.
mPTP is known to perform poorly in assigning singletons to species when some are present in the dataset (e.g. Kapli et al. 2017, Ahmadzadeh et al. 2017, Aguado et al. 2019). When looking at the results of mPTP on the whole dataset (all Cirratulidae included in this study), it indeed several times fails to discriminate between obviously distant singletons or duos. However, two species composed of only one specimen are present in the Norwegian dataset, and were recovered in all but one analyses by mPTP. The species of Chaetozone present in Norway were overall much better sampled that the rest of the family, so despite this drawback of the method, it can still perform well when just a little portion of the dataset is poorly sampled, if the rest is well sampled.

ABGD suggests an inter-specific difference of 3.5 to 3.8%. Effectively, the same number of species of Chaetozone in Norwegian waters is recovered from COI with thresholds, effectively barcode gaps, from 2 to 5% difference. Within this group, single barcodes can
indeed be reliably used both for species discovery and specimens identification (Meyer \& Paulay 2005). This is particularly interesting in a frame of global DNA barcoding as these species can be integrated in reference libraries and help the molecular identification of a number of specimens, improving the quality of global biodiversity assessments and records.

Molecular methods like DNA barcoding are a great tool for biosystematics (Vogler \& Monaghan 2006, Bickford et al. 2007) and in particular for exploring and assessing the largely unknown marine diversity (e.g. Knowlton 1993, Schandler \& Willassen 2005, Hardy et al. 2011). However, they should not be an end in themselves or replace traditional taxonomy. Rather, they have to be used in combination with all other methods available, from the traditional light microscopy to the modern SEM techniques or GIS analyses (Geographical Information Softwares), in a frame of integrative taxonomy (e.g. Dayrat 2005, Padial et al. 2010, Schlick-Steiner et al. 2010). Though barcodes alone can be used for assessing a number of species, it has not replaced morphological identification (Will \& Rubinoff, 2004), which necessitates formal and accurate species descriptions. Moreover, any further biological study is impossible without a solid taxonomic frame and the possibility to identify properly described and named species.

4.3 Describing Species, Diagnostic Characters

Different methods were used to investigate the morphology of the species of Chaetozone found in Norwegian waters, traditional stereo and compound light microscopy, different stains and SEM, with a particular focus on evaluating species diagnostic characters, which are discussed here.

- The presence/absence of long chaetae (several times the width of the body) has often been used as a main diagnostic character for Chaetozone setosa. It is now known that in many species these long chaetae are associated with sexual maturity (Blake 2018). In addition, several species in Norway that are not Chaetozone setosa possess these chaetae. They can then only be used for identification in combination to other characters.
- Though they are advocated as diagnostic characters (e.g. Chambers 2003), the distribution, and length of the chaetae has not been formally studied here, for several reasons. First, it represents a great amount of work and time that was simply not available. Second, it would require a much larger number of vouchers (specimens in which identity is certain) for potential differences to be significant, especially considering the variations due to the age and maturity of the specimens (e.g. Southern 1914, Woodham \& Chambers 1994, Blake 2018). Lastly, such characters are particularly difficult to use when identifying specimens, even more so when most chaetae are broken which is not a rare occurrence (the posterior half of the specimens is simply often missing), and were not considered in priority in the search for diagnostic characters.
- The pattern of implementation of the paired tentacles and the first pairs of branchiae is a more reliable character, as it does not seem to depend on the age of the animal, does not vary with the fixation method, and tentacles or branchial scars are nearly always identifiable (though this may require careful examination and nearly always necessitates the use of Shirlastain A) even when the tentacles or branchiae fell off. However, the variation observed in the type material of Chaetozone vivpara, and in a population of Jan Mayen (morphogroup b), questions if intraspecific variation of these characters is possible, and this species should be investigated further. The description of this pattern also relies on the interpretation of the peristomial rings and first few segments of which it can be difficult to make abstraction.
- Many species, like Chaetozone setosa are described as having a first achaetous segment just behind the peristomium and before the first chaetiger (which is also then the second segment) from which the the tentacles and/or some branchiae arise (Blake 1996). This segment can be anything from clearly distinct to fused to the peristomium. In this last case, it is often the presence of branchiae that lead to its interpretation as a segment rather than as peristomial ring. Some species have instead a distinct last peristomial ring from which arise the tentacles and/or branchiae. Histological studies by Day (1967) showed that peristomial rings were not segments. However, without
histological examination, naming an achaetous ring as a peristomial ring or as an achaetous segment is left to the interpretation of the taxonomist (Elías et al. 2017) and may not reflect a biological/developmental reality. This appellation must be overlooked when identifying specimens and carefully considered when comparing descriptions. Histology studies of a large number of species might help better understand this segmentation (Elías et al. 2017).
- Methyl green has been extensively used as a diagnostic character for bitentaculate Cirratulidae (e.g. Blake 2015, Blake 2018). Methyl blue, which is an equivalent chemical, was used in this study but failed to reveal any pattern. Not all species exhibit a methyl green/blue pattern so it is possible that no Norwegian species has one. However Blake (2015) describes a methyl green staining pattern in Chaetozone setosa which was not observed on the few specimens tested in this study. This might be due to the age of the specimens, the fixation and/or preservation methods, the use of methyl blue instead of methyl green, or simply intraspecific variability. Petersen (1999) reports sexual dimorphism in the staining pattern of an Aphelochaeta species. In any case, the use of methyl green/blue is not useful to identify Norwegian species.
- Shirlastain A does not reveal any specific pattern on the specimens, but considerably enhances contrast and allows a much more detailed observation of the "topology" of the specimens. This stains fades away after a few months, and does not prevent DNA extraction and sequencing. Shirlastain A should be used as much as possible when identifying Chaetozone species and Cirratulidae in general.
- Petersen (1999) and Christie (1985) describe significant variations between the gametes and eggs of some species or populations. Few individuals with eggs were examined during this study, and the eggs were not examined in detail, but these are characters that could be of interest for species identification and would merit further study.
- The method of fixation was found to have a strong impact on some characters. Ethanol fixed material specimens tend to collapse and wrinkle more than formalin fixed ones. This sometimes make peristomial rings and crest or ventral or dorsal groove or ridge difficult to assess, and must be taken in consideration when identifying material. However this phenomenon is not consistent. Some of the formalin fixed material examined was in so poor condition that no identification or description was possible, while some of the ethanol fixed material was in perfect condition.

As stressed earlier, morphological investigation is mutual with molecular investigation. Morphological identification relies on the diagnosis of characters or combinations of characters that must be specific. A molecular based species delimitation provides a frame to study these characters and distinguish intraspecific variations from inter-specific variation. For several of the species found in this study, no specific set of diagnostic characters was found and form complexes of cryptic species (e.g. Knowlton 1993, Bickford et al. 2007, Nygren 2014). Such cryptic species are commonly found when performing molecular analyses.

4.4 Naming Species

Out of the 16 species of Chaetozone found in Norwegian waters in this study, only one could be reliably assigned an existing name, the type species Chaetozone setosa. Most of the species recorded in Noway by Artsdatabanken were originally described from Great Britain. Using these species names requires that the species are well described and more importantly, well delimited. Several authors (e.g. Christie 1984, Chambers 2000, Chambers \& Woodham 2003, Chambers et al. 2007) mention several undescribed species around the British Islands. Examination of the type material is necessary to reliably identify specimens. However in this case, examination of the type material of Chaetozone vivipara and Chaetozone christiei only brought more confusion as several distinct morphogroups are present within the paratypes that may be different species. Additionally, Species 12 of this study is found in the North Sea along northern Scotland, but cannot be assigned any name. Finally, the discovery of an unexpected diversity of Chaetozone during this study also strongly suggest that many species
are left to be discovered, also in British waters. Considering this, it seems unreasonable to use the names of species described in that area without a revision of the British Chaetozone, which is a necessary basis for the descriptions of many North Atlantic species. In particular, the use of DNA barcoding might be necessary to identify and name cryptic species.

Naming cryptic species, as found in several species complexes in this study, is in particular an important question. As argued previously, even if it is possible, identifying and naming a species for which not further diagnostic than a barcode is available is not particularly useful. The question in the case of cryptic species is a bit different. The complex can be morphologically described, and this description is valid for all species within. In that case cryptic species diagnosable only by the used of a molecular barcode can be assigned different names. Though cryptic species are not identifiable through their morphology, it is relevant to examine the ecology, distribution or reproduction of each of them, as they can be useful characters in addition to the molecular barcodes.

4.5 Comments on the Diversity of Chaetozone in Norwegian Waters

In total, 16 species of Chaetozone present in Norwegian waters were delimited in this study. This is twice the number of species previously recorded for Norway and represent a consequent increase of the diversity of this genus. The majority of Chaetozone species (e.g. species $1,2,4,5,6,7,9,10$ and 11) occurs on the Norwegian coast and shelf, which present the most important diversity, followed by the North Sea. Species 3 and 8 (Chaetozone setosa) are endemic to the Barents Sea, where only three species in total are present. Species 7 is the species with the broadest distribution, from the Barents Sea to the Skagerrak. Species of Chaetozone are also distributed differently in the water column. Species 9, 10, 11 and 12 are from relatively shallow waters, from the littoral to around 60 m deep. Species 5 and 7 occupy slightly deeper waters, from around 30 to 160 m deep, while species 1,2 and 4 occupy deep water from 200 to 1200 m deep inside the fjords. These last species are morphologically similar to Chaetozone jubata, which has been described as a deep water species $(>500 \mathrm{~m}$, Chambers 2003, Chambers et al. 2007). A single species has been discovered from the deep waters of the Greenland Sea, and another one from the Norwegian Sea where they are
respectively restricted, but considering the extremely low sampling in these areas, it is not possible to draw ant conclusion about the diversity in these regions.

Knowledge of species distribution, but also the discovery of new species are directly related to the sampling effort (e.g. Nygren et al. 2017). Though the material in this study tried to cover a wide geographic area and a large range of depth, most of the data obtained was from the southern and rather shallow parts of the Norwegian coast and shelf, while several regions, in particular the deeper waters of the North East Atlantic were barely sampled. Even though a much greater number of species than expected was revealed within Chaetozone in this work, it is therefore probable that an even higher diversity might be uncovered when studying further these parts of the ocean.

5 Conclusion

In this study, the diversity and phylogeny of the common genus Chaetozone (Annelida, Cirratulidae) in Norwegian waters was investigated using a combination of molecular and morphological methods. Chaetozone was recovered monophyletic, and 16 species were found in Norwegian waters, which is the double of what was previously recorded. Nine different morphogroups were identified from various morphological analyses. Six species and three species complexes are characterized by a distinct combination of characters allowing their visual identification. The study of the distribution of the cryptic species within these species complexes allow the identification of 3 of them through a combination of morphological and geographical data. The type species of the genus, Chaetozone setosa, was identified within the species present in Norwegian waters and is presently restricted to the Barents Sea.

The systematics of Cirratulidae in general and Chaetozone in particular is challenging. Molecular data proves to be a reliable tool to discover and identify species in this group. It is a great asset in combination with morphological studies and geographical information, and should be used at a larger scale on this family to unravel its evolutionary history and clarify its complicated classification, as well as exploring its underestimated diversity. Indeed, the unexpected diversity uncovered by this study promises that many species are waiting to be discovered and described. Twenty thousands leagues under the seas, the adventure continues.

6 References

Aguado M.T., Capa M., LagoBarcia D., Gil J., Pleijel F., Nygren A. (2019). Species delimitation in Amblyosyllis (Annelida, Syllidae). Plos ONE https://doi.org/10.1371/journal.pone.0214211

Ahmadzadeh F., Lymberakis P., Pirouz R.S., Kapli P. (2017). The evolutionary history of two lizards (Squamata: Lacertidae) is linked to the geological development of Iran. Zoologisher Anzeiger 270: 49-56.

Appeltans W., Ahyong S.T., Anderson G., Angel M.V., Artois T., Bailly N., Bamber R., Barber A., Bartsch I., Berta A. Błażewicz-Paszkowycz M., Bock P., Boxshall G., Boyko C.B., Nunes Brandão S., Bray R.A., Bruce N.L., Cairns S.D., Chan T-Y., Cheng L., Collins A.G., Cribb T., Curini-Galletti M., Dahdouh-Guebas F., Davie P.J.F., Dawson M.N., De Clerck O., Decock W., De Grave S., de Voogd N.J., Domning D.P. Emig C.C., Erséus C. Eschmeyer W., Fauchald K., Faultin D., Feist S.W., Fransen C.H.J.M., Furuya H., Carcia-Alvarez O., Gerken S., Gibson D., Gittenberger A., Gofas S., Gómez-Dagilo Liza, Gordon D.P., Guiry M.D., Hernandez F., Hoeksema B.W., Hopcroft R.R>, Jaume D., Kirk P., Koedam N., Koenemann S., Kolb J.B., Kristensen R.M., Hroh A., Lambert G., Lazarus D.B., Lemaitre R., Longshaw M., Lowry J., Macpherson E., Madin L.P., Mah C., Mapstone G., McLaughlin P.A., Mees J., Meland K., Messing C.G., Mills C.E., Molodtsova T.N., Mool R., Neuhaus B., Ng P.K.L., Nielsen C., Norenburg J., Opresko D.M., Osawa M., Paulay G., Perrin W., Pilger J.F., Poore G.C.B., Pugh P. Read G.B., Reimer J.D., Rius M., Rocha R.M., Saiz-Salinas J.I., Scarabino V., Schierwater B., Schmidt-Rhaesa A., Schnabel K.E., Schotte M., Schuchert P., Schwabe E., Segers H., Self-Sullivan C., Shenkar N., Siegel V., Sterrer W., Stöhr S., Swalla B., Tasker M.L., Thuesen E.V., Timm T., Antonio Todaro M., Turon X., Tyler S., Uetz P., van der Land J., Vanhoorne B., van Ofwegen L.P., van Soest R.W.M., Vanaverbeke J., Walker-Smith G., Walter T.C., Warren A., Williams G.C., Wilson S.P., Costello M.J. (2012). The Magnitude of Global Marine Species Diversity. Current Biology 22(23): 2189-2202.

Bakken T., Kongsrud J.A., Oug E., Cochrane S.K.J., Loennechen Moen T., Solbakken B.E.B. (2010). Polychaetes from Jan Mayen (Annelida, Polychaeta). Polar Research 29(1): 1-21.

Bickford D., Lohman D.J., Sohdi N.S., Ng P.K.L., Meier R., Winker K., Ingram K.K., Das I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22(3):148-155.

Blake J.A. (1991). Revision of some Genera and Species of Cirratulidae (Polychaeta) from the Western North Atlantic. Ophelia Supplement 5:17-30.

Blake J.A. (1996). Family Cirratulidae Ryckholdt, 1851. Including a revision of the Genera and Species from the Eastern North Pacific. In: Blake J.A., Hilbig B., Scott P.H. Taxonomic Atlas of the Benthic Fauna of the Santa Maria Bassin and Western Santa Barbara Channel. 6 The Annelida Part 3. Polychaeta: Orbiniidae to Cossuridae. Santa Barbara Museum of Natural History. Santa Barbara.

Blake J.A. (2015). New species of Chaetozone and Tharyx (Polychaeta: Cirratulidae) from the Alaskan and Canadian Arctic and the Northeastern Pacific, including a description of the lectotype of Chaetozone setosa from Spitsbergen in the Norwegian Arctic. Zootaxa 3919(3): 501-552.

Blake J. A. (2016). Kirkegaardia (Polychaeta, Cirratulidae), new name for Monticellina Laubier, preoccupied in the Rhabdocoela, together with new records and descriptions of eight previously known and sixteen new species from the Atlantic, Pacific, and Southern Oceans. Zootaxa 4166(1): 1-93.

Blake J.A. (2018). Bitentaculate Cirratulidae (Annelida, Polychaeta) collected chiefly during cruises of the R/V Anton Bruun, USNS Eltanin, USCG Glacier, R/V Hero, RVIB Nathaniel B. Palmer, and R/V Polarstern from the Southern Ocean, Antarctica, and off Western South America. Zootaxa. 4537(1): 1-130.

Blake J.A., Magalhães W.F. (2017). Family Cirratulidae Ryckholt, 1851. In: Westheide W., Purschke G. Handbook of Zoology, a Natural History of the Phyla of the Animal Kingdom.

Bleidorn C., Vogt L., Bartolomaeus T. (2003). New insights into polychaete phylogeny (Annelida) inferred from 18S rDNA sequences. Molecular Phylogenetics and Evolution 29:279-288

Brasier M.J., Wiklund H., Neal L., Jeffreys R., Linse K., Ruhl H., Glover A.G. (2016). DNA barcoding uncovers cryptic diversity in 50% of deep-sea Antarctic polychaetes. Royal Society Open Science 3:160432.

Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C-H., Xie D., Suchard MA., Rambaut A., Drummond A. J. (2014). BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Computational Biology, 10(4), e1003537.

Capa M., Pons J., Hutchings P. (2011). Cryptic diversity, intraspecific phenetic plasticity and recent geographical translocations in Branchiomma (Sabellidae, Annelida). Zoologica Scripta 42 (6):637-655.

Carr C.M., Hardy S.M., Brown T.M., Macdonald T.A., Hebert P.D.N. (2011). A Tri Oceanic Perspective: DNA Barcoding Reveals Geographic Structure and Cryptic Diversity in Canadian Polychaetes. PloS ONE 6 e22232.

Castresana J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540-552.

Chamberlin R.V. (1919). The Annelida Polychaeta [Albatross Expeditions]. Memoirs of the Museum of Comparative Zoology at Harvard College 48:1-514.

Chambers S.J. (2000). A redescription of Chaetozone setosa Malmgren, 1867 including a definition of the genus and a descriptioin of a new species of Chaetozone from the northeast Atlantic. Bulletin of Marine Science 67, 587-596.

Chambers S.J. \& Woodham A. (2003). A new species of Chaetozone (Polychaeta: Cirratulidae) from deep water in the northeast Atlantic with comments on the diversity of the genus in cold northern waters. Hydrobiologia 496: 41-48.

Chambers S.J., Dominguez-Tejo E.L., Mair J.M., Mitchell L.A. \& Woodham A. (2007). The distribution of three eyeless Chaetozone species (Cirratulidae: Polychaeta) in the north-east Atlantic. Journal of the Marine Biology Association of the United Kingdom 87: 1111-1114.

Choi H.K., Kim H., Yoon S.M. (2018). Timarete posteria, a new cirratulid species from Korea (Annelida, Polychaeta, Cirratulidae). Zookeys 806:1-15.

Christie G. (1984). A new species of Tharyx (Polychaeta: Cirratulidae) from five estuaries in North-East England. Sarsia 69: 69-73.

Christie G. (1985). A Comparative Study of the Reproductive Cycles of Three Northumberland Populations of Chaetozone Setosa (Polychaeta: Cirratulidae). Journal of the Marine Biological Association of the United Kingdom. 65(1), 239-254.

Çinar M. E. Petersen M. E. (2011). Re-description of Cirratulus dollfusi (Polychaeta: Cirratulidae), and Fauvelicirratulus as a new genus. Journal of the Marine Biological Association of the United Kingdom 91(2): 415-418.

Claparède A.R.E. (1863). Beobachtungen über Anatomie und Entwicklunsgeschichte wirbelloser Thiere an der Küste von Normandie angestellt. Wilhelm Engelmann, Leipzig.

Czerniavsky, V. (1881). Materialia ad zoographiam Ponticam comparatam. Bulletin de la Société Impériale des Naturalistes de Moscou 56(2): 338-420.

Dayrat B. (2005). Towards integrative taxonomy. Biologial Journal of the Linnean Society 85: 407-415.

De Quieroz K. (2007). Species Concepts and Delimitation. Systematic Biology 56(6): 879886.

De Saint-Joseph A. (1894). Les Annélides polychaètes des côtes de Dinard. Troisième Partie. Annales des sciences naturelles, Paris Série 7 17:1-395.

Dinno A. (2018). paran: Horn's Test of Principal Components/Factors. R package version 1.5.2. https://CRAN.R-project.org/package=paran.

Drummond A.J., Bouckaert R. R. (2015). Bayesian Evolutionary Analysis with BEAST. Cambridge University Press

Earle S. (1991). Sharks, squids and horseshoe crabs: The significance of marine biodiversity. Bioscience 41: 506-509.

Edgard R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32(5): 1792-1799

Elías R., Rivero M.S., Lobo Orensanz J.M. (2017). New species of Monticellina and Chaetozone (Polychaeta: Cirratulidae) in the SW Atlantic, and a review of Monticellina species. Journal of the Marine Biological Association of the United Kingdom 97(7):15331563.

Ezard T., Fujisawa T. and Barraclough T. (2017). splits: SPecies' LImits by Threshold Statistics. R package version 1.0-19/r52. https://R-Forge.R-project.org/projects/splits/.

Fujita M.K., Leaché A.D., Burbrink F.T., McGuire J.A., Moritz C. (2012). Coalescent-based species delimitation in an integrative taxonomy. Trends in ecology and evolution 27(9): 480488.

Funk V.C., Hoch P.C., Prather L.A., Wagner W.L. (2005) The Importance of Vouchers. Taxon 54(1): 127-129.

Geller J., Meyer C., Parker M., Hawk H. (2013). Redesign of PCR primers for mitochondrial cytochrome c oxydase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Ressources 13: 851-861.

Guindon S., Dufayard J-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. (2010). New Algorithms and Methods to Estimae Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology 59(3): 307-321.

Hardy S.M., Carr C.M., Hardman M., Steinke D., Corstophorine E., Mah C. (2011). Biodiversity and phylogeography of arctic marine fauna, insights from molecular tools. Marine Biodiviversity 41: 195-210.

Hartman O. (1936). Nomenclatural changes involving California polychaete worms. Journal of the Washington Academy of Sciences. 26(1): 31-32

Hartman O. (1961). Polychaetous annelids from California. Allan Hancock Pac Expeditions 25:1-226

Hebert P.D.N., Cywinska A., Ball S.L., deWaard J.R. (2003a). Biological identifications through DNA barcodes. Proceedings of the Royal Society, London B. 270:313-321

Hebert P.D.N., Ratnasingham S., deWaard J.R. (2003b). Barcoding animal life: cytochrome c oxydase subunit 1 divergences among closely related species. Proceedings of the Royal Society, London B. 270:S96-99.

Katoh K., Rozewicki J., Yamada K. D. (2017). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics bbx108, https://doi.org/10.1093/bib/bbx108

Kapli P., Lutteropp S., Zhang J., Kobert K., Pavlidis P., Stamatakis A., et al. (2017). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics pmid:28108445

Kennel J. (1882). Über Ctenodrilus pardalis Clpd. Ein Beitrag zur Kenntniss der Anatomie und Knospung der Anneliden. Arbeiten aus dem Zoologisch-Zootomischen Institut Würzburg 5: 373-429.

Kinberg J. G. H. (1866). Annulata Nova. Öfversigt af Königlich Vetenskapsakademiens förhandlingar, Stockholm 22(4): 239-258.

Knowlton N. (1993). Sibling species in the sea. Annual Review of Ecology and Systematics 24:189-216

Lamarck, J.B. (1818). Histoire naturelle des Animaux sans Vertèbres, préséntant les caractères généraux et particuliers de ces animaux, leur distribution, leurs classes, leurs familles, leurs genres, et la citation des principales espèces qui s'y rapportent; precedes d'une Introduction offrant la determination des caracteres essentiels de l`Animal, sa distinction du vegetal et desautres corps naturels, enfin, l'Exposition des Principes fondamentaux de la Zoologie. Paris, Deterville.

Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. (2016). PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Molecular Biology and Evolution 34(3): 772-773.

Larsson A. (2014). AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30(22): 3276-3278.

Le H.L.V., Lecointre G., Perasso R. (1993). A 28 S rRNA based phylogeny of the Gnathostomes: first steps in the analysis of conflict and congruences with morphologically based cladograms. Molecular Phylogenetics and Evolution 2(1):31-51.

Lefort V., Longueville J.E. Gascuel O. (2017). SMS: Smart Model Selection in PhyML. Molecular Biology and Evolution 34(9): 2422-2424.

Magalhães W.F., Seixas V.C., Paiva P.C., Elias R. (2014). The Multitentaculate Cirratulidae of the Genera Cirriformia and Timarete (Annelida: Polychaeta) from Shallow Waters of Brazil. PLoS ONE 9(11): e112727.

Malmgren, A. J. (1867). Annulata Polychaeta Spetsbergiae Groelendiae, Islandiae et Scandinaviae hactenus cognita. Ofvers. K. Akad. Förh, Stock. 1-180.

Mayr E. (1969). Principles of Systematic Zoology. New-York, McGraw Hill.

Meyer C.P., Paulay G. (2005). DNA Barcoding: Error rates Based on Comprehensive Sampling. PLoS biology 3.12: e422.

Mora C., Tittensor D.P., Adl S., Simpson A. G. B., Worm B. (2011). How Many Species Are There on Earth and in the Ocean? PloS Biol 9(8): e1001127.

Munari C., Bocchi N., Parella P., Granata T., Moruzzi L., Massara F. De Donati M., Mistri M. (2017). The occurrence of two morphologically similar Chaetozone (Annelida: Polychaeta: Cirratulidae) species from the italian seas: Chaetozone corona Berkeley \& Berkeley, 1941 and C. carpenteri McIntosh 1911. The European Zoological Journal 84(1): 541-553.

Nygren A. (2014). Cryptic polychaete diversity: a review. Zoologica Scripta 43: 172-183.

Nygren A., Pleijel F. (2011). From one to ten in a single stroke - resolving the European Eumida sanguinea (Phyllodocidae, Annelida) species complex. Molecular Phylogenetics and Evolution 58: 132-141.

Nygren A., Parapar J., Pons J., Meißner K., Bakken T., Kongsrud J.A., Oug E. Gaeva D. Sikorski A. Johansen R.A., Hutchings P.A., Lavesque N., Capa M. (2018). A mega-cryptic species complex hidden among one of the most common annelids in the North East Atlantic. PloS ONE 13(6): e0198356.

Osborn K.J., Rouse G. W. (2011): Phylogenetics of Acrocirridae and Flabelligeridae (Cirratuliformia, Annelida). Zoologica Scripta 40: 204-219.

Ørsted A. S. (1843). Annulatorum danicorum conspectus. Auctore A.S. Örsted. Fasc. I. Maricolæ. (Quæstio ab universitate Hafniensi ad solvendum proposita et proemio ornata).

Padial J.M., Miralles A., De la Rive I., Vence M. (2010). The integrative future of taxonomy. Frontiers in Zoology 7:16.

Paradis E. \& Schliep K. (2018). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526-528.

Pearson T.H. (1976). A Comparative Study of the Effects on the Marine Environment of Wastes from Cellulose Industries in Scotland and Sweden. Ambio 5: 77-79.

Pearson T.H. \& Rosenberg R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment, Oceanography and Marine Biology Annual Review 16: 229-311.

Pleijel F., Jondelius U., Norlinder E., Nygren A., Oxelman B., Schander C., Sundberg P., Thollesson M. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution 48:369-371

Prosser S., Martínez-arce A., Elías-Gutiérrez M. (2013). A new set of primers for COI amplification from freshwater microcrustaceans. Molecular Ecology Ressources 13:11511155.

QGIS Development Team (2016). QGIS Geographic Information System. Open Source Geospatial Foundation Project http://qgis.org/.

R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rambaut A. (2014). FigTree 1.4.2 Software. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh.

Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology 67(5): 901904.

Read, G.; Fauchald, K. (Eds.) (2019). World Polychaeta database. Cirratulidae Ryckholt, 1851. Accessed through: World Register of Marine Species. Available from: http://www.marinespecies.org/aphia.php?p=taxdetails\&id=919 (Accessed 28 February 2019).

Rouse G. W., Pleijel F. (2001). Polychaetes. Oxford University Press.

Rousset V., Pleijel F., Rouse G.W., Erséus C., Siddall M.E. (2007). A molecular phylogeny of annelids. Cladistics 23: 41-63.

Ryckholt Philippe de (Baron). (1851). Mélanges paléontologiques. Part 1. Memoires Couronnes et Memoires des Savants Etrangers de l'Academie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique. 24: 1-176

Rygg B. (1985). Distribution of Species along Pollution Induced Diversity Gradients in Benthic Communities in Norwegian Fjords. Marine Pollution Bulletins 16(12): 469-474.

Seixa V.C., Zanol J., Magalhaẽs W.F., Paiva P.C. (2017). Genetic diversity of Timarete punctata (Annelida: Cirratulidae): Detection of pseudo-cryptic species and a potential biological invader. Estuarine, Coastal and Shelf Science 197(15): 214-220.

Schander C., Willassen E. (2005). What can biological barcoding do for marine biology? Marine Biology Research 1: 78-93.

Schlick-Steiner B.C., Steiner F.M., Seifert B., Stauffer C., Christian E., Crozier R.H. (2010). Integrative Taxonomy: A Multisource Approach to Exploring Biodiversity. Annual Review of Entomology 55: 421-38

Simpson G.G. (1961). Principles of Animal Taxonomy. New-York, Columbia University Press.

Venables W. N., \& Ripley B. D., (2002) Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0.

Vitecek S., Kučinić M., Previšić A., Živić I., Stovanović K., Keresztes L., Bálint M., Hoppeler F., Waringer J., Graf W., Pauls S.U. (2017). Integrative taxonomy by molecular species delimitation: multi-locus data corroborate a new species of Balkan Drusinae micro-endemics.

Vogler A.P., Monaghan M.T. (2006). Recent advances in DNA taxonomy. Journal of Zoological systematics and evolutionary research 45(1): 1-10.

Webster, H. E. and Benedict, J. E. (1887). The Annelida Chaetopoda, from Eastport, Maine. U.S. Commission of Fish \& Fisheries. Report of the United States Commissioner of Fisheries. 1885. part 13, II. appendix to report of commissioner, D.22. :707-758.

Weidhase M., Bleidorn C., Simon C.A. (2016). On the taxonomy and phylogeny of Ctenodrilus (Annelida: Cirratulidae) with a first report from South Africa. Marine Biodiversity 46: 243-252.

Will K.W., Rubinoff D. (2004). Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20(1): 47-55.

Wilson E.O. (1985). Time to revive systematics. Science 230: 1227.

Woodham A. \& Chambers S. (1994). A new species of Chaetozone (Polychaeta, Cirratulidae) from Europe, with a redescription of Caulleriella zetlandica (McIntosh). Mémoires du Muséum national d'histoire naturelle 162: 307-316.
Appendix I: List of Sequences

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S
Itsastk13-P19	BCAS088-14	KT307635	Genus
09PROBE-01111	CCANN550-09	GU672355	Chaetozone
NUNAV-0075	CCPOL075-07	HQ024281	Chaetozone
NUNAV-0193	CCPOL193-07	HQ024275	Chaetozone
NUNAV-0194	CCPOL194-07	HQ024276	Chaetozone
NUNAV-0236	CCPOL236-07	HQ024277	Chaetozone
NUNAV-0238	CCPOL238-07	HQ024278	Chaetozone
NUNAV-0241	CCPOL241-07	HQ024279	Chaetozone
NUNAV-0242	CCPOL242-07	HQ024280	Chaetozone
NUNAV-0271	CCPOL271-08	HQ024284	Chaetozone
HLC-30456	CCPOL281-08	HQ024282	Chaetozone
HLC-30462	CCPOL282-08	HQ024285	Chaetozone
CCPOL311	CCPOL313-08	HQ024283	Chaetozone
MBI-SCCWRP-00028	CMBIA028-10		Chaetozone
MBI-SCCWRP-00160	CMBIA160-11		Chaetozone

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S
MBI-SCCWRP-00161	CMBIA161-11		Genus
MBI-SCCWRP-00507	CMBIA374-11		Chaetozone
MBI-SCCWRP-00508	CMBIA375-11		Chaetozone
WS0086	WSPO086-09	GU672600	Chaetozone
WS0095	WSPO095-09	GU672595	Chaetozone
WS0096	WSPO096-09	GU672592	Chaetozone
WS0102	WSPO102-09	GU672587	Chaetozone
WS0103	WSPO103-09	GU672584	Chaetozone
WS0105	WSPO105-09	GU672583	Chaetozone
WS0108	WSPO108-09	GU672581	Chaetozone
WS0109	WSPO109-09	GU672582	Chaetozone
WS0111	WSPO111-09	GU672580	Chaetozone
WS0112	WSPO112-09	GU672577	Chaetozone
WS0276	WSPO276-09	GU672431	Chaetozone
VM 68231		Chaetozone	
ZMBN94537			Chaetozone
ZMBN94483	POLNB585-14		Chaetozone

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI
ZMBN94633	POLNB736-14	GenBank ID 28S
ZMBN95386	POLNB1149-14	Genus
ZMBN95707	POLNB1317-14	Chaetozone
ZMBN97115	NBAAV025-14	Chaetozone
ZMBN97116	NBAAV026-14	Chaetozone
ZMBN97117	NBAAV027-14	Chaetozone
ZMBN97118	NBAAV028-14	Chaetozone
ZMBN97119	NBAAV029-14	Chaetozone
ZMBN95880	POLNB1467-15	Chaetozone
ZMBN98242	POLNB1548-15	Chaetozone
ZMBN98250	POLNB1556-15	Chaetozone
	CRYNO108-15	Chaetozone
	CRYNO276-15	Chaetozone
	CRYNO285-15	Chaetozone
ZMBN116562	CRYNO289-15	Chaetozone
ZMBN117820	POLNB2219-17	Chaetozone
	POLNB2240-17	Chaetozone
		Chaetozone

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S
ZMBN117860	POLNB2280-17		Genus
ZMBN120505	POLNB2475-18		Chaetozone
MBI-SCCWRP-00146	CMBIA146-11		Chaetozone
MBI-SCCWRP-00147	CMBIA147-11		Aphelochaeta
MBI-SCCWRP-00148	CMBIA148-11		Aphelochaeta
BIOUG06646-F09	HZPLY459-13		Aphelochaeta
BIOUG06646-F11	HZPLY461-13		Aphelochaeta
BIOUG06646-G01	HZPLY463-13		Aphelochaeta
ItsastK13-P127	BCAS120-15	KT307704	Aphelochaeta
Itsastk13-P18	BCAS133-15	KT307703	Tharyx
08PROBE-272	CCANN361-08	HQ023815	Tharyx
08PROBE-0274	CCANN363-08	HQ023816	Tharyx
08PROBE-0275	CCANN364-08	HQ023817	Tharyx
08PROBE-0280	CCANN369-08	HQ023818	Tharyx
08PROBE-0283	HQ023795	Tharyx	
08PROBE-0285	CCANN372-08	HQ023796	Tharyx
08PROBE-0287	CCANN374-08	CCANN376-08	Tharyx

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S
08PROBE-0292	CCANN381-08	HQ023798	Genus
08PROBE-0295	CCANN384-08	HQ023799	Tharyx
08PROBE-0296	CCANN385-08	HQ023800	Tharyx
08PROBE-0287	CCANN386-08	HQ023801	Tharyx
08PROBE-0298	CCANN387-08	HQ032802	Tharyx
08PROBE-0300	CCANN389-08	HQ023803	Tharyx
08PROBE-0306	CCANN395-08	HQ023804	Tharyx
08PROBE-0310	CCANN399-08	HQ023805	Tharyx
08PROBE-0311	CCANN400-08	HQ023806	Tharyx
08PROBE-0312	CCANN401-08	HQ023807	Tharyx
08PROBE-0314	CCANN403-08	HQ023808	Tharyx
08PROBE-0515	CCANN410-08	HQ023809	Tharyx
08PROBE-0517	CCANN412-08	HQ023810	Tharyx
08PROBE-0518	CCANN413-08	HQ023811	Tharyx
08PROBE-0519	CCANN414-08	HQ023812	Tharyx
08PROBE-0550	CCANN445-08	HQ023813	Tharyx
08PROBE-0567	HQ023814	Tharyx	

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S
09PROBE-08207	CCANN643-09	GU672122	Genus
09PROBE-08236	CCANN672-09	GU672146	Tharyx
09PROBE-08241	CCANN677-09	GU672152	Tharyx
09PROBE-08252	CCANN688-09	GU672161	Tharyx
09PROBE-08386	CCANN822-09	GU672260	Tharyx
09PROBE-08387	CCANN823-09	GU672259	Tharyx
09PROBE-08443	CCANN879-09	GU672304	Tharyx
MBI-SCCWRP-00228	HZPLY476-13		Tharyx
MBI-SCCWRP-00229	CMBIA228-11		Tharyx
ZMBN117880	CMBIA229-11		Monticellina
ZMBN117832	POLNB2300-17		Monticellina
ZMBN117813	POLNB2252-17		Kirkegaardia
ZMBN116564	POLNB2233-17		Kirkegaardia
UMBergen_NB_polych487	POLNB2221-17		Aphelochaeta
ZMBN95816	POLNB1380-14		Aphelochaeta
ZMBN95791	POLNB1023-14		Aphelochaeta

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S	Genus
ZMBN95780	POLNB987-14			Aphelochaeta
ZMBN68238	PONOR073-13			Aphelochaeta
ZMBN68237	PONOR072-13			Aphelochaeta
		KJ736284		Chaetozone
		KJ736283		Chaetozone
		KJ736282		Chaetozone
		KJ736281		Chaetozone
		KJ736280		Chaetozone
		KJ736279		Chaetozone
		KJ736277		Chaetozone
		KJ736278		Chaetozone
			DQ779674	Aphelochaeta
		KY775641		Kirkegaardia
		HQ023811		Tharyx
11BIOAK-0917	KBPOL107-11	MF121660		Cirratulus
11BIOAK-1197	KBPOL387-11	MF121591		Cirratulus
11BIOAK-0912	KBPOL102-11	MF121566		Cirratulus

ID/Voucher	BOLD ID COI	GenBank ID COI	GenBank ID 28S	Genus
11BIOAK-1049	KBPOL239-11	MF121473	Cirratulus	
11BIOAK-1545	KBPOL735-11	MF121471	Cirratulus	
11BIOAK-0934	KBPOL124-11	MF121383	Cirratulus	
11BIOAK-0933	KBPOL123-11	MF121322	Cirratulus	
11BIOAK-0913	KBPOL103-11	MF121255	Cirratulus	
11BIOAK-0915	KBPOL105-11	MF121234	Cirratulus	
11BIOAK-1237	KBPOL427-11	MF121187	Cirratulus	
11BIOAK-0914	KBPOL104-11	MF121065	Cirratulus	
11BIOAK-1079	KBPOL269-11	MF121064	Cirratulus	
11BIOAK-1213	KBPOL403-11	MF121047	Cirratulus	
11BIOAK-1214	KBPOL404-11	MF121030	Cirratulus	
11BIOAK-0916	KBPOL106-11	MF121026	Cirratulus	
08PROBE-0552	CCANN447-08	HQ023478	Cirratulus	
BAMPOL0375	BCPOL404-08	HM473343	Cirratulus	
WS0224	WSPO224-09.COI	GU672480	Cirratulus	
09PROBE-02020	CCANN514-09	GU672325	Cirratulus	
09PROBE-08327	CCANN763-09	GU672216	Cirratulus	

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S
09PROBE-08302	CCANN738-09	GU672197	Genus
HLC-30442	CCPOL279-08	HQ024288	Cirratulus
08PROBE-0581	CCANN476-08	HQ023479	Cirratulus
08PROBE-0106	CCANN195-08	HQ023477	Cirratulus
CRBA-9616	GBAN5001-13	JQ048545	Cirratulus
WS0230	WSPO230-09	HM417794	Cirratulus
LMBP23-002	SFPOM089-11	KR916809	Cirratulus
LMBP23-001	SFPOM088-11	KR916808	Cirriformia
LMBSAP26-001	PCALN003-10	KR916807	Cirriformia
LMBP23-003	SFPOM090-11	KR916806	Cirriformia
IBUFRJ-3557	GBAN6444-15	KM192165	Cirriformia
IBUFRJ-3557	GBAN6443-15	KM192164	Cirriformia
IBUFRJ-3562	GBAN6442-15	KM192163	Cirriformia
IBUFRJ-3561	GBAN6441-15	KM192162	Cirriformia
BP2010-329	GBAN6440-15	KM192161	Cirriformia

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S
BP2010-154	BCPOL723-10	HQ932543	Genus
BAMPOL0458	BCPOL487.08	HM473361	Dodecaceria
BAMPOL0456	BCPOL485.08	HM473360	Dodecaceria
BAMPOL0120	BCPOL149-08	HM473359	Dodecaceria
BAMPOL0116	BCPOL145-08	HM473358	Dodecaceria
BAMPOL0115	BCPOL144-08	HM473357	Dodecaceria
BAMPOL0111	BCPOL140-08	HM473356	Dodecaceria
BAMPOL0505	BCPOL533-08	HM473355	Dodecaceria
BAMPOL0504	BCPOL532-08	HM473354	Dodecaceria
BAMPOL0503	BCPOL531-08	HM473353	Dodecaceria
BAMPOL0501	BCPOL529-08	HM473352	Dodecaceria
BAMPOL0452	BCPOL481-08	HM473351	Dodecaceria
BAMPOL0451	BCPOL480-08	HM473350	Dodecaceria
BAMPOL0450	BCPOL479-08	HM473349	Dodecaceria
BAMPOL0449	BCPOL478-08	HM473348	Dodecaceria
BAMPOL0448	BCPOL477-08	HM473347	Dodecaceria
BAMPOL0447	BCPOL476-08	HM473346	Dodecaceria

	BOLD ID COI	GenBank ID COI	GenBank ID 28S
BAMPOL0446	BCPOL475-08	HM473345	Genus
		KP794935	Dodecaceria
		KP794934	Dodecaceria
	GBAN0672-06	DQ209262	Dodecaceria
Cteno10		KT934277	Dodecaceria
Cteno08		KT934276	Ctenodrillus
Cteno07		KT934275	Ctenodrillus
Cteno06		KT934274	Ctenodrillus
Cteno05		KT934273	Ctenodrillus
Cteno04		KT934272	Ctenodrillus
Cteno02		KT934271	Ctenodrillus
Cteno01		KT934270	Ctenodrillus
		KP794931	Ctenodrillus
		MF414725	Dodecaceria
		MF414724	Dodecaceria
		HE863973	Dodecaceria
		HE863972	Raricirrus
		Raricirrus	

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S
BIOUG06646-H01	HZPLY475-13		Genus
USNM:IZ:1487023	WIZCO031-18	Dodecaceria	
USNM:IZ:1487024	WIZCO032-18		Dodecaceria
BIOUG06838-G07	HZPLY1000-13	Dodecaceria	
BIOUG06838-G09	HZPLY1002-13	Cirriformia	
BIOUG06838-G10	HZPLY1003-13	Cirriformia	
BIOUG06838-H01	HZPLY1006-13	Cirriformia	
BIOUG06646-G06	HZPLY468-13	Cirriformia	
BIOUG06646-G07	HZPLY469-13		Cirriformia
BIOUG06646-G09	HZPLY471-13		Cirriformia
BIOUG06838-D01	HZPLY966-13		Cirriformia
LACM:DISCO:3792	DISA326-18		Cirriformia
BIOUG07681-B09	HZPLY1037-13		Timarete
USNM:IZ:1487042	WIZCO028-18		Cirratulus
USNM:IZ:1487043	WIZCO029-18		Cirratulus
		MH708233	Cirratulus
		MH708232	Timarete

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI
	GHenBank ID 28S	Genus
	KY061285	Timarete
	KY 061284	Timarete
	KY 061283	Timarete
	KY 061279	Timarete
	KY 061278	Timarete
	KY 061277	Timarete
	KY 061276	Timarete
	KY 061268	Timarete
	KY 061267	Timarete
	KY 061266	Timarete
	KY 061262	Timarete
	KY 061261	Timarete
	KY 061260	Timarete
	KY 061249	Timarete
	KY 061248	Timarete
	KY061247	Timarete
		Timarete

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI
	GY061238	GenBank ID 28S
	KY061223	Timarete
	KY061222	Timarete
	KY061221	Timarete
	KM192188	Timarete
	KM192187	Timarete
	KM192186	Timarete
	KM192177	Timarete
	KM192176	Timarete
	KM192178	Timarete
	KM192179	Timarete
	KM192175	Timarete
	KM192174	Timarete
	KM192173	Timarete
	KM192172	Timarete
	KM192171	Timarete
	KM192168	Timarete
	Timarete	

\(\left.\begin{array}{lllll}\hline ID/Voucher/Terminal \& BOLD ID COI \& GenBank ID COI \& GenBank ID 28S \& Genus

\hline \& \& KM192167 \& \& AMW24391\end{array}\right]\)| Cirratulus |
| :--- |
| |
| |
| |
| |
| SMNH75830 |

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S
ZMBN 125768	POLNB2522-18	not deposited	Genus
ZMBN 125769	POLNB2523-18	not deposited	Chaetozone
ZMBN 125770	POLNB2524-18	not deposited	
ZMBN 125774	POLNB2528-18	not deposited	not deposited
ZMBN 125775	POLNB2529-18	not deposited	not deposited
ZMBN 125776	POLNB2530-18	not deposited	Chaetozone
ZMBN 125777	POLNB2531-18	not deposited	Chaetozone
ZMBN 125778	POLNB2532-18	not deposited	Chaetozone
ZMBN 125779	POLNB2533-18	not deposited	Chaetozone
ZMBN 125780	POLNB2534-18	not deposited	Chaetozone
ZMBN 125781	POLN2535-18	not deposited	Chaetozone
ZMBN 125782	POLNB2536-18	not deposited	Chaetozone
ZMBN 125783	POLNB2537-18	not deposited	not deposited
ZMBN 125784	POLNB2538-18	not deposited	
ZMBN 125786	POLN2540-18	not deposited	Chaetozone
ZMBN 125787	POLNB2541-18	not deposited	Chaetozone
ZMBN 125789	POLNB2543-18	not deposited	Chaetozone

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S
ZMBN 125790	POLNB2544-18	not deposited	Genus
ZMBN 125795	POLNB2549-18	not deposited	Chaetozone
ZMBN 125796	POLNB2550-18	not deposited	Chaetozone
ZMBN 125797	POLNB2551-18	not deposited	Chaetozone
ZMBN 125798	POLNB2552-18	not deposited	Chaetozone
ZMBN 125800	POLNB2554-18	not deposited	not deposited
ZMBN 125802	POLNB2556-18	not deposited	Chaetozone
ZMBN 125803	POLNB2557-18	not deposited	Chaetozone
ZMBN 125804	POLNB2558-18	not deposited	Chaetozone
ZMBN 125805	POLNB2559-18	not deposited	not deposited
ZMBN 125807	POLNB2561-18	not deposited	Chaetozone
ZMBN 125808	POLNB2562-18	not deposited	Chaetozone
ZMBN 125811	POLNB2565-18	not deposited	Chaetozone
ZMBN 125812	POLNB2566-18	not deposited	Chaetozone
ZMBN 125813	POLN2567-18	not deposited	Chaetozone
ZMBN 125815	POLNB2569-18	not deposited	Chaetozone
ZMBN 125816	POLNB2570-18	not deposited	Chaetozone

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S	Genus
ZMBN 125817	POLNB2571-18	not deposited		Chaetozone
ZMBN 125818	POLNB2572-18	not deposited	Chaetozone	
ZMBN 125819	POLNB2573-18	not deposited	Chaetozone	
ZMBN 125820	POLNB2574-18	not deposited	Chaetozone	
ZMBN 125823	POLNB2577-18	not deposited	Chaetozone	
ZMBN 125824	POLNB2578-18	not deposited	not deposited	Chaetozone
ZMBN 125825	POLNB2579-18	not deposited		Chaetozone
ZMBN 125830	POLNB25984	not deposited	Tharyx	
ZMBN 125832	POLNB2586-18	not deposited		Tharyx
ZMBN 125833	POLNB2587-18	not deposited		Tharyx
ZMBN 125834	POLNB2588-18	not deposited		Aphelochaeta
ZMBN 125837	POLNB2594-18	not deposited		Chaetozone
ZMBN 125838	POLNB2595-18		Chaetozone	
ZMBN129511	not deposited	not deposited	not deposited	Chaetozone
ZMBN129512	not deposited	not deposited	not deposited	Chaetozone
ZMBN129513			Chaetozone	
ZMBN129514			not deposited	Chaetozone

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S	Genus
ZMBN129515	not deposited	not deposited		Chaetozone
MG159	not deposited	not deposited		Chaetozone
ZMBN129525	not deposited	not deposited		Chaetozone
ZMBN129526	not deposited	not deposited		Chaetozone
ZMBN129527			not deposited	Chaetozone
ZMBN129528				Chaetozone
ZMBN129529			not deposited	Chaetozone
ZMBN129531			not deposited	Chaetozone
ZMBN129533			not deposited	not deposited
ZMBN129534			not deposited	Chaetozone
ZMBN129536		not deposited	Chaetozone	
ZMBN129538		not deposited	Chaetozone	
ZMBN129542			Chaetozone	
ZMBN129544			Chaetozone	
ZMBN129546			Chaetozone	
ZMBN129547	not deposited		not deposited	Chaetozone
ZMBN129549			Chaetozone	

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S	Genus
ZMBN129550	not deposited	not deposited		Chaetozone
ZMBN129551	not deposited	not deposited	not deposited	Chaetozone
ZMBN129552	not deposited	not deposited		Chaetozone
ZMBN129553	not deposited	not deposited		Chaetozone
ZMBN129554	not deposited	not deposited	not deposited	Chaetozone
ZMBN129555	not deposited	not deposited	not deposited	Chaetozone
ZMBN129556			not deposited	Chaetozone
ZMBN129557			not deposited	not deposited
ZMBN129567		not deposited	Chaetozone	
ZMBN129568		not deposited	Chaetozone	
ZMBN129569		not deposited	Chaetozone	
ZMBN129570		not deposited	Chaetozone	
ZMBN129571		not deposited	Chaetozone	
ZMBN129572		not deposited	Chaetozone	
ZMBN129573			Chaetozone	
ZMBN129575			Chaetozone	
ZMBN129576	not deposited	not deposited		

ID/Voucher	BOLD ID COI	GenBank ID COI	GenBank ID 28S	Genus
ZMBN129577			not deposited	Chaetozone
ZMBN129580	not deposited	not deposited		Chaetozone
ZMBN129581		not deposited	Chaetozone	
ZMBN129583	not deposited	not deposited		Chaetozone
ZMBN129584	not deposited	not deposited	Chaetozone	
ZMBN129585	not deposited	not deposited	Chaetozone	
ZMBN129596	not deposited	not deposited	Chaetozone	
MG026	not deposited	not deposited		Chaetozone
MG244	not deposited	not deposited		Aphelochaeta
MG246	not deposited	not deposited		Aphelochaeta
MG248			Aphelochaeta	
MG249	not deposited	not deposited		Aphelochaeta
MG251	not deposited	not deposited	not deposited	Chaetozone
129640	not deposited	not deposited	not deposited	Chaetozone
MG266	not deposited	not deposited		Chaetozone
MG267	not deposited	not deposited	not deposited	Chaetozone
MG268			Chaetozone	

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S	Genus
MG272	not deposited	not deposited	not deposited	Tharyx
MG275	not deposited	not deposited	not deposited	Tharyx
MG277			not deposited	Tharyx
MG278	not deposited	not deposited	Tharyx	
MG280	not deposited	not deposited	not deposited	Tharyx
MG282	not deposited	not deposited	not deposited	Chaetozone
MG283	not deposited	not deposited	not deposited	Chaetozone
MG289	not deposited	not deposited	not deposited	Chaetozone
MG290	not deposited	not deposited	not deposited	Chaetozone
MG291	not deposited	not deposited	not deposited	Chaetozone
44730HMDNA118	not deposited	not deposited		Chaetozone
36800POLYSKAGDNA10517	not deposited	not deposited		Chaetozone
50840 S06-2-1563	not deposited	not deposited		Chaetozone
50890 S10-2-3083	not deposited	not deposited		Chaetozone
50910 S10-1-2913	not deposited	not deposited		Chaetozone
50930 S14-1-393	not deposited	not deposited		Chaetozone
MG302			not deposited	Tharyx

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S	Genus
MG303			not deposited	Tharyx
MG304		not deposited	Tharyx	
MG305	not deposited	not deposited	not deposited	Chaetozone
MG306			Chaetozone	
MG307	not deposited	not deposited	not deposited	Chaetozone
4457GB088 / MG308	not deposited	not deposited		Chaetozone
ZMBN129642	not deposited	not deposited		Chaetozone
5074GB077 / MG310	not deposited	not deposited		Chaetozone
MG311	not deposited	not deposited	not deposited	Chaetozone
4481MAR14DNA323 / MG312	not deposited	not deposited		Chaetozone
ZMBN129639	not deposited	not deposited		Chaetozone
MG314	not deposited	not deposited	not deposited	Chaetozone
MG315	not deposited	not deposited	not deposited	Chaetozone
44780MAR14DNA269 / MG316	not deposited	not deposited		Chaetozone
44770MAR14DNA268 / MG317	not deposited	not deposited		Chaetozone
ZMBN129638	not deposited	not deposited		Chaetozone
36360MAR14DNA266 / MG319	not deposited	not deposited		Chaetozone

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S
3634MAR14DNA264 / MG320	not deposited	not deposited	Genus
3632MAR14DNA262 / MG321	not deposited	not deposited	Chaetozone
36310MAR14DNA261 / MG322	not deposited	not deposited	Chaetozone
3630MAR14DNA260 / MG323	not deposited	not deposited	Chaetozone
36330MAR14DNA263 / MG324	not deposited	not deposited	Chaetozone
3613MAR14DNA178 / MG325	not deposited	not deposited	Chaetozone
3211WS14DNA736 / MG326	not deposited	not deposited	Chaetozone
MG327	not deposited		Chaetozone
MG328			Chaetozone
51230WS14DNA741 / MG329	not deposited	not deposited	
31440WS14DNA037 / MG330	not deposited	not deposited	Chaetozone
MG331	not deposited	not deposited	not deposited
32260 WS14DNA823 / MG332	not deposited	not deposited	
32120WS14DNA736 / MG333	not deposited	not deposited	
129648	not deposited	not deposited	
MG335	not deposited	not deposited	not deposited
MG336	not deposited	not deposited	not deposited

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S	Genus
MG337	not deposited	not deposited	not deposited	Chaetozone
MG338	not deposited	not deposited	not deposited	Chaetozone
MG339	not deposited	not deposited	not deposited	Chaetozone
MG340	not deposited	not deposited	not deposited	Chaetozone
36770POLYSKAG DNA092MG341	not deposited	not deposited		Chaetozone
MG342	not deposited	not deposited	not deposited	Chaetozone
30910POLYSKAG 2014-028 / MG343	not deposited	not deposited		Chaetozone
30912POLYSKAG 2014-029 / MG344	not deposited	not deposited		Chaetozone
30930POLYSKAG 2014-030 / MG345	not deposited	not deposited		Chaetozone
ZMBN129641	not deposited	not deposited		Chaetozone
ZMBN129647	not deposited	not deposited		Chaetozone
3516BE2014 107 / MG349	not deposited	not deposited		Chaetozone
35170BE2014 108 / MG350	not deposited	not deposited		Chaetozone
MG351	not deposited	not deposited	not deposited	Chaetozone
35190BE2014 110 / MG352	not deposited	not deposited		Chaetozone
MG353	not deposited	not deposited	not deposited	Chaetozone
MG355	not deposited	not deposited		Chaetozone

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S	Genus
MG356	not deposited	not deposited	not deposited	Chaetozone
MG357	not deposited	not deposited	not deposited	Tharyx
MG359			not deposited	Tharyx
MG362	not deposited	not deposited	not deposited	Chaetozone
MG363	not deposited	not deposited	not deposited	Chaetozone
MG364	not deposited	not deposited	not deposited	Chaetozone
MG365	not deposited	not deposited	not deposited	Chaetozone
MG366	not deposited	not deposited	not deposited	Chaetozone
MG367	not deposited	not deposited	not deposited	Chaetozone
MG368		not deposited	Tharyx	
MG369	not deposited	not deposited	not deposited	Chaetozone
MG370	not deposited	not deposited	not deposited	Chaetozone
MG372			not deposited	Chaetozone
MG373	not deposited	not deposited	not deposited	Chaetozone
MG374	not deposited	not deposited	not deposited	Chaetozone
MG377	not deposited	not deposited	not deposited	Chaetozone

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S	Genus
MG380	not deposited	not deposited	not deposited	Chaetozone
MG381		not deposited	Chaetozone	
MG382		not deposited	Chaetozone	
MG383	not deposited	not deposited	not deposited	Cirratulus
MG384	not deposited	not deposited	not deposited	Chaetozone
MG385	not deposited	not deposited	not deposited	Cirriformia
NTNU-VM 72308	not deposited	not deposited	not deposited	Cirratulus
NTNU-VM 72311	not deposited	not deposited	not deposited	Cirratulus
MG388	not deposited	not deposited	not deposited	Cirriformia
MG389	not deposited	not deposited	not deposited	Dodecaceria
MG390	not deposited	not deposited	not deposited	Chaetozone
MG391	not deposited	not deposited	not deposited	Aphelochaeta
MG393	not deposited	not deposited	not deposited	Chaetozone
MG394	not deposited	not deposited	not deposited	Chaetozone
ZMBN129620	not deposited	not deposited	not deposited	Chaetozone
ZMBN129611			Dodecaceria	
ZMBN129607				

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S	Genus
ZMBN129610	not deposited	not deposited	not deposited	Chaetozone
ZMBN129609	not deposited	not deposited	not deposited	Chaetozone
ZMBN129602	not deposited	not deposited	not deposited	Chaetozone
ZMBN129603	not deposited	not deposited	not deposited	Chaetozone
ZMBN129621		not deposited	Chaetozone	
ZMBN129625		not deposited	Chaetozone	
ZMBN129626	not deposited	not deposited	not deposited	Chaetozone
ZMBN129627		not deposited	Chaetozone	
ZMBN129628		not deposited	Chaetozone	
ZMBN129632	not deposited	not deposited	not deposited	Chaetozone
ZMBN129633	not deposited		Chaetozone	
ZMBN129634		not deposited	Chaetozone	
ZMBN129635		not deposited	Chaetozone	
ZMBN129636			DR779688	Flabelligera
BIOUG14667-H10		DG209240	Flabelligera	

ID/Voucher/Terminal	BOLD ID COI	GenBank ID COI	GenBank ID 28S	Genus
		DQ209260		Glyphanostomum
HUNTSPOL0328	NBPOL328-08	HQ024203		Polycirrus
			EU418866.1	Polycirrus

Appendix II: Bayesian Inference (COI+28S) of phylogeny of

 Cirratulidae

