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ABSTRACT 

In this paper, numerical investigation of three-dimensional, developing turbulent flow, subjected to a 
moderate adverse pressure gradient, has been investigated using various turbulence models, namely: the low-

Re k  , the SST k  , the 2v f  and a variant of Reynolds stress model. The results are compared with 
the detailed velocity and pressure measurements. Since the inlet condition is uncertain, a study was first 
performed to investigate the sensitivity of the results to the inlet boundary condition. The results showed the 
importance of including the contraction effects. It is seen that the developing flow inside the straight duct, is 
highly sensitive to the inlet boundary condition. The comparisons indicate that all turbulence models are able 
to predict a correct trend for the centerline velocity and pressure recovery inside the straight duct and diffuser 
but the low-Re k  and RSM turbulence models yield more realistic results. The SST k   model largely 
overpredicts the centerline velocity and boundary layer thickness in the straight duct. The comparisons of the 
numerical results also revealed that the RSM model, due to its anisotropic formulation, is able to reproduce 
the secondary flows. As expected, the RSM model demonstrates the best performance in prediction of the 
flow field and pressure recovery in the asymmetric diffuser. 
 
Keywords: Moderate adverse pressure gradient; Asymmetric diffuser; Turbulent developing flow; 
Computational fluid dynamics; RANS models. 

 
1. INTRODUCTION 

Developing turbulent flow under adverse pressure 
gradient (APG) occurs in various fluid flow related 
engineering applications. Turbulent flow around 
aircrafts, automobiles and inside the draft tube of 
hydraulic turbines, are a few examples of such 
applications. Hence, accurate prediction of 
turbulent flow under adverse pressure gradient can 
contribute in the optimization of fluid machineries. 
Indeed, the presence of APG can greatly affect the 
performance and efficiency of hydraulic machines. 
If a turbulent boundary layer flow encounters a 
large APG, flow becomes unstable and if the APG 
is sufficiently large, flow separates from the wall 
and forms a recirculating region. Such recirculation 
region often has negative consequences such as: 
increase in the pressure drag, decrease in lift and 
increase in head losses. More specifically, flow 

separation could also have destructive effects on 
performance of hydraulic machinery equipment 
such as draft tube where the pressure recovery is 
restricted by attachment of flow to the walls.  

Turbulent flow under APG has been the subject of a 
large number of experimental and numerical 
investigations. Among all the previous studies, the 
experimental investigations conducted by Clauser 
(1954) and Bradshaw (1967) can be considered as 
the first studies on this topic. Both studies measured 
characteristics of equilibrium turbulent boundary 
layers where the pressure gradient parameter is kept 
constant. Nagano et al. (1993) experimentally 
studied the behavior of turbulent boundary layer 
under moderate and strong adverse pressure 
gradients. They showed that with increase in 
adverse pressure gradients, the near wall velocity 
profile shifts below the standard log-law, indicating 
a reduction in the viscous sub-layer thickness. 
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Furthermore, the presence of an APG could 
significantly affect the distributions of turbulence 
quantities. Rai (1986) conducted experiments in a 
wind tunnel for three arbitrary adverse pressure 
gradient flows. The experimental observations 
clearly indicate that wall-wakes in adverse pressure 
gradient can be adequately described by the two-
layer model proposed. 

Direct numerical simulation (DNS) has been 
employed by Lee and Sung (2008) to investigate the 
effects of an adverse pressure gradient on a 
turbulent boundary layer. Their numerical results 
showed that the mean flow quantities are greatly 
affected by an APG, and the coherent structures in 
the outer layer of the APG flows were more 
activated than those in the zero pressure gradient 
flows. This was attributed to increased turbulence 
intensities, shear stresses and pressure fluctuations 
in the APG systems. More recently, Inouea et al. 
(2013) reported large eddy simulation (LES) of a 
turbulent boundary layer at high Reynolds number 
subject to an adverse pressure gradient. The 
stretched-vortex model (Chung and Pullin, 2009) 
was used for the subgrid-scale modeling. The 
results showed self-similarity in the velocity 
statistics over a wide range of Reynolds numbers. It 
was concluded that the boundary layers under 
adverse pressure gradient are far from an 
equilibrium state. 

Among numerous applications of adverse pressure 
gradient flows, diffusers are one of the most 
commonly used flow devices in the industry, 
especially in hydraulic machines. Therefore, 
investigation of turbulent flow through diffusers has 
been an important research topic for fluid 
mechanics researchers. In the following, some of 
the investigations related to turbulent flow through 
diffusers will be reviewed. 

Obi et al. (1993) performed laser Doppler 
anemometry (LDA) measurements in an 
asymmetric diffuser with an expansion ratio of 4.7, 
a single deflection of 10o and a turbulent fully 
developed inlet condition. Buice and Eaton (1996) 
argued that the experimental data from Obi et al. 
(1993) had several deficiencies when comparing 
with their numerical results. The most noticeable 
problem was that the experimental data of Obi et al. 
(1993) did not appear to satisfy the mass 
conservation. Hence, they performed new detailed 
measurements in the reproduction of the Obi 
experiments using hot-wire and pulsed-wire 
measurements. The experimental works by Obi et 
al. (1993) and Buice and Eaton (1996) have 
received much attention because of the fully-
developed inlet condition, presence of flow 
separation and flow development downstream of 
the reattachment point. For example, Kaltenback et 
al. (1999) conducted a numerical investigation on 
Obi diffuser using LES. They showed that a 
detailed representation of the inflow velocity field 
is critical for accurate prediction of the flow inside 
the diffuser. They also found that the sub-grid scale 
model plays a major role for prediction of both 
mean momentum and turbulent kinetic energy. 
Schlüter et al. (2005) also conducted LES 

computations of Obi diffuser flow. They used three 
different mesh sizes and different modeling 
approaches to examine the influence of the mesh 
resolution and four subgrid models, namely: no 
model (implicit LES), the standard Smagorinsky 
model, the dynamic Smagorinsky model and the 
dynamic localization model. The mesh refinement 
study demonstrated improvement in the predictions. 
Among the subgrid strategies examined, the 
dynamic Smagorinsky model performed the best. 
Iaccarino (2001) used three commercial CFD codes, 
namely: CFX, Fluent, and Star-CD, and two 
turbulence models (the low-Re k   and 

the 2v f ) for the numerical simulation of Obi 
diffuser. The numerical results showed that 

the 2v f model produces more accurate results 

than the low-Re k  model when comparisons 
were made with the experimental data and LES 
predictions. The k  calculations do not show any 

recirculation region, while the 2v f model 
reproduces the length of the separation bubble 
within 6 percent of the measured value. More 
recently, El-Behery and Hamed (2011) employed 
the commercial code Fluent to examine the 
capabilities of several turbulence models in 
prediction of turbulent flow in the planar 
asymmetric diffuser of Obi diffuser. The 
comparisons showed that the results of the 

2v f turbulence model agree best with the 
experimental data while the RSM model was shown 
to give unexpected poor results. 

Cherry et al. (2008 and 2009) performed 
experiments to measure the mean velocity field in 
two separate 3D asymmetric diffusers using the 
magnetic resonance velocimetry method. The 
measured flow fields in both diffusers showed 3D 
boundary layer separation but the structure of the 
separation bubble exhibited a high degree of 
sensitivity to the diffuser geometrical dimensions. 
In their experiment, a fully-developed flow 
condition was established at the diffuser entry 
which is suitable for the turbulence modeling 
validation proposes. Similar to Obi diffuser, the 
Cherry diffuser has been used as a benchmark for 
the investigation of performance of turbulence 
models and numerical approaches in recent years. A 
direct numerical simulation of turbulent flow in the 
Cherry diffuser (Cherry et al., 2008) was conducted 
by Ohlsson et al. (2010) with a massively parallel 
high-order spectral element method and their results 
were in good agreement with the experimental data. 
Jakirlić et al. (2010) applied LES and a zonal 
hybrid LES/RANS scheme to predict the turbulent 
flow through the 3D diffuser investigated by Cherry 
et al. (2008). Both modeling strategies gave 
acceptable results for the time-averaged quantities. 
Jeyapaul (2011) also performed numerical 
simulations on Cherry diffuser using RANS 
models. The results showed that the linear eddy-
viscosity models fail to predict separation on the 
correct wall of the 3D diffuser. However, the 
explicit algebraic RSM (EARSM) is able to predict 
separation accurately. The EARSM predicted 
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quantitatively the mean flow field, however the 
Reynolds stresses were incorrect and the wall 
pressure was under predicted.  

Cervantes and Engström (2008) experimentally 
investigated the turbulent flow inside an 
asymmetric diffuser with a moderate adverse 
pressure gradient using LDA technique. The 
diffuser has a diverging upper wall, designed to 
yield an approximately constant adverse pressure 
gradient, which opens up from an angle of 2.5 at 

the beginning to 7.5 at the end. The diffuser is a 
generic model of the rectangular diffuser found at 
the end of most hydropower turbines of the Francis 
and Kaplan types with an elbow draft tube. The 
elbow draft tube is found immediately after the 
runner and, as shown in Fig. 1, composed of a 
conical diffuser, an elbow and a straight rectangular 
diffuser. Although the Reynolds number was small 
compared to full-scale turbines, the flow is still 
fully turbulent and the large viscous length-scale 
allows detailed measurements in the boundary layer 

up to 1y  . They carried out measurements in 
steady regime and three different pulsating regimes 
based on the dimensionless frequency 

( 2/ u   ) namely: quasi-steady 

( 0.005  ), relaxation ( 0.005 0.02  ) and 

quasi-laminar ( 0.02 0.04  ). This test case 
provides accurate experimental data for validating 
CFD calculations with focus on adverse pressure 
gradient effects and non-trivial boundary 
conditions: both important for hydropower 
simulations. 

 

 
Fig. 1. Schematic of a draft tube. 

 
In the present study, numerical investigations are 
performed on the diffuser studied experimentally by 
Cervantes and Engström in statistically stationary 
condition. The main objective of the present study 
is to examine the effectiveness of various 
turbulence models in prediction of developing 
turbulent flow subjected to the adverse pressure 
gradient. To the best of our knowledge authors, the 
present paper is the first attempt to investigate the 
3D asymmetric diffusers with the developing inflow 
condition using different turbulence models. 

2. PROBLEM DESCRIPTION 

The geometry investigated in this paper has been 
studied experimentally by Cervantes and Engström 
(2008). A schematic of the experimental setup used 
for their measurements is shown in the Fig. 2. A 

2.102 m straight rectangular duct with a rectangular 
cross section of 0.1×0.15 m2 is used upstream the 
diffuser. The flow is still developing at the end of 
the straight duct as found in hydropower systems. 
The hydraulic diameter of the straight duct 

calculated by duct4 /A p is 0.12hD  m. Hence, the 

duct length is 17.5 hD . The Reynolds number based 

on the bulk velocity and duct hydraulic diameter is 
42 10   (flow rate of 32.47 10 m3/s). A contraction 

(9:1) precedes the duct. In addition, the flow is 
tripped at the exit of the contraction by 2 mm 
plates, extruding 9.2 mm from the walls, 
corresponding to about 18% of the duct height and 
12% of the duct width. The tripping was necessary 
to achieve repeatable conditions in the test section, 
as also found by Durst et al. (1998). Following the 
duct is an asymmetric diffuser with a diverging 
upper wall designed to yield an approximately 
constant adverse pressure gradient. The main part of 
this experimental setup, from the duct inlet to the 
diffuser outlet, is numerically modeled here. Fig 
3(a) shows a 3D view of the geometry. In addition, 
Fig. 3(b) represents a 2D schematic of the diffuser 
with the variation of the diffuser angle. The diffuser 
opens up to a cross section of 0.15 × 0.15 m2 at the 
outlet (x= 2.772 m). The diffuser angle increases 
from 2.5 at the beginning to 7.5 at x= 2.772 m. 
The flow field inside the diffuser has been 
investigated at three stations, namely: x=2.082 m, 
2.357 m and 2.632 m. As shown in Fig 3. (b), the 
first station is 20 mm before the start of the diffuser 
and the second and third stations are at about 40% 
and 80% of the diffuser length downstream, 
respectively. 

 

 
Fig. 2. Experimental setup used by Cervantes 

and Engström (2008) (dimensions in mm). 
 

 
(a) 
  

 
(b) 

Fig. 3. (a) 3D l view of the domain. (b) 2D 
Schematic of examined diffuser. 
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3. MATHEMATICAL FORMULATION 

3.1 Mean Flow Equations 

For an incompressible turbulent flow, the time 
averaged equations of continuity and momentum 
are written as: 

)1(  0j

j

U

x





 

)2(  
( ) 1i j i

i j
j i j j

U U P U
u u

x x x x
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where   and   are fluid density and kinematic 

viscosity and i juu represents the Reynolds stress 

tensor. 

3.2 Turbulence Modeling Equations 

The turbulence models employed for computations 
are the low-Re k  model (proposed by Launder 

and Sharma, 1974), the SST k   model (Menter, 

1994), the 2v f  model (Durbin, 1995) and a 
variant of Reynolds stress model (Gibson and 
Launder, 1978).  

3.3.1 Low-Re k   Model 

 In this turbulence model, the unknown Reynolds 
stresses are obtained from the Boussinesq 
hypothesis: 
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where the turbulent viscosity is calculated via: 
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To obtain t , transport equations for the turbulence 

kinetic energy, k  and its dissipation rate are solved. 
The transport equation for the turbulent kinetic 
energy is written as: 
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where kP , the generation rate of turbulent kinetic 

energy, is obtained from: 
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The homogeneous dissipation rate of turbulent 
kinetic energy,  , is obtained by solving the 
following equation: 
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The empirical constants of the model are presented 
in Table 1.  

The homogeneous dissipation rate can be related to 
the true dissipation rate through: 
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The damping functions f  and 2f are given by: 
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where 2 /tR k    is the local turbulent Reynolds 

number.  

The term E is first introduced by Jones and Launder 
(1972) and is expressed as: 
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Table 1 Empirical constant of linear k  model 

c  
1c  2c  k    

0.09 1.44 1.92 1.0 1.3 

 
3.3.2. SST k   Model 

The main idea of the SST k   model is to 

combine the robustness of the k   turbulence 
model near walls with the capabilities of the 
k  model away from the walls. The model uses 
the Boussinesq hypothesis (equation (3)) to obtain 
the Reynolds stresses. The turbulent viscosity is 
calculated via: 
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The blending function 1F  is defined by: 
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 and 

y  is the distance to the nearest wall.  

The blending function 1F  is zero away from 

surfaces ( k   model) and switches to one inside 

the boundary layer ( k   model). The S term in 
the turbulent viscosity expression is the invariant 

strain rate and the second blending function 2F  is 

defined by: 
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The production term has a limiter to prevent the 
build-up of unrealistic high turbulence energy in the 
stagnation regions: 

(16)  *min ,10k kP P k    

All constants are computed by a blend from the 
corresponding constants of the k  and the k   

model via  1 1 2 11F F     .The constants of the 

SST model are given in Table 2.  

Table 2 Empirical constant of k  model 

1k  0.85 

2k  1.0 

1  0.5 

2  0.856 

*  0.09 

1  3/40 

2  0.0828 

1  5/9 

2  0.44 

 
3.3.3   2v f Model 

The 2v f model (developed by Durbin, 1995) is 

similar to the standard k   model. In addition, it 
incorporates some near-wall turbulence anisotropy 
as well as non-local pressure-strain effects. Instead 

of turbulent kinetic energy, k , the 2v f model 

uses a velocity scale 2v  (velocity fluctuation 
normal to the streamlines) for the evaluation of the 
eddy viscosity. The anisotropic wall effects are 
modeled through the elliptic relaxation function, f , 
by solving a separate elliptic equation of the 

Helmholtz type. The Boussinesq approximation is 
still used for the evaluation of the Reynolds 

stresses. The eddy viscosity t  is given by: 
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where the turbulent time-scale T  and the turbulent 
length-scale L are obtained from the following 
expressions: 
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 The 2v transport equation is expressed as:  
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An elliptic equation is solved for the relaxation 
function f: 
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The coefficients of 2v f  turbulence model are 
given in Table 3. 
 

Table 3 Coefficients of 
2v f  model 

c  0.19 

2v
  1.0 

  1.3 

1c   
42

1.3 0.25 / 1 / 2Lc d L 
   

2c  1.9 

1c  1.4 

2c  0.3 

Lc  0.3 

c  70 

 
3.3.4   RSM Model 

The Reynolds Stress Model (RSM) is the most 
detailed and elaborate RANS turbulence model. In 
contrast to isotropic Boussinesq hypothesis based 
models, which use algebraic expressions for the 
evaluation of Reynolds stresses, the RSM models 
solve a partial differential transport equation for 
each Reynolds stress component.  

The exact form of the Reynolds stress transport 
equations, shown below, can be derived via a 
mathematical manipulation on momentum equation: 
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(22) 

Clearly the diffusion, the pressure strain and the 
viscous dissipation terms are not explicitly defined 
and need to be modeled. The turbulent diffusion 
term is modeled using (Gibson and Launder, 1978): 

(23) ,
i jt

T ij
k k k

u u
D
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    
   

  

Also the viscous dissipation term can be simply 
modeled through (2 / 3)ij ij   .  

Here the variant of RSM proposed by Gibson and 
Launder (1978) is employed where the pressure 
strain correlation (or redistribution term) is 
expressed as:  

(24) ,1 ,2 ,ij ij ij ij w        

where  
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(27) 

The ijP  and ijC terms are production and convection 

terms respectively (defined in equation (22)); also 

 1/ 2 kkP P  and  1/ 2 kkC C . The model 

coefficients are given in Table 4. Ret and ija  are 

turbulent Reynolds number and Reynolds-stress 
anisotropy tensor, respectively. 

4. NUMERICAL ASPECTS 

4.1 Solver 

All equations are discretized using finite-volume 
methodology on a collocated grid system. The open 
source C++ CFD code OpenFOAM (2011) was 
used to perform the computations. The second order 
upwind differencing scheme was employed for 
discretization of the convective terms in all 
transport equations. Gradient and Laplacian terms 

were discretized using the central differencing 
scheme. The pressure field is linked to the velocity 
field through the SIMPLE pressure correction 
algorithm. The convergence criteria were set to 10-5 
for all equations. 

4.2 Boundary Conditions 

Accurate representation of inlet boundary condition 
is critical for numerical results inside a diffuser 
(Kaltenback et al., 1999). Since the contraction 
geometry is not fully known and boundary 
conditions are not available from experimental data, 
simulations are performed from section x=100 mm 
which is placed right after the tripping part. At this 
section, the velocity field for the streamwise and 
normal components is available from experimental 
data. Fig. 4 shows six different vertical and 
spanwise locations where the velocity components 
were measured using the LDA technique. 

 

 
Fig. 4. The location of available experimental 

data at section x=100 mm. 

 
Table 4 Coefficients of RSM model 

C  0.09 

1C    20.25
21 2.58 1 exp 0.0067RetAA       

2C
 0.75 A  

1C
 12 / 3 1.67C   

2C
  2 2max 2 / 3 1 / 6 / ,0C C     

A
 

 2 31 9 / 8 A A      

2A
 ik kia a  

3A
 ik kj jia a a  

lC
 

3/4 /C   

 0.4187 

 
A code was developed to evaluate the inlet 
boundary condition using a 3D surface fit on the 
experimental data with a polynomial interpolation 
scheme. Then, a moving average filter is applied on 
the interpolated data. The streamwise velocity is 
scaled by a factor to match the experimental flow 
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rate after integration. Finally, the velocity profiles 
are calculated on the cell centers at the inlet of the 
computational grid and are imposed as inlet 
boundary condition. The 3D surfaces obtained for 
both the streamwise and normal velocity 
components after smoothing are presented in Fig. 5. 
The spanwise component is obtained using the 
continuity equation assuming a negligible 
streamwise variation of u-velocity ( / 0u x   ), 

with respect to /v y   and /w z   because of the 
duct length. The experimental data for the 
streamwise velocity are not entirely symmetric. 
This may be induced by uncertainty in the 
contraction geometry and inflow condition.  

 

 
(a) 

 
(b) 

Fig. 5. 3D surfaces fitted to the experimental 
data. (a) streamwise and (b) normal velocity 

components. 
 

Computations of the flow inside the described 
geometry are performed with uniform and non-
uniform velocity boundary conditions to study their 
effects on the results. Figs. 6(a)-(c) illustrate the 
development of the mean streamwise velocity and 
fluctuating part of the streamwise and normal 
velocities along the centerline of the duct and 
diffuser for both inlet boundary conditions. It is 
observed that the numerical results of Case 1 (non-
uniform inlet velocity) are significantly closer to the 
experimental data than those obtained in Case 2 
(uniform). Hence, based on this comparison the first 
approach is used for the predictions presented in the 
following sections. 

An isotropic turbulence field is assumed at the inlet 
of all cases due to the lack of experimental 
turbulent data at the inlet. The turbulent quantities 
at the inlet are calculated using turbulent intensity 

(I) and turbulent length-scale ( l ). Turbulent 
intensity is the ratio of velocity fluctuations to the 
mean velocity (U0). Therefore, assuming an 
isotropic field, the turbulent kinetic energy is 
obtained by: 

2
0

3
( )

2
k IU                                                        (28) 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Comparison between results of Case 1 
(non-uniform inlet B.C.) and 2 (uniform inlet 

B.C.). (a) Mean streamwise velocity and 
fluctuating part of (b) streamwise and 

(c) normal velocities. 
 

The homogeneous dissipation rate and specific 
dissipation rate are also obtained from: 
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(a)                                                                       (b) 

 

  
(c)                            (d) 

Fig.7. Results of the grid study; development of (a) mean streamwise velocity and (b) its fluctuations 
along the duct and diffuser centerline. Streamwise (c) velocity and (d) fluctuations profiles at (c) section 

x=2082 mm. 
 

 
3/4 3/2 1/2

1/4
,

c k k

l c l




                                       (29) 

where l  (turbulent length-scale) is set to 0.1 hD . 

Hence, by choosing a turbulent intensity at the inlet, 
all other quantities can be calculated. Since there is 
no available experimental data on velocity 
fluctuations and turbulent intensity at the duct inlet, 
a study was performed on the effect of inlet 
turbulent intensity on the results of the mean flow 
and turbulent stresses in the straight duct and 
diffuser. The computations were performed using 
the RSM model and different turbulence intensities 
at the inlet and intensity of 3% was found to give 
accurate results. The pressure value at the inlet is 
computed using the zero-gradient condition normal 
to boundary. At the exit boundary, zero gradient 
boundary conditions along normal to the outlet 
were imposed for all variables (flow and 
turbulence) except pressure, which is considered as 
a constant value. 

Since the models used in the present work are 
“low-Reynolds number” turbulence models, the 
near-wall region is resolved up to y+1. Hence, no 
special treatment (such as wall functions) is 
necessary for the wall boundary conditions of the 
mean flow and turbulence transport equations, i.e., 
the velocity components, turbulent kinetic energy, 
homogeneous dissipation rate, specific dissipation 
rate. In addition, for the RSM model, the wall 
boundary condition of velocity components, 

homogeneous dissipation rate and all components 
of Reynolds stress tensor are also set to zero. The 
pressure on wall is also obtained using the 
assumption of zero-gradient along normal to the 
wall. 

4.3 Grid Study  
To study the sensitivity of the computational 
results to the grid resolution, a grid study was 
performed using the RSM turbulence model. For 
this purpose, four different grids (from coarse grid 
of 470,000 cells to fine grid of 3,700,000 cells) 
have been generated. All of these grids are non-
uniform and fully structured. As it was mentioned 
earlier all of turbulence models used in this 
investigation are “low-Reynolds number” and 
these grids are fine enough to resolve the near wall 
viscous sub-layer region. In addition, the grid 
points have been refined along the stream-wise 
direction around the diffuser because of high 
stream-wise gradients in these regions. Table 5 
presents the specifications of the five 
computational grids generated for the grid study; 
nx, ny and nz represent the number of nodes along 
stream-wise (x), normal (y) and cross-stream (z) 
directions, respectively. 

The results obtained from the grid study for four 
different grids are presented in Fig. (7). The 
development of mean streamwise velocity and its 
corresponding fluctuation along the centerline of 
the duct and diffuser are illustrated in Fig. 7(a) 
and 7(b), respectively. Figs. 7(c) and 7(d) show 
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the variation of streamwise velocity and its 
fluctuation along a vertical line placed on the 
symmetry plane at section x=2082 mm. It can be 
noted from these four figures that although grid 
refinement slightly affects the velocity field inside 
the diffuser, it has more noticeable effects on the 
mean and fluctuating velocity in the developing 
region (straight duct). The results obtained on 
Grid 3 with 1.4106 nodes are almost grid 
independent and a finer mesh would not give very 
different results. Thus, the subsequent 
computational results are obtained using Grid 3. 
Figs. 8(a) and 8(b) show the chosen grid in 
symmetry plane and inside the diffuser. 

 
Table 5 Specifications of grids produced for the 

grid study 

Grid No. xn  yn  zn  Distance from 
wall 

Grid 1 156 45 68 (1)y O   

Grid 2 213 52 78 (1)y O   

Grid 3 265 60 90 (1)y O   

Grid 4 390 80 120 (1)y O   

 

 
(a) 
 

 
(b) 

Fig. 8. Main grid used for the computations. 
Cells distribution on (a) Symmetry plane and (b) 

diffuser. 
 

5. RESULTS AND DISCUSSION 

In this section, the numerical results obtained using 
four turbulence models are presented and compared 
with the experimental data of Cervantes and 
Engström (2008).  

The variation of the velocity along the centerline of 
the duct flows is generally sensitive to the 
development of the boundary layers in the duct. 
Non-tripped boundary layers will grow along the 
duct length, thereby forcing the bulk flow to 
accelerate along the centerline. However, in the 
present geometry, the flow is tripped right before 
the straight duct. With the current tripping, the bulk 

flow accelerates immediately and the shear layers 
induced by the tripping produce fast growing 
boundary layers. 

Figure 9 shows the mean streamwise velocity 

(normalized with 0 duct/U Q A ) along the centerline 

in the straight duct and the diffuser. In both the 
numerical and the experimental results, the 
streamwise velocity starts with an overshoot 
induced by the tripping and the sudden decrement 
of flow area. After the trip, velocity decreases, but 
the rate of velocity decrease reduces along the 
centerline due to the boundary layer growth. From 
x=1500 mm to the start of the diffuser, the velocity 
gradient becomes smaller, but flow does not show 
clear signs of reaching the fully-developed 
condition. As the flow enters the diffuser, the 
velocity drops rapidly due to the cross-sectional 
area increase. It is seen that all turbulence models 
have successfully predicted the general variation of 
the streamwise velocity along the centerline. There 
are significant differences between the results of 
these models. The SST k   model largely 
overpredicts the centerline streamwise velocity due 
to an overestimation of the boundary layer 
thickness. It is observed that the results of low-Re 
k  and RSM turbulence models are closest to the 
experimental data both inside the straight duct and 
the diffuser. 

 

 
Fig. 9. Development of the streamwise velocity 

along centerline. 

 

 
Fig. 10. Pressure coefficient distribution along 

the centerline of the upper wall. 
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k                                                                     SST k   

 

  
2v f                                                                         RSM  

Fig. 11. Vectors of secondary flow (right) and Contours of streamwise velocity (left) in section 
x=2082 m. 

 
 
The distribution of pressure coefficient, defined by: 

2
0

1

2

atm
p

p p
C

U


                                                     (30) 

along the centreline of the upper wall is illustrated in 
Fig. 10. The pressure rises to a peak value and then 
decreases due to the viscous-losses. As the flow 
enters the diffuser, the pressure starts to increase 
again. It is observed that the numerical and 
experimental results of pressure coefficient 
distributions show the same trend. As mentioned 
earlier, the diffuser was designed to yield an 
approximately constant adverse pressure gradient, 
which is confirmed by the linear variation of the 
pressure in the numerical and experimental results. 
In addition, as expected the inviscid theory (which 
the diffuser is designed based on) over-estimates the 
pressure coefficient along the diffuser upper wall.  

Figure 11 shows the predicted secondary flows and 
the streamwise velocity contours using different 
turbulence models at section x=2082 mm, (i.e. 20 
mm before the start of diffuser). As expected only 
the RSM model is able to predict fairly strong 
secondary flow patterns. Using alternative vorticity 
form of the Reynolds-averaged Navier-Stokes 
equations, one can show that the secondary flows 
are generated by the axial mean vorticity, which 
becomes non-zero in a straight duct or pipe only if 
there are differences between cross-stream normal 

Reynolds stress ( 2 2v w ) or Coriolis forces arising 
from a spanwise rotation (Speziale et al. 1992). 
Therefore, the linear eddy viscosity turbulence 
models, based on the Boussinesq hypothesis, are 
not able to predict secondary flows in a straight 
non-circular duct. Consequently, the results 
presented in Fig. 11 are reasonable. Secondary flow 

vectors in all numerical results seem to have 
upward directions, which is obviously due to the 
geometry (the lower wall of diffuser is fixed, while 
the upper wall is diverging). In addition, the RSM 
model has predicted two rotating vortices 
(generated by normal Reynolds stress anisotropy). 
To understand the structure of these secondary 
flows it is best to first look at such turbulence 
driven secondary flows generated in the upstream 
straight duct. As shown in Fig. 12, with the RSM 
computations, two counter-rotating vortices are 
observed in each corner at the section x=1500 mm 
that force the flow to move from the center of the 
duct to the corner and then back to the center. By 
moving in the streamwise direction, it is seen that 
the upper vortices become weaker in section 
x=2632 mm due to the geometry (diverging upper 
wall). The lower vortex is also merged to the main 
upward secondary flow forcing the fluid core 
displacement to the upward direction in a vortical 
pattern. The streamwise velocity contours in Fig. 13 
indicate flatter velocity profiles for k   and 

2v f models. 

 

 
Fig. 12. Vectors of secondary flow (right) and 

Contours of streamwise velocity (left) in section 
x=1500 m predicted by RSM model. 
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k                                                                   SST k   

 

                        
2v f                                                                     RSM  

 

Fig. 13. Vectors of secondary flow (right pictures) and Contours of streamwise velocity (left pictures) in 
section x=2632 m. 

 
 
The predicted velocity and the turbulence field 
inside the diffuser using different turbulence models 
are further presented and compared to the 
experimental data in the following. These quantities 
are reported at three different sections of the 
diffuser symmetry plane. The sections are placed at 
2082 (20 mm before the diffuser), 2357 (255 mm 
into the diffuser) and 2632 mm (530 mm into the 
diffuser), respectively.  

Numerical and experimental profiles of the 
streamwise component of the velocity are compared 
in Fig. 14. It is observed that the SST k   model 
largely over-predicts the velocity field inside the 
diffuser, which is consistent with the centreline 
velocity predictions shown in Fig. 9. The other 
turbulence models demonstrate better streamwise 
velocity predictions inside the diffuser. As 
mentioned earlier, the flow entering the diffuser is 
not fully-developed and thus the significant 
differences seen in velocity predictions depends on 
the capability of the turbulence models in 
reproducing the developing boundary layer in the 
straight duct. Fig. 14 reveals that among the 
turbulence models, as expected, the RSM 
turbulence model returns the best predictions for the 
streamwise velocity. In addition, a comparison of 
velocity profiles at the three sections illustrates the 
rapid boundary layer growth along the diffuser 
initiated by the trip (i.e. the mean streamwise 
velocity profile becomes less flat). The streamwise 
velocity predictions of the RSM model are further 
compared in log-scale in Fig. 15 in order to 
investigate the effect of the adverse pressure 
gradient on the boundary layer development. It is 

observed that the linear law of the wall, U y  , 

holds in the viscous sublayer ( 5y  ) regardless of 
the adverse pressure gradient. However, with the 
flow development, the wake region grows both in 
strength and size. Hence, the outer part of the log 
region becomes smaller. The increase in the wake 
component is due to the significant decrease in the 
skin friction along the diffuser. This feature of 
adverse pressure gradient on the fluid velocity 
development has been also reported in the literature 
(see for example Nagano et al., 1993). 

The predicted normal velocity profiles inside the 
diffuser are compared with the measured data in 
Fig. 16. The normal velocity profiles inside the 
diffuser are affected by both the diffuser geometry 
and the secondary flows. Since the first section 
(x=2082 mm) is just before the diffuser, the normal 
velocity distribution is more affected by the 
secondary flow motion. However, in the 
downstream stations the geometry mainly 
influences the normal velocity profile. As expected, 
the normal velocities in the first section are lower 
than those in the downstream stations. As shown 
earlier the eddy viscosity turbulence models fail to 
predict correct turbulence driven secondary flows, 
and as a result they are not able to predict accurate 
normal velocity profiles in the first section. As 
expected the RSM model produces a more accurate 
cross velocity profile in the first station due its 
ability in prediction of turbulence driven secondary 
motion as already shown in Fig. 11. In the two 
downstream sections, the contribution of the 
geometry on the normal velocity distribution 
becomes dominant. Hence, the numerical results of 
different turbulence models are more similar and 
are closer to the experimental data. Nevertheless, 
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the results of RSM model are still in superior 
agreement with the measured data. 

 

 
x=2082 mm 

 

 
x=2357 mm 
 

 
x=2632 mm 

Fig. 14. Streamwise velocity along a vertical 
direction inside the diffuser. 

 

 
Fig. 15. “Law of the wall” plots of RSM model. 

 
x=2082 mm 
 

 
x=2357 mm 

 

 
x=2632 mm 
 

Fig. 16. Normal velocity along vertical direction 
inside the diffuser. 

 
Figure 17 shows comparisons for the streamwise 

normal Reynolds stress ( 2u ) in the diffuser. The 
comparisons show that the eddy-viscosity based 
turbulence models, as expected, significantly under-
estimate the turbulent normal levels. On the other 
hand, the RSM model is able to produce accurate 
predictions for this quantity. The comparison of 
results in the three sections reveals that the 
streamwise normal Reynolds stress develops an 
outer plateau in the presence of an adverse pressure 
gradient. The intensity of this plateau increases in 
the streamwise direction. This property of a 
turbulent boundary layer flow subjected to an 
adverse pressure gradient is more obvious in a 
semi-log plot as shown in Fig. 18. 
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x=2082 mm 

 

 
x=2357 mm 

 

 
x=2632 mm 
 

Fig. 17. Streamwise component of normal 
Reynolds stress along vertical direction inside 

the diffuser. 
 

 
Fig. 18. Streamwise component of the normal 

Reynolds stress for the RSM model. 

 
x=2082 mm 

 

 
x=2357 mm 

 

 
x=2632 mm 
 

Fig. 19. Cross-stream component of normal 
Reynolds stress inside the diffuser. 

 

Comparisons 2v  predictions using various 
turbulence models and experimental data are 
presented in Fig. 19. As can be observed the all 
eddy-viscosity based turbulence models over-

predict 2v levels. As expected, the RSM model 

returned more reliable 2v . Numerical and 
experimental results of shear Reynolds stresses are 
illustrated in Fig. 20. It is seen that the RSM model 
is able to produce acceptable results for the 
turbulent shear Reynolds stress distributions in all 
three locations. It is noted that the k   and 

2v f  models are also yield acceptable results for 
this quantity. 
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x=2082 mm 
 

 
x=2357 mm 

 

 
x=2632 mm 

 

Fig. 20. Shear Reynolds stress along vertical 
direction inside the diffuser. 

 

6. CONCLUSION 

The 3D developing turbulent flow through a 
rectangular asymmetric diffuser with moderate 
adverse pressure gradient was numerically 
investigated and the numerical results of the 
predictions are compared with the LDA data. Such 
calculations are important in hydraulic machinery 
flows, due to importance of adverse pressure 
gradient in these flows. It was observed that the 
developing flow inside the diffuser is significantly 
sensitive to the inlet boundary condition. Therefore, 
the inlet conditions extracted from experimental 

measurements were employed for the numerical 
predictions. Four RANS turbulence models are 
employed for the numerical predictions. The results 
of centerline velocity in the straight duct 
demonstrated the best predictions can be obtained 
using the low-Re k  and RSM turbulence 
models. The SST k   largely overpredicts the 
centerline velocity and boundary layer thickness. 
On the other hand, the RSM model produces most 
precise results for the pressure recovery. It was 
observed that the normal velocity distribution inside 
the diffuser is affected by geometry and secondary 
flows and the RSM model yields the best 
predictions for this quantity due to its anisotropy 
nature. It was further shown that streamwise normal 
Reynolds stress is significantly underestimated by 
the isotropic based turbulence models. These 
turbulence models overpredict the cross-stream 
normal Reynolds stress. In contrast, the RSM model 
produces more precise results for the turbulent 
Reynolds stresses.  
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