
June 2007
Yuming Jiang, ITEM
Arne Lie, Sintef

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Rate Adaptive Video Streaming over
Wireless Networks
Explained & Explored

Torgeir Haukaas

Problem Description

Through the use of the "Evalvid-RA" software package (http://www.item.ntnu.no/~arnelie/Evalvid-
RA.htm), large networks supporting rate adaptive packet video can be simulated on a single
computer. Typically, Internet congestion control mechanisms assume packet loss events are due
to some link capacity contention. When one or more hops are wireless, packet loss events may
have many other reasons. In such cases, the normal source rate control behavior may not be
desirable. This project puts focus on how rate adaptive media will react when run over error prone
wireless links. TFRC (DCCP) and
P-AQM are congestion control methods that Evalvid-RA currently supports. The student may also
suggest modifications to make media transport over such networks more robust. WLAN shall be
modeled using available packet drop modules.

The student must have a computer with ns-2 and Evalvid-RA installed, and some Internet protocol
and programming skills. There exists written detailed background information other than provided
on the web-page.

Assignment given: 17. January 2007
Supervisor: Yuming Jiang, ITEM

Abstract

In the search for improved methods of transporting real time video and VoIP over the Internet,
new rate control mechanisms need to be developed and standardized. Ongoing research in the
field has led to several new protocol suggestions. This thesis covers simulations of rate adaptive
video transfers over wireless networks using one of them, TCP-Friendly Rate Control (TFRC).
It is known that both TCP and TFRC have performance issues in wireless networks because
their rate controllers react to random packet error as if it were congestion. On the other hand,
UDP as used today for many real-time services, endanger the health of the network with unfair
occupation of network resources. Moreover, the shared medium topology of many wireless
networks add significant delay to the data transport. Through the use of ns-2 and Evalvid-RA,
several simulation scenarios have been formed to illustrate how these problems affect real-time
video as perceived by a wireless end user. The simulations illustrate the missing inter- and intra-
flow fairness of UDP, reveal protocol and implementation vulnerabilities of TFRC, and show a
remarkable delay caused by the IEEE 802.11b networks. The thesis also includes a study of past
and current protocol refinement proposals and suggestions to novel re-design. The study reveals
that the variety of proposals form an information stream that is difficult to follow, a scarcity of
problem domain overview and decisive variations in the problem definition.

Preface

This is the master thesis for the degree MSc. in Communications Technology, carried out Spring
2007 at the Department of Telematics (ITEM) at the Norwegian University of Science and Tech-
nology (NTNU) in cooperation with Professor Yuming Jiang and Sintef-researcher and Ph.D.
candidate at ITEM, Arne Lie.

It is a continuation of my Project Report ”Next Generation Internet and support for Stream-
ing Media: Trace driven simulation” from Fall 2006, and it is aimed to go deeper under the
surface of nearly all topics discussed in that report.

The thesis is written to be understandable for a fellow student within the fields of electronics,
networking and computer science. If the reader is interested in the code and scripts used, they
are attached in the back of this document together with a list of abbreviations.

I would like to thank Professor Yuming Jiang for support, and supervisor Arne Lie for in-
valuable help, support and patience during my work.

Contents

1 Introduction 1
1.1 Problem . 2
1.2 Limitations . 3

1.2.1 Scope . 3
1.2.2 Simulator Accuracy . 4

1.3 Related work . 4
1.4 Method and Structure . 5

2 Background 7
2.1 MPEG-4 Video . 7

2.1.1 Uncompressed video . 8
2.1.2 MPEG frame types . 8
2.1.3 Quantization . 9

2.2 Quality Measure: PSNR . 10
2.3 Rate adaptive video . 11
2.4 Simulation environment . 12

2.4.1 Hardware . 12
2.4.2 Operating system . 13
2.4.3 ns-2 . 13
2.4.4 Evalvid-RA . 14
2.4.5 Presentation tools . 16
2.4.6 Other . 16
2.4.7 Scripting and coding languages . 17

2.5 Feedback mechanisms and rate control . 18
2.5.1 DCCP . 18
2.5.2 TFRC . 19
2.5.3 Network intelligence . 21

2.6 Wireless transmission: 802.11 . 25
2.6.1 The 802.11 group . 25
2.6.2 General architecture and specifications . 25
2.6.3 MAC Access procedures and timing . 27

iii

2.6.4 Link stability . 28
2.6.5 Quality of Service enhancement: 802.11e . 30

3 Simulation background and layout 33
3.1 Goal . 33
3.2 Topology . 34
3.3 Simulation controller: 802.11.tcl . 35
3.4 ns-2 modifications . 37
3.5 IO-handling . 37
3.6 Wireless channel . 40
3.7 Scenarios . 41

3.7.1 Case I: Congested wireless link . 41
3.7.2 Case II: Node movement and variable link quality 42
3.7.3 Case III: MAC layer efficiency . 43

4 Results and analysis 45
4.1 Vulnerability . 45
4.2 Scenarios . 47

4.2.1 Case I: Congested wireless link . 47
4.2.2 Case II: Node movement and variable link quality 52
4.2.3 Case III: MAC layer efficiency . 58

4.3 Summary . 61

5 Standards development 63
5.1 Definition: TCP-friendliness . 63
5.2 Network or client intelligence? . 65
5.3 Multiple streams . 66
5.4 Designing from scratch . 68
5.5 Application and cross-layer solutions . 69
5.6 Summary . 71

6 Conclusion 73
6.1 The simulations . 73
6.2 The development . 74
6.3 Yet to come . 74
Bibliography . 77

A List of abbreviations 83

B Shell scripts 87

C AWK scripts 93

D Tcl scripts 97

CHAPTER 1

Introduction

The available hardware and technology for consumers and service providers today allow for ad-
vanced multimedia services over IP-based networks. Hence, the popularity of video and audio
streaming services such as Video-on-Demand (VoD), advanced on-line gaming, and video chat-
ting and conferences are increasing. The demand for resource efficiency and robustness in the
network follows. The current commercially available data transfer technology for streaming me-
dia does not adjust well to the best effort heterogeneous Internet architecture, and QoS demands
are impossible to guarantee. A central problem with this development is that the Internet itself
is extremely dynamic and unpredictable, while the real-time services we want to lay on top of it
demand stable conditions for constant and uninterrupted throughput.

It is not only the demand for QoS that increases. As CPU and memory get physically smaller
and more efficient, the number of applications that can be run on small devices increases as well.
With this new flora of handheld computers, PDAs and cell phones, the wish for terminal mobility
and easy wireless access to the same advanced services follows. Now, while the Internet itself
has unpredictable throughput, the wireless access networks add even more uncertainty to the
QoS-possibilities.

Most Internet based VoD services today rely on pre-compressed media, allowing consumers
to choose between two or three different qualities to fit the given end to end connection (fig.
1.1(a)). For video conferencing and live streaming, the media is compressed on the fly, but the
compression rate is normally controlled by an offline codec. This means that the video codec has
no direct contact with the network and transport layer, where the actual transmission status is
found. Thus, these approaches do not fully utilize the available resources at any given time and
they might not provide the chosen quality during the entire session because of sudden changes in
the network load somewhere along the path. With an online codec solution, the communicating
parties of a multimedia transfer could adopt to the network state at any given time in the session.
This is extra desirable for a mobile terminal which has a constantly changing radio coverage,
or for a system that supports session-mobility, allowing the user to change terminal equipment

1

2 CHAPTER 1. INTRODUCTION

(a) Today

(b) Tomorrow

Figure 1.1 Typical streaming service with (b) and without (a) congestion feeback.

without interrupting or restarting an ongoing session. Figure 1.1(b) illustrates the concept behind
a solution based on continuous network feedback upstream from the client to the media server.

1.1 Problem

In the development of robust, scalable and intelligent new technologies for multimedia transfer
over present and future wireless IP-networks, many concerns need to be taken into account. As
will be further discussed in chapter 5, the solutions can be found by improvements in many
levels of the ISO stack, or by novel protocol design. The challenges include:

• Calculating desired rates from current status and collected statistics.

• Transporting network feedback to the sender.

• Interpreting the feedback and notifying the transmitting application.

• Scaling the multimedia output rate from the sender.

• Providing stable transmission conditions for mobile users.

• Minimizing delay and jitter for real-time applications.

• Staying fair to concurrent traffic on the link.

• Differentiating between congestion loss and link error loss.

All of the challenges above have been addressed by separate research groups around the world,
but where one solution is brilliant in the aspect discussed in that study, it fails to solve problems
discussed in another. This thesis aims to summarize the problems found and the suggested
solutions, and to account for the complexity of multimedia streaming over wireless networks. An

1.2. LIMITATIONS 3

Figure 1.2 The combination of these three technologies is the essence of the problem domain.

extensive part of the thesis is used to explain how the technologies can be tested with simulations.
Illustrations of the features and problems of current and new technologies will be presented
through the described simulation framework.

1.2 Limitations

The topic of this thesis touches all protocol layers involved in a video streaming service. How-
ever, the presented simulation, status summary and analysis have limitations both in scope and
possibilities.

1.2.1 Scope

The methods, mechanisms and protocols that are presented, tested and analyzed are discussed
given the need and demand for a set of services with a certain quality. How the services are
built up, and how the technology will and can be used in different scenarios and settings, is
mentioned but not emphasized any further. The focus of this work is mainly on the transport and
MAC layers of the protocol stack, and does not prioritize details from the physical or application
layers.

The cost-efficiency of each technology in real-life implementation and business-related top-
ics such as time to market, commercial support, industry cooperation and market potential,
which are fundamental for a thourough understanding of a standard development process, are
left for future studies.

The thesis seeks to enlighten the technological possibilities in terms of quality and perfor-
mance, but an important factor such as security is left out of the scope. For every new product
and service intended for online use today, security is a big concern that may be regarded as a part
of the total QoS. Understanding topics such as service authentication, authorization and confi-
dentiality, and how current technology in this field can be integrated with new media transport
without breaking their performance and intention, is very important. Without this knowledge,

4 CHAPTER 1. INTRODUCTION

technology that can replace today’s well-established protocol stack (or parts of it) may not suc-
ceed.

1.2.2 Simulator Accuracy

A significant part of this thesis is the preparation and the simulation of video streaming with
TFRC over a wireless network link. The ns-2 simulation environment, as described in section
2.4.3, is a complex mixture of code languages and application program interfaces (APIs). It’s
manual [1] is extensive but the content is partially outdated or inadequate1. The user interface to
set up and control a ns-2 simulation is the Tcl scripting language (described in 2.4.7). However,
to understand how the different parameters are set and how they work, the user is often forced
to read the C++ source code due to the lack of sufficient documentation.

Many standard simulator functions can be learned in practice by reading and using Tcl-
example files that are bundled with the ns-2 simulator. Alas, the quality and correctness of these
scripts does not seem to have been thoroughly evaluated in all cases2. The user can often observe
the simulator to crash because of bad parameter settings or input/output problems. Errors are
seldom caught in a proper manner, and the user is not always informed what caused the error.

The mentioned complexity, improper documentation and scripts combined with untidy and
experimental source code, gives the ns-2 simulator an advanced entry-level for students, scien-
tists or other users. In the work presented in chapter 3, ns-2 add-ons are used to enable video
trace simulations. This code is not widely used and tested, and is known to be highly experi-
mental. One consequence of these factors is that it is time consuming to get a simple simulation
running, but a more severe consequence is that it is very difficult for the user to ensure that
obtained results are correct.

In [2] three different simulator environments, including ns-2, are used to simulate a simple
mobile ad-hoc network. The paper concludes that the results differed both quantitatively and
qualitatively to such an extent that the results from one single simulation environment does not
have the credibility needed in serious science and development. Allthough this does not directly
imply that ns-2 is inaccurate, it is a reminder that only real-life use and realistic testing can prove
the functionalities or dysfunctionalities of new technology. In the light of all the above, it is not
guaranteed that the results presented in this thesis are 100 % correct. In sections 2.4.3, 3.4, 3.6
and 4.1, the functionality, use and bugs of ns-2 will be further discussed.

1.3 Related work

The Internet research community is trying to find the best way to improve the quality and avail-
ability of video streaming services. One central topic for discussion is the differing operation
of TCP and UDP traffic in the IP networks. The differences in their ways of adjusting to router
congestion can result in situations where UDP traffic dominates the use of router resources since

1paragraphs like this can be found in the middle of the text: “but why/where is this information used??-answer
awaited from CMU.”

2comments like this can be found in the embedded scripts: “Poor hack. What should we do without a link
object??”

1.4. METHOD AND STRUCTURE 5

it does not adjust the transmission rate automatically according to the given conditions. In [3],
Floyd and Fall promotes the research on and use of protocols with congestion control. They
introduce the term “TCP-friendliness” (which will be further discussed in section 5.1) and, as
the article title says, promote “the use of end-to-end congestion control in the Internet”. The re-
search effort has led to several suggestions to new congestion control mechanisms such as VBR
over ATM ABR services [4], RAP [5], MPEG-TFRCP [6], LDA+ [7] and P-AQM+ECF [8], the
latter being a NTNU proprietary protocol. Among the suggestions, TCP-Friendly Rate Control
(TFRC) [9] has gained most attention and become a IETF standard that is intended to be used
together with Datagram Congestion Control Protocol (DCCP, see section 2.5).

In [10] and [11], Evalvid, a framework for quality evaluation of streaming video is presented
and tested. In [12] this framework (now called Evalvid-RA) is extended to work with rate
adaptive video and with network and transport protocols based on transmission feedback from
the client or the network. In [13], which is a pre-study to this master thesis, the Evalvid-RA
framework is tested over an erroneous link simulated by a simple stochastic packet dropping
mechanism. The results from the latter study show that the TFRC has performance problems
when the link has random losses. This motivates for further study of TFRC over a more realistic
wireless interface; The IEEE 802.11 MAC wireless protocol.

TFRC is designed with a rate adoption very similar to the one in TCP in order to be TCP-
Friendly. In many studies such as [14], [15] and [16], the performance issues of TCP in wireless
scenarios with random packet losses are discussed. The studies in this field has led to several
suggestions to improved congestion control in TCP (i.e. TCP Westwood [17]). It is natural to
assume that TFRC suffers from the same problems as TCP in the presence of wireless random
errors.

A further discussion and analysis of related work, which is a central part of this thesis, can
be found in Chapter 5.

1.4 Method and Structure

As seen in 1.1 and 1.3 above, there are many past and ongoing studies on the challenges re-
garding real time multimedia transport and QoS in wireless networks. This thesis will address
some of these problems. While the TFRC protocol mainly has been tested and simulated over
wired networks, this thesis presents simulation results over a realistic wireless access network.
The Evalvid-RA framework is used to show realistic simulations of variable bit rate (VBR)
video transfer. While many other studies have throughput and packet loss as the main evalua-
tion criteria, this thesis uses measurements from the transferred and decoded video as evaluation
criteria to see how the losses and rate adjustments affect it in practice. The simulations based
on a combination of video trace driven simulation with rate adaptive video, transport protocols
with congestion feedback and 802.11 wireless networks (fig. 1.2), results in the first out of two
main contributions of this thesis. The simulations presented, is mainly intended to illustrate
the benefits and disadvantages of TFRC compared to TCP and UDP in a realistic environment.
The second main contribution is the analysis and comparison of different approaches and works
surrounding the field of video transfer and QoS in wireless networks.

The work presented in this thesis consists of four main parts. In Chapter 2, some background

6 CHAPTER 1. INTRODUCTION

information and relevant theory is gathered to ease the understanding of the following discus-
sion. The environment, coding languages, codecs and protocols used in the practical work are
described. The reader will also find relevant theory to the discussion on standard development in
Chapter 5. In Chapter 3, the implementation and simulation setup is described for three different
scenarios, while their results and analysis are found in Chapter 4. In Chapter 5, the problems,
solutions, barriers, possibilities and trade-offs of different novel technologies in the domain are
presented, before the thesis is summed up with the conclusions in Chapter 6.

CHAPTER 2

Background

In this section, background information on used tools, languages and theory will be presented. It
is a brief overview, explaining only the terms that are used in this thesis and the technology and
environment used in the simulations. Some of the sections in this chapter contain simulation
specific background information, whilst others are background theory for the discussions in
Chapter 5. The level of detail is sufficient to understand the further discussion without the need
of pre-studies.

2.1 MPEG-4 Video

MPEG-4 video compression, as defined by the ISO/IEC Moving Picture Experts Group, is a
standard for compressing and decompressing digital video aimed for distribution over media
with limited bandwidth. The MPEG-4 standard suite includes 23 parts describing different
aspects of multimedia compression and transfer. For instance, part 3 defines how to compress
and encode audio to AAC-streams, and part 12, 14 and 15 describe the file and container formats.
However, only two of the 23 parts describe how the raw video is encoded into a compressed data-
stream suitable for network transfer. These are part 2 and part 10. The latter describes the newest
and most advanced codec, namely Advanced Video Coding (AVC), often referred to as H.2641.
The former is the one most commonly referred to as ”MPEG-4 video”. This is a coding scheme
with several different profiles, where the most normal are Simple Profile and Advanced Simple
Profile (ASP). In the rest of this document, the term MPEG-4 will refer to the standardized
MPEG-4 part 2 ASP.

1In fact, the MPEG-4 part 10 does not describe H.264, but it is technically identical to H.264 which is defined by
ITU-T

7

8 CHAPTER 2. BACKGROUND

2.1.1 Uncompressed video

Raw video consists of a series of digital photos, each of them consisting of a grid of pixels (e.g.
CIF 352x288 pixels). Each pixel is represented with three values of typically one byte each in
the RGB format, which enables presentation of 256 intensities of each hue. Uncompressed, this
produces a bit-stream that is impractical to store, process and distribute over normal available
computers and network equipment due to its size. The following example shows the calculated
size of one minute of CIF RGB video:

3colors×1 byte/color× (352×288 pixels)×25 fps×60 seconds/minute = 435 MB/minute

A more space efficient alternative to storing a video with three full colors, is to store it
in the YUV format. This format models the human perception of color better. It stores the
luminance and chrominance in different layers (given by Y, Cb and Cr in digital systems). Since
the luminance is easier percepted by the human eye than chrominance, the latter need not be
stored with equal resolution. Typical YUV subsampling schemes is YUV 4:2:0 and YUV 4:1:1.
This notation indicates varying ways to arrange the chrominance and luminance layers in each
frame. With both of these schemes, the number of bits needed for each pixel is reduced from 24
(RGB: 3x8) to 12. The uncompressed original and reconstructed videos in this work are in YUV
4:2:0 format. The size reduction introduced by YUV compared to RGB, which is of factor two,
is not enough to make a video stream easy to handle for computers and networks. The video
compression used in this project is described in the following.

2.1.2 MPEG frame types

With MPEG-compressing, none of the pictures in the raw-stream are stored or sent in its original
form. Typically, the series of pictures or frames are divided into Groups Of Pictures (GOPs, see
figure 2.1). The frames are then coded in various ways within each GOP. There are normally
three types of frames in a MPEG GOP:

Intra coded frames (I) These are coded as single frames as in JPEG. They do not have refer-
ences to any other frames and are relatively large.

Predictive coded frames (P) Are coded as the difference from a motion compensated predic-
tion frame2, generated from an earlier I-frame in the GOP. They are typically smaller than
the I-frames, but bigger than the B-frames.

Bi-directional coded frames (B) Are coded as the difference from a bi-directionally interpo-
lated frame, generated with motion compensation from earlier and later I or P frames in
the sequence. B-frames are typically smaller than both I and P-frames.

The most important thing to note about this structure when talking about Quality of Service,
is the fact that the I-frames are much more important to the quality of the video than the P-frames,
which in turn are more important than the B-frames. Now, if a I-frame is lost during transmission

2Motion compensation basically means that instead of storing pixel-values, the difference vector from a reference
frame is stored

2.1. MPEG-4 VIDEO 9

Figure 2.1 A typical MPEG GOP [18]

due to congestion or erroneous links, the impact on the result is big. However, smart decoders
are able to reconstruct a usable image even if one or several packets from one frame is lost as
long as the packet containing the frame header is received. The number of packets needed to
transfer one frame depends on the ratio between frame-size and the packet transfer unit size,
called Maximum Transfer Unit (MTU). The overall result can be seen on measures such as the
Peak Signal-to-Noise ratio (PSNR, see section 2.2), Mean Opinion Score (MOS) or simply by
watching the video in a MPEG-compatible player3.

2.1.3 Quantization

The image compression of an I-frame is very similar to that of a JPEG-image. The image is split
into smaller blocks (of e.g. 8x8 pixels), processed in a discrete cosine transform, quantized and
entropy encoded. The quantization process is the one introducing the loss to the image quality
in the encoding process. Hence, in addition to resolution and frame-rate (frames per second,
fps), the number of quantization levels is the best indicator of the total bit-stream and the quality
of the resulting compressed video. In fact, the quantization parameter is often referred to as a
quality-parameter. The encoding of P- and B-frames, which include both JPEG-like encoding
and motion prediction, is often referred to as a hybrid encoding (figure 2.2).

After the discrete cosine transform (DCT), each block of each layer Y, U and V of a frame
can be represented in the frequency domain as a coefficient matrix. In the quantization process,
each of these coefficients get divided by a quantization factor given in a quantization matrix. This
matrix is predefined based on a quantization parameter, and ordered so that the least significant
coefficients are reduced more than the most significant coefficients. In this way, the data that is
most frequent in the frame gets the highest degree of detail, or depth, while other components
are compressed harder. This process is not reversible (the data can not be 100 % restored),
hence causing direct quality loss to the compressed data. However, with intelligent design of the
quantization matrices, the sensibility of a human eye can be taken into account so that the loss
is minimized [20].

3VideoLAN Client (VLC) is used for viewing compressed video in this work

10 CHAPTER 2. BACKGROUND

Figure 2.2 Basic block diagram of a MPEG-4 video encoder [19]

2.2 Quality Measure: PSNR

To measure the quality of a network service for video streaming, it is not sufficient to look at
classical QoS terms such as jitter, delay and throughput. The way a video sequence is encoded
with different frame types, and how it is split into smaller packets, results in a variable bit rate
stream4 where it is not irrelevant which packets that are lost. So the loss patterns of a congested
router or an erroneous link can result in different video qualities for the same average loss rate.
In the end, it is the perceived quality impression of the user that counts. Both subjective and
objective approaches to quality measurements exists, but where subjective methods are expen-
sive and requires much resources, objective measurement with the Peak Signal-to-Noise Ratio
(PSNR) can be automated and simple [11].

To quantify the observed losses from compression, decompression and transfer of a video,
a PSNR value can be calculated for the given video sequence. This value is the ratio between
the maximum power of the original signal (data from the original video) and the power of the
interfering noise that is introduced in the process. Because the signal quality can have a very
wide dynamic range, the PSNR values are normally given in a logarithmic decibel scale.

The PSNR values used in this work, are calculated as the mean of the PSNR values for each
frame in the video sequence. The PSNR for one frame is calculated by comparison with the
respective original frame. First, the Mean Square Error (MSE) between each layer Y, Cr or Cb5

is calculated as

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)−K(i, j)]2 (2.1)

4The term Constant Bit Rate (CBR) means that the rate is held constant over time, but will normally have bitrate
peaks for each I-frame.

5Allmost all quality assessment studies that use PSNR, only calculate on the luminance layer (Y) since it is the
most relevant to the quality perception[11].

2.3. RATE ADAPTIVE VIDEO 11

where I and K are frame layers with resolution m×n. Then the PSNR is defined as

PSNR = 20log10

(
MAXI√

MSE

)
(2.2)

where MAXI is the maximum allowed pixel value. The PSNR introduced by a hybrid coder is
normally in the range 30 to 40 dB when providing good image or video quality. Values below 30
dB are not necessarily satisfactory (depending on the range of application), while values below
20dB represent garbled results ([21], [20]).

2.3 Rate adaptive video

Today, a normal real-time video streaming service will provide the viewer with several different
quality choices as parallel unicast streams. Often, the streaming server will perform some prob-
ing or end-to-end bandwidth check to be able to suggest a suitable bit-rate for the user. This is
not a very elegant approach to the challenge of serving all kinds of users, whether it is a user
with optical fiber access or a user with a 3G mobile phone, nor is it suitable for a mobile user
who has constantly changing signal strength and bandwidth.

This thesis aims to investigate the robustness of the suggested transport protocols for rate
adaptive video. The concept of rate adaptiveness is this: When a video is streamed real-time
from a server to a client, the network capacity is reported back to the server continuously. Since
it is a real-time service, the server can not simply adjust the bit-rate from its outgoing buffer,
as this will break the continuity at the client side if the sent rate is lower than the rate of the
compressed video. Therefore, rate adaptive transmitters adjust the quality of the video encoding
directly instead, thus providing optimal streaming bit rate and full network utilization at any
time.

The quality and bit rate of a video transmission can change upon adjustment of several
different encoding parameters. These can be the number of frames per second, the frame size
or the quantization used in the compression process. Which of these parameters that affect the
quality of the resulting video the most depends on subjective measures, the purpose and content
of the video and the display on which it is shown. In the Evalvid-RA framework used in this
thesis, the network feedback affects the quantization parameter of the compression to adjust the
transmitting rate. How this is done is explained in section 2.5.2 and 4.1.

A simplified version of the simulated architecture is given in figure 2.3. It illustrates that
several compression qualities are available on the streaming server. These can be available as
pre-compressed versions in the server storage, or they can be compressed on the fly with a real-
time encoder that supports dynamically changing quality parameters. To store the full range
of compression alternatives with the quantization parameter altering from 2 to above 30, some
six times the storage space is required compared to only storing the best quality. In a real life
implementation, a reduction of the number of quantization steps is more probable. In the case of
live streaming, storing the video on disc is not an option since the video should not be buffered
more than absolutely necessary. However, when serving Video-on-Demand, it is a trade-off
between CPU-usage and storage space on the server(s)6. The Evalvid-RA framework is thus

6Further discussion of services and implementation issues are out of the scope of this thesis.

12 CHAPTER 2. BACKGROUND

Figure 2.3 The server can provide several compression qualities simultaneously, and decides which one to
serve the client based on congestion feedback. The rate indicated in the illustration, is the average bitrate for
each quantization level.

mainly constructed to simulate live encoding.

2.4 Simulation environment

Testing of new transfer protocols in real networks would require big investments in design and
implementation of new router software, in many cases even hardware. Additionally, one would
need sufficient equipment with multiple sources of different types to support realistic big-scale
end-to-end cases for heterogeneous networks. Since this is equipment that might crash during
tests, this must be done on a separate network without any commercial or important traffic.
These demands, among others, make real testing with physical data transfer too costly for most
research institutions, at least in the early phases of development.

A local simulation environment enables the researcher to build customized fictive networks
at a low cost. The simulations in this study are carried out on a single standard computer without
any special hardware or costly software. The details are explained in this section.

2.4.1 Hardware

The only necessary hardware is a normal modern computer.
Description of the computer used:

• Fujitsu Siemens Computers S-Series Lifebook

• 1.8 GHz Intel Centrino CPU

• 1536 MB DDR RAM (512 MB sufficient)

• 64 MB Graphical memory (not necessary)

• 80 GB harddisc

It is worth mentioning here that if the rebuilt videos from all iterations of cases shall be kept
for visual inspection and further analysis, several gigabytes of free space might be necessary. In
this study, a YUV-file of 32.7 MB was used. The sum of all tracefiles, mp4-files and recreated
YUV-files for all simulation cases sum up to 6.4 GB.

2.4. SIMULATION ENVIRONMENT 13

2.4.2 Operating system

Most of the simulation tools described below are parts of open source projects compiled on
Unix-like machines using classical Unix development tools. However, they are successfully
compiled and used on other platforms as well.

Description of the platform used:

• Kubuntu 7.04 (Feisty Fawn)

• Linux kernel 2.6.20-15 (for i586 architecture)

• Compilators: gcc / c++ 4.1.2

• C-library 2.4

• X-window system (for graphical output and video inspection): KDE 3.5.6

2.4.3 ns-2

The most central part of the simulation environment is the network simulator itself, ns-2 [1].
It is a discrete event based simulator supporting simulation of TCP/IP, multicast and unicast,
wired and wireless networks, several routing protocols and more. It is a tool developed by the
VINT-project [22], released as open source for any researcher to modify to own needs.

ns-2 is an object oriented simulator build on Otcl7 and C++. The program is constructed with
a C++ class hierarchy and a corresponding class hierarchy in OTcl. The Otcl is a front end that
enables the user to combine the different C++-implemented objects and do function-calls from
Tcl. The protocols and tools available to the user is made available from OTcl and instantiated
with C++-classes. Due to this dependency, protocol design or bigger design changes must be
done in both languages. ns-2 is build with two languages to support speed in data treatment at
run-time (C++) as well as easy and fast re-configuration of parameters and settings without the
need of recompilation (OTcl) [1].

The ns-software has some package-dependabilities, but all packages may be installed from
a bundle containing 8:

• ns-2.30

• nam-1.12 (see chapter 2.4.5)

• xgraph-12.1 (see chapter 2.4.5)

• tcl 8.4.13 (see chapter 2.4.7)

• tk8.4.13

• otcl-1.12
7Object oriented Tcl. Tcl is pronounced ”tickle”, often referred to together with the Tk GUI-toolkit: Tcl/Tk.
8for current latest stable build

14 CHAPTER 2. BACKGROUND

• tclcl-1.18

• gt-itm (Georgia Tech Internetwork Topology Models)

2.4.4 Evalvid-RA

As mentioned, researchers can modify ns-2 code, or add new modules to it. One addition that
is needed for these simulations, is the Evalvid-RA package [12]. This package enables simula-
tion of rate adaptive multimedia transfer based upon tracefile generation of MPEG video. This
means that instead of using the real binary multimedia content, which is resource demanding
and time consuming, the simulation runs with tracefiles generated from the media files before-
hand. A typical tracefile holds information on frame number, frame type, size, fragmentation
into segments and timing for each video frame. While running, ns-2 can keep track of the timing
and throughput of packets at each node including the receiver. With this information and the
original compressed videofile, Evalvid-RA can rebuild the video the way it would have been
received on a real network. The obvious benefit of this is that one can play the video and inspect
the result visually. Additionally, the total noise introduced by compressing and transferring the
video (measured in dB PSNR, see 2.2) and Mean Opinion Score can now be calculated.

Evalvid-RA is a branch of the open source tool EvalVid, invented by J. Klaue [11]. The
addition to the original is made by Arne Lie [12] and consists of functionality for rate adap-
tive video, including support for congestion feedback mechanisms such as TCP-Friendly Rate
Control (TFRC) [9]. The use of the tool-set is illustrated in figure 2.4.

Figure 2.4 The pre-process, simulation and post-process of the Evalvid-RA framework.[12]

The Evalvid-RA tool-set includes several smaller programs, namely mp4, et ra, fixyuv ra

2.4. SIMULATION ENVIRONMENT 15

and psnr. A short description of each one of them follows.

mp4 is a program used in the pre-process to generate tracefiles including information about
each frame in the video. See first GOP of the reference video in code snippet 1.

et ra (Evaluate Traces - Rate Adaptive) is a program that performs the actual calculation of jitter
and packet-loss. Further, it combines the data from input (one mp4-file and one tracefile
for each compression level) and output (packet-arrival statistics from the ns-simulation)
to form a resulting m4v-video. Due to complication with the decompressor (ffmpeg),
this program is tuned to work in frame-mode. That means that if the tracefile contains
information about one lost packet, the entire frame the packet belongs to is considered
lost (more about this in section 4.2.2).

fixyuv ra is a program that fixes broken parts of the received video. This is necessary because
the resulting sequence must be of equal length as the original sequence for objective over-
all quality-measures. Fixyuv detects missing frames, and duplicates last received frame
until new frames arrive (i.e. until the received video is synchronized with the original).

psnr is the last program being used in the simulation and calculation sequence in this thesis.
It takes the original YUV-sequence as input and compares it to the recovered and fixed
YUV-sequence obtained at the receiver.

For an example of how these tools can be combined, which parameters they take and give, see
3.5, and how everything can be triggered from a shell-script, see Appendix B.

Code Snippet 1 The first 13 frames indicated in a video trace file. The columns are: Frame number, frame-type
(H for header), frame size, number of segments (i.e. number of packets for that frame) and offset from start of video
(B-frames are not used by FFmpeg in this compression).

0 H 52 1 segm a t 0 ms
1 I 9209 10 segm a t 0 ms
2 P 3411 4 segm a t 0 ms
3 P 3992 4 segm a t 0 ms
4 P 3827 4 segm a t 1 ms
5 P 4251 5 segm a t 1 ms
6 P 3817 4 segm a t 1 ms
7 P 4207 5 segm a t 1 ms
8 P 4121 5 segm a t 1 ms
9 P 4057 5 segm a t 2 ms
10 P 4095 5 segm a t 2 ms
11 P 4071 5 segm a t 2 ms
12 P 3994 4 segm a t 2 ms

16 CHAPTER 2. BACKGROUND

2.4.5 Presentation tools

To analyze the results of a simulation, tools for graphical presentation often make the output
more understandable. In this project, the tools xgraph and nam where used both to present the
final results as well as to check correctness of coding and scripting in the development progress.

Xgraph is a simple tool to draw a graph based on text-files with data. It is very useful to
indicate for instance if a newly implemented protocol or simulation function works or not (see
figure 2.5).

Figure 2.5 An example showing the throughput from a TFRC source (green) and a TCP source (red) at a
mobile node using 802.11 wireless interface.

The Network Animator (nam) is a tool that is tightly coupled with ns-2 to display the trans-
mission of packets in the chosen network architecture. It is capable of drawing all the nodes and
lines that are set up, and animates how the packets flow through the given topology. It can also
track a specific packet end-to-end, display link throughput and give further pinpoints to the net-
work performance in terms of routing-delay, packet drops, congestion and more. Unfortunately,
it lacks the capability of tracing the packet in a wireless zone. In the simulations performed in
this work, the packet can be tracked from the server to the base-station, but to see that the packet
arrives to the correct wireless client, the tracefiles must be investigated.

2.4.6 Other

The list of software and tools is long, and in addition to the mentioned software that comes
included with ns-2 and Evalvid-RA, two additional tools where used to run the complete simu-
lation in this study. These tools are FFmpeg and mp4creator. For raw video inspection, VidView
was used.

Mp4creator is a program from the MPEG4IP-project, a open source project aimed to provide
a fully open and standards based solution for video streaming applications. In this work has
been used to convert the output from et ra, a m4v-file, to a playable mp4-file. Mp4creator adds
metadata and header information, called a media container, so that a video player can read the
necessary parameters for correct play back.

2.4. SIMULATION ENVIRONMENT 17

FFmpeg is ”a complete solution to record, convert and stream audio and video” [23]. It
is a free program mainly intended for Unix-like platforms to compress and decompress video
and audio in several formats. These include open standards such as H.264 and closed propri-
etary codec-formats such as Windows Media Video (wmv). In this thesis it is the chosen codec
implementation and it is used to convert a binary YUV-sequence into mp4-files with the given
quantizations (described in 2.1) in the pre-process. In the post-process, FFmpeg decodes the
reassembled mp4-file into a sequence of YUV-images.

Sometimes, the calculated PSNR-numbers can not tell the entire truth about the video qual-
ity. For example, one video might have excellent resolution and low quantization but has lots
of dropped frames, while another video is harder compressed but with a lower amount of frame
drops. These two videos have very different characteristics, and the user preferences here are
subjective. To be able to tell the difference, and to inspect the effects of compression and trans-
fer visually, the program VidView is excellent. This tool can read YUV videos and compare two
instances in parallel. It enables inspection of the differences between the videos by showing
only the delta values of the degraded version, and separation into the layers Y, Cr and Cb.

2.4.7 Scripting and coding languages

To be able to understand the mechanisms of ns-2, several programming-languages need to be
understood. The ns-2 software is build with both C++ and object oriented Tcl code (OTcl).
To make simple scripts and topologies with well documented standard protocols, a basic un-
derstanding of Tcl is sufficient. However, once the goal is to simulate with protocols in the
development stage, editing of both Tcl/OTcl and the relevant C++-object instantiations might be
necessary.

To run Evalvid-RA with ns-2, the latter needs to be recompiled together with some new
source code. Evalvid-RA introduces changes in the ns-2 TFRC-objects, the objects agent,
packet and scheduler in addition to a set of new objects. The Evalvid-RA package also
includes a Tcl-script that acts as a topology- framework for generation of both TCP and UDP
streams, as well as treatment of trace files for the video streaming study. The methods, syntax
and semantics found in this example script has been used as a basis for constructing a new Tcl-
script to define the topology and components used in the simulations described in Chapter 3, and
a copy can be found in appendix D.

If a special printout of data is wanted, the AWK general purpose computer language can be
used. It is a scripting language that is designed for processing text-based data, either in files or
data streams. In this thesis, AWK has been used to gather relevant data-fields from the program
execution output, to print these data to new text-files and to make computations for correct results
that can be presented with xgraph.

The simulation process and the iterations of it is coupled together with shell-scripts. These
are basically collections of Unix/Linux bash shell commands, with the addition that they allow
variables to be stored temporarily. All the shell-scripts used in this project are given in appendix
B.

18 CHAPTER 2. BACKGROUND

2.5 Feedback mechanisms and rate control

In this work, the flexibility and adaptivity issues of multimedia flows in the Internet are dis-
cussed and analyzed. Today’s client, server and router software mainly support two branches
of transport protocol types; TCP and UDP. The TCP protocol was originally designed to of-
fer a reliable connection oriented transmission (RFC 793 from 1981), where the sender gets all
data acknowledged before the session ends. Since router congestion causes packet drops and
forces TCP retransmissions, the TCP-designers added rate controlling mechanisms (RFC 1122
from 1989 and RFC 2581 from 1999). With the development over the years, the rate controlling
mechanisms have been modified and improved in several suggestions, and with the enormous
popularity of Internet services, the importance of a fair and correct rate controller is greater than
ever. Some of the TCP improvements include TCP Vegas, TCP Westwood[17], High Speed TCP
and Fast TCP. These studies are interesting in this context because of one big challenge for TCP-
traffic: How to separate congestion loss in wired links from sporadic packet loss in erroneous
wireless links?

The solutions chosen for this problem in the future TCP version is important to the remaining
Internet traffic because of the need for inter-flow fairness. The UDP protocol is believed to be
phased out and replaced by a more refined and intelligent protocol with throughput feedback
and rate control for multimedia useage [24]. In other words, the future rate controllers for
real-time traffic should be developed in corelation to the future TCP rate control in order to be
TCP-friendly.

In this section, the needed background information to understand the simulations is pre-
sented. More about the different approaches to defining a new real-time protocol standard and
an analysis of some suggestions can be found in Chapter 5.

2.5.1 DCCP

As mentioned earlier, the Datagram Congestion Control Protocol is a IETF standardized un-
reliable transport protocol with end-to-end congestion control. It is intended for use with ap-
plications such as streaming media or on-line gaming, where the real-time constraint is most
important and packet retransmissions are uninteresting.

The UDP protocol was originally designed for short request-response transfers, such as DNS
and SNMP, where the TCP handshake routines are unnecessary overhead. With the use and
popularity of applications such as radio-streaming, IP-TV, VoIP and massive multiplayer online
games, the dominant UDP-traffic pattern in the Internet has moved from short-lived and small to
long-lived and massive. The observed growth of these inelastic flows is feared to pose a threat to
the health of the Internet, despite the fact that some applications implement their own congestion
control mechanisms. DCCP is planned to be the Internet savior in this context because of the
following [24]:

• Avoiding congestion collapse by introducing congestion control on unreliable flows.

• Defining a standard solution for reliable congestion feedback and congestion parameter
negotiation for unreliable flows.

2.5. FEEDBACK MECHANISMS AND RATE CONTROL 19

• Implementing a standard usage of Explicit Congestion Notification (ECN, see section
2.5.3).

• Providing a pre-defined and easy to use TCP-Friendly congestion control.

• Allowing easier NAT- and firewall-traversal.

• Providing low per-packet byte overhead.

• Maintaining the properties that makes UDP so much used:

– Low start-up delay compared to TCP three-way handshake.

– Statelessness.

– Prioritizing timely data arrival instead of reliable arrival.

All of the above should be beneficial arguments for application developers if a common standard
protocol is available and enabled in network and consumer equipment, since they remove the
congestion control “burden” from the application layer and the developer.

The DCCP protocol as such is not used in the simulations presented here. However, the
DCCP standard defines several sets of congestion control mechanisms, each of whom are iden-
tified by a Congestion Control Identifier (CCID). To determine which congestion control to use,
the server and client negotiate at connection setup or possibly thereafter by exchanging CCIDs.
They can request to change congestion control mechanism during the connection, and different
choices can be prioritized by listing CCIDs in datagram header. As of 2006 and DCCP standard
document RFC4340 [25], only two types of congestion control are defined:

• CCID 2: TCP-like Congestion Control

• CCID 3: TCP-Friendly Congestion Control

The CCIDs 0-1 and 4-255 are reserved for other and future congestion control mechanisms.
DCCP requires that any implementation supports at least CCID 2, but for multimedia transfer,
CCID 3 is likely to be more popular. Therefore, CCID 3, TFRC, is used in the simulations
presented here. TFRC is described in the next section.

2.5.2 TFRC

UDP is often referred to as ”greedy” because it has no congestion control mechanism, thus trans-
mitting at a given pre-defined rate even though the path might be congested. This greedy nature
of UDP will in competition with TCP traffic let the latter suffer because it reacts to returned
network load parameters such as round-trip-time and packet loss probability by adjusting its
transmission rate accordingly [6].

To make sure that a certain degree of traffic fairness is obtained in the network, the definition
for TCP-friendliness must be met: ”A non-TCP connection should receive the same share of
bandwidth as a TCP connection if they traverse the same path”[26], [3].

TCP-Friendly Rate Control (TFRC) is a young protocol, first standardized by IETF in 2003
with RFC 3448 [9] and in 2006 included in the Datagram Congestion Control Protocol (DCCP).

20 CHAPTER 2. BACKGROUND

It is described as the DCCP Congestion Control ID 3 (CCID 3) in RFC 4342 [27]. The protocol
operates on unicast flows in a best effort Internet environment. It generates bit rates compara-
ble to TCP connections on the same link, but with smoother transmission rate transitions than
TCP has. Therefore, it is specially apt for applications that require smooth streams, like video
conferences or other streaming media [9]. TFRC works according to the following four general
steps:

1. Loss events are measured at the receiver and sent back to the sender.

2. The sender calculates round-trip-time (RTT) based on the feedback.

3. The loss event rate (from receiver) and calculated RTT is used as input for calculation of
a new transmission rate.

4. The sender adjusts the rate accordingly.

The new transmission rate is calculated using the TCP throughput equation:

X =
s

R×
√

2×b× 3
p + t RTO×3×

√
3×b× p

8 × p× (1+32× p2)
(2.3)

Where X is the new rate, s is the packet size (bytes), R is RTT (seconds), p is loss event rate,
t RTO is the TCP retransmission timeout (seconds) and b is the number of packets acknowledged
in one feedback packet. A feedback timer at the sender controls when the rate should be adjusted
if no feedback is reported.

The TFRC specification does not detail the content and set up of data transport, as it is meant
to work alongside different types of transport protocols. However, some general requirements
need to be met, i.e. sequence numbers, timestamps and a timestamp estimate. With the Evalvid-
RA framework, it is possible to simulate pure TFRC transport directly on top of the network
layer. In this setup, the TFRC header is 16 byte. With a maximal transfer unit (MTU) of 1000
byte and a 20 byte IP header, the total packet size is 1036 bytes.

Through the TFRC interface to the application layer, Evalvid-RA fetches information about
the current packet rate and adjusts the video compression accordingly. This interface is discussed
further in section 4.1.

2.5. FEEDBACK MECHANISMS AND RATE CONTROL 21

2.5.3 Network intelligence

In the simulations of Chapter 3, tests of ECN, RED and P-AQM where originally planned. Due
to scope limitation and other constraints, the simulations now focus more in depth on TFRC.
Nevertheless, the technologies introduced here are discussed in Chapter 5 as some of several
possible solutions to the challenge of providing more reliable real-time services over Internet.

ECN & RED

In a traditional TCP network, the packets are dropped if the input buffers on the routers are full
according to the drop tail queuing algorithm. First when reports of packet drops are returned to
the sender(s), the transmission rate is adjusted and the dropped packet is queued for retransmis-
sion. With a Random Early Detection (RED) queuing algorithm, the congestion can be foreseen
and reported back to the sender(s) before any packets are dropped. Thus, the throughput and
resource utilization is improved and the phenomenon called global TCP synchronization9 can
be avoided. RED monitors the average queue-length, and drops packets randomly according to
a statistical distribution and minimum and maximum queue length thresholds (see fig. 2.6(b)).
The packet dropping is simply a indication to the sender that the queues might overflow if its
current rate is kept or raised. A problem with this solution is that the drop forces the sender to
retransmit the “unlucky” packet, so it would be better to inform the sender about the congestion
possibilities in another fashion [28].

ECN is a mechanism to do this congestion feedback without dropping any packets as long
as they are not overflowing the router buffer. It is an extention to the IP-layer that can be used
if both sender and receiver support the use of it. It is also depending on router support, since a)
there is no point in using ECN if no routers knows how to use it for congestion indication, and
b) some old IP routers might discard an IP packet with active ECN field (mistaking it for being
corrupt). The addition to IP consists of a header field of two bits in the DiffServ-field (called the
Type Of Service (TOS) field and the Traffic Class Octet in IPv4 and IPv6 respectively), see fig.
2.7. This header field is called the Congestion Experienced (CE) codepoint, and can have the
values 01 or 10 to indicate that ECN is enabled (ECN-Capable Transport, ECT), or 11 to flag
that congestion is observed (CE) [29].

To implement ECN in the Internet, it is necessary to enable support in the interface between
network layer and transport layer so that the transport protocol receives information correctly.
With TCP, this can be done as an evolution, since the use of ECN can be determined when the
TCP connection is established. With UDP on the other hand, there is no two-way communication
on the transport layer, so the sender has no way of knowing if the CE-flag has been set or whether
the receiver supports ECN at all. One solution could be to allow applications access to the ECN
mechanisms on the IP layer through the UDP sockets. Another solution, which would be more
of a transport layer revolution, is to convert to DCCP, which has ECN-support by default [24].

9This occurs when several TCP sources are notified of packet drops simultaneously, thereby increasing/decreasing
output rates simultaneously. Results are bursty traffic and poor utilization.

22 CHAPTER 2. BACKGROUND

(a) RED & ECN enabled router (b) Drop or mark possibility

Figure 2.6 A conceptual flow-chart of a RED & ECN enabled router (a) and a graph showing the drop possi-
bility P(drop) of a packet when the queue average is between the two thresholds (Max/Min).

Figure 2.7 The Differentiated Services and ECN fields in IP. (DSCP = Differentiated services Code Point)

P-AQM

DCCP is the IETF choice for the new generation streaming media transport protocol. It’s use
of binary congestion level feeback10 has been questioned, and claimed to limit the accuracy and
speed of rate adaption [8]. The Proportional Active Queue Management (P-AQM) introduces a
different form of router queuing and a more detailed feedback report. P-AQM is not a transport
protocol in itself and must be combined with UDP as a data carrier. The P-AQM suggestion
consists of two functionalities; The queue management and the feedback mechanism.

10”Binary” because the packet is reported dropped or not dropped, or the 1-bit ECN field of ECN enabled routers
is set.

2.5. FEEDBACK MECHANISMS AND RATE CONTROL 23

AQM is a queuing method that can warn about congestion before a buffer overflow occurs.
It uses queue length limits smaller than the buffer capacity and activates congestion feedback
for all packets exceeding this limit. P-AQM uses a two-queue scheduler (see figure 2.8) that
separates adaptive flows (TCP) and aggressive flows (UDP). While the TCP queue is kept under
control by TCP’s own rate controll mechanism, the P-AQM system takes care of congestion
feedback for the UDP queue.

Figure 2.8 The two-queue scheduler of P-AQM[8]

Explicit Congestion Feedback (ECF) or Explicit Rate Feedback (ERF) are the two tested
and analyzed methods for calculating and returning feedback to the stream source in [8] and
[30] respectively. Both variants are suggested to be sent via Internet Control Message Protocol
(ICMP) Source Quench packets directly to the sender, since neither TCP, UDP nor IP has suitable
fields for this use. These packets have a 32 bit unused field that can carry more detailed feedback
information than the ECN system.

In the ECF variant, the congestion level is indicated by a value below 1 to report congestion
and above 1 to indicate available resources. The values are calculated as Additive Increase /
Multiplicative Decrease (AIMD). In P-AQM, this value is not calculated to ensure TCP-fairness,
since this is taken care of by the router queue scheduler (see eq. (2.5)). The calculated value is
instead optimized to ensure intra-UDP flow fairness and to make the rate adoption smooth and
dynamic to fast traffic load changes. When the server receives the ECF value, it calculates the
new rate with

r(n+1) =
{

ECF(n)× r(n) ECF(n) < 1.0
min{(n)+ECF(n),rmax} ECF(n) > 1.0

(2.4)

where rmax is the original or maximum rate of the streamed source. Also, the server has to
take into account that several router nodes my be sending reports. In that case, the report with
the lowest value should be used as ECF(n) in eq. (2.4). This rate adaption ensures max-min
fairness, which is a traffic shaping property that assigns a fair share of the bandwidth to both
low and high bit rate data flows. DCCP in contrast, uses RTT measures to achieve proportional
fairness and TCP-friendliness.

The queue scheduler is responsible for fairness between elastic (TCP) and inelastic (UDP)
traffic. In P-AQM, the available bandwith to non-elastic traffic is given by

cud p(n+1) = c× no fUDPf (n)
no fUDPf (n)+no f TCPf (n)

, (2.5)

24 CHAPTER 2. BACKGROUND

where c is the total output capacity, no f TCPf (n) is the number of long running TCP-flows and
no fUDPf (n) is the number of UDP flows chosen based on the proportional bandwidth demand
of each present flow. Output capacity available for TCP is thus

ctcp(n+1) = c− cud p(n+1). (2.6)

This queue scheduling method is not claimed to be optimally TCP-friendly for all combinations
of short/long-lived, bursty/stable and small/big flows, but it has proved good performance when
the TCP flows are long-lived and the UDP flows are persistent (Section sources: [8], [30], [31]).

2.6. WIRELESS TRANSMISSION: 802.11 25

2.6 Wireless transmission: 802.11

To get a thorough understanding of the problems connected to transport layer feedback mecha-
nisms in wireless environments, it is important to have a brief overview of the relevant technol-
ogy in wireless networks. This master thesis focuses on the most widespread wireless broadband
access today; the ANSI/IEEE 802.11 wireless LAN system.

2.6.1 The 802.11 group

The 802.11-standard has been developed since the mid-90s, leading to a comprehensive group
of standards and enhancements today.

The first edition of the 802.11 standard was approved in 1997, and offered bitrates of 1 or
2 Mbps. Two years later, the first substandard called 802.11b introduced bitrates of 5 or 10
Mbps, working in the 2.4-2.5 GHz-band. In a parallel research process, another substandard
called 802.11a was defined. This standard operates in the same frequency band as the legacy
802.11 (5 GHz), a band that is not as heavily used as the 2.4 GHz-band of 802.11b. It allows
for faster signaling and less interference, so the 802.11a standard works on velocities from 6 to
54 Mbps. However, due to the high carrier frequency, the standard has limitations on distance
and coverage. In practice, the 802.11a standard has a reach of about 30 meters and is limited to
almost line of sight [32].

In 2003, a new amendment joined the 802.11 group, ratified and known as 802.11g. This
variant combines benefits from both its predecessors by allowing up to 54 Mbps in the 2.4GHz-
band. Hence, faster data transfer can be achieved in a larger coverage area, and walls or obstacles
do not interrupt the traffic to the same extend as with 802.11a. Today, most consumer equipment
supports a ”tri-band” mode covering all three substandards in the 802.11 group [33].

To keep up with the velocities of wired ethernet LAN, a group was formed in 2004 to develop
802.11n. The working drafts of this group has recently passed a 802.11 working group voting,
and are estimated to be published in September 2008 [34]. 802.11n is supposed to support
bitrates of up to about 700 Mbps, using two antennas transceiving 360 Mbps each in ”Advanced
beamforming mode” [33].

In addition to the the original standard and these three amendments, the 802.11 standard
covers security (802.11i), bridge operation procedures (802.11c), roaming extensions (802.11d)
and QoS (802.11e) among others. The latter can have a significant impact on video streaming
speed and quality, and will be covered in section 2.6.5.

2.6.2 General architecture and specifications

The 802.11 standard specifies the use of both the physical (PHY) and the Media Access Con-
trol (MAC) layer. The legacy specification included three alternative PHY implementations;
Frequency Hopping spread spectrum, Direct Sequence Spread Spectrum (DSSS) and Infrared.
However, only DSSS has been further developed in the later amendments (802.11b).

Both layers of the 802.11 stack have a layer management entity to provide management in-
terfaces within and between the layers. Additionally, each 802.11 unit has a station management
entity that operates on both layers. The PHY layer carries out the modulation and encoding.

26 CHAPTER 2. BACKGROUND

802.11a and 802.11g uses Orthogonal Frequency Division Multiplexing (OFDM) but with dif-
ferent types of subcarrier modulation. 802.11b uses Complementary Code Keying (CCK) which
is a variation of Code Division Multiple Access (CDMA).

The MAC layer has several responsibilities. The standard defines:

• An asynchronous data service with the upper layer, normally 802.2 Logical Link Control
(LLC) layer. This includes fragmentation and reassembly of packets and MAC Protocol
Data Units (MPDUs), and framing procedures. Unlike Ethernet (802.3), 802.11 depends
on framing from the 802.2 LLC.

• Security services: Originally, the security was covered by Wired-Equivalent Privacy (WEP),
but as this encryption proved to be insecure, the 802.11i-group was formed. Before the
802.11i amendment was complete, Wi-Fi-Protected Access (WPA) was released to the
market. This protocol implements parts of the 802.11i specifications, while the newer
WPA2 satisfies all requirement stated in 802.11i.

• MPDU ordering of multicast, broadcast and directed MPDU traffic.

• Access procedures, which is covered in section 2.6.3.

• Association service: Controls the association state between STAs and APs. This service
includes media scanning (passive or active) and synchronization.

Figure 2.9 STAs connected to AP1 are part of one BSS, STAs connected to AP2 are part of another. Together,
the two BSS form an ESS.

A wireless 802.11 network can have two distinct topology modes; Ad-Hoc or Managed. In the
former mode, at least two mobile stations (STA) are interconnected without external manage-
ment. The latter and most commen mode consists of one or several Access Points (APs) and
STAs. Each STA is associated to one AP and this AP is usually connected to a wired LAN or
backbone network through a Portal (PO). Together this forms an infrastructure Basic Service
Set (BSS). An interconnected WLAN with several APs is called a Extended Service Set (ESS),

2.6. WIRELESS TRANSMISSION: 802.11 27

see figure 2.9. In the simulations presented later in this report, a topology with support for one
multi-BSS ESS will be used.

2.6.3 MAC Access procedures and timing

To avoid collision of traffic on the same channel and minimize the chances of network internal
interference, the MAC layer must have rules to regulate how and when the mobile network
nodes (STAs) access the medium. There are three types of access procedures defined in the
current 802.11 standard:

PCF The Point Coordination Function access procedure requires one central node to coordinate
which station that is allowed to send at each given time. It can be used in point to point
connection (ad-hoc) between to stations, or it can be the job of an AP. PCF provides
contention free frame transfer and thus allows for better QoS, but it does not define traffic
classes, nor does it work with RTS/CTS scheme (described later). PCF is not widely
implemented because it is optional, and will not be used in simulations in this report.

HCF The Hybrid Coordination Function is a part of the new 802.11 QoS-amendment; 802.11e.
It will be fully described in 2.6.5.

DCF The Distributed Coordination Function is the most common form of media access control
in 802.11 networks. The DCF technique used in 802.11 is called Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA). It will be further described in the follow-
ing.

For elastic traffic types such as normal web-traffic or FTP-traffic, the main priority is to get
every sent byte to the receiver, so variable delay and retransmissions are acceptable. For non-
elastic traffic such as real-time video and audio however, the delays should be minimized and
held as constant as possible. Since the DCF access procedure of 802.11 is the most used and
implemented technique in wireless networks today, it is interesting to study how it impacts the
end to end delay of a multimedia session. This will be covered in the simulation case III, section
3.7.3.

The DCF access procedure is carried out in several steps. First, the STA senses the medium
before transmitting. If the medium is free for a given period, called the Distributed Interframe
Space (DIFS), the STA is allowed to send its data. While the STA transmits, other STAs can
sense the transmission and defer access. When the Transmission is over, other stations can send
after a DIFS period. If the medium is not available after a DIFS, the STA activates a backoff
algorithm. This is called a binary exponential backoff algorithm and the backoff interval is
chosen randomly to form a uniform distribution. The reason for this is that several STAs may
be waiting to transmit at the same time. When they sense that the medium is available, the
random backoff interval will make it less possible that they start transmitting simultaneously. In
addition to being triggered when a STA senses that the medium is busy, the backoff algorithm is
triggered after each transmission and retransmission. The backoff time is upwards limited with
the contention window parameter. The contention window is increased exponentially for every
retransmission n of a MPDU following CW = 2n − 1 [transmission slots], but with an upper

28 CHAPTER 2. BACKGROUND

Figure 2.10 Complete CSMA/CA procedure for transmitting one frame with RTS/CTS. (Note that the packet
sizes are not displayed in realistic order of magnitude.)

boundary set by the physical layer. For example, the DSSS type limits the maximum contention
window to 1023 transmission slots11 .

Most unicast frametypes are required to be acknowledged by the 802.11 MAC protocol. This
is sent with an acknowledgment packet after a period called Short Interframe Space (SIFS). The
entire MPDU transmission and acknowledgment process is illustrated in figure 2.10. Broadcast
or multicast traffic will not be acknowledged.

An optional CSMA/CA feature is the exchange of packets called Request To Send (RTS)
and Clear To Send (CTS). This is mainly used to solve the hidden station problem, which is
as follows: Two STAs wants to transmit data at the same time. They can both reach and sense
traffic from the associated AP, but due to distance, walls or other physical obstacles, they cannot
sense each other. Both stations will assume that they have available transmit time, but the AP
will receive from both STAs, resulting in interference and failed reception.

The RTS/CTS carrier sense mechanism forces STAs to ask for a pre-transmission application
with a RTS package containing the length of the transmission, as seen in fig. 2.10. All STAs
do not necessarily hear the RTS transmission, however, all STAs must hear the AP. So, if the
transmission application gets approved by the AP, a CTS, which everyone hears, is returned.
All STAs with the same AP association will then set a Network Allocation Vector (NAV) which
indicates the length of a pre-transmission SIFS, the transmission, a post-transmission SIFS and
the acknowledgment. The NAV effectively blocks any transmission from the other STAs when
it is set. When the NAV is released, all STAs must wait one DIFS and the random backoff period
before they can apply for a transmission (Sources: [32], [33], [36]).

2.6.4 Link stability

As mentioned earlier in this report, the wireless transmission medium, air, can be error-prone.
Unlike wired connections, it is difficult to guarantee throughput, bandwith, delay or jitter, espe-
cially when the wireless nodes are allowed to move while transceiving and the current frequency

11802.11a and .11g have a slot time of 9 µs while 802.11b has 20 µs. 802.11g scales down to 20 µs if some
stations lack the high speed mode [35].

2.6. WIRELESS TRANSMISSION: 802.11 29

Figure 2.11 The different rates have different modulations which results in different SNR [37].

band is not 100% reserved for the service. Some of the reasons for link instability are briefly
summarized in the following.

Rate control

Rate control in the 802.11 network interface is used to make a STA flexible to the big signal
strength variations observed when the STA is moving or interference fluctuations occur. The
PHY layer of 802.11 provides different discrete rate services to the above layers12. Each discrete
level corresponds to a coding and modulation scheme, all differing in radio coverage and noise
sensitivity. For instance, the 64-QAM 3/4 offers large throughput but is noise sensitive and thus
provides a narrower coverage, see figure 2.11.

It is up the device driver to choose which rate service it currently wants based on information
on the link conditions, called Channel State Information (CSI). For real-time applications, it is
important that the algorithm that chooses desired rate is fast and clever enough to adjust the
rate according to temporary and constant signal strength changes. Normally, this algorithm is
based on feedback statistics calculated over time. Now, a short and temporary drop in signal
strength might cause packet loss and trigger MAC layer retransmission. In the rate controller,
the throughput is smoothed by the statistical process, so the short drop-out will have no effect.
To elastic traffic, this is not a problem, in fact, it is the most effective solution. For real-time
traffic however, it may cause severe quality degradation. 802.11 rate controller algorithms for
real-time traffic is discussed further in [37] (paragraph source).

12i.e. 6, 9, 12, 18, 24, 36, 48, and 54 Mbit/s in 802.11a

30 CHAPTER 2. BACKGROUND

Fading and shadowing

Fading and shadowing are typical radio issues that decrease the QoS of a 802.11 link. Shadowing
occurs when an object cuts off the line of sight between two communicating STAs or STA
to AP. The effect of such a blockade of the direct signal depends on the signal strength and
the amount and quality of reflected signals. In open air, there is ideally no reflected signal
components, while on open ground there is at least one set of reflected rays13. In a home or
office network, all objects, walls and buildings will cause a mesh of scattered reflections. While
these reflections can reduce the consequences of direct shadow, they introduce another problem:
Multipath fading.

When a radio antenna receives both a direct signal and a reflected signal, it will observe
that the reflected signal is slightly delayed because of the added distance. Reception of several
delayed signal can lead to both destructive and constructive interference and phase shifting.
Destructive interference happens when the signal is partially cancelled by a phase-shifted variant
of itself. This phenomenon is often referred to as Rayleigh fading or Rician fading. The Rayleigh
fading distribution model is most applicable if there is no line of sight between sender and
receiver (source [38], [33]).

Interference

Interference is common in 802.11 networks because of the frequency band licensing. The 2.4
GHz band14 which is used by both 802.11b, 802.11g and 802.11n, is not a dedicated channel
for WLAN only. A normal household appliance today that has emissions in the ISM-band is the
microwave oven. A normal oven for private use operates on a relatively narrow band close to
2.45 GHz and transmits on that frequency only every 20 ms. Therefore, its external radiation is
only disturbing some of the channels used by 802.11, see figure 2.12. A professional restaurant
oven on the other hand, uses two instead of one magnetron tubes (transmittors) which occupy
a broader frequency range twice as often. Allthough the commercial ovens normally are better
shielded than residential ones, the radiation is sufficient to cause problems for several 802.11
channels a majority of the time [39].

Another widely discussed source of interference to 802.11 is Bluetooth. This wireless net-
work protocol is designed for small distances, and the senders have a power output of about 20
dBm. Still, a significant interference is observed if transmitting Bluetooth devices are within
about 5 meters from a receiving 802.11 STA. The effect is stronger the further away from the
AP the STA is because the Signal-to-Interference (S/I) ratio decreases (Sources: [40], [41]).

2.6.5 Quality of Service enhancement: 802.11e

The IEEE 802 working group fully accepted the new standard amendment for enhanced Quality
of Service, 802.11e, in September 2005, almost five years after the task force was originally
formed [34]. The need for improved jitter and delay control was increasing as the use of both

13Called Two Ray Ground Propagation, discussed more in section 3.7.2
14Called the ISM-band (Industry, Science and Medical applications).

2.6. WIRELESS TRANSMISSION: 802.11 31

Figure 2.12 Commercial/professional microwave ovens (red) generate noise in a broader band and interferes
with more 802.11 channels than residential ovens (green). (Note that the channel allocation on the y-axis has
no direct relation to the noise value.)

WLANs and realtime media escalated. To give this traffic type better conditions three things had
to be improved with the new amendment:

1. A transmitting STA must get a guarantee of a certain minimum of medium access to avoid
buffer delay and jitter problems.

2. A system for traffic flow classification and differentiation must be available.

3. The transmission overhead should be minimized without making the transmission more
vulnerable to interference and errors.

The 802.11e amendment introduces solutions to these three points through a new scheme for
grouping and acknowledging MPDUs and two new schemes for medium access. The acknowl-
edgment scheme is called block-ACK, and works in the following way.

The transmitter is allowed to transmit several MPDUs in a row without waiting the duration
of two SIFS and an acknowledgment between each MPDU. This is called a Transmission Op-
portunity (TXOP). At the end of this TXOP, it sends a block-ACK request containing the MPDU
sequence numbers contained in the burst. The receiver replies with a block-ACK for all the cor-
rectly received MPDUs. The missing MPDUs will be buffered at the sender until they have been
acknowledged or their packet life time expires. The receiver MAC buffers the incomplete burst
until the remaining MPDUs are received or it receives MPDUs with higher sequence number
than the lost ones. This indicates that the lost MPDU’s lifetime at the sender has expired. Note
that 802.11e enables the MAC entities to operate with packet lifetime instead of retry limits.
This gives a better delay constraint for real time applications. An effect of the TXOP / block-
ACK mechanism is that the receiver MAC delivers the MPDU-bursts to the above layers only
when the entire burst is received or the MPDU lifetime has expired. Hence, application layer
bandwith estimators may be fooled to compute wrong results.

The new schemes for medium access in 802.11e are improvements to PCF and DCF through
the new Hybrid Coordination Function (HCF). Two variations are defined; The Enhanced Dis-
tributed Channel Access (EDCA) and HCF Controlled Channel Access (HCCA).

32 CHAPTER 2. BACKGROUND

EDCA

EDCA is an improvement to the legacy DCF and was therefore formerly known as Enhanced
Distributed Coordination Function (EDCF). It provides relative qualitative differentiation of traf-
fic based on traffic classes at each STA. It is however not able to provide any hard QoS guaran-
tees. The legacy DCF mechanisms ensures a inter- and intra-STA traffic fairness by giving all
STAs equal chances of acquiring a transmission slot in the backoff period. Additionally, DCF
uses only one queue for outbound traffic. These two issues limits the QoS differentiation signif-
icantly. EDCA addresses both problems by allowing a certain traffic unfairness and by splitting
traffic classes into separate queues.

Four Access Categories (ACs) are defined in EDCA, listed in prioritized order: Voice, video,
best effort and background. These ACs are treated with different Contention Windows. The high
priority AC is assigned with a smaller CW than the lower prioritized ACs so that it will always
have a higher probability of acquiring the medium. Additionally, EDCA allows the ACs to use
different Interframe Spaces (IFS). While all traffic in DCF uses fixed values for DIFS and SIFS,
EDCA assigns a bigger IFS to the low prioritized ACs and thereby forces them to wait longer
than the prioritized ACs before initiating the backoff algorithm.

HCCA

HCCA is an improvement of the legacy PCF, the 802.11 contention-free access method. HCCA
is the most complicated of the available and standardized access methods, but is also the one
which can promise the strongest QoS. As with PCF, the HCCA divides the timeline into a Con-
tention Period (CP) and a Contention-Free Period (CFP). While PCF uses polling from the AP to
allow STAs to transmit in CFP and uses legacy DCF in the CFP, HCCA uses the more advanced
and effective EDCA in CFP. Moreever, the hybrid controller (which is the AP), can define both
traffic classes and traffic streams, which enables it to prioritize on a session-level. Each STA
can report its queue lengths for every AC. With this information, the AP can make improved
decisions and differentiation for better over-all QoS performance.

Despite that HCCA can provide the best QoS available following the IEEE 802.11 stan-
dard, it is rarely implemented in consumer equipment as is the case with PCF. The international
Wi-Fi-Alliance has developed an equipment certificate based on the 802.11e amendment called
Wireless Multimedia Extension (WME) or Wi-Fi Multimedia (WMM). This is mainly used to
certify Voice over IP and WLAN equipment such as IP-telephones (sources: [42], [35], [43]).

CHAPTER 3

Simulation background and layout

This section of the report covers the details of the simulations carried out, and how the system
was set up to obtain interesting results. The reader will find discussions on how the different
parameters where chosen, and how they affect the system in theory. Before the performed simu-
lations are described, their goal is further defined and the simulator implementation is described.
The results and analysis of the obtained results can be found in Chapter 4.

3.1 Goal

As stated in the introduction of this document, the primary goal of the simulations in this thesis is
to illustrate the advantages and disadvantages with TFRC in a realistic wireless environment and
compared to TCP and UDP traffic. The protocols in question have all been tested thouroughly
over wired networks with different types of cross-traffic, topologies, equipment, capacity and
levels of realism. Both UDP and TCP traffic have been tested and simulated over wireless
networks, but TFRC performance in wireless networks is not so thoroughly documented. The
simulation results shall be a basis for further discussion of TFRC and DCCP as a multimedia
carrier, but also to pinpoint the performance of 802.11 for real-time traffic.

In the master pre-study [13], the focus of the simulations was to see how TFRC performed
when unavoidable packet losses occurred due to an unstable link. That study is continued here
with a proper 802.11 MAC and PHY implementation in ns-2. The TFRC and 802.11 perfor-
mance is evaluated through a set of cases with the following hypothesis’:

• Case I: “TFRC gives better results than UDP with high traffic load and interference”
(sec. 3.7.1).

• Case II: “UDP gives better results than TFRC with low link quality or noise” (sec 3.7.2).

• Case III: “802.11 MAC gives significant added delay” (sec 3.7.3).

33

34 CHAPTER 3. SIMULATION BACKGROUND AND LAYOUT

The results from these cases are meant to illustrate a set of effects that are of importance
for a real-time multimedia service delivered to a wireless client. The goal is to find the vital
deviations in behavior and performance in a relatively coarse scale.

3.2 Topology

With ns-2, most topologies can be defined with Tcl-code. The Tcl-script base used (see Ap-
pendix D) is written completely from scratch to ensure a tidy and structured code that fits the
simulation purpose optimally. It defines a ’dumbbell’-topology as illustrated in figure 3.1. The
setup defines a server access network, a simple core network, a base station network and wireless
access networks1. To simulate l streams to m users in n formats or types, the script automati-
cally sets up n separate servers, m clients and the l connections between them. The supported
applications and protocols are:

• VBR Video/UDP

• Rate-Adaptive VBR Video/TFRC

• FTP/TCP

• Web(HTTP)/TCP

• Ping/ICMP

All of these will be used in different numbers and combinations to get the desired scenarios
described later.

When studying the impact of errors on a link, it is important to isolate the error source in
the analysis. To avoid confusion from queue delays and contention in other part of the network,
the Tcl-script is set up to let all data stream without long propagation and contention delay from
their respective sources to the wireless access network.

Figure 3.1 shows the final topology with all application types enabled. It has five source
nodes, or media servers, and seven consuming nodes, or clients. Note that while two FTP clients
are connected to one FTP server, and two VBR Video/UDP clients are connected to one VBR
Video/UDP server, each VBR Video/TFRC client requires a separate VBR Video/TFRC server.
This is done to make the interaction with the Evalvid-RA toolset smooth. The toolset in its
current state is only capable of monitoring and rebuilding one video flow per simulation for
further analysis. This video can be transported with either UDP or TFRC, but to compare the
results of two video streams, two separate simulation iterations must be executed. The Evalvid-
RA toolset simply monitors the flow that starts first. How the different simulation iterations
are controlled by external scripts are described in section 3.5 and under each case description
(sections 3.7.1, 3.7.2 and 3.7.3).

The simulations carried out to test TFRC and 802.11 performance here are similar to clas-
sical client-server service. However, the technologies in question are equally interesting to use

1The latter two are also known as Extended Service Set (ESS) and Base Service Set (BSS) respectively in 802.11
literature.

3.3. SIMULATION CONTROLLER: 802.11.TCL 35

Figure 3.1 The implemented topology with utilization of all application types.

in video-conferencing, where the communicating nodes act as both servers and clients simulta-
neously. Allthough the script can be used for the latter service with only minor modifications,
the results from the presented simulations apply to both service types as is. The most important
difference in QoS demand is short RTT for video-conferencing, a parameter that can easily be
tuned in the simulation framework.

3.3 Simulation controller: 802.11.tcl

The main part of the programming and implementation challenge in the performed study is the
design and testing of the script that sets up and controls the simulation. As mentioned in section
2.4.3, the ns-2 simulator has a core of compiled C++-objects which can be controlled and linked
together through an interface with OTcl. The OTcl framework of ns-2 is in turn controlled by a
user made script written in Tcl. The script that sets up and controls the simulation of this study
is called 802.11.tcl, can be found in Appendix D, and will be briefly explained here.

The complete interaction of one end-to-end video transmission is not totally controlled by
this script, but includes all elements of the Evalvid-RA framework described in section 2.4.4.
How this framework is controlled, is described in section 3.5. Now, since the 802.11.tcl-script
is not the top-controller, it should be controllable through an interface to other scripts or pro-
grams. Therefore, the script execution starts with a method that reads in all parameters delivered
from command-line and sets the correct internal parameters accordingly. For example, the shell
command

$ ns 802.11.tcl -nofTFRC 1 -nofUDP 1 -doPing 1 -disableRTS_CTS 1
-prop Propagation/Shadowing -verbose 0

tells the simulator to set up one TFRC server and client, one UDP server and client (nof =
“number of”), to do an initial ping to check the connection, to turn off the MAC-layer RTS/CTS-
mechanism (described in section 2.6), to use a shadowing propagation model, and not to write

36 CHAPTER 3. SIMULATION BACKGROUND AND LAYOUT

Figure 3.2 The network layer address hierarchy

out information at run-time2. The parameters that are not set through this command-line inter-
face, are used based on default values set in the beginning of the script (i.e. TwoRayGround is
default propagation, pinging is disabled by default etc.).

The next thing the script does, is to count all source and destination nodes required, and to set
up the topology with nodes and links accordingly. All nodes are addressed in an IP-like manner,
with a three layer hierarchical model as seen in figure 3.2. They are set up with specified queuing
types, routing algorithms and link layer types, and are connected with links with the specified
bandwidth and propagation delay. All MAC- and PHY-layer parameters for the 802.11 network
are set in this phase.

The next task for the script is to prepare input and output streams for the Evalvid-RA coop-
eration. The script tells the simulator where to find video tracefiles and what to do with them.
It opens files to write the simulation results such as video frame send and arrival time from and
to the Evalvid-RA application layer implemented in ns-2. So far in the script-execution, the
nodes are set up and the input/output is prepared, but no services are defined. Each service-type
(FTP, WEB, Video/UDP and Video/TFRC) has a dedicated setup-function that instantiates the
application server and client at each node and connects them. Once this is done, the simulator is
fed with the transmission schedule, which is the the start and stop times of each application. In
addition to this setup, the script has functions to record the data throughput, and connectors for
incoming/returned data to the Ping/ICMP and Video/TFRC instances.

When the Tcl-script has been executed, all necessary variables and settings are loaded into
the compiled ns-2 core and the simulation starts.

2This function can only control the output of the Tcl-script, not the compiled code.

3.4. NS-2 MODIFICATIONS 37

3.4 ns-2 modifications

The current ns-2 framework contains all the necessary code for both wireless networking with
802.11 and the transport layer protocols UDP, TCP and TFRC. Virtual application servers for
web and FTP traffic are also included, but to enable the rate adaptive video application, some
changes and add-ons must be made. To enable this, code from the Evalvid-RA project [12] must
be plugged in with a seven step manual installation procedure. When the ns-2 package with the
new add-on is recompiled, a rate adaptive video service can be added to a server node via the
Tcl interface.

To enable the Evalvid-RA video application to run over both TFRC and UDP at the same
time (from different servers, but with the same simulation source code), some changes in the
Evalvid-RA source code had to be made. The source file called vbr rateadapt.cc had
predefined states with static variables to enable or disable the TFRC header type3. To provide
dynamic changing of header type, code was added to receive and store this setting directly from
the Tcl script via a boolean-style variable called isTFRC.

The standard protocols in ns-2 have a variable called bytes to store the number of bytes
received in the protocol’s sink entity. The modified UDP protocol eraUDP however, lacks this
variable. Thus, the throughput to an eraUDP-node can not be recorded with the same meth-
ods as for other protocol types. To change this, the OTcl-to-C++ interface for bytes was
added together with a line to ensure correct updates of the value in evalvid ra sink.cc
and evalvid ra sink.h.

3.5 IO-handling

As mentioned in several sections earlier, the simulation process is not one single program thread
but a compilation of several programs, all executed from various shell-scripts. Most of the
programs take different relevant parameters as input and write results to binary files, text files
and/or to the standard output buffer of the shell. Each program can easily be run directly from
the command line, but because many of the simulation scenarios are best tested as iterative
processes, shell scripts with loops are necessary (see Appendix B).

To coordinate the program executions, correct input must be given to each program, and
their respective output must be named and stored in a place where the next program can find it,
if necessary. This master study has led to the development of several shell-scripts:

manyQ.sh This script comes with the Evalvid-RA package, but is slightly cleaned up and mod-
ified to fit the video input. The script takes minimum and maximum quantization and
filename as input, and executes FFmpeg and mp4 iteratively. For example, FFmpeg is
controlled with the following:

ffmpeg -r 30 -s 176x144 -i [original YUV video] -vcodec mpeg4
-g 12 -sc threshold 20000 -qscale [Q-param] -s 176x144 -r 30
-y videoVariants/[video-name] Q[Q-param].m4v

3A TFRC packet has 36 bytes of header while a UDP packet has only 28 bytes.

38 CHAPTER 3. SIMULATION BACKGROUND AND LAYOUT

This line means that a video specified with the -i parameter, a frame rate of 30 fps and
qcif size (176x144) should be compressed with mpeg4 to a m4v-file with quality speci-
fied in -qscale. When looped several times in manyQ.sh with different [Q-param],
this creates a library of the different available compression levels on the streaming server.
Note that while the total system described here simulates an online encoder, the library
of video files are encoded offline. Next, the mp4-utility uses the newly constructed com-
pressed files as basis for trace file generation. Since it runs through all necessary actions
to prepare a Evalvid-RA ns-2 simulation, it is called the pre-process. Since it is normally
only needed to run this script once for each raw video that is used in the simulation, and
since the process is time consuming, the pre-process is not included in the case controlling
scripts.

case(n).sh Each case uses a shell script (the three variants are found in Appendix B) to run
the simulation and its post-process. Each of these scripts enable the user to specify the
number wanted of each service type, and to control which parameters are changed for
each iteration of a simulation. It executes all programs necessary to obtain the wanted
data (i.e. PSNR-value(s), delay or throughput) and displays the results in a graph with
suitable layout and axis-texts. Figure 3.3 shows the typical sequence of an Evalvid-RA
process end to end.

clean.sh This is a simple script to remove all temporary output from previous simulation, so that
the next simulation is not disturbed by previous values. For instance, mp4creator concate-
nates its output to allready existing output with same name, so that a mp4-file might be
several times bigger than it should be. Clearly, this affects the following programs in the
process chain. Since all of the different processes provide runtime-messages and write one
or several output files, the working folder can be quite messy and the user looses overview
if the temporary files are not removed from time to time.

To sort out the relevant data from various tracefiles and other simulation output, Awk-scripts
have been made (see Appendix C). These scripts search through the given input data line by line
for a specified pattern, performs calculations on the found data and prints the result to standard
out in the shell.

3.5. IO-HANDLING 39

Figure 3.3 The complete interaction model between program instances for pre-process, simulation and post-
process. This process can be controlled by shell scripts containing loops to do it several times with differing
input parameters.

40 CHAPTER 3. SIMULATION BACKGROUND AND LAYOUT

3.6 Wireless channel

The ns-2 comes with code and framework to simulate 802.11b networks with both ad-hoc and
infrastructure topology. The implemented protocols feature MAC and PHY layer simulation
with the possibility to set parameters to get close to specific real implementations. This is useful
for all scenarios where the researcher wants to be as realistic as possible and if the results from
a physical installation is to be compared with simulation results. However, the control interface
in Tcl is not as intuitive as one might think and the default values of ns-2 are not always very
useful.

In [44], J. Robinson walks through a set of features that should be added or modified to
enable close to real-life simulations of 802.11b:

• The data rate of ns-2 is only 2Mbps by default. Today most 802.11-cards support 802.11g
or even 802.11n with 54Mbps and 270Mbps+ theoretical capacity respectively, but since
ns-2 seems to be most tested with 802.11b, the data rate should be set to 11Mbps with
Tcl (MAC/802 11 set dataRate 11Mb). An unfortunate limitation with the ns-2
implementation, is that it does not support Auto Rate Fallback (ARF). The consequences
of this is discussed further in section 4.2.2.

• In 802.11 MAC, the standard defines that a Request To Send packet (RTS) should be sent
if the PDU size is above a RTS threshold. According to [44], most commercial 802.11
equipment for non-professional use is stripped for the entire RTS/CTS functionality to
save transmission overhead. To simulate a home wlan, which is relevant in this study,
the RTS/CTS can be effectively turned off in ns-2 by setting the RTS threshold to a value
higher than the MTU of the protocol (MAC/802 11 set RTSThreshold 3000).
This will be tested in Case III, section 3.7.3 (results in 4.2.3).

• The preamble used in the 802.11 PHY to synchronize sender and receiver directly in
front of a packet transmission, has different size from implementation to implementation.
However, the preamble size will be the same for all protocols in the simulations presented
here and the possible inaccuracy involved is assumed to be minimal.

• The physical channel implementation models of ns-2 are said to be simple and inaccurate.
For example, [45] argues that the threshold parameters in the simulator should be used
together with a Bit Error Rate (BER) calculation to provide accurate real-life imitation.
[44] recommends the use of specially designed channel model add-ons to simulate more
realistic scenarios. An option is to integrate Rayleigh and Ricean fading models, but the
pitfalls and added complexity of adding more unknown code to the ns-2 core taken into
account, the existing channel models are considered sufficient for the simulations carried
out here.

• A final interesting observation made in [44], is that the maximal achieved throughput
varies substantially with different transport layer packet size. Evalvid-RA has 1000 bytes
as MTU for both TFRC and UDP. This can imply a bandwidth reduction of about 1Mbps
in standard 802.11b networks.

3.7. SCENARIOS 41

During the development and setup of the simulator controller script, several pitfalls where
discovered. One example is the use of Phy/WirelessPhy set bandwidth , a Tcl-
command that can be seen in several of the example scripts that comes with ns-2. It was dis-
covered that the values set here had no effect on the wireless throughput. After some testing
and searching, the cause was found: the bandwidth -parameter in wireless-phy.cc was
commented out and in fact never used in the remaining source code.

Another example of a pitfall is that the interface queue of the wireless access point consis-
tently drops the two first packets in a simulation if they are from a UDP flow. For video transfer,
this is crucial since the first packet contains header information that is needed to decode the rest
of the video stream. When these two packets are dropped, the ffmpeg decoder is not able to
decode any of the subsequent data. The cause of this problem is not found, but it is solved by
sending a downstream ping message from server to client before the initial video packets4.

A third and last example is that the user is not notified by a misspelled parameter setting in
Tcl. The consequence is that ns-2 runs just as normal, but with another parameter setting than
the user expects, until the misspelling is discovered.

3.7 Scenarios

To test the simulation environment, link types, transport protocols and applications, different
scenarios, or use-cases, had to be defined. In each of these, some result should be expected
based on previous simulations and theoretical background information.

In this section three different cases are defined and explained. The two first cases are for-
mulated based on results from [13] and are focused on the TFRC performance in congested and
erroneous environments. The third case is made to illustrate how the MAC algorithms in 802.11
affect the performace in terms of delay and delay-variations (jitter), which are of high impor-
tance to real-time services. While the cases I, II and III are introduced here, their results are
found in the results chapter under sections 4.2.1, 4.2.2 and 4.2.3 respectively.

3.7.1 Case I: Congested wireless link

“TFRC gives better results than UDP with high traffic load and interference”

This first case is based on the original theories behind rate adaptive video, namely that the
video quality is better when the compression and transmission rate is adjusted to the changes in
network congestion compared to static compression and high packet loss rate. Evalvid-RA is
tested and verified to provide good scaling and QoS over wired congested networks, so in this
work the performance in a congested wireless network will be tested. While the real bottleneck
of a wireless network is the physical layer bandwidth limitations, the most interesting aspect of
the network performance is how the MAC layer allocates the resources to the different traffic
types and connected nodes under high traffic load. The CSMA/CA scheme with RTS/CTS
generates a significant amount of chatting and overhead on the link. How this affects the video

4the script must get -doPing 1 as input, see proc ping in Appendix D

42 CHAPTER 3. SIMULATION BACKGROUND AND LAYOUT

quality with TFRC (rate adaptive video) and UDP (non-rate adaptive video) will be measured
with PSNR and manually inspected.

The case is separated in two blocks with four different runs on each:

1. A TFRC-flow is monitored while different traffic types runs simultaneously:

• From one to eight concurrent TFRC-flows.

• From one to eight concurrent TCP-flows.

• From one to eight concurrent UDP-flows.

• From one to eight concurrent flows of mixed type.

2. A UDP-flow is monitored while different traffic types runs simultaneously:

• From one to eight concurrent UDP-flows.

• From one to eight concurrent TFRC-flows.

• From one to eight concurrent TCP-flows.

• From one to eight concurrent flows of mixed type.

The reason for this high number of different tests is to be able to pinpoint which “competing”
traffic types that are critical to the video quality and to check inter- and intra-protocol friendliness
(see definition in section 5.1).

To execute the simulations in this case, the shell-script case1.sh (found in Appendix B)
has been made. The script basically does the entire simulation and post-process described in
section 3.5 and seen in figure 3.3 for different numbers of “competing” traffic. Each iteration
generates a bandwidth graph that displays the throughput to each wireless node. This is very
useful to see the inter- and intra-friendliness of the different flows. At the end of the run, a graph
displays the average PSNR-value for each iteration to illustrate how the over-all video quality
is affected by an increasing degree of congestion as the number of concurrent flows grow. In
addition to the program executions of ns, ffmpeg and so on, a little Awk-command is inserted
to read out the resulting PSNR-value from the psnr program output. The script also arranges
the resulting files for archiving and analysis.

3.7.2 Case II: Node movement and variable link quality

“UDP gives better results than TFRC with low link quality or noise”

Whereas Case I is meant to illustrate a benefit of using TFRC to control the video data transfer
in a wireless environment, this case is meant to point out a drawback caused by the congestion
control mechanism. The problem found in the pre-study [13] is that TFRC does not distinguish
congestion losses from link error losses. In a wired environment, a packet is typically lost
because of buffer overflow due to queues in intermediate routers. TFRC catches this event and
adjusts the transmitting rate accordingly so that the subsequently sent packets get through the
router queue. When TFRC is used as a bearer of rate adaptive video, reduced sending rate

3.7. SCENARIOS 43

implies reduced video quality due to harder compression (higher quantizer value in MPEG-4).
However, temporary reduced video quality is considered better for the overall quality perception
than interrupts and freezes because of dropped frames and packets. In a wireless environment
on the other hand, a packet can be lost because of a sudden propagation shadow, a hand-over,
interference from other transmitting equipment or signal fading. In this case, it is not always
helpful to reduce the bit rate, frame rate or packet rate since the link quality may still be poor
and packets will be dropped anyway. The expected results from the tests performed in this case,
are that beyond some link quality threshold, the video transported with TFRC will experience
both a quality reduction due to quantizer increasment and a reduction due to link error drops.

To simulate varying link quality with ns-2 and 802.11b, the general idea was to adjust the
distance of the nodes to and from the access point, possibly using different link layer propagation
models provided by the simulator. In the development of a control script for this case, several
problems were encountered. First, adjusting the distance of the nodes had no effect up to a limit
of 16 meters. Beyond 16 meters the throughput fell from 100% to 0%. Second, the two models
FreeSpace, which is signal propagation with no reflection, and TwoRayGround, which is
propagation with one reflector surface, gave totally identical results for all distances. Third,
the ns-2 option of using random node movement did not work5. Fourth, the more complex
Shadowing propagation model gave segmentation faults at run-time.

Now, as recommended by [45], the Rayleigh and/or Ricean fading models could be imple-
mented instead of the existing shadowing model, but luckily a satisfactory solution was found
with the latter when a bug was discovered. The bug was related to the distance between mobile
nodes and access points, and the reference distance used in the calculation of the received power
within the shadowing model. When the reference distance d0 and the node-to-AP distance d had
a difference of more than one meter, the segmentation fault was avoided. The shadowing model
then uses the following representation for power calculation:

[
Pr(d)
Pr(d0)

]

dB

=−10β log
(

d
d0

)
+XdB (3.1)

Here, Pr is the reception power, β is called the path loss exponent (controllable with
Propagation/Shadowing set pathlossExp in ns-2), and XdB is a Gaussian random
variable with zero mean and standard deviation σdB controlled by Propagation/Shadowing
set std db in ns-2 [1, p.189].

To ensure a relatively linear signal quality degradation when increasing the distance to the
access point, the values β = 2.0, σdB = 4.0 and d0 = 1 were found to be most apt. The controller
script now only has to vary the distance parameters in y and x directions to change the received
signal quality. The final script is almost equal to the one described in Case I, only with iterative
changes in the distance instead of iterative changes in flow numbers (see Appendix B).

3.7.3 Case III: MAC layer efficiency

“802.11 MAC gives significant added delay”

5In fact, the following message was found in the ns-2 manual: “We have not used the second method and leave it
to the user to explore the details.”

44 CHAPTER 3. SIMULATION BACKGROUND AND LAYOUT

Since the wireless access network is a shared medium, the 802.11 MAC layer has buffer ca-
pabilities to hold the traffic until an available slot in the medium is available. The buffer size
and queuing time depends on the algorithms used in the allocation of transfer times. Thus, the
algorithm has a direct impact on the delay and jitter of traffic. As explained in section 2.6.3, the
legacy 802.11 MAC uses several types of interframe spaces, a backoff procedure and the RT-
S/CTS mechanism to avoid in-air collisions of traffic from different STAs. This simulation case
will illustrate the total delay introduced by these collision avoidance techniques. The results can
be used to show the need for 802.11e as described in section 2.6.5.

Four different comparisons are made in this simulation case:

1. Comparing the delay variations to the throughput of one flow.

2. Comparing the average delay for different network congestion levels.

3. Comparing the average delay for different RTT values.

4. Comparing the delay with and without RTS/CTS.

To generate data for these comparisons, the VBR UDP traffic source from the Evalvid-RA
is used. This traffic type is chosen because a) the video source generates variable bitrate which
in turn is expected to give variable delay, b) the source is not adjusting to congestion, buffer
overflow and jitter in the network and c) because it is band-limited6. Note that UDP traffic only
generates one way traffic, thus giving the AP full control of all the medium access. To check
how bandwidth variations and different input pressure affects the delay, the measurements are
made with between one to six concurrent UDP flows to the wireless network. With more than
four to five flows simultaneously, the network is assumed to be completely congested since the
videos generate about 1.20 Mbps in average and the actual throughput of the link is found to be
about 5Mbps7.

The controlling script for this case, as seen in Appendix B, consists of a for-loop to execute
three commands iteratively i times (i = {1, ...,6}). The commands are the ns execution with
-nofUDP $i -doPing 1 -disableRTS CTS 1 (the last parameter is 1 or 0), an Awk-
script to gather all timing information for packets on the monitored flow (added-delay.awk,
found in Appendix C) and one Awk-script to calculate the average delay for all packets in one
flow (avg-delay.awk, found in Appendix C).

Since a resulting decimal number in milliseconds is only considered interesting information
if the reader is experienced in the field and knows which values are common, the results are
presented as the 802.11 share of the total end-to-end delay. With this presentation, the reader
can more easily understand the impact of a wireless link. However, since these results can be
misleading if the rest of the network is either very fast or very slow, the tests are run with several
scenarios (that is, with propagation delays from 6 ms to 200 ms from sender to access point).
The actual decimal values are also discussed in the contexts where it is useful.

6FTP-traffic as an alternative will utilize the full possible TCP throughput both for one and several concurrent
flows.

7A statement that is confirmed by the results of all cases.

CHAPTER 4

Results and analysis

In this section, the most relevant and interesting results from the simulations will be presented.
The results will be discussed, analyzed and explained next to illustrating graphs and tables. First,
a TFRC feature or implementational bug will be presented as a vulnerability to the system, then
the different simulation scenarios will be discussed, before the most important findings will be
repeated in a summary at the end.

4.1 Vulnerability

Figure 4.1 This graph shows the video throughput rate when the first TFRC acknowledgment is lost.

As discovered in [13], the TFRC protocol is vulnerable if the first packet is not acknowl-
edged by the receiver. Figure 4.1 illustrates that the problem exists with the new topology and
architecture as well. The example shows the flow from a TFRC source that is started at time

45

46 CHAPTER 4. RESULTS AND ANALYSIS

t = 10s. As can be seen on the figure and verified by the trace file, the first packet seems to
arrive correctly (note the little bump in the circle). But since the acknowledgment is lost, the
TFRC source refuses to continue the transfer. TFRC believes that the disappearance of the first
packet is an indicator of a congested network, which triggers it to wait and retry. After about
three seconds the sender gets an acknowledgment and starts the remaining transfer. The TFRC
RFC [9] explains this behavior in chapter 4.2; TFRC has a transmit rate X that is initialized to 1
packet/second and a feedback timer that expires after 2 seconds. This suits well with the delay
of about 3 seconds seen in figure 4.1.

Another observation from figure 4.1, is that when the traffic starts, it accelerates to a bitrate
that is higher than what the compressed video can produce at best quality quantization. The
video used in all simulations has a bitrate peak in the first seconds, but not as dramatic as seen
in the shaded area of figure 4.1. The average bitrate at minimum compression (q=2) is

r =
size(q)

duration
+overhead(pdu) =

4.2MB
30s

+0.08 = 1.20 Mbps (4.1)

where overhead(pdu) is the network and transport layer overhead in data unit framing and
packet headers. Since the bitrate on the figure peaks at well above 2.1 Mbps, an explanation
needs to be found.

As mentioned earlier, the feedback mechanism makes the video compression rate adjust
dynamically to the reported congestion and loss statistics of the network. The TFRC daemon
receives the feedback packets and adjusts its packet rate thereafter. Now, how is the application
level being notified of the rate change and how may it react?

TFRC has an interface to the network layer, which lies beneath it in the protocol stack,
and an interface to the application level above. The Evalvid-RA implementation uses the latter
interface to read out the current transmission rate in use by TFRC. With this information, it
calculates a new suitable video bitrate and a new quantizer parameter. The video frames with the
new compression rate are fetched and queued in the input buffer of the TFRC application level
interface. In the case shown in figure 4.1, the video transmission is started on the application
level, but because TFRC does not receive the first acknowledgment from the client, it refuses
to forward the flow it receives from the application level. Instead, this flow is buffered in the
TFRC input queue until the network path is cleared for transmission. When TFRC finally gets
its retransmitted header packet acknowledged, the queue will contain several seconds with video
ready for transmission. Until TFRC stabilizes or receives new congestion feedback, the queue
will burst out on the network.

The Evalvid-RA application starts by default at a quantization rate of Q=8 in this imple-
mentation. This is applied to the first GOP in the transmitted video. Normally, TFRC should
receive one feedback for the very first packet, and thereafter with one or two RTT intervals. So
by the time the first GOP, which can consist of several tens of packets depending on the video
resolution and contents, is sent, one or several feedback messages is assumed to have arrived.
If Evalvid-RA is not informed of a congestion by this time, it lowers the quantizer and is soon
transmitting with full quality. The problem, or implementational bug, seems to be that the TFRC
agent does not report that the first feedback message is missing to the application.

A solution suggestion is that the video application compresses its output maximally until

4.2. SCENARIOS 47

proper feedback is received, thus minimizing the chances of packet loss when the buffered top
quality data bursts out on the (possibly congested) network. The data backlog in the TFRC
queue is illustrated with the shaded area in figure 4.1, and the interface between TFRC and the
application is conceptually illustrated in 4.2.

Figure 4.2 This figure shows how the incoming acknowledgment triggers the TFRC rate calculation mecha-
nism which can report the new rate to the application layer. Here, the rate parameter is converted to a suitable
quantizer value for the video compression. Compressed video is sent to TFRC input buffer before transmitted
through the network.

4.2 Scenarios

The simulations are mainly presented with graphs showing PSNR values or throughput values.
An example of a throughput graph is given in figure 4.3. This graph shows the basic shape of
the video with minimum compression, Q=2. It is beneficial to know the basic shapes of the
videos in order to easily interpret the results when the video-flow is damaged or band limited
later on1. Three main observations should be made in this case. First, the video used is 30s long
and comprised by 3 equal sequences of 10s (300 frames at 30fps). This can be seen by the three
peaks of each transfer type in figure 4.3. Second, the TFRC throughput is slightly higher than
the UDP throughput. This can be explained with the bigger header size of TFRC packets. Third,
the TFRC flow is less aggressive in the first seconds. This is due to the slow start mechanisms
employed in the congestion controller

.

4.2.1 Case I: Congested wireless link

In this case, the benefits of rate adaption and dynamic quality scaling is tested. To prove the
hypothesis (“TFRC gives better results than UDP with high traffic load and interference”), ex-
pected results would be to see that the overall PSNR value for a video sequence would be higher
with TFRC transport than with plain UDP transport.

1The same video is used in all the simulations presented here.

48 CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.3 This graph compares maximal uninterrupted throughput for one separate UDP and one separate
TFRC simulation run.

In figure 4.4, the results from both UDP and TFRC objective quality is shown for (a) only
TFRC traffic running concurrently and (b) mixed traffic sources running concurrently (UDP,
FTP, WEB and TFRC), and in figure 4.7(a) the results with only UDP competition. None of
these graphs confirm that TFRC is superior in any way. In fact, the most realistic case which is
the mixed traffic shown in 4.4(b), indicate that the UDP traffic provides the overall best results
in objective quality.

(a) With TFRC traffic (b) With mixed traffic

Figure 4.4 These graphs show UDP (green line) and TFRC (red line) video compared with concurrent traffic
of two different types.

To take a closer look at what happens here, let us step into the details of the simulation
iterations with 3 concurrent TFRC sources2. Figure 4.5 shows the throughput for all the simul-
taneous flows, where the first TFRC flow is monitored in a) and the UDP flow is monitored in
b). What we observe is as expected: The UDP-flow has a significantly higher throughput to the
end user in b) under the same circumstances as the TFRC flow in a). Now, while this graph
shows the throughput, it does not show the amount of lost packets, a metric that is important
due to the the interpacket dependency of MPEG video explained in section 2.1. An analysis of
the receiver trace file produced by Evalvid-RA can give information on how many frames that

2The number 3 is randomly chosen for this example.

4.2. SCENARIOS 49

where accepted at the receiver node. The results here are also as expected for the UDP traffic;
332 out of 4958 packets where lost in this flow, which gives a percentage packet loss of 7%.
With such a high loss rate, many header and reference frames (I-frames) may have been lost,
causing severe damage to the video even if the the frames that arrive correctly have minimum
compression.

(a) Monitored TFRC (red line)

(b) Monitored UDP (bright blue line)

Figure 4.5 These graphs show the throughput of the different concurrent flows when TFRC-flows are the
“competitors”

In the TFRC flow, one would expect to have close to zero packet loss since TFRC should
adjust the transmission rate until all packets get through. This is not the case here; The receiver
trace file says that 51 out of 3108 packets, or 2%, where lost with compression rates of Q=3 and
Q=4. So, TFRC still observes packet loss and the effect expected to be seen in Case II, that the
adaptive stream is degraded due to both packet loss and quantization, is already present here in
Case I. The fact that TFRC can not adjust perfectly to the loss type and rate is crucial, as will be
discussed further in Case II (section 4.2.2).

50 CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.6 This is the same frame from three different versions of a video: The original (left), the non-adaptive
(center) and the adaptive (right).

Subjective quality

So far we have seen that TFRC adjusts the transmission rate and forces Evalvid-RA to adjust
the quantization level up. The adjustment does not seem to be enough, since the PSNR graph
indicates that the all-over quality of the non-adaptive video is almost the same or better then the
quality of the adaptive video from Evalvid-RA. As mentioned earlier, there are many ways to
measure the quality of a video, but none of them are cheap, scalable and always correct. PSNR
is one of the cheapest and easiest ways of measuring the quality of a video, but it has some
flaws. For instance, while the PSNR measurement can see defects such as missing blocks or
pixel errors, it fails to see if a series of frames compose a smooth video sequence or if it is
jagged and uneven. Another is that it is not intelligent enough to synchronize the video in case
of a bigger delay. The effect of delayed or early frames is not necessarily too bad for the end
user, while the PSNR calculation compares each incoming frame with a reference frame from a
time-shifted part of the original video, resulting in low SNR-values.

One of the superior qualities with the Evalvid-RA tool-set, is the possibility to inspect the
resulting video for each simulation run. Together with the raw-file viewer VidView (referred to
in section 2.4.6), one can expose if the PSNR value is correct or not for the sequence. Figure
4.6 illustrates how videos with the same PSNR value can have different appearance. Again, the
example is from UDP non-adaptive versus three TFRC adaptive sources (4.6, center) and four
TFRC adaptive sources (4.6, right). What can be observed is that the non-adaptive flow has had
recent packet losses, disturbing the picture noteably but not crucially, while the adaptive flow
shows a delayed frame (compared to the original (4.6, left)).

Inter and intra-protocol friendliness

The discussion in Chapter 5 will address properties of a TCP-friendly flow, and the different
definitions of the term. Here, the term friendliness will be extended to represent if a flow is or
is not damaging to the throughput and stability of other concurrent flows of the same or other
type. The graphs in figure 4.7 illustrate the problems connected to UDP traffic, in fact the main
reason for the wish to change UDP with DCCP: UDP traffic does not scale at all to the existing
conditions in a router or a link. In figure 4.7(a) concurrent UDP traffic not only destroys the
throughput and quality of the more discreet TFRC, but also destroys for flows of its same kind.

4.2. SCENARIOS 51

Allready with 3 concurrent flows, the monitored UDP flow is unusable (PSNR < 20dB, see
section 2.2 for more), while the TFRC flow scales the rate to provide a barely watchable result.
The throughput of this flow is seen in figure 4.7(b).

It is interesting to watch how the PSNR-to-throughput-ratio differ between the two flows
in this example. While the PSNR values are nearly equal for all but one measurement, the
throughput differ significantly. The UDP flows compete to get the full rate through, thereby
destroying each other’s flows with interference, while TFRC is forced to scale down to the
lowest quantization values. The best example from the performed simulation is shown in figure
4.7, where the TFRC flow provides better PSNR than the UDP flow, while having a considerably
lower bandwidth consumption with an average throughput of about 380 Kbps.

(a) PSNR (b) Throughput (TFRC=purple line)

Figure 4.7 This graph displays the quality of a video from a UDP or TFRC source measured in PSNR (a) and
throughput (b) when the concurrent traffic on the link is only UDP.

The classical friendliness test does not include UDP because there is no doubt about its lack
of friendliness. A new transport protocol suggestion is rather compared against TCP traffic, since
this constitutes the main share of today’s Internet traffic. In these simulations, rate adaptive video
over TFRC was tested against FTP over TCP. These simulations reveal that TFRC is apparently
TCP-friendly, but not very “TCP-robust”. What can be seen in figure 4.8 is that the TFRC
flow adjusts its rate to fit the bandwidth requirements of the concurrent TCP flows (4.8(b)). In
4.8(a), we can see how TFRC “suffers” from its friendliness (red line) whereas UDP gets a far
better performance, strangling the other flows on the link (blue line). Since TFRC and TCP have
almost equivalent rate control mechanisms, one would expect to see that a monitored TFRC
flow has the same performance in an environment with TCP or TFRC traffic. Figure 4.8(a)
shows something else: The TFRC flow in the TFRC environment (green line) shows an all-over
better performance than the TFRC flow in the TCP environment (red line). Figure 4.8(b) is taken
from the inflection point where four TCP flows result in an unwatchable video with PSNR below
20dB. Compared to figure 4.5(a), where TFRC shows superb intra-friendliness as the four flows
adjust to almost equal rate in a few seconds, figure 4.8(b) shows a highly fluctuating behavior
from all the TCP flows that results in poor bandwidth utilization and interference-caused packet
loss. This is the observation referred to as not “TCP-robust” above.

52 CHAPTER 4. RESULTS AND ANALYSIS

(a) PSNR

(b) Throughput

Figure 4.8 This graph illustrates the TCP-fairness of TFRC in PSNR (a) and throughput (b).

4.2.2 Case II: Node movement and variable link quality

In Case I, the video flows where tested against flows from different transport protocols to see how
the videos where influenced by the different interference pattern the concurrent traffic formed. In
Case II on the other hand, interfering traffic is not interesting and adaptive and non-adaptive traf-
fic will be compared by results from separate simulation runs. The only variable to be changed
here is the distance between the client and the access point, thereby creating controlled variance
in signal strength. As stated earlier, the expected result here is that the adaptive video source will
experience an “amplified loss” due to both high compression quantization and random packet
loss in the wireless link.

Figure 4.9 shows the throughput from the two transfer types in question; UDP and TFRC.
Each line describes the throughput for one separate simulation of one flow over the specified
distance. For all distances from 0 to 8 meters, the throughput is more or less equal for all flows
with the propagation model set up in section 3.7.2, but when the receiver node is moved further
away, the link fading gets an effect on the received throughput.

The figure shows us what one would expect; The UDP throughput is higher than the TFRC

4.2. SCENARIOS 53

(a) TFRC

(b) UDP

Figure 4.9 Throughput graphs for TFRC (a) and UDP (b) for distances 9 to 15 meters from the access point.

throughput for all distances where the signal strength is close to the reception threshold of the
receiving wireless interface. In these cases, the UDP flow would push through on a best effort
basis, thus exploiting the available resources maximally, while the TFRC flow adjusts the trans-
mitted rate down in an attempt to avoid what it assumes to be congestion. On distance 14 and 15
meters we see that TFRC has adjusted all the way down to the initial base rate of one packet per
second with two seconds feedback timer (figure 4.9(a), note the small bumps circa every third
second), while the UDP flow works at a 200 to 400 Kbps bitrate. Intuitively, this would imply
that UDP performs better at these distances. However, as can be seen in the PSNR graph in
4.10(a), the video client can not decode any of the received material because the loss ratio is too
big and the required throughput of a flow that transfers data with minimal compression is high.

Figure 4.10 shows two versions of the same effect. Figure 4.10(a) shows the over all PSNR
values for each distance from 5 to 15 meters for both adaptive and non adaptive video. The
observations agree with the throughput results since the PSNR values are almost equal up to
about 9 meters, and a PSNR of zero is indicated from 13 meters and beyond. Now, since the
only deviation is in the area between 9 and 13 meters, a variant of the simulation described in

54 CHAPTER 4. RESULTS AND ANALYSIS

section 3.7.2 was made to get a higher resolution of the results here. The output from those
simulations is shown in figure 4.10(b). This graph confirms our suspicions; When packet loss
is frequent, random and not due to congestion, TFRC provides poor performance compared to
UDP as a video bearer.

(a) 5 to 15 meters (b) 9.5 to 12.5 meters

Figure 4.10 In (a), the PSNR results from a video streamed to a client with different distances to the AP is
shown. Figure (b) is a re-sampling of the most interesting area of the curves in (a).

The assumptions made to form the hypothesis for this case (“UDP gives better results than
TFRC with low link quality and noise”) was, as stated repeatedly, TFRC’s ”amplified loss“. But
while the PSNR-graphs in figure 4.10 alone confirms the result of this effect, the throughput
graphs in 4.9(a) gives reason to do a further analysis of the cause of the effect. What can be
observed in the latter figure is namely that the delayed-start effect discussed in 4.1 seems to
occur for all simulations with distance above 9 meters. Therefore, it is possible that this alone
is the cause of the inferior PSNR values in the 9 to 13 meter region. To find the answer, the
tracefiles for the different simulations must be studied.

Distance (m) Q Lost (pkts.) Total (pkts.) Loss rate (%) PSNR
9.8 2.04 0 4856 0.00 41.14

10.1 2.07 2 4777 0.04 23.51
11.0 2.34 16 4308 0.37 21.89
12.2 3.49 11 2946 0.37 17.47
13.0 6.90 30 1751 1.71 0.00
14.0 2.42 30 644 4.60 0.00
15.0 7.90 66 609 10.84 0.00

Table 4.1 This table summarizes the loss statistics of the simulated TFRC flows.

Several things should be noted about table 4.1 and 4.23.
First the numbers shown, are not from measurements with equal distance difference in me-

ters. Actually, allthough the simulations where done with a resolution of 3 dm between 9.5 and

3Note that the results are partly based on random processes, which produces slightly different numeric results
with other seeds.

4.2. SCENARIOS 55

Distance (m) Q Lost (pkts.) Total (pkts.) Loss rate (%) PSNR
9.8 2 0 4959 0.00 41.38

10.1 2 2 4959 0.04 41.26
11.0 2 18 4959 2.37 35.70
12.2 2 1339 4959 27.00 18.36
13.0 2 2766 4959 55.78 0.00
14.0 2 3563 4959 71.85 0.00
15.0 2 4097 4959 82.62 0.00

Table 4.2 This table summarizes the loss statistics of the simulated UDP flows.

12.5 meters, the results where identical for all samples left out of the tables. This can also be seen
by the flat segments in figure 4.10(b). The reason for this remains unknown, but presumably, it
has to do with the construction of the ns-2 implementation of the propagation model.

Second, the total number of packets depends on the quantization level and the MTU used.
Both TFRC and UDP have MTU=1000 bytes. The UDP transfer has Q=2 for all GOPs, which
gives a total of 4959 packets to be transmitted for all simulation runs, header packets included.

Third, while the UDP transfers show strongly increasing and logical loss rates, the TFRC
flows do not. While the number of lost packets rise from 2 to 16 between 10.1 and 11.0 meters, it
falls to 11 on 12.2 meters. Still, the PSNR value for 12.2 meters is far lower than for 11.0. What
we see is that the average quantization level, Q, rises notably and the number of total packets
sinks correspondingly.

Fourth, the numbers given for distances 13-15 in table 4.1 do not tell the entire truth. The
quantization parameter should have been close to 31 (maximum) for these simulations, but since
the client feedback never arrives the sender, the TFRC agent keeps transmitting with initial
settings (1 packet/second), but does not tell the Video application that the network feedback is
missing. Therefore, Evalvid-RA will continue to produce video at Q=2 until a proper feedback
has been reported. This happens at t=37s for 14 and t=25 for 15 meters wireless distance.
This start-up delay causes most of the video sequence to arrive the client after the simulation is
finished, which is at t=55s.

Now, with all of the above in mind, three questions arise:

1) How does the variable delay on the adaptive video affect the end result?

In this case, the UDP traffic is never delayed since there is no congestion in any parts of the
network. The TFRC traffic is delayed if the first feedback is lost. This results in a delay of
several seconds of the video, which makes the PSNR-calculator compare each incoming frame
with an offset to the original. For example, with 3 seconds initial delay, 10% of the sequence
will be delayed at the receiver. Now, in a real-time system, such delays are not acceptable.
Neither are they in this simulation environment. When the video is received and reconstructed,
the system uses a parameter called Play out Buffer (PoB) to limit how big the delay can be.
Figure 4.11 shows the PSNR values for each reconstructed raw frame. The PoB (set to 250 ms

56 CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.11 The PSNR graph for all frames in the video sequence transmitted with 11m wireless distance.

in all simulations) limits which frames that are included in the final video and which are not.
As earlier, VidView allows us to check these results by manual inspection of the recon-

structed video. In figure 4.12, the original frame is compared to the reconstructed frame after
transmission. First, frame 350, which is in the ”Arrives too late“ area of 4.11 is compared to the
original frame 350. Ten frames later the first actually accepted and reconstructed frame arrives
with good quality. This frame is sent from the server application at t=12s and received by the
client application at t=15s, which means that it is the first of the buffered frames to be accepted.

2) How important are the header frames in the loss statistics?

When Evalvid-RA downgrades the video quality, the video stream from the application down
to the TFRC-agent is reduced. Therefore, the TFRC agent does not have to segment each video
frame into as many packets as is the case for a higher quality stream. One effect of this packet-
rate reduction, is that the rate, or density, of absolutely necessary packets increases. As explained
in section 2.1, the I-frames have a much bigger importance than the other frames, and the packet
containing the first segment of an I-frame must be received in order to decode the rest. Further-
more, the first header-frame, which is sent before the first I-frame, is also necessary for proper
decoding. To prioritize the importance of the packets:

1. The first packet contains the first header-frame, which the decoder must have in order to
decode the subsequent stream.

2. The first packet of each I-frame, which contains the quantizer scale parameter for the
entire frame and is necessary to decode the frame.

3. The first packet of each P-frame, which contains the quantizer scale parameter for the
entire frame and is necessary to decode the frame.

4. The first packet of each B-frame, which contains the quantizer scale parameter for the
entire frame and is necessary to decode the frame.

4.2. SCENARIOS 57

(a) Frame 350

(b) Frame 360

Figure 4.12 A comparison of the reconstructed frames 350 (arrives too late) and 360 (arrives in time) to the
original frames.

Now, an increased density of ”crucial“ packets will increase the probability of a crucial
packet drop. For example, from table 4.1 and 4.2, it can be seen that TFRC and UDP have
sent 2946 and 4959 packets respectively. If we define the two first types above as crucial, both
streams will have H-packet + [header I-packets] = 1 + 75 = 76 ”crucial“ packets. The TFRC
stream will have 76

2946 = 2.5% density while the UDP stream will have 76
4959 = 1.5%, a reduction

of 40%.
How can this effect be seen directly on the result presented here? Well, they can not. The

reason is mentioned in section 2.4.4: The Evalvid-RA program that simulates the packet-to-
video-stream reassembly, defines one entire frame as dropped if one or more belonging packets
are lost. Since the TFRC stream under lossy conditions produces fewer packets per frame, it is
reason to believe that the density effect is reversed, making the UDP stream most vulnerable.
The total effect and analysis of packet drop versus frame drop is left for future work.

3) Finally, is the quality degradation of the adaptive flow due to delay or ”amplified loss“?

The above analysis of trace files and PSNR data started due to the suspicion that the degraded
quality of the adaptive flow was caused by the somewhat buggy start-up delay, or if it is caused
by packet loss in the weak wireless link. The data presented above does not provide a clear
answer. The TFRC flow is delayed, something that definitely has an effect on the overall result,

58 CHAPTER 4. RESULTS AND ANALYSIS

but additionally, the flow does experience packet losses even if the rate is reduced. The conclu-
sion must be that in this case, UDP is superior because TFRC has controlled quality reduction,
random packet losses and a start-up delay. The works of TFRC with a better implementation
where the traffic is not jammed initially is left for future work.

The results in this case have limitations when compared to a real-life situation. As mentioned
in section 1.2, ns-2 limits the simulation by lacking an Auto Rate Fallback (ARF) implementa-
tion. In all simulations presented here where the link quality is discovered to be insufficient, a
real 802.11b network would fall back to a more robust channel encoding with a lower bit-rate.
As discussed in [46], the available algorithms for ARF depends on the PHY-layer implementa-
tion and chip-sets, which can explain why it has no proper ns-2 implementation known to the
author.

4.2.3 Case III: MAC layer efficiency

The hypothesis of this case is “802.11 MAC gives significant added delay”. As stated in section
3.7.3, the theory about 802.11 MAC gives reason to believe that this wireless transfer protocol
introduces a significant delay to the traffic. The case description promised the following four
comparisons:

1) Comparing the delay variations to the throughput of one flow:

This first test is meant to show how the delay varies with different input rates to the shared
medium. The test is performed with a VBR Video with maximum MPEG-4 quality (Q=2) and
UDP transport protocol. The delay is measured and compared to the total end-to-end delay of
the link. In this first test, the three links from the server to the AP have a delay of 2ms each, thus
modelling a small and fast network. The result is given in figure 4.13(a). What can be observed
here is mainly that the delay is variable with an average delay share of about 50%. No jitter
values are caluculated from the simulations presented here, but the delay variation observed is
15.7 ms from extreme to extreme (for t=11.3 and t=31.6 respectively), more than two and a half
times the aggregated delay of the wired links. This fluctuating delay is better illustrated in figure
4.13(b). It can also be observed that the delay has a tendency to grow when the bandwidth peaks,
however the shape of the delay curve is not strongly following the bandwidth curve, and since
the simulation depends on random processes, the empirical value of this observation is low.

2) Comparing the average delay for different network congestion levels:

Because the amount of overhead on the 802.11 link is strictly dependent on the amount of traf-
fic demanding access to the shared medium, it is interesting to see how the delay grows with
increasing competition for transmission time. Figure 4.14 shows the delay share of total end-to-
end delay for one to six concurrent flows. In figure 4.14(b) we see the delay for one monitored
UDP flow with different amounts of competing flows. We see that the variation patterns show
little or no corelation, and the delay for a flow with one competitor is not strictly higher nor
lower then the delay for a flow with zero or two competitors. However, when calculating the
delay average for each flow, as is done in figure 4.14(a), the delay is almost linearly increasing

4.2. SCENARIOS 59

(a) Delay share and throughput (b) 802.11 delay in ms

Figure 4.13 (a) shows the data throughput (red) and corresponding MAC layer delay share (green) on a shared
axes (the y-axis is share 0 - 100% for green curve and bandwidth in Mbps for red curve). (b) shows the
fluctuating delay measured from the AP to the client node.

up to a point of total network congestion between four and five concurrent video flows. Despite
that the delays for the totally congested network constitute almost ten times the wired delay, it is
more interesting to note that allready at three concurrent flows, which sum up to about 3.6 Mbps,
the MAC layer seems to have problems delivering all data in real-time. At this point, the 802.11
MAC layer spends 65 %, or 11 ms, of the total end-to-end delay experienced by the packet.

(a) Average delay share (b) Delay for one flow with increasing congestion

Figure 4.14 (a) shows a linearly increasing delay share for increasing traffic pressure. (b) shows the packet by
packet delay for the same flows in a 10s period of the transfer.

Now, the way the results are presented here, it seems like the 802.11 MAC is a hopelessly
breaking obstacle for all real-time services. However, the delays are compared to a fast network
with only 6 ms total delay from server to AP. Compared to the tolerable delay in a video con-
ference, which is about 150 ms, or compared to the play out buffer limit used in the previous
cases (PoB=250 ms), a delay of 11 ms is not so hopeless after all. This can best be seen if this
experiment is done with a slower transport network and higher RTT values.

3) Comparing the average delay for different RTT values:

Delay and delay variation are especially troublesome for duplex services, such as video con-
ferencing. To test how the wireless link affects the total delay for some different realistic
scenarios, the delay recording simulation has been run with different core delay as input (ns

60 CHAPTER 4. RESULTS AND ANALYSIS

Figure 4.15 This figure illustrates the impact of using a wireless access network in a regional/national (brown),
national/multi-national (red), continental (blue) and global (green) connection.

-core prop [delay])4. The original topology has a total delay of 6 ms, which is a typical
delay for a regional to national network. The simulations have been run with 15 ms total delay
to imitate a national to medium range international networks (i.e. for a Scandinavian video con-
ference), 50 ms total delay to imitate a continental network (i.e. with end nodes in Norway and
Spain), and finally with 204 ms total delay to imitate a global network (i.e. Norway to Japan).

As expected, when the total delay increases, the 802.11 share of the delay decreases. The
illustration is useful to see that the wireless network has a considerable effect on the QoS of
a video conferencing service. For example, if a user wants to connect to a video meeting with
colleagues in Madrid via a moderately crowded AP, the first and last meters from the client to the
AP constitutes 22% of the total delay for each packet travelling the distance of about 3700 km.
This delay can be be the factor that prohibits sufficient QoS for a requested real time service.

4) Comparing the delay with and without RTS/CTS:

The simulation results shown so far in this case have illustrated how a wireless network can be
problematic for a real-time service, however, as described in section 3.6, many normal com-
mercial APs today do not have the RTS/CTS handshake mechanism described in section 2.6.3
enabled or implemented. So all results shown above are actually without RTS/CTS. Now it is
time to see if and how the delay increases when it is enabled.

The two graphs in figure 4.16 compare the average delay for a UDP flow with zero to five
other flows demanding resources on the same link with and without RTS/CTS. At least three
observations should be made. The first and most obvious is that RTS/CTS does, as expected,
add a significant extra delay to the medium access process. Second, the RTS/CTS overhead
increases with the traffic pressure. The third and most important is that with the added delay,
the RTS/CTS curves reach an upper limit (when the network is totally congested) at a smaller
traffic pressure than the non-RTS/CTS curves. With two video streams of totally 2.4 Mbps on a

4The estimated propagation time values are made based on ping polling of different national and international
servers on a Saturday morning (assuming low to medium network congestion in average in this period).

4.3. SUMMARY 61

(a) 6 ms transport network delay (b) 15 ms transport network delay

Figure 4.16 This graph compares the delay share of 802.11 MAC with and without the RTS/CTS mechanism.

Figure 4.17 A comparison between the continuous delay share of a flow when RTS/CTS is turned off (green)
and on (red) with two additional competing flows in the network.

link with 6 ms propagation to the AP, the wireless interface utilizes 65% of the total end-to-end
delay according to figure 4.16(a)(UDP sources = 2).

Figure 4.17 illustrates the packet by packet delay for one of three concurrent UDP flows in
an 802.11 network with 6 ms propagation delay from the server. The example given shows the
biggest observed difference between a simulations with and without RTS/CTS. At first glance,
this presentation says that the RTS/CTS solution has about twice the delay of the other, but
with far less jitter. However, both figure 4.17 and all the above that present the share of total
delay do not tell the entire through about the delay size. Let us consider an example from the
biggest gap in figure 4.17. What is the difference between 52.5% and 92.5% delay share? With
6 ms transport delay up to the AP, 52.5% share is 6.63 ms. When the 802.11 network constitute
92.5%, the delay size has increased to 74 ms.

4.3 Summary

Case I could not definitely prove that TFRC is superior to UDP when the wireless network is
the bottleneck. The results show that TFRC does not adjust perfectly, and packet losses occur
even if the video quality is adjusted downward (higher Q-values) with Evalvid-RA. However, it

62 CHAPTER 4. RESULTS AND ANALYSIS

is shown that TFRC obtains a better quality with far lower throughput than UDP. This indicates
that TFRC has a more economic resource utilization than UDP. Further protocol comparisons
show that TFRC has a smoother sending rate than TCP, but the fluctuating TCP-peaks seem to
force the TFRC throughput to be slightly lower than it should be for ideal friendliness.

Case II show interesting results by indicating the expected “amplified loss”, alas, due to the
vulnerability explained in section 4.1, the results are not good enough to illustrate this expected
effect. It is however no doubt that it is present in real life (as stated in e.g. [47], [48] and [49]
for TFRC and numerous TCP articles).

Case III illustrates that the delay introduced by the wireless last hop is significant both with
and without the RTS/CTS scheme. These results support the expectations of 802.11 being a
challenging hindrance for strict QoS in high bit-rate real-time services.

CHAPTER 5

Standards development

So far, the theories behind a virtual video streaming solution have been given account for, the
simulator layout has been described and simulation results have been presented for TFRC as a
congestion controller for real-time video, and for 802.11 as an access network for mobile nodes.
Neither TFRC nor 802.11 has proved to be perfect for the task when strict QoS is needed for
a real-time service in a wireless environment. The protocol mostly used for this today, UDP,
causes as shown severe problems for other traffic flows on the shared resource. Thus, the service
providers, the network owners, the end users and the Internet itself demand a new common plat-
form and standard to transport real-time video reliably, effectively and in an economic, scalable
and TCP-friendly fashion.

This chapter aims to provide an overview of some of the different approaches to solve this
problem (from here on referred to as solution suggestions) and to highlight some essential prob-
lems connected to the development of a new Internet standard.

5.1 Definition: TCP-friendliness

An essential part of the requirements for a new protocol is that it must be TCP-friendly or TCP-
fair. This term has been used and referred to several times in this thesis in the sense that a given
TCP-friendly protocol should not be greedy with the resources, thus strangling the throughput
of congestion controlled flows such as TCP. Since this property is a absolute demand for a new
real-time media bearer [3], many of the researchers use it to test weather their solution sugges-
tion is acceptable or not. Now, if there is no clear definition of this requirement, the research
communities will pull in each their direction with each their clear idea of how to measure TCP-
friendliness. The paper of S. Floyd and K. Fall from 1999 [3] is often referred to in this need for
a clear and credible definition. It says:

“We say a flow is TCP-friendly if its arrival rate does not exceed the arrival of a conformant
TCP connection in the same circumstances.”

63

64 CHAPTER 5. STANDARDS DEVELOPMENT

The fairness index of Chiu and Jain [50] from the 1980’s, a time when neither today’s net-
work topologies nor traffic patterns where considered, is often applied to verify if a non-TCP-
flow fulfills the definition from [3]. In recent research, other definitions have come up. For
instance, in [51] by Merani et. al. from 2004, TCP-friendliness is defined as:

“The non-TCP flow’s long-term throughput should be neither higher, nor lower than the
long-term throughput of a TCP connection running on the same path, experiencing the same
network conditions.”

Why can not the non-TCP flow have a lower throughput than the TCP-flow? It is doubt-
ingly that a non-TCP flow would harm the TCP-throughput by applying a lower pressure on the
resources. Additionally, and more important, in an environment where TCP does not perform
optimally, should not a non-TCP flow be able to perform better than TCP and still be TCP-
friendly? With this definition as a basis, Merani et. al. conclude that TFRC tends to “over
shoot” the competing TCP flows, hence motivating for a parameter tuning in TFRC. The authors
quote an article from Widmer et. al. [52] from 2001, where a more general definition is given
just below the one used by Merani et. al. in numerous articles ([51], [53] and [54], all studies of
TFRC performance in wireless settings). Widmer’s definition is as follows:

“TCP Friendliness for Unicast - A unicast flow is considered TCP-friendly when it does not
reduce the long-term throughput of any coexistent TCP flow more than another TCP flow on the
same path would under the same network conditions.
TCP Friendliness for Multicast - A multicast-flow is defined as TCP-friendly when for each
sender-receiver pair, the multicast flow has the property of being unicast TCP-friendly.”

With this definition a non-TCP flow can outperform TCP and still be TCP-friendly. This
property must be adopted in order to understand the challenges involved in the development of a
new and improved transport protocol solution for heterogeneous networks. Sanadidi et. al. have
done this when evaluating TFRC with the performance issues of both TFRC and TCP over lossy
links in mind [47]. They introduce the term opportunistic friendliness with a similar def intion
as used by Widmer:

“Opportunistic friendliness is the ability of a new flow to use the bandwidth that would be
left unused by legacy flows.”

This definition is not totally clear, but the article [47] describes it further; A new flow can use
the bandwith that a legacy flow would have used under the same circumstances and all bandwith
left unused by the existing flows. Note that in this definition, the word “TCP” is left out. Thus,
it can also reffer to another flow type like TFRC. In [55], the authors write that they do not know
of any definition that applies to both wired and wireless Internet, so they form their own, which
in essence is equal to the two above:

“A protocol is TCP-friendly if it is friendly to TCP in wired networks (according to Floyd’s
definition), and can achieve better performance than TCP in wireless networks.

The definitions mentioned here are most concerned with the impact of flow A to flow B,
or inter-protocol fairness. However, intra-protocol fairness is equally important. This is the
property of staying fair to other flows of its same kind so that any new flow An is friendly to all
existing flows A1 to An−1.

The different definitions above, allthough they can seem equivalent at first glance, has lead to
different conclusions from the researchers, possibly lowering the development speed of a com-

5.2. NETWORK OR CLIENT INTELLIGENCE? 65

mon new standard. In an increasingly mobile Internet environment, the protocol performances
in wireless access networks must be prioritized. Since the traditional versions of TCP do not
perform optimally, it does not make sense to limit throughput to TCP. Therefore, the three latter
definitions seem most apt for current and future work in this domain.

5.2 Network or client intelligence?

Two elementary strategies are considered in all forms of data network design; The placement
of most or all network intelligence and data processing in the network core and intermediate
nodes on one hand, and placement of all intelligence and processing in the end nodes on the
other. The simulations presented in Chapter 3 present a topology where all transport and service
level communication is end-to-end, and all calculations of jitter, delay, loss, transmission and
quantization rates happen at either of the two end nodes. Thus, this layout with client-server
service, IP and TFRC (or DCCP) is a typical client intelligent example.

The problems discussed in this study, is that the end-nodes, especially the server, are not
capable of fine tuning their parameters to the exact network condition because they only know
the packet’s arrival status and timing. If elements of network intelligence where introduced, the
intermediate nodes in all sorts of topologies could report back to the server about the link state
in and out of the node. With such a system, the video server could easily know the exact reason
for any packet drop or delay.

The P-AQM solution suggestion described in 2.5.3 shows one way to distribute the calcula-
tion and feedback “burden” over several nodes. This is done by letting P-AQM enabled routers
employ smarter and more complex queuing schemes and individually send state feedback to the
sender. With this system, the responsibility for congestion control and rate adaption is moved
from the transport protocol to the server application and the routers. Thus, the use of legacy
UDP and TCP side by side can be continued without jeopardizing the Internet health. TFRC
and TCP have problems with loss differentiation that P-AQM avoids by sending feedback only
if congestion is observed. Random error losses in wireless networks are simply ignored by the
video bearer, UDP.

A suggestion to solve the loss differentiation problem of heterogeneous networks (wired and
wireless) could be to use the APs to mark the returned traffic in both DCCP/TFRC and TCP
flows with a signal strength indicator, thus giving the server better chances of estimating the loss
causes. This solution requires cross-layered design, which breaks the network stack abstraction
philosophy. Another use of the AP in a network intelligent fashion is to use Snoop, evaluated
in [56] and [48]. This is a link layer approach with local retransmission where TCP (or TFRC
with some improvements in Snoop) packets are recorded temporarily, and their ACK packets
are checked to see if the data was lost in the wireless link or received properly. It retransmits
all packets that are lost in the last hop and suppresses the ACK, thus sparing the serving TCP
agent for the loss discrimination job and unnecessary rate adjustments. A more client intelligent
approach is to let the TFRC client mark the ACKs with the current signal strength. When a
loss occurs, the TFRC server can look at the last received signal strength value to determine
whether the loss was due to congestion or link error. Alas, this solution is also dependent on a
cross-layered design.

66 CHAPTER 5. STANDARDS DEVELOPMENT

If the purpose is to make a specially crafted proprietary network not intended for Internet
connection, the list of improvements in all layers and protocols could be long, and the result
could probably be significantly improved with the technology and knowledge available today.
However, because any new Internet standard today must meet requirements for a certain back-
ward compatibility, interoperability, scalability, industry support and roll-out cost, many sugges-
tions such as the those mentioned above can be rejected. A typical problem with solutions such
as P-AQM is that it is not very effective in practice without a degree of penetration in the Inter-
net routers worldwide. This constitutes a considerable cost and requires full industry support,
and is one of the reasons that client intelligent and end-to-end protocols are more emphasized
in Internet literature and research [47]. The following part of this section covers a selection of
end-to-end solutions.

[48] evaluate different solution suggestions to wireless streaming performance. Many sug-
gestions are made that benefit from the use of end-to-end packet transfer statistics. One sugges-
tion interprets the variations in one-way delay to differentiate congestion loss from wireless loss,
another uses the variation in RTT to differentiate, while a third suggestion combines packet inter
arrival times with one-way delay to decide whether the loss is due to congestion or not. The key
assumption is that the delay variations are bigger if there is contention in the network, while a
report of a packet that has been lost due to an error should not experience much added delay.
While these solutions keep the costly updates of network equipment unnecessary and avoid us-
ing cross-layered design solutions, they have a rather high misclassification rate that result in
under-utilization of the wireless bandwidth [48].

Voelker et. al. also study end-to-end schemes for loss differentiation in [49]. In this article,
the so-called Loss Discrimination Algorithms (LDAs) are studied in detail. It reveals that most
LDAs based on inter-arrival times do not perform well when there is competition for the wireless
link, i.e. both congestion and possible wireless loss. The simulation scenarios and test-beds used
in the development of these LDAs are too simple to prove that the solutions can survive in a real-
life network. For example, many LDAs and other solution suggestions assume that the wireless
link is in the last hop. These methods fails if tested in a topology where a wireless link is in
between two wired networks. Voelker et. al. extend TFRC to support different LDAs, compare
the LDA performance in terms of effectiveness, smoothness and fairness, and suggest two new
LDAs. The LDAs they test are the Biaz and Spike schemes, and the proposals they make are
called ZigZag scheme and Hybrid LDA. The article concludes that no single LDA can provide
good performance with all kinds of network topologies and concurrent traffic types. Their own
invention the Hybrid LDA however proves good performance in all scenarios tested by selecting
the best “basis”-LDA at any given time.

5.3 Multiple streams

In the simulations performed here, the performance issues of TFRC have been illustrated through
two cases. However, the results given do not directly prove that TFRC under-utilize the wireless
network bandwidth due to the system vulnerability found in section 4.1 and the combination of
relatively high bandwidth video (1.2 Mbps) and high bandwidth wireless network (theoretically
11 Mbps, but about 5 Mbps in practice). In [48] on the other hand, the video source bandwidth

5.3. MULTIPLE STREAMS 67

Figure 5.1 Throughput and packet loss details for (a) one TFRC, and (b) MULTFRC [48].

is large compared to the capacity and error rate of the CDMA wireless network, so a proof
of network under-utilization with TFRC is possible and performed. In this article, Zakhor et.
al. present a solution suggestion that is simple but effective. The approach is to use several
TFRC streams in parallel to transport one single video stream. With this solution, they can show
improved performance and link-utilization for a video streaming application without introducing
any further network intelligence or protocol alteration. Their suggestion, MULTFRC, is simply
a application layer system that dynamically adds or drops normal TFRC streams based on RTT
feedback read from the TFRC server agent. The RTT feedback is used in a connection controller
inspired by the traffic statistics loss differentiation methods described in section 5.2. Thus, it can
add TFRC connections until the connection controller discovers congestion. Since each TFRC
stream can discover and adjust to this congestion on its own, the added congestion check from
MULTFRC is made to avoid overhead and starvation of other TCP or TFRC flows to and from
the connected server and client. The results from their study is illustrated in figure 5.1.

Allthough simple and effective, the MULTFRC approach can not be claimed to be very ele-
gant, it introduces overhead in resource utilization on both interacting nodes (especially compu-
tational overhead in video segmentation and reassembly, which can be critical for power scarce
mobile equipment) and shows an unstable and bursty throughput (ref. figure 5.1(b)).

68 CHAPTER 5. STANDARDS DEVELOPMENT

Figure 5.2 Throughput rates for TCP Westwood compared to TCP Reno and SACK, showing how the former
handles random errors in a more efficient manner [57]

5.4 Designing from scratch

Many of the solution suggestions relevant to TFRC video streaming are from the research done
to improve TCP performance in wireless links. Many of these discuss different approaches to
loss differentiation (or loss discrimination) that will enable the TCP agents to understand the
cause of the packet losses observed. Since the TFRC performance problems have coherence or
similarity with those of TCP, solutions for TCP are often applicable for TFRC [48].

Sanadidi and Gerla, the same researchers that defined opportunistic friendliness, have done
considerable work in the development of the new TCP version TCP Westwood. This version
is aimed to give better throughput for ”large leaky pipes”, i.e. links with big bandwidth delay
product and a limited amount of random error losses [17]. It is a sender side improvement
to TCP NewReno, developed due to the increasing penetration of wireless access networks,
powerful mobile clients and demanding ubiquitous services. The performace of TCP Westwood
in a lossy environment with random packet loss, a test very similar to the one performed with
TFRC in [13], is shown in figure 5.2.

The concepts and ideas behind this work could be a direct guideline to a refinement of
TFRC for better wireless support. Sanadidi and Gerla, however, have developed a new transport
protocol for adaptive video streaming from scratch. In [47], their solution suggestion Video
Transport Protocol (VTP) is introduced. Two mechanisms are essential for VTP: Achieved Rate
(AR) and Loss Discrimination Algorithm (LDA). AR is the rate that the receiver can measure
and is used by the sender agent’s rate adaption mechanism. The LDA described here is the
Spike scheme evaluated in [48] and referred to in 5.2. This scheme is based on RTT measures
and the simple assumption that if a packet loss occurs when the RTT is close to the minimum

5.5. APPLICATION AND CROSS-LAYER SOLUTIONS 69

RTT observed, then there is no congestion and the loss must be due to the erroneous link. This
assumes that the wireless link is also the bottleneck of the connection, which is correct in most
cases. However, with today’s fastest 802.11n equipment installed at a customer with a cheap
ADSL line, the bottleneck will clearly not be in the wireless link. The rate controller is crafted
to imitate TCP’s additive increase until congestion is detected. The multiplicative decrease of
TCP is omitted to ensure smooth rate variation at the video consumer. Instead of the drastic and
short rate change of TCP, VTP will reduce the sender rate with small steps and keep the changes
longer before increasing again, thus ensuring TCP-similar throughput in average.

Figure 5.3 These graphs compare VTP and TFRC with different amount of random link loss [47].

The VTP protocol was tested in a similar manner to the tests performed and described in
this thesis, only with a less realistic and more general wireless interface implementation. Figure
5.3 shows how the protocol outperforms TFRC in a lossy environment. Figure 5.4 illustrates the
idea of opportunistic friendliness with VTP and TCP flows at different error rates. Note how
the TCP flows running with VTP (left) and TCP (right) has the same throughput while VTP is
allowed to enjoy the rest of the link capacity.

5.5 Application and cross-layer solutions

As stated in the introduction section 1.2.1, the service and application levels are regarded out of
the scope for this work. However, several solution suggestions span both application, transport
and MAC layers by different forms of cross-layer designs, and deserve being mentioned.

One of them is a new suggestion (2007) called RTP-Primal. This is a strategy that guarantees
flow smoothness and congestion control for UDP flows based on application level adjustments
of RTP and RTCP [58].

70 CHAPTER 5. STANDARDS DEVELOPMENT

Figure 5.4 One VTP and one TCP flow to the left, and two TCP flows to the right. The graphs illustrate how
the TCP flows have equivalent throughput, thus proving VTP opportunistic friendliness [47].

5.6. SUMMARY 71

Another suggestion is a novel combination of the error resilience tools in H.264 and the
possibilities of the new 802.11e in a cross-layer architecture [59]. The idea with this architecture
can be briefly described as follows: H.264 has a function called data partitioning, which means
that it separates data of different importance in different partitions (ref. discussion about packet
importance in section 4.2.2). The QoS features of 802.11e allow for separated prioritized queues
called access categories (described in section 2.6.5). Lower loss rate and delay, and higher
overall quality can be achieved if the most important video partitions of H.264 can be enqueued
in the most prioritized access category of 802.11e, as shown in [58].

A third solution suggestion is the Wireless Multimedia Streaming TCP-Friendly Protocol
(WMSTFP) [55]. This solution emphasizes both network adaption and media adaption, and
include mechanisms in application, transport and link layers. In the application layer, it proposes
to use a special video codec with layered video and improved dynamic Forward Error Correction.
It benefits from link-layer information from the wireless last hop to differentiate loss types,
which makes it more robust to lossy wireless link than the reference protocol TFRC.

The above mentioned suggestions are only a few of a long list of suggestions. A tendency is
that the most effective solutions are the ones who require most alteration in several layers of the
protocol stack, an unfortunate trade-off if the Internet layer abstraction should be maintained.

5.6 Summary

As this chapter is meant to illustrate, there are numerous articles and suggestions in the problem
domain emphasized in this work. Although DCCP with TFRC has become the most popular
successor for UDP, considerable work is done and under progress to find a solution that fulfills
the requirements of DCCP stated in [24].

Many of the suggestions are more specific and for narrower use than DCCP is intended,
thereby increasing the effectiveness for one given task but failing to perform for many others.
A general problem with the suggestions mentioned here is that the amount of information and
work in the domain is so big, that no single proposal manages to cover all the aspects of this
complex challenge. Where a suggestion is excellent with one type of metric and requirement, it
fails in others. Most are tested with one single and oversimplified topology, and are not close to
imitating the Internet.

The best example of redundant research and misunderstandings due to the “information
overload“ is the definition problem explained in 5.1. It is remarkable that researchers within the
very same domain can work and publish without any knowledge or reference to each other.

The discussion concludes that many cross-layer approaches and intelligent networks show
the best performance. P-AQM, which is explained in greater detail than the others (section
2.5.3), can perform good because it can be used to adapt streams only according to congestion
while the error-losses are ignored. However, cross-layered design breaks with layer abstraction
principles, and network intelligence can be very expensive. An one-layer end-to-end approach
proposal is to use a modified TFRC that differentiates losses based on the ECN mark, but since
ECN requires router support, it is not sufficient only to change the software at the network edges.

A common one-layer QoS upgrade is preferred. The 802.11e can be a big step in the right
direction, as pointed out by [42], [43],[60], [61] and [62]. With this new protocol amendment,

72 CHAPTER 5. STANDARDS DEVELOPMENT

video streams over the most used office and home WLANs can be improved. But still, the
streaming problem persists for other types of wireless networks such as CDMA, WiMax and
older WLAN standards.

CHAPTER 6

Conclusion

This thesis has aimed to enlighten some of the problems involved in the combination of real-
time services, existing transport protocols and wireless networks. To achieve this, a simulation
topology has been set up to facilitate support for different relevant scenarios, transport types,
link states and services. This has been a tool to illustrate some of the features and problems with
today’s protocols in comparison with the IETF suggestion for a new real-time rate controller,
TFRC.

Furthermore, the thesis has aimed to clarify some of the issues in the standard development
process. This has been done by pointing at the vast variety of different protocol proposals with
overlapping or contradictory strategies.

One simulator implementation with one specific set-up is seldom enough to provide defini-
tive conclusions. This also applies to the work that has been presented here. The thesis ends
with a summary of suggested future work to improve the empirical quality of the simulations
and to provide more certain conclusions.

6.1 The simulations

Through three different cases, the Evalvid-RA toolset has been used to imitate real video stream-
ing by the use of tracefiles and a specially crafted packet reassembly and video reconstruc-
tion mechanism. With this toolset and the network models of ns-2, a powerful and complex
framework has been available to perform realistic simulations of rate adaptive video-on-demand
streaming services. The results have been presented in terms of throughput to the end users and
PSNR of received video as compared to the uncompressed original. The framework has also
allowed for manual inspection of the videos in order to compare actual perceived quality.

The simulation cases have shown how the “brute force” mode of operation of UDP traffic
threatens the health of other data flows both of its own and different types. We have seen how

73

74 CHAPTER 6. CONCLUSION

TFRC, on the other hand, scales well to adopt to other TFRC and TCP flows, but fails to elim-
inate packet loss in the wireless link. The first packet transmissions of a TFRC session have
proved to be critical for the flow quality when we have real-time buffer constraints. The design
and objective of TFRC makes it vulnerable to packet loss that is not due to congestion and buffer
overflow, but a result of varying link quality and random errors. Also, the connection between
Evalvid-RA acting as application layer and TFRC acting as transport layer has an implemen-
tational flaw or feature that distorts the test results if the first packet or its acknowledgment is
lost.

Further, the simulations have illustrated the degree of delay introduced by a IEEE 802.11b
wireless network in the last hop. While most modern wired access and transport networks have
hierarchical topologies and dedicated channels between the nodes, the wireless network has
flat topology and shared medium. Thus, it must spend considerable amounts of overhead time
to avoid transmission collisions and maintain fairness between the nodes. The standardized
mechanism to solve the hidden station problem, RTS/CTS, is often left out of 802.11 access
point implementations. The simulations show why this can be a good idea, not only with the
implementation cost in mind: The difference in added delay with or without RTS/CTS is not
negligible, and can constitute the decisive factor that makes QoS possible or not for strict real-
time services.

6.2 The development

The problem domain discussed in this thesis is complex since it involves considerations spanning
from market demand and service in one end to radio frequency bands and physical channel
encoding in the other. This complete picture is too comprehensive to be a part of the scope of
this thesis, yet with the focus narrowed down to transport and MAC layers, the list of proposals
and approaches is extensive. The work presented here reveals that the definition of one single
term can result in very differing research results and contradictions.

The proposal examples discussed show that many approaches exist that can improve video
streaming performance and QoS by adding more network intelligence or implementing a cross-
layer design. However, while these suggestions perform optimally in a simulation environment,
many would fail in the heterogeneous complexity of Internet. Moreover, many of the designs
require that some or all nodes involved in the end-to-end path have upgrades in several layers,
a requirement that breaks with the evolutionary principles and layer abstractions of the Internet
protocol suite.

6.3 Yet to come

In the progress of the work presented here, several additional aspects and possible simulation
improvements have been discovered. To limit the scope, and to go more in depth in some chosen
topics, these have been postponed to future work.

The simulations here have been tested with a 30 seconds long QCIF video. To have more
generic results and avoid stochastics, the simulations should be run with a rich library of videos

6.3. YET TO COME 75

of different resolution, length, content and encoding. The scenarios should be extended to in-
clude a higher degree of duplex traffic to imitate video conferencing, as this is especially inter-
esting for the delay variations of the 802.11 MAC. A topology where the wireless network is
not in the lost hop should also be tested to avoid the limitations found in many of the discussed
solution suggestions.

Further, the new IEEE QoS amendment to the 802.11 family, 802.11e, should be included
in the framework and compared to the results found with legacy 802.11b. The P-AQM solution
should be tested on the wireless simulation topology presented here. Since P-AQM only delivers
congestion feedback instead of loss feedback, it is highly relevant to test its performance in the
problem domain defined.

A modification of TFRC to differentiate loss based on ECN flags would be very interesting
to see if an updated version of the IETF proposal can satisfy all performance requirements in
the new generation mobile Internet. Since the Evalvid-RA toolset as used here drops an entire
video frame if one of the belonging packets is lost, the rebuilt video does not entirely represent
the amount and quality of data that has actually been received. Additionally, the vulnerability
of TFRC regarding the first packet arrival and acknowledgment can be caused by the interaction
between TFRC and Evalvid-RA. A more precise implementation of the simulator tool-set could
deliver more exact answers through the use of PSNR measurements.

Finally, this thesis has been strictly technical, and most business and market related topics
relevant to realize a technology have been out of the scope. A study of the market potential, time
to market and industry support for each of the proposals is vital to understand which strategy
that eventually reaches the end-user.

76 CHAPTER 6. CONCLUSION

Bibliography

[1] Kevin Fall and Kannan Varadhan (Editor). The ns Manual. A Collaboration between
researchers at UC Berkeley, LBL, USC/ISI, and Xerox PARC, 2007. The VINT Project.

[2] David Cavin, Yoav Sasson, and Andre Schiper. On the Accuracy of MANET Simulators.
Proc. of POMC’02, 2002.

[3] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the Internet.
IEEE/ACM Transactions on Networking (TON), 7(4):458–472, 1999.

[4] T. V. Lakshman, P. P. Mishra, and K. K. Ramakrishnan. Transporting compressed video
over ATM networks with explicit rate feedback control. INFOCOM’97: Proceedings of
the INFOCOM’97. Sixteenth Annual Joint Conference of the IEEE Computer and Commu-
nications Societies., 1997.

[5] R. Rejaie, M. Handley, and D. Estrin. RAP: End-to-end Rate-based Congestion Control
Mechanism for Realtime Streams in the Internet. Proc. of IEEE International Conference
on Communications (ICC), 2001.

[6] Masaki Miyabayashi, Naoki Wakamiya, Masayuki Murata, and Hideo Miyahara. MPEG-
TFRCP: Video Transfer with TCP-friendly Rate Control Protocol. 2001.

[7] D. Sisalem and A. Wolisz. LDA+ TCP-Friendly Adaption: A Measurement and Compari-
son Study. Proc. of NOSSDAV, 2000.

[8] Arne Lie, O. M. Aamo, and L. A. Rønningen. A Performace Comparison Study of DCCP
and a Method with non-binary Congestion Metrics for Streaming Media Rate Control. Proc
of 19th International Teletraffic Congress (ITC’19), 2005.

[9] m. Handley, S. Floyd, J. Widmer, and J. Padhye. RFC3448: TCP-Friendly Rate Control
(TFRC): Protocol Sepcification. 2003. http://www.ietf.org/rfc/rfc3448.
txt, link last active: May 2007.

77

78 BIBLIOGRAPHY

[10] Ku-Lan Kao, Chih-Heng Ke, and Ce-Kuen Shieh. An Advanced Simulation Tool-set for
Video Transmission Performance Evaluation. 2006.

[11] Jirka Klaue, Berthold Rathke, and Adam Wolisz. EvalVid - A Framework for Video Trans-
mission and Quality Evaluation. Proc of 13th International Teletraffic Congress (ITC’13),
2003.

[12] Arne Lie and Jirka Klaue. Evalvid-RA: Trace Driven Simulation of Rate Adaptive MPEG-
4 VBR Video. Not yet published.

[13] Torgeir Haukaas. Next Generation Internet and Support of Streaming Media: Trace Driven
Simulation. Available at http://folk.ntnu.no/torgeiha/div/ra-vbr
video over wifi.pdf (link active: May 2007), 2006.

[14] M. Bottigliengo, C. Casetti, C.-F. Chiasserini, and M. Meo. Short-term Fairness for TCP-
flows in 802.11b WLANs. IEEE INFOCOM, 2004.

[15] M. Franceschinis, M. Mellia, M. Meo, and M. Munafo. Measuring TCP over WiFi: A Real
Case. 1st workshop on Wireless Network Measurements (Winmee), Riva Del Garda, Italy,
2005.

[16] D. Barman and I. Matta. Effectiveness of loss labeling in improving TCP performance in
wired/wireless networks. Network Protocols, 2002. Proceedings. 10th IEEE International
Conference on, pages 2–11, 2002.

[17] Ren Wang, Massimo Valla ans Bryan Kwok Fai Ng, Mario Gerla, and M.Y. Sanadidi.
Efficiency/Friendliness Tradeoffs in TCP Westwood. Proc. of the 7th IEEE Symposium on
Computers and Communications, 2002.

[18] John Murphy. Resource allocation in ATM networks (PhD report). 1996. http://www.
eeng.dcu.ie/∼murphyj/the/the/the.html, link last active: May 2007.

[19] Rob Koenen. MPEG-4 Overview. International Organisation for Standardisation(ISO),
2002.

[20] Gonzales and Woods. Digital Image Processing. Prentice Hall, 2nd edition, 2002.

[21] Wikipedia. Peak Signal-to-Noise Ratio. http://en.wikipedia.org/wiki/PSNR,
link last active: May 2007.

[22] VINT. Virtual InterNetwork Testbed. A Collaboration among USC/ISI, Xerox PARC,
LBNL, and UCB, 1996. http://www.isi.edu/nsnam/vint/, link last active:
May 2007.

[23] FFmpeg homepage. http://ffmpeg.mplayerhq.hu/, link last active: May 2007.

[24] S. Floyd, E. Kohler, and J. Padhye. RFC4336: Problem Statement for the Datagram Con-
gestion Control Protocol (DCCP). 2006. http://www.ietf.org/rfc/rfc4336.
txt, link last active: May 2007.

BIBLIOGRAPHY 79

[25] S. Floyd, E. Kohler, and J. Padhye. RFC4340: Datagram Congestion Control Protocol
(DCCP). 2006. http://www.ietf.org/rfc/rfc4340.txt, link last active: May
2007.

[26] J. Padhye, J. Kurose, D. Towsley, and R. Koodli. A model based TCP-friendly rate control
protocol. UMASS-CMPSCI Technical Report, 1998.

[27] S. Floyd, E. Kohler, and J. Padhye. RFC4342: Profile for Datagram Congestion Control
Protocol (DCCP) Congestion Control ID 3: TCP-Friendly Rate Control (TFRC). 2006.
http://www.ietf.org/rfc/rfc4342.txt, link last active: May 2007.

[28] S. Floyd and V. Jacobson. Random early detection for congestion avoidance. IEEE/ACM
Transactions on Networking, 1(4):397–413, 1993.

[29] K. Ramakrishnan, S. Floyd, and D. Black. RFC3168: The Addition of Explicit Congestion
Notification (ECN) to IP. Internet RFCs, 2001.

[30] Arne Lie. P-AQM: low delay max-min fairness streaming of scalable real-time CBR and
VBR media. 2007.

[31] Arne Lie. A Proposal for Low Delay Max-min Fairness Control of Streaming Media. 2006.

[32] Prasad and Ramjee. WLANs and WPANs towards 4G Wireless. Artech House Inc., 2003.

[33] Matthew Gast. 802.11 Wireless Networks: The Definitive Guide. O’Reilley, 2nd edition,
2005.

[34] IEEE Working Group 802.11. IEEE 802.11 official timelines. Link accessed and active: 2.
March 2007. http://grouper.ieee.org/groups/802/11/Reports/802.
11 Timelines.htm, link last active: May 2007.

[35] T. Ulseth and P. Engelstad. Voice over WLAN (VoWLAN)–A wireless voice alternative.
Telektronikk 1.06, 2006.

[36] ANSI and IEEE. Std 802.11 - Medium Access Control (MAC) and Physical (PHY) Speci-
fications. ANSI / IEEE, 1999.

[37] I. Haratcherev, J. Taal, K. Langendoen, R. Lagendijk, and H. Sips. Automatic IEEE 802.11
rate control for streaming applications. Wireless Communications and Mobile Computing,
5(4):421–437, 2005.

[38] C. Steger, P. Radosavljevic, and JP Frantz. Performance of IEEE 802.11 b wireless LAN in
an emulated mobile channel. Vehicular Technology Conference, 2003. VTC 2003-Spring.
The 57th IEEE Semiannual, 2, 2003.

[39] A. Kamerman and N. Erkocevic. Microwave oven interference on wireless LANs oper-
ating in the 2.4 GHz ISM band. Personal, Indoor and Mobile Radio Communications,
1997.’Waves of the Year 2000’. PIMRC’97., The 8th IEEE International Symposium on, 3,
1997.

80 BIBLIOGRAPHY

[40] N. Golmie, RE Van Dyck, and A. Soltanian. Interference of bluetooth and IEEE 802.11:
simulation modeling and performance evaluation. Proceedings of the 4th ACM interna-
tional workshop on Modeling, analysis and simulation of wireless and mobile systems,
pages 11–18, 2001.

[41] RJ Punnoose, RS Tseng, and DD Stancil. Experimental results for interference between
Bluetooth and IEEE 802.11 b DSSS systems. Vehicular Technology Conference, 2001.
VTC 2001 Fall. IEEE VTS 54th, 1, 2001.

[42] Q. Ni. Performance analysis and enhancements for IEEE 802.11 e wireless networks.
Network, IEEE, 19(4):21–27, 2005.

[43] Mehmet U. Demircin and Peter van Beek. Bandwidth Estimation and Robust Video
Streaming over 802.11e Wireless LANs. 2006.

[44] Joshua Robinson. Making NS-2 simulate an 802.11b link. http://www.ece.rice.
edu/∼jpr/ns/docs/ns-802 11b.html, link last active: May 2007.

[45] Wu Xiuchao. Simulate 802.11b Channel within NS2.

[46] M. Lacage, M.H. Manshaei, and T. Turletti. IEEE 802.11 rate adaptation: a practical
approach. Proceedings of the 7th ACM international symposium on Modeling, analysis
and simulation of wireless and mobile systems, pages 126–134, 2004.

[47] Guang Yang, Mario Gerla, and M.Y. Sanadidi. Adaptive Video Streaming in Presence of
Wireless Errors. IFIP/IEEE MMNS 2004, 2004.

[48] Minghua Chen and Avideh Zakhor. Rate Control for Streaming Video over Wirless . 2004.

[49] Song Cen, Pamela C. Cosman, and Geoffrey M. Voelker. End-to-End Differentiation of
Congestion and Wireless Losses. 2003.

[50] D.M. Chiu and R. Jain. Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks. Computer Networks and ISDN Systems, 17(1):1–14,
1989.

[51] M. Borri, M. Casoni, and M.L. Merani. Performance and TCP-fairness of TFRC in an
802.11g WLAN: Experiments and Tuning. Wireless Communication Systems, 2004. 1st
International Symposium, 2004.

[52] J. Widmer, R. Denda, and M. Mauve. A survey on TCP-friendly congestion control. Net-
work, IEEE, 15(3):28–37, 2001.

[53] M. Borri, M. Casoni, and M.L. Merani. An Experimental Study on Congestion Control in
Wireless and Wired Networks. Proc. of IEEE ICC 2005, May 2005, 2005.

[54] M. Borri, M. Casoni, and M.L. Merani. Effectiveness and Issues of Congestion Control in
802.11g wireless LANs. Journal of Wireless Networks, Springer, 2006.

BIBLIOGRAPHY 81

[55] F. Yang, Q. Zhang, W. Zhu, and Y.Q. Zhang. End-to-end TCP-Friendly Streaming Protocol
and Bit Allocation for Scalable Video Over Wireless Internet. IEEE Journal on selected
areas in communications, vol. 22, no. 4, May 2004, 2001.

[56] H. Balakrishnan, VN Padmanabhan, S. Seshan, and RH Katz. A comparison of mecha-
nisms for improving TCP performance overwireless links. Networking, IEEE/ACM Trans-
actions on, 5(6):756–769, 1997.

[57] Ren Wang, Massimo Valla, Mario Gerla, and M.Y. Sanadidi. TCP Westwood: Efficient
Transport for High-speed Wired/Wireless Networks. Presentation in High Speed Work-
shop, IEEE Infocom, 2002.

[58] M. Borri, M. Casoni, and M.L. Merani. RTP-Primal: A New Congestion Control Scheme
Suitable for Smooth Multimedia Delivery. Proc. of IEEE Wireless Communications and
Networking Conference, IEEE WCNC 2007, 2007.

[59] Adlen Ksentini, Mohamed Nimi, and Abdelhak Guerouni. Toward an Improvement of
H.264 Video Transmission over IEEE 802.11e through a Cross-Layer Architecture. IEEE
Communications Magazine, January 2006, 2006.

[60] D.J. Leith, P. Clifford, D. Malone, and A. Ng. TCP Fairness in 802.11e WLANs. 2005.

[61] Y. Xiao and H. Li. Evaluation of distributed admission control for the IEEE 802.11 e
EDCA. Communications Magazine, IEEE, 42(9):S20–S24, 2004.

[62] A. Banchs, A. Azcorra, C. Garcia, and R. Cuevas. Applications and challenges of the
802.11 e EDCA mechanism: an experimental study. Network, IEEE, 19(4):52–58, 2005.

82 BIBLIOGRAPHY

APPENDIX A

List of abbreviations

AAC Advanced Audio Coding

AC Access Category

AIMD Additive Increase / Multiplicative De-
crease

ANSI American National Standards Institute

AP Access Point

API Application Program Interface

AQM Active Queue Management

AR Achieved Rate

ARF Auto Rate Fallback

ASP Advanced Simple Profile

AVC Advanced Video Coding

AWK Aho Weinberger Kernighan (script lan-
guage)

BSS Basic Service Set

CCID Congestion Control ID

CCK Complementary Code Keying

CDMA Code Division Multiple Access

CE Congestion Experienced

CFP Contention Free Period

CIF Commom Intermediate Format

CP Contention Period

CSI Channel State Information

CSMA/CA Carrier Sense Multiple Access with
Collision Avoidance

CTS Clear To Send

DCCP Datagram Congestion Control Protocol

DCF Distributed Coordination Function

DCT Discrete Cosine Transform

DNS Domain Name System

DSSS Direct Sequence Spread Spectrum

ECF Explicit Congestion Feedback

ECN Explicit Congestion Notification

ECT ECN-Capable Transport

EDCA Enhanced Distributed Channel Access

ERF Explicit Rate Feedback

83

84 APPENDIX A. LIST OF ABBREVIATIONS

ESS Extended Service Set

FTP File Transfer Protocol

GOP Group Of Picture

HCCF HCF Controlled Channel Access

HCF Hybrid Coordination Function

ICMP Internet Control Message Protocol

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engi-
neers

IETF The Internet Engineering Task Force

IFS InterFrame Space

IO Input / Output

IP Internet Protocol

ISM Industry, Science and Medical applications
(radio band)

ISO International Organization for Standardiza-
tion

ITU International Telecommunication Union

ITU-T ITU Telecommunication Standardization
Sector

JPEG Joint Photographic Experts Group

LDA Loss Discrimination Algorithm

LLC Logical Link Control

MAC Media Access Control

MPDU MAC Protocol Data Unit

MSE Mean Square Error

MTU Maximum Transfer Unit

MOS Mean Opinion Score

MPEG Motion Picture Experts Group

nam Network animator

NAT Network Adress Translation

NAV Network Allocation Vector

ns Network simulator

OFDM Orthogonal Frequency Division Multi-
plexing

PAL Phase-Alternating Line

PCF Point Coordination Function

PDA Personal Digital Assistant

PoB Play out Buffer

PSNR Peak Signal-to-Noise Ratio (in dB)

P-AQM+ECF Propotional Active Queue Man-
agement with Explicit Congestion Feedback

QAM Quadrature Amplitude Modulation

QCIF Quarter CIF

QoS Quality of Service

RA Rate Adaptive

RED Random Early Detection

RGB Red, Green, Blue

RFC Request For Comments

RTCP RTP Control Protocol

RTP Real Time Protocol

RTS Request To Send

RTSP Real Time Streaming Protocol

RTT Round-trip-time

SIFS Short Interframe Space

SNMP Simple Network Management Protocol

STA 802.11 Wireless Station

SVBR Shaped Variable Bit Rate

Tcl Tool Command Language

TCP Transmission Control Protocol

TFRC TCP-Friendly Rate Control

85

TOS Type Of Service

TXOP Transmission Opportunity

UDP User Datagram Protocol

VBR Variable Bit Rate

VLC VideoLAN Client

VoD Video-on-Demand

VTP Video Transport Protocol

WEP Wired-Equivalent Privacy

WLAN Wireless Local Area Network

WME Wireless Multimedia Extension

WMM Wi-Fi Multimedia

WMSTFP Wireless Multimedia Streaming TCP-
Friendly Protocol

WMV Windows Media Video

WPA Wi-Fi Protected Access

YUV Luminance and chrominance color space

86 APPENDIX A. LIST OF ABBREVIATIONS

APPENDIX B

Shell scripts

87

88 APPENDIX B. SHELL SCRIPTS

Code Snippet 2 , manQ.sh: This script is used to run the simulation pre-process.

! / b i n / bash
##
S c r i p t t o e x e c u t e ffmpeg and g e n e r a t e many v e r s i o n s o f VBR open loop v i d e o .
I n p u t a rgumen t s :
$1 : Q u a n t i z e r minimum .
$2 : Q u a n t i z e r maximum
$3 : i n p u t f i l e name (t h e v i d e o f i l e t h a t ffmpeg knows how t o decode , i . e . t r a s c o d e)
#
Outpu t i s a ∗ . m4v f i l e (mpeg4 v i d e o b i t s t r e a m) f i l e
#
Then t h i s f i l e i s s t r i p p e d f o r e v e n t i a l l y r e p e a t e d h e a d e r s u s i n g
mp4 − s t r i p
Then t h e send t r a c e i s g e n e r a t e d wi th
mp4 −send
from E v a l v i d .
#
L a s t e d i t e d by T o r g e i r Haukaas − 2006
###

#####################################
ffmpeg p a r a m e t e r s :
(Note t h a t p a r a m e t e r s can r e f l e c t i n p u t and o u t p u t f i l e s . The f i l e t h e s w i t c h b e l o n g s
t o i s t h e f i r s t f i l e men t ioned r i g h t o f t h e s w i t c h .)
−r i s fps , and i s s e t t w i c e : f o r c e s 30 f p s o f i n p u t , and 30 f p s o f o u t p u t
−s i s s e t t o CIF
−vcodec i s s e t t o mpeg4 (f o r m a t o f o u t p u t)
−q s c a l e i s f i x e d q u a n t i z e r (==> VBR open loop)
−g i s GOP s i z e i n numb . o f f r a me s . Note t h a t ffmpeg w i l l modify t h i s t o
s h o r t e r GOPs when needed .
−y f o r c e s o u t p u t f i l e o v e r w r i t e i n c a s e i t e x i s t s .
####
mp4 p a r a m e t e r s :
− s t r i p s e a r c h e s i n p u t f i l e f o r r e p e a t e d h e a d e r s and removes them f o r o u t p u t
−send <s t r e a m d e s t . IP a d d r e s s > <p o r t numb> <fps> <s o u r c e f i l e > > <s t r e a m da ta>
Note : I have speeded up t h i s f u n c t i o n by i n d i c a t i n g ve ry h igh f rame r a t e ! ! The t i me
s c h e d u l e w i l l n e v e r t h e l e s s be o v e r r u l e d by t h e ns−2 program .
#####################################
for ((i=$1 ; i<=$2 ; i++))
do

ffmpeg −r 30 −s 176x144 −i $3 −vcodec mpeg4 −g 12 −sc_threshold 20000 −qscale
$i −s 176x144 −r 30 −y videoVariants /3_Qi .m4v

mp4 −send 2 2 4 . 1 6 8 . 1 . 1 0 0 1234 1000 30000 videoVariants /3_Qi .m4v > nsin /
st_3_Qi .txt

done

exit 0

89

Code Snippet 3 , case1.sh

! / b i n / bash
T o r g e i r Haukaas − NTNU 2006
Th i s s c r i p t e x e c u t e s i i t e r a t i o n s o f a ns−s i m u l a t i o n t o make
a compar i son of v i d e o q u a l i t i e s whi th d i f f e r e n t l i n k c o n g e s t i o n .
##
#
type=udp
TYPE=TFRCs
UDP=1
TFRC=8
FTP=0
WEB=0
VIDEO=3xCoastguard_qcif
POB=250
folder=/home /torgeir /devel /master /case1
i =$ ((FTP+UDP+WEB+TFRC−1))
#rm −f $ f o l d e r / psnr−a l l . $ t y p e . t x t
for ((i=0 ; i<=$TFRC ; i++)) ;
do

echo "---->NEW ITERATION: -nofUDP $UDP -nofTFRC $i -nofFTP $FTP -nofWEB $WEB
<-------"

mkdir $folder /nsout .$i
ns 8 0 2 . 1 1 .tcl −nofUDP $UDP −nofTFRC $i −nofFTP $FTP −nofWEB $WEB −doPing 1 −

seed 8 > $folder /nsout .$i /std_out .$type .iteration$i .txt 2>&1
echo "ns finished"
et_ra nsout /sd_be .$type . 0 nsout /rd_be .$type . 0 nsin /st_$VIDEO .yuv_Q2 .txt nsout /

video2 .dat videoVariants /$VIDEO .yuv_Q 2 31 nsout /frame_size .dat $VIDEO .m4v
01 $POB

echo "et_ra finished, $VIDEO.m4v created "
mp4creator −r 30 −c $VIDEO .m4v $folder /nsout .$i /$VIDEO .$i .mp4 > mp4creatorOut /

out .$i .txt 2>&1
echo "mp4creator finished, $VIDEO.$i.mp4 created"
rm $VIDEO .m4v
ffmpeg −i $folder /nsout .$i /$VIDEO .$i .mp4 −r 30 $folder /nsout .$i /$VIDEO .

reconstructed .yuv > ffmpegOut /out .$i .txt 2>&1
echo "ffmpeg finished, $VIDEO.reconstructed.yuv created "
echo ""
fixyuv nsout /sd_be .$type . 0 nsout /rd_be .$type . 0 new_st .txt $folder /nsout .$i /

$VIDEO .reconstructed .yuv $folder /nsout .$i /$VIDEO .reconstructed .fixed .$i .
yuv $POB > fixyuvOut /out .$i .txt 2>&1

echo "fixyuv_ra finished "
echo ""
rm −f $folder /nsout .$i /$VIDEO .reconstructed .yuv
psnr 176 144 420 $VIDEO .yuv $folder /nsout .$i /$VIDEO .reconstructed .fixed .$i .yuv

> $folder /nsout .$i /psnr_$VIDEO .$type .it$i .txt 2>$folder /nsout .$i /
psnr_result .$type .$i .txt

echo "psnr finished "
awk ’{print ’$i ’" " $8} ’ $folder /nsout .$i /psnr_result .$type .$i .txt >>$folder /

psnr_all .$type .txt

cp nsout /rd_be .$type . 0 $folder /nsout .$i /rd_be .$type . 0
cp nsout /sd_be .$type . 0 $folder /nsout .$i /sd_be .$type . 0
cp nsout / 8 0 2 . 1 1 .tr $folder /nsout .$i / 8 0 2 . 1 1 .tr
cp nsout /bwt .∗ $folder /nsout .$i /
. / xgr2 .sh
echo "Press Y to clean N to keep tmp-files:"
read answer
if (((($answer == Y)) | | (($answer == y)))) ; then

. / clean .sh
else

echo "keeping tmp-files"
fi

done
cd . . / case1 /
xgraph psnr_all .$type .txt −nb −geometry 800x400 −bg white −t "Peak Signal-to-Noise

Ratio" −y "PSNR (dB)" −x "number of $TYPE" &

exit 0

90 APPENDIX B. SHELL SCRIPTS

Code Snippet 4 , case2.sh

! / b i n / bash
T o r g e i r Haukaas − NTNU 2006
Th i s s c r i p t e x e c u t e s i i t e r a t i o n s o f a ns−s i m u l a t i o n t o make
a compar i son of v i d e o q u a l i t y wi th d i f f e r e n t s i g n a l q u a l i t y .
##
#
type=tfrc
UDP=0
TFRC=1
FTP=0
WEB=0
VIDEO=3xCoastguard_qcif
POB=250
folder=/home /torgeir /devel /master /case2 /$type
dev=4
pathloss=2
dist=15
i =$ ((FTP+UDP+WEB+TFRC−1))
#rm −f $ f o l d e r / psnr−a l l . $ t y p e . t x t
for ((i=5 ; i<=$dist ; i++)) ;
do

echo "---->NEW ITERATION: pathloss=$pathloss deviation=$dev nodeDist=$i -nofUDP
$UDP -nofTFRC $TFRC <-------"

mkdir $folder /nsout .$i
ns 8 0 2 . 1 1 .tcl −nofUDP $UDP −nofTFRC $TFRC −nofFTP $FTP −nofWEB $WEB −doPing 0 −

pathlossExp $pathloss −std_db $dev −nodeDist $i > $folder /nsout .$i /std_out
.$type .iteration$i .txt 2>&1

echo "ns finished"
et_ra nsout /sd_be .$type . 0 nsout /rd_be .$type . 0 nsin /st_$VIDEO .yuv_Q2 .txt nsout /

video2 .dat videoVariants /$VIDEO .yuv_Q 2 31 nsout /frame_size .dat $VIDEO .m4v
01 $POB

echo "et_ra finished, $VIDEO.m4v created "
mp4creator −r 30 −c $VIDEO .m4v $folder /nsout .$i /$VIDEO .$i .mp4 > mp4creatorOut /

out .$i .txt 2>&1
echo "mp4creator finished, $VIDEO.$i.mp4 created"
rm $VIDEO .m4v
ffmpeg −i $folder /nsout .$i /$VIDEO .$i .mp4 −r 30 $folder /nsout .$i /$VIDEO .

reconstructed .yuv > ffmpegOut /out .$i .txt 2>&1
echo "ffmpeg finished, $VIDEO.reconstructed.yuv created "
echo ""
fixyuv nsout /sd_be .$type . 0 nsout /rd_be .$type . 0 new_st .txt $folder /nsout .$i /

$VIDEO .reconstructed .yuv $folder /nsout .$i /$VIDEO .reconstructed .fixed .$i .
yuv $POB > fixyuvOut /out .$i .txt 2>&1

echo "fixyuv_ra finished "
echo ""
rm −f $folder /nsout .$i /$VIDEO .reconstructed .yuv
psnr 176 144 420 $VIDEO .yuv $folder /nsout .$i /$VIDEO .reconstructed .fixed .$i .yuv

> $folder /nsout .$i /psnr_$VIDEO .$type .it$i .txt 2>$folder /nsout .$i /
psnr_result .$type .$i .txt

echo "psnr finished "
awk ’{if ($8=="") print ’$i ’" " 0 ; else print ’$i ’" " $8} ’ $folder /nsout .$i /

psnr_result .$type .$i .txt >>$folder /psnr_all .$type .txt

cp nsout /rd_be .$type . 0 $folder /nsout .$i /rd_be .$type . 0
cp nsout /sd_be .$type . 0 $folder /nsout .$i /sd_be .$type . 0
cp nsout / 8 0 2 . 1 1 .tr $folder /nsout .$i / 8 0 2 . 1 1 .tr
cp nsout /bwt .∗ $folder /nsout .$i /
. / xgr2 .sh

done
cd $folder
xgraph psnr_all .$type .txt −nb −geometry 800x400 −bg white −t "Peak Signal-to-Noise

Ratio" −y "PSNR (dB)" −x "Distance (m)" &

exit 0

91

Code Snippet 5 , case3.sh: This script runs i iterations of ns with 1, ..., i UDP sources, collects transmit and
reception timestamps from one monitored flow, calculates the delay average per flow and presents them in a graph.

! / b i n / bash
T o r g e i r Haukaas − NTNU 2006
Th i s s c r i p t e x e c u t e s i i t e r a t i o n s o f a ns−s i m u l a t i o n t o make
a p r e s e n t a t i o n o f 802 .11 l i n k d e l a y (i n %) f o r d i f f e r e n t i n p u t r a t e s .
##
#
type=udp
UDP=6
TFRC=0
FTP=0
WEB=0
VIDEO=3xCoastguard_qcif
POB=250
folder=/home /torgeir /devel /master /case4 /many−udps

i =$ ((FTP+UDP+WEB+TFRC−1))
#rm −f $ f o l d e r / psnr−a l l . $ t y p e . t x t
for ((i=1 ; i<=$UDP ; i++)) ;
do

echo "---->NEW ITERATION: -nofUDP $i <-------"
mkdir $folder /nsout .$i
ns 8 0 2 . 1 1 .tcl −nofUDP $i −doPing 1 −snet_prop 3ms −core_prop 9ms −bsnet_prop 3

ms > $folder /nsout .$i /std_out .$type .iteration$i .txt 2>&1
echo "ns finished"
awk −f awk /added−delay .awk nsout / 8 0 2 . 1 1 .tr > nsout /one−udp−delay .$i .txt
echo "added-delay.awk finished"
awk −f awk /avg−delay .awk nofudp=$i nsout /one−udp−delay .$i .txt >> $folder /avg−

delay .txt
echo "avg-delay.awk finished"

cp nsout /∗ $folder /nsout .$i /
. / xgr2 . sh

done
cd $folder
xgraph avg−delay .txt −nb −geometry 800x400 −bg white −t "802.11 link delay (share of

total)" −y "Avg. Delay (%)" −x "UDP sources" &

exit 0

92 APPENDIX B. SHELL SCRIPTS

Code Snippet 6 , clean.sh: This shell-script removes all the trace files and temporary results/output from a
simulation.

! / b i n / bash
echo −n "cleaning up the simulation mess! "
echo −n "."
rm −f nsout /∗ > err 2>&1
echo −n "."
rm −f ffmpegOut /∗ > err 2>&1
echo −n "."
rm −f fixyuvOut /∗ > err 2>&1
echo −n "."
rm −f mp4creatorOut /∗ > err 2>&1
echo −n "."
rm −f psnr2mos /∗ > err 2>&1
echo −n "."
rm −f ∗reconstructed∗ > err 2>&1
echo −n "."
rm −f psnr_∗ .txt > err 2>&1
echo −n "."
rm −f coastguard∗ .mp4 > err 2>&1
echo −n "."
rm −f packets_lost .txt > err 2>&1
echo −n "."
rm −f result .txt > err 2>&1
echo −n "."
rm err
echo −n "."
echo " done."

APPENDIX C

AWK scripts

93

94 APPENDIX C. AWK SCRIPTS

Code Snippet 7 , web-throughput.awk.

Awk s c r i p t t o f i n d t h e t h r o u p u t t o a g i v e n d e s t i n a t i o n node .
Used t o m o n i t o r web− t r a f f i c t h r o u g h p u t .
I n p u t :
dn = d e s t i n a t i o n node
T o r g e i r Haukaas −NTNU− 2006
(Based on s c r i p t by Lloyd Wood , U n i v e r s i t y o f S u r r e y)
##
BEGIN {

highest_packet_id = 0 ;
n = 1 ;
st= 0 . 5 ;
web_flow_id=2;

}

/−Hs / && /r / {
time = $3 ;
node_1 = $5 ;
node_2 = $7 ;
bytes = $37 ;
flow_number = $39 ;

The f o l l o w i n g whi le−l oop e n s u r e s t h a t empty t ime samples a r e t a k e n
c a r e o f .
while (time > st∗n) {

bps [n] = acc_byte [n] ∗ 8 / (st∗1000000) ;
n++;

}

Accumulate a l l r e c e i v e d b y t e s a t f i n a l d e s t i n a t i o n f o r t h e f low of i n t e r e s t
if (node_1 == dn && flow_number == web_flow_id)

acc_byte [n] += bytes ;
}

End up wi th p r i n t i n g o u t t h e r e s u l t s
END {

for (t = 1 ; t <= n ; t++) {
printf ("%f %f\n" , t∗st , bps [t]) ;

}
}

95

Code Snippet 8 , added-delay.awk.

Th i s s c r i p t m o n i t o r s t h e f low between s p e c i f i e d s o u r c e and s ink ,
and c a l c u l a t e s d e l a y ca u se d by t h e 802.11− l i n k .
Outpu t i s a r r i v a l t ime of p a c k e t [j] and t h e a v e r a g e d e l a y of t h e l a s t
10 p a c k e t s .
T o r g e i r Haukaas −NTNU− 2006
##
BEGIN {

source=2; # r e f e r s t o ns node numbers
ap=3; # r e f e r s t o ns node numbers
sink=4; # r e f e r s t o ns node numbers
limit=11000; # l i m i t c a l c u l a t i o n t o t h e k f i r s t p a c k e t s
sample=40; # s t e p s i z e f o r d e l a y s a m p l i n g (i n nof p k t s)

}
(/ ˆ \ + / && $3==source) | | (/ ˆ r / && $4==ap) | | (/ ˆ r / && $5==sink) {

for (k=0;k<limit ;k=k+sample) {
if ($1=="+" && $12==k) starttime [k]=$2 ;
if ($1=="r" && $12==k) aptime [k]=$2 ;
if ($1=="r" && $41==k) stoptime [k]=$3 ;

}

}

END {
f o r (i d x i n s t a r t t i m e) p r i n t idx , s t a r t t i m e [i d x] , ap t i m e [i d x] , s t o p t i m e [i d x] ;

j=1;
for (i=0;i<limit ;i=i+20) {

if (starttime [i]>0 && aptime [i]>0 && stoptime [i]>0){
total_delay=stoptime [i]−starttime [i] ;
wifi_delay=stoptime [i]−aptime [i] ;
share [j]=wifi_delay /total_delay ;
if (j>5) {

running_avg=(share [j−4]+share [j−3]+share [j−2]+share [j
−1]+share [j]) / 5 ;

print stoptime [i] , running_avg ;
} else if (j>10) {

running_avg=(share [j−9]+share [j−8]+share [j−7]+share [j
−6]+share [j−5]+share [j−4]+share [j−3]+share [j−2]+
share [j−1]+share [j]) / 1 0 ;

print stoptime [i] , running_avg ;
} else print stoptime [i] , share [j] ;
j++;
p r i n t f (” i d %i s t a r t %f ap %f s t o p %f s h a r e %f \n ” , i , s t a r t t i m e

[i] , ap t i me [i] , s t o p t i m e [i] , s h a r e) ;
}

}
}

96 APPENDIX C. AWK SCRIPTS

Code Snippet 9 , avg-delay.awk.

t h i s s c r i p t c a l c u l a t e s a v e r a g e d e l a y c a u s e by t h e 802.11− l i n k .
run added−d e l a y . awk on a ns t r a c e− f i l e and
a p p l y t h i s t o t h e r e s u l t s .
I n p u t :
nofudp = number o f c o n c u r r e n t f l o w s i n t h e m o n i t o r e d
802 .11 ne twork .
T o r g e i r Haukaas −NTNU− 2006
##
BEGIN {

i=0;
}
{

delay [i]=$2
i++;

}

END {
for (k=0;k<i ;k++) sum=sum+delay [k] ;
avg=sum /i ;
print nofudp , avg ;

}

Code Snippet 10 , avg-quantizer.awk.

t h i s s c r i p t c a l c u l a t e s a v e r a g e q u a n t i z e r l e v e l used by
Eva lv id−RA. Apply t o a f i l e o f t h e t y p e s d b e [x]
I n p u t : none
T o r g e i r Haukaas −NTNU− 2006
##
BEGIN {

i=0;
}
{

q [i]=$6
i++;

}

END {
for (k=0;k<i ;k++) sum=sum+q [k] ;
avg=sum /i ;
print avg ;

}

APPENDIX D

Tcl scripts

97

98 APPENDIX D. TCL SCRIPTS

Code Snippet 11 This is the main Tcl-script controlling the ns-2 simulation.

Th i s script s e t s up a s i m u l a t i o n e n v i r o n m e n t t o t e s t s t r e a m i n g media
ove r 802 . 1 1 w i r e l e s s i n t e r f a c e s wi th a d j u s t a b l e l i n k q u a l i t y .
A dumbbel l t o p o l o g y wi th w i r e l e s s nodes on one end and media s e r v e r s
on t h e o p p o s i t e end w i l l be d e m o n s t r a t e d .
##
No r i g h t s r e s e r v e d : T o r g e i r Haukaas 2007

==
G e n e r a l P a r a m e t e r s
==
set opt (title) "802.11" ; # sc r ip t−name
set opt (seed) 13.37 ; # g e n e r a l random seed for s i m u l a t i o n t r a f f i c

f low
set opt (stop) 55.0 ; # s i m u l a t i o n time
set opt (verbose) 1 ; # 1 t o p r i n t messages 0 t o be s i l e n t
==
Channel p r o p e r t i e s (w i f i− l i n k)
==
set opt (chan) Channel /WirelessChannel
set opt (prop) Propagation /TwoRayGround ; # F r e e S p a c e , TwoRayGround or

Shadowing
set opt (netif) Phy /WirelessPhy
set opt (mac) Mac / 802_11
set opt (qm) DropTail ; # RED
set opt (ifq) Queue /DropTail
set opt (ll) LL
set opt (ant) Antenna /OmniAntenna
set opt (adhocRouting) DSDV ; # p o s s i b l e ad−hoc r o u t i n g p r o t o c o l s :

DSDV DSR TORA AODV
set opt (disableRTS_CTS) 1 ; # RTS / CTS i s d i s a b l e d by default (=1) .

ENABLE (=0) if mobi le nodes
c a n n o t s e e e a c h o t h e r ! !

For P r o p a g a t i o n / Shadowing:
set opt (pathlossExp) 2.0 ; # p a t h l o s s ex p o n e n t
set opt (std_db) 4.0 ; # d e v i a t i o n (dB)
set opt (dist0) 1.0 ; # r e f e r e n c e d i s t a n c e (m) (s e e ns manual p .

189)
==
Topology
==
set opt (x) 670 ; # X d imens ion of t h e t o p o g r a p h y
set opt (y) 670 ; # Y d imens ion of t h e t o p o g r a p h y

set opt (ifqlen) 50 ; # max p a c k e t i n i f q
set opt (nofmn) 1 ; # number o f w i r e l e s s nodes OBS! max 9 for now
set opt (nofbs) 1 ; # number o f base s t a t i o n s
set opt (nofsn) 1 ; # number o f s e r v e r nodes
set opt (mn_motion) 0 ; # random mot ion of mobi le nodes
set opt (nodeDist) 2 ; # d i s t a n c e i n m e t e r s between WLAN nodes
set opt (ecn) 0 ; # 1 t o e n a b l e ECN i n r o u t e r s
set opt (adaptive) true
set opt (minth) 0
set opt (maxth) 0
==
E v a l v i d p a r a m e t e r s
==
set opt (videoname) "3xCoastguard_qcif" ; # bas e o f v i d e o file name
set opt (vbr_rate) 3Mb ; # max VBR−output

99

set opt (q_variants) 30 ; # q u a n t i z e r s c a l e range
set opt (ra_mtu) 1000 ; # max f r a g m e n t e d s i z e , MTU
set opt (fps) 30 ; # f r a me s p e r second (a l l v i d e o i s

t r e a t e d wi th e q u a l f p s)
set opt (tfrc_pktsize) [expr $opt (ra_mtu) + 36] ; # DCCP/ TFRC h e a d e r (12+4 =16B) and

IP−header (20B)
set opt (udp_pktsize) [expr $opt (ra_mtu) + 28] ; # UDP h e a d e r (8B) and IP−header (20B)
set opt (cbr_true) 0
set opt (GoP_size) 12
==
T r a f f i c g e n e r a t i o n .
==
set opt (nofTCP) 0 ; # number o f TCP f l o w s
set opt (nofWEB) 0 ; # number o f WEB f l o w s
set opt (nofFTP) 0 ; # number o f FTP f l o w s
set opt (nofUDP) 0 ; # number o f UDP f l o w s
set opt (nofTFRC) 0 ; # number o f TFRC f l o w s
#
set opt (window) 30 ; # window for l o n g− l i v e d t r a f f i c
set opt (tcp_pktsize) 1460
set opt (tcpTick_) 0.01
set opt (doPing) 0 ; # 1 t o p ing s e r v e r s on s t a r t u p , 0 t o d i s a b l e
WEB−settings
set opt (webSeed) 0 ; # seed for RNG for web t r a f f i c g e n e r a t i o n
set opt (interPage) 1 ; # a v e r a g e v a l u e for e x p o n e n t i a l l y d i s t r i b u t e d i n t e r

page time
set opt (pageSize) 3 ; # nof o b j e c t s p e r page
set opt (nofWebPages) 10 ; # number o f pages p e r s e s s i o n
set opt (nofWebSessions) 4 ; # number o f web s e s s i o n s
set opt (webObjectSize) 20 ; # a v e r a g e size of web o b j e c t i n p k t s .
set opt (paretoShape) 1.05 ; # shape p a r a m e t e r for P a r e t o d i s t r i b u t i o n o f web size

a l a r g e r p a r a m e t e r means more s m a l l o b j e c t s
==
P l o t t i n g s t a t i s t i c s .
==
set opt (out_dir) nsout
set opt (tf) $opt (out_dir) /$opt (title).tr ; # trace file
set opt (namtf) $opt (out_dir) /$opt (title).nam ; # nam trace file
set opt (doTrace) 1 ; # 1 t o do t r a c i n g TODO: remove or f i x : t h i s v a l u e

c a n n o t be 0
set opt (nam) 1 ; # 1 t o trace and run nam
set opt (sampleTime) 0.5 ; # time between each bw−sample w r i t t e n by t h e

r e c o r d− f u n c t i o n
set opt (macTrace) OFF
set opt (agentTrace) ON
set opt (routerTrace) OFF
set opt (movementTrace) OFF
==
Link c h a r a c t e r i s t i c s .
==
set opt (errUnit) packet ; # u n i t o f e r r o r s , p e r p a c k e t o r p e r b i t
set opt (errRateUL) 0 ; # t h e r a t e o f e r r o r s i n u p l i n k
set opt (errBurstUL) 0 ; # c o e f f i c i e n t 0 . . 1 o f how b u r s t y e r r o r s a r e
set opt (errSlotUL) 0 ; # time i n s e c o f low error p e r i o d
set opt (errRateDL) 0 ; #
set opt (errBurstDL) 0 ; #
set opt (errSlotDL) 0
==
set opt (tfrcFB) 1 ; # number o f f e e d b a c k r e p o r t s i n TFRC p e r RTT

set opt (snet_bw) 100Mb ; # l i n k BW on s e r v e r a c c e s s n e t
set opt (snet_prop) 2ms ; # l i n k p r o p a g a t i o n d e l a y on s e r v e r a c c e s s n e t

100 APPENDIX D. TCL SCRIPTS

set opt (core_bw) 100Mb ; # l i n k BW on c o r e n e t (r o u t e r 0 <−−−>r o u t e r 1)
set opt (core_prop) 2ms ; # l i n k p r o p a g a t i o n d e l a y on c o r e n e t (r o u t e r 0 <

−−−>r o u t e r 1)
set opt (bsnet_bw) 100Mb ; # l i n k BW on base s t a t i o n a c c e s s n e t
set opt (bsnet_prop) 2ms ; # l i n k p r o p a g a t i o n d e l a y on base s t a t i o n

a c c e s s n e t
set opt (wifi_bw) 11Mb ; # l i n k BW on w i f i n e t

==================== END OPTIONS =====================================
==================== START PROCEDURES ================================
proc getopt {argc argv} {

global opt
for {set i 0} {$i < $argc} {incr i} {

set arg [lindex $argv $i]
if { [string range $arg 0 0] != "-"} continue
set name [string range $arg 1 end]
set opt ($name) [lindex $argv [expr $i+ 1]]
puts2 "opt($name): $opt($name)"

}
}

proc puts2 {output} {
global opt
if { $opt (verbose)==1 } {

puts $output
}

}
proc setnofnodes {} {

global opt ns
set opt (nofmn) [expr $opt (nofTFRC) +$opt (nofUDP) +$opt (nofFTP) +$opt (nofWEB)]

if { $opt (nofmn)>9 } {
puts2 "nofmn>9. extend adress array!"
puts2 "NS EXITING..."
$ns halt
exit 0

}
set opt (nofsn) 0
if {$opt (nofTFRC)>0 } {

set opt (nofsn) [expr $opt (nofsn) + $opt (nofTFRC)]
}
if {$opt (nofUDP)>0 } {

incr opt (nofsn)
}
if {$opt (nofFTP)>0 } {

incr opt (nofsn)
}
if {$opt (nofWEB)>0 } {

incr opt (nofsn)
}
puts2 "Ordered one server per source type. nof servers: $opt(nofsn)"

}

proc wlan_topo_complex {} {
global ns nodes opt mn sn rn bs
puts2 "Building topology..."
##
S e r v e r , R o u t e r , B a s e− s t a t i o n and Mobile nodes
#
sn 0−−−\ /−−−−mn 0
\ /
sn 1−−−−−rn 0−−−−−−−−−rn 1−−−−−−bs 0−−−−−−mn 1

101

/ \ \ . . .
. . . / \ \
/ \ \−−−−mn n
sn n−− / \−−−−bs n
#
0 . 0 . n 0 . 0 . 0 1 . 0 . 0 1 . n . 0 1 .n .m
##

C o n f i g u r a t i o n for Orinoco 802 . 1 1 b 11Mbps PC c a r d wi th −>22.5m range
Phy /WirelessPhy set Pt_ 0.031622777 ; # t r a n s m i t power
Phy /WirelessPhy set L_ 1.0 ; # System l o s s f a c t o r
Phy /WirelessPhy set bandwidth_ 1 ; # $op t (w i f i b w)
Phy /WirelessPhy set freq_ 2.472e9 ; # channe l−13 . 2 .472GHz
Phy /WirelessPhy set CPThresh_ 10.0 ; # r e c e p t i o n o f s i m u l t a n e o s

p a c k e t s if P1 > CPThresh x P2
Phy /WirelessPhy set CSThresh_ 5.011872e-12 ; # c a r r i e r s e n s i n g t h r e s h o l d
Phy /WirelessPhy set RXThresh_ 5.82587e-09 ; # r e c e p t i o n t h r e s h o l d

LIMITATION: ns does n o t s u p p o r t ARF (Auto Rate F a l l b a c k , dynamic c h a n n e l r a t e
a d j u s t m e n t)

Mac / 802_11 set dataRate_ $opt (wifi_bw)

Most commerc ia l 802 .11b−ca rds have RTS / CTS d i s a b l e d by d e f a u l t . RTSThreshold
= 3000 w i l l

e n a b l e RTS on ly for p a c k e t s above 3KB, which s h o u l d be n e v e r .
if { $opt (disableRTS_CTS)==1 } {

puts2 "Disabling RTS/CTS"
Mac / 802_11 set RTSThreshold_ 3000

}
Mac / 802_11 set basicRate_ 1Mb ; # for b r o a d c a s t p a c k e t s

a d d r e s s scheme set−up
$ns node-config -addressType hierarchical
AddrParams set domain_num_ 2 ; # s e t s two d o m a i n s : 0 . 0 . 0 and 1 . 0 . 0
if { $opt (nofbs)>1 } {

puts2 "no support for more than one base station node"
puts2 "NS EXITING..."
$ns halt
exit 0

}
lappend cluster_num 1 2 ; # s e t s nof c l u s t e r s p r domain (2 = one

for r o u t e r , one for each bs)
; # one c l u s t e r o f s e r v e r s and one

c l u s t e r o f mobi le nodes
AddrParams set cluster_num_ $cluster_num
s e t t i n g nof nodes p r c l u s t e r [c l i e n t s + r o u t e r] , r o u t e r , [c l i e n t s + base s t a t i o n]

:
lappend eilastlevel [expr $opt (nofsn) + 1] 1 [expr $opt (nofmn) + 1]
AddrParams set nodes_num_ $eilastlevel

set topo [new Topography]
$topo load_flatgrid $opt (x) $opt (y)
god needs t o know t h e number o f a l l w i r e l e s s i n t e r f a c e s MN+BS
create-god [expr $opt (nofmn) + $opt (nofbs)]

c r e a t i n g wi red n o d e s : sn = s e r v e r nodes and rn = r o u t e r nodes
set rn (0) [$ns node {0.0.0}]
set rn (1) [$ns node {1.0.0}]
puts2 "Router nodes:"
puts2 [$rn (0) node-addr]
puts2 [$rn (1) node-addr]
c r e a t e more s n−a d r e s s e s if n e c e s s a r y . . .

102 APPENDIX D. TCL SCRIPTS

if { $opt (nofsn)>9 } {
puts2 "create for-loop to address more server nodes"
puts2 "NS EXITING..."
$ns halt

}
set sn_adr {0.0.1 0.0.2 0.0.3 0.0.4 0.0.5 0.0.6 0.0.7 0.0.8 0.0.9}
puts2 "Server nodes:"
for {set i 0 } { $i < $opt (nofsn) } { incr i } {

set sn ($i) [$ns node [lindex $sn_adr $i]]
puts2 [$sn ($i) node-addr]

}

if {$opt (prop) == "Propagation/Shadowing" } {
first set v a l u e s o f shadowing model
Propagation /Shadowing set pathlossExp_ $opt (pathlossExp) ; # p a t h

l o s s e x p o n e n t
Propagation /Shadowing set std_db_ $opt (std_db) ; #

shadowing d e v i a t i o n (dB)
Propagation /Shadowing set dist0_ $opt (dist0) ; #

r e f e r e n c e d i s t a n c e (m)
Propagation /Shadowing set seed_ $opt (seed) ; # seed

for RNG
puts2 "values for shadowing propagation are set"

}
c o n f i g u r i n g node for 802 . 1 1− i n t e r f a c e .
$ns node-config -adhocRouting $opt (adhocRouting) \

-llType $opt (ll) \
-macType $opt (mac) \
-ifqType $opt (ifq) \
-ifqLen $opt (ifqlen) \
-propInstance [new $opt (prop)] \
-antType $opt (ant) \
-phyType $opt (netif) \
-wiredRouting ON \
-channel [new $opt (chan)] \
-topoInstance $topo \
-agentTrace $opt (agentTrace) \
-routerTrace $opt (routerTrace) \
-macTrace $opt (macTrace) \
-movementTrace $opt (movementTrace)

−propType $op t (prop) \

c r e a t e b a s e− s t a t i o n
if { $opt (nofbs)>1 } {

puts2 "create for-loop to add several base-stations"
puts2 "NS EXITING..."
$ns halt
exit 0

} else {
c r e a t i n g and s e t t i n g ne twork h i e r− a d d r e s s
set bs (0) [$ns node {1.1.0}]
bs i s n o t moving:
$bs (0) random-motion 0
$bs (0) set X_ 1.0
$bs (0) set Y_ 1.0
$bs (0) set Z_ 0.0
puts2 "Base station nodes:"
puts2 [$bs (0) node-addr]

}

c o n f i g u r e for "nofmn" mobi l enodes
$ns node-config -wiredRouting OFF

103

if { $opt (nofbs)>1 } {
TODO: l e g g t i l kode for f l e r e bs om d e t t r e n g s
puts2 "create for-loop to address mobile nodes"
puts2 "under several base-stations"
puts2 "NS EXITING..."
$ns halt
exit 0

} else {
set x_pos 0.0
set y_pos 0.0
c r e a t e more mn−adresses if n e c e s s a r y . . .
if { $opt (nofmn)>9 } {

puts2 "create for-loop to address more mobile nodes"
puts2 "NS EXITING..."
$ns halt
exit 0

}
set adr {1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 1.1.9}
puts2 "Mobile nodes: "
for {set j 0 } { $j < $opt (nofmn) } { incr j } {

set mn ($j) [$ns node [lindex $adr $j]]
puts2 [lindex $adr $j]
s e t t i n g c o o r d i n a t e s and mot ion
$mn ($j) random-motion $opt (mn_motion)
$mn ($j) set X_ $opt (nodeDist) ; # [expr $x pos + $op t (n o d e D i s t)

/ 2]
$mn ($j) set Y_ $opt (nodeDist) ; # [expr $y pos + $op t (n o d e D i s t)

/ 2]
$mn ($j) set Z_ 0.0
each new mn i s l o n g e r away from b s :
set x_pos [expr $x_pos + $opt (nodeDist) / 2]
set y_pos [expr $y_pos + $opt (nodeDist) / 2]
$mn ($j) base-station [AddrParams addr2id [$bs (0) node-addr]]
$ns initial_node_pos $mn ($j) 20

}
}

l i n k i n g up s e r v e r s t o first c o r e r o u t e r
set link_angle 135
set angle_offset [expr 9 0 /$opt (nofsn)]
for {set k 0 } { $k < $opt (nofsn) } { incr k } {

$ns duplex-link $sn ($k) $rn (0) $opt (snet_bw) $opt (snet_prop) $opt (qm)
$ns duplex− l ink−op $rn (0) $sn ($k) o r i e n t $ l i n k a n g l e
set link_angle [expr $link_angle + $angle_offset]

}
c o r e l i n k
$ns duplex-link $rn (0) $rn (1) $opt (core_bw) $opt (core_prop) $opt (qm)
$ns duplex− l ink−op $rn (0) $rn (1) o r i e n t r i g h t

l i n k i n g up base s t a t i o n s t o second c o r e r o u t e r
for {set l 0 } { $l < $opt (nofbs) } { incr l } {

$ns duplex-link $rn (1) $bs ($l) $opt (bsnet_bw) $opt (bsnet_prop) $opt (qm)
$ns duplex− l ink−op $rn (1) $bs ($ l) o r i e n t r i g h t−u p

}

puts2 "done setting up topology"
}

proc ping {} {
global opt ns mn sn
set tmp 0
set tmp2 0

104 APPENDIX D. TCL SCRIPTS

e s t a b l i s h r o u t e wi th p i n g . each type t o a s e p e r a t e s e r v e r :
for {set m $tmp2 } { $m < $opt (nofFTP) } { incr m} {

set ping_downstream [$ns create-connection Ping $sn ($tmp) Ping $mn ($m)
9]

set ping_upstream [$ns create-connection Ping $mn ($m) Ping $sn ($tmp) 9]
puts2 "FTP-link: ping from [$sn($tmp) node-addr] to [$mn($m) node-addr]

and back!"
$ping_downstream oneway
$ping_upstream oneway
$ns after 0.1 "$ping_downstream send"
$ns after 0.2 "$ping_upstream send"
if {$m == [expr $opt (nofFTP) - 1] } {

incr tmp
}
incr tmp2

}

set tmp3 $tmp2
for {set m $tmp2 } { $m < $opt (nofWEB) } { incr m} {

set ping_downstream [$ns create-connection Ping $sn ($tmp) Ping $mn ($m)
9]

set ping_upstream [$ns create-connection Ping $mn ($m) Ping $sn ($tmp) 9]
puts2 "WEB-link: ping from [$sn($tmp) node-addr] to [$mn($m) node-addr]

and back!"
$ping_downstream oneway
$ping_upstream oneway
$ns after 0.3 "$ping_downstream send"
$ns after 0.4 "$ping_upstream send"
if {$m == [expr $opt (nofWEB) - 1] } {

incr tmp
}
incr tmp2

}

set tmp3 $tmp2
for {set m $tmp2 } { $m < [expr $opt (nofUDP) + $tmp3] } { incr m} {

set ping_downstream [$ns create-connection Ping $sn ($tmp) Ping $mn ($m)
9]

set ping_upstream [$ns create-connection Ping $mn ($m) Ping $sn ($tmp) 9]
puts2 "UDP-link: ping from [$sn($tmp) node-addr] to [$mn($m) node-addr]

and back!"
$ping_downstream oneway
$ping_upstream oneway
$ns after 0.5 "$ping_downstream send"
$ns after 0.6 "$ping_upstream send"
if {$m == [expr $opt (nofUDP) + $tmp3 - 1] } {

incr tmp
}
incr tmp2

}
set tmp3 $tmp2
for {set m $tmp2 } { $m < [expr $opt (nofTFRC) + $tmp3] } { incr m} {

set ping_downstream [$ns create-connection Ping $sn ($tmp) Ping $mn ($m)
9]

set ping_upstream [$ns create-connection Ping $mn ($m) Ping $sn ($tmp) 9]
puts2 "TFRC-link: ping from [$sn($tmp) node-addr] to [$mn($m) node-addr

] and back!"
$ping_downstream oneway
$ping_upstream oneway
$ns after 0.7 "$ping_downstream send"
$ns after 0.8 "$ping_upstream send"
if {$m == [expr $opt (nofTFRC) + $tmp3 - 1] } {

105

incr tmp
}
incr tmp2

}
}

proc stop {} {
global ns opt mn sn rn bs

for {set j 0 } { $j < $opt (nofmn) } { incr j } {
$ns at $opt (stop).0000010 "$mn($j) reset" ;

}
for {set i 0 } { $i < $opt (nofsn) } { incr i } {

$ns at $opt (stop).0000010 "$sn($i) reset" ;
}
$ns at $opt (stop).1 "puts2 \"NS EXITING...\" ; $ns halt"

exit 0
}

proc record { sink bwt } {
global opt
Get an i n s t a n c e o f t h e s i m u l a t o r
set ns [Simulator instance]
S e t t h e time after which t h e p r o c e d u r e s h o u l d be c a l l e d a g a i n
set time $opt (sampleTime)
#How many b y t e s have been r e c e i v e d by t h e t r a f f i c s i n k ?
set bw [$sink set bytes_]
Get t h e c u r r e n t time
set now [$ns now]
#Open a file t o w r i t e b a n d w i d t h− t r a c e
C a l c u l a t e t h e bandwid th (i n MBit / s) and w r i t e i t t o t h e file
puts $bwt "$now [expr $bw/$time*8/1000000]"
R e s e t t h e b y t e s v a l u e s on t h e t r a f f i c s i n k s
$sink set bytes_ 0
Re−schedule t h e p r o c e d u r e
$ns at [expr $now+$time] "record $sink $bwt"

}

proc prepare_evalvid_trace {} {
global ns opt trace_file trace_file_id
puts2 "------------------------trace prepare

start------------------------------"
puts2 "Start making GOP and frame trace files for $opt(q_variants) rate

variants"
for {set i 1} {$i <= $opt (q_variants) } {incr i} {

set original_file_name ($i) nsin /st_$opt (videoname).yuv_Q [expr $i + 1]
.txt

set original_file_id ($i) [open $original_file_name ($i) r]
}
set trace_file_name $opt (out_dir) /video2.dat
set trace_file_id [open $trace_file_name w]
set trace_file [new vbrTracefile2]
$trace_file filename $trace_file_name
set frame_count 0
set last_time 0

AL: t o g g l e between m u l t i p l e i n p u t f i l e s !
set o r i g i n a l f i l e i d $ o r i g i n a l f i l e i d (1)
set source_select 1

set frame_size_file $opt (out_dir) /frame_size.dat

106 APPENDIX D. TCL SCRIPTS

set gop_size_file $opt (out_dir) /gop_size.dat
set frame_size_file_id [open $frame_size_file w]
set gop_size_file_id [open $gop_size_file w]

for {set i 1} {$i <= $opt (q_variants) } {incr i} {
set frame_size ($i) 0
set gop_size ($i) 0

}
set gop_numb 0
Conve r t ASCII s e n d e r file on frame size g r a n u l a r i t y t o ns−2 a d a p t e d i n t e r n a l

format
while { [eof $original_file_id (1)] == 0} {

for {set i 1} {$i <= $opt (q_variants) } {incr i} {
gets $original_file_id ($i) current_line ($i)

}

scan $current_line (1) "%d%s%d%s%s%s%d%s" no_ frametype_ length_ tmp1_
tmp2_ tmp3_ tmp4_ tmp5_

p u t s 2 "$no_ $frametype_ $length_ $tmp1_ $tmp2_ $tmp3_ $tmp4_ $tmp5_"

set time [expr 1000 * 1000 /$opt (fps)] ; # Note t h a t t h i s i s time between
f r a me s i n number o f us

if { $frametype_ == "I" } {
set type_v 1
set time 0

}
if { $frametype_ == "P" } {

set type_v 2
}
if { $frametype_ == "B" } {

set type_v 3
}

Wr i t e t o GOP size file after each H−frame f o u n d :
if { $frametype_ == "H" } {

set puts_string "$gop_numb"
for {set i 1} {$i <= $opt (q_variants) } {incr i} {

set puts_string "$puts_string $gop_size($i)"
}
puts $gop_size_file_id $puts_string
incr gop_numb
set type_v 0 ; # Must have d i f f e r e n t type t h a n I−frame so t h a t

t h e LB(r , b) a l g o r i t h m f i n d s i t !
}
Wr i t e t o f r a m e s i z e . d a t :
set puts_string "$no_"
for {set i 1} {$i <= $opt (q_variants) } {incr i} {

set puts_string "$puts_string $gop_size($i)"
}
puts $frame_size_file_id $puts_string

for {set i 1} {$i <= $opt (q_variants) } {incr i} {
scan $current_line ($i) "%d%s%d%s%s%s%d%s" no_ frametype_ length

($i) tmp1_ tmp2_ tmp3_ tmp4_ tmp5_
set gop_size ($i) [expr $gop_size ($i) + $length ($i)]

}

Wr i t e t o v i d e o 2 . d a t :
set puts_string "$time $length_ $type_v $opt(ra_mtu)"
for {set i 2} {$i <= $opt (q_variants) } {incr i} {

set puts_string "$puts_string $length($i)"

107

}
puts $trace_file_id $puts_string
if { $frametype_ != "H" } {

incr frame_count
}

}
puts2 "#of frames written to GOP and Frame trace files: $frame_count"
#close $ o r i g i n a l f i l e i d
close $trace_file_id ; # Note t h a t t h i s new trace file i s c l o s e d for w r i t i n g

and
opened below for r e a d i n g t h r o u g h b e i n g a new T r a c e f i l e i n

e r a T r a c e F i l e 2 : : s e t u p ()
puts2 "------------------------trace prepare

stop-------------------------------"
}

proc attach_FTP_traffic { startnode endnode connection_number} {
global ns opt tcp tcp_in_use ftp_server
$startnode color red
$endnode color red
set start_id [$startnode id]
set end_id [$endnode id]
set tcp ($connection_number) [new Agent /TCP]
$tcp ($connection_number) set fid_ 40
set tcpsink ($connection_number) [new Agent /TCPSink]
$ns attach-agent $startnode $tcp ($connection_number)
$ns attach-agent $endnode $tcpsink ($connection_number)
$ns connect $tcp ($connection_number) $tcpsink ($connection_number)
set ftp_server ($connection_number) [new Application /FTP]
$ftp_server ($connection_number) attach-agent $tcp ($connection_number)

set bwt [open $opt (out_dir) /bwt.FTP.$connection_number.tr w] ; # $op t (
b w t D e l i m i t e r) .

$ns at 0.0 "record $tcpsink($connection_number) $bwt"
puts2 "added TCP connection number $connection_number between nodes $start_id

and $end_id"
}
==
Web t r a f f i c g e n e r a t o r by S a l l y Floyd (from w e b . t c l i n ns t c l / ex)
Modi f i ed by TH
==
proc attach_WEB_traffic {startnode endnode connection_number} {

global ns opt pool

$pool set-server 0 $startnode
$pool set-client $connection_number $endnode

set start_id [$startnode id]
set end_id [$endnode id]
$pool set-num-session $opt (nofWebSessions)
for {set i 0} {$i < $opt (nofWebSessions) } {incr i} {

set interPage [new RandomVariable /Exponential]
$interPage set avg_ $opt (interPage)
set pageSize [new RandomVariable /Constant]
$pageSize set val_ $opt (pageSize)
set interObj [new RandomVariable /Exponential]
$interObj set avg_ [expr 0.01]
set objSize [new RandomVariable /ParetoII]
$objSize set avg_ $opt (webObjectSize)
$objSize set shape_ $opt (paretoShape)
set tmp [new RandomVariable /Uniform]
set startTime [expr 1.0 * [$tmp value] * $opt (stop)]

108 APPENDIX D. TCL SCRIPTS

P o i s s o n s t a r t t i m e s for s e s s i o n s .
when does a web s e s s i o n end ?
puts [format "WEB session $i startTime %0.3f" $startTime]
$pool create-session $i $opt (nofWebPages) $startTime $interPage

$pageSize $interObj $objSize
A l l o f t h e web t r a f f i c u s e s t h e same p a c k e t s i z e .
webcache / w e b t r a f . c c
doc / w e b c a c h e . t e x
Fe ldmann99a , S e c t i o n 2 . 4 , p a r a g r a p h 3−4 and t h e a p p e n d i x A . 1 .
empweb / e m p f t p . c c
doc / s e s s i o n . t e x
When does each web s e s s i o n s t a r t ?

}
u s i n g web− throughput .awk t o log t h r o u g h p u t
puts2 "added WEB connection number $connection_number with $opt(nofWebSessions)

sessions between nodes $start_id and $end_id"
}

proc attach_UDP_traffic { startnode endnode connection_number} {
global ns opt udp vbr_in_use vbr trace_file
$startnode color blue
$endnode color blue
set start_id [$startnode id]
set end_id [$endnode id]
set udp ($connection_number) [new Agent /eraUDP]
$udp ($connection_number) set fid_ $connection_number
$ns attach-agent $startnode $udp ($connection_number)
set vbr ($vbr_in_use) [new Application /Traffic /eraVbrTrace]
$vbr ($vbr_in_use) attach-agent $udp ($connection_number)

$udp ($connection_number) set packetSize_ $opt (udp_pktsize)
$udp ($connection_number) set TOS_field_ 1 ; # New 120905 : t a g ECF e n a b l e d

s o u r c e s ! 0 i s d e f a u l t .
L i m i t t h e number o f send trace f i l e s :
if {$connection_number < 15} {

Connect a file name t o UDP source t o w r i t e t r a n s m i t trace d a t a
$udp ($connection_number) set_filename $opt (out_dir) /

sd_be.udp.$connection_number
}
$vbr ($vbr_in_use) set running_ 0
$vbr ($vbr_in_use) set r_ $opt (vbr_rate) ; # S e t t h e r a t e i n s t e a d o f p a c k e t

i n t e r v a l
$vbr ($vbr_in_use) attach-tracefile $trace_file ; # v i d e o 2 . d a t type

v b r T r a c e f i l e 2
$vbr ($vbr_in_use) set b_ 1.5
$vbr ($vbr_in_use) set q_ 1
$vbr ($vbr_in_use) set GoP_ $opt (GoP_size)
$vbr ($vbr_in_use) set fps_ $opt (fps)
$vbr ($vbr_in_use) set isTFRC_ 0

set udpsink ($connection_number) [new Agent /eraUdpSink]
$ns attach-agent $endnode $udpsink ($connection_number)
$ns connect $udp ($connection_number) $udpsink ($connection_number)
if {$connection_number == 0} {

Connect a file name t o TFRC s i n k t o w r i t e r e c e i v c e trace d a t a
$udpsink ($connection_number) set_trace_filename $opt (out_dir) /

rd_be.udp.$connection_number
}
$udpsink ($connection_number) set bytes_ 0
set bwt [open $opt (out_dir) /bwt.UDP.$connection_number.tr w] ; # $op t (

b w t D e l i m i t e r) .
$ns at 0.0 "record $udpsink($connection_number) $bwt"

109

puts2 "added UDP connection number $connection_number (vbr($vbr_in_use))
between nodes $start_id and $end_id"

incr vbr_in_use
}

==
Add Evalvid−RA RA−SVBR s o u r c e s
==
proc attach_TFRC_traffic {startnode endnode connection_number} {

global ns tfrc opt trace_file vbr_in_use vbr
$startnode color green
$endnode color green
set start_id [$startnode id]
set end_id [$endnode id]
set tfrc_agent ($connection_number) [new Agent /TFRC]
$tfrc_agent ($connection_number) set fid_ $connection_number
$ns attach-agent $startnode $tfrc_agent ($connection_number)
set vbr ($vbr_in_use) [new Application /Traffic /eraVbrTrace]
$vbr ($vbr_in_use) attach-agent $tfrc_agent ($connection_number)

$tfrc_agent ($connection_number) set packetSize_ $opt (tfrc_pktsize) ; # t h i s i s
t h e MTU for t h e TFRC

$tfrc_agent ($connection_number) set TOS_field_ 1 ; # New 120905 :
t a g ECF e n a b l e d s o u r c e s ! 0 i s d e f a u l t .

if {$connection_number < 15} {
Connect a file name t o TFRC source t o w r i t e t r a n s m i t trace d a t a :
$tfrc_agent ($connection_number) set_filename $opt (out_dir) /

sd_be.tfrc.$connection_number
}

$vbr ($vbr_in_use) set running_ 0
$vbr ($vbr_in_use) set r_ $opt (vbr_rate) ; # S e t t h e r a t e i n s t e a d of p a c k e t

i n t e r v a l
puts2 "r_ = $opt(vbr_rate)"
$vbr ($vbr_in_use) attach-tracefile $trace_file
$vbr ($vbr_in_use) set b_ 1.5
$vbr ($vbr_in_use) set q_ 4
$vbr ($vbr_in_use) set GoP_ $opt (GoP_size)
$vbr ($vbr_in_use) set fps_ $opt (fps)
$vbr ($vbr_in_use) set isTFRC_ 1

set tfrcsink ($connection_number) [new Agent /TFRCSink]
$ns attach-agent $endnode $tfrcsink ($connection_number)
$ns connect $tfrc_agent ($connection_number) $tfrcsink ($connection_number)

if {$connection_number == 0} {
Connect a file name t o TFRC s i n k t o w r i t e r e c e i v c e trace d a t a :
$tfrcsink ($connection_number) set_trace_filename $opt (out_dir) /

rd_be.tfrc.$connection_number
}
set bwt [open $opt (out_dir) /bwt.TFRC.$connection_number.tr w] ; # $o p t (

b w t D e l i m i t e r) .
$ns at 0.0 "record $tfrcsink($connection_number) $bwt"
puts2 "added TFRC connection number $connection_number (vbr($vbr_in_use))

between nodes $start_id and $end_id"
incr vbr_in_use

}

==
The i n t e r f a c e between TFRC Rece ive (o f ACKS)
and t h e a d a p t i v e r a t e c o n t r o l l e r o f t h e VBR a p p l i c a t i o n

110 APPENDIX D. TCL SCRIPTS

==
Agent /TFRC instproc tfrc_ra {bytes_per_sec backlog} {

global vbr ns opt sn_in_use
set now [$ns now]
$self instvar node_
set node_id [$node_ id]
t h e f o l l o w i n g i s needed t o f i n d c o r r e c t v a l u e for $ v b r n u m b e r ,
which i s t h e index for t h e s e r v e r i n s t a n c e (n o t t h e p h y s i c a l n o d e ,
b u t t h e a g e n t) t h a t i s t o r e c e i v e t h e TFRC a c k−p a c k e t s :
set vbr_number [expr $node_id + $opt (nofUDP) - 2] ; # add in g v a l u e s for

a l l o c a t e d u d p− s o u r c e s , s u b t r a c t i n g t h e c o r e nodes (numbered 0 and 1)
if { $opt (nofFTP) > 0 } {

set vbr_number [expr $vbr_number - 1]
}
if { $opt (nofWEB) > 0 } {

set vbr_number [expr $vbr_number - 1]
}
if { $opt (nofUDP) > 0 } {

set vbr_number [expr $vbr_number - 1]
}
puts2 "tfrc_ra behandler ack til vbr($vbr_number) (node($node_id)) B/s:

$bytes_per_sec"
#puts "In TFRC instproc. rate = $bytes_per_sec (B/s), node_id = $node_id"
#TODO: d o b b e l t s j e k k a t d e t b l i r r i k t i g node h e r ! !
#puts "TCL: before vbr($vbr_number) TFRC_rateadapt rate=$bytes_per_sec

node=$node_id"
$ns at [expr $now] "$vbr($vbr_number) TFRC_rateadapt $bytes_per_sec $node_id

$backlog"
#puts "TCL: after vbr($vbr_number) TFRC_rateadapt rate=$bytes_per_sec

node=$node_id"
}

==
F u n c t i o n neede t o r e c e i v e p i n g s p r o p e r l y .
==
Agent /Ping instproc recv {from seq ff bf} {

$self instvar node_
puts "node [$node_ id] received ping answer from \

$from seq $seq with forward delay $ff and backward $bf ms."
puts $ r t t f "$seq [expr $ff/1000] [expr $bf/1000]" ; # for RTT− logging, t h i s can

be used
}

==================== END PROCEDURES ==================================
==================== START EXEC: ENVIRONMENT =========================

set ns [new Simulator]

getopt $argc $argv

#set o p t (b w t D e l i m i t e r) −$opt (p a t h l o s s E x p)−$opt (s t d d b)−$opt (n o d e D i s t) m−$opt (ecn) ecn
; # variable (s) t o index t h e b w t− f i l e s

puts2 "\n--------new sim---------"

if {$opt (seed) > -1} {
puts2 "Seeding Random number generator with $opt(seed)"
ns-random $opt (seed)

}
#
C r e a t e trace
#

111

$ns use-newtrace
if { $opt (doTrace) } {

set tf [open $opt (tf) w]
$ns trace-all $tf

}
if {$opt (nam) } {

#Open t h e f i l e s for nam trace
set nf [open $opt (namtf) w]
$ns namtrace-all $nf
$ns n a m t r a c e− a l l−w i r e l e s s $nf $op t (x) $op t (y)

}

d e f i n i n g c o l o r s for b e t t e r r e a d a b i l i t y
$ns color 40 red
$ns color 41 blue
$ns color 42 green
$ns color 43 chocolate

#
RED and TCP p a r a m e t e r s
#
if {$opt (ecn) == 1} {

set opt (qm) RED
set opt (ifq) Queue /RED
Queue /RED set setbit_ true

}
if {$opt (qm) == "RED" } {

Queue /RED set summarystats_ true
Queue /RED set adaptive_ $opt (adaptive)
Queue /RED set q_weight_ 0.0
Queue /RED set thresh_ $opt (minth)
Queue /RED set maxthresh_ $opt (maxth)

}
if {$opt (qm) == "DropTail" } {

#Queue / Dr o p T a i l set s u m m a r y s t a t s t r u e
#Queue / Dr o p T a i l set s h r i n k d r o p s t r u e

}

if {$opt (nofTCP) > 0 } {
Agent /TCP set ecn_ $opt (ecn)
Agent /TCP set packetSize_ $opt (tcp_pktsize)
Agent /TCP set window_ $opt (window)

}

#
S e t t i n g global TFRC d e f a u l t s :
#
if {$opt (nofTFRC) > 0 } {

Agent /TFRC set ss_changes_ 1 ; # Added on 1 0 / 2 1 / 2 0 0 4
Agent /TFRC set slow_increase_ 1 ; # Added on 1 0 / 2 0 / 2 0 0 4
Agent /TFRC set rate_init_ 2
Agent /TFRC set rate_init_option_ 2 ; # Added on 1 0 / 2 0 / 2 0 0 4
Agent /TFRC set SndrType_ 1
Agent /TFRC set oldCode_ false
Agent /TFRC set packetSize_ $opt (tfrc_pktsize)
Agent /TFRC set maxqueue_ 500
Agent /TFRC set printStatus_ true
Agent /TFRC set ecn_ $opt (ecn) ; # Enab le ECN
Agent / TFRC set u s e H e a d e r s f a l s e ; # "useHeaders_" i s removed from t h e

e v a l v i d a d j u s t e d t f r c . c c (TH)
Agent / TFRCSink set NumFeedback $op t (t f r c F B)

}

112 APPENDIX D. TCL SCRIPTS

#
C r e a t e wlan t o p o l o g y
#
setnofnodes ; # a d j u s t s t o t a l nof s e r v e r s and mobi l e nodes a c c o r d i n g t o

s p e c i f i e d nof i n d e p e n d e n t s t r e a m s
wlan_topo_complex ; # s e t s up t h e t o p o l o g y wi th chosen amount o f s t r e a m s , one

s e r v e r for each source type
; # and one mobi le node for each s t r e a m

set mn_in_use 0
set sn_in_use 0
set vbr_in_use 0

if { $opt (nofTFRC)>0 | | $opt (nofUDP)>0 } {
prepare_evalvid_trace

}

#
S e t up f o r w a r d FTP c o n n e c t i o n between s e r v e r and mobi le node
#
if {$opt (nofFTP) > 0} {

for {set i 0} {$i < $opt (nofFTP) } {incr i} {
attach_FTP_traffic $sn ($sn_in_use) $mn ($mn_in_use) $i
incr mn_in_use

}
incr sn_in_use

}
#
S e t up f o r w a r d WEB c o n n e c t i o n between s e r v e r and mobi le node
#
if {$opt (nofWEB) > 0} {

PagePool /WebTraf set FID_ASSIGNING_MODE_ 2
gen / n s t c l . c c , for 2 , use sameFid
for 1 , i n c r e m e n t FID.
for 0 , use i d .
set pool [new PagePool /WebTraf]
$pool set-num-client $opt (nofWEB)
$pool set-num-server 1 ; # a l l c l i e n t s c o n n e c t t o t h e same web−server for

s i m p l i c i t y
$poo l set sameFid $c o u n t
$pool set sameFid_ 2
for {set i 0} {$i < $opt (nofWEB) } {incr i} {

attach_WEB_traffic $sn ($sn_in_use) $mn ($mn_in_use) $i
incr mn_in_use

}
incr sn_in_use

}

#
S e t up f o r w a r d UDP c o n n e c t i o n between s e r v e r and mobi le node
#
if {$opt (nofUDP) > 0} {

for {set i 0} {$i < $opt (nofUDP) } {incr i} {
attach_UDP_traffic $sn ($sn_in_use) $mn ($mn_in_use) $i
incr mn_in_use

}
incr sn_in_use

}

#
S e t up f o r w a r d TFRC c o n n e c t i o n

113

#
if {$opt (nofTFRC) > 0} {

for {set i 0} {$i < $opt (nofTFRC) } {incr i} {
attach_TFRC_traffic $sn ($sn_in_use) $mn ($mn_in_use) $i ; # $bs (0)
incr mn_in_use
incr sn_in_use ; # each TFRC s e s s i o n needs a s e p e r a t source t o

a l l o w s e p e r a t v ideo− f eeds
}

}

==
S t a r t i n g and s t o p p i n g s o u r c e s
==
if {$opt (doPing)==1} {

ping
}
for {set i 0} { $i < $opt (nofFTP) } {incr i} {

s t a r t f t p s o u r c e s
$ns at [expr 10] "$ftp_server($i) start"
$ns at [expr 50] "$ftp_server($i) stop"

}
#
s t a r t vbr s o u r c e s
#

s t a r t UDPs
$ns a t 9 . 9 8 "$vbr(0) start"
for {set i 0} { $i < $opt (nofUDP) } {incr i} {

$ns at 10 "$vbr($i) start"
$ns a t 50 "$vbr($i) stop"

}
s t a r t first TFRC
$ns a t 9 . 8 "$vbr($opt(nofUDP)) start"
s t a r t t h e r e s t o f t h e TFRCs
for {set i $opt (nofUDP) } { $i < $vbr_in_use } {incr i} {

$ns at 10 "$vbr($i) start"
$ns a t 50 "$vbr($i) stop"

}

$ns at $opt (stop) "stop"
puts2 ""
puts2 "-----Starting simulation!-----"
$ns run

