
Tight, online integration
of INS/GNSS based
on RTKLIB

Øyvind Aukrust Rones

Master thesis in Guidance, Navigation, and Control
Department of Engineering Cybernetics
Faculty of Information Technology and Electrical Engineering
Norwegian University of Science and Technology

Submission date: 9th of April 2019
Supervisor: Tor Arne Johansen
Co-Supervisor: Kristoffer Gryte

NTNU Faculty of Information Technology,
Norwegian University of Mathematics and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

MASTER THESIS DESCRIPTION SHEET

Name: Øyvind Aukrust Rones

Department: Engineering Cybernetics

Thesis title: Navigation for Automatic landing system for fixed-wing UAVs

Thesis Description:

An important step towards more autonomous fixed-wing UAVs is to make the landing process more

automatic. In the development of such an automatic landing system, accurate online estimation of

position, velocity and attitude is of utmost importance. The purpose of this project is twofold;

investigate the quality of the position estimates from state-of-the-art low-cost real-time kinematic

(RTK) Global Navigation Satellite Systems (GNSS), and compare this to position estimates from an

estimator that integrates GNSS and inertial measurements in a tight manner.

The following items must be considered:

1. Present an overview of relevant theory on GNSS and estimators for navigation using tight

integration of pseudorange- and inertial navigation measurements.

2. Present the most promising low-cost GNSS systems, and perform a comparison of these

based on metrics that are found relevant, to establish a benchmark.

3. Consider challenges with online estimation, including interpretation of GNSS ephemeris

data.

4. Plan an online estimator for position and velocity estimation.

5. Implement the estimator in DUNE (Unified Navigational Environment) on the UAV payload

computer.

6. Plan and execute tests of the estimator, running online the UAV payload computer using real

measurements, where the accuracy should be compared to that of the current solution.

7. Present the results in a report and discuss the weaknesses of the system and how these can

be resolved.

Start date: 2018-09-06

Due date: 2019-04-09

Thesis performed at: Department of Engineering Cybernetics, NTNU

Supervisor: Professor Tor Arne Johansen, Dept. of Eng. Cybernetics, NTNU

Co-Supervisor: Kristoffer Gryte, Dept. of Eng. Cybernetics, NTNU

ii

Abstract

With UAVs being used for an ever increasing number of operations, there is a
demand for high-precision PVA-estimation. This is a complicated task, and while
many systems have been shown to work in simulations, a lack of estimators
providing real-time solutions and running on actual hardware is seen. Some
commercial systems, such as the PixHawk flight controllers, provides readily
available PVA-estimates with limited setup, and can also be programmed and
used as a test platform for different systems. However, no framework is provided
for this, and significant setup is required. This thesis seeks to provide a platform
that simplifies the setup of future PVA estimation systems. A tightly coupled
extended Kalman filter estimating position and velocity by integrating pseudo-
range and Doppler measurements with acceleration measurements is presented.
It is implemented in the real time navigation framework DUNE and an interface
with the open source program package RTKLIB is implemented as well, giving
access to a host of GNSS related functionality. The system is loaded onto and
run on an embedded computer, BeagleBone Black, running a miniaturized Linux
distribution. The results show that the system is able to provide PV estimates in
real time, but with a somewhat heavy computational load.

iii

Sammendrag

Ettersom UAV-er blir brukt i stadig flere sammenhenger, er det etterspørsel et-
ter høypresisjons-PVA-estimering. Dette er en komplisert oppgave, og selv om
mange system har vist seg å fungere i simuleringer, har det blitt observert en
mangel på estimatorer som gir løsninger i sanntid og kjører på faktisk hardware.
Enkelte kommersielle system, som for eksempel PixHawk flight controller, gir
lett tilgjengelige PVA-estimater, krever begrenset oppsett og kan programmeres
og brukes som testplattform for forskjellige system. Imidlertid er det ikke satt
opp noe rammeverk for dette, og en betydelig mengde oppsett kreves. Denne
avhandlingen ønsker å lage en plattform som forenkler oppsettet av fremtidige
estimeringssystem. Et tett koblet "extended Kalman filter" som estimerer po-
sisjon og hastighet gjennom integrering av pseudo-range- og Doppler-målinger
med akselerasjonsmålinger er presentert. Det er implementert i sanntidsnavi-
gasjonsrammeverktet DUNE, og et grensesnitt med open source programpakken
RKTLIB er også implementert, som gir tilgang til en rekke funksjoner relatert
til GNSS. Systemet lastes over til en embedded maskin, BeagleBone Black, som
kjører en minimal Linux distribusjon. Resultatene viser at systemet gir PV-
estimat i sanntid, men på bekostning av en noe stor belastning av CPU-en.

iv

Preface

This master’s thesis concludes my master’s degree in Cybernetics and Robotics
at hte Norwegian University of Science and Technology in Trondheim. It is a
continuation of the project performed in 2017 [23], focusing on some of the prac-
tical details of position estimation based on raw pseudo-range measurements.
This thesis seeks to improve on the project by implementing a tightly coupled
integration filter, running online on an embedded computing platform.

Some of the background theory presented in this thesis is taken from the back-
ground of the project [23], with some modifications. Notably, the description
ephemeris, multipath and atmospheric errors in section 2.1.4, and the ephemeris
equations from section 2.1.3.

I would like to thank my co-supervisor, Kristoffer Gryte, for counseling through-
out the work and for reading through the unfinished report several times.

Contents

1 Introduction 1
1.1 Existing implementations . 1
1.2 Thesis contributions . 2

2 Theoretical background 3
2.1 Global Navigation Satellite Systems 3

2.1.1 Signal composition . 5
2.1.2 Observables . 6
2.1.3 Ephemeris calculations . 8
2.1.4 Error sources . 11

2.2 Integrating INS and GNSS . 17
2.2.1 Architectures . 17
2.2.2 Extended Kalman Filter . 18
2.2.3 Attitude parametrizations . 19

2.3 Software packages . 20
2.3.1 The LSTS toolchain . 20
2.3.2 RTKLIB . 22

3 Implementation 23
3.1 Obtaining low level GNSS signals 23

3.1.1 Stand alone task . 23
3.1.2 PyUblox . 23
3.1.3 RTKLIB . 24

3.2 Extended Kalman filter . 24
3.2.1 Equations . 24
3.2.2 Model description . 25

3.3 DUNE implementation . 29
3.3.1 RTKLIB interface . 30
3.3.2 Extended Kalman filter . 32

3.4 Embedded Platform . 33
3.5 Testing . 35

3.5.1 Simulator . 36
3.5.2 UBX log . 37
3.5.3 Serial device . 38

v

vi CONTENTS

3.5.4 IMC log . 38

4 Results 41
4.1 Stationary tests . 42
4.2 Dynamic tests . 46

4.2.1 The tightly coupled system 46
4.2.2 Multi-GNSS . 47

5 Discussion 51
5.1 Convergence . 51
5.2 Tight coupling . 52
5.3 Multi GNSS . 52
5.4 CPU usage . 53
5.5 Result uncertainties . 54

5.5.1 Reference solutions . 54
5.5.2 PixHawk and ArduPilot . 54

5.6 Future work . 55

6 Conclusion 57

Appendices 59

A Reference frames 61
A.1 ECI . 61
A.2 ECEF . 61
A.3 NED . 61
A.4 Body . 61
A.5 Transformations between frames . 62

A.5.1 NED and ECEF . 62
A.5.2 Body and NED . 62

B Atmospheric models 65
B.1 The Klobuchar ionospheric model 65
B.2 Saastamoinen tropospheric model 66

List of Figures

2.1 Triangulation principle . 4
2.2 Cross-correlation between a PRN code shifted by 15 bits and the

original unshifted sequence. 5
2.3 GPS signal propagation to Earth . 13
2.4 Relation between atmospheric errors and elevation 14
2.5 Illustration of earth rotation during signal transmission. 15
2.6 A loosely coupled, closed loop system 17
2.7 A tightly coupled, direct integration filter 18
2.8 The Neptus-IMC-Dune toolchain . 21

3.1 Block diagram of the implemented system 30
3.2 Block diagram of the hardware package 34
3.3 A beaglebone with a cape (midlertidig) 34
3.4 A NEO-M8T receiver (midlertidig) 35
3.5 Visibility plot of simulated satellites 37
3.6 Simulator block diagram . 38
3.7 The Ublox LEA-M8T multi-GNSS receiver 39

4.1 Satellite image of the test area . 41
4.2 Cloud plot of the position error under stationary conditions 42
4.3 Position error during stationary conditions in three dimensions. . 43
4.4 Velocity errors of the stationary systems 44
4.5 Receiver clock bias . 44
4.6 Receiver clock bias rate of the tightly coupled system when sta-

tionary. 45
4.7 Estimated accelerometer bias with uncorrected acceleration mea-

surements . 45
4.8 Position estimates with averaged velocity vectors. 46
4.9 Histogram showing the distribution of the position error during

testing. 47
4.10 Histogram showing the distribution of the position error of the

estimate based solely on GNSS measurements. 48
4.11 Estimated receiver clock bias rate with and without acceleration

measurements. 48

vii

viii LIST OF FIGURES

4.12 Number of tracked GLONASS and GPS satellites during testing . 49
4.13 Position error of the multi-GNSS setup with different configurations. 50
4.14 Position estimates with averaged velocity vectors from the solution

based only on GNSS measurements. 50

A.1 NED and ECEF frames . 62

B.1 Klobuchar model . 67

Tables

2.1 Ephemeris data . 9
2.2 GNSS typical error magnitudes . 12

3.1 GNSS IMC messages and relevant members 31
3.2 Imu and State IMC messages with relevant members 32
3.3 Course of testing . 36

4.1 RMSE values with different GNSS receiver configurations. 49

ix

x TABLES

Nomenclature

GNSS

c Speed of light

ρi Pseudorange from satellite i

Ri True satellite range

τ Receiver clock bias

psi Satellite position

p Receiver position

Kalman filter

η The real scalar part of the quaternion

ε The vector part of the quaternion

Abbreviations
AHRS - Attitude Heading Reference System

IMU - Inertial Measurement Unit

INS - Inertial Navigation System

GNSS - Global Navigation Satellite System

GPS - Global Positioning System

SV - Satellite Vehicle

PVA - Position-Velocity-Attitude

EKF - Extended Kalman Filter

xi

xii TABLES

Chapter 1

Introduction

Over the last decade the price of common Inertial measurement units (IMU) and
global navigation satellite system (GNSS) receivers has decreased exponentially,
while seeing an increase in precision and accuracy. Correspondingly, a range
of different devices have come to rely on these sensors for position, velocity
and attitude (PVA) estimation, but perhaps most interesting is the use of these
in unmanned vehicles. Accurate PVA estimation systems are necessary for au-
tonomous vehicles as any operator will have limited control during a live run.
However, this can not be reliably provided by the IMU or GNSS measurements
alone.

An inertial navigation system (INS) provides PVA estimates based on the spe-
cific force and angular velocity measurements of an IMU. Estimates are updated
at relatively high frequencies and the IMU measurements tend to contain little
noise. The INS is therefore considered to accurately capture the high dynamics
of the unmanned vehicle in its estimates. However, as these estimates are based
on integrated measurements they are bound to drift over time. GNSS provides
position and velocity estimates at a lower frequency based on measurements that
tend to be far noisier than those of the IMU, but with great long-term accuracy.
Thus, the INS and GNSS based estimates are complimentary in nature and can
be combined to have the best of both worlds, with the GNSS measurements elim-
inating the drift of the INS and the INS providing smooth PVA estimates. There
is also the added benefit that the INS can provide dead reckoning estimates during
GNSS signal outtages.

1.1 Existing implementations

The great performance of INS and GNSS integration has made it a popular choice
for PVA estimation, and a considerable amount of examples are found in the lit-
erature. In [12] inertial measurements are integrated with GNSS measurements

1

2 CHAPTER 1. INTRODUCTION

based on a real-time kinematic (RTK) approach, and tested on data logged in
the field. [11] adds ultra wideband range measurements with a similar setup for
increased robustness during GNSS dropouts and tests the implementation with
a simulator. A loosely coupled observer is implemented in [9], with attitude es-
timates based on a rotation matrix with nine degrees of freedom.

For estimating position and velocity (PV) of an unmanned vehicle in real-time,
many systems already exist. The open source software RTKLIB is a popular
choice for this task as it is highly configurable and requires minimal setup. Its
code base is quite extensive and offers functionality related to most GNSS related
operations, such as measurement correction models, DGPS and RTK positioning
and can read data from a range of different streams. RTKLIB offers no support
for integrating data from other sensors, although these may be integrated with
the the RTKLIB PV estimates externally. Another popular choice is to rely on an
external flight controller for state estimates, such as those of the PixHawk family.
This combines both IMU, magnetometer and GNSS measurements to estimate
and output both position, velocity and attitude, and is designed to require mini-
mal setup. However, both of these approaches are examples of a loosely coupled
approach to INS/GNSS integration, whereas a tightly coupled integration of raw
measurements tends to perform better [6, 10].

1.2 Thesis contributions

From a study of existing integration filter implementations, a lack of online esti-
mators is seen. Moreover, although a real-time integration filter requires signifi-
cant setup there is little mention of code reuse. This thesis therefore focuses on
creating an online, tightly coupled INS/GNSS integration filter using the real-
time environment DUNE: Unified Navigation Environment (DUNE). An inter-
face between DUNE and RTKLIB is also added to access raw GNSS measure-
ments and the full RTKLIB code base, as this is believed to aid future implemen-
tations GNSS dependent systems. The thesis thus contributes with the following

• A simple direct state extended Kalman filter for integrating acceleration
measurements with pseudo-range and Doppler shift measurements in a
tightly coupled approach, implemented in the real time navigation envi-
ronment DUNE.

• An interface between the codebase of the open source library RTKLIB and
DUNE.

• A hardware platform running the DUNE implementation in real-time.

• Comparison of position and velocity estimates to those of an onboard pix-
hawk flight controller, as well as a post processed RTK solution from RTK-
LIB.

Chapter 2

Theoretical background

This chapter presents the background information that this thesis is built on. An
overview of GNSS is given, followed by a look into the integration of INS and
GNSS and ending with a quick overview of the major software packages used in
the implemented system.

2.1 Global Navigation Satellite Systems

A Global Navigation Satellite System, is a navigation system that provides posi-
tion solutions from radio signals transmitted by orbiting satellites [10]. This is a
collective term for several existing systems, as of March 2019, the American GPS,
the Russian GLONASS, the European Galileo and the Chinese BeiDou. The two
latter of which are still under development, expected to be operational in 2020,
but currently offers partial coverage [2, 1]. Additionally, several regional aug-
mentation systems that are compatible with GNSS exist. The following chapter
will focus on GPS as it is arguably the most well known system.

GNSS is split into three segments:

• Space segment: Composed of all satellites, also called satellite vehicles (SV),
in orbit transmitting GNSS data.

• Control segment: Monitors and updates the clock correction and orbital
parameters of each satellite.

• User segment: Composed of all GNSS-receivers. Both military, civilian and
commercial.

The satellites of each GNSS keep a medium Earth orbit, with the exception of
some geostationary Beidou satellites in a geostationary orbit. These orbits gives
a better signal geometry, yielding a more precise navigation solution, and better
coverage in polar regions [10]. Each satellite is closely monitored by a number

3

4 CHAPTER 2. THEORETICAL BACKGROUND

Receiver

SV3

SV2

SV1

r2

r3

r1

Figure 2.1: This figure illustrates the concept of triangulation from set of satellites,
neglecting any measurement errors. SV1-SV3 denotes a set of satellites, while r1-
r3 denotes the distance between them and the receiver. Circles with radii given by
the ranges are also shown, and the receiver position is given by the intersection
of these.

of control stations spread around the planet, that periodically uploads precise
orbital parameters to the satellites. In turn the satellites continuously broadcast
said parameters to the receivers of the user segments, along with the time of
transmission. The receiver may then calculate the satellite’s position from the
orbital parameters, as well as the range to the transmitting satellite as signal
travel time multiplied by the speed of light. From this it is possible to estimate
the user’s position as indicated in figure 2.1. However, as errors are multiplied by
the speed of light, this is only made possible by a set of extremely precise atomic
clocks onboard each satellite. The triangulation concept is shown in figure 2.1.

2.1. GLOBAL NAVIGATION SATELLITE SYSTEMS 5

2.1.1 Signal composition

GPS is currently undergoing a modernization program, replacing the old, legacy,
signals [10, 6]. However, as these have not been fully introduced yet, this thesis
will focus on the legacy civillian L1 C / A signal. This signal consists of three dis-
tinct parts; the carrier frequency of 1575.42 MHz, a pseudo-random noise sequence
and a navigation message [19].

Pseudo random noise codes

The pseudo-random noise, also known as a PRN code or C/A code for the L1
signal, is a sequence of 1023 bits, repeated each millisecond. They are unique to
each satellite, and have interesting properties with regard to both auto- and cross-
correlation as distinct codes are nearly orthogonal to each other. In other words,
the cross-correlation of two distinct, arbitrarily shifted, PRN-codes is nearly zero,
meaning that satellites can broadcast simultaneously at the same frequency with
no risk of interfering with each other. This is known as code-division multiple
access (CDMA) [10]. The other property is that the auto-correlation, correlating
a PRN code with itself, peaks for an unshifted code sequence. This allows a re-
ceiver to align a replica of a PRN code with an incoming one, and thus establish
a common time reference. Figure 2.2 illustrates this concept.

0 10 20 30 40 50 60

-1

0

1

Original PRN

0 10 20 30 40 50 60

-1

0

1

Shifted PRN

0 10 20 30 40 50 60

0

20

40

Cross-correlation

Figure 2.2: Cross-correlation between a PRN code shifted by 15 bits and the
original unshifted sequence.

6 CHAPTER 2. THEORETICAL BACKGROUND

Navigation message

The navigation message includes orbital parameters for calculating satellite posi-
tion and velocity and is usually called the ephemeris. It also contains satellite clock
error parameters and the almanac, a coarse ephemeris that allows a receiver to cal-
culate the approximate positions of all satellites. This is used to predict when a
satellite might be visible and aids rapid signal acquisition [19], see section 2.1.2.
The almanac has a longer lifespan than the ephemeris, estimating satellite po-
sitions to an accuracy of 3600 meters up to two weeks after the initial upload
[10], and is often stored in the receiver between shutdowns. Additionally, the
almanac includes parameters from the Klobuchar ionospheric model, described
in appendix B.1. The ephemeris and clock error equations are described in detail
in section 2.1.3.

2.1.2 Observables

Pseudo-range

When a receiver detects the signal of a new satellite, it will try to lock on to it.
This is the process of initially aligning the replica PRN code to that of an incom-
ing signal, and is known as signal acquisition. When a match is found for a given
signal, and hence the signal phase determined, it is assigned a channel in the
receiver, and the code tracking process can begin. This is were the pseudo-range
measurements comes from; an incoming acquired signal will have lagged behind
the replica PRN during the time of transmission, and multiplying the lag time by
the speed of light, the pseudo-range is found.

The measurement is called pseudo-range as it incorporates numerous errors with
the true range, and are explained in more detail in section 2.1.4. This includes
both satellite and receiver clock errors, atmospheric delays and relativistic effects
as well as others. The pseudo-range between the receiver and a satellite can be
modeled as follows [6]

P = ρ + β− c∆tsv + Ir + Tr + δpsagnac + ϑ (2.1)

(2.2)

Where ρ is the geometric range, β is the receiver clock error scaled by the speed of
light, ∆tsvi the satellite clock error, Iri the ionospheric delay, Tr the tropospheric
delay and ϑ are the unmodeled errors. The geometric range is given by

ρ = ‖pr − ps‖2 =
√
(xr − xs)2 + (yr − ys)2 + (zr − zs)2 (2.3)

With pr being the receiver position at the time of reception and ps the satellite
position at the time of transmission.

(2.4)

2.1. GLOBAL NAVIGATION SATELLITE SYSTEMS 7

Doppler shift

During satellite acquisition, the high velocity difference of satellite and receiver
introduces a Doppler shift on the carrier wave frequency. Hence, if the Doppler
shift is unknown or cannot be otherwise estimated, the acquisition process re-
quires a search along frequency in addition to phase. After acquisition, a rough
estimate of the Doppler shift has been found and the receiver starts tracking
further changes in the incoming carrier wave frequency. Taking advantage of
the fact that the relative motion of satellite and receiver is far below the wave
propagation speed, the received frequency is approximated as ([16, 10])

freceived = 1−
(ve

is − ve
ir) · le

r,s

c
ftransmitted (2.5)

Where le
r,s is the line of sight vector between satellite and receiver. Consequently

the Doppler shift is

∆ f = freceived − ftransmitted = −
(ve

is − ve
ir) · le

r,s

c
ftransmitted (2.6)

Multiplying by the transmitted signal wavelength yields the relationship between
the range rate and the Doppler shift as

ṙ = −λ∆ f = (ve
is − ve

ir) · le
r,s (2.7)

Where λ is the wavelength of the transmitted signal. The model for the pseudo-
range rate is

Ṗ = ρ̇ + β̇− c∆ṫsv + İr + Ṫr + δ ṗsagnac + ϑ̇ (2.8)

However, ∆tsv, Ir and Tr are slowly time varying [6], simplifying the model to

Ṗ = ṙ + β̇ + δ ṗsagnac + ϑ̇ (2.9)

where ϑ̇i represents the drift of any unmodeled errors.

As the doppler measurement is dependent on receiver velocity, it can be applied
to the navigation filter to yield a directly observed receiver velocity estimate. It is
also dependent on the line of sight vector, and therefore position, but this depen-
dence is weak [19, 10], and Doppler positioning is rarely used in GNSS position.
A weighted least squares approach to PV-estimation is shown in [16], based on
pseudo-range and doppler measurements. [25, 26] makes an analytical analysis
of the number of required measurements for PV-estimation in two dimensions,
but states that it is easily generalized to three, albeit with the assumption that
measurements are unbiased.

8 CHAPTER 2. THEORETICAL BACKGROUND

Carrier Phase

The carrier phase measurement will only be mentioned briefly in this thesis, as it
has not been used explicitly in the implemented navigation filter. Nonetheless, as
these measurements were readily available with the pseudo-range and doppler
shift measurements, they were still included in the internal message bus of the
system, and is considered a possibility for future additions.

The low noise of the carrier phase measurement can be taken advantage of by
being integrated into a pseduo-range filter. This is known as carrier smoothing
and one example is the recursive Hatch filter [19]

P̄n =
1
M

Pn +
M− 1

M
(P̄n−1 + Φn −Φn−1) (2.10)

Where P̄n is the smoothed pseudo-range of iteration n and Φn is the carrier phase
measurement given in meters.

Carrier phase can also be used to improve velocity estimates. By using time-
differenced carrier phase measurements, velocity can be estimated within the
order of mm/s, as opposed to the Doppler approach with a resolution in the
order of cm/s. This approach is explained further in [8]. [12] also includes this
measurement with a nonlinear observer.

2.1.3 Ephemeris calculations
The ephemeris and clock correction parameters as well as the accompanying
equations are shown in table 2.1 and equation set 2.11, respectively. Satellite ve-
locities are needed to estimate receiver velocity from the doppler shift, but the
equations are not shown here. [35] derives equations for calculating satellite ve-
locity, but concludes that a simple two point numerical differentiation is precise
to the order of millimeters. As opposed to the other GNSS, GLONASS does not
broadcast any Keplerian parameters, rather broadcasting ECEF position, velocity
and acceleration directly. [10]

Ephemeris equations

Several parameters are needed to calculate clock error and satellite position. Here
as shown in [6] and [10]. All of the parameters from the ephemerides are under-
lined.

The measured satellite broadcast time contains small errors due to satellite clock
bias and relativistic effects. The first step is therefore to apply the correction

∆tsv = a f 0 + a f 1(t− toc) + a f 2(t− toc)
2 + ∆tr (2.11a)

2.1. GLOBAL NAVIGATION SATELLITE SYSTEMS 9

Time
Parameters
tsv Satellite broadcast time
wn Satellite week
tow Seconds in GPS week
tgd Group delay
toc Clock data reference time
toe Ephemeris reference time

Corrections
a f 2 Satellite clock correction 2
a f 1 Satellite clock correction 1
a f 0 Satellite clock correction 0

Orbital
Parameters
M0 Mean anomaly at reference time
i0 Inclination angle at reference time
Ω0 Longitude of ascending node of orbit
ω Argument of perigee
e Eccentricity√

A Square root of semi-major axis
Ω̇ Rate of right ascension
i̇ Rate of inclination angle

Corrections
Cus Lateral correction
Cuc parameters
Crc Radius correction
Crs parameters
Cis Inclination correction
Cic parameters
∆n Mean motion difference

Validity
Validity
IODC Clock data validity
IODE Ephemeris validity

Table 2.1: Ephemeris data

10 CHAPTER 2. THEORETICAL BACKGROUND

Where the relativistic correction ∆tr is

∆tr = Fe
√

Asin(E) (2.11b)

Where F = −4.442807633E−10 is a constant and E is calculated in equation 2.11h

and the corrected satellite time is

t = tsv − ∆tsv (2.11c)

Note that equation 2.11a and 2.11c are coupled. However, it has been found that
tsv can approximate t in this case without any notable lack in precision [10].

The mean motion is then computed as n0 =
√

µ

A3 and corrected

n = n0 + ∆n (2.11d)

With the time of signal transmission relative to the ephemeris reference time

∆t = tst − toe (2.11e)

Mean anomaly, M, is then found

M = M0 +

(
n0 + ∆n

)
∆t (2.11f)

To find the eccentric anomaly, E, Kepler’s equation is solved iteratively

M = Ek − e0sin(Ek) (2.11g)

Performing 20 iterations should give centmetric accuracy, while 22 iterations
yields millimetric accuracy [10].

From the eccentric anomaly, the true anomaly can be found

ν = tan−1
(√1− e02sin(E)

cos(E)− e0

)
(2.11h)

2.1. GLOBAL NAVIGATION SATELLITE SYSTEMS 11

Expressing position in polar coordinates, the argument of latitude is found as

φ = ω + ν (2.11i)

The orbital radius varies with the eccentric anomaly however, harmonic pertur-
bations are present here and in the argument of latitude as well as the inclination.
Thus, the corrections of argument, radius and inclination, respectively, is found

δu = Cussin(2φ) + Cuccos(2φ) (2.11j)
δr = Crssin(2φ) + Crccos(2φ) (2.11k)
δi = Cissin(2φ) + Ciccos(2φ) (2.11l)

Applying these yields the corrected expressions

u = φ + δu (2.11m)
r = A(1− e0cos(E)) + δr (2.11n)

i = i0 + δi + i̇t (2.11o)

The transmitted longitude of the ascending node, Ω0, is transmitted with respect
to the week epoch. With respect to the reference time this is given by

Ω = Ω0 − wie(∆t + toe) + Ω̇∆t (2.11p)

Where wie = 7.2921151467E−5 is the rotation rate of the Earth. Satellite position
in the orbital plane is then found as

X = rcos(u) (2.11q)
Y = rsin(u) (2.11r)

Finally, satellite position in the ECEF frame is given by

x = Xcos(Ω)−Ycos(i)sin(Ω) (2.11s)
y = Xsin(Ω) + Ycos(i)cos(Ω) (2.11t)
z = Ysin(i) (2.11u)

It should also be noted that the equations should handle week crossovers, as
the GPS time will be reset at this point. This is done by adding ±604800 to the
corrected GPS time so that it stays in the intervall [0, 302400].

2.1.4 Error sources
Several errors have to be handled when dealing with GNSS positioning. The
errors considered in this thesis are given in table 2.2 with typical magnitudes as
stated in [24, 19, 21, 10, 18], and will be further explained.

12 CHAPTER 2. THEORETICAL BACKGROUND

Error sources
Ionospheric 16-27 m

Tropospheric 2.5-5 m
Ephemeris 1-5 m
Multipath statistic error, but up to 100 m in extreme cases

Group delay 1-2.5 m
Earth rotation 10-40 m

Relativistic 0-13 m

Table 2.2: GNSS typical error magnitudes

Atmospheric errors

When the GPS signals are transmitted through the atmosphere, the GPS’s as-
sumption that the signals travel in a straight line at constant speed no longer
holds. The change in signal speed is much more significant than the effect on the
signal path [6] and is represented by the refractive index:

η =
c
v

Where c is the speed of light and v is the actual signal speed. When the refrac-
tion index of a medium frequency dependent, the medium is said to be dispersive.

To model the atmospheric delay the atmosphere is divided into two layers. The
ionosphere is the section of the atmosphere between 50 and 1000 km from the
surface of the earth, while the troposphere is the lower layer between receiver
and the ionosphere. The magnitude of the atmospheric errors each vary with the
SV elevation angle as the length of exposure through the atmosphere increases
inversely with elevation angle [6, 10]. This is due to the fact that a lower elevation
angle results in a longer travel path and by extension a longer exposure to the
warping effects of the atmosphere. Figure 2.3 demonstrates this.

Typical ionospheric and tropospheric delays with respect to elevation angle are
shown in figure 2.4.

Ionospheric error The ionospheric error is a result of free ions and positively
charged molecules in the ionosphere. The level of ionization depends on solar ac-
tivity, seasons and time-of-day which directly affects the speed and travel time of
GPS-signals, thereby resulting in an error in the range measured at the receiver.
There are several ways of combating this, however. One approach is to take ad-
vantage of the fact that the ionosphere is dispersive by using a dual-frequency
receiver. The residual ionospheric error in a dual-frequency receiver is in the
order of 0.1 m [10], and is the main reason the GPS employs two frequencies.
Most receivers only use the L1 frequency however and must estimate the error
through a secondary receiver or by mathematical models, such as the NeQuick

2.1. GLOBAL NAVIGATION SATELLITE SYSTEMS 13

Atmosphere

Receiver
Earth

SV1

SV2

Figure 2.3: GPS signal propagation to Earth. SV2 is an example of a satellite with
a low elevation angle, while SV1 has a high one. The dashed red line is the path
the signal follows to the receiver and is longer for SV2.

[4] or Klobuchar models [15]. The latter is used by the GPS, and the external pa-
rameters needed by the receiver is transmitted in the almanac, while also being a
function of the receiver position, satellite azimuth and elevation. Galileo uses the
former while GLONASS does not broadcast any ionospheric model parameters
[10]. The Klobuchar ionospheric model is shown in appendix B.1.

Tropospheric error The tropospheric error is usually the smallest of the atmo-
spheric errors, but it is also much more sensitive to low elevation angles, with a
worst case error of up to 30m [6]. As the troposphere is non-dispersive, delays
are consistent for L1 and L2 and both single- and dual-frequency receivers must
therefore rely on models to apply corrections. Normally, average values for the
receiver’s location is employed, although meteorological instruments can aid the
receiver to obtain more precise results [6].

Gases like nitrogen and oxygen, normally called the dry components, and water
vapor, called the wet component, affect the refraction index differently and must
therefore be modeled separately. The dry components account for around 90%
of the tropospheric delay and is fairly easy to model as the parameters often are
stable for a given area. The wet components are harder to model accurately as
they are local and highly varying, but only accounts for about 10% of the delay,
[6, 10].
There are several approaches to dealing with the tropospheric delay, where this

14 CHAPTER 2. THEORETICAL BACKGROUND

thesis relies on the the well known Saastamoinen tropospheric model found in
appendix B.2. [13] offers an interesting approach to a cell based modeling of the
troposphere based on a dense collection of GPS receivers. [22] investigates how
heavy rainfall affects GNSS signals and [3] investigates seasonal variations of the
troposphere with respect to long term climate monitoring.

Figure 2.4: Atmospheric errors as a function of satellite elevation angle. (From
[10])

Ephemeris error

The ephemeris model is estimated through a curve fit to the measured orbit by
the control segment and variations might therefore occur, [6]. The result is a
difference between actual and estimated SV position and the associated angle
between actual and estimated signal path leads to a range error due to the long
distance between receiver and SV. In fact, the sensitivity of position to the angular
parameters in the ephemeris is in the order of 108 deg, while the angular rate
parameters has a sensitivity in the order of 1012deg/s.

Multipath

Multipath errors occur when a satellite signal reach the receiver through multiple
paths due to the signal reflecting off some surface. Signals that are reflected will
arrive later than the signal taking the direct route and can usually be detected
by the receiver if the delay is large enough. If the reflected signals arrive before
the PRN code has been correlated however, interference can occur and shift the
correlation peak. As the correlation peak is used to measure the delay from trans-
mission to receival, pseudorange errors will occur. This also means that higher
data rate signals are less susceptible to multipath errors [10].

Signals from satellites at low elevations travel nearly parallel to the surface of
the Earth and the chance of the signal being reflected off the ground is therefore
substantially higher. Thus, discarding data from these satellites might improve
the GPS solution [6, 10].

Group delay

The clock correction polynomial, equation 2.11c, is incorporates the so called
group delay of the GNSS equipment. This is the delay in the hardware of the
satellite, from the initiation of a transmission until a signal is actually trans-
mitted. However, the polynomial is tuned to dual frequency receivers, so sin-
gle frequency receivers require an additional correction parameter [27]. This is
broadcast in the navigation message and applied as follows

(∆tsv)L1C/A = ∆tsv − Tgd (2.12)

2.1. GLOBAL NAVIGATION SATELLITE SYSTEMS 15

For the modernized GPS, the civillian signals will include an additional correc-
tion called the inter-signal correction [28].

Earth rotation: the Sagnac effect

When working with the non-inertial ECEF frame, it is important to consider earth
rotation during signal transmission. The ephemeris equations of 2.1.3 calculates
satellite positions as a function of time, in the ECEF frame of that instant, while
the receiver, on the other hand, estimates its position with respect to the ECEF
frame at the time of signal reception. In other words, as illustrated in figure
2.5, the positions are expressed with respect to two separate coordinate frames.
These must be aligned, as neglecting this may otherwise result in a significant
east-west error of as much 41 meters at the equator [10].

Figure 2.5: Illustration of earth rotation during signal transmission.

Aligning either of the two frames with the other will be equivalent to using a
single intertial frame [10]. The true range is then expressed as

ρ =
∥∥∥Re(tr)

e(tt)
pe(tt)

s − pe(tr)
r

∥∥∥
2

(2.13)

16 CHAPTER 2. THEORETICAL BACKGROUND

where the tr and tt denotes the time of reception and transmission respectively,
e(tx) is the ECEF frame at time tx with respect to a common inertial frame and
Re(tr)

e(tt)
is the rotation matrix from the satellite frame to the receiver frame. As the

different frames share both origin and a single axis, the rotation matrix is given
by

Re(tr)
e(tt)

=

 cos(wie(tr − tt)) sin(wie(tr − tt)) 0
−sin(wie(tr − tt)) cos(wie(tr − tt)) 0

0 0 1

 (2.14)

However, given the low rotation speed of the earth, in the order of 10−5, it is
reasonable to apply the small angle approximation, sin(θ) = θ and cos(θ) = 1

Re(tr)
e(tt)
≈

 1 wie(tr − tt) 0
−wie(tr − tt) 1 0

0 0 1

 =

 1 wie
ρ
c 0

−wie
ρ
c 1 0

0 0 1

 (2.15)

It is also possible to approximate this effect as a correction term, often called the
sagnac correction

ρ ≈
∥∥∥pe(tt)

s − pe(tr)
r

∥∥∥+ δρsagnac (2.16)

With the correction approximated to

δρsagnac ≈
ωie
c
(ye(tt)

s xe(tr)
r − xe(tt)

s ye(tr)
r) (2.17)

The non-inertial frame will also affect the range rate measurements with an error
of up to 2 mm

s [10]. This correction term is found by differentiating equation 2.17.

δρ̇sagnac ≈
ωie
c
(ve(tt)

s xe(tr)
r + ue(tr)

r ye(tt)
s − ue(tt)

s ye(tr)
r − xe(tt)

s ve(tr)
r) (2.18)

Where u and v denote the x and y component of receiver and satellite velocity
vector.

Relativistic errors

Due to the high speeds and different gravity potential from the high orbit of the
satellites, relativistic effects influences the satellite clock frequencies. This effect
can be split into a constant frequency component from the satellite’s nominal
orbit, modified in factory, and a periodic frequency component due to the ec-
centricity of the orbit. The periodic component must be compensated for by the
receiver, as described in section 2.1.3, or it could lead to a worst case error of
close to 13 meters, [19].

Without the constant frequency correction applied, the difference in observed fre-
quencies would accumulate to a clock error of approximately 38µs a day, equiv-
alent to a navigation error of approximately 11 km [21]

2.2. INTEGRATING INS AND GNSS 17

IMU Inertial navigation
equations

Integration filter
Corrections

GNSS
measurements Kalman filter

PVA

PVA output

GNSS receiver

INS

Figure 2.6: A loosely coupled, closed loop system

2.2 Integrating INS and GNSS

2.2.1 Architectures

When integrating GNSS and INS data, the concept of coupledness is important
to consider. How coupled an integration architecture is describes its complexity
with respect to which measurements are used [10, 20]. Although different terms
are found in the literature, the most widely used are loosely coupled, tightly coupled
and deep integration, as described in [10]. The integration filter output does not
necessarily represent the actual state. In the indirect, or error state, filter error
estimates of the INS solution is output instead. Further, if these error estimates
are applied directly to the INS state estimate, the integration filter is said to be
open loop. The alternative is to supply the corrections as input to the INS, and is
known as a closed loop system.

Loosely coupled

A loosely integrated system favors modularity and simplicity for GNSS/INS in-
tegration, as shown in figure 2.6. In this scheme, GNSS state estimates are used
as measurement inputs to the integration filter, along with either raw IMU mea-
surements or an INS state estimate.

The main drawback of this approach is that it tends to lead to cascaded Kalman
filters. Because the estimates of a Kalman filter is based on propagation of earlier
filter parameters, errors will be correlated in time. When the integration filter is
implemented as a Kalman filter, it assumes that measurements are uncorrelated
with respect to time, which is violated if the GNSS receiver implements a Kalman
filter itself. This can significantly slow down the estimation of INS errors [10].

18 CHAPTER 2. THEORETICAL BACKGROUND

IMU measurements

Integration filter

GNSS
measurements

doppler
pseudorange

acceleration
angular velocity

PVA output

Figure 2.7: A tightly coupled, direct integration filter

Another problems lies in the fact that the GNSS receiver will output no solution
when the effective number of satellites fall below four. However, during normal
operation the redundancy offered by the separate INS and GNSS solutions will
maintain valid estimates even if the integration filter should fail.

Tightly coupled

The tightly integrated approach has no stand-alone GNSS solution, instead uti-
lizing raw measurements from both an INS and a GNSS receiver in a single
integration function. This approach does not suffer from the measurement bias
introduced in a loosely coupled system, and the GNSS can still aid the INS even
when fewer than four satellites are available. This approach tends to perform
significantly better than the loosely coupled one, even when based on the same
hardware [5, 31, 10].

Figure 2.7 shows a tightly coupled integration architecture. Note that no Kalman
filter is connected to the GNSS except for the integration filter, which utilizes the
GNSS observables directly.

Deeply coupled

With access to a GNSS receivers firmware integration can be done ultra-tight.
This further couples the INS and GNSS receiver by using the INS to aid the
receiver in signal tracking. See [14] for a detailed explanation with an example
implementation.

2.2.2 Extended Kalman Filter

The linear Kalman filter assumes that the error covariance follows a normal dis-
tribution. This assumption fails for non-linear systems. The Extended Kalman
Filter solves this problem by applying linearized models to the covariance equa-
tions, while maintaining the nonlinear model for prediction and residual calcula-
tions. It should be noted that the extended case is not optimal, and the filter may
diverge for inaccurate process models or poor initial state or error covariance
estimates.

2.2. INTEGRATING INS AND GNSS 19

Indirect implementation

Instead of having the filter estimate a state vector directly, it can be beneficial to
integrate high frequency IMU measurements into a nominal state outside of the
filter. This state vector is nominal in the sense that it ignores model imperfections
and noise terms, which will eventually accumulate. Gaussian distributions of the
accumulated errors can then be estimated in the Kalman filter, and their means
injected into the nominal state. If the error state can be estimated and injected
reasonably fast compared to the system dynamics, it can be assumed that accu-
mulated errors are small in each correction step. In other words, the error state
will operate close to the origin. and second order terms can be neglected, leading
to simpler models and calculations [29].

When estimating the attitude of a body that may experience any orientation, a
globally non-singular representation should be used for the nominal state. How-
ever, as the error state is assumed to operate close to the origin, far from any
singularities, a minimal representation can be applied. This is beneficial in the
case of the quaternion, as the redundant representation leads to a rank-deficient
covariance, due to the unit constraint [17]. Another benefit of the indirect fil-
ter, is that all the large-signal dynamics are integrated in the nominal state and
corrections can therefore be applied at a lower rate than predictions [29]. For
GNSS/INS integration, this is usually the case, where GNSS observables, used
for corrections, arrive at a much lower frequency than INS measurements.

Multiplicative Extended Kalman Filter

The MEKF is a special implementation of an indirect EKF, used for PVA estima-
tion. Error estimates are injected into the state estimate through through addition
for all estimates except attitude, as adding the attitude error to the attitude esti-
mate violates the quaternion unit constraint. By creating an error quaternion and
injecting through the quaternion product operator, the quaternion estimate will
only deviate from the unit constraint as numerical errors grow.

2.2.3 Attitude parametrizations

There are numerous ways of representing attitude, a few interesting options will
be looked into.

Rotation vector Following from Euler’s theorem, the rotation of a rigid body
can be described as the rotation by an angle φ about some axis.

Euler angles An alternative to the vector parametrization approach are the Eu-
ler angles. Instead of using a single axis, the euler angles describe rotation as
three simple rotations; Three consecutive rotations about the basis vectors of some
coordinate system.

20 CHAPTER 2. THEORETICAL BACKGROUND

Quaternions It has been proved that no three dimensional parametrization of
rotation can be globally nonsingular [30]. The unit quaternion has the lowest
dimensionality required for a globally nonsingular parametrization [17], and is
represented as a four dimensional vector. It is also numerically efficient as the
rotation of any vector is achieved through linear matrix multiplication .

The rotation matrix of a quaternion q =
[
η ε

]T can be written as [7]

Rη,ε = I3x3 + 2ηS(ε) + 2S2(ε) (2.19)

Using the relationship S(−ε) = −S(ε), it is evident that quaternions over-
parametrize the rotation, as both q and −q represent the same rotation matrix.
For this reason, it is customary to set the restriction η > 0 [17].

Gibbs vector The Gibbs vector is a projection of the quaternion space defined
as

g ≡ ε

η
(2.20)

This is again a 2-1 mapping, where the Gibbs vector maps q and −q to the
same point. However, because of the quaternion overparametrization, the re-
sulting mapping is 1-1 for all rotations in the Euclidean space E3. The Gibbs
vector introduces a singularity for η = 0, tending to infinity around this point,
corresponding to a rotation of 180◦.

Modified Rodrigues parameters Fairly similar to the Gibbs vector, the modified
Rodrigues parameters are defined as

p ≡ ε

η + 1
(2.21)

2.3 Software packages

2.3.1 The LSTS toolchain
The Underwater Systems and Technology Laboratory of Porto university offers
an extensive toolchain for the control and operation of unmanned air, ground and
surface vehicles. This thesis has used the Neptus-IMC-Dune software toolchain
shown in figure 2.8.

DUNE

Dune: Unified Navigation Environment (DUNE) is the software package running
on the vehicle, providing a framework for a number of tasks. It is a highly
modular thread based system, splitting execution into separate blocks known as
tasks. Tasks can be responsible for low level operations, such as interaction with
sensors and actuators, or complex higher level operations such as plan execution

2.3. SOFTWARE PACKAGES 21

Neptus

IMC

DUNE

Figure 2.8: The Neptus-IMC-Dune toolchain

and vehicle supervision. Inter-thread communication is realised through the IMC
protocol, where each task can bind itself to any IMC message types and and
handle them as desired. Dune focuses on code reuse, offering a large codebase
for a number of applications, while also offering scripts for easily creating new
tasks, all of which are configured through a set of configuration files.

IMC

The Inter-Module Communication (IMC) protocol implements seamless inter-
and intra-vehicle communication. It offers custom serialization methods and can
therefore transmit data independently of network medium. IMC message types
are generated from and described in an xml file.

Neptus

Neptus is a command and control software for the operation of all types of ve-
hicles. It serves as an interface between operator and vehicles at ground control
for several phases of a mission; planning, simulation, execution and post-mission
analysis. It employs the IMC protocol to communicate with platforms running
Dune.

GLUED

GNU/Linux Uniform Environment Distribution (GLUED) is a minimal linux
distribution designed to run on an embedded system. It is designed to be as
lightweight as possible, and is easily updated with cross compiled packages. It
is also highly configurable.

22 CHAPTER 2. THEORETICAL BACKGROUND

2.3.2 RTKLIB
RTKLIB is an open-source program package for GNSS-related operations created
by Tomoji Takasu. It supports all currently existing GNSS and some augmen-
tation systems. Various positioning modes are supported and both input and
output is configurable to be in the form of a number of different protocols. Fur-
ther, it contains a substantial code base for positioning operations.

Chapter 3

Implementation

This chapter presents a tightly coupled extended Kalman filter estimating po-
sition and velocity from acceleration, pseudo-range and Doppler shift measure-
ments. A mathematical derivation of the filter model is shown first, followed
by an overview of the DUNE implementation. The hardware running the im-
plementation is then presented before the chapter ends with an overview of the
testing and tuning process.

3.1 Obtaining low level GNSS signals

Many GNSS receivers can be configured to output raw measurements and ephemerides.
However, to access these, a parser must be implemented. There are several alter-
natives.

3.1.1 Stand alone task

The first option to be considered was to implement a parser task from scratch.
This was quickly discarded however, as the ephemeris calculations from section
2.1.3 and measurement corrections would have to be implemented as well. This
implementation would be specific to the system of this thesis, making it difficult
to use with other systems, and new would have to be added for every new GNSS
receiver.

3.1.2 PyUblox

The next to be considered was PyUblox, a python program created by Andrew
Tridgell [32]. It can parse several kinds of GNSS receiver output messages, pro-
vide corrections and estimate position. It also supports differential GNSS over
UDP. However, the python program can not communicate directly with DUNE

23

24 CHAPTER 3. IMPLEMENTATION

and would require some different solution, such as communication over UDP.
This would require the pyUblox to depend on a UDP task to dispatch measure-
ments, which breaks code abstraction and makes the system difficult to maintain
in the future. Also, as the system is to be run on an embedded computer, the
additional overhead of employing an interpreter based language should be con-
sidered. Lastly, the PyUblox code has not been maintained for some years.

3.1.3 RTKLIB

RTKLIB was the chosen system in the end. It is written in C, which makes it
a fairly simple matter to interface it with DUNE, written in C++. This means
that a tidy code abstraction can be maintained as a dedicated DUNE task can be
implemented for the GNSS related operations of the system, and functions from
the RTKLIB code base can be called directly. This is one of the biggest benefits
of interfacing RTKLIB. The extensive code base of RTKLIB offers a myriad of
different GNSS related functionality, RTK positioning among them, which is be-
lieved to significantly aid future work in this area. It is also highly configurable
and data can be input from a range of different streams, such as serial devices,
log files or TCP servers. The program can configure connected serial devices
as well. As all configurations are described in files, it is simple to switch from
one configuration from another, and these files can easily be shared with other
implementations. There is also a large community situated around RTKLIB, so
it has been tested extensively and is still maintained, making an interface with
RTKLIB a prime candidate for future implementations. The only downfall is that
this setup requires a fair understanding of the RTKLIB source code, which is far
from readable with few comments.

3.2 Extended Kalman filter

The chosen integration filter of this thesis is a simple direct state extended Kalman
filter. Before the implementation is presented, the EKF equations are shown.

3.2.1 Equations

The discrete time extended Kalman filter method can be divided into a prediction
step, based on the state model, and a measurement step as follows.

Prediction

The next state estimate is predicted based on the system model

x̂−k = f (x̂k−1, uk−1) (3.1)

3.2. EXTENDED KALMAN FILTER 25

The error covariance is propagated a priori based on the linearized model and
process noise covariance

P−k = ΦkPk−1ΦT
k + Qk (3.2)

Measurement

The measurement step estimates an incoming set of measurements and calculates
a measurement residual, zk, and its covariance, Sk

zk = yk − h(x̂−k) (3.3)

Sk = HkP−k HT
k + Rk (3.4)

The posterior state estimate, x̂k is calculated based on the average of the priori
state and measurement residual weighted by the Kalman gain Kk

Kk = P−k HT
k S−1

k (3.5)

x̂k = x̂−k + Kkzk (3.6)

The error covariance is then updated. This form of the update is known as the
Joseph form and avoids potential problems with numerical stability

Pk = (In×n − Kk Hk)P
−
k (In×n − Kk Hk)

T + KkRkKT
k (3.7)

3.2.2 Model description
The implemented model estimates position and velocity in the ECEF frame of
reference, accelerometer bias and receiver clock bias and receiver clock bias rate.
Note that all GNSS constellations keep a different time system, and it is therefore
necessary to add additional bias estimates when working with a multi-GNSS
setup. This thesis works with measurements from both GPS and GLONASS, and
hence the offset bias between the two is estimated as well. In that order, this
leads to the state space vector

x =

p̂e
be

v̂e
be

b̂a

β̂gps

β̂d

β̂glonass

(3.8)

Note that the attitude is left unmodeled in the filter, although the prediction
model depends on the rotation matrix from the body frame to the ECEF frame.

26 CHAPTER 3. IMPLEMENTATION

Therefore, the attitude is modeled separately by a different system and assumed
to be a perfect representation. It also depends on the gravitational vector decom-
posed in the ECEF frame. This is found by rotating the plumb bob gravity vector,
defined in the NED frame as

gn =
[
0 0 9.80665

]T
[
m
s2] (3.9)

Measurement model

The EKF measurement vector is

y =
[
P Ṗ

]T (3.10)

composed of the pseudo-range and pseudo-range rate respectively. The measure-
ment model is based on equations 2.2 and 2.9. However, all corrections, except
receiver clock bias, are applied outside of the Kalman filter, and are therefore not
included in the EKF measurement model. This yields the model

P = r + β + ϑ (3.11)

Ṗ = ṙ + β̇ + ϑ̇ (3.12)

The linearized measurement matrix can be split into a pseudo-range and a pseudo-
range rate part as follows

H =

[
HP
HṖ

]
(3.13)

Both will now be derived.

Pseudo-range

To derive the linearized measurement matrix for the pseudo-range measure-
ments, HP, the model is first differentiated with respect to the receiver position

∂P
∂p̂e

be
=

∂

∂p̂e
be
‖pe

s − p̂e
be‖2

= −
(

pe
s − p̂e

be∥∥pe
s − p̂e

be

∥∥
2

)T

= leT
(3.14)

Where leT is the line of sight vector between receiver and satellite. Differentiating
with respect to the receiver clock bias and GLONASS offset is trivial

∂P
∂β̂gps

= 1

∂P
∂β̂glonass

= 1
(3.15)

3.2. EXTENDED KALMAN FILTER 27

The model does not depend on any other state variables. Given m distinct
pseudo-range measurements the matrix form becomes

HP =

−leT

1 01×3 01×3 1 0 0
−leT

2 01×3 01×3 1 0 0
...

−leT
m 01×3 01×3 1 0 0

 (3.16)

Where measurements from the GLONASS satellites will add a one to the last
column to include the offset estimate.

Pseudo-range rate

Similarly, the pseudo-range rate model is linearized too. From equation 2.7 it
is seen that it depends on both position, velocity and receiver clock bias rate.
However, because of the Doppler shift’s weak dependence on position, only the
velocity and receiver clock bias rate terms are used.

∂Ṗ
∂v̂e

be
=

∂

∂v̂e
be
(ve

s − v̂e
be)l

eT
= −leT

(3.17)

∂P
∂β̂d

= 1 (3.18)

The measurement matrix for GPS satellites are thus

HP =

01×3 −leT

1 01×3 0 1 0
01×3 −leT

2 01×3 0 1 0
...

01×3 −leT
m 01×3 0 1 0

 (3.19)

Prediction model

The acceleration measurement, f b
IMU , is the input vector of the system and is

modeled in the body frame as

f b
IMU = f b

ib + b̂a + wa

f b
ib = f b

IMU − b̂a −wa
(3.20)

where wa is considered Gaussian white noise.

28 CHAPTER 3. IMPLEMENTATION

The time derivative of position is simply defined as the velocity

˙̂pe
be = v̂e

be (3.21)
(3.22)

Rotating the acceleration measurement 3.20 and adding a Coriolis term to ac-
count for earth rotation, the time derivative of the velocity can be written

˙̂ve
be = Re

b(f b
IMU − b̂a) + ge − 2S(ωe

ie)v̂
e
be (3.23)

(3.24)

Where the acceleration measurement noise is discarded as it has expected value
0 and the rotation matrix Re

b is estimated outside of the filter. The acceleration
bias term is assumed constant

ḃa = 0 (3.25)

The GPS receiver clock bias and its rate is trivial. The GLONASS offset is as-
sumed constant in the prediction model

˙̂βgps = β̂d (3.26)
˙̂βd = 0 (3.27)

˙̂βglonass = 0 (3.28)

As the filter does not estimate the attitude, this prediction model can be written
on state space form

ẋ = Fx + Bub
ib (3.29)

Where x is the state vector and u is the acceleration measurement vector. The
transition and input matrix is

F =

03×3 I3×3 03×3
03×3 −2S(ωe

ie) Re
b

03×3 01×3 03×3
01×3 01×3 01×3
01×3 01×3 01×3

 (3.30)

B =

03×3
Re

b
03×3
01×3
01×3
01×3

 (3.31)

Where the rotation matrix, Re
b, is calculated from the attitude received from a

separate system.

3.3. DUNE IMPLEMENTATION 29

Discretization

Because the filter is implemented on a computer, the dynamics should be dis-
cretized. Defining the acceleration vector

a := Re
b(f b

IMU − b̂a) + ge − 2S(ωe
ie)v̂

e
be (3.32)

the prediction model becomes

p̂e
be ← p̂e

be + v̂e
be∆t + a

∆t2

2
(3.33)

v̂e
be ← v̂e

be + a∆t (3.34)

Discretization of the process noise covariance matrix normally requires a rather
involved integral to be solved. However, the Van Loan method described by
algorithm 1 can be used to find both the discretized state transition matrix and
process noise covariance matrices [34]

Algorithm 1: Van Loan’s discretization method

1. First, form the 2n× 2n matrix M:

M :=
[
−F Q
0 F>

]
(3.35)

2. Taking the matrix exponential of M yields the following relationship
to the discretized system

eM∆t =

[
· · · Φ−1

k Qk
0 Φ>k

]
(3.36)

3. Qk is then found from the upper right matrix as

Qk = ΦkΦ−1
k Qk (3.37)

3.3 DUNE implementation

For the system running on hardware, two DUNE tasks have been implemented.
One task interfaces the RTKLIB code base, while the other implements the EKF
described in section 3.2. Additionally, several preimplemented DUNE tasks are
included in the full system. Most notably, an Ardupilot task for connecting
DUNE and Ardupilot, and a logging task for storing IMU messages. The Ardupi-
lot task is necessary for two reasons. Firstly, it provides the system with IMU

30 CHAPTER 3. IMPLEMENTATION

measurements from the Pixhawk IMU and, secondly, it estimates and dispatches
the vehicle attitude, which is unmodeled in the EKF. The logging task is neces-
sary for testing, as mentioned in section 3.5. A block diagram of the system is
shown in figure 3.1.

RTKLIB
Hardware

EKF

GNSS-simulator
Simulation

GNSS
measurements

IMC::RawGnssData

IMC::EstimatedState

IMC::ExternalNavData

ArduPilot SItL
Simulation

Inertial
measurements

ArduPilot
Hardware

IMC::Imu
IMC::ExternalNavData

Figure 3.1: Overview of the EKF and the tasks it communicates with. Each box is
a distinct task. The tasks are color coded as follows; The blue boxes are tasks used
for the simulator (section 3.5.1), while the red ones run on hardware. The EKF
task depends only on the IMC-messages and runs regardless of either profile.

3.3.1 RTKLIB interface

The main purpose of the RTKLIB task is to read GNSS measurements from a
stream and dispatch these on the IMC bus. It is based on the RTKLIB command-
line program rtkrcv, and keeps much of the same functionality, with a few notable
exceptions. The task is configured through a configuration file, also called a conf
file, and can configure a connected serial device based on receiver configuration
file, also called a CMD file. Measurements can be read from different sources,
such as log files or serial devices, and, if specified in the conf file, they can be
logged in different file formats as well. Unlike the rtkrcv program however, the
task does not estimate any state variables, it does not run separately in a terminal

3.3. DUNE IMPLEMENTATION 31

and can not output any kind of status screens.

The RTKLIB code base can be accessed in DUNE by adding it as a third party
vendor library. However, RTKLIB builds its programs with makefiles only, while
DUNE relies on CMake. Therefore, a CMake file is added to the vendor, based on
the makefile for rtkrcv. To enable multi-GNSS functionality a flag must be set for
each enabled constellation. However, this changes the value of several internal
preprocessor macros, which in turn is used to set the size of RTKLIB’s internal
storage structs. To avoid memory errors it is therefore necessary that all DUNE
tasks working with RTKLIB structs add the same flags to their own CMake files.

Message name Message members
RawGNSSdata • Measurement time (GPS week and time)

• Satellite observables (List of IMC message)
RawGNSSsatObs • GNSS constellation ID

• Pseudo-range, doppler-shift and carrier phase

• Satellite position and velocity

• Measurement standard deviations

Table 3.1: GNSS IMC messages and relevant members

Algorithm 2: RTKLIB interface, pseudocode
Input: EstimatedState
Output: RawGNSSdata

Read conf file

while DUNE not stopped do
data← Read data from receiver

if data is ephemeris then
store data if not already stored

else if data is measurement and ephemeris stored for satellite then
calculate satellite position and velocity
calculate measurement corrections
dispatch corrected measurements, satellite position and velocity
store corrected measurements in file

end if

Algorithm 2 describes the rtklib-interface. After configuration files have been

32 CHAPTER 3. IMPLEMENTATION

read and storage structs have been allocated, the task enters its main execution
loop. This reads data from the input stream, which will eventually store an
ephemeris. For each available ephemeris, satellite position and velocity is calcu-
lated. Measurements are then collected, corrected for atmospheric, sagnac and
satellite clock errors and finally dispatched, with satellite position and veloc-
ity, as a RawGNSSdata IMC message, shown in table 3.1. The corrections are a
function of the receiver position, which the RTKLIB task receives by binding the
EstimatedState IMC message, which in this implementation is dispatched from
the EKF. If set in the configuration file, the task stores both measurements and
receiver position in a UBX and a POS file, respectively, each iteration. Note that
the name RawGNSSdata is somewhat misleading, as corrections have been ap-
plied to the measurements. This IMC message type is simply used because it
was implemented prior to this thesis and readily available.

3.3.2 Extended Kalman filter

This task estimates position, velocity, receiver clock bias and receiver clock bias
rate based on acceleration and GNSS measurements. It implements the filter
described in section 3.2. The measurements are received from the IMU and
RawGNSSdata messages, attitude comes from ExternalNavData and finally po-
sition and velocity is output in the EstimatedState message as seen in tables 3.1
and 3.2.

Message name Message members
EstimatedState • Vehicle position (longitude, latitude, height)

• Vehicle attitude (between body and NED)

• Vehicle velocity (of body, with respect to NED)
ExternalNavData • Estimated state (IMC message)

• Nav Data Type (Status of estimated state)
Imu • Acceleration (IMC message)

• AngularVelocity (IMC message)
Acceleration • Device time

• X, Y and Z acceleration components
AngularVelocity • Device time

• X, Y and Z angular velocity components

Table 3.2: Imu and State IMC messages with relevant members

Each time a set of GNSS measurements are received, they run the measurement
step of the EKF. The rate of the measurements depend on how the receiver is con-
figured, and has been set to 10 Hz in this thesis. Similarily, each IMU measure-

3.4. EMBEDDED PLATFORM 33

ment runs the prediction step. To sufficiently capture the dynamics of the system,
these measurements arrive at a higher frequency than the GNSS measurements,
at about 30 Hz, although this can vary. As each prediction step discretizes the
system, the timestep between measurements should be as exact as possible, and
a timestamp is therefore added to each measurement.

A separate state estimate is received from the ArduPilot task in the ExternalNav-
Data message. Although only the attitude is used during normal operation, the
whole state is kept for both redundancy, and to have a reference during testing
and tuning. The external state estimate represents position by latitude, longitude
and height, while the attitude denotes the rotation between the body and NED
frame. However, as the EKF works with the ECEF frame of reference, this state
estimate must be transformed to the ECEF frame as well. The rotation matrix
from the body frame to the ECEF frame is calculated as follows

Re
b = Re

nRn
b (3.38)

where the matrices on the right hand side are the rotation matrix from the NED
frame to the ECEF frame and from the body frame to the NED frame. The first is
calculated from latitude and longitude by equation A.1, while the second comes
from equation A.2, from appendix A.5.1. Equations 3.24 and 3.22 assumes the
gravitational vector in the ECEF frame to be known, which is found by rotating
the vector defined by 3.9.

3.4 Embedded Platform

The DUNE implementation runs on a BeagleBone Black Industrial (BBB), pic-
tured in figure 3.3. A cape is connected to the BeagleBone, in turn connected to
both a GNSS receiver, and a Pixhawk 2.1 (also called The Cube flight controller).
The Pixhawk has another GNSS receiver and a magnetometer connected to it.
The full payload sits conveniently in a peli case. A simple block diagram illus-
trates this in figure 3.2

BeagleBone

The BeagleBone Black is a powerful embedded computer board capable of run-
ning several different operating systems, such as Ubuntu. It contains both USB,
HDMI mini and Ethernet ports, as well as pin headers with both UART, SPI
and I2C. By default the BeagleBone comes with a stripped down linux distribu-
tion called Angstrom, but it has been flashed with the Glued linux distribution
through the onboard SD-card. The BeagleBone can be controlled by SSH over the
ethernet port, where the user can start or stop processes, modify configuration
files or transfer data to or from the BeagleBone. The router in the case provides
the user with additional ethernet ports and a DHCP server to simplify the con-

34 CHAPTER 3. IMPLEMENTATION

GNSS receiverPixhawk 2.1

GNSS receiver /
Magnetometer

BeagleBone

Cape

Figure 3.2: Block diagram of the hardware package

Figure 3.3: A beaglebone with a cape (midlertidig)

nection process.

The cape is a design of the UAVlab at NTNU and was soldered by hand. There
are several reasons for including this in the payload. Firstly, it contains con-
nector ports for a GNSS receiver, a pixhawk, two SPI ports, an I2C port and a
PWM port, greatly reducing clutter from cables. Secondly, it also contains four
molex power connectors, two for voltage input and two for voltage output. It
can therefore be used as a power hub for the whole system. Both the pixhawk,
receiver and even the ethernet router. Since there are two voltage inputs, power
sources can also be hot-swapped, keeping the system from powering down. This
is convenient when switching batteries or for keeping the BeagleBone running in
post-processing. Another useful feature of the cape is its real time clock, pow-
ered by a backup battery. With this, the BeagleBone will keep track of time even
when turned off, which is especially important for logging purposes as logs are

3.5. TESTING 35

automatically named according to date and time and a name conflict will result
in the original log being overwritten. Without the real time clock, the logs would
usually be overwritten during startup as all would be named with respect to the
BeagleBone’s default epoch.

Sensors

The GNSS receiver connected to the BeagleBone is an UBlox NEO-M8T mounted
on an InCase series NEO-M8T board. The LEA-M8T breakout board was also
used for early testing on a computer as it comes with a built in USB port, but
the two receivers are otherwise much the same. Both support GPS, GLONASS,
BeiDou and Galileo, as well as the QZSS and SBAS augmentation systems [33].
The receiver uses a Tallysman TW4421-00 Wideband Dual Feed antenna.

Figure 3.4: A NEO-M8T receiver (midlertidig)

Imu measurements are read from the pixhawk flight controller. It contains three
separate nine-axis IMU’s (3-axis gyroscope, accelerometer and magnetometer) for
redundancy, two of which are mechanically vibration-isolated. Additionally, an
external GPS and magnetometer is connected. It runs the ArduPlane flight stack
and keeps an internal state estimate that is dispatched to the DUNE system, as
explained in section 3.3.2.

3.5 Testing

To verify that the whole system was working as intended different methods were
used, listed in table 3.3. The EKF alone was first tested with the simulator de-
scribed in section 3.5.1. Next, the RTKLIB task was tested by configuring it to
read real world measurements from a UBX-log file. The system was then tested
on real world GNSS data by connecting a GNSS receiver over USB. Finally, the

36 CHAPTER 3. IMPLEMENTATION

full system was tested and tuned by a log of IMC messages gathered from a test
run of the hardware package.

Testing method Tested system
Simulator EKF only
UBX log RTKLIB and EKF (without IMU)
Stationary receiver Reading and configuration of serial device
IMC log The full system

Table 3.3: Course of testing

3.5.1 Simulator

Vehicle simulation

With software in the loop (SITL), ardupilot can be run without any hardware.
The vehicle is simulated through a flight dynamics model (FDM) which commu-
nicates with a flight simulator. The flight simulator simulates measurements and
dispatches these to ardupilot. Ardupilot is configured to work with the FDM
JSBsim. It is cross platform and contains models for a range of different vehicles,
although this implementation simply uses the default model of the Rascal110 RC
plane.

GNSS

A simple GNSS simulator has been implemented in DUNE. The focus of the sim-
ulator is to provide pseudorange and doppler measurements to a receiver, and
as such no ephemeris calculations are made for the simulated satellite positions
or velocity. For simplicity the satellites are kept stationary with zero velocity. Po-
sitions are taken from a snapshot of visible GPS satellites in the Trondheim area
at 13:00 the 13th of November 2018. A visibility plot shows the satellites with
respect to elevation angle and azimuth in figure 3.5.

Each satellite of the simulator runs as a separate task on the system. The output
of the tasks comes in the form of the IMC message RawGNSSdata, containing
satellite position and range and doppler shift measurements. The input is an-
other IMC message, ExternalNavData, containing the true state of the system,
dispatched by the ardupilot task. As all the satellites in the constellation run as
separate tasks, the true state will be received at the same time for all satellites.
In other words, the satellites dispatch messages separately while sharing inputs.
As a result, GNSS-messages will be dispatched approximately simultaneously,
resulting in messages being sent in bursts, resulting in an excessively small time
step between measurements. This is not ideal for a discretized system and should

3.5. TESTING 37

N

NNE

NE

ENE

E

ESE

SE

SSE

S

SSW

SW

WSW

W

WNW

NW

NNW

20

40

60

80

N

NNE

NE

ENE

E

ESE

SE

SSE

S

SSW

SW

WSW

W

WNW

NW

NNW

20

40

60

80

N

NNE

NE

ENE

E

ESE

SE

SSE

S

SSW

SW

WSW

W

WNW

NW

NNW

20

40

60

80

Figure 3.5: Visibility plot of the satellites in the simulator from Trondheim. The
user position is in the middle, while the dots denote satellites above the horizon.
The distance between user and satellites in the plot is the given by the elevation
angle. The angle from the north axis is the azimuth.

be handled. Distinct delays between the satellite tasks are therefore introduced,
which spread the dispatching of GNSS messages evenly. Another option would
be to buffer the GNSS messages at the integration filter and run all measurements
together, but this introduces an unnecessary layer of complexity for the filter.

Full simulator system

Neptus is configured to interface with Ardupilot and can be used to control the
simulated vehicle. Not only does this provide the operator with a visual inter-
face for executing maneuvers, but it also offers extensive plotting functionality of
messages from the IMC bus shared with DUNE, which is helpful for debugging.
DUNE is also configured to run the FlighGear task that offers a IMU measure-
ments with a higher resolution than those received from arduplane. A block
diagram of the full simulator is shown in figure 3.6

3.5.2 UBX log

To test both the RTKLIB and EKF tasks together, reading GNSS measurements
from a log file is beneficial. Testing can begin immediately after updating code
as there is no need to wait for signal acquisition, nor for the ephemeris to down-
load. Additionally, the same log can easily be run with external software, such
as RTKLIB, to provide a navigation solution that can be kept as a reference. It

38 CHAPTER 3. IMPLEMENTATION

ArduPlane

UDP

UDP

JSBSim

UDPFlightgear

Mavproxy

UDP

IMC Neptus

TCP

DUNE

TCP

Ardupilot task

Flightgear task

Figure 3.6: Simulator block diagram

is also beneficial as a verification that the integration filter works as intended on
real world, noisy data. RTKLIB supports several input protocols, one of which is,
as mentioned, the ubx log format. For the dune task equivalent this functionality
was included. However, in RTKLIB, this is not designed to work in real time, in
that log files are handled as fast as possible. A buffer for storing the measure-
ments of the logfile was therefore added, periodically pushing its contents to the
IMC bus according to the original time stamps of each measurement.

3.5.3 Serial device

As the system was tested on a computer, a ublox LEA-M8T multi-GNSS receiver
can easily be connected by USB, pictured in figure 3.7. The receiver is configured
to output raw measurements by the RTKLIB task, specified by a CMD file. This
tests the ability to change the input source based on a configuration file, config-
uration of a connected serial device and the reading of serial data. The receiver
output is message based, meaning that it can output several distinct message types
with different information. U-center lists the message types being output by a
connected receiver, and can therefore be used to verify the configuration.

3.5.4 IMC log

While the UBX log and live serial device is great for testing both the RTKLIB
task and the measurement step of the EKF, it does not contain any IMU mea-
surements, and consequently the dynamics of the prediction step is not properly
tested. Testing and tuning the full EKF directly on the hardware is impractical
as it can only be updated by the somewhat lengthy process of cross-compilation.

3.5. TESTING 39

Figure 3.7: The Ublox LEA-M8T multi-GNSS receiver

However, DUNE has the ability to log any of the message types on the IMC bus
and replay it on any other DUNE system. In other words, replaying the log on a
computer, the system will virtually behave as if running with the full hardware
package. This is invaluable when tuning the Kalman filter as DUNE can be up-
dated directly and efficiently, there will be no unexpected problems related to
real world testing and estimates can easily be compared to a reference.

40 CHAPTER 3. IMPLEMENTATION

Chapter 4

Results

This chapter presents the results obtained from the system described in section
3, with the goal of investigating performance of the EKF with real, raw data. Al-
though the DUNE implementation was running during testing, an IMC-log was
stored so the test could be rerun on a computer, to simplify the process of fine
tuning as well as plotting.

Figure 4.1: Satellite image of the test area

All of the results presented were gathered from tests performed in the area near
the Norwegian university of science and technology. All tests were carried out
on foot, with the hardware in hand. Figure 4.1 shows a satellite image of the area
where the test was undertaken, the planned path in red, and the blue arrows
indicating the direction walked.

A post-processed RTK solution has been used as a reference for position and
velocity, where a base station log was acquired online from the Norwegian Map-

41

42 CHAPTER 4. RESULTS

ping authority. The base station, TRDS, is positioned approximately 6.5 km away
from the testing area, which is assumed to be close enough to obtain a reliable
solution.

4.1 Stationary tests

To allow the EKF estimates to converge, the system was kept stationary for 300
seconds before testing was initiated. Results from this process will now be pre-
sented.

Position and velocity

The stationary position error of the EKF estimate before full convergence and the
RTK solution is shown in figure 4.2. Note that the RTK solution did not have
a fix at this time, and its accuracy can not be trusted completely. Regardless, it
does seem to have a better precision than the EKF estimate. After convergence
some noise is present, with a precision of approximately 2 meters in the east di-
rection and 5 meters in the the north direction. The EKF is shown to converge
after approximately 150 seconds in figure 4.3. Note the different scale of the axes.

-1 -0.5 0 0.5 1 1.5 2

East [m]

-4

-2

0

2

4

6

8

10

12

14

N
o

rt
h

 [
m

]

Position error under stationary conditions (NED)

RTK solution (before fix)

EKF estimate

Figure 4.2: Cloud plot of the position error under stationary conditions

The velocity errors of running the EKF with and without acceleration measure-
ments are shown in figure 4.4. The solution based solely on GNSS contains

4.1. STATIONARY TESTS 43

130 140 150 160 170 180 190 200 210 220

Time [s]

-20

-10

0

10

20

30

40

N
o
rt

h
 [
m

]

Stationary position error (NED)

EKF estimation error

EKF estimation error (GNSS only)

130 140 150 160 170 180 190 200 210 220

Time [s]

-6

-4

-2

0

2

E
a
s
t
[m

]

130 140 150 160 170 180 190 200 210 220

Time [s]

-60

-40

-20

0

20

40

60

D
o
w

n
 [
m

]

Figure 4.3: Position error during stationary conditions in three dimensions.

some high frequency noise components, and has a root mean square error of[
0.3701m/s 0.1398m/s 0.4053m/s

]
for north, east and down directions, re-

spectively. Correspondingly, the full system has a root mean square error of[
1.3830m/s 0.1637m/s 2.9501m/s

]
.

Biases

It is important to have a good estimate of the receiver clock bias to get any mean-
ingful results from the GNSS. This estimate is shown in figure 4.5 and, as ex-
pected, is shown to have a constant slope after convergence. The estimated rate
of the receiver clock bias is shown in figure 4.6 with and without acceleration
measurements. While the solution based on GNSS only contains low frequency
spikes, the tightly coupled estimate contains some higher frequency noise com-
ponents.

It was found that the PixHawk IMU measurements contained fairly significant
biases, important to estimate to achieve reliable results. This estimate is plotted
together with acceleration measurements in figure 4.7. Note that the measure-
ments are corrected for gravity. It is seen from the plot that the EKF makes a fair
approximation of the bias.

44 CHAPTER 4. RESULTS

0 20 40 60 80 100 120

Time [s]

-1

-0.5

0

0.5

1

1.5

2

N
o
rt

h
 [
m

]

Stationary velocity error (NED)

EKF velocity error

EKF velocity error (GNSS only)

0 20 40 60 80 100 120

Time [s]

-0.5

0

0.5

E
a
s
t
[m

]

0 20 40 60 80 100 120

Time [s]

-3

-2

-1

0

1

2

D
o
w

n
 [
m

]

Figure 4.4: Velocity errors of the stationary systems

0 50 100 150

Time [s]

-2.75

-2.748

-2.746

-2.744

-2.742

-2.74

-2.738

-2.736

-2.734
10 6 Estimated receiver clock bias

Figure 4.5: Receiver clock bias

4.1. STATIONARY TESTS 45

0 50 100 150

Time [s]

75

80

85

90

95

100

Estimated receiver clock bias rate

Figure 4.6: Receiver clock bias rate of the tightly coupled system when stationary.

120 130 140 150 160 170 180 190 200 210 220 230

Time [s]

-0.3

-0.2

-0.1

0

0.1

Acceleration measurements and estimated bias (Body)

acceleration

bias estimate

120 130 140 150 160 170 180 190 200 210 220 230

Time [s]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

120 130 140 150 160 170 180 190 200 210 220 230

Time [s]

-0.4

-0.2

0

0.2

0.4

Figure 4.7: Estimated accelerometer bias with uncorrected acceleration measure-
ments

46 CHAPTER 4. RESULTS

4.2 Dynamic tests

This section covers the part of testing where the system was in motion. To further
look into the the benefits of applying acceleration measurements to the EKF, the
planned test was performed twice under different conditions. First, the full EKF
was run with acceleration and GPS measurements at a frequency of 5 Hz, with
results presented in section 4.2.1. Second, the GNSS receiver was configured to
output both GPS and GLONASS measurements at 10 Hz, while the acceleration
measurements were discarded, leading to state estimates based on GNSS only.
These results are presented in section 4.2.2.

4.2.1 The tightly coupled system
Figure 4.8 shows the latitude and longitude estimates with velocity vectors av-
eraged over approximately a second each. The vectors in the lower left corner
have a smaller magnitude as this part of the path goes uphill. Assuming course
and heading to be equal, the velocity vectors would ideally go tangential to the
reference, but as can be seen, this is not always the case.

10.396 10.397 10.398 10.399 10.4 10.401 10.402 10.403 10.404

63.4196

63.4198

63.42

63.4202

63.4204

63.4206

63.4208

63.421

63.4212

63.4214

63.4216

Figure 4.8: Position estimates with averaged velocity vectors.

The distributions of the position error of both setups are represented as his-
tograms in figures 4.9 and 4.10. The tightly coupled solution was found to have
a root mean square error (RMSE) of

[
5.1192m 2.5267m 7.1108m

]
in the north,

east and down direction, respectively, while the purely GNSS based solution had

4.2. DYNAMIC TESTS 47

a lower RMSE of
[
2.4492m 1.3123m 6.3648m

]
. However, the former is seen to

roughly retain a normal distribution, as opposed to the GNSS based estimation
errors. At this point, it is also interesting to note how the noise of the receiver
clock bias estimate increases significantly when the acceleration measurements
are discarded, as shown in figure 4.11.

Figure 4.9: Histogram showing the distribution of the position error during test-
ing.

4.2.2 Multi-GNSS
To investigate the benefits of multi-GNSS, three different setups were tested for
the EKF using GNSS only. Nameley, GPS and GLONASS at 10 Hz, only GPS at
10 Hz and lastly, both GPS and GLONASS at 5 Hz.

It is interesting to note the increase in the amount of available satellites from
adding GLONASS measurements. This is shown in figure 4.12. Note that this is
the number of tracked satellites after the elevation mask is applied. In this case,
the number of available satellites are more than doubled, and the tracking of the
GLONASS satellites is more stable.

The RMSE of the position errors of all three setups are shown in table 4.1. Con-
figuring the GNSS receiver to employ both GPS and GLONASS seems to result in
a slightly lower RMSE. The postion errors, with respect to the RTK reference, are
shown in figure 4.13. Figure 4.14 shows the estimated latitude and longitude of

48 CHAPTER 4. RESULTS

Figure 4.10: Histogram showing the distribution of the position error of the esti-
mate based solely on GNSS measurements.

0 50 100 150 200 250 300 350 400 450 500

Time [s]

85

90

95

100

105

110

Estimated receiver clock bias rate

Figure 4.11: Estimated receiver clock bias rate with and without acceleration
measurements.

4.2. DYNAMIC TESTS 49

100 200 300 400 500 600 700 800 900

time [s]

0

2

4

6

8

10

12

n
u
m

b
e
r

o
f
v
is

ib
le

 s
a
te

lli
te

s

Number of visible satellites

GPS satellites

GLONASS satellites

GPS and GLONASS satellites

Figure 4.12: Number of tracked GLONASS and GPS satellites during testing

the solution obtained from employing both GPS and GLONASS measurements
at 10 Hz.

Setup North [m] East [m] Down [m]
GPS and GLONASS 10 Hz 2.3733 1.3300 6.4983

GPS 10 Hz 3.4710 1.5723 6.8607
GPS and GLONASS 5 Hz 2.5865 1.3967 6.9490

Table 4.1: RMSE values with different GNSS receiver configurations.

50 CHAPTER 4. RESULTS

Figure 4.13: Position error of the multi-GNSS setup with different configurations.

10.396 10.397 10.398 10.399 10.4 10.401 10.402 10.403

63.4196

63.4198

63.42

63.4202

63.4204

63.4206

63.4208

63.421

63.4212

63.4214

63.4216

Figure 4.14: Position estimates with averaged velocity vectors from the solution
based only on GNSS measurements.

Chapter 5

Discussion

This chapter discusses the system described in chapter 3 in light of the results
presented in chapter 4.

5.1 Convergence

The stationary tests revealed the EKF to be fairly slow to converge, requiring
approximately 150 seconds before position estimates converged to within ten
meters in the north direction and five meters in the east direction. By varying
the initial state, it was found that the EKF was particularly dependent on proper
initial estimates of both position and receiver clock bias, otherwise deviating sig-
nificantly after just a few iterations. Although high initial values were added
for the variances of these state variables, it proved to have little effect. This may
indicate that the measurement covariance for the pseudo-range measurements
were too low, resulting in the high value of the initial pseudo-range residuals
affecting the state estimates overly much. It should however be noted that the
tests performed for this thesis was done by foot, where dynamics are considered
fairly low.

As it is known that the quality of GNSS measurement In this thesis, the measure-
ment was simply set as a function of the responsible satellite’s elevation angle.
However, the convergence and initialization could be improved by adding an ex-
tra calibration mode to the EKF, where the assumption of no motion is incorpo-
rated, both through the measurements and through the measurement covariance
matrix. In other words, a the measurement step is run with a direct measurement
of the velocity, set to zero, with a very low measurement covariance as the system
is known to be stationary.

51

52 CHAPTER 5. DISCUSSION

5.2 Tight coupling

Comparing the state estimates from the tightly coupled EKF and the estimates
based only on GNSS measurements, it is seen that the acceleration measurements
contributes to provide smoother estimates, working as a low pass filter. This is es-
pecially clear when comparing the different receiver clock bias estimates, where
only the decoupled estimate contains significant periodic spikes.

Interestingly, this was also seen to aid the estimation errors in maintaining a nor-
mal distribution, and keep the expected value of the errors centered at zero. For
the second approach however, the distributions were skewed and biased, violat-
ing one of the main assumptions of the Kalman filter estimator, as they can not be
described by mean and covariance alone. This is probably the result of stochastic
multipath errors. According to the bias present in the error distributions, the re-
flecting surface would be situated roughly south-west of the testing route, which
can be explained from the image in figure 4.1, where several buildings are shown
to lay south west of route in the lower left corner. In this test, the redundancy
offered by integrating acceleration measurements served to reduce the severity
of the multipath significantly, yielding a far more robust system.

While the system was kept stationary, the tightly coupled EKF was found to have
significantly higher RMSE values in the north and east direction than the decou-
pled system, while also being slower to converge. This is because the stationary
case does not provide any information with regards to acceleration, and from
equation 3.29, discarding the acceleration integration can be interpreted as the
acceleration measurement being zero. Thus, in the stationary case, the tightly
coupled filter will only integrate the IMU errors, while the second system can be
considered to employ perfect acceleration measurements for this scenario. As the
acceleration measurements in these tests contained significant bias components,
the acceleration measurement errors will be significant until the bias estimate has
converged. In figures 4.6 and 4.11 the acceleration measurement noise is seen to
have propagated the estimate of the receiver clock bias rate, introducing high
frequency noise, yet smoothing the more extreme, periodic transients seen in the
decoupled estimate.

Given the close connection between receiver clock bias rate, range-rate and accel-
eration measurements and velocity, it would have been interesting to investigate
the improvement in velocity estimates with respect to a reference, but as men-
tioned earlier, this was ultimately found to be unavailable.

5.3 Multi GNSS

By adding GLONASS measurements to the EKF, the amount of tracked satellites
more than doubled. The effect of this can be seen in table 4.1. In the north
direction, this corresponds to an improvement of over one meter, with less sig-

5.4. CPU USAGE 53

nificant improvements in the east and down directions. Experiments showed
that the tracking of GLONASS satellites was more stable. This is possibly due to
GLONASS satellites maintaining orbits with a higher inclination angle, offering
better coverage at higher latitudes than GPS. GLONASS measurements were also
found to be available several seconds earlier than GPS, as there is no need to wait
for an ephemeris, rather broadcasting satellite position, velocity and acceleration
directly.

Adding additional satellites improves geometry, and increased precision is ex-
pected. By employing both GPS and GLONASS, RMSE values in the north di-
rection improved by more than a meter, with less impressive increase in the east
and down directions of 0.2 and 0.4 meters, respectively. The position estimate
also seems to be less susceptible to transient errors.

5.4 CPU usage

Running the system on the embedded platform was found to have a fairly large
computational footprint, steadily utilizing approximately 80% of the CPU during
testing in nominal conditions, with both GLONASS and GPS measurements. As
expected, some of the load seemed to be proportional to the amount of avail-
able satellites, due to the two sets of ephemeris calculations required to compute
satellite positions and velocities. In the RTKLIB DUNE-task, satellite position and
velocity is calculated every time a measurement is received, before any satellites
are masked out based on their elevation angle with respect to the receiver. How-
ever, to determine whether a satellite should be masked out, it is unnecessary to
precisely calculate its position. During testing, approximately 30% of available
satellites were masked out, and it can thus be beneficial to improve the masking
process, especially if additional GNSS are employed.

Assuming the elevation angles to vary slowly, a more computationally effective
approach could blacklist satellites after they were masked out, and poll them for
updated elevation angles at a low frequency. It would also be possible to use
the less precise almanac data to provide a rough, but computationally effective,
satellite position estimate. By taking advantage of the fact that satellite orbits
are highly stable, it should also be possible to predict satellite positions through
Euler integration of the velocity.

It should be noted that the GLONASS satellites do not suffer from this large com-
putational footprint, as was mentioned earlier. It would be interesting to compare
the difference in computational load between employing GLONASS and GPS.

54 CHAPTER 5. DISCUSSION

5.5 Result uncertainties

Testing revealed some unexpected results, among them the reference systems
were found to be slightly lacking.

5.5.1 Reference solutions

There are some uncertainties in the accuracy of the post-processed reference RTK
solution. Neither of the two references managed to acquire a proper fix of the
integer ambiguities, and the reference for the second test, based on GLONASS
and GPS measurements, is even seen to contain sudden jumps in position, as
opposed to the smooth path of the one based on GPS only. It is unexpected that
the former would provide a less precise estimate as tracking of between six and
seven additional satellites should have resulted in a better estimate. However, in
post processing, this reference was acquired by only doing a forward processing of
the measurement log, where the second was acquired from a combined forward
and backward run. It should also be noted that both of these tests were performed
on separate days, so it is possible that conditions were more preferable, with re-
gards to outside factors such as weather or multipath. Another factor could be
that the ArduPilot DUNE-task crashed during this test, partially shutting down
DUNE and stopping the IMC-log after just a few seconds. The RTKLIB-task did
not shut down however, and a log of the raw measurements could still be ac-
quired after testing. This can have affected the measurement log, such as making
the RTKLIB-task hang, possibly skipping measurements and forcing the carrier
phase tracking to be reset.

5.5.2 PixHawk and ArduPilot

The prediction model of the EKF relied on attitude to integrate IMU measure-
ments. Both attitude estimates and IMU measurements were supplied to the EKF,
through the ArduPilot DUNE-task, from an onboard PixHawk, both of which
were found to be fairly unreliable. The acceleration measurements contained a
significant bias component, which remained even after calibration, and its posi-
tion estimates were unusable with an RMSE in the order of 106 when testing the
system in motion. However, it should be noted that applying acceleration mea-
surements was shown to improve state estimates, but further testing is required
to ascertain the precision of the attitude estimates as no reference was available
for comparison in this regard. It was initially planned to use the PixHawk as
a reference for velocity as RTKLIB only outputs position. However, due to the
unexpected behaviour of the PixHawk it was decided that these estimates could
not be relied upon. Therefore, the estimated velocity of the system could not be
properly tested.

5.6. FUTURE WORK 55

5.6 Future work

• Position and velocity estimates based on RTK: The main reason an inter-
face between RTKLIB and DUNE was implemented, was so future DUNE
systems would easily have access to its large codebase GNSS related func-
tions, most interestingly, its support for RTK based positioning. The imple-
mented RTKLIB-task has already been configured to dispatch carrier phase
with this improvement in mind. It would also be interesting to examine the
improvement in state estimates from employing carrier-smoothed pseudo-
ranges in the filter.

• Improved integration filter: The implemented extended Kalman filter is
fairly simple, and can be improved to acquire better state estimates. It is
believed that an indirect multiplicative extended Kalman filter with atti-
tude estimation should provide a better performance. Another possibility
would be to implement a non-linear observer. This has been shown to
have a lighter computational footprint than a Kalman filter, which can be
beneficial as CPU usage was found to be fairly high when running the
implemented system.

• Full testing of a multi-GNSS based system: Due to time constraints, and
what is believed to be a faulty pixhawk, the full system was not tested with
a multi-GNSS setup. It would be interesting to see how the tightly coupled
would improve when aided by additional satellites.

56 CHAPTER 5. DISCUSSION

Chapter 6

Conclusion

A tightly coupled extended Kalman filter estimating position and velocity in-
tegrating Doppler and pseudo-range measurements with acceleration measure-
ments has been presented. It was implemented in the real time navigation envi-
ronment DUNE. An interface between the open source program package RTKLIB
and DUNE was implemented as well, and was shown to seamlessly provide the
DUNE implementation with pseudo-range and range-rate measurements cor-
rected for atmospheric and sagnac errors and satellite clock bias. A hardware
setup running the implementation was presented as well.

The results show that integrating acceleration and GNSS measurements provided
smoother state estimates than those achieved by employing GNSS measurements
alone, and that it may abate the effects of unmodeled stochastic GNSS measure-
ment errors. A multi-GNSS setup was tested as well, showing a fair improvement
in estimated position as the number of available satellites increased. However,
testing revealed some overhead in the implementation, utilizing around 80% of
the CPU during nominal conditions.

57

58 CHAPTER 6. CONCLUSION

Appendices

59

Appendix A

Reference frames

A.1 ECI

The Earth-centered inertial (ECI) frame has its origin at the center of the Earth
and z-axis intersecting the geographic North Pole. It is denoted by {i}.

A.2 ECEF

The Earth-centered, Earth-fixed (ECEF) frame is another coordinate system with
origin at the center of mass of the Earth. Its z-axis is also shared with the ECI
reference frame, but the x- and y-axes intersects fixed point on the surface of the
earth, meaning that it rotates with the Earth about the z-axis. As such, ECEF is
not an inertial frame, but for slow moving craft it may be considered as such [7].
In this thesis, the ECEF frame of reference is denoted by {e}.

A.3 NED

The north-east-down frame is a location dependent system tangential to the sur-
face of the Earth. The z-axis points down, along the normal of the Earth ellipsoid,
while x- and y-axes points north and east, respectively. The NED frame is de-
noted {n}.

A.4 Body

The body-fixed reference frame is a moving coordinate system fixed to some
craft. Both origin and orientation of the coordinate system is chosen freely . The
body system is denoted {b}

61

62 APPENDIX A. REFERENCE FRAMES

Figure A.1: NED and ECEF frames

A.5 Transformations between frames

A.5.1 NED and ECEF

According to [7], the rotation matrix from NED to ECEF is given by

Re
n =

−cos(l)sin(µ) −sin(l) −cos(l)cos(µ)
−sin(l)sin(µ) cos(l) −sin(l)cos(µ)

cos(µ) 0 −sin(µ)

 (A.1)

where l denotes latitude and µ denotes longitude.

A.5.2 Body and NED

Given a set of Euler angles
[
φ θ ψ

]
denoting the rotation from body to NED,

a rotation matrix can be calculated as

Rn
b =

c(ψ)c(θ) −s(ψ)c(φ) + c(ψ)s(θ)s(φ) s(ψ)s(φ) + c(ψ)c(φ)s(θ)
s(ψ)c(θ) c(ψ)c(φ) + s(φ)s(θ)s(ψ) −c(ψ)s(φ) + s(θ)s(ψ)c(φ)
−s(θ) c(θ)s(φ) c(θ)c(φ)

(A.2)

Where c and s is shorthand for the cosine and sine functions, respectively. Alter-
natively, the rotation matrix can be calculated from the quaternion

[
η ε1 ε2 ε3

]

A.5. TRANSFORMATIONS BETWEEN FRAMES 63

as

Rn
b =

1− 2(ε2
2 + ε2

3) 2(ε1ε2 − ε3η) 2(ε1ε3 + ε2η)
2(ε1ε2 + ε3η) 1− 2(ε2

1 + ε2
3) 2(ε2ε3 − ε1η)

2(ε1ε3 − ε2η) 2(ε2ε3 + ε1η) 1− 2(ε2
1 + ε2

2)

 (A.3)

64 APPENDIX A. REFERENCE FRAMES

Appendix B

Atmospheric models

B.1 The Klobuchar ionospheric model

Given the user position in geodetic latitude φu, longitude λu, elevation angle E
and azimuth A of the observed satellite, as well as model parameters αn and βn
received from the almanac, the Klobuchar model computes the ionospheric delay
IGPS as follows.

ψ =
0.0137

E + 0.11
− 0.022 (B.1a)

φI = φu + ψA (B.1b)

if φI > +0.416, then φI = +0.416

if φI < −0.416, then φI = −0.416

λI = λu +
ψsin(A)

cos(φI)
(B.1c)

φm = φI + 0.064cos(λI − 1.617) (B.1d)
t = 43200λI + tGPS (B.1e)

Where 0 ≤ t ≤ 86400. Therefore, if t ≥ 86400, subtract 86400, if t < 0 add 86400

AI =
3

∑
n=0

αnφn
m (B.1f)

if AI < 0, then AI = 0

PI =
3

∑
n=0

βnφn
m (B.1g)

65

66 APPENDIX B. ATMOSPHERIC MODELS

if PI < 72000, then PI = 72000

XI =
2π(t− 50400

PI
(B.1h)

F = 1.0 + 16.0(0.53− E)3 (B.1i)

IGPS =

(5 ∗ 10−9 + ∑3
n=0 αnφn

m)

(
1− X2

I
2 +

X4
I

24

)
F , |Xi| ≤ 1.57

5 ∗ 10−9F , |Xi| ≥ 1.57
(B.1j)

B.2 Saastamoinen tropospheric model

Given the user position in geodetic latitude φu, longitude λu, height h, elevation
angle E, humidity hr and temperature T (in Kelvin). The tropospheric error, δt
calculated by the Saastamoinen model is

if h < −100 or h > 104, δt = 0

p = 1013.25(1− 2.2557e−5)5.2568 (B.1ka)

e = 6.108hr exp
17.15T−4684

T−38.45 (B.1kb)

z =
π

2.0
− E (B.1kc)

tdry =

(
0.0022768p

1− 0.00266cos(2φu)
− 0.00028h10−3

)
/cos(z) (B.1kd)

twet =
2.857635e

(T + 0.05)cos(z)
(B.1ke)

δt = tdry + twet (B.1kf)

B.2. SAASTAMOINEN TROPOSPHERIC MODEL 67

0 5 10 15 20

Local time [h]

0

5

10

15

20

25

30

35

T
im

e
 d

e
la

y
 [

n
s
]

Klobuchar model

Figure B.1: This figure shows the concept of the klobuchar model. Note that this
is not exact, but rather a simple approximation to show the concept of the model.

68 APPENDIX B. ATMOSPHERIC MODELS

Bibliography

[1] The bds-3 preliminary system is completed to provide global ser-
vices. http://en.beidou.gov.cn/WHATSNEWS/201812/t20181227_16837.
html. Accessed: 2019-03-20.

[2] Galileo faqs. https://www.gsc-europa.eu/helpdesk/faqs. Accessed:
2019-03-20.

[3] Z. Baldysz, G. Nykiel, A. Araszkiewicz, M. Figurski, and K. Szafranek. Com-
parison of gps tropospheric delays derived from two consecutive epn repro-
cessing campaigns from the point of view of climate monitoring. Atmospheric
Measurement Techniques, 9(9):4861, 2016.

[4] G. Di Giovanni and S. Radicella. An analytical model of the electron density
profile in the ionosphere. Advances in Space Research, 10(11):27–30, 1990.

[5] G. Falco, M. Pini, and G. Marucco. Loose and tight gnss/ins integra-
tions: Comparison of performance assessed in real urban scenarios. Sensors,
17(2):255, 2017.

[6] J. Farrell. Aided navigation: GPS with high rate sensors. McGraw-Hill, Inc.,
2008.

[7] T. I. Fossen. Handbook of marine craft hydrodynamics and motion control. John
Wiley & Sons, 2011.

[8] P. Freda, A. Angrisano, S. Gaglione, and S. Troisi. Time-differenced car-
rier phases technique for precise gnss velocity estimation. GPS Solutions,
19(2):335–341, 2015.

[9] H. F. Grip, T. I. Fossen, T. A. Johansen, and A. Saberi. Globally exponen-
tially stable attitude and gyro bias estimation with application to gnss/ins
integration. Automatica, 51:158–166, 2015.

[10] P. D. Groves. Principles of GNSS, inertial, and multisensor integrated navigation
systems. Artech house, 2013.

[11] K. Gryte, J. M. Hansen, T. Johansen, and T. I. Fossen. Robust navigation
of uav using inertial sensors aided by uwb and rtk gps. In AIAA Guidance,
Navigation, and Control Conference, page 1035, 2017.

69

http://en.beidou.gov.cn/WHATSNEWS/201812/t20181227_16837.html
http://en.beidou.gov.cn/WHATSNEWS/201812/t20181227_16837.html
https://www.gsc-europa.eu/helpdesk/faqs

70 BIBLIOGRAPHY

[12] J. M. Hansen, T. A. Johansen, N. Sokolova, and T. I. Fossen. Nonlinear
observer for tightly coupled integrated inertial navigation aided by rtk-gnss
measurements. IEEE Transactions on Control Systems Technology, (99):1–16,
2018.

[13] K. Hirahara. Local gps tropospheric tomography. Earth, planets and space,
52(11):935–939, 2000.

[14] H.-S. Kim, S.-C. Bu, G.-I. Jee, and C. G. Park. An ultra-tightly coupled
gps/ins integration using federated kalman filter. In ION GPS, 2003.

[15] J. A. Klobuchar. Ionospheric time-delay algorithm for single-frequency gps
users. IEEE Transactions on aerospace and electronic systems, (3):325–331, 1987.

[16] L. Li, J. Zhong, and M. Zhao. Doppler-aided gnss position estimation with
weighted least squares. IEEE Transactions on Vehicular Technology, 60(8):3615–
3624, 2011.

[17] F. L. Markley. Attitude error representations for kalman filtering. Journal of
guidance, control, and dynamics, 26(2):311–317, 2003.

[18] D. Matsakis. The timing group delay (tgd) correction and gps timing bi-
ases. In Proceedings of the 63rd Annual Meeting of the Institute of Navigation,
Cambridge, MA,(Apr. 2007), 2007.

[19] P. Misra and P. Enge. Global positioning system: signals, measurements and
performance second edition. Massachusetts: Ganga-Jamuna Press, 2006.

[20] A. Noureldin, T. B. Karamat, and J. Georgy. Fundamentals of inertial naviga-
tion, satellite-based positioning and their integration. Springer Science & Busi-
ness Media, 2012.

[21] J.-F. Pascual-Sánchez. Introducing relativity in global navigation satellite
systems. Annalen der Physik, 16(4):258–273, 2007.

[22] E. Priego, J. Jones, M. Porres, and A. Seco. Monitoring water vapour with
gnss during a heavy rainfall event in the spanish mediterranean area. Geo-
matics, Natural Hazards and Risk, 8(2):282–294, 2017.

[23] A. Rones. Implementation aspects of a gnss based navigation system. 2017.

[24] T. Schuler. On ground-based gps tropospheric delay estimation. Doctor’s
Thesis, Studiengang Geodsie und Geoinformation, Universitt der Buundeswehr
Munchen, 73, 2001.

[25] I. Shames, A. N. Bishop, M. Smith, and B. D. Anderson. Analysis of target
velocity and position estimation via doppler-shift measurements. In 2011
Australian Control Conference, pages 507–512. IEEE, 2011.

BIBLIOGRAPHY 71

[26] I. Shames, A. N. Bishop, M. Smith, and B. D. Anderson. Doppler shift target
localization. IEEE Transactions on Aerospace and Electronic Systems, 49(1):266–
276, 2013.

[27] N. G. J. P. O. (SMC/GP). Navstar gps space segment/navigation
user interfaces. Revision d, GPS JOINT PROGRAM OFFICE, 2006.
https://www.gps.gov/technical/icwg/IS-GPS-200D.pdf.

[28] N. G. J. P. O. (SMC/GP). Navstar gps space segment/user seg-
ment l5 interfaces. Revision e, GPS JOINT PROGRAM OFFICE, 2018.
https://www.gps.gov/technical/icwg/IS-GPS-705E.pdf.

[29] J. Sola. Quaternion kinematics for the error-state kalman filter. arXiv preprint
arXiv:1711.02508, 2017.

[30] J. Stuelpnagel. On the parametrization of the three-dimensional rotation
group. SIAM review, 6(4):422–430, 1964.

[31] Y. Tawk, P. Tomé, C. Botteron, Y. Stebler, and P.-A. Farine. Implementation
and performance of a gps/ins tightly coupled assisted pll architecture using
mems inertial sensors. Sensors, 14(2):3768–3796, 2014.

[32] A. Tridgell. pyublox. https://github.com/tridge/pyUblox, 2013.

[33] Ublox. NEO/LEA-M8Tu-blox M8 concurrentGNSS timingmodules, 06 2016. Rev.
3.

[34] C. Van Loan. Computing integrals involving the matrix exponential. IEEE
transactions on automatic control, 23(3):395–404, 1978.

[35] J. Zhang, K. Zhang, R. Grenfell, and R. Deakin. Gps satellite velocity and
acceleration determination using the broadcast ephemeris. The Journal of
Navigation, 59(2):293–305, 2006.

https://github.com/tridge/pyUblox

	Introduction
	Existing implementations
	Thesis contributions

	Theoretical background
	Global Navigation Satellite Systems
	Signal composition
	Observables
	Ephemeris calculations
	Error sources

	Integrating INS and GNSS
	Architectures
	Extended Kalman Filter
	Attitude parametrizations

	Software packages
	The LSTS toolchain
	RTKLIB

	Implementation
	Obtaining low level GNSS signals
	Stand alone task
	PyUblox
	RTKLIB

	Extended Kalman filter
	Equations
	Model description

	DUNE implementation
	RTKLIB interface
	Extended Kalman filter

	Embedded Platform
	Testing
	Simulator
	UBX log
	Serial device
	IMC log

	Results
	Stationary tests
	Dynamic tests
	The tightly coupled system
	Multi-GNSS

	Discussion
	Convergence
	Tight coupling
	Multi GNSS
	CPU usage
	Result uncertainties
	Reference solutions
	PixHawk and ArduPilot

	Future work

	Conclusion
	Appendices
	Reference frames
	ECI
	ECEF
	NED
	Body
	Transformations between frames
	NED and ECEF
	Body and NED

	Atmospheric models
	The Klobuchar ionospheric model
	Saastamoinen tropospheric model

