
March 2007
Peter Herrmann, ITEM
Artur Wiecek, CERN (Artur.Wiecek@cern.ch)
Lucia Moreno Lopez, CERN (Lucia.Moreno.
Lopez@cern.ch)

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Permanent Storage Development for
the J2EE Public Service at CERN

Ola Holmestad

Problem Description

A current limitation of the J2EE public service at CERN is that no access to permanent storage is
possible, only database access is given. The thesis will try to address this issue through the use of
the WebDAV protocol, and it will be investigated how to integrate a WebDAV client into a running
instance of a Tomcat container. One approach could be to intercept file requests and redirect
these requests through WebDAV to another, remote, location.

The study will focus on security, transparency and integration with Tomcat for the users of the
J2EE public service and ease of maintenance for the system managers. The following key
elements will be investigated

- guaranteed confidentiality for the file system access
- transparency
- how it is possible to make this work when the application is moved to another container at the
J2EE public service
- other security related elements

This will be followed by a development of an application in Java that fulfills these requirements
and any other requirement discovered during the process.

Assignment given: 11. September 2006
Supervisor: Peter Herrmann, ITEM

Abstract

This Master thesis develops two solutions enabling permanent file storage for the
J2EE Public Service at CERN by the use of Slide, a Java implementation of the
IETF WebDAV protocol for distributed authoring and versioning.

Permanent storage development has been a requested feature for the J2EE Public
Service since the startup in 2005, and in this thesis two libraries are investigated
concerning how well they suit the J2EE Public Service environment, namely Jakarta
Slide and Jakarta VFS. After research and test implementations, it is found that
Slide performs well enough to be used in the future development of such a feature,
while VFS does not because of adaption problems to the CERN environment.

On the basis of the research, two different solutions are implemented. The first
solution is a stand-alone class that can be used for simple file/retrieval by providing
specific methods for use by web application authors. After evaluation, this library is
found to have several problems, especially concerning the missing transparency for
the authors and no support for file hierarchy. The final solution is for this reason
a re-implementation of the classes in Java that deals with file I/O, which provides
a transparent and secure way of doing retrieval and storage from the J2EE Public
Service.

I

Contents

Abstract I

Contents III

List of Figures IX

List of Tables XI

List of Abbreviations XIII

Preface XV

Introduction 1

I Analysis of background & context 3

1 CERN... where the web was born! 5

1.1 Background & History . 5

1.2 Achievements in the past . 6

1.2.1 Birth of the World Wide Web 6

1.2.2 Achievements in physics . 6

1.3 The Large Hadron Collider . 7

1.4 Important IT projects at CERN . 8

1.4.1 LHC Computing Grid . 8

1.4.2 EGEE . 9

1.4.3 CERN OpenLab . 9

1.5 The Technical Student Program . 10

III

1.6 The DES group . 10

1.6.1 The DES-DIS section . 10

2 J2EE Public Service 11

2.1 Background . 11

2.2 How does it work? . 12

2.2.1 WAR-file . 13

2.3 Architecture . 14

2.4 JPSManager . 14

2.4.1 Architecture . 15

2.5 Permanent storage . 16

3 The HTTP & HTTPS protocol 17

3.1 HTTP . 17

3.1.1 Background . 17

3.1.2 HTTP messages . 18

3.1.3 Status codes . 19

3.1.4 HTTP methods . 19

3.1.5 Persistent connections . 22

3.1.6 Security considerations . 22

3.2 HTTPS . 23

3.2.1 HTTPS URI scheme . 23

3.2.2 HTTP/1.1 upgrade header 23

3.2.3 SSL . 23

4 The WebDAV protocol 25

4.1 Background . 25

4.1.1 URL munging . 26

4.1.2 RPC-via-POST . 26

4.1.3 Adding methods . 26

4.2 Properties . 26

4.3 Collections . 27

4.4 Locking . 27

IV

4.4.1 Exclusive locks . 27

4.4.2 Shared locks . 27

4.4.3 Usage considerations . 28

4.5 HTTP methods . 28

4.5.1 PROPFIND . 28

4.5.2 PROPPATCH . 28

4.5.3 MKCOL . 28

4.5.4 DELETE . 29

4.5.5 PUT . 29

4.5.6 COPY . 29

4.5.7 MOVE . 31

4.5.8 LOCK . 31

4.5.9 UNLOCK . 31

4.6 Security considerations . 31

4.6.1 Authentication . 31

4.6.2 Denial of Service . 31

4.6.3 Security through obscurity 32

4.6.4 Privacy concerning properties 32

4.6.5 Source files . 32

II Research & Test Implementations 33

5 Java I/O 35

5.1 General . 35

5.1.1 Byte oriented I/O . 35

5.1.2 Character oriented I/O . 35

5.2 Overview . 36

5.3 Streams . 36

5.3.1 Buffered streams . 36

5.4 Input . 37

5.4.1 Readers . 37

5.5 Output . 37

V

5.5.1 Writers . 38

5.6 The File class . 39

5.7 New Java I/O . 39

6 File System Access Libraries 41

6.1 The Apache Jakarta Project . 41

6.2 Slide WebDAV library . 42

6.2.1 The WebdavResource class 42

6.2.2 Patching of the library . 42

6.3 The VFS library . 43

7 Library Test Implementations 47

7.1 General . 47

7.2 Test environment . 47

7.3 Slide . 48

7.3.1 How does the implementation work 48

7.4 VFS . 51

7.4.1 How . 51

7.4.2 Tests of different connections 52

8 Research Conclusions 53

8.1 Slide evaluation . 53

8.2 VFS evalution . 53

8.3 Overall evaluation . 54

III Design, Implementation & Testing 55

9 Implementation of stand-alone class File.java 57

9.1 Background . 57

9.1.1 Functionality of File.java . 57

9.1.2 User WAR-file construction 57

9.2 Requirements . 58

9.3 System design . 58

VI

9.4 Evaluation . 59

9.4.1 Advantages . 59

9.4.2 Limitations . 60

9.4.3 Overall evalution . 61

10 Re-implementation of the java.io package 63

10.1 General . 63

10.1.1 The j2ee.io.File class . 64

10.1.2 File reading . 65

10.1.3 File writing . 65

10.2 Requirements . 68

10.3 Testing . 68

10.4 Evaluation . 70

10.4.1 Advantages . 70

10.4.2 Limitations . 71

10.4.3 Overall evaluation . 71

Conclusions 73

Bibliography 74

Appendices

A Overview of the java.io package 81

B Patching procedure for the Slide WebDAV library 87

C Overview of electronical documentation 91

VII

List of Figures

1.1 Illustration of the LHC and the four different detectors 8

2.1 The multiple container approach . 12

2.2 How does the J2EE Public Service work 13

2.3 Structure of a WAR file . 14

2.4 J2EE Public Service architecture . 15

2.5 Architecture of JPSManager . 16

3.1 Simple example of a HTTP request message 19

3.2 Example of a HTTP response message 19

4.1 Request message using MKCOL . 29

4.2 Response message to the above request 29

4.3 Request message using DELETE . 29

4.4 Response message to the above request 30

4.5 Request message using COPY . 30

4.6 Response message to the above request for the COPY method . . . 30

5.1 Illustration of an input stream . 36

5.2 Illustration of an output stream . 36

5.3 Example of file reading . 38

5.4 Example of file writing . 38

7.1 Connection to DFS using the HttpsURL and WebdavResource classes 48

7.2 Example code for listing of files and directories 49

7.3 Example code for creating a file . 49

7.4 Example code for creating a directory 50

IX

7.5 Example code for saving a file to the local file system 50

7.6 Example code for importing a file to the DFS location 50

7.7 Example code for accessing DFS through VFS 51

9.1 Sequence diagram for a successful retrieve operation 59

9.2 Sequence diagram for a successful save operation 60

10.1 Sequence diagram for creation of a j2ee.io.File object existing at
DFS . 64

10.2 Sequence diagram for file writing using the j2ee.io package 67

10.3 Code sample from the save() method 69

C.1 Overview of the documentation.zip directory structure 91

X

List of Tables

3.1 Overview of HTTP status codes . 19

3.2 Some widely used HTTP status codes and their explanations 20

3.3 The OSI Model protocol stack with SSL/TSL shown 24

6.1 Constructor used from the WebdavResource class 42

6.2 Important methods from the WebdavResource class 43

10.1 Classes from java.io not implemented in j2ee.io 63

10.2 Constructors implemented for the j2ee.io.File class 65

10.3 Methods from the j2ee.io.File class 66

A.1 Overview of interfaces in the java.io package 81

A.2 Overview of classes in the java.io package 84

A.3 Overview of exceptions in the java.io package 85

XI

List of Abbreviations

CERN Conseil Européen pour la Recherche Nucléaire
HEP High Energy Physics
LEP Large Electron-Positron (collider)
SPS Super Proton Synchroton
LHC Large Hadron Collider
PHP PHP: Hypertext Preprocessor
SSH Secure SHell
J2EE Java 2 Platform Enterprise Edition
WAR Web ARchive
HTTP HyperText Transfer Protocol
W3C World Wide Web Consortium
WebDAV Web-based Distributed Authoring and Versioning
RFC Request For Comments
IETF Internet Engineering TaskForce
MIME Multipurpose Internet Mail Extension
URI Uniform Resource Indicator
URL Uniform Resource Locator
URN Uniform Resource Name
HTML HyperText Markup Language
TCP/IP Transport Control Protocol/Internet Protocol
DNS Domain Name System
SSL Secure Sockets Layer
TSL Transport Layer Security
RPC Remote Procedure Call
XML eXtensible Markup Language
OSI Open Systems Interconnection
UTF Unicode Transformation Format
ASF Apache Software Foundation
VFS Virtual File System
FTP File Transfer Protocol
SFTP Secure File Transfer Protocol
CIFS Common Internet File System
DFS Distributed File System

XIII

Preface

This Master thesis is written at the Department of Telematics of the Norwegian
University of Science and Technology (NTNU) in Trondheim, Norway. The thesis
work started in late September 2006 and ended in the beginning of March 2007, and
was done at CERN, the European Organization for Nuclear Research, in Geneva,
Switzerland.

Firstly, I would like to express my thanks to my supervisor at NTNU, Peter Her-
rmann, for accepting to supervise a thesis in a distant physics engineering environ-
ment such as CERN, and for his guidance during the thesis work.

In addition, I would like to thank all the members of the IT-DES-DIS section for
continuous support and help during my stay at CERN. Special thanks goes to my
initial supervisor for the Technical Student Program, Miguel Angel Marquina, and
to the head of the IT-DES-DIS section, Eric Grancher, who both were very generous
with advice and made my stay at CERN a pleasure.

I would also like to thank my two supervisors for this thesis, Artur Wiecek and
Lucia Moreno Lopez, for all their guidance and suggestions during the work with
the permanent storage project for the J2EE Public Service. I sincerely hope that
they will have good use of the solutions developed in the future.

All errors and omissions in this thesis are the sole responsability of the author.

XV

Introduction

This thesis came out from a growing need for the users of the J2EE Public Ser-
vice at CERN to have a permanent storage solution that would enable them to get
access to files stored at the central DFS file system at CERN from their web applica-
tions stored in the J2EE Public Service. Since this service was established in 2005,
users have only had the possibility to use databases for saving and/or retrieval of
information. In addition, there has always been possible to write to and read from
a temporary directory, but the need for a solution that truly enables permanent
storage for web application authors as easily as possible has been apparent.

Structure of the Thesis

I have chosen to divide this report into three different parts:

Part I is background theory that will support the next parts of this thesis. Chapter
1 gives a brief introduction to CERN and tries to explain CERN’s mission, especially
emphasizing today’s most important projects. The Technical Student Program is
presented, as well as the activities that are the most important in the DES group,
especially in the DIS section where the author spent his time as a Technical Student.

The main service that this thesis concerns, namely the J2EE Public Service, is
outlined in Chapter 2.

After this brief introduction, the HTTP & HTTPS protocols are presented in Chap-
ter 3 as support for the WebDAV protocol, the main functional element of the thesis.
The WebDAV protocol is explained in Chapter 4, and this concludes the first part
of this report.

Part II concentrates on the research and the different test implementations that
have been done. To introduce how file I/O in Java works, Chapter 5 is dedicated
to this topic. Thereafter, two different library implementations, namely the Slide
WebDAV library and the VFS library, both from the Jakarta project, are examined
in Chapter 6.

For both these libraries, test implementations have been made, described in Chapter
7, to discover how well suited they were for this thesis’ needs. The test implemen-
tation of the Slide Webdav Library is done entirely by the author, while the test
implementation of VFS was provided with the VFS source code and adapted to the
CERN environment only by minor changes. Lastly in this part, the need for further
development and progress is summarized in Chapter 8.

1

2

Part III describes the two solutions that was developed by the author of this thesis
for the users of the J2EE Public Service.

Chapter 9 explains the implementation of a stand-alone class File.java, while Chapter
10 gives an extensive description of how the final solution was designed, implemented
and tested so as to provide the main functionality that was wanted before this thesis
started.

A Conclusion ends the main part of this report.

Appendices

Appendix A gives an overview of the java.io package, Appendix B shows how patch-
ing of the Slide WebDAV library to provide correct functionality was done, while Ap-
pendix C gives an overview of the structure of the electronic documentation provided
together with this thesis.

Part I

Analysis of background &
context

3

Chapter 1

CERN... where the web was
born!

CERN, the European Organization for Nuclear Research, is situated at the border
between Switzerland and France, close to the city of Geneva and the Geneva Lake
in Switzerland. The acronym CERN comes from the french “Conseil Européen pour
la Recherche Nucléaire”, which was a provisional body founded in 1952 to form
a world-class fundamental physics research organization in Europe[1]. This body
ordered in 1953 the construction of the worlds biggest particle physics center, which
is what CERN is known as today.

After the second world war, America had a strong focus on research, and Europe
needed to unite forces on this area. From this need, CERN was created to promote
European Science. This chapter will give an insight into what CERN is, its major
achievements in the past and current projects at CERN, both in the physics area
and in the field of Information Technology.

1.1 Background & History

CERN was created in 1954 by 11 European countries[2]. At present, there are 20
member states that have both special duties and privileges, and they all contribute
financially to the different CERN programs. This research laboratory is a highly at-
tractive place to work for many of the world’s best physicists and currently employs
around 3 500 people[3], divided into physicists, engineers, technicians, scientific fel-
lows, students, craftsmen, administrators, secretaries and workmen. In addition,
somewhere around 6 500 visiting scientists from over 500 universities and over 80
nationalities are connected to CERN on a regular basis.

The mission of CERN is to develop tools, which means particle accelerators and
detectors[2], that helps fundamental research in particle physics, and especially High
Energy Physics (HEP). HEP is the study of the smallest particles, the building
blocks, in our Universe. Particle accelerators accelerate particles up to velocities
very close to the speed of light and then collides the particles at certain points
where detectors are placed. These detectors make the particles visible and grants
scientists the possibility of further analysis. High energy is needed to detect the

5

6 CHAPTER 1. CERN... WHERE THE WEB WAS BORN!

smallest particles we currently know of, any new particles that may appear in the
collisions and to test new physics theories. Collisions and the detection of them all
happens in an underground tunnel with a circumference of 27 kilometers where the
LEP (Large Electron-Positron collider) was in operation from 1989 to 2000. Now,
the same tunnel is used for the new LHC (Large Hadron Collider) which is being
built and will be put in operation during 2007.

1.2 Achievements in the past

The research environment at CERN has led to many astonishing discoveries during
the past, some of them of great importance for the way we live our lives today. This
next section will give a short overview of some of these achievements.

1.2.1 Birth of the World Wide Web

In 1989, Tim Berners-Lee, a physicist at CERN, wrote a proposal on how to merge
technologies of personal computers, networking and the concept of hypertext into a
powerful and easy-to-use global information system, later known as the World Wide
Web[4].

Berners-Lee and his companion Robert Cailliau, a systems engineer also at CERN,
further developed the concept and wrote the formal proposal which was published
on November 12, 1990. Within the end of 1990, Berners-Lee had built what was nec-
essary for a working World Wide Web; the first web browser, called WorldWideWeb,
the first web server (info.cern.ch) and the first web pages describing the project itself
([5], section History).

1.2.2 Achievements in physics

Nobel prizes

Three scientists at CERN have been awarded the Nobel prize in Physics[6].

In 1984, Carlo Rubbia and Simon Van der Meer were awarded the prize for their
discoveries of the field particles W and Z, which confirmed the unification of the
weak and the elecromagnetic forces.

In 1992, Georges Charpak was awarded the prestigious price for his inventions and
development of particle detectors, especially for the construction of the multiwire
proportional chamber in 1968, which marked the beginning of electronic particle
detection. Technologies that are derived from these early achievements are now
used in biological research and medical diagnostic tools.

Accelerator technology

In the 1950’s, physicists realized that to make the most violent collisions, one had
to fire two beams of particles at each other instead of firing a particle beam to a

1.3. THE LARGE HADRON COLLIDER 7

stationary target as before. At CERN, a new approach was taken where a circular
accelerator was built where two interconnected rings were feeded with particle beams
and then made to collide. In 1971, the Intersecting Storage Rings (ISR) produced the
world’s first proton-proton collisions and CERN was after this considered a leader
in the field of colliding beam projects[7]. Later, CERN developed the world’s first
proton-antiproton collider with the Super Proton Synchroton (SPS), and this led to
the discovery of the W and Z field particles as described above

The LEP was CERN’s next technical achievement, and now the LHC, shown in
Figure 1.1, are built in the same tunnel as the LEP and are scheduled to run in 2007
to consolidate CERN’s position in the world of accelerator technology.

1.3 The Large Hadron Collider

The LHC will be the largest and most powerful particle accelerator ever built, and
with a cost for the accelerator of approximately 3 billion euros[8] also the most
expensive one. It is under construction in the same tunnel that was used for the
LEP accelerator, and it has taken a lot of collaboration between scientists and
engineers to solve the different problems related to building such a big and complex
structure.

In a particle accelerator, particles should be accelerated to the highest speed possible.
In the LHC, the speed of the particles just before the collisions take place will be
0.999999991 the speed of light[9]. This means each particle will travel around the
27 kilometeres long circular tunnel 11 000 times pr. second, and collisions will occur
800 million times a second[10]. To bend the particles during their laps around the
tunnel, 9 000 magnets will be used which in total create a magnetic field that is 200
000 times stronger than the earths own[11]. This could not have been accomplished
without using the concept of superconductivity (the ability to conduct electricity
without resistance or energy loss), and for this to happen the whole LHC needs to
be heavily cooled. During operation, it will be cooled down to about 300 degrees
below room temperature which will make it the coolest place in the Universe[12].

So what questions will scientists try to solve with the LHC and why is it necessary?
Because our current understanding of the Universe is incomplete, the Standard
Model that scientists now use still leaves unsolved questions, some of them are[13]:

• Why do elementary particles have mass, and why are their masses different?

• Why do the mass we can observe account for only 4% of the total amount of
mass in the Universe?

• Why is the Universe made of matter and not antimatter?

• What happened during the first few milliseconds after the Big Bang?

The first question can be solved by the Higgs theory which involves a special particle
called the “Higgs boson”, which the LHC will be able to detect if it exists. In
addition, the LHC will be able to confirm other physics theories, like a possible
unification of the four forces and the concept of supersymmetry (the theory that for

8 CHAPTER 1. CERN... WHERE THE WEB WAS BORN!

Figure 1.1: Illustration of the LHC and the four different detectors

each known particle there exists a “supersymmetric” partner. LHC will also be able
to detect these if they exist[13]).

1.4 Important IT projects at CERN

The LHC will generate huge amounts of data, which create a need for a lot of data
treatment and analysis. There exists a number of IT projects at CERN closely
connected to the LHC, and some of them will briefly be explained below.

1.4.1 LHC Computing Grid

The LHC particle accelerator will generate 15 PetaBytes (15 million Gigabytes) of
data annually[14]. It was clear from the beginning of the planning of LHC that
new ways to deal with this enormous amount of data had to be found. The LHC
Computing Grid (LCG) has as its mission to build and maintain a data storage and
analysis infrastructure for the LHC, which includes the entire high energy physics
community that will use the LHC.

The LCG will be based on a four-tiered model, with distribution of data around the
globe[15]:

• Tier-0 center of LCG is tape recording of the raw data at CERN

1.4. IMPORTANT IT PROJECTS AT CERN 9

• Tier-1 centers will lie around the world and will receive initially processed data
from the LHC

• Tier-2 centers will provide computing power for specific tasks

• Tier-3 will typically be individual scientist’s computer resources or university
computer resources that individual scientists can use

Running the LHC means that over 5000 scientists from more than 500 research
institutes and universities worldwide need access to the data created, and this data
needs to be available during the 15 years estimated lifetime of the LHC. Analyzing
these data and comparing with theoretical simulations require approximately 100
000 CPU’s at 2004 measurements ([15], section “Rationale for the LCG project”).

The use of a computing grid was chosen because ([15], section “Rationale for the
LCG project”):

• The enormous costs are more easily handled in distributed environments

• There are no single points of failure

There are also several challenges that need to be overcome; some of these are network
bandwidth, the problem of different software versions, heterogenous hardware and
the management and protection of the data.

1.4.2 EGEE

The Enabling Grids for E-SciencE project[16] is closely connected to the LCG. It
is a cooperation between 90 institutions in 32 countries worldwide, and aims at
developing a seamless Grid infrastructure for scientists that is available 24 hours a
day. When time and resources get too big, it becomes impractical to use traditional
IT infrastructures for such tasks. This grid consists of 20 000 CPU’s, 5 Petabytes of
storage, can handle over 20 000 concurrent jobs, and is distributed across 200 sites
in 39 countries.

1.4.3 CERN OpenLab

OpenLab[17] is a collaboration between CERN and industrial partners, specially
aimed at developing data-intensive solutions for the LHC. It gives a framework for
evaluating and integrating cutting-edge technologies and services from the industry
leaders. At the same time, these industry leaders can carry out large-scale highly
performance evaluation of their solutions in an advanced research environment.

Partners for the CERN OpenLab project are currently HP, Intel Corporation and
Oracle, while F-Secure and StoneSoft also contribute to the project.

10 CHAPTER 1. CERN... WHERE THE WEB WAS BORN!

1.5 The Technical Student Program

The Technical Student Program[18] at CERN is aimed at undergraduate students
in technical fields and gives them a chance to work on a project in a research envi-
ronment for six to twelve months. The students can from this work gain important
experience and at the same time give valuable contribution to the work in various
groups and fields at CERN.

For my part, I was a technical student in the DES group and the DIS section, and
my tasks during my 11-month stay at CERN included but were not limited to the
following:

• General Oracle database account administration

• Further development of Java application dealing with security scans of the
most important databases at CERN

• Development of a PHP web interface that handles access to computers at
CERN through the use of SSH keys

• This thesis work, creating a permanent storage solution in Java for the J2EE
Public Service

1.6 The DES group

The Database and Engineering Services group at CERN is part of the IT Depart-
ment.

Main activities include[19]:

• Central database services

• Support of engineering software packages, like tools for Mechanical, Electronic
and Software Design

• CVS support, software license management, J2EE Public Service and system
support for TWiki

1.6.1 The DES-DIS section

The Database Infrastructure Services section is where I was working during my stay
at CERN. Its main activites include[20]:

• Central database support for services based on the Oracle Database & Appli-
cation Server

• Installation, distribution, consultancy, first-line support, database manage-
ment and administration of all of the main CERN databases

• Supplier relations and license/contract management (mainly Oracle)

Chapter 2

J2EE Public Service

The J2EE Public Service is a central server infrastructure for deployment of Java
server-side, namely servlet/jsp, applications[21]. This service provides a place to
deploy and run web applications for CERN users, and it is run within the IT-DES
group.

2.1 Background

After a request from the Java community at CERN, it was decided that a robust
centrally managed deployment platform for Java server-side applications should be
implemented. The goal was to find a solution that enabled load balancing, easy
administration and a high level of isolation between different applications ([22],
Abstract). To ensure a coherent view of web deployment platforms at CERN, the
service should also be closely integrated with the CERN Web Services run by the
IT-IS group.

This need came from a big increase of users running web applications on their own
computers. To do this, one has to install an application server (like Apache Tomcat,
Oracle OC4J or Oracle iAS) on the local computer, and this opens up great security
risks when it comes to enforcing new security patches. It also requires a lot of skills
and time to make it work correctly. Other reasons to migrate to a centrally man-
aged infrastructure were the ability to have reliable hardware, hardware redundancy,
backup and monitoring of the application servers ([22], Introduction).

At the 1st of February 2007, the J2EE Public Service is storing 151 applications
in 103 containers belonging to 48 different users[23]. The application server that
currently is being used is Apache Tomcat 5.5.15 on Java 2 SDK version 1.5.0.

The service targets medium-sized and relatively important applications, but not
mission-critical. In addition, it supports deployment, not development, which means
that users will get no help with their source code and need to make sure that their
applications work correctly before they deploy them. The service provides[24]:

• Scalable server-side infrastructure

• A way to deploy applications

11

12 CHAPTER 2. J2EE PUBLIC SERVICE

• Tools for monitoring of the applications

• Mechanism to avoid excessive use of resources

• Procedures for easy reinstallation

• Backup and recovery procedures

• User documentation

2.2 How does it work?

The J2EE Public Service is implemented with the use of a multiple container ap-
proach, as shown in Figure 2.1. Each machine hosts multiple containers, i.e. in-
stances of Tomcat. Each web author uses one container, but has the possibility of
managing several applications in this container[25].

It is possible, though not recommended, to host applications from different web au-
thors in the same container. If this is done, there is a possibility that the applications
might interfere with each other and not work as they are supposed to. In addition,
the security is implemented on container level, which means that to do this would
imply a possible security breach.

Figure 2.1: The multiple container approach

The containers all listen to a set of different ports that are reserved exclusively for
each container. At the same time, the web readers, which are the actual users of the

2.2. HOW DOES IT WORK? 13

applications, connect using the standard HTTP (port 80) and HTTPS (port 443)
ports. To make this work, a proxy is used to connect the requests from web readers
to the correct ports of the container.

Figure 2.2: How does the J2EE Public Service work

When a web author wants to deploy an application to the J2EE Public Service, the
web author has to do the following, illustrated in Figure 2.2:

• Register a new application with the CERN Web Services run by the IT-IS
group. This request will typically be forwarded to JPSManager

• JPSManager will then create a new container on one of the application hosts
and update the proxy so that it can forward requests correctly

• The web author should then deploy the application through HTTPS via a web
interface

2.2.1 WAR-file

The format of the application files that users should upload to the service is that of
a Web ARchive file, as shown in Figure 2.3:

14 CHAPTER 2. J2EE PUBLIC SERVICE

Figure 2.3: Structure of a WAR file

2.3 Architecture

The J2EE Public Service consists of a distributed environment without any shared
storage. There is no redundancy when it comes to hardware, but the architecture
itself makes the recovery procedures simple[26].

The architecture consists of a cluster of 5 HP machines, as shown in Figure 2.4. All
the machines have the same configuration making the architecture easily scalable.

The communication between the different nodes is implemented by the use of SSH
version 2 for start/stop of containers remotely, rsync over SSH version 2 for synchro-
nization of disk files and HTTP/HTTPS/AJP13 for the communication between the
Apache proxy and the Tomcat containers

Security for the service is taken care of by the use of different operating system
accounts, which enables file system access rights. In addition, the Java security
manager is used to give fine-grained control about which operations each application
has the privileges to perform.

2.4 JPSManager

JPSManager is a CERN-developed solution in Java for creation and administration
of application servers. It enables deployment of a web author’s web application by
configuring a separate web container for each new user on request from the CERN
Web Services.

2.4. JPSMANAGER 15

Figure 2.4: J2EE Public Service architecture

For administration, there exists a web interface deployed on Tomcat and a command-
line interface.

2.4.1 Architecture

The architecture of the JPSManager[27] is centered around 3 main interfaces, as
shown in Figure 2.5:

• JPSContainerManager

• JPSProxyManager

• JPSContainerAssigner

JPSContainerManager defines methods that has to be implemented when a new
type of container is to be used. JPSProxyManager defines methods for the use of a

16 CHAPTER 2. J2EE PUBLIC SERVICE

Figure 2.5: Architecture of JPSManager

specific type of proxy, while JPSContainerAssigner defines policies on how to assign
containers to web authors.

2.5 Permanent storage

From the beginning, users had no possibility of storing or retrieving files. The
temporary directory of each container has been available to write/read files, but the
fact that users do not have the possibility to put files in this directory or retrieve files
from the directory is a limitation to the service that many users have been asking
for. This has been one of the elements that the administrators of the J2EE Public
Service has wanted a solution for, and this thesis provides this.

Chapter 3

The HTTP & HTTPS protocol

This chapter will provide an overview of the HTTP protocol and the secure version
of it, HTTPS. The goal is to give the necessary information to understand the next
chapter about the WebDAV protocol.

3.1 HTTP

The HyperText Transfer Protocol is used for information transfer across the World
Wide Web. It is defined as an Internet specification[28] by the IETF.

3.1.1 Background

The HTTP protocol has been in use since 1990. The first version was called
HTTP/0.9 and was basically a simple protocol for the transfer of raw data, originally
meant for retrieval and publishing of HTML pages. The second version, HTTP/1.0
came in May 1996 and was an improvement of the 0.9 version by allowing a MIME
message format for the message bodies and persistent connections ([29], HTTP ver-
sions). Today’s version, HTTP/1.1, is the final version of HTTP and further work
has been closed by the W3C[30] because the standard is successful and this latest
version addresses the weaknesses of the earlier versions.

HTTP is an application-level request/response protocol and the message exchange
is most often initiated by a user agent or a client requesting a specific resource on
a server. The protocol builds on the principle of reference provided by the URI[31]
scheme as a URL or URN. It normally works by using the underlying TCP/IP ([32],
[33]) transport protocol, by setting up such a connection to a specific port (port 80
by default) on a remote host. Subsequently, it can be implemented on top of any
other transport protocol on other networks than the Internet. All the protocol needs
is a reliable transport mechanism, which most commonly is TCP/IP today.

17

18 CHAPTER 3. THE HTTP & HTTPS PROTOCOL

3.1.2 HTTP messages

An HTTP message is either a request or a response message. HTTP is based on a
client-server model, where clients request information and servers respond with the
requested information or with an appropriate error message if the request could not
be treated correctly.

In general, both types of messages consist of ([28], Chapter 4.1):

• A start line

• Zero or more header fields

• An empty line to inform that the header is finished

• An optional message body that depends on the nature of the request/response

The header fields of the two types of messages are further divided into four groups
that each logically links to the messages or the different parts of the messages ([28],
Chapter 4.2):

• General header fields, which are common for both types of messages

• Request-headers, which gives the client an opportunity to describe itself and
additional information about the request

• Response-headers, which gives the server an opportunity to describe additional
information about the response

• Entity-headers, that define metainformation about the message body or about
the resource identified in the request

The format of the header fields is the name of the header followed by a colon and a
value.

The message body is used for additional data information and conveys for example
a part of an HTML document. If a message body is included in the message, either
a Content-Length or a Transfer-Encoding header field has to be included in the
header of the message.

Request

In a request message the first line includes the method that should be used for the
given resource specified by the Request-URI in the message. In addition, an identifier
of the resource and the protocol version that is being used has to be specified ([28],
Chapter 5), as shown in Figure 3.1.

3.1. HTTP 19

GET / index . html HTTP/1 . 1
Host : www. example . com

Figure 3.1: Simple example of a HTTP request message

Response

In a response message, the first line is a status line where the protocol version, a
numeric status code and the status code’s textual explanation is stated ([28], Chapter
6.1). Figure 3.2 shows an example of a response message with some header fields
included (message body omitted).

HTTP/1 . 1 200 OK
Date : Wed, 07 Feb 2007 15 : 29 : 35 GMT
Server : Apache/1 . 3 . 27 (Unix) (Red−Hat/Linux)
Last−modi f i ed : Wed, 10 Jan 2007 , 23 : 12 : 12 GMT
Content−Length : 567
Content−Type : t ex t /html ; cha r s e t=UTF−8

Figure 3.2: Example of a HTTP response message

3.1.3 Status codes

Table 3.1 shows the different status code classes that are used by HTTP ([28],
Chapter 10)

Status code Textual description Explanation
1xx Information Provisional response
2xx Success Received, understood and accepted

message
3xx Redirection Further action needs to be taken by the

the client before request can be consid-
ered successful

4xx Client error Client performed an error
5xx Server error Server is not capable of performing the

request

Table 3.1: Overview of HTTP status codes

Table 3.2 shows some of the most used HTTP status codes ([28], Chapter 10)

3.1.4 HTTP methods

This part will briefly describe the different methods defined in HTTP/1.1 ([28],
Chapter 9)

20 CHAPTER 3. THE HTTP & HTTPS PROTOCOL

Status code Textual description Explanation
100 Continue The client should continue with his re-

quest
200 OK Successful request
301 Moved Permanently The requested resource has been moved

permanently to a new location
400 Bad Request Request not understood (bad syntax)
403 Forbidden Request understood, but server refuses

to fulfill it
404 Not Found The resource was not found on the

server
500 Internal Server error The server encountered an internal er-

ror and cannot fulfill the request
503 Service Unavailable The server was not able to handle the

request at the current time because
it might be overloaded or performing
maintenance operations

Table 3.2: Some widely used HTTP status codes and their explanations

Safe methods

The safe methods defined in HTTP/1.1 are the GET and HEAD methods ([28],
Chapter 9.1.1). For a method to be safe, there cannot be any other action than a
pure retrieval resulting from the method. It is not possible to guarantee this, but
users should not be responsible for undesired actions at the server resulting from
such a method.

OPTIONS

The OPTIONS method ([28], Chapter 9.2) is used for information requests about
which communication options are available for the request/response message ex-
change. Use of this method can give information about requirements enforced by
the server and server capabilities, without actually performing any operation on the
server.

GET

The GET method ([28], Chapter 9.3) is used to retrieve information from the re-
source identified by the Request-URI in the request.

HEAD

The HEAD method ([28], Chapter 9.4) is identical to the GET method, but there is
no message body returned in the response. This method is used to obtain informa-
tion about the resource identified by the Request-URI without retrieving the actual

3.1. HTTP 21

entity, and is often used for testing links for validity, accessibility and when they
were last modified.

POST

The POST method ([28], Chapter 9.5) is used to add a new entity to the resource
identified by the Request-URI in the request message. This method is used for:

• Message posting on discussion forums, guestbooks and other similar web ap-
plications

• providing data to a data-handling process

• providing new data or change existing data in a database

• adding of information to an already existing resource

PUT

The PUT method ([28], Chapter 9.6) is used to store the entity of the message body
in the request message under the Request-URI from the request message.

The main difference between PUT and POST is that the Request-URI in a POST
method request identifies the source that should handle the entity in the message
body, while the Request-URI in a PUT method request identifies the entity itself in
the message body.

DELETE

The DELETE method ([28], Chapter 9.7) requests that the resource identified by
the Request-URI in the request message should be deleted. Even if the status code
in the response message to the message that issued a DELETE method request
indicates success, there is no guarantee that the deletion was performed. However,
the server should never send a success response message if it does not think it is able
to delete or relocate the resource to an inaccessible destination.

TRACE

The TRACE method ([28], Chapter 9.8) performs a loop-back of the request mes-
sage. It is useful for testing to see whether what the server received was the same
as what the client sent and use the response for diagnostics if this was not the case.

CONNECT

The CONNECT method ([28], Chapter 9.9) is reserved by the specification for the
use of a proxy that can switch dynamically to using SSL tunneling.

22 CHAPTER 3. THE HTTP & HTTPS PROTOCOL

3.1.5 Persistent connections

Before, one TCP connection was established each time a URL was to be fetched
using HTTP. This increases load on HTTP servers and can cause congestion on
the Internet during heavy-load periods. With the use of persistent connections,
introduced in HTTP/1.0, it is allowed to use one TCP connection for multiple
requests. This approach has numerous advantages ([28], Chapter 8.1.1):

• Fewer TCP connections are opened which means that CPU time are saved all
over the internet in routers, clients and hosts

• HTTP requests can be pipelined over one TCP connection, this means one
can send a new request without waiting for the response of the last request.
Again, more efficient use of the TCP connection

• A smaller number of packets for establishing TCP connections hereby reducing
network congestion

• The latency of message sessions is reduced because only one TCP handshake
procedure is done for multiple requests

• HTTP can evolve easier, new features can be tried out without risking to close
the TCP connection

As a difference from earlier HTTP versions (namely HTTP/1.0), persistent connec-
tions is the default behavior in HTTP/1.1 ([28], Chapter 8.1.2)

Practical considerations

The use of persistent connections in HTTP/1.1 have some practical usage implica-
tions ([28], Chapter 8.1.4). Normally, most servers will have a time-out value where
they will no longer keep a connection open. In HTTP/1.1, there is no requirements
on this time-out value. This means that clients and servers should close the con-
nection when they are finished, instead of relying on any time-out value from the
server.

Both clients and servers must also be able to recover from asynchronous close events,
i.e. if the server sent a close message before receiving a new request from the client
and the client sends new requests and then receives a close message from the server.

In addition, good practice for clients is to limit the number of connections to the
server. The recommendation is for a client not to have more than two connections
to a proxy or a server.

3.1.6 Security considerations

There are some security limitations in HTTP/1.1 ([28], Chapter 15). First of all,
a HTTP client often have control of much personal and privacy information, like
username, mail address and passwords. Leakage of such information from the use
of the HTTP protocol should be prevented.

3.2. HTTPS 23

Secondly, server logs containing information about users requests should not be
abused or distributed in any way.

Thirdly, HTTP offers no content regulation, so transfer of sensitive information has
to be kept secure by the applications using HTTP.

In addition, file restrictions and restrictions on path names should be strictly en-
forced and files that are not meant to be viewed from the outside world (like access
control files, configuration files and script code) should be correctly protected.

As a last point, clients should be careful about using IP adresses from previous
sessions, because they might change at any time. Instead, DNS should be used for
resolving IP addresses rather than caching of old DNS entries.

3.2 HTTPS

Currently there are two methods of implementing security to HTTP, the HTTPS
URI scheme and the HTTP/1.1 Upgrade header ([29], Section “Secure HTTP”).
The first option has actually been deprecated, but is still widely used for establishing
secure connections, while the HTTP/1.1 Upgrade header is not much supported yet.

3.2.1 HTTPS URI scheme

The HTTPS URI scheme works by adding an encryption layer of SSL/TLS to protect
the data being sent. It is syntactically identical to HTTP, but uses port 443 instead
of port 80 for communication.

3.2.2 HTTP/1.1 upgrade header

The upgrade header was introduced in HTTP/1.1. As the name implies, it is used
to upgrade an HTTP session from normal, clear-text communication into a secure
communication channel using TLS.

3.2.3 SSL

Secure Sockets Layer (SSL) was introduced by Netscape Communications Corp. in
1995 and is now widely used. It provides ([34], page 813):

• Negotiation of security parameters between a client and a server

• Mutual authentication of client and server

• Secret communication

• Protection of data integrity

24 CHAPTER 3. THE HTTP & HTTPS PROTOCOL

OSI protocol overview
Application (HTTP)
Security (SSL/TLS)
Transport (TCP)
Network (IP)
Data link (PPP)
Physical

Table 3.3: The OSI Model protocol stack with SSL/TSL shown

SSL is a new layer positioned between the application layer, which HTTP is part of,
and the transport layer, in the OSI Model protocol stack. Table 3.3 shows a typical
Internet example of the protocol stack ([34], page 814).

SSL consists of two subprotocols ([34], page 814). One handles the establishment of
a secure connection while the other handles the actual use of the secure channel.

TSL

Transport Layer Security (TSL[35]) is a standardized version of SSL. Compared to
SSL, the changes done are minor, but they are big enough that interoperability
between SSL and TSL does not exist.

Chapter 4

The WebDAV protocol

Web-based Distributed Authoring and Versioning (WebDAV) is a set of extensions
to the HTTP protocol that was first proposed as an Internet Standard in February
1999[36]. It allows users to edit and manage files on remote web servers. This
chapter aims at explaining the key features of WebDAV and give a brief description
of the different methods that are available for use.

4.1 Background

The WebDAV protocol provides a set of methods, headers and content-types for
the management of resource properties, creation and management of resource col-
lections, namespace manipulation and resource locking ([36], Abstract). A resource
is web terminology for any piece of information, such as a web page, a document
or an image, and its location is described by some sort of URI. WebDAV provides
operations for remote web content authoring like ([36], Chapter 1: Introduction):

• Properties: Create, remove and query information about Web pages such as
author and creation date

• Collections: Create documents and retrieve files/directories from an hierarchi-
cal system

• Locking: Keeping more than one person from working on a document simul-
taneously

• Namespace operations: Copying and moving Web resources

The benefits of WebDAV are[37]:

• It gives a possibility of content publishing to the web through HTTP

• It provides collaborative authoring with the use of locking to prevent overwrite
conflicts

• There are no document format restrictions

25

26 CHAPTER 4. THE WEBDAV PROTOCOL

• There is a common interface for a wide range of repositories

WebDAV chose to add methods to the existing HTTP protocol to provide a stan-
dard for a writable and collaborative web. In this process, several options were
investigated. These options are URL munging, RPC-via-POST and the adding of
methods([38], Chapter “How WebDAV extended HTTP”), and they will be further
discussed below.

4.1.1 URL munging

URL Munging describes how to append commands after the end of a URL, typically
after a “?” sign, much like the widely used script language PHP does today. This
has the advantage of being easily parsed, but the main problem with this method is
that only the HTTP GET method can be used for retrieval of Web contents.

4.1.2 RPC-via-POST

A possibility of injection of parameters into the message body along with a function
identifier and then the use of the HTTP POST method was also considered for the
WebDAV specification. The server would then perform the necessary operations
based on the function identifier and the parameters included and return the answer
in the message body of the response message.

The main drawback of this way was that it would leave the POST method a security
hole, since virtually any operation then could have been done through the POST
method.

4.1.3 Adding methods

The adding of methods to the already existing methods of HTTP takes advantage
of existing HTTP features, hereby providing security and easy access control. The
main drawbacks of this method was that since data can have unbound length, it is
not always suitable to encode it in a header like in existing HTTP. New methods
would also have to be integrated with the old HTTP headers.

The advantages of the adding methods approach when it comes to security and access
control issues were so big that this solution was obvious for the people working with
the WebDAV draft. In addition, they also chose to use some elements from the RPC-
via-POST solution by the use of XML in the body of the messages. This means that
WebDAV encodes method parameter information either in an XML request body or
in HTTP headers.

4.2 Properties

Properties ([36], Chapter 4.1) are data about data (metadata) and in this context
they describe the state of a certain resource. They are name/value pairs, the name

4.3. COLLECTIONS 27

is unique for the resource, and existed already in some sense in HTTP as HTTP
message headers.

Properties for a resource are split into “live” and “dead” properties. A “live” prop-
erty is controlled by the server, and it can either be the server that fully controls
the value of the property or the client that maintains the property while the server
controls the syntax of the submitted values. A “dead” property is controlled and
set by the client, and the server only stores the value of the property given from the
client.

The state of a resource can possibly be described by a large number of properties
and it is clearly inefficient to always use them all. Because of this, there was a
need for a mechanism that allows identification of a set of properties and how to set
them ([36], Chapter 4.3) , and this is done in the WebDAV specification using the
PROPFIND method described in Chapter 4.5.1 below.

4.3 Collections

Collections ([36], Chapter 5.2) in WebDAV are seen much as file system directories
within a server’s namespace. Each collection has a list of internal member URI’s
and a set of properties connected to it.

4.4 Locking

Locking ([36], Chapter 6) is the concept of serializing access to a resource such that
no modification is possible while another party is editing the resource, otherwise the
update done by one or more of the parts could be lost. For a server to comply with
the WebDAV standard it does not necessarily need to support locking. Different
storage repositories need to control their own storage management, if locking should
be available, and what sort of locking should be used ([36], Chapter 6.2). For clients,
they can either try to issue a lock and see if that works or try to investigate the
locking capabilities of a server through the use of lock capability discovery.

4.4.1 Exclusive locks

An exclusive lock ([36], Chapter 6.1) means that only one single principal can access
a resource, and this guarantees that the edits done by this source will work with no
overwrite conflicts.

4.4.2 Shared locks

Shared locks ([36], Chapter 6.1) can be used when several principals need access
to a resource. These principals will then have the permission to issue a lock on
a specified resource. This approach trusts that other principals will not overwrite
uncommitted changes and implies letting principals that can receive a lock know
who else may be working on the resource for the moment.

28 CHAPTER 4. THE WEBDAV PROTOCOL

4.4.3 Usage considerations

Even though locking is used, one cannot guarantee that updates do not get lost.
This is because the WebDAV standard also needs to correctly give access to clients
that are only HTTP compliant ([36], Chapter 6.7).

Consider a scenario where two clients, A and B, where A is a HTTP client that is
not able to perform locking and B is a WebDAV compliant client. First, A does a
HTTP GET on a resource and starts editing. In the meantime, B locks the same
resource, does a HTTP GET, edits the resource, issues a PUT and unlocks the
resource. Then, when A is finished with editing and uses PUT to save it back to
the server, all B’s changes are lost.

Since not all clients can be forced to use locking because WebDAV has to be HTTP
compatible, this cannot be prevented. In addition, it cannot be required that servers
support WebDAV, and since WebDAV is stateless, there is no possibility to enforce
a series of operations like LOCK - GET - PUT - UNLOCK.

4.5 HTTP methods

Below is an overview of the different methods that WebDAV provides ([36], Chapter
8) as an extension to the HTTP methods described in Chapter 3.1.4

4.5.1 PROPFIND

The PROPFIND method ([36], Chapter 8.1) retrieves properties defined on the re-
source identified by the Request-URI in the request message, and also on member
resources if any are present. The Depth header can be used to specify to which chil-
dren level the method should return results, either “0”, “1” or the default “infinity”
can be used as values.

Using the body of the request message, clients can request either specific property
values, all property values available or a list of the property values available, where
default behaviour if nothing is specified is to retrieve all property names and values.

4.5.2 PROPPATCH

The PROPPATCH method ([36], Chapter 8.2) is used to set or remove properties
on the resource identified by the Request-URI in the request message.

4.5.3 MKCOL

The MKCOL method ([36], Chapter 8.3) is used to create a new collection (direc-
tory) on the resource identified by the Request-URI in the request message. For this
method to succeed, all subdirectories must already exist. A message body may also
be included when this method is used, specifying members of this new collection

4.5. HTTP METHODS 29

and their properties. An example of a request message using the MKCOL method
is shown in Figures 4.1 and 4.2

MKCOL / t e s t HTTP/1 . 1
Host : www. example . com

Figure 4.1: Request message using MKCOL

HTTP/1 . 1 201 Created

Figure 4.2: Response message to the above request

4.5.4 DELETE

The DELETE method ([36], Chapter 8.6) deletes either the non-collection resource
(a file) specified by the Request-URI in the request message or the collection spec-
ified by the Request-URI and all children of this collection. An “infinity” value
of the Depth header is always used. Figures 4.3 and 4.4 shows an example where
the request to delete the directory www.example.com/container failed because the
internal member resource3 was locked.

DELETE / conta ine r / HTTP/1 . 1
Host : www. example . com

Figure 4.3: Request message using DELETE

4.5.5 PUT

For a non-collection resource, the PUT method ([36], Chapter 8.7) adds (or replaces
if the resource already exists) the resource specified by the Request-URI in the
request message and changes values of the properties of the resource.

For collections, the use of the PUT method is not defined in the WebDAV specifi-
cation, instead the MKCOL method should be used.

4.5.6 COPY

The COPY method ([36], Chapter 8.8) copies the resource from the Request-URI
specified in the request message to the location specified in the URI in the Destination
header field, which always has to be present in the message header for this method
to work.

For collections, all internal members should also be copied to the destination, as
the value of the Depth header field is always assumed to “infinity” if nothing else is
specified.

If a resource already exists at the destination, the actions taken depends on the
settings of the Overwrite header field. If this header field is set to “T” then a

30 CHAPTER 4. THE WEBDAV PROTOCOL

HTTP/1 . 1 207 Multi−Status
Content−Type : t ex t /xml ; cha r s e t=” utf−8”
Content−Length : xxxx

<?xml ve r s i on=”1 . 0” encoding=” utf−8” ?>
<d : mul t i s t a tu s xmlns :d=”DAV: ”>

<d : response>
<d : hre f>http : //www. example .com/ conta iner / resource3 </d : href>
<d : s tatus>HTTP/1 . 1 423 Locked</d : s tatus>

</d : response>
</d : mult i s ta tus >

Figure 4.4: Response message to the above request

delete with depth “infinity” should be performed, if this header field is set to “F”
the operation will fail. The default value of the Overwrite header is “T” if it is not
set.

Figures 4.5 and 4.6 shows an example of use of the COPY method where the request
asks for the collection www.example.com/container/ to be copied to www.example.
com/othercontainer while maintaining all the live properties of the collection and
its internal members. From the response message in Figure 4.6 it can be seen that
most of the resources in the collection was successfully copied to the new location.
However, the collection R2 failed most likely because of a problem with copying of
some of the live properties.

COPY / conta ine r / HTTP/1 . 1
Host : www. example . com
Dest inat i on : http : //www. example .com/ othercon ta iner
Depth : i n f i n i t y
Content−Type : t ex t /xml ; cha r s e t=” utf−8”
Content−Length : xxxx

<?xml ve r s i on=”1 . 0” encoding=” utf−8” ?>
<d : propertybehav ior xmlns :d=”DAV: ”>

<d : keepa l ive >∗</d : keepa l ive >
</d : propertybehavior>

Figure 4.5: Request message using COPY

HTTP/1 . 1 207 Multi−Status
Content−Type : t ex t /xml ; cha r s e t=” utf−8”
Content−Length : xxxx

<?xml ve r s i on=”1 . 0” encoding=” utf−8” ?>
<d : mul t i s t a tu s xmlns :d=”DAV: ”>

<d : response>
<d : hre f>http : //www. example .com/ othercon ta iner /R2/</d : href>
<d : s tatus>HTTP/1 . 1 412 Precond i t ion f a i l e d </d : s tatus>

</d : response>
</d : mult i s ta tus >

Figure 4.6: Response message to the above request for the COPY method

4.6. SECURITY CONSIDERATIONS 31

4.5.7 MOVE

The MOVE method ([36], Chapter 8.9) performs the same operation as the COPY
method, but in addition it also deletes the source collection with all internal mem-
bers or the file specified in the Request-URI of the request message. It also does
maintenance processing, updating the URI’s referring to the old resource if this is
necessary.

This method works only with the Depth header set to “infinity”, and the behavior
concerning the Overwrite header field is the same as for the COPY method.

4.5.8 LOCK

The LOCK method ([36], Chapter 8.10) is used to issue a lock on the resource
specified by the Request-URI in the request message. The scope of the lock is the
entire state of the specified resource, this includes all properties and for collections
the ability to remove or add internal members.

The Depth header field can be used, with values of either “0” or “infinity”, where
“0” means only the resource itself while “infinity” means all internal members to
the end of the hierarchy.

4.5.9 UNLOCK

The UNLOCK method ([36], Chapter 8.11) removes the lock from the resource
specified by the Request-URI in the request message.

4.6 Security considerations

All of the risks described in Chapter 3.1.6 are also valid for WebDAV. In addition,
since WebDAV creates more possibilities for remote authoring, some new security
threats arise ([36], Chapter 17):

4.6.1 Authentication

The use of authentication technologies are necessary to protect access and integrity
of resources. Basic HTTP authentication is not sufficient, because password is sent
in clear-text. Instead, a secure connection like HTTPS using SSL/TSL as described
in Chapter 3.2 should be used, or the network should be physically secure ([36],
Chapter 17.1).

4.6.2 Denial of Service

Denial of Service attacks[39] aims at making a computer resource unavailable for
its users. The use of WebDAV plus HTTP possibly enables such attacks on every

32 CHAPTER 4. THE WEBDAV PROTOCOL

part of a system’s resources. These attacks can be using the PUT method to store
large files, asking for recursive operations which take up a lot of processing time
or making pipelined requests on multiple connections to cause network connection
congestion ([36], Chapter 17.2).

4.6.3 Security through obscurity

The PROPFIND method actually provides a method to list properties for a given
resource that an attacker would have to search for otherwise. It is therefore strongly
advisable that access control techniques are used, the security should not depend on
the obscurity of resource names ([36], Chapter 17.3).

4.6.4 Privacy concerning properties

Properties can contain privacy information, such as author names. Again, access
control mechanisms should be used to prevent accidental read of properties. A solu-
tion with separation of read access to the resource body and the resource properties
could also be used ([36], Chapter 17.5).

4.6.5 Source files

WebDAV can potentially give access to source files containing sensitive information.
Caution must be made to prevent unauthorized principals getting read/write access
to such files. ([36], Chapter 17.6)

Part II

Research & Test
Implementations

33

Chapter 5

Java I/O

5.1 General

Java I/O is a library that provides system input and output through the use of data
streams, serialization and the local file system. The basic principle for Java I/O is
that each class in the package is designed for one special task and must be combined
with other classes to perform more complex tasks. Layering of multiple objects is
used to provide the desired functionality. For instance, a FileReader provides a
way to connect to a file, and nothing else. A BufferedReader provides buffering of
input. Used together, these two classes provide buffered reading from a file ([40],
Section “Basic Principles”). This chapter will give an introduction to I/O in Java,
focusing on file I/O.

There are two kinds of I/O, namely byte and character I/O ([40], Section “Intro-
duction”).

5.1.1 Byte oriented I/O

Byte oriented I/O is meant for data further processed by computers and not by
humans. The classes mainly used for this type of I/O are the InputStream and
OutputStream classes in the java.io package and their subclasses.

5.1.2 Character oriented I/O

Character oriented I/O is used when real people needs to read the data. For this
purpose, a character encoding is used, in Java this is the Unicode character en-
coding. Unicode is an international standard encoding that can represent most of
the world’s written languages. 16 bits are used to represent one character using this
coding schema. In addition, Java can understand UTF, which uses 24 bits for each
character.

The classes that are mainly used for this type of I/O are the Reader and Writer
classes in the java.io package and their subclasses. Character streams are often
wrappers for byte streams to give the end program the desired functionality.

35

36 CHAPTER 5. JAVA I/O

5.2 Overview

The java.io package in JavaTM2 Platform Standard Edition consists of the interfaces
shown in Table A.1, the classes shown in Table A.2 and the exceptions shown in
Table A.3 in Appendix A. The classes that are relevant for this thesis, namely the
classes that deals with file I/O, are highlighted.

5.3 Streams

An I/O stream represents an input source or an output destination, this can range
from disk files or devices to other programs or memory arrays. Such a stream can
be anything that can contain data[41]. Different types of data are supported for
such streams, mainly bytes, characters and objects. A sequence of one of these data
types typically makes a stream.

Figure 5.1: Illustration of an input stream

An input stream, as shown in Figure 5.1, reads data from a source that then can be
used in an application. An output stream, as shown in Figure 5.2, writes data from
an application to a destination.

Figure 5.2: Illustration of an output stream

5.3.1 Buffered streams

Writing of small proportions of data can be very expensive in terms of performance.
Because of this, buffering should be used to prevent disk reads and writes for each

5.4. INPUT 37

character[42]. In buffered streams, data is being read from a memory area called
the buffer instead of being handled directly by the underlying operating system[43].

5.4 Input

The basic method for input in Java I/O is the read()-method which is defined in
the InputStream and Reader abstract classes in the java.io package and provides
reading of a single byte or an array of bytes.

5.4.1 Readers

The different readers in the java.io package perform different read operations as
follows ([40], Section “InputStreams and OutputStreams: InputStreams”):

• BufferedReader: provides buffering and increases efficiency

– LineNumberReader: keeps track of how many lines that have been read

• CharArrayReader: reads char arrays

• FilterReader (abstract): modifies the stream as it is read

– PushbackReader: unreads one or more characters

• InputStreamReader: takes any binary input stream and turns it into a char-
acter stream

– FileReader: connection to an actual file

• PipedReader: used in a Unix pipe

• StringReader: treats a String object as an input device

All these classes are subclasses of the Reader class. The sources that can be read
from are normally an array of bytes, a file or a pipe. Methods that are used are the
read() and close() methods which reads and closes the stream and frees resources
respectively.

File reading

Figure 5.3 shows how file reading is normally done in Java. Catching of exceptions
is omitted for the sake of simplicity.

5.5 Output

The basic method for output in Java I/O is the write()-method which is defined in
the OutputStream and Writer abstract classes in the java.io package and provides
writing of a single byte or an array of bytes.

38 CHAPTER 5. JAVA I/O

Fi leReader f r e ad e r = new Fi leReader (‘ ‘ myf i l e , txt ’ ’) ;
BufferedReader breader = new BufferedReader (f r e ad e r) ;
String s = new String () ;
whi le ((s = breader . readLine ()) != nu l l) {

System . out . p r i n t l n (s) ;
}
breader . c l o s e () ;

Figure 5.3: Example of file reading

5.5.1 Writers

The different writers in the java.io package perform different write operations as
follows ([40], Section “InputStreams and OutputStreams: OutputStreams”):

• BufferedWriter: provides buffering of output

• CharArrayWriter: provides writing to a character array as if it was a file

• FilterWriter: provides filtering for the data that is going to be written

• OutputStreamWriter:

– FileWriter: used to write to an actual file

• PipedWriter: the writing end of a Unix pipe

• PrintWriter: used to show internal data in an easily understandable form

• StringWriter: provides writing to a string as if it was a file

All these classes are subclasses of the Writer class. The destinations that can be
written to are normally an array of bytes, a file or a pipe. Methods that are used
are the write(), flush() and close() methods which writes, forces output to be
written to destination and closes the stream and frees resources respectively.

File writing

Figure 10.3 shows a typical example of how file writing is done in Java. Catching of
exceptions are omitted for the sake of simplicity.

File f = new File (‘ ‘ my f i l e . txt ’ ’) ;
Buf feredWriter bwr i t e r = new Buf feredWriter (new Fi l eWr i t e r (f)) ;
bwr i t e r . wr i t e (”A new l i n e ”) ;
bwr i t e r . f l u s h () ;
bwr i t e r . c l o s e () ;

Figure 5.4: Example of file writing

5.6. THE FILE CLASS 39

5.6 The File class

The File class in the java.io package maintains file information (like length of the
file and if it is readable among other things). It does not, as the name suggests,
refer to an actual file in the file system, but it merely represents either the name of
a file or the name of a set of files in a directory. The file might not even exist.

The File class can be used for[44]:

• Creation of directory

• Creation of an entire directory path

• Examination of file characteristics like size, modification date, readable/writable

• Deletion of a file or directory

• Examination whether the File object is a file or a directory

• Renaming of the File object

If an actual file exists at the given location for a File object, the object can be used
to perform actions on the file by the use of streams for reading or writing to it.

5.7 New Java I/O

The Java New I/O library, java.nio, was introduced in JDK 1.4 with one goal:
Increase the speed of I/O operations in the Java language. This is mainly accom-
plished by introducing operating system structures for I/O, namely channels and
buffers. Use of these structures gives an improved speed for mainly file I/O and
network I/O. Even if a user does not explicitly include classes from the java.nio
package, the classes from the java.io package have been re-implemented so that
they use this new package for optimizing how I/O is done ([45], Chapter 12: The
Java I/O System: New I/O).

Chapter 6

File System Access Libraries

6.1 The Apache Jakarta Project

The Jakarta Project[46] consists of a multitude of Java open source solutions gov-
erned by ASF, the Apache Software Foundation, which is encouraging a collaborative
and consensus-based approach for software development.

ASF[47] is an organization that provides organizational, legal and financial contri-
bution for the various Apache open source software projects. The foundation is a
membership-based, not-for-profit corporation which tries to ensure the future exis-
tence of all of the Apache projects. Its goal is to provide enterprise-grade and freely
available software with a large user base. Some of the most known and used software
applications from Apache today are the Apache HTTP Server[48] and the Apache
Tomcat servlet container[49].

The different Jakarta subprojects are using an open source license for distribution
of software. This basically means the following[50]:

• A user is allowed to:

– Freely download and use Apache software for personal, company internal
or commercial purposes

– use the software from Apache in own projects or in distributions that the
user creates

• It is forbidden to:

– Redistribute the whole or parts of the project without proper attribution

– Give the impression that the ASF endorses a self-made distribution

– Give the impression that the user himself created the software

• In addition, the license requires the user to:

– Include a license copy in any redistribution that includes Apache software

– Provide clear attribution to ASF in case of use

41

42 CHAPTER 6. FILE SYSTEM ACCESS LIBRARIES

This thesis has examined and used two Jakarta subprojects, namely the Slide project
and the Commons VFS project.

6.2 Slide WebDAV library

The Slide WebDAV[51] library is a content repository that can act as a basis for
a content management system. This description of Slide will concentrate on the
web-based content management that can be achieved by using the WebDAV client
library[52] that is included in Slide.

6.2.1 The WebdavResource class

The main class used in the Slide WebDAV client library is the WebdavResource[53]
class. Unfortunately, the documentation for this client library is quite poor, so in
order to find out how it works, a test implementation had to be done, which will be
further described in Chapter 7.3.

Constructors

Several constructors for this class exist; however, the one that has been used through-
out this thesis is the one shown in Table 6.1.

Constructor definition Explanation
WebdavResource(HttpURL httpURL) Creates a connection to the WebdavRe-

source specified by the httpURL input
parameter

Table 6.1: Constructor used from the WebdavResource class

The HttpURL class is part of the org.apache.commons.httpclient[54] package from
the Jakarta Commons project. HttpClient is a framework for working with the
client side of the HTTP protocol. For security reasons, throughout this thesis the
subclass of the HttpURL, namely HttpsURL, is used for input to the WebdavResource
constructor.

Methods

Table 6.2 shows the most important methods in the WebdavResource class, their
return type and their explanation. Many of the methods correspond to the HTTP
and WebDAV methods described in Chapters 3.1.4 and 4.5. For many of these
methods, different method definitions with different input parameters that enables
other more specific usages are also available.

6.2.2 Patching of the library

During work with the test implementation of the Slide WebDAV library, it was
discovered a bug which made listing of children elements of a directory WebdavRe-

6.3. THE VFS LIBRARY 43

Returns Method definition Explanation
boolean copyMethod() Execution of the COPY method
boolean deleteMethod() Excecution of the DELETE

method for this resource
boolean exists() Checks whether this WebdavRe-

source exists or not
boolean exists() Checks whether this WebdavRe-

source exists or not
boolean getMethod() Execution of the GET method

which populates the input file
with the data from the Web-
davResource

String getPath() Gets the path of the resource
boolean headMethod() Execution of the HEAD method
boolean isCollection() Checks whether the resource is a

directory or not
WebdavResource[] listWebdavResources() Returns an array with the chil-

dren resources of this resource
boolean lockMethod() Execution of the LOCK method
boolean mkcolMethod() Execution of the MKCOL

method
boolean moveMethod() Excecution of the MOVE

method
boolean optionsMethod() Execution of the OPTIONS

method
Enumeration propfindMethod() Execution of the PROPFIND

method
boolean proppatchMethod() Execution of the PROPPATCH

method
boolean putMethod() Execution of the PUT method
boolean unlockMethod() Execution of the UNLOCK

method

Table 6.2: Important methods from the WebdavResource class

source incomplete. To correct this, patching of one of the methods had to be done.
This procedure is described in Appendix B.

6.3 The VFS library

The Virtual File System[55] from Jakarta Commons provides a way to access differ-
ent file systems through a single API. When used, it provides a uniform view of files
from different sources, for example from a local disk, an HTTP server or a WebDAV
compliant server.

VFS has built-in support for various file system types, like[56]:

• FTP

44 CHAPTER 6. FILE SYSTEM ACCESS LIBRARIES

– Gives access to local files on the local file system

– [file://] absolutepath

– Example: file:///home/someuser/somedir

• zip, jar and tar

– Gives read-only access to the zip, jar and tar compressed file types

– zip://archive-file-URI[! absolute-path]

– jar://archive-file-URI[! absolute-path]

– tar://archive-file-URI[! absolute-path]

– Example: jar:../lib/classes.jar!/META-INF/manifest.mf

• gzip and bzip2

– Gives read-only access to the contents of gzip and bzip2 files

– gz:// uri-to-compressed-file

– bz2:// uri-to-compressed-file

– Example: gz://my/gz/file.gz

• HTTP and HTTPS

– Gives access to the files on a HTTP server

– http://[username[: password]@] hostname[: port][absolute-path]

– https://[username[: password]@] hostname[: port][absolute-path]

– Example: https://myusername:mypassword@somehost:8080/index.html

• WebDAV

– Gives access to files on a WebDAV server

– webdav://[username[: password]@] hostname[: port][absolute-path]

– Example: webdav://somehost:8080/test

• FTP

– Gives access to files on a FTP server

– ftp://[username[: password]@] hostname[: port][absolute-path]

– Example: ftp://myusername:mypassword@somehost/downloads/somefile.txt

• SFTP

– Gives access to files on a SFTP server

– sftp:// [username[: password]@] hostname[: port][absolute-path]

– Example: sftp://myusername:mypassword@somehost/downloads/somefile.txt

• CIFS

– Gives access to files on a CIFS server, such as a Samba server

– smb://[username[: password]@] hostname[: port][absolute-path]

– Example: smb://somehost/home

6.3. THE VFS LIBRARY 45

• Temporary Files

– Gives access to a temporary file system that is deleted when VFS shuts
down

– tmp://[absolute-path]

– Example: tmp://dir/somefile.txt

Chapter 7

Library Test Implementations

7.1 General

The purpose of developing test implementations of possible libraries was to learn
more about how these libraries worked in the environment at CERN. Slide WebDAV
Library was a natural library to start with, since it is the one Java-based library that
is listed on the WebDAV page[57]. The possible use of VFS was discovered later in
the process by Artur Wiecek, one of my supervisors at CERN, and examined at a
later stage of the permanent storage project, after the test implementation of Slide
was finished and proved itself as a working possibility.

7.2 Test environment

It was decided early in the thesis project that the Distributed File System (DFS),
the main file system at CERN, was the most usable place to let users store and
access their files. This was done for several reasons:

• DFS is easily accessible from both CERN and locations outside of CERN by
the use of the web interface at https://dfs.cern.ch (internal web page not
accessible to people without correct credentials)

• Most people affiliated with CERN has an account with a personal area to store
files at DFS

• A WebDAV interface is provided to it, so connecting with a WebDAV library
should work

The test implementations themselves were done from a local computer equipped with
Java and a Tomcat container similar to the ones used at the J2EE Public Service
inside of CERN’s private network. Since the HTTP and HTTPS protocols were
used, location was not an issue because such traffic is cleared through the CERN
firewall.

47

48 CHAPTER 7. LIBRARY TEST IMPLEMENTATIONS

7.3 Slide

The test implementation of Slide was done as a “Proof-of-concept”[58] to show that
the Slide WebDAV library could be used in such an environment described above.

Mainly, the test implementation works as a simple command line file client, with
the following commands available:

• list: lists all the files and directories in the working directory

• createfile: creates a file from user input in the working directory

• todir: makes another directory the working directory, whole directory path
must be specified

• quit: quits the command line interface

• createdir: creates a new directory in the working directory

• save: saves the specified file from the DFS working directory to the local file
system on the local computer running the command line interface

• import: imports a file from the local file system of the local computer and
stores it at the working directory at DFS

• show: shows the content of the specified file on DFS

7.3.1 How does the implementation work

The following subsections gives example code on how the above commands are im-
plemented using the constructor and methods described in Chapter 6.2.1.

Connecting to the DFS location

Figure 7.1 shows how connection to a given location at the DFS file system at CERN
is done through the use of the classes org.apache.commons.httpclient.HttpsURL
and org.apache.webdav.lib.WebdavResource. Most of the code examples below
needs try and catch blocks to catch HttpExceptions and IOExceptions to work
correctly, but for the sake of simplicity these blocks are omitted. For the examples
of the different commands below, the WebdavResource created in Figure 7.1 is used
as the wdr reference.

HttpsURL hr l = new HttpsURL(” https : // d f s . cern . ch/ d f s /Users /h/holmesta /”) ;
h r l . s e tU s e r i n f o (”username” , ”password”) ;
wdr = new WebdavResource (h r l) ;

Figure 7.1: Connection to DFS using the HttpsURL and WebdavResource classes

7.3. SLIDE 49

The list command

Figure 7.2 shows the methods used by the list command, the listWebdavResources()
and the isCollection()-methods.

ArrayList<WebdavResource> d i r e c t o r i e s = new ArrayList<WebdavResource >() ;
ArrayList<WebdavResource> f i l e s = new ArrayList<WebdavResource >() ;

WebdavResource [] r e s ou r c e s = wdr . l i stWebdavResources () ;

// loops through a l l the resources found by the l is tWebdavResources ()
// c a l l and p l a ce s them in the app r i op r i a t e ArrayList

f o r (i n t i = 0 ; i < r e s ou r c e s . l ength ; i++) {

i f (r e s ou r c e s [i] . i s C o l l e c t i o n ())

d i r e c t o r i e s . add (r e s ou r c e s [i]) ;

e l s e

f i l e s . add (r e s ou r c e s [i]) ;

}

Figure 7.2: Example code for listing of files and directories

The createfile command

Figure 7.3 shows the basic methods used by the createfile command, the putMethod()
and the getPath()-methods.

// the fi leName and conten ts s t r i n g v a r i a b l e s are
// a l ready i n i t i a l i z e d as input from the user

i f (wdr . putMethod (wdr . getPath ()+”/”+fileName , content s))

System . out . p r i n t l n (” F i l e ”+fi leName+” s u c c e s s f u l l y c r ea ted ”) ;

e l s e

System . out . p r i n t l n (”No f i l e c r ea ted ”) ;

Figure 7.3: Example code for creating a file

The todir command

The todir command performs the same action as shown in Figure 7.1, but gives as
input to the HttpsURL-constructor the path to the desired directory.

The createdir command

Figure 7.4 shows the basic methods used by the createdir command, the mkcolMethod()
and the getPath()-methods.

50 CHAPTER 7. LIBRARY TEST IMPLEMENTATIONS

// the dirName s t r i n g v a r i a b l e i s a l ready
// i n i t i a l i z e d as input from the user

i f (wdr . mkcolMethod (wdr . getPath ()+dirName))

System . out . p r i n t l n (” Di rec to ry ”+wdr . getPath ()+dirName+” created ”) ;

e l s e

System . out . p r i n t l n (”No d i r e c t o r y c rea ted ”) ;

Figure 7.4: Example code for creating a directory

The save command

Figure 7.5 shows the basic method used by the save command, the getMethod()-
method.

// the remotePath and loca lPa th s t r i n g v a r i a b l e s
// are a l ready i n i t i a l i z e d as input from the user

i f (wdr . getMethod (remotePath , new java . i o . File (l oca lPath))) ;

System . out . p r i n t l n (” F i l e s u c c e s s f u l l y saved at l o c a t i o n ”+loca lPath) ;

e l s e

System . out . p r i n t l n (” F i l e not saved . Check that both paths are va l i d ”) ;

Figure 7.5: Example code for saving a file to the local file system

The import command

Figure 7.6 shows the basic methods used by the import command, the putMethod()
and getPath()-methods.

// the l oca lPa th s t r i n g v a r i a b l e i s a l ready
// i n i t i a l i z e d as input from the user

File f = new File (l oca lPath) ;

i f (wdr . putMethod (wdr . getPath () , f))

System . out . p r i n t l n (” Su c c e s s f u l l y import to DFS”) ;

e l s e

System . out . p r i n t l n (” Import did not work”) ;

Figure 7.6: Example code for importing a file to the DFS location

The show command

The show command displays the working directory of the WebdavResource by use
of the getPath()-method.

7.4. VFS 51

7.4 VFS

A simple command line client, which with small modifications made it possible to
test whether VFS could be used, is provided as an example[59] together with the
VFS source code. As with the self-produced command line client for the Slide test
implementation, the following operations are provided in the VFS command line
client:

• cd [folder]: changes working directory

• cp <src> <dest>: copies a file or a folder

• cat <file>: displays the content of a file

• help: shows a help message

• ls [-R] [path]: lists contents of a file or a folder

• pwd: displays the working directory

• rm <path>: Removes a file or a folder

• touch <path>: Sets the last-modified value for a file

7.4.1 How

To get access to files and create file systems in VFS, the FileSystemManager[60] class
is used. Using this class, a FileObject can be created using the resolveFile()-
method with an input parameter formatted as described in Chapter 6.3. Figure
7.7 shows the use of these classes in the command line interface trying to access a
specific location at DFS.

FileSystemManager mgr = VFS . getManager () ;
Fi l eObjec t cwd = mgr . r e s o l v eF i l e (” https : // holmesta : password”

+”@dfs . cern . ch/ d f s /Users /h/holmesta /”) ;

Figure 7.7: Example code for accessing DFS through VFS

The following methods from the FileObject[61] class are used to perform the com-
mands described above:

• delete(FileSelector selector): Deletes internal members of the FileObject
that matches the input selector

• copyFrom(FileObject srcFile, FileSelector selector): Copies another
file and its internal members that match the input selector to this FileObject

• getChildren(): Lists the children of this FileObject

• getContent(): Returns the content of the FileObject

• exists(): Checks if the file exists

52 CHAPTER 7. LIBRARY TEST IMPLEMENTATIONS

7.4.2 Tests of different connections

To test the flexibility of the VFS library, different connections to DFS was tested by
changing the input parameter of the resolveFile()-method.

HTTP connection to DFS

The input http://holmesta:mypassword@dfs.cern.ch/dfs/Users/h/holmesta/
to the resolveFile()-method tries to make a normal connection to the author’s
public area at DFS. This connection works perfectly, there are no problems with
performing any of the commands listed above. However, this connection is not a
secure connection, because the password is transmitted in cleartext. This makes
such a connection practically unusable.

WebDAV connection to DFS

The input webdav://holmesta:mypassword@dfs.cern.ch/dfs/Users/h/holmesta/
was used as input to resolveFile() to test the WebDAV connectivity of VFS. This
is using the Slide WebDAV library, so in theory it should work. The connection per-
formed the commands given in the command line interface as expected, but as for
the HTTP connection this is not a secure connection considering that the password
is sent in cleartext.

Secure HTTPS connection to DFS

The input https://holmesta:mypassword@dfs.cern.ch/dfs/Users/h/holmesta/
to the resolveFile()-method was not successful. The VFS was not able to connect
to this DFS location in a secure manner, and further investigation yielded no success
or easy solution to this problem.

CIFS connection to DFS

smb://holmesta:mypassword@cerndfs01.cern.ch/dfs/users/h/holmesta/ was also
tried as input parameter to the resolveFile()-method, but this was not success-
ful and it was not possible to achieve a connection. Some time was spent trying
to understand what was causing the malfunctioning, but no apparent solution was
found.

Chapter 8

Research Conclusions

8.1 Slide evaluation

Slide, through the WebDAV client library, has been found to have the following
advantages:

• Working support for all wanted file operations, like getting a file, putting a file,
getting information about properties of files and directories and creation/re-
moval of directories

• Through the use of the HttpsURL class it provides a secure connection where
passwords are protected

On the other hand, some weak points have also been detected:

• The documentation is poor and it has required a lot of time and effort to
understand how to use the library

• It seems that further progress has stopped, as the newest version of the library
has not managed to correct the bug described in Appendix B

• Performance problems which has not been a topic for this thesis

8.2 VFS evalution

VFS has been found to have the following advantages:

• As for Slide, working support for all file operations

• It looks like development of VFS is more active than development of Slide

• A lot of other file systems are supported, as described in Chapter 6.3, which
gives more flexibility concerning future development of permanent storage for
the J2EE Public Service

53

54 CHAPTER 8. RESEARCH CONCLUSIONS

• Better documentation than Slide

Subsequently, some quite important findings have been done when it comes to weak
points:

• In the CERN environment using DFS as the main storage medium, no secure
access is possible to obtain

• CIFS connection to DFS was not possible and the author did not manage to
find out why this was not working

8.3 Overall evaluation

The most ideal solution for this thesis work would be to find a way to directly
manipulate the Java source code, such that web application authors hosting their
applications at the J2EE Public Service could continue to use the normal packages
for Java I/O. This is not possible since the source code for the Java API is not
available, so different solutions had to be investigated.

Creating a library that the web application author can include in the web application
file deployed to the J2EE Public Server was chosen as approach. This basically means
that the idea mentioned in the thesis description about capturing file requests and
redirect them to another, possibly remote, location is used. This remote location is
then the DFS file system and redirection happens in the library especially created
for the DFS connection.

A Master thesis has a natural limit on the amount of time available for research and
investigation of unexpected results (like the malfunctioning of the VFS library for
DFS). It was therefore decided, in collaboration with supervisors and more expe-
rienced people at CERN, that the Slide solution was the correct choice for imple-
menting a permanent storage solution for the J2EE Public Service.

Despite the fact that documentation is poor and the impression that the project
itself is no longer well maintained, it was strongly believed that a working solution
based on Slide which was secure so that user’s passwords were not compromised in
any way, was the correct path to follow for further development.

VFS was mainly rejected because of the lack of security when connecting through
HTTP and WebDAV. If this had worked, VFS would clearly have been a better
choice considering the wider choice of options it gives for future development of
permanent storage for the J2EE Public Service.

Part III

Design, Implementation &
Testing

55

Chapter 9

Implementation of stand-alone
class File.java

9.1 Background

The File.java class was meant to provide an easy way for users of the J2EE Public
Service to access their files at DFS. The class extends the java.io.File class, hereby
inheriting all the functionality provided by it.

9.1.1 Functionality of File.java

The basic methods that can be used to achieve file storage and retrieval from this
class are:

• save()

• retrieve()

• save(String location, String username, String password)

• retrieve(String location, String username, String password)

For the two last methods to succeed, a valid location to DFS has to be given as
input parameter along with valid username/password for this location. The two first
methods depends on the existance of a properties file in the WEB-INF/classes/
directory of the web author’s web application, further described in Chapter 9.1.2.

9.1.2 User WAR-file construction

Chapter 2.2 described how the J2EE Public Service works concerning how users
deploy their created WAR files. To make use of the File.java class described in this
chapter in such a web application, the user needs to add a .jar file especially created
for this purpose. This .jar file (included in the electronical documentation of this
thesis with the name Standalone.jar) bundles all the necessary libraries that the
File.java class needs to work properly including the class itself into one package:

57

58 CHAPTER 9. IMPLEMENTATION OF STAND-ALONE CLASS FILE.JAVA

• The Jakarta Slide WebDAV client library as described in Chapter 6.2

• The JDOM[62] library for xml parsing

• The Jakarta Commons HttpClient[54] package for HTTPS connections

• The j2ee.permanent.storage.File class itself

In addition, when using the save() and retrieve() methods, the user has to pro-
vide a properties file in the WAR-file which is called dfs.properties. This file
has to include three keys in it, which is used by the save() and retrieve() methods
to create the DFS connection.

This dfs.properties file should include the following key-value pairs:

• dfs.location: Specifies the path to the users home area at DFS

• dfs.username: The username of the user

• dfs.password: The password of the user

9.2 Requirements

The requirements for this class were the following:

• 1: Make it possible for users of the J2EE Public Service to retrieve and/or
save files from DFS through their web application

• 2: Make saving/retrieval secure

• 3: Make saving/retrieval as transparent as possible for the users

• 4: Make sure that a web application only can access files from the web appli-
cation author’s area at DFS

9.3 System design

The File.java stand-alone class is a very simple library that, by extending java.io.
File, provides a simple way of saving and retrieval of files from DFS. It is using the
classes org.apache.commons.httpclient.HttpsURL and org.apache.webdav.lib.
WebdavResource to achieve this.

Figure 9.1 shows a sequence diagram for a successful call to the retrieve()-method
when a valid File object already has been created. First, the call to the private
method getLocationInfo() will store the key-value pairs from the dfs.properties
file as member variables of the class and use them to create an HttpsURL and as
input parameters for the setUserInfo()-method. A WebdavResource is created on
the basis of the HttpsURL object, and if a file exists at DFS with the same pathname
as the File object was created with, the getMethod() described in Chapter 6.2 will

9.4. EVALUATION 59

Figure 9.1: Sequence diagram for a successful retrieve operation

transfer the file to the temporary directory of the user container at the J2EE Public
Service and the file can be further manipulated.

The same file can then be written back to DFS using the save()-method which is
using the putMethod() described in Chapter 6.2. A part from the change of methods,
it can be seen from Figure 9.2 that the same operations as described above are used
for the save operation as for the retrieve operation.

9.4 Evaluation

Due to the simple nature of the File.java class, not much testing needed to be done
to make sure that the functionality of the class is as expected. However, some
advantages and limitations were discovered during the process, these are described
below.

9.4.1 Advantages

Simple and easy to use

The File.java class provides simple and easy-to-use functionality for retrieval and
saving of files to or from DFS. Mainly two methods are available to the web applica-
tion developers using the J2EE Public Service, namely the save() and retrieve()
methods, and their behavior is easily understood from the documentation provided
with the class.

60 CHAPTER 9. IMPLEMENTATION OF STAND-ALONE CLASS FILE.JAVA

Figure 9.2: Sequence diagram for a successful save operation

Extending the java.io.File class

By extending the java.io.File class, all methods from this class are directly avail-
able to use with the File objects created.

Security

By the use of the HttpsURL class when creating a WebdavResource connection to
DFS, the password of different users is protected against eavesdropping.

File protection

The overall concept of the J2EE Public Service with each container only having
write/read access to its own temporary directory makes it impossible for another
web application running on another container at the J2EE Public Service to access
files. Security issues were described in Chapter 2.2 and 2.3.

9.4.2 Limitations

Transparency

To use the retrieval/store possibilities of the File.java class, users have to perform
other method calls than usually done in the Java language, as described in Chapter
5.4 and 5.5. This means that the users have to learn new ways of dealing with Java

9.4. EVALUATION 61

I/O that might not be compatible with old applications in one way or another, and
this breaks with requirement 4 described in Chapter 9.2

No file hierarchy allowed

For the File.java class, only one of the constructors of the java.io.File class was
implemented, namely the most simple one which only takes a pathname to the
requested file as an input.

Currently, the File.java class does not support pathnames with parents, which
means that any File object creation that involves a parent directory (such as new
File("mydirectory/myfile.txt") will fail when the retrieve() or save() meth-
ods are called. This is because these two methods do not create any non-existing
parent directories neither at the local temporary directory nor at DFS.

9.4.3 Overall evalution

For simple use, the File.java class is sufficient and it satisfies most of the criterias in
Chapter 9.2. However, because of the lack of support for file hierarchy and the lack
of transparency for the users, a new and more extensive solution was needed. This
solution is outlined in the next chapter, where a re-implementation of the java.io
package is described.

Chapter 10

Re-implementation of the
java.io package

From the evaluation done in Chapter 9.4, there was a need to create a library im-
plementation that addressed the weaknesses found. The goal was to do an extensive
re-implementation of the classes that deals with File I/O in the java.io package.

This chapter describes the work that has been done with this new package, called
j2ee.io, and shows how it works through sequence diagrams for read and write
operations, an overview of the different methods implemented for the j2ee.io.File
class and a code example from the j2ee.io.FileWriter class.

10.1 General

The j2ee.io package contains extended versions of almost all the classes in the
java.io package, except classes that are implemented as final and because of this
can not be extended or are deprecated and because of this should not be extended.

An overview of the classes where no extended versions have been created is given in
Table 10.1.

Class name Reason
FileDescriptor final
FilePermission final
LineNumberInputStream deprecated
ObjectStreamClass not public
SerializablePermission deprecated
StringBufferInputStream deprecated

Table 10.1: Classes from java.io not implemented in j2ee.io

Some classes have been given special treatment because of integration with file re-
trieval/storage from DFS. These classes are the j2ee.io.File class, the j2ee.io.FileWriter
class and the j2ee.io.FileOutputStream class and they will be closer described in
Chapter 10.1.1 and 10.1.3.

63

64 CHAPTER 10. RE-IMPLEMENTATION OF THE JAVA.IO PACKAGE

All the other classes from the java.io package have only been included in the
j2ee.io package because of usage considerations for the J2EE Public Service web
application authors. All they do is to call the constructors of their superclass with
exactly the same arguments, merely a copy of their superclasses. This is done to
allow the web application authors to import only one whole package during code
writing, the j2ee.io package, instead of some classes from the java.io package and
some classes from the j2ee.io package.

Figure 10.1: Sequence diagram for creation of a j2ee.io.File object existing at
DFS

10.1.1 The j2ee.io.File class

The j2ee.io.File class extends the java.io.File class described in Chapter
5.6. It overloads most of the constructors and methods found in its superclass.

If the web application author has included a dfs.properties file in the WEB-INF/
classes/ directory of his web application as described in Chapter 9.1.2, the j2ee.io.
File class will try to connect to DFS through the use of the WebdavResource class.
If the input to the specific constructor specifies a file, then the class will use the
getMethod() to retrieve the file from DFS and place it in the temporary directory
at the container hosting the web application, including creating any non-exisiting
parent directories on the way. Figure 10.1 shows a sequence diagram describing this
functionality.

10.1. GENERAL 65

If no properties file is included in the web application deployed by the user, the
constructors and all the methods in the j2ee.io.File class will work as normally
expected in the java.io.File class.

Constructor definition Explanation
File(String pathName) Creates the File object in the tempo-

rary directory from the pathName vari-
able

File(String parent, String child) Creates the File object in the tempo-
rary directory from the input parent
and child variables

File(File parent, String child) Creates the File object in the tempo-
rary directory from the input parent
and child variables

Table 10.2: Constructors implemented for the j2ee.io.File class

Constructors

Table 10.2 shows the constructors available for the j2ee.io.File class.

Methods

Table 10.3 shows the public methods available for the j2ee.io.File class and their
explanations. The explanations given assume that a properties file exists, if not, the
methods will behave as explained in the Java API for the java.io.File[63] class.

10.1.2 File reading

File reading in java, described more closely in Chapter 5.4.1, does not need any
special treatment to work as expected when using the j2ee.io package. If a given
file exists at DFS and the dfs.properties file exists with correct credentials in the
web application of a user, whenever a new j2ee.io.File object is created referring
to this file, it will be copied to the temporary directory of the web application’s
container and be readable by normal Java file reading methods.

10.1.3 File writing

File writing in Java is done as described in Chapter 5.5.1. In the j2ee.io package,
the classes FileWriter and FileOutputStream has been specially designed to deal
with file writing to DFS when a dfs.properties file is available. This is done by
overloading the flush()-method of the two classes, and this method is implemented
identically in both places.

Figure 10.2 shows a typical file write example using the j2ee.io.FileWriter class
and a call to the flush()-method to write the changes (In Figure 10.2 this adds
a line with “testing” to the file) done to disk. This example shows creation of a

66 CHAPTER 10. RE-IMPLEMENTATION OF THE JAVA.IO PACKAGE

Returns Method definition Explanation
boolean delete() Deletes the file or directory at

DFS
boolean exists() Checks if the file or directory

exists at DFS
java.io.File getAbsoluteFile() Returns a new File object

from the absolute path of this
File object

String getAbsolutePath() Returns the absolute path-
name string from DFS

java.io.File getCanonicalFile() Returns a new File object
from the canonical path of
this File object

String getCanonicalPath() Returns the canonical path-
name string from DFS

String getName() Returns the name of the file
or directory

String getParent() Returns the pathname string
at DFS for this File object’s
parent

java.io.File getParentFile() Returns the File object for
this File object’s parent

String getPath() Returns the pathname of this
File object

boolean isAbsolute() Tests if this abstract path-
name is absolute

boolean isDirectory() Tests if this File object is a di-
rectory

boolean isFile() Tests if this File object is a file
String[] list() Lists the children of this File

object if it is a directory
String[] list(FilenameFilter filter) Lists the children that satis-

fies the filter of this File ob-
ject

File[] listFiles() Returns an array with File ob-
jects created from the path-
names returned by the list()
method

File[] listFiles(FilenameFilter filter) Returns an array with File
objects created from the
pathnames returned by
the list(FilenameFilter
filter) method

boolean mkdir() Creates the directory at DFS
if the File object is a directory

boolean mkdirs() Creates the directory at DFS
including subdirectories if the
File object is a directory

Table 10.3: Methods from the j2ee.io.File class

10.1. GENERAL 67

Figure 10.2: Sequence diagram for file writing using the j2ee.io package

68 CHAPTER 10. RE-IMPLEMENTATION OF THE JAVA.IO PACKAGE

new file called myfile.txt in the directory new which does not exist at DFS. A
code example showing the save() method (which is called in the beginning of the
flush() method in Figure 10.2) is shown in Figure 10.3, with explanation below.

Code explanation

In Figure 10.3 the save() method, which is the method that provides the store
functionality for the j2ee.io.FileWriter and j2ee.io.FileOutputStream classes,
is shown.

The code example is corresponding to the code run after the call of the save()
method in the sequence diagram in Figure 10.2. Firstly, the setDFSConnection() on
line 3 will prepare for a WebdavResource creation on the new/myfile.txt location
of the DFS base directory. The creation of a new WebdavResource on line 6 will
then throw an HttpException because the file does not exist at DFS, which will
make the program jump to line 22 to catch this exception.

The setDFSConnection() method is then called again on line 25, but this time it
only prepares for a WebdavResource creation on line 39 to the DFS base directory.
Before this new creation, the parent of the File object is retrieved on line 27,
which in this case will be a j2ee.io.File object referring to the new directory.
Since this object is not null and all parent directories of the file to be written
already exists locally (otherwise, the java.io.FileWriter constructor throws a
fatal FileNotFoundException), the call to the mkdir() method on line 38 is to
assure that the directory exist at DFS before the putMethod() is called on line 40
with the path to the new file as first argument and a new java.io.File object
referring to the already locally flushed file as the second argument.

10.2 Requirements

The requirements of the j2ee.io implementation are the same as described in Chap-
ter 9.2. However, there is an increased focus on transparency for the web application
authors and on providing similar functionality for file I/O as the java.io package.

In addition, addressing the issue that the stand-alone File.java class created con-
cerning storing and retrieving files from subdirectories has been a new requirement.

10.3 Testing

The j2ee.io.File java class has been tested for the following scenarios:

• Creation of a file object in the root directory

• Creation of a file object in subdirectories (and generally for any subdirectory
of any other subdirectory) that does not exist at DFS

• Creation of file object in subdirectories (and generally for any subdirectory of
any other subdirectory) that exist at DFS

10.3. TESTING 69

1 private void save () {
2
3 i f (setDFSConnection (” https : // d f s . cern . ch/”+l o c a t i o n+”/”
4 +f i l e . getAbsolutePath ())) {
5 try {
6 WebdavResource wdr = new WebdavResource (h r l) ;
7
8 // i f we ge t here , i t means tha t f i l e does e x i s t at DFS
9 try {

10 setDFSConnection (” https : // d f s . cern . ch/”+l o c a t i o n) ;
11 wdr = new WebdavResource (h r l) ;
12 wdr . putMethod (wdr . getPath ()+”/”+f i l e . getAbsolutePath () , new java . i o . F i l e (
13 System . getProperty (” java . i o . tmpdir”)+”/”+f i l e . getAbsolutePath ())) ;
14 }
15 catch (HttpException httpe) {
16 return ;
17 }
18 catch (IOException i o e) {
19 return ;
20 }
21 }
22 catch (HttpException httpe) {
23
24 // i f we are here , t h i s means tha t the f i l e does not e x i s t
25 i f (setDFSConnection (” https : // d f s . cern . ch/”+l o c a t i o n)) {
26 try {
27 java . i o . F i l e parent = f i l e . g e tParentF i l e () ;
28
29 // i f no parent we don ’ t have to make any d i r e c t o r i e s l o c a l l y
30 i f (parent == null) {
31 WebdavResource wdr = new WebdavResource (h r l) ;
32 wdr . putMethod (wdr . getPath ()+”/”+f i l e . getAbsolutePath () , new java . i o .
33 F i l e (System . getProperty (” java . i o . tmpdir”)+”/”+f i l e . getAbsolutePath ())) ;
34 return ;
35 }
36
37 // i f one parent , we shou ld crea t e t h i s one d i r e c t o r y l o c a l l y
38 else i f (parent . mkdir ()) {
39 WebdavResource wdr = new WebdavResource (h r l) ;
40 wdr . putMethod (wdr . getPath ()+”/”+f i l e . getAbsolutePath () , new java . i o .
41 F i l e (System . getProperty (” java . i o . tmpdir”)+”/”+f i l e . getAbsolutePath ())) ;
42 return ;
43 }
44
45 // i f s e v e r a l parent d i r e c t o r i e s , we have to crea t e them a l l
46 else i f (parent . mkdirs ()) {
47 WebdavResource wdr = new WebdavResource (h r l) ;
48 wdr . putMethod (wdr . getPath ()+”/”+f i l e . getAbsolutePath () , new java . i o .
49 F i l e (System . getProperty (” java . i o . tmpdir”)+”/”+f i l e . getAbsolutePath ())) ;
50 return ;
51 }
52
53 else
54 return ;
55 }
56 catch (HttpException httpe2) {
57 return ;
58 }
59 catch (IOException i o e) {
60 return ;
61 }
62 }
63 }
64 catch (IOException i o e) {}
65 return ;
66 }
67 }

Figure 10.3: Code sample from the save() method

70 CHAPTER 10. RE-IMPLEMENTATION OF THE JAVA.IO PACKAGE

• Creation of file object when there is no dfs.properties file to provide cre-
dentials for DFS (Behavior is the same as for the java.io.File class)

• Method functionality for all methods for all above cases

The j2ee.io.FileWriter and j2ee.io.FileOutputStream has been tested with
j2ee.io.File objects created from the four upper cases above and seem to store
the files for all these cases when the flush() method is called.

It has to be noted that testing is only done in one specific environment, namely
the author’s environment at CERN. It has not yet reached production for the J2EE
Public Service, but has been provided for users who have specifically asked for it so
that they can test it out and report any problems found.

10.4 Evaluation

10.4.1 Advantages

Provides a whole package that can be used for file retrieval/storage

By extending the java.io package, this implementation provides similar functional-
ity with the exception that file retrieval and storage is done automatically if the web
application author has included a dfs.properties file in the WAR-file containing
the web application.

Transparency for the user

The web application author can use the same methods as in normal Java I/O and
does not have to adapt any code written on an earlier stage to a new way of doing
I/O for the j2ee.io package to work.

File hierarchy allowed

A web author can access and write to any file in any directory below the directory
specified with the key dfs.location in the dfs.properties file.

Security & File protection

The same considerations as in Chapters 9.4.1 and 9.4.1 is valid for the j2ee.io
package implementation as well.

10.4. EVALUATION 71

10.4.2 Limitations

File locking and the lost update problem

File locking is a feature of the Slide WebDAV client library, but has not been used
during the development of the j2ee.io package because of the stateless nature of
file I/O in Java. There is no way of enforcing unlocking of resources if a resource has
been locked, because it is not possible to know when a web application is finished
editing a resource. This could have been done by providing specific methods for file
locking and unlocking, but this would leave unlocking of locked resources to the web
application authors which would not be a good solution.

Not enough testing

As described in Chapter 10.3, there has been some limitations when it comes to
testing the j2ee.io library in a user environment, mostly due to time constraints.
It is not possible to guarantee operation in a production environment before this is
done.

10.4.3 Overall evaluation

Overall, the j2ee.io package provides a solution that enables file reading in the
J2EE Public Service from all different locations in a web author’s DFS hierarchy
in a transparent and secure way. For file writing, some more care has to be taken
because there is no file locking implemented. Lost updates can happen if the web
application author uncritically opens up for file writing for all users of the web
application in question.

Conclusions

The development of a permanent storage solution for the J2EE Public Service has
been done through a research phase where possible ways of using WebDAV to achieve
file retrieval and storage was investigated, followed by an implementation phase
where two different solutions are provided for the users of the J2EE Public Service.

During the research phase, two different libraries providing access to file systems were
investigated and test implementations were made to see if these libraries worked in
the specific CERN environment. The Slide WebDAV library provided a working
and secure connection through WebDAV to the DFS file system. An investigation
of VFS, a library that was supposed to be able to connect to several types of file
systems and thereby offering enhanced functionality, however found that VFS was
problematic to use as connection to DFS.

The stand-alone File.java class developed during the work’s first phase was after
evaluation found to be too simple and did not provide the key functional elements
described in the problem formulation. Further work and thoughts led to the idea of
re-implementing the classes in Java I/O that deals with file I/O.

A new library was therefore created and named j2ee.io. This library gives the web
application authors, using the J2EE Public Service to deploy their applications, a
way to access files stored on a specific location at DFS. The only necessary steps
are to include a library file and a properties file giving credentials for accessing DFS
through WebDAV and HTTPS in their web application.

This final j2ee.io library provides a secure and transparent way to access files and
write new content back to DFS. Confidentiality of the files is taken care of by file
system account access rights and Java fine-grained access control already existing in
the J2EE Public Service.

However, it is important to note that file writing using the j2ee.io library has
a problem; No file locking is implemented, which can lead to lost updates if used
throughout a web application that has many users. Hence, this feature must be used
with great care.

73

Bibliography

[1] The CERN name. http://public.web.cern.ch/Public/Content/Chapters/
AboutCERN/WhatIsCERN/CERNName/CERNName-en.html.

[2] What is CERN? http://public.web.cern.ch/Public/Content/Chapters/
AboutCERN/WhatIsCERN/WhatIsCERN-en.html.

[3] Who works there? http://public.web.cern.ch/Public/Content/
Chapters/AboutCERN/WhoWorksThere/WhoWorks-en.html.

[4] What are CERN’s greatest achievements: The World Wide Web.
http://public.web.cern.ch/Public/Content/Chapters/AboutCERN/
Achievements/WorldWideWeb/WWW-en.html.

[5] Wikipedia, the free Encyclopedia: World Wide Web. http://en.wikipedia.
org/wiki/World Wide Web.

[6] What are CERN’s greatest achievements: Nobel Prizes. http://public.
web.cern.ch/Public/Content/Chapters/AboutCERN/Achievements/
NobelPrizes/NobelPrizes-en.html.

[7] What are CERN’s greatest achievements: Colliding beams. http://public.
web.cern.ch/Public/Content/Chapters/AboutCERN/Achievements/
CollidingBeams/CollidingBeams-en.html.

[8] Frequently Asked Questions: The LHC, How much does it cost?
http://public.web.cern.ch/public/Content/Chapters/AskAnExpert/
LHC-en.html.

[9] LHC Machine Outreach: Beam. http://lhc-machine-outreach.web.cern.
ch/lhc-machine-outreach/beam.htm.

[10] The LHC experiments. http://public.web.cern.ch/Public/Content/
Chapters/AboutCERN/CERNFuture/LHCExperiments/LHCExperiments-en.
html.

[11] Ben Berger. Deconstruction: Large Hadron Collider. Symmetry Magazine, 03,
August 2006. http://www.symmetrymagazine.org/cms/?pid=1000364.

[12] How does the LHC work? http://public.web.cern.ch/Public/Content/
Chapters/AboutCERN/CERNFuture/HowLHC/HowLHC-en.html.

[13] What’s next at CERN: Why the LHC? http://public.web.cern.ch/Public/
Content/Chapters/AboutCERN/CERNFuture/WhyLHC/WhyLHC-en.html.

75

[14] Worldwide LHC Computing Grid. http://lcg.web.cern.ch/LCG/.

[15] LCG Project Overview. http://lcg.web.cern.ch/LCG/overview.html.

[16] EGEE. http://www.eu-egee.org/.

[17] CERN Openlab. http://proj-openlab-datagrid-public.web.cern.ch/
proj-openlab-datagrid-public/.

[18] The Technical Student Programme in Engineering, Computing and Applied
Science. http://humanresources.web.cern.ch/humanresources/external/
recruitment/students/tech.asp.

[19] Database and Engineering Services Group (IT-DES). http://it-des.web.
cern.ch/IT-DES/.

[20] Database Infrastructure Services Section. http://it-des.web.cern.ch/
IT-DES/DIS/.

[21] J2EE Public Service: What is J2EE Public Service? http://
j2ee-public-service.web.cern.ch/j2ee-public-service/.

[22] CERN. Cluster Architecture for Java Web Hosting at CERN, Febru-
ary 2006. Paper from the CHEP 2006 conference in Mumbai, http:
//j2ee-public-service.web.cern.ch/j2ee-public-service/downloads/
CHEP 2006 Paper Cluster architecture for java web hosting at CERN.
pdf.

[23] Monitoring of the J2EE Public Service. http://jpsmanager.cern.ch/jps/
central/showMonitoringInfo.do.

[24] J2EE Public Service Mandate. http://j2ee-public-service.web.cern.ch/
j2ee-public-service/mandate.html.

[25] Michal Kwiatek. TWiki CERN internal: J2EEPS - How it works. https:
//twiki.cern.ch/twiki/bin/viewauth/DbaServices/HowItWorks.

[26] Michal Kwiatek. TWiki CERN internal: J2EEPS - Architecture. https://
twiki.cern.ch/twiki/bin/viewauth/DbaServices/ServiceArchitecture.

[27] Michal Kwiatek. TWiki CERN internal: J2EEPS - JPSManager Software
Architecture. https://twiki.cern.ch/twiki/bin/viewauth/DbaServices/
JPSManagerSoftwareArchitecture.

[28] R. Fielding et al. HyperText Transfer Protocol – HTTP/1.1. W3C Network
Working Group, June 1999.

[29] Wikipedia, the free Encyclopedia: Hypertext Transfer Protocol. http://en.
wikipedia.org/wiki/HTTP.

[30] HTTP - Hypertext Transfer Protocol. http://www.w3.org/Protocols/.

[31] Tim Berners Lee et al. Uniform Resource Identifier (URI): Generic Syntax.
W3C Network Working Group, January 2005.

76

[32] University of Southern California Information Sciences Institute. Transmis-
sion Control Protocol. 4676 Admiralty Way, Marina del Rey, California 90291,
September 1981.

[33] University of Southern California Information Sciences Institute. Internet Pro-
tocol. 4676 Admiralty Way, Marina del Rey, California 90291, September 1981.

[34] Andrew S. Tanenbaum. Computer Networks. Prentice Hall PTR, Fourth Edi-
tion edition, 2003.

[35] T. Dierks et al. The Transport Layer Security (TLS) Protocol Version 1.1.
W3C Networking Group, April 2006.

[36] Y. Goland et al. HTTP Extensions for Distributed Authoring – WebDAV. W3C
Networking Group, February 1999.

[37] E. James Whitehead Jr. Collaborative Authoring on the Web: Introducing
WebDAV, October 1998. http://www.asis.org/Bulletin/Oct-98/webdav.
html.

[38] E. James Whitehead Jr. and Meredith Wiggins. WEBDAV: IETF Standard
for Collaborative Authoring on the Web. Internet Computing, 2(5), September
- October 1998. http://www.ics.uci.edu/pub/ietf/webdav/intro/webdav
intro.pdf.

[39] Wikipedia, the free Encyclopedia: Denial-of-service attack. http://en.
wikipedia.org/wiki/Denial of service.

[40] Joseph Bergin. Understanding Java I/O Facilities. http://csis.pace.edu/
∼bergin/sol/java/gui/javaio.html.

[41] I/O Streams. http://java.sun.com/docs/books/tutorial/essential/io/
streams.html.

[42] Steve Wilson and Jeff Kesselman. Java Platform Performance: Strategies and
Tactics. Addison Wesley, August 2000. http://java.sun.com/developer/
Books/performance/ch04.pdf, page 52.

[43] Buffered Streams. http://java.sun.com/docs/books/tutorial/essential/
io/buffers.html.

[44] File Objects. http://java.sun.com/docs/books/tutorial/essential/io/
file.html.

[45] Bruce Eckel. Thinking in Java, 3rd Edition. Prentice-Hall, December 2002.
http://www.javaolympus.com/thinking/TIJ314.htm.

[46] The Apache Jakarta Project. http://jakarta.apache.org/.

[47] The Apache Software Foundation. http://www.apache.org/foundation/.

[48] Apache HTTP Server Project. http://httpd.apache.org/.

[49] Apache Tomcat. http://tomcat.apache.org/.

77

[50] Frequent Questions about Apache Licensing: I’m not a lawyer. what does it all
MEAN? http://www.apache.org/foundation/licence-FAQ.html.

[51] Slide. http://jakarta.apache.org/slide/index.html.

[52] Slide 2.2pre1 WebDAV Client Javadoc. http://jakarta.apache.org/slide/
clientjavadoc/index.html.

[53] Javadoc for the WebdavResource class. http://jakarta.apache.org/slide/
clientjavadoc/org/apache/webdav/lib/WebdavResource.html.

[54] Jakarta Commons HTTPClient. http://jakarta.apache.org/commons/
httpclient/.

[55] Commons Virtual File System. http://jakarta.apache.org/commons/vfs/.

[56] Supported File Systems. http://jakarta.apache.org/commons/vfs/
filesystems.html.

[57] Welcome to WebDAV Resources. http://www.webdav.org/.

[58] Wikipedia, the free Encyclopedia: Proof of concept. http://en.wikipedia.
org/wiki/Proof of concept.

[59] Gary D. Gregory. A simple command-line shell for performing file operations.
http://svn.apache.org/repos/asf/jakarta/commons/proper/vfs/tags/
vfs-1.0/examples/src/main/java/org/apache/commons/vfs/example/
Shell.java.

[60] Javadoc for the FileSystemManager class. http://jakarta.apache.org/
commons/vfs/apidocs/org/apache/commons/vfs/FileSystemManager.
html.

[61] Javadoc for the FileObject class. http://jakarta.apache.org/commons/vfs/
apidocs/org/apache/commons/vfs/FileObject.html.

[62] JDOM. http://www.jdom.org/.

[63] Javadoc for the File class. http://java.sun.com/j2se/1.5.0/docs/api/
java/io/File.html.

[64] ASF Bugzilla Bug 32886: client webdav lib doesn’t return child collections
using listwebdavresources. http://issues.apache.org/bugzilla/show bug.
cgi?id=32886, Comment 16.

78

Appendices

79

Appendix A

Overview of the java.io package

Interface name Description
Closeable A source or destination of data that can

be closed
DataInput Provides reading of bytes from a binary

stream and reconstruction from these
data in any of the Java primitive types

DataOutput Provides converting of data from any
of the Java primitive types to a series
of bytes and writing these to a binary
stream

Externalizable Only the identity of the class of an Ex-
ternalizable instance is written in the
serialization stream and it is the re-
sponsibility of the class to save and re-
store the contents of its instances

FileFilter A filter for abstract pathnames
FileNameFilter For filtering of filenames
Flushable A destination of data that can be

flushed
ObjectInput Extends DataInput to include reading

of objects
ObjectInputValidation Callback interface to provide validation

of objects within a graph
ObjectOutput Extends DataOutput to include writ-

ing of objects
ObjectStreamConstants Constants written into the Object Se-

rialization
Serializable Enables serializability of the class that

implements it

Table A.1: Overview of interfaces in the java.io package

81

Class name Description
BufferedInputStream Adds functionality to another input

stream by the ability to buffer the in-
put and support the mark and reset
methods

BufferedOutputStream Implements a buffered input stream
BufferedReader Reads text from a character-input

stream, buffering characters for effi-
cient reading

BufferedWriter Writes text to a character input
stream, buffering characters for effi-
cient writing

ByteArrayInputStream Contains an internal buffer that con-
tains bytes that may be read from the
stream

ByteArrayOutputStream Implements an output stream where
the data is written into a byte array

CharArrayReader Implements a character buffer that can
be used as a character input stream

CharArrayWriter Implements a character buffer that can
be used as a writer

DataInputStream Lets an application read primitive Java
data types from an underlying input
stream in a machine-independent way

DataOutputStream Lets an application write primitive
Java data types to an output stream
in a portable way

File An abstract representation of file and
directory pathnames

FileInputStream Obtains input bytes from a file in a file
system

FileOutputStream An output stream for writing data to a
File or a FileDescriptor

FileDescriptor Serves as an opaque handle to the
underlying machine-specific structure
representing an open file, an open
socket or another source or sink of
bytes

FilePermission Represents access to a file or directory
FileReader Class for reading character files
FileWriter Class for writing character files
FilterInputStream Contains some other input stream used

as basis for its data, and possibly trans-
forms the data or provides additional
functionality

82

FilterOuputStream Superclass of all classes that filters out-
put streams

FilterReader Abstract class for reading filtered char-
acter streams

FilterWriter Abstract class for writing filtered char-
acter streams

InputStream Abstract class who is the superclass of
all classes representing an input stream
of bytes

InputStreamReader Bridge from byte streams to character
streams

LineNumberInputStream Deprecated
LineNumberReader A buffered character input stream that

keeps track of line numbers
ObjectInputStream Deserializes primitive data and objects

previously written using an ObjectOut-
putStream

ObjectInputStream.GetField Provides access to the persistent fields
read from the input stream

ObjectOutputStream Writes primitive data types and graphs
of Java objects to an OutputStream

ObjectOutputStream.PutField Provides programmatic access to the
persistent fields to be written to Ob-
jectOutput

ObjectStreamClass Serialization’s descriptor for classes
ObjectStreamField A description of a Serializable field

from a Serializable class
OutputStream Abstract class which is the superclass

of all classes representing an output
stream of bytes

OutputStreamWriter A bridge from character streams to
byte streams

PipedInputStream When a connection to a piped output
stream is established, this class pro-
vides whatever data bytes are written
to the piped output stream

PipedOutputStream Can be connected to a piped input
stream to create a communications
pipe

PipedReader Reads piped character input streams

83

PipedWriter Writes piped character output streams
PrintStream Adds the ability to print presentations

of various data conveniently to other
output streams

PrintWriter Prints formatted representations of ob-
jects to a text output stream

PushbackInputStream Adds the ability to “push back” or “un-
read” one byte to another input stream

PushbackReader A character stream reader that allows
characters to be pushed back into the
stream

RandomAccessFile Instances of this class support both
reading and writing to a random access
file

Reader Abstract class for reading character
streams

SequenceInputStream Represents the logical concatenation of
other input streams

SerializablePermission A class for Serializable permissions
StreamTokenizer Takes an input stream and parses it

into “tokens”, allowing the tokens to
be read one by one

StringBufferInputStream Deprecated
StringReader A character stream whose source is a

string
StringWriter A character stream that collects its

output in a string buffer, that later can
be used to construct a string

Writer Abstract class for writing to character
streams

Table A.2: Overview of classes in the java.io package

84

Exception name Description
CharConversionException Base class for character conversion ex-

ceptions
EOFException Signals that an end of a file or end of a

stream has been reached unexpectedly
FileNotFoundException Signals that an attempt to open the file

given by a specific pathname has failed
InterruptedIOException Signals that an I/O operation has been

interrupted
InvalidClassException Thrown when the Serialization runtime

detects some specific problems with a
class

InvalidObjectException Indicates that one or more deserialized
objects failed validation tests

IOException Signals that an I/O error has occurred
NotActiveException Thrown when serialization or deserial-

ization is not active
NotSerializableException Thrown when an instance is required

to have a Serializable interface
ObjectStreamException Superclass of all exceptions specific to

Object Stream classes
OptionalDataException Indicating the failure of an object read

operation due to unread primitive data,
or the end of data belonging to a seri-
alized object in the stream

StreamCorruptedException Thrown when control information that
was read from an object stream violates
internal consistency checks

SyncFailedException Signals that a sync operation has failed
UnsupportedCharacterEncoding Signals that an unsupported character

encoding is being used
UTFDataFormatException Signals that a malformed string in

modified UTF-8 format has been read
in a data input stream or by a class that
implements the data input interface

WriteAbortedException Signals that one of the Object-
StreamExceptions was thrown during
a write operation

Table A.3: Overview of exceptions in the java.io package

85

Appendix B

Patching procedure for the Slide
WebDAV library

Because of a bug in the library that was used where directories are not retrieved cor-
rectly using the listWebdavResources() in the org.apache.webdav.lib.WebdavResource
class, it is necessary to replace the setWebdavProperties() method in the class
org.apache.webdav.lib.WebdavResource with the code shown below[64]:
/∗∗
∗ Set WebDAV prope r t i e s f o l l ow i n g to the g iven h t t p URL.
∗ This method i s fundamental f o r g e t t i n g informat ion o f a c o l l e c t i o n .
∗
∗ @param responses An enumeration over {@link ResponseEntity } items , one
∗ f o r each resource f o r which informat ion was returned v ia PROPFIND.
∗
∗ @exception HttpExcept ion
∗ @exception IOException The socke t error with a se rve r .
∗/

protected void setWebdavPropert ies (Enumeration re sponse s)
throws HttpException , IOException {

// Make the resources in the c o l l e c t i o n empty .
ch i ldResource s . removeAll () ;
while (r e sponse s . hasMoreElements ()) {

ResponseEntity re sponse = (ResponseEntity) r e sponse s . nextElement () ;

boolean i t s e l f = fa l se ;
S t r ing h r e f = response . getHre f () ;
i f (! h r e f . s tartsWith (”/”))

h r e f = URIUtil . getPath (h r e f) ;
h r e f = decodeMarks (h r e f) ;

/∗
Decode URIs to common (unescaped) format f o r comparison
as Ht tpC l i en t .URI . setPath () doesn ’ t escape $ and : chars .
∗/
St r ing httpURLPath = httpURL . getPath () ;
S t r ing escapedHref = URIUtil . decode (h r e f) ;

// Normalize them to both have t r a i l i n g s l a s h e s
// i f they d i f f e r by one in l eng t h .
int l e nD i f f = escapedHref . l ength () − httpURLPath . l ength () ;
int compareLen = 0 ;

i f (l e nD i f f == −1 && ! escapedHref . endsWith (”/”)) {
compareLen = escapedHref . l ength () ;

87

l e nD i f f = 0 ;
}
else i f (l e nD i f f == 1 && ! httpURLPath . endsWith (”/”)) {

compareLen = httpURLPath . l ength () ;
l e nD i f f = 0 ;

}

// i f they are the same l eng t h then compare them .
i f (l e nD i f f == 0) {

i f ((compareLen == 0 && httpURLPath . equa l s (escapedHref))
| | httpURLPath . regionMatches (0 , escapedHref , 0 , compareLen))

{
// escaped hre f and h t t p path are the same
// Set the s t a t u s code f o r t h i s resource .
i f (re sponse . getStatusCode () > 0)

setStatusCode (re sponse . getStatusCode ()) ;
s e tEx i s t en c e (true) ;
i t s e l f = true ;

}
}

// Get to know each resource .
WebdavResource workingResource = null ;
i f (i t s e l f) {

workingResource = this ;
}
else {

workingResource = createWebdavResource (c l i e n t) ;
workingResource . setDebug (debug) ;

}

// c l e a r the current l o c k s e t
workingResource . setLockDiscovery (null) ;

// Process the resource ’ s p r op e r t i e s
Enumeration p r op e r t i e s = response . g e tP rope r t i e s () ;
while (p r op e r t i e s . hasMoreElements ()) {

Property property = (Property) p r op e r t i e s . nextElement () ;

// Checking WebDAV prope r t i e s
workingResource . proces sProper ty (property) ;

}

St r ing displayName = workingResource . getDisplayName () ;

i f (displayName == null | | displayName . tr im () . equa l s (””)) {
displayName = getName (h r e f) ;

}

/∗∗ BUGGY CODE
i f (! i t s e l f) {

St r ing myURI = httpURL . getEscapedURI () ;
char [] childURI = (myURI + (myURI. endsWith (”/”) ? ”” : ”/”)

+ URIUtil . getName(hre f)) . toCharArray () ;
HttpURL childURL = httpURL ins t anceo f HttpsURL

? new HttpsURL(childURI)
: new HttpURL(childURI) ;

childURL . setRawAuthority (httpURL . getRawAuthority ()) ;
workingResource . setHttpURL (childURL , NOACTION, de fau l tDep th) ;
workingResource . s e tEx i s t ence (t rue) ;
workingResource . se tOverwr i t e (ge tOverwr i te ()) ;

}
∗/

/∗∗ FIX ∗∗∗∗∗∗∗∗/
i f (! i t s e l f) {

St r ing myURI = httpURL . getEscapedURI () ;

/∗∗

88

Checks i f h r e f conta ins t r a i l i n g ’/ ’ , and i f so removes i t .
This ensures URIUtil . getName does not re turn an empty
S t r ing when we don ’ t want i t to .

See h t t p :// i s s u e s . apache . org/ b u g z i l l a / show bug . c g i ? id=32886
fo r more informat ion .
∗/

St r ing f i x edHre f = hr e f . endsWith (”/”) ?
h r e f . s ub s t r i ng (0 , h r e f . l ength () − 1) : h r e f ;

char [] childURI = (myURI + (myURI . endsWith (”/”) ? ”” : ”/”)
+ URIUtil . getName (f i x edHre f)) . toCharArray () ;

HttpURL childURL = httpURL instanceof HttpsURL
? new HttpsURL(childURI)
: new HttpURL(childURI) ;

childURL . setRawAuthority (httpURL . getRawAuthority ()) ;
workingResource . setHttpURL (childURL , NOACTION, defaultDepth) ;
workingResource . s e tEx i s t enc e (true) ;
workingResource . s e tOverwr i te (getOverwr i te ()) ;

}
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

workingResource . setDisplayName (displayName) ;

i f (! i t s e l f)
ch i ldResource s . addResource (workingResource) ;

}
}

89

Appendix C

Overview of electronical
documentation

Figure C.1: Overview of the documentation.zip directory structure

91

