
June 2006
Peter Herrmann, ITEM
Carl C. Christensen, Bekk Consulting

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Adding Security to Web Services
An Automatic, Verifiable, and Centralized Mechanism for Web
Services Input Validation

Lars Arne Brekken
Rune Frøysa Åsprang

Problem Description
It is often desirable to be able to specify software security policies at the deployment stage rather
than during development. Separation of code and policy offers flexibility and encourages software
reuse as making changes becomes easier and code does not necessarily have to be recompiled
when security requirements change. Moving input validation out of the application can also help
performance, by using dedicated computing resources for validation.

Early web services standards did not address security, and a set of standards and specifications
that covers security has subsequently been developed and released. One of these specifications is
WS-SecurityPolicy, which can be used to specify message security requirements such as
encryption and signing of messages in policy files. Lack of input validation is considered one of the
greatest security threats to web applications, but is not addressed in the current web services
standards. This project will investigate whether these standards can be extended to specify and
automatically validate input parameter requirements for web services. In particular, the following
tasks will be performed:

- An examination of web services and web services security
- Design of an extension of existing web services standards that enables validation of web service
input parameters
- Development of a prototypical implementation of the design
- Elaboration of the implementation by means of an example application

Assignment given: 2006-01-16
Supervisor: Peter Herrmann, ITEM

Abstract

Accepting unvalidated input is considered today’s greatest web security

threat. This master’s thesis addresses that threat by proposing an automatic

and centralized mechanism for validating web services input. By building on

existing web services standards, the proposed solution intercepts incoming

web service requests and validates them against a security policy.

A major design goal for this work was to realize web services input

validation without modifying existing functionality. That is, the input val-

idation security mechanism should be added out of code. This is achieved

by keeping the web services and the validation mechanism separate. Input

validation configuration is accomplished by modifying a configuration file.

Even when the validation mechanism logic is correct, it may not function

as intended. Such anomalies are in most cases caused by human-introduced

errors in the configuration file, resulting in the need for a configuration file

verification tool. This thesis proposes a verification tool that quantifies the

level of security by analyzing the configuration file.

i

Preface

This thesis was written as part of our Master of Science degrees at the Nor-

wegian University of Science and Technology (NTNU) in the spring semester

of 2006.

We would like to use this opportunity to thank our academic supervisor

at NTNU, Professor Peter Herrmann, and our supervisor at Bekk Consult-

ing, Carl Christensen, for their valuable guidance and useful discussions

during our work on this thesis.

Furthermore, we would like to thank Arne A. Baste, John T. Fl̊am,

Marius R. Hanssen, and Linda D. Zgombic for their proofreading efforts.

Trondheim, 1st June 2006

Rune Frøysa Åsprang Lars Arne Brekken

iii

Contents

Abstract i

Preface iii

Table of Contents v

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1

1.1 Motivating Scenario . 2

1.2 Problem Statement . 3

1.3 Related Work . 3

1.4 Approach . 4

1.5 Thesis Outline . 4

I Background 5

2 XML and Web Services 7

2.1 XML . 7

2.1.1 Elements . 8

2.1.2 Attributes . 8

v

vi CONTENTS

2.1.3 Namespaces . 9

2.1.4 XML Schema . 9

2.1.5 XPath . 10

2.2 Web Services . 11

2.2.1 Web Services Definition 11

2.2.2 Web Services Architecture 11

2.3 XML Messaging Using SOAP 14

2.4 Describing Web Services with WSDL 15

2.5 Describing, Discovering and Integrating Web Services 16

2.6 Summary . 16

3 Securing Web Services 17

3.1 The Case for Messaging Layer Security 18

3.1.1 Transport Layer Security Insufficiencies 18

3.1.2 Messaging Layer Security 19

3.2 Core Security Standards . 20

3.2.1 XML Security Standards 21

3.2.2 WS-Security . 21

3.3 Security Policy . 23

3.3.1 WS-Policy . 23

3.3.2 WS-SecurityPolicy . 24

3.4 Summary . 25

4 Input Validation 27

4.1 Web Service Input . 28

4.2 Defining Valid Data . 28

4.3 Validation in Code Versus Validation Out of Code 29

4.4 Summary . 30

CONTENTS vii

II System Development 31

Introduction 33

5 System Requirements 35

5.1 Functional Requirements . 35

5.1.1 Requirement 1: Automatic Policy Enforcement 35

5.1.2 Requirement 2: Verifiable Protection 36

5.2 Non-functional Requirements 36

5.2.1 Requirement 3: Maintainability 36

5.2.2 Requirement 4: Security 37

5.2.3 Requirement 5: Platform Independence 38

5.2.4 Requirement 6: Modularity and Encapsulation 39

5.2.5 Requirement 7: Flexibility and Extensibility 39

5.2.6 Requirement 8: Reusability 39

5.2.7 Requirement 9: Performance 40

5.3 Summary . 40

6 System Analysis 43

6.1 The Initial System . 43

6.2 Step 1: Separating Web Services, Policy, and Policy Enforce-

ment . 45

6.2.1 Web Services . 45

6.2.2 The Policy Component 46

6.2.3 The Policy Enforcement Component 47

6.3 Step 2: Reuse . 47

6.3.1 Using XML Schema for Validation 49

6.3.2 Policy Definition Reuse 49

6.3.3 Policy Definition Flexibility 49

6.4 Step 3: Modularity . 52

6.4.1 Modularization of the Policy Component 52

viii CONTENTS

6.4.2 Modularization of the Policy Enforcement Component 53

6.5 Step 4: Security . 55

6.5.1 Secure Policy Against Tampering 55

6.5.2 Logging . 55

6.6 Step 5: Verifiable Operation 57

6.6.1 Coverage . 57

6.6.2 Correctness . 58

6.7 Requirements Traceability Matrix 58

6.8 Summary . 58

7 System Design 61

7.1 Implementation Platform . 61

7.1.1 Broad XML Support 62

7.1.2 Broad Web Services Support 62

7.1.3 Implementation of WS-Security and WS-Policy 62

7.1.4 Logging Facilities . 63

7.2 Detailed Design . 63

7.2.1 The Policy Component 63

7.2.2 Policy Enforcement Component 66

7.2.3 Log Component . 71

7.2.4 Verification Component 71

7.2.5 Combining the Components 74

7.3 Summary . 74

8 System Implementation 77

8.1 The Input Validator . 77

8.2 The Correctness Tool . 78

8.3 The Coverage Tool . 78

8.4 Summary . 81

CONTENTS ix

9 Adding Input Validation to an Example Application 85

9.1 Example Application Description 85

9.1.1 Adding Encryption, Integrity and Authentication . . . 86

9.1.2 Withdrawing Money Without Input Validation 86

9.2 Adding Input Validation . 86

9.2.1 Step 1: Define Input Validation Policy 87

9.2.2 Step 2: Create Mapping Definition 88

9.2.3 Step 3: Verify the Configuration 90

9.2.4 Withdrawing Money With Input Validation 93

9.3 Summary . 93

10 Conclusions 95

10.1 Conclusions . 95

10.2 Summary of Contributions . 95

10.3 Future Research . 96

Bibliography 99

III Appendices 105

A Web Services Protocols 107

A.1 SOAP . 107

A.1.1 SOAP Message Format 107

A.2 WSDL . 109

A.2.1 WSDL elements . 109

A.3 UDDI . 113

B XML Encryption and XML Signature 117

B.1 XML Encryption . 117

B.2 XML Signature . 118

C Policy Mapping Format 121

List of Figures

2.1 Web Service Roles . 12

2.2 Web Service Protocol Stack 14

2.3 SOAP Message Format . 15

3.1 Security Applied Using TLS 18

3.2 TLS Only Offers Data Protection During Transit 19

3.3 Messaging Layer Security Allows Flexibility of Message Pro-

tection . 20

3.4 Messaging Layer Security Offers Data Protection Also After

Transit . 20

3.5 A Generic Security Policy Model 23

3.6 Policy as Defined by WS-Policy 24

4.1 System Development Approach 33

4.2 Solution Context . 34

6.1 Initial System Architecture 44

6.2 System Architecture After Step 1 46

6.3 System Architecture After Step 2 48

6.4 Sequence Diagram Illustrating the Flexibility of Reusing Ex-

isting WSDL Schema Definitions 51

6.5 System Architecture After Step 3 52

6.6 System Architecture After Step 4 56

xi

xii LIST OF FIGURES

6.7 System Architecture After Step 5 57

6.8 A High-Level System Architecture 60

7.1 Detailed Design for the Policy Component 64

7.2 Detailed Design for the Policy Enforcement Component . . . 67

7.3 Sequence Diagram for Validation of a SOAP Envelope, Part I 69

7.4 Sequence Diagram for Validation of a SOAP Envelope, Part II 70

7.5 Detailed Design for the Log Component 72

7.6 Detailed Design for the Verification Component 73

7.7 Detailed Design for the Input Validator 75

8.1 Correctness Report with Invalid Policy 79

8.2 Correctness Report with Valid Policy 80

8.3 Coverage Report with Invalid Configuration 82

8.4 Coverage Report with Valid Configuration 83

9.1 Withdrawing Money without Input Validation 87

9.2 Withdrawing Money with Input Validation 93

A.1 WSDL Document Format . 110

List of Tables

6.1 Blank Requirements Traceability Matrix 44

6.2 Completed Requirements Traceability Matrix 59

xiii

List of Abbreviations

AES Advanced Encryption Standard

API Application Programming Interface

CORBA Common Object Request Broker Architecture

DES Data Encryption Standard

DSS Digital Signature Standard

GUI Graphical User Interface

HMAC Hash Message Authentication Code

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IDS Intrusion Detection System

IP Internet Protocol

OASIS Organization for the Advancement of

Structured Information Standards

OSI Open Systems Interconnection

OWASP Open Web Application Security Project

SHA Secure Hash Algorithm

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

xv

xvi LIST OF TABLES

UDDI Universal Description, Discovery, and Integration

UDP User Datagram Protocol

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WS Web Service

WSDL Web Services Discovery Language

WSE Web Services Enhancements

XML Extensible Markup Language

XPath XML Path Language

1

Chapter 1

Introduction

The demand for web services is expected to proliferate in the coming years

[1]. Web services provide a standard means of interoperation between het-

erogeneous software applications that run on a variety of platforms. Due

to their growing popularity and increasingly widespread use, many web ser-

vices standards have emerged. These standards address shortcomings in the

early standards and extend web services in numerous ways.

None of the above-mentioned and newly evolved standards has explic-

itly addressed the field of web services input validation. Several experts

on web security, among them the Open Web Application Security Project

(OWASP), consider unvalidated input to be the greatest threat to web ap-

plications [2].

Mechanisms that secure web services against unwanted input are there-

fore of high importance. Preferably, such protection should be simple to add

and its correctness and coverage should be easy to verify.

Commonly, software developers are not security experts [3]. Software se-

curity is in general a difficult area to master; this also applies to web services

security. Additionally, web services security standards have yet to mature,

and keeping up-to-date with the different standards and specifications can

be challenging.

2 1. Introduction

There are many advantages to letting experts take care of the security

aspects of an application, the foremost being that the quality of the security-

related decisions can be expected to be higher than those made by ordinary

developers.

In this thesis we propose a verifiable solution for input validation of

web services that can be configured by those responsible for security at

deployment time.

1.1 Motivating Scenario

The following scenario illustrates the need for the input validation mecha-

nism discussed in this thesis.

A small IT company develops banking applications. In order to facilitate

integration of their solutions with other suppliers’ systems, web services are

used.

Most of the developers in the company’s development department have

considerable development experience. However, only some of them have

experience from implementing security.

An analysis of the company’s existing web services has revealed that they

were developed with varying levels of security. Input validation tends to be

neglected or implemented poorly. Not surprisingly, it turns out that those

developers familiar with security have taken the most security considerations

during development. The rest of the developers have either introduced se-

curity vulnerabilities, or not addressed security issues at all. Security issues

have not been under centralized control.

In order to meet the requirements from the banking industry, the IT com-

pany has been reorganized. The development department has been split into

two separate divisions: one development division and one security division.

The security division monitors the developers and adds security mechanisms

when the developers have finished their work.

Problem Statement 3

The security division is now looking for a security mechanism that will

allow them to add input validation to new and existing web services at

deployment time.

1.2 Problem Statement

From the scenario above we extract the following problem statement:

We want to design and implement an automatic, verifiable, and central-

ized mechanism for web services input validation that can be added to and

configured for a web service at deployment time.

1.3 Related Work

Web application input validation is not a new field. In [4] and [5], emphasis is

put on SQL injection, which is only a subset of all input validation problems.

Much research has been done in the field of monitoring and protecting

web applications. Sirer and Wang [6] and Ardagna et. al. [7] both con-

sider access control issues. Kruegel and Vigna [8] look at the monitoring of

web services misuse by detecting usage anomalies, while Baresi et. al. [9]

investigate policy-based monitoring of web service compositions.

There exist several attempts at developing formal semantics for web

services [6, 10, 11]. In the two former papers, this formalization is used

for specifying security policies. In [12], Bhargavan et. al. make use of

the semantics developed in [10], and create a tool for verifying web services

security policies.

4 1. Introduction

1.4 Approach

In our introductory research, books, technical documentation, standards,

and specifications will be used as our main sources for information. Also,

reputable publishers such as IEEE, ACM, and Springer will be used as start-

ing points when searching for additional background information.

Next, our problem statement will be broken down into a series of specific

system requirements. The requirements will then be used as the basis for

system analysis and design.

Last, a prototypical implementation of the design will be developed. The

implementation will be elaborated by means of an example application.

1.5 Thesis Outline

The background of our thesis is found in chapters 2-4. Here, XML, web

services, web services security, and input validation are introduced.

Next, we proceed to the system development of our solution. In chap-

ter 5, “System Requirements”, we state the requirements of the solution.

In chapter 6, “System Analysis”, we analyze the requirements and describe

an implementation-independent architecture of the solution. In chapter 7,

“System Design”, implementational decisions are presented, and the result

is a detailed design. In chapter 8, “Implementation”, we describe our im-

plementation of the design. In chapter 9, “An Example Application”, we

demonstrate the behavior of the system in an example application.

Conclusions are drawn in chapter 10. Here we also list this thesis’ con-

tributions and suggestions for future research.

Part I

Background

5

7

Chapter 2

XML and Web Services

This chapter introduces web services as well as XML, which is the corner

stone in web services technology. Thus, understanding XML is important

for understanding web services. Further, the XML schema standard, which

will be introduced in this chapter, provides a standard means for validating

XML data.

2.1 XML

The Extensible Markup Language (XML) is a general-purpose W3C-standard

for document markup [13]. The standard defines a human-readable language

that is flexible enough to let anyone define their own document structures

using what is called elements and attributes. Both will be explained shortly.

Although flexible in some regards, the standard is quite strict in other areas

[14]. For instance the grammar, which defines element and attribute place-

ment, legal names, and more, is very detailed. A document that adheres to

this grammar is called well-formed.

8 2. XML and Web Services

2.1.1 Elements

The main building-block of an XML document is the element. An element is

a container that can have a value and zero or more attributes. Also, an ele-

ment may contain other elements. An element consists of two corresponding

start and stop definitions. An example is displayed below. The start and

stop elements are on lines 1 and 3, respectively.

1 <exampleElement>
2 element value
3 </exampleElement>

2.1.2 Attributes

In addition to using elements, one can also use attributes to contain infor-

mation in an XML document. The main difference from an element is that

an attribute can only have a value and cannot contain other attributes or

elements. An attribute is always contained inside an element. Extending

the previous example, we get the following:

<exampleElement anAttribute="attribute value">
element value

</exampleElement>

A simple example of an XML document with both elements and at-

tributes is shown below:

1 <?xml version="1.0"?>
2 <person sex="male">
3 <firstName>Peter</firstName>
4 <lastName>Pan</lastName>
5 <birthYear>1970</birthYear>
6 </person>

The first line defines that the document is XML version 1.0. Next, a

person element is defined beginning on line 2 and ending on line 6. The

person element has an attribute called “sex” with the value “male” Inside

XML 9

the element we also find three other elements (“firstName”, “lastName”,

“birthYear”), each with individual values.

2.1.3 Namespaces

According to Harold & Means, namespaces have two purposes in XML [14]:

• To be able to distinguish elements or attributes from different vocab-

ularies that happen to have identical names.

• To group related elements and attributes.

Elements and attributes from different namespaces can appear in the

same document. This may happen if a document from one namespace is

nested inside a document from another namespace. A namespace is simply

a prefix prepended to element and attribute names, with a colon separating

the two. A namespace is often formed as a URI1, and as it can be rather long,

it is possible to define a shorthand version of it inside the XML document.

If the namespace for the previous example was “http://www.example.org”,

and “ex” is used as the shorthand version, the document would be:

<?xml version="1.0"?>
<ex:person ex:sex="male" xmlns:ex="http://www.example.org">

<ex:firstName>Peter</ex:firstName>
<ex:lastName>Pan</ex:lastName>
<ex:birthYear>1970</ex:birthYear>

</ex:person>

2.1.4 XML Schema

In order to restrict what information an XML document can contain, it is

possible to create an XML Schema[16] for it. A schema can be used to spec-

ify what elements and attributes a document can contain, the relationships

between them, and what values they can take.
1A URI is a string that identifies a web resource. URIs are defined as a superset of

URLs [15].

10 2. XML and Web Services

A schema for the previous XML document can be:

<?xml version="1.0"?>
<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.example.org">
<xs:element name="person">

<xs:complexType>
<xs:sequence>

<xs:element name="firstName" type="xs:string" />
<xs:element name="lastName" type="xs:string" />
<xs:element name="birthYear" type="xs:integer" />

</xs:sequence>
<xs:attribute name="sex" type="xs:string" />

</xs:complexType>
</xs:element>

</xs:schema>

In the definition above, a complex type is defined inside the person el-

ement. When an element has attributes and nested elements, these must

be specified within a complex type. The nested elements are defined as a

sequence, which means that the elements in an XML document that adheres

to the schema must appear in the specified order. “birthYear” is defined as

an integer, while “firstName”, “lastName”, and “sex” are defined as strings.

The namespace that the schema defines is specified in the “targetNames-

pace” attribute.

The schema could be made more sophisticated, e.g. by adding a restric-

tion on the values for sex (“male” or “female”), or specifying that a year of

birth must be 1900 or later. The main use of XML schemas is to validate

XML documents. A document that adheres to the XML grammar as well

its associated XML schema is said to be both well-formed and valid.

2.1.5 XPath

In addition to validating XML documents, it is also important to be able to

query XML documents in order to retrieve information that fulfills certain

criteria. The XML Path Language (XPath) [17] is a language developed

Web Services 11

for this purpose. Using what is called XPath expressions one can select a

particular subset of the elements and attributes of an XML document [18,

p122].

2.2 Web Services

A great part of our practical work with this thesis has been associated with

web services. Web services are designed to support system interoperability

by allowing server-to-server communication over a network. Web services

are often associated with protocols such as SOAP, WSDL, and UDDI. These

protocols will be further introduced and a general definition of web services

will be provided in this section.

2.2.1 Web Services Definition

Cerami [19, p3] defines web services to be any service that is available over

the Internet, uses a standardized XML messaging system, and is not tied to

any one operating system or programming language. Additionally, even

though it is not required, web services should be discoverable and self-

describing. When these criteria are fulfilled, the web service can add value

to other developers, because they become able to discover the service and

invoke it from their applications.

2.2.2 Web Services Architecture

The web services architecture can be considered from two different points

of view. Both alternatives are described here.

12 2. XML and Web Services

Alternative 1: Description by Role Model

The first alternative for describing the web services architecture is describing

different roles in the architecture. Web services include three communicating

parts, and each of these parts has its own role. The three roles are:

• The Client. The client is the machine which invokes and consumes

the web service.

• The Registry. In order to use a web service, the client does a lookup

in the registry to find the desired service. The registry holds references

to web services implemented by different service providers and returns

web service addresses to the clients.

• The Service. The service is the web service itself. The web service

responds to client requests and contains the web service logic.

Figure 2.1 shows a schematic depiction of these roles and how they are

related.

Alternative 2: Description by Protocol Stack

When the three web services roles are to be implemented, three systems

have to communicate using the same protocol stack. The second alternative

for describing the web services architecture is outlining the protocol stack.

The stack is depicted in figure 2.2.

Figure 2.1: Web Service Roles

Web Services 13

Different references describe different protocol stacks with different level

of detail. The stack presented in figure 2.2 is extracted from [20] and [21].

This protocol stack provides a sufficient level of detail for illustrating the

web services architecture in this section.

Web services run on the OSI application layer. Therefore, all layers of

the web services protocol stack are situated on the OSI application layer.

The layers are:

• The Service Transport Layer. Situated at the bottom of the web

services protocol stack is the service transport layer. This layer’s main

task is transporting messages between applications. Traditional proto-

cols such as HTTP over TCP or UDP are common choices on this layer,

but, in principle, a number of other protocols can be used (e.g. FTP

and SMTP). HTTP, TCP, and UDP will not be further described. For

more details on these protocols, Tanenbaum [22] is an excellent source.

• The Messaging Layer. This layer handles XML parsing and encod-

ing. The XML formats play a major role when web services are used for

achieving interoperability between heterogeneous end-systems. SOAP

is the most common protocol choice on this layer, and will be further

examined in section 2.3.

• The Discovery and Description Layer. This layer exists side by

side with the Security layer. The discovery part of this layer imple-

ments the lookup functionality of the registry role described above.

The UDDI protocol is the natural choice for this functionality. The

description protocol defines the interface to the web service, and the

WSDL protocol is typically used for this purpose. Both the UDDI and

WSDL protocols will be further described in coming sections.

14 2. XML and Web Services

• The Security Layer. The security layer exists side by side with the

discovery and description layer. This layer adds security services such

as authentication and confidentiality to the messages.

• The Application Layer. The top layer of the web services stack

consists of the applications that use web services.

Figure 2.2: Web Service Protocol Stack

Throughout this chapter, the different protocols used in our work are

further described.

2.3 XML Messaging Using SOAP

The SOAP protocol is developed for passing XML messages between com-

puters. The web services architecture strongly depends on XML messaging.

SOAP and web services are thus tightly interconnected.

SOAP is mainly developed for remote procedure calls over HTTP. The

SOAP functionality may look like the functionality of middleware frame-

works such as CORBA. Unlike similar frameworks, SOAP uses plain XML

for all messages and is therefore language and operating system independent.

This independence makes SOAP excellent for system integration processes.

SOAP is a natural choice for XML messaging when e.g. a java platform

system is to be integrated with a system developed on the .NET platform.

Describing Web Services with WSDL 15

A sketch of the SOAP message format is shown in figure 2.3. The SOAP

message must always include a SOAP envelope, inside which all data is

placed. Inside the envelope, a body element is required. Additionally, header

and fault elements can be optionally included in the envelope.

For further details and practical examples on the SOAP message format,

the reader is referred to appendix A.

Figure 2.3: SOAP Message Format

2.4 Describing Web Services with WSDL

The Web Services Description Language (WSDL) is an XML standard that

describes web services. WSDL describes the operations and messages used

for a web service. A WSDL document thus represents the interface for a

given web service and leaves the implementation of the web service to the

developer. WSDL is language and platform independent and is commonly

used for describing SOAP services.

The WSDL standard includes definitions of several elements, including

the definitions element, the types element, the message element, the port-

type element, the binding element, and the service element.

Our work does not deal with details of the WSDL document. Readers

can get more details about the WSDL document in appendix A.

16 2. XML and Web Services

2.5 Describing, Discovering and Integrating Web

Services

The Universal Description, Discovery and Integration (UDDI) technical

specification provides a standard method for giving publicity to and dis-

covering of web services. However, UDDI is not included in our work, and

is just mentioned here because of its tight connections with web services.

Some details of UDDI are found in appendix A

2.6 Summary

This chapter introduced the basic building blocks for the work presented by

this thesis. The protocols and standards presented here will be referred to

in the following chapters.

XML is a standard that defines a human-readable language that lets

anyone define their own document structure using elements and attributes.

XML documents can be validated against an XML Schema, which is used

to specify what elements and attributes a document can contain. XPath is

a language for querying an XML document.

Web services provide a standard means for server-to-server communica-

tion over a network. Protocols such as SOAP, WSDL and UDDI are often

associated with web services. All of these protocols were briefly presented

in this chapter.

The next chapter introduces several security aspects related to web ser-

vices, and is the second of three background chapters.

17

Chapter 3

Securing Web Services

When developing a security solution, it is important to keep in mind that

a chain is only as strong as the weakest link. Although our goal is to add

input validation to web services, we want to examine the existing security

mechanisms for web services, for instance those providing confidentiality and

authenticity. An important reason for this is that we want to understand

the whole web services security picture. This understanding may prove

beneficial when we start developing our system in part II.

Web services may expose business critical systems and information, and

it is crucial that a proper level of protection is applied. Security was not

addressed in early web services standards, but has been gradually added

later on, through a plethora of standards.

This chapter consists of three parts. In the first, transport-level and

messaging-level security is discussed. Then, the core XML and web services

security standards are examined. In the last part, web services security

policy standards and specifications are examined.

18 3. Securing Web Services

3.1 The Case for Messaging Layer Security

Web services security can be applied both on the transport layer and on the

messaging layer. Both methods have benefits and drawbacks. In general,

transport layer security is faster and less flexible, whereas messaging layer

security is slower and more flexible. The two methods are sometimes used in

conjunction for added security when particularly sensitive data is processed

and transferred.

3.1.1 Transport Layer Security Insufficiencies

A very common way of securing application data is by using the Transport

Layer Security (TLS) protocol [23]. TLS can provide data confidentiality and

integrity by means of encryption and hash algorithms. Additionally, by using

both client and server authentication (e.g. using digital certificates), the

peers can authenticate each other. TLS provides point-to-point protection

between two hosts, as illustrated in figure 3.1. Communication is secured

between Host A and Host B, and between Host B and Host C.

While ideal for certain web service security scenarios, the protocol is

insufficient in more complex environments [24]. We now look at two cases

where TLS is insufficient for protecting Web Services.

Figure 3.1: Security Applied Using TLS

Case 1 - Intermediary Web Services and Application Firewalls

A common web service scenario involves intermediaries that have to be able

to access parts of a message. Application firewalls may need access to the

The Case for Messaging Layer Security 19

message to decide whether to allow it to pass or not, and intermediary web

services may need to process parts of the message. In this case, TLS does not

provide enough flexibility as it only provides end-to-end and all-or-nothing

protection when TLS is used between the endpoints.

Case 2 - Post-Transit Protection

Also, with transport-level security protocols such as TLS, communication is

secured when in transit only. Often it is desirable to protect data in sub-

sequent storage, for instance when persisted in a database. An illustration

is shown in figure 3.2, where the data sent from Host A to Host B is only

protected between the two hosts, and not if Host B decides to save it in a

database.

Figure 3.2: TLS Only Offers Data Protection During Transit

3.1.2 Messaging Layer Security

It will now be illustrated how protection can be applied to the two cases by

applying security on the messaging level.

Case 1 - Intermediary Web Services and Application Firewalls

One of the main benefits of applying security on the messaging level is the

flexibility this gives. For instance, security can be applied to selected parts

of messages, making it possible for intermediate web services or application

firewalls to access parts of it. Please see figure 3.3 for an illustration.

20 3. Securing Web Services

Figure 3.3: Messaging Layer Security Allows Flexibility of Message Protec-
tion

Case 2 - Post-Transit Protection

Additionally, when security is applied to messages this means that the mes-

sages easily can be stored in a protected state. This principle is shown in

figure 3.4.

Figure 3.4: Messaging Layer Security Offers Data Protection Also After
Transit

3.2 Core Security Standards

Whereas TLS was used to secure the transport layer, a set of security stan-

dards is used to apply security on the messaging layer. Next, the foundations

of web services security will be presented. First, XML Encryption and XML

Signature are discussed. Then, WS-Security, which extends the two XML

standards, is examined.

Core Security Standards 21

3.2.1 XML Security Standards

The World Wide Web Consortium (W3C) defined two standards for XML

security which are employed by web service security standards; XML en-

cryption and XML signature. As the names imply, these standards define

methods for encryption and signing of XML documents. The standards can

be combined and applied with a high degree of flexibility, and one can, for

instance, sign or encrypt only certain parts of an XML document.

XML Encryption

The XML Encryption standard [25] specifies how to encrypt arbitrary parts

of XML documents using well-known encryption algorithms such as triple

DES [26] and AES [27]. The standard also defines methods for key agreement

and key exchange. The operation of XML Encryption is shown in Appendix

B.1.

XML Signature

Complementing the encryption standard, the XML Signature standard [28]

specifies how to ensure integrity and authenticity of XML messages using

standards such as SHA-1 [29] and HMAC [30]. Sender authenticity is en-

sured using digital signatures (RSA [31] or DSS [32]). The operation of

XML Signature is shown in Appendix B.2.

3.2.2 WS-Security

A central standard for web services security is WS-Security. It was originally

developed by Microsoft, Verisign, and IBM, and was published in April 2002

[33]. It was later submitted to the Organization for the Advancement of

Structured Information Standards (OASIS), which continues to work on the

standard. OASIS released version 1.0 in April 2004, and version 1.1 was

approved in February 2006.

22 3. Securing Web Services

Microsoft, IBM and other cooperating organizations have later devel-

oped a set of security specifications building on WS-Security. Among these

are WS-Policy and WS-SecurityPolicy, which will be covered later in the

chapter. Many of these specifications have been submitted to OASIS for

standardization.

The standard specifies XML document details, and leaves most infor-

mation related to implementation (such as algorithms used) up to the im-

plementors. As Bhargavan et. al. point out, it “focuses on interoperability

details rather than security” [34].

Basically, WS-Security is an extension of SOAP, adding support for au-

thentication, integrity and confidentiality to SOAP messages. Confidential-

ity and integrity are achieved using the aforementioned XML Encryption

and XML signatures, respectively. WS-Security also specifies how to con-

vey authentication information in an XML message using what is called a

security token.

According to the WS-Security standard [35], a security token is a col-

lection of claims, which are declarations made by an entity regarding name,

identity, etc. A signed security token is a security token that has been

cryptographically signed by an authority. A security token may contain au-

thentication information, but may also be used for authorization details, for

instance.

When it comes to authentication, there exist specifications of several

kinds of security tokens, some which can be found in additional profiles.

There is support for user name/password, X.509 certificates, and Kerberos

authentication, but the model is generic and extensible and allows for other

authentication mechanisms as well.

Security Policy 23

3.3 Security Policy

The security policy is a very important part of the security of any informa-

tion system. The SANS Institute defines a security policy as [36]:

A set of rules and practices that specify or regulate how a system

or organization provides security services to protect sensitive and

critical system resources.

In a web services context, a security policy may define who can access the

web service and how information is protected to and from the web service.

Building on WS-Security, several web services security policy specifications

and standards have been developed. These allow web service developers to

formalize and communicate the web service policy. The mechanisms also

let clients discover web service policy requirements and to make decisions

on which services to use and how to use them, based on their associated

security policies. A generic model can be seen in figure 3.5 (adapted from

[37, p131]).

Figure 3.5: A Generic Security Policy Model

3.3.1 WS-Policy

WS-Policy was developed by a group of companies including Microsoft, IBM,

and VeriSign, and specifies a generic model for describing web services se-

curity policies [38]. It defines a policy as a set of alternatives, and a client

24 3. Securing Web Services

has to satisfy one of these alternatives. Each alternative in turn consists of

a set of assertions that specify requirements that the client has to meet. An

illustration of this model is shown in figure 3.6.

Figure 3.6: Policy as Defined by WS-Policy

3.3.2 WS-SecurityPolicy

Work on WS-SecurityPolicy was initiated by VeriSign, IBM, Microsoft, and

RSA Security [39]. It was later handed over to OASIS, and as of February

2006 it has status as a working draft1.

WS-Policy specifies a policy structure. However, it does not define any

particular types of assertions, and leaves this for other specifications. WS-

SecurityPolicy is such a specification, and extends WS-Policy by defining a

set of security-related assertions. Hence, WS-Policy and WS-SecurityPolicy

jointly constitute a framework for creating web services security policies.

The assertions specified by WS-SecurityPolicy can be grouped into two

groups:

• Protection Assertions (signing, encryption, required elements)

• Token Assertions (username, X.509, Kerberos, etc.)

The protection assertions state requirements for which parts of the SOAP

messages that must be signed, encrypted, and present. Token assertions are

used to specify authentication information.
1As the OASIS version of WS-SecurityPolicy is still on the draft stage, this paper is

based on the v1.1 specification by IBM, Microsoft, RSA Security, and VeriSign.

Summary 25

In addition to specifying security assertions, WS-SecurityPolicy also de-

velops WS-Policy further and adds some flexibility regarding nesting of poli-

cies and assertions.

3.4 Summary

This chapter, the second of three background chapters, introduced web ser-

vices security aspects. First, it was discussed why it is sometimes desirable

to apply security on the messaging layer, instead or in addition to security

on the transport layer. Then, three fundamental XML and web services

security standards - XML Encryption, XML Signature, and WS-Security -

were introduced. Last, the thesis discussed security policies in a web services

context, and presented the WS-Policy and WS-SecurityPolicy standards.

In the following chapter, we focus on a central topic for this thesis,

namely input validation. Different approaches and concepts are introduced,

and the chapter concludes the background part.

27

Chapter 4

Input Validation

Accepting unvalidated input from the user is considered the greatest threat

of a web application by several influential organizations and scientists [2, 40].

By validating input data, one wants to prevent unexpected input data from

harming the web service application execution.

Although web services differ from regular web applications in many ways,

input validation is similar for both. While traditional web application input

is input from users who download a form and post it back to the server, web

services receive input from applications. In other words, web applications

receive input from users, while web services receive input from machines.

In practice, this difference does not change the need for input validation,

as there is no difference between input from machines and input from users.

Malicious applications exist as well as malicious users. Thus, one cannot

trust web service input more than web application input.

Before defining the requirements for the input validator solution in the

next chapter, a brief introduction to key input validation concepts is pro-

vided in this chapter.

28 4. Input Validation

4.1 Web Service Input

Input to web services can be divided into two categories. The first category

is what is usually meant by input, namely input parameters received through

the web service interface.

The second category is input from subsystems. Web service applications

often communicate with subsystems and receive input from these systems.

An example of such subsystems can be a database. To ensure that all

input data is valid, web services should also validate database input. This

validation can be challenging, especially when several applications write to

the same database.

4.2 Defining Valid Data

When designing a validation scheme, one should begin with defining what

should be accepted as valid data. As is to be seen in this section, this should

be done carefully. This section will describe two approaches to defining valid

data called “blacklisting” and “whitelisting”.

Alternative One: Blacklisting

The first, and probably most intuitive, approach to the challenge of defining

valid data is called blacklisting. Blacklisting is based on maintaining a list of

invalid data and compare input data against this list. If input data matches

an item in the blacklist, it is considered as invalid.

If one forgets adding an invalid item to the list, the validation will be

less strict than intended because invalid data will pass as valid.

Alternative Two: Whitelisting

The second approach is called whitelisting, and is the opposite of blacklist-

ing. Instead of maintaining a list of invalid data, this approach maintains a

Validation in Code Versus Validation Out of Code 29

list of valid data. When validating against such a whitelist one defines all

input data which matches an entry in the whitelist as valid.

If one forgets to list an item in the whitelist, the validation will be

stricter than intended. Valid data which should have been on the list, but

is forgotten, will not pass the validator. This property makes whitelisting

more suitable to human developers than blacklisting. Humans will sooner

or later forget listing something. Thus, it is often desirable to use whitelist-

ing because the consequences of forgetting are often less serious with this

approach.

4.3 Validation in Code Versus Validation Out of

Code

The web service developer is faced with a design choice when deciding on

where to put the validation logic. The first alternative is writing validation

code inside each method that accepts input. Given that the programmer is

able and willing to handle validation when programming, doing validation in

code is a solution to the input validation challenge. However, maintenance

of validation code becomes more challenging.

The second alternative for validating input is building an automatic vali-

dation framework. The framework should handle all input to the web appli-

cation and hide all validation-specific programming from the programmer.

By using such a framework, validation is moved out of the application.

Huseby [40] lists several benefits from moving the validation out of the

application:

• The application code becomes “cleaner” and the programmer does not

need to think of validation when programming.

• The programmer does what he is good at (programming) and leaves

security to the security division.

30 4. Input Validation

• If an automated out-of-code-framework existed, adding input valida-

tion to existing applications becomes easy.

• Maintenance of the blacklist/whitelist is much easier. By centralizing

input validation, the blacklist/whitelist can be put into one single file.

• Using dedicated processing recourses for validation will improve the

application performance.

4.4 Summary

This chapter introduced some key concepts associated with input validation.

Two opposite approaches to validation, called whitelisting and blacklisting,

were presented.

When implementing validation, one should consider where to write val-

idation code. The first alternative is writing validation code directly in the

application code. This might be sufficient for small applications but does

not scale well. The second alternative is making an automated validation

framework which can be configured out of code.

The next chapter is the first chapter describing the system development

part of this master’s thesis work. The chapter specifies system requirements

for the web service input validation system.

Part II

System Development

31

Introduction

This part of the thesis provides a detailed description of a web service input

validator. The validator mechanism presented here is developed for use by

system administrators or other security staff, and allows adding input val-

idation to a web service at deployment time. Thus, developers are able to

focus on implementing business logic rather than considering input valida-

tion during programming.

Figure 4.1: System Development Approach

An overview of our system development approach is shown in figure 4.1.

As indicated in the figure, each of the following four chapters maps to one

of the four steps.

33

Before delving into the solution’s requirements, it may be helpful to

clarify the context in which our solution will operate. Figure 4.2 shows

a principle drawing of a web service and two web service clients accessing

the service using IP and a set of web services-related standards. Note that

our solution will intercept the incoming messages to the web service, and

validate these before letting them through to the web service.

Figure 4.2: Solution Context

35

Chapter 5

System Requirements

In this chapter the problem statement is used as a starting point for defin-

ing the system’s functional and non-functional requirements, and for conve-

nience the problem statement from the introduction is repeated:

We want to design and implement an automatic, verifiable, and centralized

mechanism for web services input validation that can be added to and con-

figured for a web service at deployment time.

Properties explicitly mentioned in the problem statement are mapped

into solution requirements. Additionally, we also add non-functional re-

quirements that are considered important for the solution to function satis-

factory.

5.1 Functional Requirements

5.1.1 Requirement 1: Automatic Policy Enforcement

A policy-based approach to specifying web services protection has been cho-

sen mainly because existing web services security standards and specifica-

tions (e.g. WS-SecurityPolicy, see Chapter 3) are policy-based.

36 5. System Requirements

The system will enforce specified input policies for a defined set of web

services and contained operations, called ports. Policy enforcement should

be automatic, and should not depend on manual intervention [6]. This

principle is necessary for the system to be usable in a practical application;

manual enforcement would make the system both prohibitively slow and

increase the risk of errors.

5.1.2 Requirement 2: Verifiable Protection

An important aspect of the system is the ability to verify its operation on

two levels; coverage and correctness.

Requirement 2.1: Coverage

It must be possible to ensure that all web services that the system admin-

istrator intends to protect are in fact protected.

Requirement 2.2: Correctness

Additionally, the system administrator must be able to verify that the spec-

ified policy definitions work as intended.

5.2 Non-functional Requirements

5.2.1 Requirement 3: Maintainability

Requirement 3.1: Separation of Policy Definition and Enforcement

Separation of security policy and enforcement is a generally accepted prin-

ciple [41]. This allows the policy to be modified without having to change

the enforcement mechanism. The solution should therefore separate policy

definition and enforcement.

Non-functional Requirements 37

Requirement 3.2: Separation of Web Service and Policy Definition

Leaving the definition of security policies as a deployment consideration is

valuable for several reasons. For instance, developers can continue develop-

ing web services as before. Security policies can then be added by others

at deployment time. The input validation solution should therefore support

separation of web service and policy definition.

Requirement 3.3: Centralized Policy Definition

In order to simplify policy updates and facilitate reuse of policy definitions,

a centralization of policy definitions is called for. This way, common policy

definitions can be shared between several web services. As each definition

is defined only once, there is no problem with keeping different definition

instances synchronized.

5.2.2 Requirement 4: Security

Requirement 4.1: Non-Bypassability

For the policy mechanism to be effective, it is important that it cannot be

bypassed. One must endure that every web service request is checked for

policy compliance.

Requirement 4.2: Secure Policy Storage

It is vital that the security policy is protected against tampering. The vali-

dation mechanism will be compromised if an attacker succeeds in modifying

the policy. The policy should be protected against adding of new entries

and modification of existing entries.

Unauthorized reading of the policy file also represents a security threat

and should be denied. The main threat associated with giving attackers

read-access to the policy file is that the attacker becomes able to discover

38 5. System Requirements

configuration weaknesses introduced by system administrators. Thus, the

system would no longer be a black box from the attacker’s point of view.

It must be ensured that the policy itself is stored by a trusted party.

Also, unauthorized replacement of the policy must not be allowed.

Requirement 4.3: Whitelisting

In accordance with the theory on whitelisting and blacklisting, mentioned

in section 4.2, we want our solution to employ the whitelisting technique for

validating input.

Requirement 4.4: Logging

The solution must be able to log important events, such as program errors

and security incidents, to persistent storage.

For the log to be used for non-repudiation purposes, it must be tamper-

proof.

5.2.3 Requirement 5: Platform Independence

The solution must be platform independent in order to support heteroge-

neous server environments. It is not uncommon that enterprises maintain

code written years ago [42]. As time goes by, new platforms emerge. Thus,

due to different time of development, the applications are most probably

developed for, and deployed on, different platforms. Companies tend to

be reluctant to rewriting old code because they already have a working,

debugged solution. Platform independent solutions are therefore valuable.

Web services are widely used for integrating new and existing systems.

By using the XML message format and standardized protocols, web services

are designed to be platform independent. Accordingly, the same should

apply for the input validation mechanism.

Non-functional Requirements 39

5.2.4 Requirement 6: Modularity and Encapsulation

Encapsulation on the object-level is a combination of two aspects: grouping

of object state and operations, and limiting access to an object’s data only

through its interface [43]. In addition to using object-level encapsulation,

we also want grouping (also called modularity) and encapsulation on the

the module-level in our solution. In general, encapsulation and modularity

make both development and testing easier.

5.2.5 Requirement 7: Flexibility and Extensibility

The system must be flexible enough to allow for a wide range of different

policy definitions. Furthermore, it is important that the system can be

extended when needed. This property goes hand-in-hand with modularity

and encapsulation, as they make it easier to replace and add functionality

by replacing or adding modules.

5.2.6 Requirement 8: Reusability

Requirement 8.1: Existing Standards and Specifications

When possible, the solution should use existing standards and interfaces.

This requirement is tightly connected to compatibility and platform indepen-

dence, but some additional remarks should be made. Reuse reduces devel-

opment costs by avoiding rethinking and reimplementing others’ thoughts.

Furthermore, support from existing development environments and tools

saves time and money.

Training costs will also be reduced when existing standards, protocols,

and interfaces are used. If developers have experience with the standards,

the threshold for making use of the solution should be low.

40 5. System Requirements

Developers should also be able to verify that the given security solution

provides the intended security. Verification of the solution becomes easier

when well-known and trusted standards are used.

Requirement 8.2: Existing Functionality

In addition to reusing existing standards and specifications, the solution

should reuse existing implementations whenever possible. This is particu-

larly important in the case of validation functionality, in which a program-

ming error could severely threaten the security of the entire solution.

Although not typically non-functional, this requirement is listed here

because it is closely related to the non-functional reusability requirement.

5.2.7 Requirement 9: Performance

The verbose XML format generates overhead compared to more compressed

formats (e.g. binary encoded data). There is no doubt that other middle-

ware platforms outperform web services when it comes to performance. Sim-

ulations have found that the XML based SOAP protocol used for web ser-

vices performs seven times poorer than the CORBA platform [44]. The sim-

ulations state that delay associated with SOAP stems mainly from parsers

and the implementation of the communication handlers.

In order to avoid adding significant delays to the web service, all com-

munication messages for the input validation solution should run internally

on the server.

5.3 Summary

In this chapter, the problem statement was used as a basis for defining the

system’s requirements.

Summary 41

The functional requirements say that the system should protect web

services using automatic and verifiable policy enforcement. Additionally,

the non-functional requirements tell us that the system should be easily

maintained, secure, platform independent, flexible, extensible, and modu-

lar. Also, it was stated that existing functionality should be reused when

possible, and that performance - although not our prime concern - should

not be prohibitively poor.

The stated requirements will serve as the basis from which decisions are

made in the next chapter’s analysis.

43

Chapter 6

System Analysis

In this chapter we analyze the requirements that were listed in chapter

5, and outline a solution that satisfies them. In order to check that all

system requirements are satisfied, a system requirements traceability matrix

is developed. The blank matrix is shown in table 6, and the completed

matrix is provided in the last section of the chapter.

The solution architecture is developed step-by-step throughout this chap-

ter. The architecture will then be used for creating the implementation-

specific design in the next chapter.

6.1 The Initial System

We start the analysis by showing an illustration of the system to which we

intend to add our solution. For a summary of the solution context, the

reader is referred to the introduction of the system development process on

page 33.

Figure 6.1 shows a set of web services, each with web service ports,

situated on a given web server. When a web service request arrives on the

web server, it is forwarded to the correct web service and port.

44 6. System Analysis

C
om

po
ne

nt
1

C
om

po
ne

nt
2

. . .

C
om

po
ne

nt
n

Req 1.0: Automatic Policy Enforcement
Req 2.1: Coverage
Req 2.2: Correctness
Req 3.1: Sep. of Policy Def. and Enforcement
Req 3.2: Sep. of Web Service and Policy Def.
Req 3.3: Centralized Policy Def.
Req 4.1: Non-Bypassability
Req 4.2: Secure Policy Storage
Req 4.3: Whitelisting
Req 4.4: Logging
Req 5.0: Platform Independence
Req 6.0: Modularity and Encapsulation
Req 7.0: Flexibility and Extensibility
Req 8.1: Existing Standards and Specs.
Req 8.2: Existing Functionality
Req 9.0: Performance

Table 6.1: Blank Requirements Traceability Matrix

Figure 6.1: Initial System Architecture

Step 1: Separating Web Services, Policy, and Policy
Enforcement 45

Our goal is to add a mechanism that validates that the values of the

parameters within each web service request are in accordance with a specified

security policy.

The first step is to separate web services, policy, and policy enforcement,

described in section 6.2. The high-level model described in 6.2 is further

extended for allowing reusability in 6.3. Section 6.4 explains the solution

more in depth by dividing each of the components into subcomponents.

In 6.5 we introduce logging and security to the system. In section 6.6, the

remaining components, called correctness and coverage, are described. After

each of the above-mentioned steps, a depiction of the solution at that point

is provided.

6.2 Step 1: Separating Web Services, Policy, and

Policy Enforcement

The requirements section dictates separation of the web service from the

policy and policy enforcement. In order to fulfill this requirement, we want to

divide the system into three parts. The first part contains the web services,

the second holds the policy, and the third enforces the policy. These parts

will be further explained below. The result of this step is depicted in figure

6.2.

6.2.1 Web Services

This part of the system contains the web services that will be protected.

Each web service contains one or more ports. The web service ports repre-

sent the publicly available web service methods, where anyone in possession

of the web service address is able to inject data. The web service name must

be unique, and within each web service all port names must be unique. All

46 6. System Analysis

Figure 6.2: System Architecture After Step 1

input to the web service ports should be validated against the policy defini-

tions held by the policy component described below.

6.2.2 The Policy Component

The policy component holds a repository of the policy definitions. For now

we do not care about secure storage of the repository. The policy component

must have the ability to browse through the content of the repository. Fur-

ther, it must accept incoming policy definition requests and respond with

the requested policy. It is important that only authorized requests - those

made by the policy enforcement component - must be accepted. A typical

request will ask for the policy definition belonging to a given web service

and port. The policy component must therefore accept web service name

and port name as input parameters. Upon receiving input, the component

must look up the policy definition matching these parameters and return it

to the sender.

Step 2: Reuse 47

6.2.3 The Policy Enforcement Component

The policy enforcement component performs the validation and is therefore

considered the main component in this project. According to the require-

ments, policy enforcement should be executed automatically. Thus, the

policy enforcement component should not require human decisions or user

interactions when deciding whether input is valid or not.

Another important requirement associated with the enforcement compo-

nent is non-bypassability. In order to meet this requirement, the component

must intercept and validate every incoming web service request before it is

handed over to the web service.

Each incoming request has the name of the web service and port name

embedded in the request. For each incoming request, the policy enforcement

component must send a request to the policy component in order to get the

correct policy definition. After receiving the policy definition from the policy

component, the policy enforcement component validates the incoming data.

If validation succeeds, the incoming web service request should be handed

over to the correct web service. Otherwise, the request should be rejected.

For security reasons we do not want to provide the message sender with more

details than necessary, so the policy enforcement component only replies

with a message stating that validation failed.

6.3 Step 2: Reuse

Reuse of existing standards, specifications, and functionality was emphasized

in the requirements. The proposed solution will incorporate reuse in several

ways; this is further described in the sections below. The system architecture

after adding reuse functionality is shown in figure 6.3.

48 6. System Analysis

Figure 6.3: System Architecture After Step 2

Step 2: Reuse 49

6.3.1 Using XML Schema for Validation

In our solution, an XML Schema, introduced in section 2.1.4, is used for

validation of incoming web service requests. In addition to the benefits of

reusing an existing standard (for details, please refer to section 5.2.6), this

means that existing XML validation functionality can be employed.

6.3.2 Policy Definition Reuse

The second level on which we want to enable reuse is by creating a repository

of policy definitions that can be shared by several web services. This way,

already-existing, mature, and well-tested definitions can easily be reused by

new web services.

6.3.3 Policy Definition Flexibility

As mentioned above, we validate input against XML schemas. The require-

ments dictate that existing functionality should be reused. Our solution

should make use of the fact that WSDL documents can contain important

validation information in XML Schema format. Most web services have a

WSDL document associated with them and, thus, making use of the WSDL

document XML schemas can be a time-saving factor for developers. It

should not be necessary to rewrite the XML Schema in the policy compo-

nent’s repository if a proper schema already exists in the WSDL document.

Before describing the XML schema reuse logic, we discuss the need for the

possibility to retrieve XML schemas from both WSDL documents and the

repository.

Why not Use Only WSDL?

It might seem like retrieving the XML Schema from the WSDL document

would be sufficient, and that the repository therefore is unnecessary. We

50 6. System Analysis

want to emphasize that retrieving the XML schema from a repository is

needed in several cases and for several reasons:

• Not all web services have associated WSDL documents. One reason is

that not all enterprises publish their WSDL documents due to fear of

exposing infrastructure.

• Basing a solution on WSDL definitions alone would result in limited

flexibility because policy reuse becomes difficult.

• WSDL definitions are tied up to the WSDL standard. It would there-

fore be challenging to extend the policy definitions.

Due to the above-mentioned reasons, we have chosen to retrieve XML

schemas from both the repository and the WSDL document. Thus, the pol-

icy component is extended with functionality that makes validation against

the WSDL XML schema possible.

WSDL XML Schema Reuse Logic

The logic behind allowing existing WSDL XML Schema definitions to be

reused is illustrated in figure 6.4. Note that the web service request heading

for a given port is intercepted by the policy enforcement module. Then, both

WSDL and repository schema definitions for this port are retrieved from the

policy component. Next, all input parameters for this port are validated

against either the WSDL or the repository schema. To allow for maximum

flexibility, the solution should allow some parameters to have WSDL vali-

dation, whereas the rest are validated against the repository schema. If all

input parameters are valid, the web service request is forwarded. If not, the

request is rejected.

As stated in the requirements, the solution should be composed of encap-

sulated modules and be extensible. Extending the policy component should

Step 2: Reuse 51

Figure 6.4: Sequence Diagram Illustrating the Flexibility of Reusing Existing
WSDL Schema Definitions

52 6. System Analysis

therefore be easy. If, for any reason, future use of the system should require

getting the XML schema from other locations than yet supported, it should

be convenient to add such extensions.

6.4 Step 3: Modularity

In this step, the modularity requirements are taken into account. An illus-

tration of the result can be seen in figure 6.5.

Figure 6.5: System Architecture After Step 3

6.4.1 Modularization of the Policy Component

In order to meet the requirements regarding encapsulation and modulariza-

tion of the system, we split the policy component into several subcompo-

nents. During the discussion in this chapter it has become clear that the

Step 3: Modularity 53

policy component must support retrieving data from a repository as well as

the WSDL document that is associated with a given web service. In the

previous section, we added a subcomponent for handling each of these ways

to retrieve an XML schema.

Now, we add two more subcomponents in the policy component in or-

der to make reuse of policy definitions possible. The two components are

described below.

Policy Mapping Component

The first subcomponent is called the policy mapping component and should

handle the mapping between web services, ports and policy. The policy

enforcement component will request this subcomponent for the policy to use

for the incoming web service request. Thus, the policy mapping component

takes care of the look-up functionality described in section 6.2.2.

Schema Provider Component

The second subcomponent which is added to the policy component is called

the schema provider. Providing the enforcement component with the correct

XML schemas will be the main purpose of this subcomponent. For each

port’s input parameters, the policy enforcement component must request

the XML schema provider for a schema. Upon requests, the XML schema

provider must look up the XML Schema in either the WSDL document or

the repository.

6.4.2 Modularization of the Policy Enforcement Component

To satisfy the requirements, the policy enforcement component should also

be modularized. The component has two main purposes. First, it should

intercept all incoming web service requests. Second, it should do the vali-

54 6. System Analysis

dation of the input parameters. We therefore split its functionality into two

separate subcomponents.

The first subcomponent is the message interceptor. One must ensure that

every incoming web service request is intercepted by the message interceptor.

There should be no way to request the web service without going through

the message interceptor. It is thus clear that this component handles the

non-bypassability requirement.

The second component represents the main logic in the system and is

called the validator. The validator component interacts with almost every

other component in the system and decides on whether the incoming input

is valid or not.

We now draw the whole picture of the validation process from the val-

idator’s point of view. The following steps are included:

1. The validator receives the incoming web service request from the mes-

sage interceptor and reads through the request in order to find the web

service name and port name to which the request is addressed.

2. The validator then requests the policy mapping policy component for

the proper policy to use for this request.

3. When the validator receives the policy mapping, it requests the XML

Schema provider for the correct XML Schema to use for each input

parameter in the request.

4. The validator then validates each input parameter against the received

schema.

5. At last, the validator decides on whether the input is valid or not.

Every input parameter must be valid if the input should be considered

valid.

Step 4: Security 55

6. When input is valid it should be forwarded to the web service, else

it is rejected and should under no circumstances be forwarded. Upon

rejection, a simple message stating that validation failed is returned

to the sender.

An illustration of the process was shown in figure 6.4.

6.5 Step 4: Security

In this step, we specify how to secure the policy definitions and how to

ensure that exceptions are logged. The solution after this step is depicted

in figure 6.6.

6.5.1 Secure Policy Against Tampering

As stated in the requirements, it is vital that the policy cannot be changed

or read by unauthorized users. On the server, this can be achieved by

employing operating system security in such a way that only authorized

users are allowed to read, edit, remove, or replace the policy. In addition to

protecting the file locally on the server, it is also necessary that there exists

no other mechanism for unauthorized users to view or modify the file (e.g.

through the web server).

6.5.2 Logging

In order to fulfill the logging requirement, the solution will contain a cen-

tralized logging component whose responsibility is to log important events

to persistent storage. It is desirable to reuse an existing and stable logging

mechanism, but the exact choice will depend on several implementation de-

cisions made in the next chapter.

56 6. System Analysis

Figure 6.6: System Architecture After Step 4

Step 5: Verifiable Operation 57

6.6 Step 5: Verifiable Operation

One of the functional requirements is that the system is verifiable with

respect to coverage and correctness. The solution with the verifier added is

shown in figure 6.7. The functionality of the verifier will now be discussed.

Figure 6.7: System Architecture After Step 5

6.6.1 Coverage

To satisfy the coverage requirement, the solution must let the system admin-

istrator verify that input validation applies for all the web services, ports,

and parameters for which protection is wanted. This can be done by list-

58 6. System Analysis

ing the relevant contents of the input validation security policy in an easily

readable format where any unprotected items are clearly highlighted.

6.6.2 Correctness

As specified in the requirements, it should be possible to verify that the

input validation is performed as expected. This will be done by allowing the

system administrator to specify a set of valid and invalid input for each web

service port. To check for correctness, a verifying component will execute

the set of input and make sure that the valid input is considered valid and

invalid input considered invalid by the validator.

6.7 Requirements Traceability Matrix

In this section we provide a requirements traceability matrix which can be

found in table 6.2. The analysis in this chapter has derived a system archi-

tecture (figure 6.7) consisting of seven main components. The requirements

traceability matrix maps the components into the system requirements. As

can be seen from the matrix, all requirements are satisfied by the system

architecture.

6.8 Summary

The analysis was a gradual process that involved several steps, where the

solution was extended and further specified with each step. The final illus-

tration in figure 6.7 is rather involved, and this complexity is not needed in

most of the coming discussions. We therefore increase the level of abstrac-

tion and show a higher-level illustration of the solution in figure 6.8.

In this chapter, the requirements were analyzed, but as few decisions as

possible where made with regard to implementation details. This was impor-

tant in order to make the solution generic and implementation-independent.

Summary 59

P
ol

ic
yM

ap
pi

ng
M

an
ag

er

Sc
he

m
aP

ro
vi

de
r

C
or

re
ct

ne
ss

C
ov

er
ag

e

V
al

id
at

or

M
es

sa
ge

In
te

rc
ep

to
r

L
og

ge
r

Req 1.0: Automatic Policy Enforcement X X X X
Req 2.1: Coverage X
Req 2.2: Correctness X
Req 3.1: Sep. of Policy Def. and Enforcement X X X
Req 3.2: Sep. of Web Service and Policy Def. X X
Req 3.3: Centralized Policy Def. X X
Req 4.1: Non-Bypassability X
Req 4.2: Secure Policy Storage X X
Req 4.3: Whitelisting X X
Req 4.4: Logging X
Req 5.0: Platform Independence X X X
Req 6.0: Modularity and Encapsulation X X X X X X X
Req 7.0: Flexibility and Extensibility X
Req 8.1: Existing Standards and Specs. X X X X X
Req 8.2: Existing Functionality X X X X
Req 9.0: Performance X X X X

Table 6.2: Completed Requirements Traceability Matrix

60 6. System Analysis

In the next chapter, we take the results from the analysis one step further

and decide on all the details that are missing in order for the solution to be

implemented later in the thesis.

Figure 6.8: A High-Level System Architecture

61

Chapter 7

System Design

In this chapter, we elaborate on the analysis that was performed in the

previous chapter, make the necessary implementation decisions, and present

the complete solution design.

The first section presents our choice of implementation platform. It is

important to note that, in principle, the system can be implemented on all

platforms that support web services. The platform choice presented in the

coming section is therefore a matter of personal preference.

The second part of this chapter presents specific class-level designs for

each of the components introduced in chapter 6. UML class diagrams are

used and a textual explanation to each of the UML diagrams is provided.

7.1 Implementation Platform

Many platforms are available for implementation. So far, we have focused

on developing a platform-independent solution, but the detailed class-level

design must be targeted for a specific platform and programming language.

We decided to implement the system on the Microsoft .NET platform

[45]. There are several benefits from developing web services applications

on this platform, and we justify the choice in the coming section.

62 7. System Design

7.1.1 Broad XML Support

Our system is based on extensive use of XML. It is therefore important that

the platform has implemented functionality for consuming and manipulating

XML data. The .NET platform implements this functionality. The following

list shows more specifically the XML functionality provided by .NET and

the classes implementing this functionality.

• Query an XML document by means of XPath expressions.

This property is needed by several components in order to extract

parts of an XML document. .NET provides this functionality in the

XmlDocument and XPathNavigator classes.

• XML Schema Validation. We wanted a platform with XML schema

validation implemented. XmlDocument and XmlSchema implement

this.

• Read and Write XML. In order to read from the XML-based repos-

itory, we need a class that can read XML from file. .NET has this

functionality implemented in the XmlReader class. XML writing func-

tionality is performed by the XmlWriter class.

7.1.2 Broad Web Services Support

The platform must also implement, and have support for, web services and

the continually evolving web services standards. The .NET Framework con-

tains extensive web services support.

7.1.3 Implementation of WS-Security and WS-Policy

.NET provides an implementation of these standards in a package called

web services enhancements (WSE).

Detailed Design 63

7.1.4 Logging Facilities

The last argument for choosing the .NET platform is its logging facilities.

The framework offers several ways of logging system events, for instance

using the Windows Event Log.

7.2 Detailed Design

Having made the implementational decisions, we now move on to the de-

tailed design of the solution. In the following, the Unified Modeling Lan-

guage (UML) version 2.0 [46] is used to illustrate the design. Fowler’s UML

Distilled [47] has been selected as the main reference for UML notation.

We refer the reader to figures 6.7 and 6.8 (pages 57 and 60) in the

previous chapter for illustrations of the system architecture which will now

be examined closely.

First, we focus on the policy component and decide what classes and

relations that are needed for implementation. Next, we design the main

part of the system, the policy enforcement component. This component

frequently uses the policy component during message validation. After the

main functionality has been described, we discuss the log component, and

finally we examine the verification component.

7.2.1 The Policy Component

The policy component is designed for handling requests of two types. Firstly,

it responds to requests for policy mappings. Secondly, it responds to requests

for XML schemas, as indicated in figure 6.7. The results derived from this

section are depicted in figure 7.1. All important methods are shown in the

UML diagram.

64 7. System Design

Figure 7.1: Detailed Design for the Policy Component

Mapping a given Web Service onto a Given Policy

Each incoming web service request is validated against the policy belonging

to the web service’s policy. The policies are defined on the server side. Thus,

incoming web service requests do not contain information about which policy

they map to.

Since incoming web service requests contain information only about the

web service to which they are destined, we need a mechanism for mapping

the web service to a policy on the server. This mapping function should also

make it possible for several web services to share the same policy.

The class implemented for this purpose is called PolicyMappingManager.

The PolicyMappingManager constructor accepts an XML document holding

the mapping information. Further, the class has one important method

called GetMapping, which takes the web service URI, port number, and

namespace as input. Based on this input, the PolicyMappingManager does

a look-up in order to find the policy associated with the web service. This

lookup is done by using an advanced XPath expression that queries the

mapping document. When the policy root node is found, the document

formed by its subelements is extracted to a policy XML document. The

Detailed Design 65

policy XML document is then returned.

Handling XML Schema Requests

For handling requests for XML schemas we have decided to make use of a

simple interface called ISchemaProvider. ISchemaProvider defines one single

method called GetSchema, which returns an XML schema. The main reason

for implementing this interface is making our solution more flexible with re-

spect to future extensions. If designers of future extensions for instance want

to store XML schemas in a database, this feature can be built into the sys-

tem by having a database handling class that implements ISchemaProvider.

We have two classes implementing this ISchemaProvider in our solution.

These are called RepositorySchemaProvider and WsdlSchemaProvider, and

are discussed next.

Handling XML Schema Requests with Repository

RepositorySchemaProvider assumes that XML schemas are stored in an

XML document. The RepositorySchemaProvider has a constructor that

takes an XML document as input parameter. The constructor input pa-

rameter contains an XML Schema. The only purpose of the Reposito-

rySchemaProvider is to hold the XML document and return the schema

via the GetSchema method.

Handling XML Schema Requests with WSDL document

The second class implemented in our system that implements the interface

is WsdlSchemaProvider. This class is used for extracting XML schemas

from a WSDL document. The constructor of the class takes a path string

as input parameter. Depending on the format of the input path string, the

class retrieves the WSDL schema from file or from the Internet.

66 7. System Design

7.2.2 Policy Enforcement Component

The policy enforcement component, also called the “enforcer”, is the main

component of the solution. Its responsibility is to intercept all incoming

SOAP envelopes, and make sure that the envelope’s contents are in accor-

dance with the specified policy, using the Policy Component.

Detailed Design

The enforcer is also the component that interacts with Web Services En-

hancements (WSE) and the .NET web services pipeline. Mainly, WSE is

used for two things:

• To hold the policy mapping definitions and XML Schema definitions

in the WSE policy file

• To pass MessageInterceptor all SOAP envelopes that are received on

the server

The detailed design of the enforcer can be seen in figure 7.2. Only the

important methods and parameters are included. We now go through each

part of the figure and explain how they all fit together.

In WSE, policy assertions are used by applications that want to control

the security-related aspects of the message flow in and out of the web service.

We have created such an assertion, ValidationAssertion, and register it with

WSE.

WSE lets assertions specify their own configuration options in XML-

format in a central security policy file. In this file we have chosen to store

the policy mapping definitions and the XML Schema repository. The Pol-

icyFileHelper class has been created in order to encapsulate the logic of

extracting this information from the policy file.

WSE asks the registered policy assertions for any SOAP filters that the

assertion wants to connect to the web service pipeline, so that it can get

Detailed Design 67

Figure 7.2: Detailed Design for the Policy Enforcement Component

68 7. System Design

hold of incoming and outgoing web service requests. The proposed solution

includes one such filter, MessageInterceptor, which is configured to intercept

all incoming messages on the web server.

MessageInterceptor delegates the task of validating incoming messages

to a class called Validator. Validator makes use of the Policy Component in

order to achieve this.

Behavior

The behavior of the policy enforcement component can be summarized in

the following steps:

1. Because ValidationAssertion has been registered with WSE, an in-

stance of ValidationAssertion is created automatically when WSE is

initialized.

2. The ReadXml message in ValidationAssertion is called by WSE. A

handler to the WS-Policy configuration file used in WSE is passed to

ValidationAssertion in this method call.

3. Using PolicyFileHelper, ValidationAssertion retrieves the policy map-

ping definition and the XML Schema repository, which are stored in

the configuration file. This information will later be passed to Mes-

sageInterceptor.

4. WSE then calls CreateServiceInputFilter in ValidationAssertion, ask-

ing for an instance of the SoapFilter class. ValidationAssertion then

initializes a MessageInterceptor object with the information from the

previous step.

5. MessageInterceptor creates a Validator and passes it instances of Poli-

cyMappingManager, RepositorySchemaProvider, and WsdlSchemaProvider,

which it also creates.

Detailed Design 69

Figure 7.3: Sequence Diagram for Validation of a SOAP Envelope, Part I

70 7. System Design

Figure 7.4: Sequence Diagram for Validation of a SOAP Envelope, Part II

Detailed Design 71

6. The MessageInterceptor instance is returned to WSE

7. When a SOAP envelope is received, it is passed by WSE to the Mes-

sageInterceptor instance for inspection. MessageInterceptor then asks

its Validator instance to validate the message, using the IsValid method

call.

8. The logic that takes place in Validator upon the IsValid method call

is illustrated in the sequence diagram in figures 7.3 and 7.4.

9. If IsValid returns true, MessageInterceptor lets the message pass. If

false is returned, a SOAP fault stating that verification failed is re-

turned to the sender.

7.2.3 Log Component

We have chosen to make use of the Windows Event Log. In order to reuse

as much functionality as possible, we choose to inherit from the EventLog

class which is included in the .NET class library. An illustration of our class,

ValidationLog, and the EventLog class is shown in figure 7.5.

7.2.4 Verification Component

We choose to use the .NET Framework’s web interface component, ASP.NET,

for the user interfaces for the verification component. Figure 7.6 illustrates

the design of the verification component.

Coverage

The Coverage GUI asks the system administrator for the address to the

WSE security policy as well as the name of the name of the section that

contains the input validation policy. Then, it initializes an instance of the

CoverageVerificator class and calls the Verify method. CoverageVerificator

72 7. System Design

Figure 7.5: Detailed Design for the Log Component

then analyzes the security policy, looking for unprotected ports and param-

eters, and returns the results to the GUI in the form of an XML document.

Finally, the Coverage GUI displays the results to the system administrator.

Correctness

The Correctness GUI asks the system administrator for the message test

set, the address to the WSE security policy, and the name of the section

that contains the input validation policy. Then, it initializes an instance

of the CorrectnessVerificator class and calls the Verify method. Correct-

nessVerificator then uses the messages specified in the message test set and

asks the Validator to verify each of these. Messages that are specified as

valid in the test set should be verified, and the messages that are defined

as invalid should not. The result of this process is specified in an XML file

and returned to the GUI. Finally, the Correctness GUI displays the results

to the system administrator.

Detailed Design 73

Figure 7.6: Detailed Design for the Verification Component

74 7. System Design

7.2.5 Combining the Components

After having designed all four components, it is now time to combine them

in one diagram. This is done in figure 7.7. In order to keep it simple, only

class names are shown.

7.3 Summary

This chapter completed the design of the input validation system. First,

platform and infrastructure design choices were made. Then, based on these

choices, the detailed design of the components was performed. The next

chapter will describe our implementation of the design presented in this

chapter.

Summary 75

Figure 7.7: Detailed Design for the Input Validator

77

Chapter 8

System Implementation

The design in the previous chapter has been implemented and the imple-

mentation results are presented in this chapter.

The design has resulted in three different tools: the input validator, the

correctness tool, and the coverage tool. In this chapter, all of them are

described and some screenshots are provided.

The main purpose of this chapter is to give the reader an overview of

the different implemented tools before we introduce an example application

in the following chapter.

8.1 The Input Validator

The input validator represents the core of our work. It intercepts web service

input and validates it against a given policy. The input validator consists of

several components. These components were described in detail in chapters

6 and 7.

By adding a reference to the input validator class library, input validation

is effectively added to an application. The input validator has no GUI. It

runs as a background process which listens for incoming web service requests,

validates these requests, and forwards them to the web service if validation

78 8. System Implementation

succeeds. Otherwise, if validation fails, an exception is sent to the calling

application.

8.2 The Correctness Tool

The correctness tool was created to give the system administrator an oppor-

tunity to test if his configurations work as expected. This function is called

for because it might be difficult to see the full meaning of XML schema

expressions by examining the textual representation of the schema.

The correctness tool lets the system administrator define a set of mes-

sages that are supposed to be valid and another set of messages supposed

to be invalid. These messages are uploaded through a web-based GUI. The

GUI is depicted in figures 8.1 and 8.2. The upload section of the GUI is

seen in the upper part of the GUI screenshots.

When the messages are uploaded, the correctness tool runs the messages

through the validator and displays the status of each of the messages. If the

test fails (e.g. messages supposed to be invalid are considered valid by the

validator), this is indicated in the GUI.

The correctness tool uses green circles to depict valid input and red

squares to depict invalid input. Figure 8.1 shows an example of a correctness

report where input supposed to be invalid has been recognized as valid by

the validator. As can be seen from the screenshot, an exclamation mark is

used to notify the system administrator about this anomaly. Additionally, it

can be seen that a green circle is depicted where a red square was expected.

8.3 The Coverage Tool

The coverage tool was developed in order to allow the system administrator

to verify that he has protected all ports.

The Coverage Tool 79

Figure 8.1: Correctness Report with Invalid Policy

80 8. System Implementation

Figure 8.2: Correctness Report with Valid Policy

Summary 81

It might be hard to determine whether all web services are protected

by manually examining the configuration file. The coverage tool automates

this process and provides a GUI for displaying the results.

Figure 8.3 and 8.4 shows the coverage tool GUI. Figure 8.3 shows an

example where wrong configuration is revealed. The system administrator

has most likely thought that all web service ports are protected. However,

the coverage tool states that the port called Withdraw is not protected. The

system administrator should then change the configuration file in order to

protect the port.

Further, it can be seen from the figure whether the parameters uses

repository or WSDL XML schemas. This functionality was thoroughly ex-

plained in section 6.3.3.

8.4 Summary

This chapter has described the main functionality implemented in our work

with the master’s thesis. Mainly, three tools have been implemented. These

tools are the input validator, the coverage tool, and the correctness tool.

The next chapter will demonstrate the use of the implementation pre-

sented here by means of an example application.

82 8. System Implementation

Figure 8.3: Coverage Report with Invalid Configuration

Summary 83

Figure 8.4: Coverage Report with Valid Configuration

85

Chapter 9

Adding Input Validation to

an Example Application

The detailed design of the input validation solution was completed in chapter

7, and in the previous chapter we described the resulting implementation.

In this chapter, we describe an example application that makes use of the

solution for adding input validation functionality.

9.1 Example Application Description

The example application is a simple banking application for deposit and

withdrawal of money. The application consists of two parts. The first part

resides on the server side and is a web service with two ports. One port

enables withdrawals and the other deposits. The second part of the appli-

cation is a Windows client application that provides a GUI for invoking the

web service. Using this Windows application, bank customers can withdraw

and deposit money via the web service.

The business rules for the application are that an amount between 0 and

1000 can be withdrawn, and that any positive amount can be deposited.

86 9. Adding Input Validation to an Example Application

The web service is implemented without thinking of input validation.

In code, there is no check on whether deposit or withdrawal amounts are

positive or negative. Further, there is no check on amount limit. Before

adding input validation, the application therefore accepts all input.

9.1.1 Adding Encryption, Integrity and Authentication

After developing the above-described, naive implementation of the web ser-

vice, we add security. By using the Microsoft .NET implementation of WS-

Policy and WS-Security, called Web Services Enhancements (WSE), we add

encryption, integrity, and authentication.

All security added by WSE can be configured in an XML configuration

file. We also use the XML configuration file to add input validation at a

later stage.

9.1.2 Withdrawing Money Without Input Validation

Before adding input validation functionality, the application is run and in-

valid values are entered. In figure 9.1, we see that the application does not

prevent the user from withdrawing more than 1000.

9.2 Adding Input Validation

We now demonstrate how the solution described in this thesis can be em-

ployed to add input validation functionality to the example application. This

process consists of three steps:

1. Step 1: Define input validation policy

2. Step 2: Create mapping definition

3. Step 3: Verify policy and mapping using the web-based validation

tools

Adding Input Validation 87

Figure 9.1: Withdrawing Money without Input Validation

We now go through each of these steps.

9.2.1 Step 1: Define Input Validation Policy

As both web service ports receive an account number as one of their input

parameters, we want to reuse the validation logic for account numbers. The

restriction is specified using a regular expression that says that an account

number must be on the form “dddd.dd.ddddd”, where each “d” symbolizes

a digit.

We are unable to reuse the logic for the amounts that are deposited and

withdrawn as they have different restrictions; the withdraw amount must

be between 0 and 1000, while the only restriction for the deposit amount is

that it must be positive.

The input validation policy for account number, withdraw amount, and

deposit amount is shown below.

88 9. Adding Input Validation to an Example Application

<repository xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:schema>

<!-- the withdrawn amount must be
between 0 and 1000, inclusive -->
<xsd:element name="withdrawAmountSchema">

<xsd:simpleType>
<xsd:restriction base="xsd:double">

<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="1000"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<!-- the deposited amount must be positive -->
<xsd:element name="depositAmountSchema">

<xsd:simpleType>
<xsd:restriction base="xsd:double">

<xsd:minInclusive value="0"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

<!-- an account number must be on the form
1234.12.12345 -->
<xsd:element name="accountNumberSchema">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{4}.\d{2}.\d{5}" />
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

</xsd:schema>
</repository>

9.2.2 Step 2: Create Mapping Definition

After having defined the policy elements that we need, it is time to define

the mapping between the web service and policy. For our web service, we

will allow SOAP envelopes addressed to three different URIs, which all point

to the same web service.

Adding Input Validation 89

Further, we define mappings for both the Deposit and Withdraw ports.

The account numbers both use the same policy element, and the amounts

use individual elements, as described above.

The resulting mapping is shown below.

<mapping>
<webservice>

<!-- the URI synonyms that the web service can
be contacted on -->
<uris>
<uri>http://localhost:1675/BankingService/
BankingService.asmx</uri>
<uri>http://127.0.0.1:1675/BankingService/
BankingService.asmx</uri>
<uri>http://129.241.209.203:1675/BankingService/
BankingService.asmx</uri>

</uris>

<!-- the ports that the web service contains -->
<ports>
<port name="Deposit" namespace="http://tempuri.org/">
<param name="accountNumber"
schemaId="accountNumberSchema" />

<param name="amount"
schemaId="depositAmountSchema"/>

</port>
<port name="Withdraw" namespace="http://tempuri.org/">
<param name="accountNumber"
schemaId="accountNumberSchema" />

<param name="amount"
schemaId="withdrawAmountSchema"/>

</port>
</ports>

</webservice>
</mapping>

90 9. Adding Input Validation to an Example Application

9.2.3 Step 3: Verify the Configuration

Before employing the policy and mapping, it is important to verify that they

are configured correctly. First, we use the correctness tool to make sure that

the policy is defined as intended. Then, using the coverage tool we make

sure that the mapping is correct. Both tools were depicted and described in

chapter 8.

Correctness

The first step to test correctness is to create a set of valid and invalid mes-

sages for each web service port. An example of such a test set is shown

below.

<?xml version="1.0" encoding="utf-8" ?>
<definitions xmlns="http://www.item.ntnu.no/ws">

<webservice>
<!-- the URI synonyms that the web service will
be contacted on -->
<uris>

<uri>http://localhost:1675/BankingService/
BankingService.asmx</uri>
<uri>http://127.0.0.1:1675/BankingService/
BankingService.asmx</uri>
<uri>http://129.241.209.203:1675/BankingService/
BankingService.asmx</uri>

</uris>

<!-- the ports that will be checked -->

<port name="Withdraw" namespace="http://tempuri.org/">

<!-- the valid messages that are sent to the
Withdraw port -->
<validMessages>
<message>

<accountNumber>9999.99.99999</accountNumber>
<amount>1000</amount>

</message>
<message>

Adding Input Validation 91

<accountNumber>1111.11.11111</accountNumber>
<amount>0</amount>

</message>
</validMessages>

<!-- the invalid messages that are sent to the
Withdraw port -->
<invalidMessages>
<message>

<accountNumber>1234..12345</accountNumber>
<amount>500</amount>

</message>
<message>

<accountNumber>1234.56.12345</accountNumber>
<amount>1001</amount>

</message>
</invalidMessages>

</port>

<port name="Deposit" namespace="http://tempuri.org/">

<!-- the valid messages that are sent to the
Deposit port -->
<validMessages>
<message>

<accountNumber>9999.99.99999</accountNumber>
<amount>1000000</amount>

</message>
<message>

<accountNumber>1111.11.11111</accountNumber>
<amount>0</amount>

</message>
</validMessages>

<!-- the invalid messages that are sent to the
Deposit port -->
<invalidMessages>
<message>

<accountNumber>1234..12345</accountNumber>
<amount>500</amount>

</message>
<message>

<accountNumber>bank</accountNumber>
<amount>1001</amount>

92 9. Adding Input Validation to an Example Application

</message>
<message>

<accountNumber>1234.56.12345</accountNumber>
<amount>-1</amount>

</message>
</invalidMessages>

</port>

</webservice>
</definitions>

To illustrate the operation of the correctness tool, we first apply it with

an error in the security policy. The policy has been configured to allow

withdrawals up to 10 000, instead of 1 000, which is the correct limit for the

example application.

The result of the correctness test was shown in figure 8.1 (page 79).

We see that a message specified as invalid in the test set has been found

to be valid by the validator. In the message, the amount is set to 1 001,

which is not allowed according to the intended policy. However, due to the

misconfiguration, this message was found valid. This discrepancy is marked

with a red exclamation mark in the report.

Then, we correct the policy by setting the maximum amount to 1 000

and re-run the test. The result, showing that all valid messages were found

to be valid, and all invalid messages found to be invalid, was shown in figure

8.2 (page 80).

Coverage

Next, we want to make sure that the mapping has been defined correctly.

To illustrate how the tool works, we have run the tool with an error in the

mapping. The error was that validation was turned off for the Withdraw

port. In figure 8.3 (page 82), we see that this is clearly pointed out in the

report.

Summary 93

When the coverage tool is run with a correct mapping definition, the

result is as shown in figure 8.4 (page 83).

9.2.4 Withdrawing Money With Input Validation

After having validated correctness and coverage of our input validation def-

initions, we run the banking application again. Using the same input as in

the beginning of the chapter, we now experience that the input validation

system rejects the input as invalid. The result is shown in figure 9.2.

Figure 9.2: Withdrawing Money with Input Validation

9.3 Summary

This chapter has demonstrated use of the input validation mechanism de-

veloped during this master’s thesis work. We developed an example appli-

cation and added security to this application. We showed that it was easy

and straight-forward to add input validation to an existing web service, and

94 9. Adding Input Validation to an Example Application

to verify the validation policy and mapping using the web-based tools that

have been implemented.

It should be noted that all security mechanisms are added out of code in

an XML configuration file. Thus, the application code is not affected after

adding our mechanisms.

95

Chapter 10

Conclusions

10.1 Conclusions

This thesis describes the design and implementation of a web service input

validation mechanism. The mechanism is realized by extending existing web

services security standards, such as WS-Security and WS-Policy.

To cover the requirements in the problem statement, the mechanism is

centralized and operates without human intervention. Further, it can be

verified for correctness and coverage using a web-based verification tool.

Additionally, web services protection can be added at deployment time,

without modifying existing code.

Last, the thesis demonstrates how the input validation mechanism can be

added to an existing application, and how it can be configured and verified

to ensure that it operates correctly.

10.2 Summary of Contributions

The major contributions of this work are:

• An examination of XML, web services, web services security, and input

validation.

96 10. Conclusions

• A detailed design of an automatic, verifiable, and centralized web ser-

vice input validation mechanism that can be added to and configured

for a web service at deployment time.

• An implementation of the detailed design.

• Elaboration of the implementation by means of an example applica-

tion.

10.3 Future Research

Suggestions for future research based on this thesis are:

• More use of flexibility: The design allows for much more flexibility

than what has been explored in the described implementation. In

regard to flexibility, at least four types of extensions can be envisioned:

– An interesting extension of this work would be to make use of

the security information available from WS-Security and WS-

Policy in the security policies. One example would be to make a

requirement that a given web service port can only be called by

a certain set of users, who can then, in turn, be authenticated by

digital certificates. This way, the mechanism would function like

a web service firewall.

– A second way to extend the current design would be to add func-

tionality for auditing and billing. By using authentication pro-

vided by WS-Security or another source, it would be possible to

record the users’ service usage. Thus, one could use these records

for billing or to determine which user performed a certain web

service call in the past. This information could be used for non-

repudiation purposes.

Future Research 97

– Third, the system could be extended to function as an intrusion

detection system (IDS). Such a system could look for either sta-

tistical anomalies or for usage patterns that violate certain rules

that have been specified [48].

– Fourth, this thesis addresses only simple input validation. Pa-

rameters are validated independently of each other. We see op-

portunities for future work with extending this functionality by

letting validation depend on the relationships between different

parameters (e.g. the value of parameter A determines the valid

range of parameter B).

• Validation of output: The current design only allows validation

of input to web services. In certain situations it is also desirable to

validate the output from a web service. Such validation could be useful

to ensure that web services do not return unwanted information, for

instance in the case of programming errors, or as an extra layer of

security.

• Formal verification: The type of verification that has been designed

and implemented in this thesis could be formalized. Then, it might

be possible to mathematically prove the correct operation of the input

validation mechanism. However, such formalization might also make

the system less user friendly.

• Graphical configuration: A useful extension could be to develop

graphical tools to assist with configuration of security policies and

mappings. Such tools would make the job of configuring much more

efficient and less error-prone.

• Distributed policy definitions: We see a potential benefit in devel-

oping a system for distributing policy definitions. Such a system could

98 10. Conclusions

let web services on different locations share a common, distributed pol-

icy. This would allow for reuse on a larger scale than that which is

possible between web services on the same server.

Bibliography

[1] IDC, “IDC Press Release: Consumption of Web Services Will Greatly

Increase Through 2009.”

http://www.idc.com/getdoc.jsp?containerId=prUS00190705, 2005.

[2] The Open Web Application Security Project (OWASP), “The OWASP

Top Ten Project.” http://www.owasp.org/documentation/topten.html,

2005.

[3] M. R. Stytz and J. A. Whittaker, “Caution: this product contains

security code,” IEEE Security & Privacy Magazine, vol. 1, no. 5, pp. 86–

88, 2003.

[4] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using parse tree

validation to prevent SQL injection attacks,” in SEM ’05: Proceedings

of the 5th international workshop on Software engineering and middle-

ware, (New York, NY, USA), pp. 106–113, ACM Press, 2005.

[5] Z. Su and G. Wassermann, “The essence of command injection at-

tacks in web applications,” in POPL ’06: Conference record of the

33rd ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages, (New York, NY, USA), pp. 372–382, ACM Press, 2006.

[6] E. G. Sirer and K. Wang, “An access control language for web services,”

in SACMAT ’02: Proceedings of the seventh ACM symposium on Access

99

100 10. BIBLIOGRAPHY

control models and technologies, (New York, NY, USA), pp. 23–30,

ACM Press, 2002.

[7] C. A. Ardagna, E. Damiani, S. D. C. di Vimercati, and P. Samarati,

“A Web Service Architecture for Enforcing Access Control Policies,” in

Proceedings of the First International Workshop on Views on Designing

Complex Architectures (VODCA 2004), pp. 47–62, Elsevier B.V., 2004.

[8] C. Kruegel and G. Vigna, “Anomaly detection of web-based attacks,”

in CCS ’03: Proceedings of the 10th ACM conference on Computer and

communications security, (New York, NY, USA), pp. 251–261, ACM

Press, 2003.

[9] L. Baresi, S. Guinea, and P. Plebani, “WS-Policy for Service Moni-

toring,” in Technologies for E-Services: 6th International Workshop,

TES 2005, Trondheim, Norway, September 2-3, 2005, Revised Selected

Papers, pp. 72–83, Springer Berlin / Heidelberg, 2005.

[10] K. Bhargavan, C. Fournet, and A. D. Gordon, “Verifying policy-based

security for web services,” in CCS ’04: Proceedings of the 11th ACM

conference on Computer and communications security, (New York, NY,

USA), pp. 268–277, ACM Press, 2004.

[11] A. D. Gordon and R. Pucella, “Validating a web service security ab-

straction by typing,” in XMLSEC ’02: Proceedings of the 2002 ACM

workshop on XML security, (New York, NY, USA), pp. 18–29, ACM

Press, 2002.

[12] K. Bhargavan, C. Fournet, A. D. Gordon, and G. O’Shea, “An advisor

for web services security policies,” in SWS ’05: Proceedings of the 2005

workshop on Secure web services, (New York, NY, USA), pp. 1–9, ACM

Press, 2005.

BIBLIOGRAPHY 101

[13] World Wide Web consortium (W3C), “Extensible Markup Language

(XML) 1.0 (Third Edition).”

http://www.w3.org/TR/2004/REC-xml-20040204/, February 2004.

[14] E. R. Harlond and W. S. Means, XML In a Nutshell. Sebastopol, CA,

USA: O’Reilly, 2004.

[15] The Internet Society Network Working Group, “Uniform Resource

Identifier (URI): Generic Syntax.”

http://www.gbiv.com/protocols/uri/rfc/rfc3986.html, January 2005.

[16] World Wide Web consortium (W3C), “XML Schema Second Edition.”

http://www.w3.org/TR/xmlschema-0/, October 2004.

[17] World Wide Web consortium (W3C), “XML Path Language (XPath).”

http://www.w3.org/TR/xpath, November 1999.

[18] A. Kalani and P. Kalani, MCAD/MCSD Developing XML Web Services

and Server Components with Visual C# .NET and the .NET Frame-

work. Indianapolis, IN, USA: QUE Certification, 2003.

[19] E. Cerami, Web Services Essentials. Sebastopol, CA, USA: O’Reilly,

2002.

[20] C. Geuer-Pollmann and J. Claessens, “Web services and web service se-

curity standards,” Information Security Technical Report, vol. 10, no. 1,

pp. 15–24, 2005.

[21] Jesper Holgersson and Eva Soderstrom, “Web service security - vul-

nerabilities and threats within the context of WS-security,” in The 4th

Conference on Standardization and Innovation in Information Technol-

ogy, pp. 138–146, September 2005.

[22] A. S. Tanenbaum, Computer Networks. Upper Saddle River, NJ, USA:

Prentice Hall PTR, fourth ed., 2002.

102 10. BIBLIOGRAPHY

[23] Internet Engineering Task Force (IETF), “The TLS Protocol v1.0.”

http://www.ietf.org/rfc/rfc2246.txt, January 1999.

[24] P. Kearney, “Message level security for web services,” Information Se-

curity Technical Report, vol. 10, no. 1, pp. 41–50, 2005.

[25] W3C, “XML Encryption syntax and processing.”

http://www.w3.org/TR/xmlenc-core/, December 2002.

[26] National Institute of Standards and Technology (NIST), “Recommen-

dation for the Triple Data Encryption Algorithm (TDEA) Block Ci-

pher.”

http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf, May

2004.

[27] National Institute of Standards and Technology (NIST), “Specification

for the Advanced Encryption Standard (AES).”

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, November

2001.

[28] W3C, “XML Signature syntax and processing.”

http://www.w3.org/TR/xmldsig-core/, February 2002.

[29] National Institute of Standards and Technology (NIST), “Secure Hash

Standard.” http://www.itl.nist.gov/fipspubs/fip180-1.htm, April 1995.

[30] Internet Engineering Task Force (IETF), “HMAC: Keyed-Hashing for

Message Authentication.” http://www.ietf.org/rfc/rfc2104.txt, Febru-

ary 1997.

[31] RSA Laboratories, “RSA Cryptography Standard.”

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf, June 2002.

BIBLIOGRAPHY 103

[32] National Institute of Standards and Technology (NIST), “Digital Sig-

nature Standard (DSS).”

http://www.itl.nist.gov/fipspubs/fip186.htm, May 1994.

[33] Microsoft, IBM, and VeriSign, “Web services security (WS-Security).”

http://www-128.ibm.com/developerworks/webservices/library/ws-

secure/, April 2002.

[34] K. Bhargavan, C. Fournet, and A. D. Gordon, “A semantics for web

services authentication,” in 31st Annual Symposium on Principles of

Programming Languages, ACM SIGPLAN-SIGACT, January 2004.

[35] Organization for the Advancement of Structured Information Stan-

dards (OASIS), “Web Services Security: SOAP Message Security 1.0

(WS-Security 2004).” http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-soap-message-security-1.0.pdf, March 2004.

[36] The SANS Institute, “SANS Glossary of Terms Used in Security and In-

trusion Detection.” http://www.sans.org/resources/glossary.php, 2006.

[37] R. Hollar and R. Murphy, Enterprise Web Services Security. Hingham,

MA, USA: Charles River Media, Inc., 2006.

[38] Microsoft, IBM, VeriSign, BEA Systems, SAP AG, and Sonic Software,

“Web services policy framework (WS-Policy).”

http://www-128.ibm.com/developerworks/library/specification/ws-

polfram/, September 2004.

[39] IBM, Microsoft, RSA Security, and VeriSign, “Web Services Security

Policy Language.”

http://www-128.ibm.com/developerworks/library/specification/ws-

secpol/, July 2005.

104 10. BIBLIOGRAPHY

[40] S. H. Huseby, Innocent Code: a security wake up call for web program-

mers. West Sussex, England: John Wiley & Sons, Ltd, 2004.

[41] S. D. Wolthusen, “Layered multipoint network defence and security pol-

icy enforcement,” in Proceedings of the IEEE Workshop on Information

Assurance and Security, June 2001.

[42] L. Wu, H. Sahraoui, and P. Valtchev, “Coping with Legacy System

Migration Complexity,” in Proceedings of the 10th IEEE International

Conference on Engineering of Complex Computer Systems, pp. 600–

609, IEEE, 2005.

[43] J. R. Nicol, C. T. Wilkes, and F. A. Manola, “Object orientation in het-

erogeneous distributed computing systems,” Computer, vol. 26, no. 6,

pp. 57–67, 1993.

[44] Robert Elfwing, Ulf Paulsson, and Lars Lundberg, “Performance of

SOAP in Web Service Environment Compared to CORBA,” in Ninth

Asia-Pacific Software Engineering Conference, pp. 84–93, December

2002.

[45] Microsoft, “Microsoft .NET Homepage.”

http://www.microsoft.com/net/, 2006.

[46] Object Management Group, “Unified Modeling Language (UML).”

http://www.uml.org/, 2006.

[47] M. Fowler, UML Distilled: A Brief Guide to the Standard Object Mod-

eling Language. Boston, MA, USA: Addison-Wesley, third ed., 2003.

[48] P. Porras, “STAT – a state transition analysis tool for intrusion detec-

tion,” Master’s thesis, University of California Santa Barbara, Novem-

ber 1993.

Part III

Appendices

105

Appendix A

Web Services Protocols

A.1 SOAP

A.1.1 SOAP Message Format

The Envelope Element

Versioning is the envelope’s main purpose. Thus, the envelope element tag

must include the SOAP version used. Versions are referred to by using XML

namespaces, which are uniquely identified by an URI. The following exam-

ple illustrates a typical envelope tag, which uses the SOAP 1.2 namespace

(http://schemas.xmlsoap.org/soap/envelope/):

<SOAP-ENV:Envelope

xmlns=http://schemas.xmlsoap.org/soap/envelope/>

The Header Element

The header element is optional and is often used for adding additional ap-

plication specific information about the SOAP message. Such application

information can typically be description of digital signature, authentication

information or payment information.

107

108 A. Web Services Protocols

The default namespace defines three attributes to the header element:

actor, mustUnderstand and encodingStyle. These attributes contain infor-

mation about how the SOAP message shall be processed.

The actor attribute defines the endpoint for which the message is in-

tended. Use of this attribute is especially interesting when a message is to

traverse several endpoint on it way to the intended endpoint. The actor at-

tribute is set by an URI (e.g. soap:actor=http://www.item.ntnu.no/appl/).

The mustUnderstand attribute tells whether the entry is mandatory or

optional for the receiver to process. The mustUnderstand attribute is set

to a Boolean value (the syntax is soap:mustUnderstand = 1 (or 0)).If the

mustUnderstand element is set to 1, the element must be recognized by the

processing endpoint. If the element is not recognized, the processing of the

header must stop.

The encodingStyle attribute defines the data types used in the SOAP

message. encodingStyle can be applied to any element in a SOAP mes-

sage and adds great flexibility to SOAP encoding. There is no standard

SOAP encoding scheme. The encodingStyle attribute is set to a URI, e.g.

soap:encodingStyle = http://www.item.ntnu.no/soap-enc/.

An example of an SOAP header element that illustrates use of all three

attributes:

<soap:Header>

<ex:accountNumber

xmlns:ex = http://www.item.ntnu.no/example

soap:mustUnderstand=1

soap:actor=http://www.item.ntnu.no/appl/

soap:encodingStyle = http://www.item.ntnu.no/soap-enc/>

1615.70.25551

</ex:accountNumber>

</soap:Header>

The Body Element

The body element is mandatory and includes the data intended for the

endpoint. Data requests and responses are typical contents of this element.
The following example illustrates a request body:

WSDL 109

<soap:body>

<ex:GetCredit

xmlns:m="http://www.item.ntnu.no/namespace/">

<ex:AccountType>

primaryAccount

</ex:AccountType>

</ex:GetCredit>

</soap:body>

This illustrates a response body for the request:

<soap:body>

<ex:GetCreditResponse

xmlns:m="http://www.item.ntnu.no/namespace/>

<ex:Credit>

1298.15

</ex:Credit>

</ex:GetCredit>

</soap:body>

The Fault Element

The last element of the SOAP message is the Fault element. This element

is used for error messages. Such messages can, as an example, be triggered

by the processing endpoint if it does not recognize an element where the

mustUnderstand attribute is set to 1. The standard defines several fault

codes for use. When interested in more details on fault codes, the reader is

referred to [19].

A.2 WSDL

A.2.1 WSDL elements

In order to get a better understanding of the standard we take a closer look

at the different elements in the WSDL standard. The different elements

are depicted in figure A.1We have made a simple example of a web service

called LightwightCalculator. The LighweightCalculator webservicehas only

one method called AddIntegers. AddIntegers takes two integers (addend a

and addend b) as input parameters and returns the sum of the integers.

Samples of the resulting WSDL code is used to illustrate use of the different

WSDL elements.

110 A. Web Services Protocols

Figure A.1: WSDL Document Format

WSDL 111

Definitions

The definitions element must be the root element in any WSDL document.

The definitions tag specifies the name of the web service and namespaces

for use later in the document. The example simply illustrates definitions

of namespaces. Between definitions begin and end tags, all other WSDL

elements are placed (this space is marked .. here).

<wsdl:definitions

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:tns="http://tempuri.org/"

xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

targetNamespace="http://tempuri.org/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

..

</wsdl:definitions>

Types

The type element specifies all data types used by sender and receiver. From

the following example the reader can easily recognize the method name

AddIntegers and the two input parameters addend a and addend b. Further

one should observe that the response from the AddInteger method is defined

as AddIntegersResult and that this response is of the type int.

<wsdl:types>

<s:schema

elementFormDefault="qualified"

targetNamespace="http://tempuri.org/">

<s:element name="AddIntegers">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1"

name="addend_a" type="s:int" />

<s:element minOccurs="1" maxOccurs="1"

name="addend_b" type="s:int" />

</s:sequence>

</s:complexType>

</s:element>

<s:element name="AddIntegersResponse">

<s:complexType>

<s:sequence>

112 A. Web Services Protocols

<s:element minOccurs="1" maxOccurs="1"

name="AddIntegersResult" type="s:int" />

</s:sequence>

</s:complexType>

</s:element>

</s:schema>

</wsdl:types>

Message

When namespaces and types are defined, the next task is to define the

SOAP message names. The messages must have unique names, and the

messages must be defined only one way. As can be seen from the example,

the AddInteger method results in two messages called AddIntegersSoapIn

and AddIntegersSoapOut:

<wsdl:message name="AddIntegersSoapIn">

<wsdl:part name="parameters"

element="tns:AddIntegers" />

</wsdl:message>

<wsdl:message name="AddIntegersSoapOut">

<wsdl:part name="parameters"

element="tns:AddIntegersResponse" />

</wsdl:message>

PortType

The PortType field defines the functions available in the service, and tells

which messages are associated with which methods. In the example, the

AddInteger method and SOAP messages are linked together to one opera-

tion:

<wsdl:portType name="LightweightCalculatorSoap">

<wsdl:operation name="AddIntegers">

<wsdl:input message="tns:AddIntegersSoapIn" />

<wsdl:output message="tns:AddIntegersSoapOut" />

</wsdl:operation>

</wsdl:portType>

Binding

The binding element has a reference to the PortType name, and defines

how the PortType operation should be sent. HTTP is the typical choice for

transport, but SMTP and FTP are other possible choices.

UDDI 113

<wsdl:binding

name="LightweightCalculatorSoap"

type="tns:LightweightCalculatorSoap">

<soap:binding

transport="http://schemas.xmlsoap.org/soap/http" />

<wsdl:operation name="AddIntegers">

<soap:operation

soapAction="http://tempuri.org/AddIntegers"

style="document" />

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

Service

The final element, the service element, defines the service location. The ex-

ample shows that the service named LightweightCalculator can be found on

the given IP-address (localhost in this case), the given TCP port (1493) and

at the given path (WebSite6/Service.asmx).Remark here that the service

name LightweightCalculator is linked to the PortType name Lightweight-

CalculatorSoap. The function described in the PortType is available in the

Service.asmx file, which contains the actual web service.

<wsdl:service name="LightweightCalculator">

<wsdl:port

name="LightweightCalculatorSoap"

binding="tns:LightweightCalculatorSoap">

<soap:address

location="http://localhost:1493/WebSite6/Service.asmx" />

</wsdl:port>

</wsdl:service>

A.3 UDDI

Companies that want to publish their services must register with the UDDI

repository. By doing this, the companies make their services publicly avail-

able. Information is stored hierarchically in the repository. The XML struc-

ture of the stored data is shown below:

<publisherAssertion>

114 A. Web Services Protocols

<businessEntity>

<businessService>

<bindingTemplate>

<tModel/>

<tModel/>

.

.

.

<tModel/>

</bindingTemplate>

</businessService>

<businessService>

.

.

.

</businessService>

.

.

.

<businessService>

.

.

.

</businessService>

</businessEntity>

</publisherAssertion>

For each business represented in the repository, there is a businessEntity

element. The businessEntity element describes the business and the location

of the business. Inside each businessEntity, there is at least one business ser-

vice element. The businessService element holds the name and description

of a given service. Inside the business service element, the bindingTem-

plate is found. The content of the bindingTemplate element is a pointer

to the service. This pointer typically consists of a URI to the WSDL file.

Furthermore, technical data is included in the tModel (technical model)

element. Such technical data often concern invocation of the service and

typical examples of technical data are information about input and output

parameters.

Hollar [37, p109] compares the contents of an UDDI repository with that

of a telephone book. The UDDI white pages contain plain contact informa-

tion about the business. UDDI yellow pages provide a deeper description

of the business, while the UDDI green pages describe the actual service and

the URI where the service can be found. The observant reader can thus see

UDDI 115

that white pages correspond to the businessEntity element, the yellow pages

correspond to the businessService element, and the green pages correspond

to the bindingTemplate element,

As mentioned above, UDDI is intended used for both publishing and

consumption of web services. In order to realize this, UDDI specifies two

APIs. For consumers, the Inquiry API is defined. By using the Inquiry API,

users get able to browse and search the tree structure of the repository. The

Inquiry API does also include methods for getting the data when service

consumers have found what they were looking for. Publishers have their

own API, the Publish API. Through this API, service providers can register

their services with the repository. After publishing, the providers may also

edit and delete their services through this API.

116 A. Web Services Protocols

Appendix B

XML Encryption and XML

Signature

In this chapter we provide an illustration of the operation of XML Encryp-

tion and XML Signature. The following XML message will be used for

illustration.

<?xml version="1.0" encoding="utf-8" ?>

<Order>

<ItemId>7817</ItemId>

<Amount>2</Amount>

<Name>John Doe</Name>

<CreditCardNumber>1234 5678 9012 3456</CreditCardNumber>

</Order>

B.1 XML Encryption

We will now demonstrate how XML Encryption works by encrypting the

CreditCardNumber element in the XML document above.

We chose to encrypt the element using a session key that is encrypted

with a shared key. As can be seen from the result below, the credit card

details are replaced with an EncryptedData element, consisting of Encryp-

tionMethod, KeyInfo, and CipherData elements. The EncryptionMethod

element says that 256-bit AES was used in CBC-mode. The key described

117

118 B. XML Encryption and XML Signature

in the KeyInfo element (removed for brevity) was used for encryption, and in

the CipherData element we find the encrypted version of the original XML

element.

<?xml version="1.0" encoding="utf-8"?>

<Order>

<ItemId>7817</ItemId>

<Amount>2</Amount>

<Name>John Doe</Name>

<EncryptedData

Type="http://www.w3.org/2001/04/xmlenc#Element"

xmlns="http://www.w3.org/2001/04/xmlenc#">

<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc" />

<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<EncryptedKey

xmlns="http://www.w3.org/2001/04/xmlenc#">

[the encrypted key and associated information]

</EncryptedKey>

</KeyInfo>

<CipherData>

<CipherValue>

[the encrypted CreditCardNumber element]

</CipherValue>

</CipherData>

</EncryptedData>

</Order>

It is clear from the previous example that XML encryption introduces a

significant amount of overhead compared to a cleartext XML document.

B.2 XML Signature

To illustrate the operation of XML Signatures, the original XML document

presented in the beginning of this chapter will be signed. The resulting XML

document is shown below.

<?xml version="1.0" encoding="utf-8" ?>

<Order>

<ItemId>7817</ItemId>

<Amount>2</Amount>

<Name>John Doe</Name>

<CreditCardNumber>1234 5678 9012 3456</CreditCardNumber>

<Signature xmlns="http://www.w3c.org/2000/09/xmldsig#">

XML Signature 119

<SignedInfo>

<CanonicalizationMethod

Algorithm="http://www.w3c.org/TR/2001/REC-xml-c14n-20010315"/>

<SignatureMethod

Algorithm="http://www.w3c.org/2000/09/xmldsig#rsa-sha1"/>

<Reference URI="">

<Transforms>

<Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

</Transforms>

<DigestMethod

Algorithm="http://www.w3c.org/2000/09/xmldsig#sha1"/>

<DigestValue>

[hash of the information that was signed]

</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>

[the digital signature]

</SignatureValue>

</Signature>

</Order>

We see that a Signature element, consisting of a SignedInfo and a Signa-

tureValue element, was added to the original document. SignedInfo specifies

the method of canonicalization1, specifies that signing is performed by creat-

ing a SHA-1 hash of the orignal document, found in the DigestValue element,

and then signing this hash using RSA and an agreed-upon RSA key not spec-

ified in the document. The signature can be found in the SignatureValue

element.

Just like XML encryption, XML signing introduces a significant over-

head.

1Canonicalization is performed in order to ensure that two semantically identical XML
documents are regarded as identical, e.g. when two elements have switched places.

120 B. XML Encryption and XML Signature

Appendix C

Policy Mapping Format

The format that is used for mapping web services parameters to input policy

definitions is shown below. For the attributes where several choices are

possible (e.g. validate), the first alternative is the default one. This means

that is the validate attribute is not included for a port, this is equivalent to

including validate=”true”.

<mapping>

<webservice wsdlPath="path or URL to WSDL document, if used">

<uris>

<uri>http://synonym 1</uri>

.

.

.

<uri>http://synonym n</uri>

</uris>

<ports>

<port name="port name A" namespace="namespace" useWsdl="false|true" validate="true|false">

<param name="param 1" schemaId="schema 1" useWsdl="false|true" validate="true|false" />

.

.

.

<param name="param m" schemaId="schema t" useWsdl="false|true" validate="false|true" />

</port>

.

.

.

</ports>

</webservice>

.

.

.

</mapping>

121

