
Doctoral theses at NTNU, 2019:230

Doctoral theses at N
TN

U, 2019:230
Bjørn-Olav H

oltung Eriksen

Bjørn-Olav Holtung Eriksen
Collision Avoidance and Motion
Control for Autonomous Surface
Vehicles

ISBN 978-82-326-4056-0 (printed version)
ISBN 978-82-326-4057-7 (electronic version)

ISSN 1503-8181

NT
NU

N
or

w
eg

ia
n 

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n 
Te

ch
no

lo
gy

an
d 

El
ec

tr
ic

al
 E

ng
in

ee
rin

g
De

pa
rt

m
en

t o
f E

ng
in

ee
rin

g 
Cy

be
rn

et
ic

s



Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Bjørn-Olav Holtung Eriksen

Collision Avoidance and Motion
Control for Autonomous Surface
Vehicles

Trondheim, August 2019

Faculty of Information Technology
and Electrical Engineering
Department of Engineering Cybernetics



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology
and Electrical Engineering
Department of Engineering Cybernetics

© Bjørn-Olav Holtung Eriksen

ISBN 978-82-326-4056-0 (printed version) 
ISBN 978-82-326-4057-7 (electronic version) 
ISSN 1503-8181

ITK-report: 2019-6-W

Doctoral theses at NTNU, 2019:230

Printed by Skipnes Kommunikasjon as



SUMMARY

This thesis presents topics related to collision avoidance (COLAV) and
motion control for autonomous surface vehicles (ASVs). The thesis contains
a collection of nine publications, of which six are peer-reviewed conference
articles, two are journal articles and one is a book chapter. In addition, it
contains an introduction providing context to the topic of COLAV at sea as
well as explaining the relationship between the publications.

When designing a control system for an ASV, one can approach the
COLAV problem in two distinct ways: using a single algorithm for handling
all aspects of the problem, or employing a hybrid architecture with multiple
algorithms to exploit their complementary strengths at different layers in the
architecture. We have chosen the latter approach, resulting in a modular
system that can be tailored and extended with new functionalities and
algorithms. In particular, our COLAV system has three layers, distributing
the task of COLAV, and its inherent motion planning tasks, at three distinct
responsiveness and completeness layers.

The top layer is responsible for performing energy-optimized path plan-
ning in a global setting, finding a trajectory throughout an environment
populated by static obstacles such as land, islands, shallow waters and navi-
gational marks. The planning algorithm uses a vessel model together with
ocean current information to produce an energy-optimized trajectory, which
minimizes the required energy to reach the goal.

The middle layer follows the trajectory specified by the top layer, while
avoiding moving obstacles in a predictable fashion in accordance with the
International Regulations for Preventing Collisions at Sea (COLREGs). The
COLREGs contains a set of rules on how vessels shall maneuver in situations
where there is a risk of collision. Specifically, the developed algorithm used
at this layer considers COLREGs rules 8, 13–16 and parts of Rule 17.

The bottom layer follows the trajectory specified by the middle layer,
while ensuring that commands specified for the vessel controller are feasible
with respect to the vessel’s capabilities. This layer also handles emergency
situations, such as obstacles detected late or behaving dangerously, and
situations where the middle layer fails to find a solution. In particular, this
thesis includes two algorithms for the bottom layer, which are tested in
several full-scale experiments using a radar-based system for detection and
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iv Summary

tracking of obstacles. The first algorithm, based on the dynamic window
(DW) algorithm, have problems with the amount of noise present in the
obstacle estimates provided by the tracking system, as well as having other
limitations. The second algorithm, named the branching-course model pre-
dictive control (BC-MPC) algorithm, addresses the weaknesses of the DW
algorithm, and is the algorithm found to be most suitable for the bottom
layer. The BC-MPC algorithm ensures compliance to the remaining parts
of COLREGs Rule 17, while also considering rules 8 and 13–15, making our
COLAV system compliant with COLREGs rules 8 and 13–17.

A COLAV system is highly dependent on a well-performing vessel con-
troller. Relevant work to that end in this thesis has been directed towards
high-speed ASVs, which commonly operate both in the displacement, semi-
displacement and planing regions. Existing methods for modeling such
vessels are complex, and not well suited for controller design. Therefore, a
method for modeling and identification of high-speed ASVs is also proposed.
This method is used to create a model of a high-speed ASV, shown to be valid
for the displacement, semi-displacement and planing regions. This model is
used to design two vessel controllers that utilize model-based feedforward
terms, shown to outperform traditional controllers in full-scale experiments.

Summing up, this thesis contributes at all the three described COLAV
layers, in addition to modeling, identification and control of high-speed
ASVs, and represents a step on the road to autonomy at sea.



PREFACE

This thesis consists of research I conducted during the period 2015–2019,
and is submitted as a partial fulfillment of the requirements for the degree
of philosophiae doctor (PhD) at the Norwegian University of Science and
Technology (NTNU). The work has been carried out at the Department
of Engineering Cybernetics (ITK), with Dr. Morten Breivik as my main
supervisor and Dr. Edmund F. Brekke as my co-supervisor. I have been
working as part of the Autosea project, lead by Dr. Brekke, which is focusing
on collision avoidance and sensor fusion for autonomous surface vehicles.
The Autosea project has been collaboratively funded by the Norwegian Re-
search Council (project number 244116), Kongsberg Maritime, DNV GL and
Maritime Robotics (MR). My work has also been supported by the Centre
for Autonomous Marine Operations and Systems (NTNU AMOS), funded
by the Norwegian Research Council (project number 223254). Without the
support of them all, the thesis in your hand would not have existed – thank
you!

I have always been interested in engineering, technology and practical
work, and I thank my family which encouraged this throughout my youth.
In particular, my father Tor and my grandfather Bjarne (nicknamed “Bibbi”)
nurtured this by helping me build things from birdhouses and shelves, to
audio amplifiers and a combined doorbell and alarm system for my room.
With this in mind, vocational studies was a natural choice for me when
approaching high school, which led me to a profession certificate as an
automation engineer in 2009. After a couple of years, I realized that I wanted
to further my education. I started a BSc in computer science and industrial
automation at the Telemark University College in 2010, with the thought
that I would not pursue any more than this degree. Finishing my BSc in 2013,
I obviously had forgotten all about this and started a MSc in engineering
cybernetics at NTNU. Finishing my MSc in 2015, I expected to return
to the industry, but instead I started on a PhD in engineering cybernetics
which I am now finishing. Looking back, it has been an interesting journey,
and I am very glad that I pursued a vocational career in high school – I do
not think I would have managed to end up where I am today without it.

Like many other PhD candidates, my motivation during the studies has
been riding a never-ending roller-coaster. The work has had periods with
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high stress levels and thoughts questioning the usefulness of my work, but
I have been lucky to be able to angle my work experimentally – successful
experiments have always put a smile on my face. I would like to thank my
main supervisor Dr. Morten Breivik who gave me the opportunity to take
my PhD at the department. He has guided me throughout my research,
supported my ideas and restored my faith in myself when I have been in
doubt. I’m also grateful for my co-supervisor Dr. Edmund Brekke, who has
provided valuable inputs during my PhD studies, complementing Morten
and myself with a more theoretical and analytical approach to things. I
would also like to thank my fellow PhD candidates at ITK, who I have shared
considerable amounts of coffee, tea and beer with, having good discussions
and laughs together. In particular, I would like to thank Dr. Mathias H.
Arbo, Erik F. Wilthil, Andreas L. Flåten, Kristoffer Gryte and Håkon H.
Helgesen, who started their PhD studies at the same time as me. As part of
the Autosea project, I have had the pleasure of working closely with Andreas
and Erik, a collaboration I have enjoyed to a great extent. Mathias, thank
you for putting up with me as your office mate – I am forever thankful for
our friendship and all the fruitful discussions we have had, it has helped
keeping me reasonably sane. I would like to express a special thanks to
Arild Hepsø and Kenan Trnka at MR for providing assistance in performing
experiments, and also to Glenn Bitar and Mikkel E. N. Sørensen who I
have had the pleasure of collaborating with. Glenn, our discussions have
been somewhat heated at times, which I believe have brought out the best
in us both – I have really enjoyed working with you.

I would also like to thank my mother and father, Synnøve and Tor, and
my brother Tor-Christian for supporting me throughout the years. Marie,
thank you for lightening up my days with cheer, joy, adventures and love.
I’m looking forward to more of this together with you.
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Chapter 1

INTRODUCTION

This chapter contains a brief motivation for the topics covered in this thesis,
a summary of the main contributions, and finally an outline of the rest of
the thesis.

1.1 Motivation
Automation has for a long time been an everyday part of human society.
It is commonly associated with automatic manufacturing with minimum
human effort, but encompasses everything from the float regulator in a toilet
to numerically controlled milling machines. In general, the term is often
defined as using machines or computers instead of humans to perform a
certain task. The most apparent historic event marking the introduction
of automation might be the Industrial Revolution, when manufacturing
processes transitioned from hand production methods to using machines.
Since then, the amount and complexity of automation in society has steadily
increased. When automation reaches a certain complexity level, people tend
to rather use the term autonomy. This can be exemplified by the automotive
industry, where technologies such as cruise control and anti-lock braking
system are regarded as automation, while the complete control of the vehicle
is considered as autonomy.

Automation is not a new concept for ship control. In fact, automatic
control of ships appeared as early as 1922, marked by the installation of a
mechanical gyropilot on board the cargo vessel Munargo [1]. This gyropilot,
commonly named the Metal-Mike and developed by Sperry Gyroscope Com-
pany, was the world’s first maritime autopilot, steering the ship’s rudder
to control the heading. This was tightly coupled with the introduction of
the gyrocompass, enabling reliable measurement of a ship’s heading [2]. In
the 1960s, dynamic positioning (DP) systems controlling a ship’s position
with high accuracy started to appear. The first DP systems were relatively
simple, but a development spearheaded by the Norwegian professor Jens G.
Balchen† was soon to revolutionize the DP systems by using Kalman-filtering
techniques for improving the performance and reliability. This work resulted

†Jens Glad Balchen (1926-2009) was a Norwegian professor considered to be the
father of Engineering Cybernetics in Norway. In 1954, he founded what was to become
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2 Chapter 1. Introduction

in Kongsberg Weapons Factory, today the Kongsberg Group, releasing the
Albatross DP system in 1977 [4], which soon became the market-leading DP
system.

Autonomy has for a long time been researched for underwater and space
operations, where limited communication bandwidths or delays often pro-
hibit direct human control of the vehicles. Such operations depend on
autonomy simply in order to be realizable, and are typically performed by
a human specifying a mission which the vehicle executes autonomously. In
this fashion, the human is still in control of the operation, but relieved of
from moment to moment control decisions. In addition to being an enabling
technology, autonomy has several other benefits. This includes increased
convenience by automating dull tasks, increased safety by reducing the num-
ber of human errors, and possibilities for reduced environmental impact by
optimizing vehicle motion. This have led to autonomous technology enter-
ing domains other than space and underwater applications. The technology
has also shown promise in domains that do not have severe communication
constraints, as exemplified by the research efforts on autonomous cars made
by the automotive industry [5].

Increased safety of personnel and reduced operational costs have since
the mid 2000s motivated research on autonomous surface vehicles (ASVs)
for defense-related use [6]. The U.S. Navy recently demonstrated their
technology when the Sea Hunter, depicted in Fig. 1.1, made a round-trip
journey from San Diego, California to Pearl Harbor, Hawaii without a crew
on board [7].

Research on ASVs is also going on in the commercial sector, where ASVs
present attractive possibilities in reducing the cost of e.g. seabed survey
operations. This have traditionally been performed by large manned vessels,
but small ASVs like the Telemetron ASV, shown in Fig. 1.2, have potential
for reducing the cost of these operations. Currently, focus is also picking up
on transportation of people by autonomous ferries, which can take advantage
of waterways for urban transportation and reduce travel time [9].

In later years, the larger maritime companies have also come to realize
the advantages of autonomy at sea, directed towards applications such as au-
tonomous passenger and cargo transport. An example is the Yara Birkeland
project in Norway, where an autonomous, electrically-powered cargo vessel,
depicted in Fig. 1.3, will replace approximately 40000 diesel-powered truck-
loads of fertilizer per year by 2022 [10]. Another example is the world’s first
autonomous car ferry Falco, developed by Rolls-Royce Commercial Marine

the Department of Engineering Cybernetics at the Norwegian University of Science and
Technology (NTNU) [3].
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Figure 1.1: DARPA’s Sea Hunter at sea tests in February 2017. The Sea Hunter is a
132-foot long ASV designed for detecting and tracking submarines for time periods over
weeks or months [8]. Courtesy of Defense Advanced Research Projects Agency (DARPA).

Figure 1.2: The Telemetron ASV, an 8.45 m long dual-use vessel designed for both manned
and unmanned operations. Courtesy of Maritime Robotics.
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Figure 1.3: An illustration of the Yara Birkeland vessel, which is an example of a MASS.
Courtesy of Marin Teknikk and Kongsberg Maritime.

(recently bought by Kongsberg Maritime) and Finferries, which navigated
autonomously in Finland in 2018 [11]. The Finnish company Wärtsilä also
demonstrated autonomous transit and docking of a car ferry in Norway
in 2018 [12]. Improved cost efficiency and reduced environmental impact
due to lower fuel consumption may be the most obvious benefits for these
applications, but there is also a significant potential for increased safety. Re-
ports state that human errors are the cause of more than 75% of maritime
accidents [13, 14], a number that autonomous technology most likely can
reduce.

In order to employ ASVs in areas where other vessels are present, the
ASVs must be able to avoid collisions while adhering to the International
Regulations for Preventing Collisions at Sea (COLREGs). The COLREGs
contains a set of rules describing how vessels should maneuver in situations
where a risk of collision exists [15]. This requires developing a robust collision
avoidance (COLAV) system, which is an important enabling technology to
realize the full potential of ASVs.

Several terms are often interchanged in the literature on control and
autonomy of vessels at sea. Some of these are autonomous marine vehicle
(AMV), ASV, maritime autonomous surface ship (MASS) and unmanned
surface vehicle (USV). In this regard, the term AMV refers to a general
class of autonomous vehicles, operating in the maritime domain on or below
the surface. Furthermore, ASV is a subclass of AMV, encapsulating au-
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tonomous vessels at the sea surface. The term MASS represents a subclass
of ASV, typically used by the maritime industry and referring to vessels
longer than 10–12 m. Also notice that autonomous does not necessarily
mean unmanned. Analogous to autonomous cars, manned vessels can use
autonomous systems supervised by humans on board. Furthermore, USV is
a term not directly coupled to ASV: USVs are unmanned vessels typically
operated autonomously or by remote control. This thesis will primarily use
the terms vessel and ASV.

1.2 The Autosea project
During my PhD, I have worked as part of the Autosea project (2015–2019),
which is a knowledge-building project in collaboration between NTNU, DNV
GL, Kongsberg Maritime and Maritime Robotics, focusing on sensor fusion
and collision avoidance for ASVs. The Autosea project is the first larger
project led by NTNU focusing on ASVs.

As shown in Fig. 1.4, the project is divided into two major parts: a sensor
fusion module and a collision avoidance module, which delineate natural
divisions of labor. I have worked on the collision avoidance module, while
other people in the Autosea team has focused on the sensor fusion module.

The Autosea project has had a significant focus on experimental verifica-
tion, enabled by the industry partners providing easy access to test platforms
and sensor systems. In this thesis, results from several full-scale experiments
are presented. These experiments have depended on a radar-based tracking
system for detecting and tracking obstacles. This system has been developed
by Andreas L. Flåten and Erik F. Wilthil, who have worked as other PhD
candidates in the Autosea project, and is described in depth by Wilthil [16]
and Wilthil, Flåten, and Brekke [17].
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Collision
detection

Collision
avoidance

Guidance

Control
system

Link to
operator

Actuators
Navigation
sensors

Navigation

Charts

Target
tracking

Imaging
sensors

AIS

Collision avoidance module

Sensor fusion module

Figure 1.4: A control architecture for an ASV. The sensor fusion module considers
navigation and target tracking, and provides the collision avoidance system with obstacle
estimates. The collision avoidance module performs path planning and guidance, while
generating obstacle avoidance maneuvers based on the information from the tracking
system. Notice that the collision avoidance system developed in this thesis has a different
structure, but the figure serves as an illustration of the relation between the sensor fusion
and collision avoidance modules.

1.3 Contributions at a glance
Several algorithms and methods for collision avoidance and motion control
for ASVs have been developed as parts of this thesis. The contributions are
discussed in depth in Chapter 3, and is summarized as the development of:

• A vessel model and a procedure for identifying model parameters for
high-speed ASVs operating in the displacement, semi-displacement
and planing regions.

• Two vessel controllers for high-speed ASVs utilizing model-based feed-
forward terms based on an identified model of the Telemetron ASV.
The vessel controllers are compared to traditional controllers in full-
scale experiments.

• A hybrid COLAV architecture with a three layered COLAV system.
The architecture is shown to demonstrate energy-optimized path plan-
ning and avoidance of static and moving obstacles in compliance with
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rules 8 and 13–17 of the COLREGs, including handling of emergency
situations.

• Two algorithms for short-term COLAV: a modified dynamic window
(DW) algorithm and the branching-course model predictive control
(BC-MPC) algorithm. Both algorithms are tested in full-scale experi-
ments with radar-based detection and tracking of obstacles.

• One algorithm for mid-level COLAV, which is interfaced to an existing
algorithm for energy-optimized path planning.

• A state machine for interpreting the COLREGs and labeling obstacles
with relevant rules.

1.4 Publications
This section lists the publications which have been written during the work
on this thesis. The publications are ordered chronologically, and the recom-
mended (thematic) reading order is: Paper B, Paper E, Paper A, Paper D,
Paper F, Paper H, Paper C, Paper G and finally Paper I, where the work
culminates.

Journal publications and book chapters

Paper B B.-O. H. Eriksen and M. Breivik, “Modeling, identification
and control of high-speed ASVs: Theory and experiments”, in
Sensing and Control for Autonomous Vehicles: Applications to
Land, Water and Air Vehicles, T. I. Fossen, K. Y. Pettersen,
and H. Nijmeijer, Eds. Springer International Publishing, 2017,
pp. 407–431, isbn: 978-3-319-55372-6

Paper F B.-O. H. Eriksen, M. Breivik, E. F. Wilthil, A. L. Flåten,
and E. F. Brekke, “The branching-course MPC algorithm for
maritime collision avoidance”, 2019, Accepted for publication
in Journal of Field Robotics, available at https://arxiv.org/
abs/1907.00039

Paper I B.-O. H. Eriksen, G. Bitar, M. Breivik, and A. M. Lekkas,
“Hybrid collision avoidance for ASVs compliant with COL-
REGs rules 8 and 13–17”, 2019, Submitted to Frontiers in
Robotics and AI, available at https://arxiv.org/abs/1907.
00198
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Conference publications

Paper A B.-O. H. Eriksen, M. Breivik, K. Y. Pettersen, and M. S.
Wiig, “A modified dynamic window algorithm for horizontal
collision avoidance for AUVs”, in Proc. of the 2016 IEEE
Conference on Control Applications (CCA), (Buenos Aires,
Argentina), 2016, pp. 499–506

Paper C B.-O. H. Eriksen and M. Breivik, “MPC-based mid-level
collision avoidance for ASVs using nonlinear programming”,
in Proc. of the 1st IEEE Conference on Control Technology
and Applications (CCTA), (Mauna Lani, Hawai’i, USA), 2017,
pp. 766–772

Paper D B.-O. H. Eriksen, E. F. Wilthil, A. L. Flåten, E. F. Brekke,
and M. Breivik, “Radar-based maritime collision avoidance
using dynamic window”, in Proc. of the 2018 IEEE Aerospace
Conference, (Big Sky, Montana, USA), 2018, pp. 1–9

Paper E B.-O. H. Eriksen and M. Breivik, “A model-based speed
and course controller for high-speed ASVs”, in Proc. of the
11th IFAC Conference on Control Applications in Marine Sys-
tems, Robotics and Vehicles (CAMS), (Opatija, Croatia), 2018,
pp. 317–322

Paper G G. Bitar, B.-O. H. Eriksen, A. M. Lekkas, and M. Breivik,
“Energy-optimized hybrid collision avoidance for ASVs”, in
Proc. of the 17th IEEE European Control Conference (ECC),
(Naples, Italy), 2019, pp. 2522–2529

Paper H B.-O. H. Eriksen and M. Breivik, “Short-term ASV collision
avoidance with static and moving obstacles”, 2019, Submitted
to Modeling, Identification and Control, available at https:
//arxiv.org/abs/1907.04877

Other publications

• S. Hexeberg, A. L. Flåten, B.-O. H. Eriksen, and E. F. Brekke,
“AIS-based vessel trajectory prediction”, in Proc. of the 20th IEEE
International Conference on Information Fusion (FUSION), (Xi’an,
China), 2017, pp. 1–8
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• M. E. N. Sørensen, M. Breivik, and B.-O. H. Eriksen, “A ship
heading and speed control concept inherently satisfying actuator con-
straints”, in Proc. of the 1st IEEE Conference on Control Technology
and Applications (CCTA), (Mauna Lani, Hawai’i, USA), 2017, pp. 323–
330

• B. R. Dalsnes, S. Hexeberg, A. L. Flåten, B.-O. H. Eriksen, and
E. F. Brekke, “The neighbor course distribution method with Gaussian
mixture models for AIS-based vessel trajectory prediction”, in Proc.
of the 21st IEEE International Conference on Information Fusion
(FUSION), (Cambridge, UK), 2018, pp. 580–587

• E. Serigstad, B.-O. H. Eriksen, and M. Breivik, “Hybrid collision
avoidance for autonomous surface vehicles”, in Proc. of the 11th IFAC
Conference on Control Applications in Marine Systems, Robotics, and
Vehicles (CAMS) 2018, (Opatija, Croatia), 2018, pp. 1–7

• M. E. N. Sørensen, O. N. Lyngstadaas, B.-O. H. Eriksen, and M.
Breivik, “A dynamic window-based controller for dynamic positioning
satisfying actuator magnitude constraints”, in Proc. of the 11th IFAC
Conference on Control Applications in Marine Systems, Robotics and
Vehicles (CAMS), (Opatija, Croatia), 2018, pp. 140–146

All the publications referenced in this section are peer-reviewed. Fig. 1.5
shows the scope of, and relation between, the publications in the hybrid
COLAV architecture.

1.5 Outline
The rest of this thesis is structured as follows: Chapter 2 presents background
information, Chapter 3 contains an in-depth presentation of the contributions
in this thesis and stitches the relationship between the publications together,
while Chapter 4 contains conclusions and suggestions for further work. The
original publications are included in Chapter 5, while Appendix A contains
supplementary material to Paper B.
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• Paper G: Energy-optimized hybrid
collision avoidance for ASVs (2019)

• Paper C: MPC-based mid-level colli-
sion avoidance for ASVs using nonlin-
ear programming (2017)

• Hybrid collision avoidance for au-
tonomous surface vehicles (2018)

• Paper A: A modified dynamic win-
dow algorithm for horizontal collision
avoidance for AUVs (2016)

• Paper D: Radar-based maritime colli-
sion avoidance using dynamic window
(2018)

• Paper F: The branching-course MPC
algorithm for maritime collision avoid-
ance (2019)

• Paper H: Short-term ASV collision
avoidance with static and moving ob-
stacles (2019)

• Paper B: Modeling, identification and
control of high-speed ASVs: Theory
and experiments (2017)

• Paper E: A Model-based speed and
course controller for high-speed ASVs
(2018)

• A ship heading and speed control con-
cept inherently satisfying actuator con-
straints (2017)

• A dynamic window-based controller for
dynamic positioning satisfying actua-
tor magnitude constraints (2018)

• Paper I: Hybrid collision avoidance
for ASVs compliant with COLREGs
rules 8 and 13–17 (2019)

• AIS-based vessel trajectory prediction (2017)

• The neighbor course distribution method with Gaussian mix-
ture models for AIS-based vessel trajectory prediction (2018)

Vessel controller

Figure 1.5: Scope of the articles related to the hybrid COLAV architecture. The articles
in gray are works co-authored by the author and not included in the thesis.



Chapter 2

BACKGROUND

This chapter presents a historic background of COLAV and the COLREGs.

2.1 The basis of collision avoidance algorithms
In the early 1980s, researchers started developing COLAV algorithms for use
with industrial robot manipulators, marking the start of a new step on the
way towards autonomy. One of the first algorithms was presented in 1981,
which avoided obstacles by projecting the desired path in the null-space of
the obstacles [32]. In 1985, Khatib presented the first version of the now
well-known artificial potential field method [33, 34]. This concept is based on
forming a potential field where all obstacles give a positive potential based
on the distance to the obstacle, and a goal gives a negative potential based
on the distance to the goal. A path is found by following the gradient of
the potential field, giving motion repelled from the obstacles and attracted
towards the goal. In general terms, the artificial potential field method is
an unconstrained optimization problem solved by a gradient descent search,
where the objective function consists of the potential field. The potential field
method presented by Khatib is the basis of many algorithms, e.g. [35–37], and
the core idea is still used in COLAV algorithms today [38, 39]. The artificial
potential field method does, however, have inherent limitations of being
prone to get stuck in local minima, and often having oscillatory behavior
in narrow passages and in the presence of obstacles [40]. During the 1990s,
researchers pursued alternative methods such as the DW algorithm [37,
41] and the velocity obstacle (VO) algorithm [42]. The DW algorithm
is an optimization-based algorithm taking vehicle dynamics into account,
while the VO algorithm is a purely kinematic approach based on forward
projection of the velocity vectors of the controlled vehicle and obstacles.
The VO algorithm calculates cone-shaped regions in the velocity space that
will result in collisions. To avoid collision, the algorithm selects a velocity
outside of these regions. Its simplicity and intuitive workings have made
the VO algorithm gain a lot of popularity, and it is extensively used by
researchers today.

The algorithms mentioned so far are often characterized as reactive
algorithms. The literature characterizes reactive algorithms, sometimes

11
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referred to as local or sense–act algorithms, as algorithms considering a
limited amount of information (originally only the currently available sensor
information), and employing little motion planning over a short time frame.
This makes reactive algorithms computationally cheap, and hence well suited
for responding to sudden changes in the environment, such as obstacles
making unpredictable maneuvers, late detection of obstacles, etc. However,
by only considering a limited amount of information, reactive algorithms are
prone to making suboptimal decisions in complex situations, and can easily
get trapped in local minima. As opposed to reactive algorithms, deliberate
algorithms, sometimes referred to as global or sense–plan–act algorithms,
consider more information and employ a larger amount of planning, typically
with longer time horizons than reactive algorithms. Deliberate algorithms,
such as the A* or rapidly exploring random tree (RRT) algorithms, choose
solutions that may be more globally optimal (given all information), at the
cost of an increased computational burden. Optimization-based algorithms
with a planning horizon longer than one time step, i.e. model predictive
control (MPC)-based algorithms are in general considered as deliberate
as they include a concept of planning. As the computational power has
increased throughout the years, MPC and optimal control have become
increasingly feasible for systems with faster dynamics than traditional process
control. This has led MPC to become a more and more preferred tool for
designing COLAV algorithms.

The previously clear border between reactive and deliberate algorithms
has become somewhat artificial, since increased computational power has
allowed for algorithms to incorporate more planning, and few algorithms
these days only utilize the currently available sensor information. However,
the idea of having some algorithms for robust and fast-reacting short-term
planning, and others for mission and cost optimal long-term planning is
still relevant. Dividing COLAV algorithms into short-term and long-term
algorithms, where the planning horizon of the algorithms decide the category,
makes for a better classification of COLAV algorithms today [19].

A practical COLAV system for an ASV must be able to react to sudden
changes in the environment, while also making predictable and optimal
maneuvers in a longer time frame. This implies that qualities from both
short-term and long-term algorithms are needed. Even though it is possible
to design a single algorithm with the required behavior, a more flexible
and intuitive approach is to combine short-term and long-term algorithms
in a hybrid architecture. Hybrid architectures build upon complementary
strengths of different algorithms, and makes it easier for a human operator
or supervisor to understand the COLAV system. Some examples of hybrid
COLAV architectures are given by Loe [43], Casalino, Turetta, and Simetti
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[44], and Švec, Shah, Bertaska, Alvarez, Sinisterra, Ellenrieder, Dhanak,
and Gupta [45].

2.2 The maritime rules of the road

The sea has since early times been an important pathway for merchant trade,
transportation and information flow for the human species. The maritime
industry has always been troubled by the costly problem of collisions between
vessels, causing loss of both human lives and material property. This problem
has for a long time been tackled by rules on how vessels should maneuver in
relation to each other. The first known set of maneuvering rules was made
around 400 BC, named the Rhodian Sea Law after the isle of Rhodes [46].
In the 18th century, the common convention was that ships of junior rank
should give way to vessels with senior rank. This posed the question of how
to decide rank when faced with vessels of different nationality, motivating for
a more explicit rule set on how one should avoid collisions at sea. Today’s
rules date back to 1776, when Admiral Lord Richard Howe issued a signal
book to a commander on the vessel HMS Tartar. This signal book contained
an early reference to rules of the road at sea, and included a statement that
in a crossing situation, the vessel with the other vessel to her starboard side
should avoid collision by a starboard maneuver [47]. Such an explicit rule
reduced the possibility of misunderstanding a situation, and the wording
has strong similarities to how the COLREGs describes crossing situations
today. The guidelines were, however, not acknowledged to a wide extent at
that time.

The size, speed and number of merchant ships grew fast in the early 19th
century, resulting in a large increase in the number of accidents. In 1839,
a committee in England investigated the causes of 92 accidents involving
steamboats, resulting in only 12 being considered as collisions (stated to be a
“considerable undercounting” [48, pp. 170]). Anyhow, the committee stated
that the lack of a rule set on how to maneuver in collision situations was the
main reason behind these 12 collisions. This led several committees to rec-
ognize the need for rules of the road regulating how ships should maneuver
in close-counter situations. In 1840, the London Trinity House Corporation
began lobbying for a common rule set, which the English government passed
in 1846 as the Steam Navigation Act [47, 48]. This further materialized in
1862, when England and France agreed on the first international rules for the
prevention of collisions at sea [49], which the British Board of Trade drafted
in 1860 [47]. In 1884, England revised the rules, and by 1885 other nations
such as the United States, Belgium, Germany, France, Japan, Norway and
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Denmark adopted the new rules [49]. The first international maritime con-
ference was held in Washington, D.C. in 1889, at which minor changes were
made to the rules issued in 1884. These rules remained unchanged for over
fifty years, and were internationally recognized at an international maritime
conference in Brussels in 1910 [47].

Radar was introduced at sea as early as 1937 [50], but it was not until
the advancement in radar technology following World War II that civilian
ships became equipped with radars. This was initially believed to solve
the problem of collisions at sea, but it was quickly seen that the number of
collision with ships equipped with radar increased, revealing inherent limi-
tations and skill requirements related to the use of radar for navigation [49].
Techniques from the Navy involving manual plotting of ships relative motion
was introduced, but these techniques became less suitable with the drastic in-
crease in ship speed during the 1960s. This led to increased requirements for
personnel training, as well as the introduction of new radar technologies in
the late 1960s and early 1970s. The use of radar for COLAV was recognized
in the rules of the road by the 1960 Safety of Life at Sea conference [47, 49],
which was put into action in 1965. In 1963, investigations on the usefulness
of traffic separation schemes was initiated after a large increase in loss of
ships due to human errors. This led to the introduction of traffic separation
schemes in the Dover Strait by the International Maritime Organization
(IMO) in 1967, resulting in a significant reduction in the number of collisions
involving ships of opposing headings [51]. Following this, the rules of the
road were revised again in 1972, when substantial changes were made in
relation to the drastically increased use of radar. At the same time, traffic
separation schemes were included in the rules [15]. The revised rules came
into force in 1977, and is what we today, with minor revisions, refer to as
the COLREGs.

The COLREGs consists of five parts and a total of 37 rules [15], where
part B (rules 4–19) contains relevant rules on how vessels in close proximity
to each other should maneuver. Of those rules, the most relevant ones are
rules 8 and 13–17:

Rule 8 Action to avoid collision. This rule requires actions taken
to avoid collision to be large enough to be readily observable
for other vessels. This implies that one should avoid a series of
small incremental changes in speed and/or course. Furthermore,
this rule also states that avoidance maneuvers preferably should
be performed by course changes, and that maneuvers must be
made in ample time.

Rule 13 Overtaking. This rule considers overtaking situations, and
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(a) Overtaking situation. Both vessel A and B are overtaking
the unmarked vessel. Notice that vessel A and B also are in a
potential crossing situation.

(b) Resolution of the overtaking situation for vessel B.

Figure 2.1: An example of an overtaking situation, and how it can be solved.

states that a vessel is overtaking another if it approaches the
other vessel with a course of more than 22.5◦ abaft her beam†.
In such a situation, the overtaking vessel has to stay clear of
the overtaken vessel, but there are no requirements on which
side of the overtaken vessel it should pass. Fig. 2.1 shows an
example of an overtaking situation.

Rule 14 Head on. This rule considers head-on situations, which refer
to cases where two power-driven vessels approach each other on
reciprocal, or nearly reciprocal, courses. In a head-on situation,
both vessels should maneuver to starboard, passing port-to-
port. There is no explicit definition of what a nearly reciprocal
course is, but court decisions indicate that courses opposing
each other by ±6◦ should be considered as nearly reciprocal.
Fig. 2.2 shows an example of a head-on situation.

Rule 15 Crossing. This rule considers crossing situations, where two
†“Abaft” is a nautical preposition interpreted as towards the back of a ship , while the

“beam” is the widest section of a vessel. The term “22.5◦ abaft her beam” hence refers to
angles 22.5◦ behind the widest part of a ship, as illustrated in Fig. 2.1(a).
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Figure 2.2: An example of a head-on situation, and how it can be solved by both vessels
maneuvering to starboard.

(a) Vessel A has to keep out
of the way of vessel B.

(b) A potential solution to the
crossing situation, where vessel
A crosses astern† of vessel B.

Figure 2.3: An example of a crossing situation, and how it can be solved.

vessels approaches each other in a situation that is not a head
on or an overtaking. In such a situation, the vessel having the
other on her starboard side has to keep out of the way of the
other, and is deemed the give-way vessel. The other vessel is
deemed the stand-on vessel, and has to keep her course and
speed. The give-way vessel should preferably avoid passing in
front of the stand-on vessel, but this is not strictly forbidden.
Fig. 2.3 shows an example of a crossing situation.

Rule 16 Action by the give-way vessel. This rule simply states that
every vessel that has to maneuver in accordance with the rules
should take early and substantial action to avoid collision.

Rule 17 Action by the stand-on vessel. This rule has two main parts,
where the first requires that a stand-on vessel has to keep its
current speed and course in a crossing situation. The second
part considers situations where the give-way vessel does not
maneuver to avoid collision in accordance with the rules. The
stand-on vessel may maneuver if it becomes apparent that such

†“Astern” is a nautical adverb meaning behind or towards the rear of a ship.
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a situation exists, and must maneuver if the give-way vessel
cannot avoid collision alone. If the stand-on vessel chooses to
maneuver in a crossing situation, it should avoid maneuvering
to port as this can lead to a collision if the give-way vessel
maneuvers to starboard.

In addition to the rules listed above, a “complete” COLAV system should
also consider rules 6 (safe speed), 9 (narrow channels), 10 (traffic separation
schemes), 12 (sailing vessels), 18 (responsibilities between vessels) and 19
(restricted visibility). In particular, Rule 18 is important in defining the
responsibilities between different vessel types, e.g. sailing vessels, fishing
vessels and vessels with a restricted ability to maneuver.

2.3 Detection and tracking of obstacles at sea
Even though this thesis focuses on COLAV, some attention should be given
to the problem of providing obstacle estimates to a COLAV system. In
general, we can distinguish between two principles for this:

1. Using systems dependent on infrastructure or communication with
other vessels.

2. Using systems not dependent on infrastructure or communication with
other vessels, e.g. utilizing exteroceptive sensors.

The obvious benefit of the first principle is the simplicity, with the most
apparent system of this category at sea being the automatic identification
system (AIS) [52], which transmits information about a vessel’s state using
the very high frequency (VHF) band. The IMO requires all passenger ships
and vessels with a gross tonnage of over 300 to carry AIS transponders,
making it easy to receive information about their position, speed and course.
AIS transponders do, however, rely on navigation equipment on board the
vessels and user-specified information, which results in the possibility of
providing inaccurate or invalid data [53]. In addition, one cannot avoid
vessels and objects not carrying AIS transponders, e.g. most leisure vessels
and kayaks, if only relying on AIS. Naval vessels are also allowed to turn
off their AIS transponders. This has been the case in several accidents,
e.g. a collision between the Norwegian frigate KMN Helge Ingstad and the
oil-tanker Sola TS on the 8th of November 2018 in Norway, and a collision
between the USS Fitzgerald and the container ship ACX Crystal on the 17th

of June 2017 in Japan. It is clear that a robust COLAV system cannot rely
on AIS as a sole source of obstacle estimates.
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As an alternative to using systems dependent on infrastructure or com-
munication with other vessels, one can employ exteroceptive sensors, such as
radars, cameras and lidars, to detect and track other vessels and/or objects.
The benefit of this approach is that one can detect vessels, and even objects
such as kayaks, swimmers, icebergs, driftwood, etc., without requiring any
communication cooperation. On the other hand, exteroceptive sensors pro-
vide an added complexity, since one must employ a tracking system in order
to provide estimates of the position, speed and course of obstacles. Obstacle
estimates provided by such a system will typically also contain more noise
than obstacle estimates based on AIS information, which can be challenging
to handle [23].

2.4 A historic overview of collision avoidance at
sea

This section presents a shallow dive into the ocean of COLAV efforts made
by the maritime industry and academia, up until the time I began getting
my feet wet. Interested readers are referred to Tam, Bucknall, and Greig
[51], Statheros, Howells, and Maier [54], and Campbell, Naeem, and Irwin
[55] for additional surveys on the topic.

The introduction of radars on civilian vessels after World War II mo-
tivated qualitative research studies on COLAV maneuvers in the 1960s,
primarily focused on interpretation of the collision regulations, and their
practical applicability [51]. This led to the release of an anti-collision in-
dicator in 1968 [56], an electro-mechanical analogue computer proposing a
set of safe courses and speeds, shown in Fig. 2.4. The computations were
based on information about the relative bearing, distance and speed of an
obstacle, obtained by radar and manually fed into the unit by an operator.

In 1961, researchers began developing automatic radar plotting aid
(ARPA) with manual track initialization (MARPA) [49, 50], and at the
end of the 1960s fully automatic ARPA units appeared [46, 57, 58]. This
paved the way for developing more sophisticated systems for COLAV, since
automatically acquired obstacle information became available for collision
avoidance systems. These early systems do, however, not really justify their
name by today’s definitions, as will be explained shortly. One of the first such
systems, the Norcontrol DataBridge (DB), was developed by the Norwegian
company Norcontrol, which today is a part of Kongsberg Maritime. The
Norcontrol DB tracked up to eight targets from radar images, and provided
position, speed and course estimates of the targets. The system alarmed an
operator of collision risks based on the estimates [59]. In addition to this, the
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(a) A situation where the ownship† would
be safe by proceeding with a low speed.

(b) A situation where the ownship have to
perform a maneuver in order to be safe.

Figure 2.4: The anti-collision indicator from Mitrofanov [56], where the shaded regions
indicate inadmissible combinations of speed and course, while the white regions indicate
safe maneuvers. O. Mitrofanov, “An anti-collision indicator”, Journal of Navigation,
vol. 21, no. 2, pp. 163–170, 1968, reproduced with permission.

system could simulate the effect of ownship maneuvers, which could be used
as a means of deciding appropriate maneuvers in collision situations. The
research leading to this was initiated in 1967, and a prototype of the system,
shown in Fig. 2.5, was installed and demonstrated on the dry cargo vessel
M/S Taimyr in 1969. During the demonstrations, the captain pronounced
that he could sail more safely with this system in fog, compared to bright
weather without it. Multiple other companies released similar systems in the
years to come – Luse [46] states that some six radar-based collision avoidance
systems were commercially available in 1972. These early systems typically
only provided a watch officer with information about obstacles range, bear-
ing, course, speed and closest point of approach (CPA) [46]. In fact, this
functionality is commonly provided by radar sets intended for recreational
use on leisure crafts today, meaning that the label collision avoidance sys-
tems is inappropriate by today’s definitions. As the Norcontrol DB, many of
the “collision avoidance systems” included simulation functionality, which
an operator could use to simulate the effect of a specific maneuver. However,
using this to find a suitable maneuver was inefficient as it required trial and
error. Given the information from the collision avoidance system, the watch

†“Ownship” refers to one’s own vessel, i.e. the controlled vessel.
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Figure 2.5: The prototype of the Norcontrol DataBridge installed on board the M/S
Taimyr in 1969. Courtesy of Bjerva [58].

officer was left with the tasks of deciding if there is a risk of collision, decide
the applicable maneuver with respect to the rules of the road and finally
maneuver the vessel. The Sperry collision avoidance system, developed by
Sperry Marine Systems, took this a small step further by using a computer
to further interpret the information. It presented the user with a predicted
area of danger, shown in Fig. 2.6, and two suggested headings in order to
pass ahead or astern of an obstacle [60], while assuming that a constant
speed was kept. The system made calculations of relative velocities between
the vessels, displaying some similarities to the method we today know as
VO. The Sperry collision avoidance system was together with the Digiplot
collision avoidance system, manufactured by the Iotron Corporation [57],
employed on board U.S. Navy ships for testing in the 1970s. In a report
from these tests, Gravely jr. [61] states that even though the reliability
of the systems were questionable at times, the concept of using COLAV
systems could enhance safety in shipping and reduce personnel workload.
By 1980, the Sperry collision avoidance system had been installed on board
approximately 300 ships worldwide [62].

In the academic community, more complex methods for COLAV were
researched in the 1970s, including methods using game theory [63] and
optimal control theory [64, 65]. In 1979, de Wit and Oppe [65] applied the
Hooke-Jeves direct search method, which is a derivative-free optimization
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Figure 2.6: The Sperry collision avoidance system display showing a situation with nine
obstacles in a vessel-relative coordinate frame. The ellipses are predicted areas of danger,
and the gray areas indicate safe headings. R. F. Riggs, “A modern collision avoidance
display technique”, Journal of Navigation, vol. 28, no. 2, pp. 143–155, 1975, reproduced
with permission.

method [66], to solve an optimization problem encapsulating COLAV. This
has similarities to methods commonly used these days, however with a
significantly lower complexity level. Most of the systems developed up until
1980 had neglected the possibility of changing a vessel’s speed, and only
focused on heading changes. In 1981, Degré and Lefèvre [67] presented an
algorithm moving further in the direction of the VO algorithm commonly
known and used today. Their approach, shown in Fig. 2.7, generalized
the concept of the predicted area of danger to also consider speed changes.
Further in the 1980s, the research community sought alternative methods
for handling COLAV. This includes a concept of data sharing between ships
over VHF [68], an idea of a closed-loop COLAV system for autonomous
navigation [69], COLAV when other vessels maneuver [70], and a knowledge-
based approach to the COLAV problem [71]. In particular, Dove, Burns,
and Stockel [69] mark a new research focus: the systems developed so
far were decision support systems, providing information to a watch officer
steering the vessel, while Dove, Burns, and Stockel emphasizes that a collision
avoidance system could steer the vessel itself.

During the 1990s, the focus on optimization-based methods continued,
with increasing complexity as exemplified by Yavin, Frangos, and Miloh
[72] and Miele, Wang, Chao, and Dabney [73], where nonlinear programs
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Figure 2.7: The room-to-maneuver algorithm presented by Degré and Lefèvre [67]. The
black arrows indicate the speed and course of obstacles, while the shaded regions indicate
inadmissible areas of the ownship’s velocity space. The arrows and shaded regions corre-
spond to each other as given by the numbers. The circle with radius R around obstacle 1
illustrates a safety region also enforced on the other obstacles. Collision could be avoided
by selecting a speed and course outside of the shaded regions. T. Degré and X. Lefèvre,
“A collision avoidance system”, Journal of Navigation, vol. 34, no. 2, pp. 294–302, 1981,
reproduced with permission.

(NLPs) were used to formulate the COLAV problem. Other approaches for
formulating and solving optimization problems encapsulating COLAV, such
as fuzzy logic [74], and genetic and evolutionary algorithms [75, 76], were also
researched. It was also reported that radar alone would not be satisfactory
for obstacle detection, and Sato and Ishii [77] proposed combining radar
with an infrared camera for obstacle detection.

In 2004, Benjamin and Curcio [78] presented a protocol-based algorithm
for guidance and COLAV using multi-objective optimization. This algorithm
combines multiple functions capturing both guidance and different COL-
REGs rules in an objective function. To the author’s knowledge, this was
the first research paper to present closed-loop experimental results, demon-
strating their algorithm using two autonomous kayaks [79]. Even though
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they relied on vessel-to-vessel communication for obtaining obstacle informa-
tion, greatly simplifying obstacle detection, this marked a point where the
research community focused more on practically viable algorithms. The al-
gorithm is included in an open-source large-scale autonomy software named
MOOS-IvP [80].

In the mid 2000s, the US Navy and other defense and security orga-
nizations became increasingly interested in the use of unmanned vessels
at sea. This resulted in an increased focus on COLAV in military-related
research institutions. In 2006, the Space and Naval Warfare Systems Center,
San Diego suggested a two-layered hybrid approach, dividing the COLAV
problem into a near-field reactive component and a far-field deliberate com-
ponent [6, 81]. The deliberate component avoided obstacles detected by
long-range sensors (ARPA, AIS and nautical charts), while the reactive com-
ponent avoided near-field collisions using raw radar data, nautical charts
and several cameras. Their work was done in collaboration with NASA Jet
Propulsion Laboratory (JPL), which provided a stereo-camera system used
as part of the sensor suite. Opposed to Benjamin, Leonard, Curcio, and
Newman [79], this system applied more planning in the sense of introducing
a deliberate component planning ahead in future time, and demonstrates
a higher complexity level. The idea of hybrid COLAV systems was also
pursued in other research communities, e.g. by Loe [43], Casalino, Turetta,
and Simetti [44], and Švec, Shah, Bertaska, Alvarez, Sinisterra, Ellenrieder,
Dhanak, and Gupta [45]. Loe [43] was, to the author’s knowledge, the first
to perform full-scale experiments of an autonomous COLAV system partially
compliant with the COLREGs. He suggested a two-layered hybrid archi-
tecture, using the RRT and DW algorithms, relying on AIS for obtaining
obstacle information.

In 2010, Elkins, Sellers, and Monach [82] presented the Autonomous
Maritime Navigation (AMN) Project, which investigated the use of ASVs
for riverine patrolling. The project was funded by the Naval Surface Warfare
Center Combatant Craft Division, and used a system titled control archi-
tecture for robotic agent command and sensing (CARACaS) developed at
NASA JPL for perception, mission planning and collision avoidance [83].
The AMN project demonstrated the use of a wide range of sensors in an
autonomy system, designed for use on several different vessels. Fig. 2.8
shows the combatant maritime vehicle (CMV), one of the vessels used in
this project. Huntsberger, Aghazarian, Howard, and Trotz [84] exemplifies
further use of the CARACaS system by demonstrating static obstacle avoid-
ance with the next generation of the NASA JPL stereo-camera system used
by Larson, Bruch, Halterman, Rogers, and Webster [81].

In 2014, Kuwata, Wolf, Zarzhitsky, and Huntsberger [85] presented an
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Figure 2.8: Two members of the US Navy autonomous vessel fleet, with the CMV to the
right. T. Huntsberger, H. Aghazarian, A. Howard, and D. C. Trotz, “Stereo vision-based
navigation for autonomous surface vessels”, Journal of Field Robotics, vol. 28, no. 1, pp. 3–
18, 2011, reproduced with permission.

algorithm based on VO, intended for COLAV in compliance with the COL-
REGs rules concerning head-on, crossing and overtaking. Kuwata’s al-
gorithm was implemented in the CARACaS system and demonstrated in
several experiments using radar and stereo-cameras for detecting obstacles.
Kuwata, Wolf, Zarzhitsky, and Huntsberger state that to their knowledge,
this was the first on-water demonstration of COLAV considering the COL-
REGs without vehicle-to-vehicle communications. Soon after, Schuster,
Blaich, and Reuter [86] presented results from on-water experiments in 2014,
where they demonstrated COLAV using a radar for detecting and tracking an
obstacle. For COLAV, they use an A*-based algorithm presented by Blaich,
Rosenfelder, Schuster, Bittel, and Reuter [87], which uses a domain-based
interpretation of the COLREGs [88]. This consists of superimposing a non-
symmetrical spatial domain on obstacles, in order to motivate the algorithm
to pass obstacles on the “correct” side by making maneuvers on the “wrong”
side longer. They state that the algorithm considers the COLREGs, but
their results are not compelling in defending this claim. Nevertheless, their
work marks a significant contribution outside of the communities funded by
defense-related institutions.

In 2016, Johansen, Perez, and Cristofaro [89] proposed the simulation-
based model predictive control algorithm, which includes a concept of risk
in an optimization-based COLAV algorithm. This algorithm considers a
discrete set of course offsets and speed multipliers, which are combined with
the output from a guidance system to make the algorithm easily integrated
in existing guidance systems. The same year, DARPA’s Sea Hunter was
christened, marking the continued research interest in defense-related insti-
tutions [8]. The vessel was built by Leidos and funded by DARPA, which in
2012 requested a US $3 billion grant for developing autonomous technology
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for submarine tracking [55]. Details of the control and COLAV system is
hard to come by, but Leidos states that the path planning system is devel-
oped in collaboration with NASA JPL and National Robotics Engineering
Center [90]. In 2016, Leidos claimed that the control system had been
tested in over 220 simulations and 100 on-water tests evaluating COLREGs
scenarios, stating that the COLAV system generally met the expectations
with respect to the COLREGs [90].

In 2015, I started my research on COLAV for ASVs. Even though a lot
of progress had been made on the topic, the most impressing results were
presented by defense-related research institutions, limiting the availability of
the research. Results from the academic community were less complete, and
generally did not demonstrate convincing results of autonomous navigation
and COLAV considering all relevant parts of the COLREGs.





Chapter 3

CONTRIBUTIONS

This chapter contains an in-depth description of the contributions in this
thesis.

3.1 A hybrid architecture for collision avoidance
Most of the work in this thesis has been carried out in the scope of a hybrid
architecture for COLAV, designed for ASVs – manned and unmanned. The
architecture, first published in Paper C, is shown in Fig. 3.1, and contains
a three-layered COLAV system, a vessel controller and a number of support
functions.

The architecture includes the vessel controller as a component to illus-
trate the importance of the performance of the underlying vessel controller:
if it performs poorly, it may not be able to effectuate the commands specified
by the COLAV system with sufficient precision. Therefore, it is important
that the vessel controller has a sufficiently good performance so that it does
not limit the performance of the COLAV system.

The three layers of the COLAV are the short-term, mid-level and high-
level COLAV layers. The high-level COLAV layer, also described as the
high-level planner, performs path or trajectory planning from an initial
position to a goal position while considering static obstacles. This layer
may also take time constraints, energy efficiency, ocean currents, etc., into
account, and provides a nominal path or trajectory that the mid-level layer
attempts to follow. The layer may run offline, possibly even manually by a
human operator, but it can also run online in real time if circumstances such
as changing maps, ocean currents, etc., makes replanning necessary. Running
the layer offline allows for higher computational requirements, compared to
running the layer online in real time. The planning horizon for this layer
is typically long, which results in a significant uncertainty associated with
estimates of moving obstacles such as e.g. other vessels. Moving obstacles
are therefore neglected at this level.

The mid-level COLAV layer inputs a nominal path or trajectory from
the high-level COLAV layer, which it attempts to follow while making
local adaptations to ensure COLAV with respect to both moving and static
obstacles. The COLREGs is a natural part of this layer, since maneuvers
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Figure 3.1: A hybrid architecture for ASV COLAV. The architecture includes a three-
layered COLAV system, support functions providing charts, situational awareness and
information about future obstacle trajectories, and a vessel controller.

made to avoid other vessels must be made in accordance with the COLREGs.
This requires the planning horizon of the layer to be long enough to decide the
appropriate action with respect to the COLREGs. The mid-level layer should
have a strict enforcement of the COLREGs by e.g. standing on in situations
where the ownship has a stand-on obligation, unless a simultaneous give-way
obligation must be prioritized. The planning horizon of this layer should
be short enough to ensure real-time feasibility, while long enough to allow
the layer to make reasoned maneuvers. In particular, one should select
the planning horizon sufficiently long to capture the complete length of a
COLREGs avoidance maneuver.

The short-term COLAV layer inputs a modified trajectory from the mid-
level layer, which it attempts to follow. This layer performs COLAV with
respect to obstacles detected too late for the mid-level layer to handle, or
which performs sudden maneuvers, while ensuring that the vessel controller is
given dynamically feasible commands. The short-term COLAV layer should
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be computationally robust, making sure that a solution always exists, even
in cases where the mid-level layer fails to find a solution. This layer should
also handle situations where the ownship is in a stand-on situation, but has
to maneuver in accordance with the second part of Rule 17 due to obstacles
violating the COLREGs. An example of such a situation is if a give-way
vessel fails to avoid collision in a crossing situation where the ownship is
deemed the stand-on vessel, e.g. by not maneuvering. Furthermore, such
situations may require ignoring the maneuvering aspects of rules 14 and
15, and the short-term layer should therefore have the possibility to ignore
these.

The architecture also contains a number of support functions which
provide the COLAV system with information. The obstacle trajectory pre-
diction module should provide information about the current position and
future trajectory of obstacles. In its simplest form, this can be a system
using vessel-to-vessel communication or a tracking system based on exte-
roceptive sensors, combined with a linear prediction model assuming that
obstacles keep their current speed and course. Alternatively, one can apply
more sophisticated methods for predicting future trajectories for obstacles.
The electronic nautical charts block provides the COLAV system with in-
formation about static obstacles such as land, navigation marks, etc., in
the vicinity of the ownship. The situational awareness block provides the
COLAV system with information about the current situation, such as which
COLREGs rules apply for different obstacles, requirements for proceeding
with caution, etc.

Paper I populates the hybrid COLAV architecture with three COLAV al-
gorithms, a state machine for interpreting the COLREGs, and a model-based
speed and course controller. The architecture is evaluated in simulations,
demonstrating good performance and the ability to solve a large variety of
different scenarios in compliance with COLREGs rules 8 and 13–17.

3.2 Model identification and vessel controllers

The work in this thesis is performed in a bottom-up approach, initially
focusing on designing high-performance vessel controllers to avoid that the
vessel controller limits the COLAV system performance. Initially, the focus
was on designing a speed and yaw-rate controller, which later was extended
to a speed and course controller.

In particular, Paper B presents a method for modeling, identification and
control of high-speed ASVs. This method is also applicable to other high-
speed vessels operating in the displacement, semi-displacement and planing
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regions. The foundation of the method is a control-oriented 2 degree of
freedom (DOF) non-first principles model, valid for the displacement, semi-
displacement and planing regions. A data driven identification procedure
populates this model with parameters, based on data from vessel experiments.
The modeling and identification method is used to obtain a control-oriented
model of the Telemetron ASV, shown to be of high accuracy through a
verification experiment. The identified model is used to design four speed
and yaw-rate controllers:

• The feedback (FB) controller: a pure proportional-integral (PI) feed-
back controller with gain scheduling.

• The feedforward (FF) controller: a model-based feedforward controller
without any feedback, utilizing both steady-state and acceleration
feedforward.

• The feedforward feedback (FF-FB) controller: a combination of the
FB and FF controllers.

• The feedback-linearizing (FBL) controller: a traditional feedback-
linearizing controller.

These controllers were tested in full-scale experiments in the Trondheims-
fjord in Norway on the 13th and 14th of October 2016. The FBL controller
displayed poor robustness and resulted in oscillatory vessel behavior, which
caused a sensor dropout that aborted the experiment. The oscillatory be-
havior likely originated from time delays in the control loop, which became
an issue when using measurements to select the linearization point in the
controller. Due to the practical issues with the FBL controller, this was
not used in the rest of the experiments. The FB controller served as a
benchmark controller, to compare the other controllers with. Several of
the experiments included time-varying references, which a pure feedback
controller obviously had problems following. The open-loop FF controller
outperformed the FB controller, even when the references reached steady
state, displaying the powerful properties of utilizing model-based feedfor-
ward terms. The FF-FB controller, combining model-based feedforward and
feedback terms, performed even better than the FF controller, and managed
to track a time-varying speed and yaw-rate reference to a high degree of
precision.

For achieving a certain performance level, model-based feedforward terms
reduce the required feedback bandwidth compared to traditional feedback
controllers without such terms. This enables a FF-FB controller to have
similar performance as a FB controller, with less sensitivity to measurement
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noise. The COLAV experiments in Paper D used the FF-FB controller as
the vessel controller.

In Paper E, the FF-FB controller is extended to control the vessel speed
and course instead of the vessel speed and yaw rate. The new controller is
named the feedforward-feedback course (FF-FB-C) controller, and was tested
in full-scale experiments in the Trondheimsfjord on the 10th of October 2017.
In the experiments, the FF-FB-C controller outperformed a PI feedback
controller, managing to track a time-varying speed and course reference with
high precision. The COLAV experiments in Paper F and Paper H used the
FF-FB-C controller as the vessel controller.

3.3 Short-term collision avoidance

Paper A presents a modified DW algorithm for COLAV for autonomous
underwater vehicles (AUVs) in the horizontal plane. The modified algorithm
introduces a new trajectory prediction method, that compared to the original
DW algorithm reduces the mean square prediction error with a factor of 100
when applied to vehicles with second order non-holonomic constraints, such
as AUVs and ASVs. The algorithm is reparameterized to be more modular,
inputing a desired yaw rate and speed instead of a desired heading and speed.
Together with a modified search space, these modifications greatly improve
the algorithm performance when applied to a horizontal-plane model of the
HUGIN 1000 AUV. This model has the same structure as typical ASV
models, making the algorithm a suitable starting point for ASV COLAV.

Paper D presents the first results on closed-loop COLAV, where we
coupled the DW algorithm presented in Paper A with the radar-based
tracking pipeline developed in the Autosea project. The DW algorithm is
reparameterized to use the 2 DOF model of the Telemetron ASV, developed
in Paper B. Furthermore, the algorithm is modified to take advantage of
the acceleration feedforward capabilities of the FF-FB controller, involving
a reformulation of the search space. We present full-scale experimental
results from the Trondheimsfjord, performed on the 15th to 19th of May
2017. In these experiments, the target vessel is detected and tracked solely
based on radar tracking, without any vessel-to-vessel communication. The
experiments revealed that the tracking system provided obstacle estimates
with a significant amount of noise, which must be considered when using
exteroceptive sensors for obstacle detection and tracking. In particular, the
course estimates contained a large amount of noise, which caused problems
since the DW algorithm assumes that obstacles will keep their current speed
and course to predict the future trajectory of the obstacle. We did, however,
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successfully avoid collision when applying a smoothing technique on the
obstacle estimates, but this also introduced a longer time delay in the sensor
system. Based on the experiments, we considered the DW algorithm to be
overly sensitive to obstacle estimate noise. In light of this, we decided to focus
on developing a new short-term COLAV algorithm, specifically designed to
be robust to the expected amount of noise when using exteroceptive sensors
for obstacle detection and tracking.

Paper F thus presents a new short-term COLAV algorithm, named
the BC-MPC algorithm. In addition to the problems related to obstacle
estimate noise, the DW algorithm parameterizes the vessel trajectories using
a constant turn rate, assuming that the vessel will keep a constant turn
rate for the entire prediction horizon. This does not resemble how vessels
maneuver at sea, where one usually either make a clear change in speed
and/or course or keep a constant speed and course. The BC-MPC algorithm
is designed using sample-based optimization, where the search space consists
of a finite number of trajectories parameterized by speed and course. In
contrast to other sample-based optimization algorithms for ASV COLAV,
the BC-MPC algorithm considers a sequence of maneuvers, enabling the
algorithm to consider more complex trajectories than just single-maneuver
trajectories. The algorithm complies with COLREGs rules 8, 13 and 17, and
favors trajectories following the maneuvering aspects of rules 14 and 15. This
is motivated by Rule 17, requiring the stand-on vessel to maneuver to avoid
collision in situations where a give-way vessel does not fulfill her requirements
to avoid collision, which may require ignoring the maneuvering aspects of
rules 14 and 15. If the algorithm chooses to violate these maneuvering
aspects, it will pass obstacles with a larger clearance than if the maneuvering
aspects are followed. The algorithm was tested on the Telemetron ASV
in multiple full-scale experiments, using the radar-based tracking system
developed in the Autosea project. The experiments were carried out in
the Trondheimsfjord on the 12th of October 2017, and Fig. 3.2 shows a
drone photo from the experiments. The experiments demonstrated several
distinct COLREGs scenarios, showing that the algorithm managed to solve
head-on, crossing from starboard and overtaking situations, in addition
to a crossing from port situation where the obstacle did not maneuver.
The algorithm chose to maneuver in front of the obstacle in one of the
crossing from starboard scenarios, which is a result from the algorithm’s loose
enforcement of COLREGs rules 14 and 15. Although this was performed
with an increased obstacle clearance, and not considered a direct violation
of the COLREGs, some criticism should be addressed to the algorithm for
not passing behind the vessel. Paper H addresses this particular issue. In
addition to the experimental results, Paper F presents a simulation study
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Figure 3.2: A photo from the experiments performed with the BC-MPC algorithm on
the 12th of October 2017. The Telemetron ASV is in the middle of the picture, while the
obstacle vessel is to the right. The lower right corner shows a visualization of the BC-MPC
algorithm. The blue lines represent possible trajectories the algorithm can choose from,
the green line represents the selected trajectory, while the orange line represents the desired
trajectory. The yellow arrow represents the estimated obstacle position and velocity, while
the yellow, red and green regions represent BC-MPC regions. The estimated velocity, in
particular the course, fluctuates despite that the obstacle travels steadily along the orange
line.

with four multi-obstacle scenarios where the BC-MPC algorithm faces more
complex challenges than in the experiments. The scenarios include situations
with conflicting COLREGs rules simultaneously active, and maneuvering
obstacles.

Paper H extends the BC-MPC algorithm to also consider static obsta-
cles, by including an occupancy grid in the objective function. Using an
occupancy grid to model static obstacles enables flexibility in representing
arbitrary obstacle shapes, which is beneficial in order to represent coastlines
and islands in the vicinity of the ownship. Furthermore, the original version
of the algorithm used transitional cost terms to avoid shattering by intro-
ducing a penalty for selecting another combination of speed and course than
the one selected in the previous iteration. Paper H presents new transitional
cost terms, introducing penalties to speed and course changes independently.
This motivates the algorithm to still keep the speed constant if changing the
course, and vice versa. This, together with alternative tuning parameters
compared to the implementation in Paper F, resulted in smoother maneu-
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vers and seemed to make the algorithm prefer crossing behind obstacles in
crossing from starboard situations. The algorithm was experimentally vali-
dated in the Trondheimsfjord on the 27th of September 2018, using virtual
static obstacles. As in the previous experiments, information about moving
obstacles was provided by the radar-based tracking system developed in the
Autosea project.

Finally, Paper I improves a minor implementation detail of the BC-MPC
algorithm, resulting in less oscillations in areas where the reference trajectory
has large course changes.

3.4 Mid-level collision avoidance

Paper C presents an MPC-based mid-level COLAV algorithm. The algo-
rithm is formulated as an NLP, enabling a high level of flexibility in allowing
for nonlinear and non-convex objective functions and constraints. The NLP
is solved using a gradient-based solver, considering infinite variations of
trajectories as opposed to sample-based optimization. The algorithm com-
plies with Rule 8 of the COLREGs, requiring that maneuvers are readily
observable for other vessels, implying that sequences of small speed and/or
course changes should be avoided.

Paper H improves the numerical properties of the algorithm, and in-
terfaces the algorithm to a high-level planner for energy-optimized path
planning. Section 3.5 presents this interface in greater detail.

Paper I extends the mid-level algorithm to also consider COLREGs
rules 13–17. The algorithm uses information from a COLREGs interpreter,
described in Section 3.6, labeling obstacles as “safe”, “overtaking”, “stand-
on”, “give-way”, “head-on” or “emergency” situations. In order to enforce
the correct COLREGs behavior in different situations, the NLP is tailored
to the current situation as follows:

• Obstacles with “safe” labels do not have any COLREGs requirements,
and are included in COLAV constraints.

• Obstacles with “overtaking” labels do not have any COLREGs require-
ments, and are included in COLAV constraints.

• Obstacles with “stand-on” labels require the ownship to not maneuver.
They are therefore not included in the COLAV constraints, and extra
terms motivating the algorithm to not change speed and/or course are
added to the cost function.
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• Obstacles with “give-way” labels require the ownship to avoid collision
by passing behind the obstacles. They are included in the COLAV
constraints, and potential functions motivating the algorithm to choose
trajectories behind each obstacle are added to the cost function.

• Obstacles with “head-on” labels require the ownship to apply star-
board maneuvers to avoid collision. They are included in the COLAV
constraints, and potential functions motivating the algorithm to choose
trajectories on the obstacles’ port sides are added to the cost function.

• Obstacles with “emergency” labels are so close to the ownship, and/or
behave so unpredictably, that the mid-level algorithm is unsuited for
handling the obstacles. They are therefore not included in the COLAV
constraints, and the task of avoiding the obstacles is left to the short-
term COLAV algorithm.

Tailoring the NLP to the current situation enables a lot of flexibility. This
makes the algorithm easy to extend, for instance to consider special re-
quirements with respect to specific vessel types such as vessels under sail,
engaged in fishing or having a restricted ability to maneuver. However, when
changing the NLP from iteration to iteration, local minima become a more
apparent problem. In order to mitigate this issue, we apply a homotopy
scheme when solving the NLP.

3.5 High-level planner
Paper H presents a hybrid architecture consisting of the mid-level algorithm
and a high-level planner, conceptualizing the two top layers in the hybrid
COLAV system in Fig. 3.1. The high-level planner is based on 2018 Bitar,
Breivik, and Lekkas, which is extended to work with high-speed ASVs. The
algorithm plans a trajectory from an initial to a goal position, while account-
ing for static obstacles and minimizing the required energy consumption
to reach the goal. The ocean current is an important factor for the energy
consumption, and is included in both the mid-level COLAV algorithm and
the high-level planner by modeling the relative vessel velocity with respect
to the ocean current.

In order to control the energy consumption, the high-level planner speci-
fies a speed in addition to a geometric path, solved by generating a desired
trajectory for the mid-level algorithm to follow. However, since the high-
level planner does not consider moving obstacles, the speed is the only
time-relevant factor of the desired trajectory. This implies that the mid-
level algorithm does not need to track the desired trajectory in absolute
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time – it is sufficient to locally follow the desired speed of the trajectory.
Therefore, we define an interface allowing the mid-level algorithm to track
the desired trajectory from the high-level planner with a time offset, com-
puted by solving an optimization problem at each time instant the mid-level
algorithm is run. In a case where the mid-level algorithm lags behind the
desired trajectory, for instance due to circumventing obstacles, a traditional
trajectory tracking method would increase the speed to catch up with the
desired trajectory. With our interface, we rather adjust the time offset to
track a time-offset part of the desired trajectory in such a situation, avoiding
a speed increase in order to catch up with the desired trajectory. We de-
scribe this as relative trajectory tracking in our works. This interface is also
generalized for relative trajectory tracking for arbitrary geometrical paths
with an assigned speed profile.

3.6 Support functions
The COLAV system has been the main focus during the work in this thesis.
However, the support functions, in particular COLREGs interpretation and
prediction of future obstacle trajectories, have also received attention.

Interpretation of the COLREGs and deciding which rules apply to dif-
ferent obstacles is important for the mid-level algorithm. Paper I presents a
state machine interpreting obstacle situations with respect to the COLREGs,
giving input to the mid-level algorithm. A separate state machine is run for
each obstacle, and the state-machine labels are:

SF Safe state. This implies that the COLREGs does not enforce any
rule with respect to this obstacle.

OT Overtaking state. This implies that COLREGs Rule 13 applies with
respect to this obstacle. The state machine does not discriminate
whether the ownship is overtaking another vessel or is being overtaken,
but this can be done by looking at which vessel has the higher speed.

HO Head-on state. This implies that COLREGs Rule 14 applies with
respect to this obstacle.

GW Give-way state. This implies that COLREGs Rule 15 applies with
respect to this obstacle, and that the ownship has to give way.

SO Stand-on state. This implies that COLREGs Rule 15 applies with
respect to this obstacle, and that the ownship has to stand on.
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EM Emergency state. This implies that the obstacle is so close and/or
behaves unpredictably, such that special considerations must be made.

A geometrical interpretation combined with CPA and a CPA-like measure
named the critical point, defines transitions between the states. An obstacle
in a state other than the “safe” state has to transition to the “safe” state
before it can transition to another state. This increases the stability of the
COLREGs interpreter, and avoids switching between different COLREGs
rules.

The topic of predicting future obstacle trajectories have also received
some effort. The common approach to this problem is to use a constant
velocity model (CVM), assuming that an obstacle continues with the current
speed and course, resulting in a straight-line motion prediction. Being a
simple and intuitive method, this is an attractive method widely used in the
COLAV literature, including all the COLAV algorithms presented in this
thesis. However, for prediction horizons in the range of minutes or longer, the
uncertainty related to such a prediction, originating from measurement noise
and the possibility of obstacles maneuvering, grows to useless levels. This
problem is commonly mitigated by neglecting the uncertainty, relying solely
on the expectation. Although proven in many applications, this approach
removes relevant information. To improve on this, we have investigated
AIS-based prediction of future obstacle trajectories exploiting the patterns
encoded in a historic AIS dataset including approximately 3 million AIS
messages in the vicinity of the Trondheimsfjord. We initialized this work in
Hexeberg, Flåten, Eriksen, and Brekke [27] by analyzing the AIS dataset
and devising the single point neighbor search (SPNS) method. The SPNS
method performs well for predictions up to around 30 minutes, but is unable
to include multimodality. The method was further developed in Hexeberg
[92] and Dalsnes, Hexeberg, Flåten, Eriksen, and Brekke [29], resulting in the
neighbor course distribution method (NCDM), accounting for multimodality
by representing the obstacle trajectories as a particle-based probability
density function (PDF). Dalsnes [93] fits a Gaussian mixture model to
the PDF provided by the NCDM, obtaining an easily evaluable PDF for
interfacing the prediction method with COLAV algorithms. A proof of
concept, combining the prediction algorithm with the mid-level algorithm
in Paper C, shows a potential for making more proactive maneuvers when
using the AIS-based prediction method, compared to a CVM. This is a
preliminary study, and more effort should be put into verifying and improving
the interconnection of COLAV algorithms and the NCDM.

In our AIS-based obstacle trajectory prediction methods, we neglect
the ownship’s influence on how other vessels will maneuver. This is an
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important factor in close-counter situations, and further research should
investigate possibilities to relax this. One possible idea is to have a tight
coupling between prediction and control, e.g. allowing an MPC algorithm
to perform both the prediction and control tasks, coupling the obstacle
trajectory prediction with the ownship’s (planned) maneuvers.



Chapter 4

CONCLUSIONS AND FURTHER
WORK

This thesis contains contributions in the topics of COLAV and motion control
for ASVs. This twofold aim is due to this thesis’ bottom-up approach to the
problem of COLAV for ASVs, realizing that a COLAV system only performs
as good as the vessel controller allows it to.

The work has been carried out focusing on high-speed ASVs, often op-
erating in the displacement, semi-displacement and planing regions due to
their typically small lengths. The contributions on motion control of ASVs is
based on a developed method for modeling and identification of high-speed
ASVs, which is experimentally proven to provide a control-oriented model
valid for the displacement, semi-displacement and planing regions. For track-
ing time-varying references, utilizing model-based feedforward terms have
large benefits over traditional feedback controllers, which are insufficient
for such a task. The modeling and identification method is applied to ob-
tain a model of a high-speed ASV. The identified model is then used to
design two vessel controllers: one controlling speed and yaw rate and one
controlling speed and course. Both controllers are shown to outperform
other controllers in experiments, including a traditional feedback controller
and a feedback-linearizing controller. The developed vessel controllers are
later used in several full-scale COLAV experiments.

The proposed system has a so-called hybrid architecture, including a
three-layered hybrid COLAV system building on complementary strengths
of different algorithms, a number of support functions, and a vessel controller.
The top COLAV layer performs energy-optimized path planning, finding a
path throughout an environment of static obstacles while minimizing the
energy consumption required to reach the goal. The middle COLAV layer
avoids moving obstacles in a proactive manner, commanding predictable
maneuvers which communicate intentions to other vessels. The bottom
COLAV layer handles short-term COLAV, responding quickly to obstacles
detected late or behaving dangerously, and handling situations where the
mid-level algorithm fails to find a solution. The middle and bottom layers
divide the COLREGs responsibilities between them. The middle layer should
interpret the rules in a strict manner, enforcing the COLREGs rules including
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the stand-on requirement in crossing situations exactly. The bottom layer
should then handle situations where the rules have to be interpreted loosely
in order to stay safe, as exemplified by situations where obstacles do not
follow the COLREGs in crossing situations.

The hybrid architecture is populated with three COLAV algorithms, a
state machine for interpreting the COLREGs, and a model-based speed and
course controller, and is shown to have good performance in simulations. The
simulations include obstacles maneuvering in accordance with the COLREGs,
ignoring the COLREGs rules, and also maneuvering dangerously. The hybrid
COLAV system avoids collision in compliance with COLREGs rules 8 and
13–17 in all the situations, while following an energy-optimized trajectory
when obstacles do not interfere with it.

Specifically, the top layer depends on an algorithm for energy-optimized
path planning, developed in Bitar, Breivik, and Lekkas [91] and Bitar, Vestad,
Lekkas, and Breivik [94]. The algorithm uses a model of a high-speed ASV,
and produces an energy-optimized nominal trajectory from an initial to a
goal position while avoiding static obstacles.

One algorithm for the middle layer is presented in this thesis. This algo-
rithm, referred to as the mid-level algorithm, is based on MPC, formulated
as an NLP to enable flexibility in designing the algorithm. The mid-level
algorithm inputs the nominal trajectory from the high-level algorithm, fol-
lowing it using relative trajectory tracking while avoiding moving and static
obstacles. The concept of relative trajectory tracking involves tracking the
trajectory with a time offset. This time offset is actively controlled to avoid
the mid-level algorithm to speed up in situations where it lags behind the
desired position, but rather adjusting the time offset to track the closest
portion of the nominal trajectory. Furthermore, the mid-level algorithm
considers COLREGs rules 8, 13–16 and parts of Rule 17, which requires a
stand-on vessel to not maneuver, leaving the responsibility in such a situ-
ation to the give-way vessel. To facilitate this, a state machine classifying
obstacles with relevant COLREGs rules gives input to the algorithm. This
COLREGs interpreter combines two risk-based measures with a geometrical
interpretation of the situation to label obstacles as either “safe”, “overtak-
ing”, “stand-on”, “give-way”, “head-on” or “emergency” situations. The
labels are used to tailor the NLP to the current situation, in order to achieve
the desired COLREGs behavior. The mid-level algorithm is currently only
verified through simulations.

Furthermore, the thesis presents two algorithms for short-term COLAV.
Both algorithms are tested in full-scale experiments, using a radar-based
system developed in the Autosea project for detecting and tracking obstacles.
The first algorithm is based on the DW algorithm, adapted for use with high-
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speed ASVs. This algorithm is shown to have robustness issues when used
with the radar-based tracking system, which inherently provides obstacle
estimates with a considerable amount of noise. In particular, noisy course
estimates influence predictions of future obstacle trajectories heavily when
employing the commonly used concept of assuming that obstacles keep a
constant speed and course. To remedy the robustness issues, the BC-MPC
algorithm has been developed with the design idea of being robust with
respect to obstacle noise. This algorithm uses MPC and sample-based
optimization techniques, and is demonstrated to be robust with respect to
noisy obstacle estimates in several full-scale experiments using radar-based
detection and tracking of obstacles. The BC-MPC algorithm originally
only considered moving obstacles, but is extended to also consider static
obstacles. With respect to the COLREGs, the algorithm considers rules 8,
13–15 and parts of Rule 17. More specifically, it handles parts of Rule 17 by
maneuvering in situations where the ownship has a stand-on role, but must
maneuver due to obstacles violating the COLREGs.

Although the BC-MPC algorithm is experimentally validated in full-scale
experiments using a radar-based tracking system at multiple occasions, the
complete hybrid COLAV system is only tested in simulations. This is an
obvious point that should receive attention in the future, and can be tack-
led by first performing simulations including disturbances such as obstacle
estimate noise. Furthermore, the COLAV system should be extended to
also consider other parts of the COLREGs, including special responsibilities
between vessels under sail, engaged in fishing or having a restricted ability
to maneuver. The mid-level algorithm is well-suited for this extension. The
simulations and experiments presented in this thesis represent situations
where an ASV faces collision risks involving manned vessels. In a future
where autonomous vessels become common, situations will occur where au-
tonomous vessels must avoid collision with each other. This makes it relevant
to also perform simulations with multiple ASVs facing each other, both using
the same and different COLAV systems. None of the algorithms developed
in this thesis are without weaknesses and room for improvement, and all the
corresponding papers contain individual and more detailed suggestions for
further work.

We are on the edge of developing autonomous surface vehicles, and a
tide is coming in that will bring safer, more efficient maritime transportation
to all.
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A Modified Dynamic Window Algorithm for Horizontal Collision
Avoidance for AUVs

Bjørn-Olav H. Eriksen, Morten Breivik, Kristin Y. Pettersen, Martin S. Wiig

Abstract— Much research has been done on the subject
of collision avoidance (COLAV). However, few results are
presented that consider vehicles with second-order nonholo-
nomic constraints, such as autonomous underwater vehicles
(AUVs). This paper considers the dynamic window (DW)
algorithm for reactive horizontal COLAV for AUVs, and uses
the HUGIN 1000 AUV in a case study. The DW algorithm
is originally developed for vehicles with first-order nonholo-
nomic constraints and is hence not directly applicable for
AUVs without resulting in degraded performance. This paper
suggests further developments of the DW algorithm to make it
better suited for use with AUVs. In particular, a new method
for predicting AUV trajectories using a linear approximation
which accounts for second-order nonholonomic constraints is
developed. The new prediction method, together with a modified
search space, reduces the mean square prediction error to about
one percent of the original algorithm. The performance and
robustness of the modified DW algorithm is evaluated through
simulations using a nonlinear model of the HUGIN 1000 AUV.

I. INTRODUCTION

Collision avoidance (COLAV) systems are necessary for
autonomous operation of vehicles, including autonomous un-
derwater vehicles (AUVs). AUVs are often engaged in long
term operations in deep waters with limited communication
possibilities, which increase the reliability requirements of
the COLAV system. It is clear that if a collision occurs and
the AUV is immobilized, a salvage operation will be both
costly and time consuming. In addition, a delayed operation
may potentially have large economical consequences.

The topic of COLAV may be split in two main areas [1]:
• Obstacle detection, which focuses on detecting obsta-

cles, usually based on sonar data regarding AUVs.
• Obstacle avoidance, which consists of generating ap-

propriate steering commands in order to avoid collisions
with detected obstacles.

A COLAV system must include both obstacle detection and
avoidance in order to avoid collisions. This paper will only
focus on obstacle avoidance. For details on how obstacle
detection can be handled, see [2] and the references therein.

There exists a number of both reactive (local) and delib-
erate (global) COLAV algorithms. Reactive algorithms base
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their actions only on real-time sensor data, which makes
the algorithms computationally inexpensive and suitable for
reacting to sudden changes in the environment. Using no a
priori information can, however, make the vehicle sensitive to
local minima or traps, which can make it unable to reach the
goal. In comparison, deliberate algorithms include a priori
information to plan future actions. The provided actions are
more likely to make the vehicle converge towards the goal, at
the cost of increased computational time and reduced ability
to react rapidly. Reactive and deliberate algorithms are often
combined in hybrid architectures, where they are executed
in parallel at different sampling frequencies [3], [4].

One of the existing reactive1 algorithms is the dynamic
window (DW) algorithm [5], which was originally intended
for vehicles with first-order nonholonomic constraints and
constant acceleration limits. AUVs, however, have second-
order nonholonomic constraints, and also nonlinear responses
which result in time-varying acceleration limits. Applying the
original DW algorithm to AUVs will thus result in degraded
performance. This paper therefore suggests a number of
modifications to the original DW algorithm to increase the
performance when applied to vehicles with second-order
nonholonomic constraints and time-varying acceleration lim-
its. In particular, a new trajectory prediction method taking
second-order nonholonomic constraints into account is devel-
oped. This, together with a modified search space, reduces
the mean square prediction error to about one percent of the
original algorithm. The generality of the algorithm is also
improved to facilitate a more layered architecture.

A comparison between the modified and original DW al-
gorithm is obtained through simulations for various static ob-
stacle environments using a nonlinear model of the HUGIN
1000 AUV [6], shown in Figure 1. The simulations show
a significant performance improvement when applying the
modified DW algorithm.

In Section II, a 3 degrees-of-freedom (DOF) control model
is presented. Section III contains the DW algorithm and the
proposed modifications. Simulation results are presented in
Section IV, while Section V concludes the paper.

II. CONTROL-ORIENTED AUV MODEL

In this section, a generic 3 DOF AUV control model is
defined. The model is based on the following assumptions:

Assumption 1: The AUV model describes the motion of
the pivot point of the vehicle.

1One may argue that the DW algorithm is not strictly reactive since it
plans trajectories in time. It does, however, only rely on real-time sensor
data, thus it is considered to be a reactive algorithm.
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Fig. 1. The HUGIN 1000 AUV, courtesy of the Norwegian Defence
Research Establishment.

Remark 1: When the body-fixed coordinate system is
positioned in the pivot point, the rudders do not affect the
sway dynamics directly. For vehicles which are controllable
in yaw it is always possible to transform a model represented
in an arbitrary point on the AUV to the pivot point [7].

Assumption 2: The vehicle is neutrally buoyant and the
center of gravity (CG) is located below the center of buoy-
ancy (CB) on a vertical line.

Assumption 3: Heave speed and the roll and pitch angles
are assumed equal to zero.

Remark 2: Assuming zero roll angle is a common as-
sumption for slender body vehicles such as AUVs [8]. The
CG is located below the CB on a vertical line, which pas-
sively stabilizes the roll motion. Further, by equally utilizing
the top and bottom rudders, and the port and starboard
rudders, no roll moment is generated by the rudders. For an
AUV equipped with a depth controller, close to zero heave
speed and pitch angle is achieved when the AUV is traveling
in a horizontal plane.

Assumption 3 allows a control model to be formulated in
3 DOF (surge, sway and yaw), while Assumption 2 implies
that no restoring forces are applied. Using the SNAME [9]
notation, the 3 DOF control model is therefore given as:

⌘̇n
b/n = R(⌘n

b/n)⌫b
b/n (1a)

M ⌫̇b
b/n + C(⌫b

b/n)⌫b
b/n + D(⌫b

b/n)⌫b
b/n = Bf b

b, (1b)

where ⌘n
b/n =

⇥
x y  

⇤T 2 R2 ⇥ SO(2) is the position
and orientation of the body-fixed frame {b} represented
in the north-east-down-fixed inertial frame {n}. Further,
⌫b

b/n =
⇥
u v r

⇤T 2 R3 is the velocity of {b} with respect

to {n} represented in {b}, and f b
b =

⇥
X N

⇤T 2 R2 is the
actuator input in {b}. It should be noted that the model (1)
does not account for external forces such as ocean currents,
wind and waves. For notational simplicity, ⌘n

b/n,⌫b
b/n, f b

b are
further denoted as ⌘,⌫, f . The transformation matrix from
{b} to {n} is given as:

R(⌘) = R( ) =

2
4

c( ) �s( ) 0
s( ) c( ) 0

0 0 1

3
5 , (2a)

where c(·) = cos(·) and s(·) = sin(·). The vessel dynamics
matrices are given as:

M =

2
4

m11 0 0
0 m22 m23

0 m23 m33

3
5 , B=

2
4

b11 0
0 b22

0 b32

3
5

C(⌫)=

2
4

0 0 �m22v � m23r
0 0 m11u

m22v + m23r �m11u 0

3
5

D(⌫)= �

2
4

Xu + X|u|u|u| 0 0
0 Yv Yr

0 Nv Nr

3
5 |u0|

u0
.

(2b)

Here, the term |u0|
u0

, where u0 > 0 is the nominal surge
speed, is used for speed-scaling of the damping coefficients.
The term |u0| , max(|u|, µ), where µ > 0 is an arbitrary
constant, guarantees some damping for low surge speeds.
The constants in B are given as b11 = b32 = 1, while b22

captures the coupling from the yaw torque to the sway force
in the actuator model, given from Y = � 1

lx
N , b22N . The

force vector f is modeled as:

f =


X
N

�
=


T|n|n|np|np + Tununp

�Y�u2 lx� 

�
, (3)

where np and � are the propeller speed and rudder de-
flection angle, respectively, while T|n|n, Tun and Y�u2 are
propeller and rudder coefficients, and lx is the rudder lever
arm along the x-axis. The actuators are limited by both
saturation and rate limitations:

np 2 [npmin
, npmax

], k� k1  �max,
����̇ 

���
1

 �̇max. (4)

The actuator limitations are not considered in the mathe-
matical model (1) since f is selected as the control input,
but are, however, to be included in the DW algorithm. For
positive surge speeds, and requiring that the DW algorithm
only specifies feasible commands, it is always possible to
calculate np and � given a force vector f . Hence, a unique
inverse function f�1 exists.

It should be noted that when Assumption 1 is satisfied,
the following property holds [7]:

M�1Bf =

2
64

b11
m11

X

0
m22b32�m23b22
m22m33�m2

23
N

3
75 . (5)

III. THE DYNAMIC WINDOW ALGORITHM

A. Introduction

The DW algorithm is a velocity space method, intended to
prohibit infeasible control commands by specifying a desired
velocity pair consisting of a desired forward speed and a
desired rotational rate as reference signals for the vehicle
speed controllers. The algorithm was originally designed
for a car-like mobile robot with first-order nonholonomic
constraints, moving in 3 DOF [5]. The original paper predicts
vehicle trajectories as circular arcs with radii of M i

R = ui

ri

(and straight lines for ri = 0) for a discrete set of desired
velocity pairs (ui, ri). The original trajectory prediction is
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Fig. 2. Architecture overview. The modified algorithm facilitates a more modular architecture than the original algorithm.

quite accurate for vehicles with only first-order nonholo-
nomic constraints, since they have no sideways motion.

As seen in Figure 2, the original DW algorithm inputs
a desired heading  d to guide the vehicle towards a goal.
In contrast, the modified algorithm inputs a desired surge
speed and yaw rate (u0

d, r
0
d), which facilitates a more modular

architecture in addition to allowing the surge speed to be
externally guided. Notice that (u0

d, r
0
d) is a desired velocity

pair used as an input to the modified algorithm, while
(ud, rd) is the output of the algorithm used as the reference
for the vehicle dynamics controller.

Here, the DW algorithm is combined with a line-of-sight
(LOS) guidance law, given as [8]:

 LOS = ↵p � arctan
⇣ e

�

⌘
, (6)

where ↵p is the path heading and e is the cross track error.
The tuning parameter � > 0 is the lookahead-distance, given
in meters. To generate a desired yaw rate for the modified
DW algorithm, the following yaw controller is proposed:

r0d = �k ( �  d) +  ̇d, (7)

where k > 0 is a constant gain and  d =  LOS .
For an implementation of the DW algorithm with an

integral line-of-sight (ILOS) guidance law for compensation
of ocean currents, also including a proof of convergence to a
straight line path for the combined system, see [2]. It should
be noted that the case presented in this paper is a special
case of the case considered in [2], hence the convergence
proof also applies to the system presented here.

B. The original dynamic window algorithm

Three 2D search spaces in forward (surge) speed and
rotational (yaw) rate accounts for the kinematic and kinetic
constraints of the vehicle. The dynamic window allows a
time interval T (usually smaller than the sample time) for
acceleration of the vehicle:

Vd =
n

(u, r) 2 R ⇥ R
���u 2 [u⇤ + u̇minT, u⇤ + u̇maxT ]

^ r 2 [r⇤ � ṙmaxT, r⇤ + ṙmaxT ]
o

, (8)

where u⇤, r⇤ are the current forward speed and rotational
rate and u̇min < 0, u̇max > 0, ṙmax > 0 are the vehicle

accelerations limits. Note that the original algorithm assumes
that the yaw acceleration limits are symmetric, hence ṙmin =
�ṙmax. The set of possible velocities is:

Vs =
n

(u, r) 2 R ⇥ R
���u 2 [0, umax]

^ r 2 [�rmax, rmax]
o

, (9)

where umax and rmax are the maximum forward speed and
rotational rate. The dynamic window and the set of possible
velocities account for the actuator limitations. Finally, the
set of admissible velocities ensures that the vehicle is able
to stop before it collides with an obstacle:

Va =
n

(u, r) 2 R ⇥ R
���u 

p
2 · dist(u, r) · |u̇min|

^ |r| 
p

2 · dist(u, r) · ṙmax

o
, (10)

where dist(u, r) expresses the distance which the vehicle
can travel along the trajectory given the velocity pair (u, r)
without colliding with an obstacle.

The optimal velocity pair is selected through maximizing
an objective function over the resulting search space Vr =
Vd \ Vs \ Va:

max
(u,r)

G(u, r) = � (↵·heading(u, r) + � ·dist(u, r)
+� ·velocity(u, r))

s.t. (u, r) 2 Vr,

(11)

where ↵,�, � > 0 are tuning parameters and heading(u, r)
measures the alignment between the trajectory corresponding
to the velocity pair (u, r) and a desired heading. The term
velocity(u, r) favors holding a high surge speed, while � is
a low-pass filter to reduce fluctuations in the control output.
The optimization problem (11) is solved by numerically
computing the objective value for all (u, r) 2 Vr (discretized)
and selecting the one with the highest objective value.

The original algorithm has two significant limitations
when applied to AUVs:

• The lack of modeling the sideways motion of vehicles
with second-order nonholonomic constraints results in
inaccurate trajectory predictions.

• Using a rectangular search space which does not include
any actuator modeling can cause infeasible control
references to be specified.
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Furthermore, the heading term in (11) compares a desired
heading input with a resulting heading for the trajectories,
requiring the algorithm to include a mapping function to
compute the resulting heading for the different velocity pairs.

Several modifications to the original DW algorithm have
been proposed. Some of these include global information in
order to handle local minima in the environment, see [10],
[11], [12], [13]. In particular, [13] combines the focussed D*
(FD*) [14] global planner with the DW algorithm in a hybrid
architecture. The heading and velocity terms are replaced by
a measure of alignment to the FD* path, hence also removing
the required mapping from angle to angular rate. To reduce
the prediction error of the vehicle trajectories, [15] uses
clothoid curves instead of circular arcs and straight lines to
model the vehicle trajectories. A simplified set of equations is
used in [4] to simulate trajectories for an autonomous surface
vehicle (ASV), accounting for an estimated lateral speed.

C. A new search space and objective function

In this section we present a modified search space to better
suit the nonlinear responses of AUVs. The objective function
is also changed to facilitate a more layered architecture.

To ensure feasible steering commands for the AUV, the
search space is modified to account for the actuator model (3)
and limitations (4). Allowing a small time interval Ta < T to
be used for changing the control inputs, the feasible actuator
commands are:

� 2 sat
⇣h
�⇤ � Ta�̇max, �

⇤
 + Ta�̇max

i
, �max

⌘

np 2 [npmin
, npmax

] ,
(12)

where �⇤ denotes the current rudder deflection angle, and
sat(·) is a saturation function. It should be noted in general
that rate limitation can also be imposed on the propeller
speed. By denoting Bf = ⌧ (⌫, � , np), and since the
actuators are linearly independent, the acceleration limits can
be found by solving:

⌫̇i = M�1 (⌧ i � C(⌫⇤)⌫⇤ � D(⌫⇤)⌫⇤) , (13)

where i 2 {min, max}, ⌧min , ⌧ (⌫⇤, max(� ), min(np)),
⌧max , ⌧ (⌫⇤, min(� ), max(np)) and ⌫⇤ denotes the cur-
rent vehicle velocity. It is worth noticing that a positive rud-
der deflection results in negative yaw moment. The dynamic
window (8) is then modified as:

Vd =
n

(u, r) 2 R ⇥ R
���u 2 [u⇤ + u̇minT, u⇤ + u̇maxT ]

^r 2 [r⇤ + ṙminT, r⇤ + ṙmaxT ]} . (14)

Notice that in contrast to the original algorithm the yaw rate
acceleration limit is no longer assumed to be symmetric.

By defining a function g(u, r) which is positive semidef-
inite for feasible velocities with respect to actuator satura-
tions, the set of possible velocities (9) can be generalized
as:

Vs =
n

(u, r) 2 R ⇥ R
���g(u, r) � 0

o
. (15)

The function g(u, r) is approximated by numerically calcu-
lating the boundaries of the possible steady state solutions of

Fig. 3. The dynamically feasible velocity set Vf (in grey), together with
the boundaries of the dynamic velocity window (in blue) and the possible
velocity set (in red). The dynamically feasible velocity set is discretized
uniformly, and note that the desired velocity pair (u0

d, r0d) is included in
the discrete search space.

the kinetics (1b), see [2] for details. The sets Vd, Vs and the
dynamically feasible velocity set Vf = Vd\Vs are illustrated
in Figure 3.

To simplify the implementation, the configuration space of
the AUV is reduced from R2⇥SO(2) to R2 by approximat-
ing the AUV footprint as a circle. This is done by expanding
the detected obstacles with the maximum AUV radius, and
representing the AUV as a particle. Inspired by [16], two
regions are defined on the detected obstacles to control the
obstacle clearance; the “avoidance region”

⌦ ,
n

p 2 C
��� kp � pobsk2  r̄

o
, (16)

and the “antitarget region”

T ,
n

p 2 C
��� kp � pobsk2  r⇤

o
(17)

where pobs 2 R2 is the position of obstacles, C = R2 is a
collapsed, heading independent configuration space and r̄ >
r⇤ > 0 are scalars defining the size of ⌦ and T . In particular,
r⇤ is the maximum radius of the AUV corresponding to
approximating the AUV footprint as a circle. The antitarget
region is interpreted as the region where a collision may
occur, while the avoidance region is interpreted as a safety
region that is not desirable to enter. The regions are illustrated
in Figure 4.

The set of admissible velocities (10) is modified as:

Va =
n

(u, r) 2 R ⇥ R
��u 

p
2⇢0(u, r)|u̇min|

^|r| 
⇢ p

2⇢0(u, r)|ṙmax| , r < 0p
2⇢0(u, r)|ṙmin| , r � 0

�
. (18)

The function ⇢0(u, r) expresses the remaining distance the
AUV can travel along the resulting trajectory at the next
iteration without entering the antitarget region T :

⇢0(u, r) = max(⇢(u, r) ��s, 0), (19)

where ⇢(u, r) expresses the distance the AUV can travel
along the resulting trajectory before it enters T and �s ex-
presses the distance the AUV travels until the next iteration.
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Fig. 4. Obstacle regions. Notice that the antitarget region is extended along
the forward sonar boundary to account for possible obstacles just outside
of the sonar range. Black lines illustrate sonar range measurements.

To improve the generality of the algorithm and remove the
need for computing resulting headings for the velocity pairs,
the heading term of the objective function is replaced with a
term taking a desired yaw rate as input. This is inspired by
[17] and [18]. In addition, inspired by [13], the dist(u, r)
term is scaled by the trajectory velocity, resulting in a term
which approximates the time until collision. To motivate the
algorithm to keep out of the avoidance region, dist(u, r)
expresses the time until the AUV enters ⌦. The algorithm
input is assumed to be smooth, so the low-pass filter is
omitted. The objective function in (11) is thus modified as:

G(u, r) = ↵·yawrate(u, r, r0d) + � ·dist(u, r)

+ � ·velocity(u, r, u0
d), (20)

where u0
d and r0d are inputs to the algorithm, and

yawrate(u, r, r0d) = 1 � |r0d � r|
max
r2Vr

(|r0d � r|) , (21)

velocity(u, r, u0
d) = 1 � |u0

d � u|
max
u2Vr

(|u0
d � u|) , (22)

dist(u, r) =
⇢̄(u, r)

1
T

R T

0
k�(u, r, t)k2 dt

, (23)

where ⇢̄(u, r) is the distance the AUV can travel along the
trajectory specified by the velocity pair (u, r) until it enters
⌦, and �(u, r, t) is the predicted AUV surge and sway speed
along the trajectory specified by the velocity pair (u, r).

D. A new trajectory prediction method

To account for second-order nonholonomic constraints in
the trajectory prediction, we propose to use partial feed-
back linearization to linearize the surge and yaw dynamics,
while leaving the sway motion uncontrolled. The closed
loop dynamics are then derived and used for predicting the
AUV trajectories, hence including both sway and controller
dynamics in the AUV trajectory prediction. This approach is
similar to the one presented in [19], but does not require a
linear model and is hence more flexible. In contrast to the

approach suggested by [4], the actual equations of motion
are used and the kinetics are solved analytically. This makes
the prediction more accurate and requires less computations.

By solving (1b) for ⌫̇, the system can be described as:

⌫̇ = M�1Bf � n(⌫), (24)

where n(⌫) = M�1 (C(⌫)⌫ + D(⌫)⌫).
To formulate the control law, the system is divided into

two parts. This is done by using the matrices �1 and �2:

�1 ,

1 0 0
0 0 1

�
, �2 ,

⇥
0 1 0

⇤
, (25)

that satisfies �T
1 �1 + �T

2 �2 = I. The system (24) can be
written as:

⌫̇ =
⇣
�T

1 �1 + �T
2 �2

⌘ �
M�1Bf � n(⌫)

�

= �T
1

�
�1M

�1Bf � �1n(⌫)
�
� �T

2 �2n(⌫).
(26)

Notice that �2M
�1Bf = 0. Hence, the system is divided

in two parts where �T
1 �1 maps dynamics to surge and

yaw, while �T
2 �2 maps dynamics to sway. To remove the

nonlinearities in surge and yaw, we select the feedback
linearizing control law:

f =
�
�1M

�1B
��1

(�1n(⌫) + a1d) , (27)

where a1d =
⇥
u̇d ṙd

⇤T
is the desired acceleration.

Remark 3: By construction, it is shown in [2] that
�1M

�1B is of full rank and hence invertible.
Inserting (27) into (26) gives:

⌫̇ = �T
1 a1d � �T

2 �2n(⌫). (28)

The desired acceleration is selected using a proportional
controller with a reference feedforward:

a1d = ⌫̇1d � Kp (⌫1 � ⌫1d)

= ⌫̇1d � Kp (�1⌫ � ⌫1d) ,
(29)

where Kp =


ku 0
0 kr

�
> 0 is a gain matrix, ⌫1 =

⇥
u r

⇤T

and ⌫1d =
⇥
ud rd

⇤T
.

Inserting (29) into (28), and defining

⌫̃ =

2
4

ũ
v
r̃

3
5 , ⌫ � �T

1 ⌫1d, (30)

results in the dynamics:
˙̃⌫ = ��T

1 Kp�1⌫̃ � �T
2 �2n(⌫). (31)

Note that n(⌫) takes ⌫ as its argument. Also, it is important
to notice that (31) is linear in both surge and yaw:

˙̃u = �kuũ, ˙̃r = �kr r̃, v̇ = �n2(⌫), (32)

where n2(⌫) is the contribution from the Coriolis-centripetal
and damping matrices in sway, given as:

n2(⌫) =
1

m22m33 � m2
23

⇣
(m33d22 � m23d32) v

� m23 (m22 � m11) uv +
�
m33m11 � m2

23

�
ur

+ (m33d23 � m23d33) r
⌘
, (33)
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where mij = Mi,j and dij = Di,j .
By approximating the last term of (31) using a first-order

Taylor series, the dynamics of the AUV is also linear in sway.
The Taylor approximation is given as:

n(⌫) ⇡ n(⌫⇤) +
dn(⌫)

d⌫

�����
⌫=⌫⇤| {z }

N

(⌫ � ⌫⇤)

= n(⌫⇤) + N⌫ � N⌫⇤

= N⌫ + b(⌫⇤),

(34)

where the current velocity ⌫⇤ is selected as the linearization
point and b(⌫⇤) = n(⌫⇤) � N⌫⇤ is a constant term. The
matrix N is stated in [2].

Inserting (34) into (31) yields:

˙̃⌫ = A⌫̃ + �⌫1d + G, (35)

where:
A = �

⇣
�T

1 Kp�1 + �T
2 �2N

⌘

� = ��T
2 �2N�T

1

G = ��T
2 �2b(⌫⇤).

(36)

This is a linear time-invariant system perturbed by a
nonvanishing perturbation G (hence ⌫̃ = 0 and ⌫1d ⌘ 0
does not imply ˙̃⌫ = 0). The time evolution of (35) is:

⌫̃(t) = eA(t�t0)⌫̃(t0)

+

Z t

t0

eA(t��) (�⌫1d(�) + G) d�. (37)

The desired surge speed and yaw rate are considered
constant for each trajectory, hence ⌫1d is constant for each
trajectory. By letting t0 = 0 s, (37) can be expressed as [20]:

⌫̃(t) = eAt⌫̃(0) � A�1
�
I � eAt

�
(�⌫1d + G) . (38)

The kinematics (1a) are simulated in discrete time using
the modified Euler method [21]:

⌘(tn+1) = ⌘(tn) + hk2

k1 = R(⌘(tn))⌫(tn)

k2 = R(⌘(tn) +
h

2
k1)⌫(tn +

h

2
),

(39)

where h is the integration time step, and ⌫(t) is computed
from (38) and (30). It should be noted that the absolute
position is not required in the DW implementation, as the
sonar measurements are given in {b}. Hence, the AUV
prediction can be done in {b} by selecting ⌘ =

⇥
0 0  

⇤T
.

IV. SIMULATION RESULTS

A number of simulations have been conducted to compare
the modified DW algorithm with the original DW algorithm,
in order to evaluate the performance of the two algorithms.
A 6 DOF nonlinear model of the HUGIN 1000 AUV with
a horizontally oriented forward looking sonar, developed
by the Norwegian Defence Research Establishment and
implemented in SIMULINK, has been used for testing the

TABLE I
SIMULATION PARAMETERS:

Parameter Value Description

ku 1 s�1 Surge controller gain
kr 1 s�1 Yaw rate controller gain
k 0.2 s�1 Yaw controller gain
� 8 m LOS lookahead distance
↵ 1 DW yaw rate scaling constant
� 9 s�1 DW distance scaling constant
� 3 DW surge speed scaling constant
u0

d 2 m s�1 Desired surge speed
�TDW 1 s Dynamic window algorithm sampling time
r̄ 6 m Size of the avoidance region ⌦
r⇤ 3.5 m Size of the antitarget region T

algorithms. The HUGIN 1000 AUV model satisfies Assump-
tions 1-3 given in Section II.

The control system was implemented in MATLAB, with
parameters as in Table I. The model parameters are not
stated due to confidentiality reasons. Further details about
the simulator are given in [2].

To illustrate the improvement of predicting the AUV tra-
jectories using the proposed linear approximation compared
to the original approach, a set of AUV trajectories are
predicted using a search space consisting of three desired
surge velocities and three desired yaw rates. Assuming that
Vs does not impose any limitations on the search space, this
results in nine velocity pairs. The initial velocity is chosen
as ⌫(0) =

⇥
2 0 0

⇤T
and the trajectories are predicted for

30 s. Figure 5 shows the actual AUV trajectories together
with predicted trajectories using both the original prediction
and the new linear approximation, for three of the velocity
pairs (the other six trajectories look similar, see [2]). Table II
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Fig. 5. Actual and approximated AUV trajectories, given initial velocity
⌫(0) = [2 0 0]T and u0

d = 2 m s�1.

shows the average prediction error using both the original
prediction and the new linear approximation. From Table II
and Figure 5 it is clear that the linear approximation is much
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TABLE II
MEAN SQUARE ERROR OF PREDICTED AUV TRAJECTORIES:

Time span Original
prediction

Linear
approximation

Linear approximation
vs. original prediction

t = [0, 5] s 0.100 m2 0.000576 m2 0.576 %

t = [0, 30] s 4.67 m2 0.045 m2 0.964 %

more accurate than the original prediction method, especially
for the initial part of the trajectories.

Simulations in various environments all indicates that the
modified algorithm achieves a more consistent and secure
clearance to obstacles. One of the comparisons is shown
in Figure 6. Following the straight line path between the
three waypoints would result in a collision, and an alternative
path is therefore found by the DW algorithm. In this case,
the modified algorithm chooses a shorter route than the
original algorithm. The modified algorithm achieves a larger
obstacle clearance, and makes the AUV stay well clear of
the antitarget region at all times. In contrast, the original
algorithm makes the AUV enter the antitarget region during
the simulation. See Figure 7 and Table III for details.

The robustness of the COLAV system is assessed through
a Monte Carlo simulation with 1500 samples. The AUV
COLAV system is simulated in environments generated by
filtering and thresholding matrices of normal distributed
random elements, to represent the environments as obstacle
grids. Further, based on simulated sonar ranges, estimates of
T and ⌦ are generated as shown in Figure 4. As shown in
Table IV, 17.2 % of the simulations of the modified algo-
rithm came closer than 3 m to an obstacle, and hence may
have caused a collision (recall that the AUV is represented
as a particle, and the radius of the AUV is approximately

Fig. 6. AUV trajectories using the modified and original DW algorithms.
The AUV starts at (0, 100) m.

Fig. 7. Distance to closest obstacle.

3 m). Some trajectories even resulted in a minimum distance
of 0.1 m, surely causing a collision. A closer inspection
of the trajectories reveals that when the AUV reduces the
surge speed to avoid collisions in local minima, the speed
scaling of the damping causes the AUV to slide sideways
for a long time after the surge speed reaches zero. This is
considered to be a simulation artifact, since the model (1)
does not capture the correct vehicle dynamics at low surge
speeds. For further elaboration of the simulation artifact, see
[2]. Notice, however, that 71.3 % of the simulations of the
original algorithm came closer than 3 m, demonstrating a
large improvement with regards to the original algorithm.
From Table IV and Figure 8 it is clear that the modified DW
algorithm consistently achieves a larger obstacle clearance.
An interesting result is that the modified DW algorithm made
the AUV reach the final waypoint only in 31.9 % of the
simulations, hence the AUV got trapped in local minima
in 68.1 % of the simulations. This demonstrates the need
for adapting the global path underway for example by using
a deliberate planner together with the DW algorithm in a
hybrid architecture, to avoid local minima. However, the
modified DW algorithm performed better than the original
DW algorithm which only reached the final WP in 28 % of
the simulations.

V. CONCLUSION

We have in this paper proposed a number of modifications
to the dynamic window (DW) algorithm to make it suitable
for vehicles with second-order nonholonomic constraints and
time-varying acceleration limitations.

Based on simulations, a new AUV trajectory prediction
method accounting for second-order nonholonomic con-

TABLE III
TRAJECTORY DATA, ORIGINAL AND MODIFIED DW ALGORITHM:

Parameter Original
algorithm

Modified
algorithm

Trajectory length to end WP 602 m 539 m

Trajectory time to end WP 307 s 273 s

Average surge speed 1.94 m s�1 1.95 m s�1

Minimum obstacle clearance 2.4 m 5.9 m
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TABLE IV
SUMMARY OF MONTE CARLO SIMULATION:

Min. obs.
clearance

Original algorithm Modified algorithm
Perc. of

simulations
Perc. of which
reached goal

Perc. of
simulations

Perc. of which
reached goal

[0, 1] m 33.9 % 0.8 % 1.8 % 0 %

(1, 2] m 4.1 % 17.7 % 5.1 % 0 %

(2, 3] m 33.3 % 20.0 % 10.3 % 0 %

(3, 4] m 26.5 % 68.8 % 38.3 % 8.7 %

(4, 5] m 0.5 % 87.5 % 5.3 % 52.5 %

(5, 6] m 0.6 % 100.0 % 31.0 % 62.2 %

(6,1) m 1.0 % 100.0 % 8.2 % 79.7 %

All 100.0 % 28.0 % 100.0 % 31.9 %

Minimum distance to obstacle
[0,1] m (1,2] m (2,3] m (3,4] m (4,5] m (5,6] m (6,∞) m

N
u

m
b

e
r 

o
f 

si
m

u
la

tio
n

s

0

100

200

300

400

500

600 Original DW algorithm
Modified DW algorithm

Fig. 8. Minimum obstacle clearance in the Monte Carlo simulation.

straints reduces the mean square prediction error to about
one percent of the original method. Together with a modified
search space, this improves the performance of the DW
algorithm in terms of obstacle clearance and accuracy when
applied to AUVs. Based on a Monte Carlo simulation of 1500
samples, the modified DW algorithm is believed to be robust
with respect to obstacle configurations. This should however
be investigated further. Due to the new prediction method, the
computational cost of the modified algorithm is moderately
larger than that of the original algorithm. On the other hand,
the increased prediction accuracy makes it possible to run
the DW algorithm at a lower sampling frequency.

In order to develop a practical COLAV system, further
research will be put into combining the reactive DW algo-
rithm with deliberate planning algorithms to ensure global
convergence. The suitability of the DW algorithm for use
with ASVs will also be evaluated.
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Modeling, Identification and Control of
High-Speed ASVs: Theory and Experiments

Bjørn-Olav Holtung Eriksen, Morten Breivik

Abstract This paper considers a powerful approach to modeling, identification and
control of high-speed autonomous surface vehicles (ASVs) operating in the dis-
placement, semi-displacement and planing regions. The approach is successfully
applied to an 8.45 m long ASV capable of speeds up to 18 m/s, resulting in a high-
quality control-oriented model. The identified model is used to design four different
controllers for the vessel speed and yaw rate, which have been tested through full-
scale experiments in the Trondheimsfjord. The controllers are compared using var-
ious performance metrics, and two controllers utilizing a model-based feedforward
term is shown to achieve outstanding performance.

1 Introduction

The development of autonomous vehicles is moving rapidly forward. The automo-
tive industry is particularly leading this trend. At sea, there is also a great potential
for such vehicles, which are typically referred to as autonomous surface vehicles
(ASVs). The use of such vehicles have scientific, commercial and military applica-
tions, and can result in reduced costs, increased operational persistence and preci-
sion, widened weather window of operations, improved personnel safety, and more
environmentally friendly operations. In [1], an early overview of unmanned surface
vehicles is given, while a more recent survey is presented in [8].

In this paper, we focus on modeling and control of small, agile ASVs which can
operate at high speeds with aggressive maneuvers. These vehicles typically cover
the whole range of speed regions for a surface vehicle, namely the displacement,
semi-displacement and planing regions. Hence, they are challenging to model and

Bjørn-Olav Holtung Eriksen and Morten Breivik
Centre for Autonomous Marine Operations and Systems, Department of Engineering Cybernetics,
Norwegian University of Science and Technology (NTNU), Trondheim, Norway, e-mail: bjorn-
olav.h.eriksen@ieee.org and morten.breivik@ieee.org
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control, and it therefore becomes challenging to develop a robust and precise motion
control system which allows the vehicles to utilize their full potential. Specifically,
this paper revisits the modeling and control approach originally suggested in [4]
and further developed and reported in [3]. The method represents a control-oriented
modeling approach and underlines the importance of developing and using good
feedforward terms in the control law. The high-quality performance of the resulting
motion control system was validated through several full-scale experiments with
ASVs in the Trondheimsfjord in 2008 and 2009, both for target tracking and forma-
tion control applications. In this paper, we further develop this approach and go into
greater details concerning the modeling and identification procedure and results.

Full-scale identification experiments based on the suggested modeling approach
are conducted with a dual-use (manned/unmanned) ASV named Telemetron, see
Figure 1, which is owned and operated by the company Maritime Robotics. The
resulting identified model is shown to be very precise and cover the entire opera-
tional envelope of the ASV. This model subsequently forms the basis for a detailed
performance comparison between four qualitatively different controllers, which are
implemented and experimentally tested to control the speed and yaw rate of the
Telemetron ASV. In particular, the controllers are: A PI feedback (FB) controller;
a pure model-based feedforward controller based on the identified model (FF); a
controller which is a combination of model-based feedforward and PI feedback
(FF-FB); and a controller using feedback signals in the model-based feedforward
term in combination with PI feedback, which can be characterized as a feedback
linearization (FBL) controller. Relevant performance metrics are defined and used
to compare these controllers to determine which is most precise and energy efficient.

Other relevant work concerning a control-oriented modeling approach can be
found in e.g. [11] and [10].

The rest of the paper is structured as follows: Chapter 2 presents the main charac-
teristics of the control-oriented modeling approach. Chapter 3 describes the model
identification in detail, from experimental design to parameter identification. Chap-
ter 4 describes the four controllers which are considered in the paper, while Chapter
5 presents the results from the motion control experiments. Finally, Chapter 6 con-
cludes the paper.

Fig. 1 The Telemetron ASV,
which is a Polarcirkel Sport
8.45 m long dual-use ASV
capable of speeds up to
18 m/s. Courtesy of Mar-
itime Robotics.
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2 2DOF control-oriented vessel model

The vast majority of surface vessel models are based on the 3DOF model [7]:

ḣhh = RRR(y)nnn (1a)

MMMṅnn +CCCRB(nnn)+CCCA(nnnr)nnnr +DDD(nnnr)nnnr = ttt + tttwind + tttwave, (1b)

where hhh =
⇥
N E y

⇤T 2 R2 ⇥S1 is the vessel pose, nnn =
⇥
u v r

⇤T 2 R3 is the vessel

Fig. 2 Vessel variables. The
superscripts (·)n and (·)b

denote the NED and body-
frames [7], respectively. The
variables N,E and y are the
vessel pose, u,v and r are the
vessel velocity and U is the
vessel speed over ground. The
course c is the sum of the
heading y and the sideslip b .
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velocity and nnnr denotes the relative velocity between the vessel and the water. The
terms ttt,tttwind,tttwave 2R3 represent the control input, wind and wave environmental
disturbances, respectively. The matrix RRR(y) is the rotation matrix about the z-axis,
the inertia matrix is MMM = MMMRB + MMMA where MMMRB is the rigid-body mass and MMMA
is the added mass caused by the moving mass of water. The matrices CCCRB(nnn) and
CCCA(nnnr) represent the rigid-body and hydrodynamic Coriolis and centripetal effects,
respectively, while DDD(nnnr) captures the hydrodynamic damping of the vessel. An
important limitation of (1b) is that it can be challenging to use for vessels operating
outside of the displacement region. For approximating the operating region of a
surface vessel, it is common to use the Froude number, defined as [6]:

Fn =
Urp
Lg

, (2)

where Ur is the vessel speed through water, L is the submerged vessel length and
g is the acceleration of gravity. For Fn less than approximately 0.4, the hydrostatic
pressure mainly carries the weight of the vessel, and we operate in the displacement
region. When Fn is higher than 1.0 to 1.2, the hydrodynamic force mainly carries
the weight of the vessel, and we operate in the planing region. For Fn between these
values, we are in the semi-displacement region [6].

Typical ASVs have vessel lengths of up to 10 m, submerged length of up to
8 m and operating speeds up to 18 m/s. From Table 1, we see that an ASV with
a submerged length of 8 m exits the displacement region already at 3.54 m/s, and
enters the planing region at 8.86 m/s. Hence, (1b) is typically only suited for a small
part of the ASV operating region, which motivates for an alternative model.

ASVs are generally underactuated, hence it it not possible to independently con-
trol surge, sway and yaw. We therefore choose to reduce the model to the 2DOF
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Table 1: Operating speeds for displacement and planing regions. *Supply ships typi-
cally operate with speeds up to 7 m/s. It is therefore clear that supply ships generally
operate in the displacement region.

Vessel type Submerged length Maximum speed in dis-
placement (Fn = 0.4)

Minimum speed in planing
(Fn = 1.0)

Small ASV 4 m 2.51 m/s 6.26 m/s
Large ASV 8 m 3.54 m/s 8.86 m/s
Small supply ship 50 m 8.86 m/s* 22.1 m/s*
Large supply ship 100 m 12.5 m/s* 31.3 m/s*

which we want to control, namely the speed over ground (SOG) U =
p

u2 + v2 and
yaw rate (rate of turn, ROT). The kinematic equation (1a) is therefore modified to:

ḣhh =

2
4

cos(c) 0
sin(c) 0

0 1

3
5

U
r

�

ċ = r + ḃ ,

(3)

where c = y +b is the vessel course angle and b is the vessel sideslip. It should be
noted that this model implies that:
• Since U � 0, we assume that the vessel is traveling forward, that is u � 0.
• The sideslip b enters the kinematic equation. For kinematic control (e.g. path

following), this must be addressed by e.g. controlling course instead of heading.

To relax the limitation of operating in the displacement region implied by (1b),
we propose a normalized non first-principles model. This is inspired by [4] and [3]
where a steady-state model in a similar form is developed. Since the actual control
input of the vessel is not forces, but rather motor throttle and rudder angle, we select
these as inputs to the model. As a result, we also implicitly model the actuator
dynamics. Let the motor throttle be given as tm 2 [0,1] and the rudder input be
given as td 2 [�1,1]. Denoting the vessel velocity as xxx =

⇥
U r

⇤T 2 R2 and the
control input as ttt =

⇥
tm td

⇤T 2 R2, we propose the model:

MMM(xxx)ẋxx+sss(xxx) = ttt, (4)

where the inertia matrix MMM(xxx) = diag(mU (xxx),mr(xxx)) is diagonal with elements of
quantities

h
1

m/s2
1

1/s2

i
, and sss(xxx) =

⇥
sU (xxx) sr(xxx)

⇤T is a unit-less damping term. No-
tice that both are functions of xxx, which allows for a nonlinear model. The reader
should also note that centripetal effects are not explicitly included in (4) due to the
choice of coordinates.
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3 Model identification

Identifying the parameters of (4) require a series of experiments to be performed.
In this section, we describe the identification experiments, parameterization of the
inertia and damping terms, and the methodology used for parameter identification.

3.1 Vessel platform and hardware

As already mentioned, the vessel used in this work is the Telemetron ASV. It is a
dual-use vessel for both manned and unmanned operations, and is equipped with a
number of sensors and a proprietary control system. Some of the specifications are
summarized in Table 2.

Table 2: Telemetron ASV specifications.

Component Description

Vessel hull Polarcirkel Sport 845
Length 8.45 m
Width 2.71 m
Weight 1675 kg

Propulsion system Yamaha 225 HP outboard engine
Motor control Electro-mechanical actuation of throttle valve
Rudder control Hydraulic actuation of outboard engine angle with

proportional-derivate (PD) feedback control
Navigation system

Identification experiments Kongsberg Seatex Seapath 330+
Control experiments Hemisphere Vector VS330

3.2 Identification experiment design

Since we wish to identify damping and inertia terms, both steady-state and transient
information is required. We therefore construct a series of step responses:
• Step changes in tm given a series of fixed rudder settings td , illustrated as orange

trajectories in Figure 3.
• Step changes in td given a series of fixed throttle settings tm, illustrated as blue

trajectories in Figure 3.

The steps are performed both for increasing and decreasing values to include the
effect of hysteresis, and is designed to sample the U/r-space of the vessel as shown
in Figure 3. It is assumed that the vessel response is symmetric in yaw, such that

61



it is sufficient to perform experiments only for positive rudder settings (which for
the Telemetron ASV result in positive yaw rate). The vessel shall reach steady state
between the step changes such that the damping terms can be identified from the
steady-state response, while the inertia is identified from the transient response. The
motor will be kept in forward gear throughout the entire experiment.

Fig. 3 Expected shape of the
vessel velocity space, where
the red line is the boundary
of the velocity space. The
orange and blue lines are
examples of step change tra-
jectories for fixed rudder and
throttle, respectively. Note
that only some trajectories are
illustrated. The dots on the
trajectories illustrate steady-
state points.

U

r

⌧� = 1⌧� = �1

⌧m = 1

⌧m 2 [0, 1]⌧m 2 [0, 1]

⌧� 2 [�1, 1]

The step changes in tm are performed as:
1. Start at tm = 0. Select td = 0.
2. Step tm stepwise from 0 to 1 in steps of 0.1, letting the vessel SOG and ROT

reach steady state before the next step is applied. Let the vessel do at least one
full turn after reaching steady state, to be able to minimize the effect of external
disturbances through averaging.

3. Step tm stepwise from 1 to 0, in the same fashion as in step 2.
4. Repeat step 2 and 3 with the next rudder setting.
Step changes in td are performed by interchanging tm and td . Identification exper-
iments were carried out in the Trondheimsfjord 17th and 18th of December 2015.

3.3 Measurement extraction

To identify parameters for MMM(xxx) and sss(xxx), we need measurements of sU ,sr,mU
and mr for different vessel states xxx.

3.3.1 Extraction of damping data

When the vessel is in steady state, the model (4) gives the relation:

ẋxx = 000 ! sss(xxx) = ttt, (5)

hence measurements of the damping term can be taken simply as the control input
when the vessel is at steady state. To reduce the influence of external forces, the

62 Chapter 5. Original publications



vessel state is averaged to extract measurements for sU and sr. This is shown for
one of the fixed rudder settings in Figure 4. We observed that the motor response is
greatly reduced for tm > 0.6, hence measurements with tm > 0.6 are omitted.
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Fig. 4: Vessel response with a fixed rudder setting. The gray patches mark steady
state regions.

By averaging the steady-state regions, we generate a set of Ns measurements
Dsss = {{xxx1,xxx2, . . . ,xxxNs },{sss1,sss2, . . . ,sssNs },{ttt1,ttt2, . . . ,tttNs }}, which can be used
for identifying parameters for the damping term. The damping measurements, with
mirrored values for negative rudder settings, are shown in Figure 5.

3.3.2 Extraction of inertia data

To extract measurements for mU and mr, we have Nm step changes, and we create
an estimate of the vessel response using Nm local first-order linear models. We ap-
proximate the SOG and ROT dynamics as SISO systems, hence for the i-th step, the
linear approximation of the vessel SOG can be written as:

mUi
˙DUi + kiDUi = Dtmi , (6)

where the inertia mUi is assumed to be constant during the step, ki =
s+

Ui
�s�

Ui
U+

i �U�
i

, where

(·)� and (·)+ denotes the value prior to and after the step, is a linearized damping
term, DUi = U �U�

i and Dtmi = tm � t�mi
. The only unknown in (6) is the inertia

mUi , hence we can find a suitable inertia mUi by simulating (6) for a set of possible
inertias and selecting the inertia with the smallest squared estimation error, as shown

in Figure 6. The measurement is taken as (xxx,mU ) =
⇣⇣

U+
i +U�

i
2 ,

r+
i +r�i

2

⌘
,mUi

⌘
. The

same approach is employed for identifying inertia for ROT.
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Fig. 5: Damping term measurements from averaging of steady-state responses. Mea-
surements for negative rudder settings are obtained by mirroring the data.

Fig. 6 Inertia measurement
extraction for a step in the
SOG. It is clear that mU =
0.1711 is the best fit.
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It should be noted that, in contrast to identifying damping, we obtain two sets
of measurements DmU =

n
{xxx1,xxx2, . . . ,xxxNmU

},{mU1 ,mU2 , . . . ,mUNmU
}
o

and Dmr =
n

{xxx1,xxx2, . . . ,xxxNmr },{mr1 ,mr2 , . . . ,mrNmr
}
o

containing NmU and Nmr measurements
respectively. The inertia measurements are shown in Figure 7.

3.3.3 Data preprocessing

Before the measurements are used for parameter identification, some preprocessing
is required:
• Damping measurements with td = 0 should result in zero yaw rate. Even though

we average the steady-state response, some offset will be present. Hence, all
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Fig. 7: Inertia term measurements. Measurements for negative rudder settings are
obtained by mirroring the data.

measurements (U,r,sU ,sr) 2 Dsss with td = sr = 0 should be be modified as
(U,r,sU ,sr) = (U,0,sU ,sr).

• Since the domains of U and r are different, the measurements should be normal-
ized. We have applied zero-mean and unit variance normalization individually
for each measurement set Dsss ,DmU and Dmr .

3.4 Parameter identification

This section describes identification of the parameters of (4) based on the measure-
ment sets Dsss ,DmU and Dmr .

3.4.1 Linear regression

For identification of model parameters, we use linear regression [2]. This requires
that the terms in (4) are linear in the parameters, e.g. that the damping and inertia
terms can be written as:

sU (xxx) = fff s (xxx)T bbb sU
, sr(xxx) = fff s (xxx)T bbb sr

mU (xxx) = fff M(xxx)T bbb mU
, mr(xxx) = fff M(xxx)T bbb mr

,
(7)

where fff s (xxx) and fff M(xxx) are vectors of basis functions (also called regressors) while
bbb sU

,bbb sr
,bbb mU

and bbb mr
are parameter vectors. This generalizes as a function:

ŷ = fff(xxx)T bbb . (8)
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For the model (8), one can, given a data set {{xxx1,xxx2, . . . ,xxxN},{y1,y2, . . . ,yN}}
and a parameter vector bbb , define the weighted square loss function:

e =
1
N

N

Â
i=1

Wii
�
yi �fff(xxxi)

T bbb
�2

, (9)

where Wii is a weight for sample i. By defining YYY =
⇥
y1 y2 . . . yN

⇤T and XXX =⇥
fff(xxx1)

T fff(xxx2)
T . . . fff(xxxN)T ⇤T one can find the bbb that minimizes (9) as:

bbb = (XXXTWWWXXX)�1XXXTWWWYYY , (10)

where WWW = diag(W11,W22, . . . ,WNN). This is known as weighted linear least-squares
regression.

A well known issue with linear regression, especially with large parameter vec-
tors, is the problem of overfitting. To reduce this problem, one can penalize large
parameter values by adding a regularization term to (9) as:

e =
1
N

N

Â
i=1

Wii
�
yi �fff(xxxi)

T bbb
�2

+lR(bbb ), (11)

where l > 0 is a regularization weight, and the choice of the regularization term
R(bbb ) is problem dependent. We choose `1-regularization where R(bbb ) = kbbbk1, also
known as lasso, which has the property of driving parameters to zero for sufficiently
high values of l [2]. This penalizes basis functions with low sensitivities to the loss
function, and favors sparsity in the parameter vector.

It should be noted that introducing regularization provides one parameter more
to the problem, in form of the regularization weight l . Additionally, there exist no
closed form solution to minimizing (11) with respect to bbb . However, given a reg-
ularization parameter l , the solution can be found through quadratic programming
techniques.

3.4.2 Cross-validation (CV)

For identifying hyperparameters, such as the regularization weight l , one can use
cross-validation (CV). This involves dividing the available data into a training set
and a validation set, where the training set is used for solving the parameter esti-
mation while using the validation set for evaluating the loss. Hyperparameters can
then be identified by minimizing the loss with respect to the hyperparameters. There
exist different methods for dividing the available data, e.g. k-fold, leave-p-out and
leave-one-out (which is a special case of leave-p-out). Leave-one-out CV evaluates
all possible combinations of leaving one sample for the validation set, hence for a
data set of N samples this will result in N combinations of training and validation
sets. We chose to use leave-one-out CV based on this property, while the limited
data size ensures computational feasibility.

It should be noted that when performing both positive and negative step changes
(see Figure 4), steady-state points with the same ttt will have quite similar (U,r)
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coordinates. Hence, one should handle groups of measurements when dividing the
measurements into training and validation data.

3.4.3 Damping term

From the structure of the damping measurements in Figure 5, we propose to use
polynomial basis functions for the damping term in (4). This is also motivated by
[7] where polynomial damping terms are used. The power of the polynomial is
chosen as four, which is assumed to be sufficient to capture hydrodynamic damping
and actuator dynamics. Hence, the regressor is defined as the 15-element vector:

fff s (xxx) =
⇥
1, U, r, U2, Ur, r2, U3, U2r, Ur2, r3, U4, U3r, U2r2, Ur3, r4

⇤T
. (12)

The parameter vectors bbb sU
and bbb sr

are identified by minimizing (11) with re-
spect to bbb . The regularization parameter is found as described in Section 3.4.2. A
surface plot of the damping function is shown in Figure 8.
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Fig. 8: Polynomial function for the damping term. The scatter points are the mea-
suring points, where red points have weight W = 1, blue points have W = 0.5 and
green points have W = 0.1.

3.4.4 Inertia term

From the structure of the inertia measurements in Figure 7, it is clear that a polyno-
mial model will struggle to fit the data well. We therefore introduce an asymptotic
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basis function tanh(a(U �b)) in addition to the polynomial terms. The regressor for
the inertia terms is hence defined as the 16-element vector:

fff M(xxx) =
⇥
1, U, r, U2, Ur, r2, U3, U2r, Ur2, r3, U4, U3r,

U2r2, Ur3, r4, tanh(a(U �b))
⇤T

.

(13)

Notice that the asymptotic basis function introduces two more hyperparameters in
the regression problem, namely a and b. To identify these hyperparameters, we again
use leave-one-out CV, as described in Section 3.4.2. Notice that we use regulariza-
tion when we identify these hyperparameters, individually of the linear regression.
The motivation for this is that the position of the steep asymptote in the inertial
measurement will move with changing ocean currents and external forces. Adding
regularization when identifying the hyperparameters increases the robustness of the
identified inertia term by adding a cost to choosing high parameter values for the
asymptotic term and hence limiting the gradient of the asymptotic term.

The parameter vectors bbb mU
,bbb mr

are, as for the damping term, identified by min-
imizing (11) with respect to bbb . The hyperparameters are identified using CV. It
should be noted that we use `1-regularization when identifying the hyperparameters
(amU ,bmU ) and (amr ,bmr).
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Fig. 9: Function for the inertia term. The scatter points are the measuring points.

3.5 Model verification

To qualitatively verify the identified vessel model, we simulate the model with the
input sequence from an experiment not used in the model identification and compare

68 Chapter 5. Original publications



the results. The model (4), with damping and inertia parameterization and param-
eters as identified in Section 3.4, is simulated with the recorded input sequence to
obtain the response shown in Figure 10. Based on the comparison, we see that the
model captures the dynamics of the vessel, although with slight offsets especially for
ROT. The simulated transient response coincides well with the real vessel response.

A design choice for the identification experiments was the assumed shape of
the vessel operating space, discussed in Section 3.2 and illustrated in Figure 3. This
design choice is verified by estimating the actual vessel operating space. This can be
generated by using all the steady-state velocities obtained during the identification,
as shown in Figure 11. By comparing the actual and assumed operating spaces, we
see that the shapes are very similar.
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Fig. 10: Real and simulated vessel response. The deviation at high SOG is caused
by exiting the valid domain of the identified model.

Fig. 11 Identified steady-
state velocities. The red
boundary line is estimated
by least-squares curve fitting
a fourth order polynomial.
Note that that U < 0.75 m/s
is not part of the vessel oper-
ating space as ocean current
lower-bound the SOG.
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4 Controller design

In this section, we design four controllers to be compared through experiments:
1. A proportional-integral feedback (FB) controller.
2. A feedforward (FF) controller.
3. A combined feedforward and feedback (FF-FB) controller.
4. A feedback-linearizing (FBL) controller.

4.1 Controller types

This section describes the controller formulations, and the resulting closed-loop dy-
namics.

4.1.1 Model uncertainties

The model (4) does not account for modeling uncertainties. For closed-loop analy-
sis, we therefore add an unknown bias term and modify the model as:

MMM(xxx)ẋxx+sss(xxx) = ttt +bbb, (14)

where bbb is assumed to be slowly varying, hence ḃbb ⇡ 000.

4.1.2 Proportional-integral feedback (FB) controller

The FB controller is a proportional-integral controller with gain scheduling of the
proportional gain using the inertia term of the identified model (4):

tttFB = �MMM(xxx)KKK px̃xx�KKKi

Z t

t0
x̃xx(g)dg, (15)

where KKK p > 0 is a diagonal proportional gain matrix, KKKi > 0 is a diagonal integral
gain matrix and x̃xx = xxx�xxxd . By inserting (15) into (14) we derive the error dynamics:

˙̃xxx = �KKK px̃xx+MMM(xxx)�1
✓

bbb�sss(xxx)�KKKi

Z t

t0
x̃xx(g)dg

◆
+ ẋxxd , (16)

where we see that the integrator must compensate for modeling errors and damping.
Even if KKKi

R t
t0 x̃xx(g)dg = bbb�sss(xxx) and x̃xx = 000, we will still not be able to track a chang-

ing reference since sss(xxx) is changing with xxx, and ẋxxd 6= 000 for a changing reference.

4.1.3 Feedforward (FF) controller

The model-based FF controller feedforwards the desired acceleration and velocity:

tttFF = MMM(xxx)ẋxxd +sss(xxxd). (17)
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Notice that we use the measured state xxx when computing the inertia term, and the
desired state xxxd when computing the damping term. The error dynamics becomes:

˙̃xxx = MMM(xxx)�1 (sss(xxxd)�sss(xxx)+bbb) , (18)

which has an equilibrium xxx = sss�1(sss(xxxd)+ bbb), given that sss�1(·) is well-defined.
Hence, if bbb 6= 000 we will have some tracking and steady-state offset.

4.1.4 Combined feedforward and feedback (FF-FB) controller

The FF-FB controller combines the FF and FB controllers as:

tttFF-FB = MMM(xxx)ẋxxd +sss(xxxd)�MMM(xxx)KKK px̃xx�KKKi

Z t

t0
x̃xx(g)dg. (19)

Inserting (19) into (14), we can derive the error dynamics:

˙̃xxx = �KKK px̃xx+MMM(xxx)�1
✓

sss(xxxd)�sss(xxx)+bbb�KKKi

Z t

t0
x̃xx(g)dg

◆
, (20)

where one should notice that if the sss(xxxd) would be substituted with sss(xxx) we would
have a feedback-linearizing controller. The motivation for using sss(xxxd) in (17) is
to increase the robustness and introduce an extra ”driving” term in addition to the
proportional feedback driving the error to zero.

4.1.5 Feedback-linearizing (FBL) controller

The FBL controller is similar to (19), but computes the damping term for the mea-
sured velocity:

tttFBL = MMM(xxx)ẋxxd +sss(xxx)�MMM(xxx)KKK px̃xx�KKKi

Z t

t0
x̃xx(g)dg, (21)

which can cause poor robustness with respect to disturbances and time delays in the
control system. The FBL controller is often used for analysis of closed-loop systems
due to the simple error dynamics:

˙̃xxx = �KKK px̃xx+MMM(xxx)�1
✓

bbb�KKKi

Z t

t0
x̃xx(g)dg

◆
. (22)

4.2 Control architecture

The FB, FF and FF-FB controllers in Section 4.1 are realized by enabling the feed-
back, feedforward and both functions shown in Figure 12, respectively. The FBL
controller is realized by combining the feedback and feedforward functions, while
computing the feedforward damping as sss(xxx) instead of sss(xxxd).

To increase robustness in the implementation, saturation elements are placed at
each output except for the proportional feedback element.
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Fig. 12: Control architecture. The different controllers are realized through combi-
nations of the feedback and feedforward functions.

To ensure continuous reference signals xxxd and ẋxxd , we employ a second-order
reference filter from a possibly discontinuous, user-specified setpoint signal xxxSP.
Additionally, we limit the acceleration such that the reference signals are feasible
with respect to the vessel capability. The filter is parameterized as [7]:


ẋxxd
ẍxxd

�
=


000 III

�WWW 2 �2DDDWWW

�
xxxd
ẋxxd

�
+


000

WWW 2

�
xxxSP (23)

while imposing the acceleration limits:

U̇d 2
⇥
U̇dmin ,U̇dmax

⇤
, ṙd 2

⇥
ṙdmin , ṙdmax

⇤
. (24)

The relative damping ratio matrix DDD > 0 is chosen as identity to achieve a critically
damped system, while the diagonal natural frequency matrix WWW > 0 is a tuning
parameter.

5 Motion control experiments

To evaluate the performance of the controllers described in Section 4.1, they were
implemented on the Telemetron ASV and tested in the Trondheimsfjord on the 13th

and 14th of October 2016. During the first day, the sea state can be characterized as
calm, which refer to significant wave heights of 0–0.1 m, while the sea state for the
second day can be characterized as slight, which refer to significant wave heights of
0.5–1.25 m [9]. In total, three different scenarios were tested in different sea states.

It should be noted that the time between the model identification and motion
control experiments was about 10 months. The top speed of the vessel was reduced
from 18 m/s to about 16 m/s, probably caused by algae growth on the hull.
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The reference filter was tuned with a natural frequency of WWW = diag(0.4,1) and
acceleration constraints U̇max = 0.75 m/s2,U̇min = �0.75 m/s2, ṙmax = 0.1 rad/s2

and ṙmin = �0.1 rad/s2. The feedback tuning parameters were selected as shown
in Table 3. Unfortunately, an implementation error resulted in a too high integrator
gain for the yaw rate feedback controller during the experiments in calm seas.

Table 3: Feedback tuning parameters.

Parameters Values
FB FF-FB FBL

Sea state - Calm:
KKK p diag(0.15,0.75) diag(0.15,0.75) diag(0.15,0.75)
KKKi diag(0.015,0.5) diag(0.015,0.5) diag(0.015,0.5)

Sea state - Slight:
KKK p diag(0.15,1) diag(0.1,0.5) diag(0.1,0.5)
KKKi diag(0.01,0.25) diag(0.0067,0.125) diag(0.0067,0.125)

5.2 Performance metrics

To compare controller performance, it is beneficial to define suitable performance
metrics. To simplify the analysis, it is also beneficial to combine the control inputs
and outputs to one input and one output when calculating the metrics. Since the
outputs have different units, we define the normalized signals Ū ,Ūd , r̄ and r̄d that
are in the interval [0,1] in the expected operation space of the vessel. A combined
error and control input can then be computed as:

ē(t) =
q

(Ū(t)�Ūd(t))2 +(r̄(t)� r̄d(t))2, t̄(t) =
q

t2
m + t2

d . (25)

Given these signals, we can define the integral of absolute error (IAE):

IAE(t) =
Z t

t0
|ē(g)|dg, (26)

which penalizes the error linearly with the magnitude and serves as a measure of
control precision. A similar metric is the integral of square error (ISE), which pe-
nalizes large errors more than small errors.

The integral of absolute differentiated control (IADC) has been used earlier in a
combined performance metric in [13], and is defined as:

IADC(t) =

Z t

t0
| ˙̄t(g)|dg, (27)

5.1 Tuning parameters
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which penalizes actuator changes and serves as a measure of actuator wear and tear.
The integral of absolute error times the integral of absolute differentiated control

(IAE-ADC) is a combination of IAE and IADC:

IAE-ADC(t) =
Z t

t0
|ē(g)|dg

Z t

t0
| ˙̄t(g)|dg, (28)

which serves as a measure of control precision versus wear and tear.
The integral of absolute error times work (IAEW) scales IAE with energy con-

sumption [12]:
IAEW (t) =

Z t

t0
|ē(g)|dg

Z t

t0
P(g)dg, (29)

where P(t) is the mechanical power applied by the engine. IAEW measures control
precision versus energy consumption, hence it quantifies the energy efficiency. It is
common to model the applied propeller force F as proportional to the square of the
propeller speed, hence, F µ |n|n [7]. The mechanical energy can then be written as:

P(t) µ U(t)|n(t)|n(t). (30)

Since we use the metric in a relative comparison, we do not care about any scaling
constant and set P(t) = U(t)|n(t)|n(t).

5.3 Experiments in slight seas

All the scenarios were tested in slight seas, and here we present two of the scenarios.

5.3.1 Test 1 - High-speed trajectory tracking with steady states

The first test was intended to test a large portion of the vessel operating space while
measuring both steady-state and transient performance. The test is symmetric in Ud
and anti-symmetric in rd . The vessel response in slight seas is shown in Figure 13.

Immediately, we observe that the FBL controller suffers from instability, caused
by the feedback term sss(xxx) in (21). The oscillatory vessel state causes a dropout of
the navigation system, stopping the experiment at t ⇡ 194 s. In general, using sen-
sor measurements in model-based feedforward terms reduces the robustness with
respect to time delays, sensor dropouts and noise. Using the reference in the feed-
forward terms avoids these problems. The FBL controller is not used in the other
tests. The FF controller achieves good tracking, but naturally with some steady-state
offset. The FB controller achieves poor tracking, while also being largely influenced
by disturbances. The FF-FB controller has similar (or better) tracking performance
than the FF controller while avoiding steady-state offsets, and at the same time bet-
ter disturbance rejection than the FB controller. The FF, FF-FB and FBL controllers
fail in tracking the first transient due to the control system time delay which causes
problems with capturing the steep transient in the inertia term. It might be beneficial
to limit the gradient —xxxMMM(xxx) or saturating the inertia MMM(xxx) to avoid this behavior.
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Fig. 13: Test 1 - High-speed trajectory tracking with steady states in slight seas. The
feedback linearizing (FBL) controller fails at t ⇡ 194 s due to sensor dropout.
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Fig. 14: Performance metrics for Test 1 in slight seas.

The IAE (Figure 14a) shows that the FF-FB controller has the best control pre-
cision, while the FF controller is somewhat better than the FB and FBL controllers.
From the IADC (Figure 14b), it is clear that the FB controller is tough on the ac-
tuators, while the FBL and FF-FB controllers are comparable. The FF controller is,
as expected, the best with respect to wear and tear. From the IAEW (Figure 14c),
the FF-FB controller has the best energy efficiency, the FF controller is second best
and the FB controller places third. The FBL controller has a bad IAEW due to the
oscillatory behavior. The IAE-ADC (Figure 14d) shows the same tendencies as the
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IADC, but the FF-FB controller performs better than the FBL controller, and the
gap between the FF-FB and FF controllers is smaller.

5.3.2 Test 2 - High-speed trajectory tracking without steady states

The second test was intended to investigate the tracking performance of the con-
trollers. The reference is constantly changing without reaching steady state, and
both moderate and high velocities are tested. This test was performed only in slight
seas. From Figure 15, we observe that the FB controller again suffers from poor
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Fig. 15: Test 2 - High speed trajectory tracking without steady states in slight seas.
The FF and FF-FB controllers far outperform the FB controller.

tracking and largely fails this test. The FF controller performs remarkably well and,
from the time plot, the FF and FF-FB controllers seem to have equal performance.

From the performance metrics in Figure 16, the FB controller has the lowest
performance, while the FF and FF-FB controllers are quite equal. The FF-FB con-
troller has slightly better control precision (IAE) than the FF controller, at the cost
of increased actuator wear and tear (IADC and IAE-ADC).

5.4 Experiments in calm seas

Two of the scenarios were tested in calm seas, and here we present one of them.
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Fig. 16: Performance metrics for Test 2 in slight seas.

5.4.1 Test 3 - Lower-speed trajectory tracking with steady states

The third test was intended to test lower velocities, especially for the yaw rate. The
vessel response in calm seas is shown in Figure 17. Note that the integral gain for the
yaw rate controller unfortunately was set too high by accident, causing oscillation
in the yaw rate.
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Fig. 17: Test 3 - Lower-speed trajectory tracking with steady states in calm seas.
Observe the low amount of noise in the SOG-response compared to Figure 13.
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From Figure 17, we observe that the FB controller again suffers from poor track-
ing, and struggles with steady-state offset in yaw rate (despite the high integrator
gain). The FF controller also struggles with steady-state offset, but has superior per-
formance in the transients. The FF-FB controller combines the performance of the
FB and FF controllers and provides good tracking and low steady-state offset.
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Fig. 18: Performance metrics for Test 3 in calm seas.

From the performance metrics in Figure 18, we can draw the same conclusions
as for Test 1. However, concerning the IADC, the FF-FB controller has the most
wear and tear, which is probably caused by the initial oscillatory behavior in yaw
rate due to the high integrator gain resulting in high initial condition sensitivity.

5.5 Motion control experiments summary

For controller evaluation, it is useful to compare the performance metrics. The final
performance metric values for all the tests are presented in Table 4. We observe that:
• The FF and FF-FB controllers have the best performance:

– The FF controller is best with respect to actuator wear and tear (IADC), also
when scaled with the control precision (IAE-ADC).

– The FF-FB controller is best with respect to control precision (IAE). In all
tests except Test 2, it also has the best energy efficiency (IAEW). For Test 2,
the FF and FF-FB controllers have near identical energy efficiency.

• The FF-FB controller has the most consistent control precision performance
(IAE) for varying environmental conditions.

• The FF and FF-FB controllers have quite similar consistency of energy efficiency
(IAEW) for varying environmental conditions.

• The FB controller has the worst metrics in all the tests, except for IADC in Test 2.
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Table 4: The performance metrics are normalized for each test, and the controller
performing best for each metric in each test is highlighted in bold. C/S refer to
calm (C) and slight (S) seas. *For Test 1 in slight seas, the FBL controller did not
complete the entire test, hence the S metrics of FBL Test 1 are not comparable.

Test case Controller IAE IADC IAE-ADC IAEW

Test 1 FB 85.8 / 100.0 41.0 / 100.0 35.2 / 100.0 85.6 / 100.0
C/S FF 71.1 / 84.2 222111...000 / 222222...111 111444...999 / 111888...666 65.6 / 74.9

FF-FB 444111...555 / 555444...999 55.1 / 55.4 22.9 / 30.5 444222...000 / 555666...555
FBL* 84.9 / 78.3 45.7 / 33.9 38.8 / 26.5 87.2 / 71.5

Test 2 FB 100.0 96.9 100.0 100.0
S FF 60.4 777555...333 444666...999 555777...555

FF-FB 555333...444 100.0 55.1 59.3

Test 3 FB 88.9 / 100.0 45.2 / 100.0 40.2 / 100.0 89.7 / 100.0
C/S FF 80.8 / 97.5 222888...777 / 222666...444 222333...222 / 222555...888 75.3 / 83.1

FF-FB 444333...777 / 444555...222 62.7 / 70.2 27.4 / 31.7 444222...888 / 444555...111

6 Conclusion

In this paper, we have presented a powerful approach to modeling, identification and
control of high-speed ASVs operating in the displacement, semi-displacement and
planing regions. We have used this approach on a high-speed ASV to successfully
identify a control-oriented model of the vessel covering all its operating regions.
Furthermore, we have through full-scale motion control experiments compared the
performance of four controllers all utilizing the identified model:
• A proportional-integral feedback (FB) controller with gain scheduling.
• A feedforward (FF) controller.
• A combined feedforward and feedback (FF-FB) controller.
• A feedback-linearizing (FBL) controller.

By both qualitative and quantitative comparisons, it is shown that the FF-FB and
FF controllers have superior performance over the two others. The FF-FB and FBL
controllers are formulated almost identically, but the FF-FB controller has superior
robustness and performance over the FBL controller.

From the results, we observe that model-based feedforward control is a power-
ful tool, which when used correctly will result in outstanding performance. There
are, however, pitfalls reducing the robustness with respect to time delays, sensor
dropouts and noise. This is the case for the FBL controller, where using the mea-
sured vessel velocity in the damping feedforward term causes instability.

Possibilities for further work include:
• Use the SOG and ROT controllers for closed-loop pose control for e.g. path fol-

lowing and target tracking scenarios.
• Use the SOG and ROT controllers and the identified model in combination with

the dynamic window algorithm to achieve collision avoidance functionality, con-
tinuing the work in [5].
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• Use the SOG and ROT controllers for manual velocity control through a joystick.
• Use the modeling approach for automatic and/or recursive model identification.
• Use the identified model to online modify the reference filter acceleration limits.
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MPC-based Mid-level Collision Avoidance for ASVs
using Nonlinear Programming

Bjørn-Olav H. Eriksen, Morten Breivik

Abstract— In this paper, we present a mid-level collision
avoidance algorithm for autonomous surface vehicles (ASVs)
based on model predictive control (MPC) using nonlinear
programming. The algorithm enables avoidance of both static
and moving obstacles, and following of a desired nominal
trajectory if there is no danger of collision. We compare
two alternative objective functions, where one is a quadratic
function and the other is a nonlinear function designed to
produce maneuvers observable for other vessels in compliance
with rule 8 of the International Regulations for Preventing
Collisions at Sea (COLREGS). The algorithm is implemented
in the CASADI framework and uses the IPOPT solver. The
performance of the algorithm is evaluated through simulations
which show promising results. Furthermore, the algorithm is
considered computationally feasible to run in real time. This
algorithm serves as a base algorithm for further development
in order to ensure full COLREGS compliance.

I. INTRODUCTION

The development and use of autonomous technology in
both industry and research is continuously moving forward.
In particular, the automotive industry has had a leading
role, while the development in the maritime domain has
not received similar focus, even though the potential benefits
from developing and utilizing autonomous marine technol-
ogy is great. Employing autonomous surface vehicles (ASVs)
for marine operations such as oceanography, bathymetry,
passenger and goods transport, marine patrolling, etc. can
result in increased safety, widened operational window and
reduced costs.

A requirement for employing ASVs in the marine domain
is a collision avoidance (COLAV) system. Such a system
must be able to plan observable long-term maneuvers and
at the same time respond to rapid changes in the environ-
ment, such as a nearby high-speed vessel suddenly changing
course. Employing observable maneuvers is especially im-
portant to establish implicit communication between vessels
based on their maneuvers. Performing observable maneuvers
is also a requirement of the International Regulations for
Preventing Collisions at Sea (COLREGS), which acts as
“rules of the road” for marine surface vessels, both manned
and unmanned.

COLAV algorithms can in general be divided into reac-
tive and deliberate algorithms. Reactive algorithms utilize
currently available sensor data, and employ a minimum of
computations. This often produces sub-optimal solutions, but

Bjørn-Olav H. Eriksen and Morten Breivik are with the Centre
for Autonomous Marine Operations and Systems, Department
of Engineering Cybernetics, Norwegian University of Science
and Technology (NTNU), NO-7491 Trondheim, Norway. Email:
{bjorn-olav.h.eriksen,morten.breivik}@ieee.org

Fig. 1: Example of a hybrid COLAV architecture with three
layers. The middle and top layers are typically deliberate
algorithms, while a reactive algorithm is used in the bottom
layer. In this architecture, electronic nautical charts (ENC),
prediction of moving obstacles and interpretation of COL-
REGS are handled by separate support functions.

the low computational requirement makes the algorithms
capable of responding to rapid changes in the environment.
Examples of reactive algorithms include velocity obstacles
(VO) [1, 2] and the dynamic window (DW) approach [3–5].
Deliberate algorithms, on the other hand, utilize apriori
information (often in the form of aggregated sensor in-
formation, maps, etc.) and can encode more sophisticated
criteria for the behavior, for instance generating observable
maneuvers which are optimal in a global sense. Examples of
deliberate algorithms include rapidly-exploring random trees
(RRT) [6], graph search algorithms such as A* and D* [7, 8]
and constrained nonlinear optimization [9, 10]. A downside
of deliberate algorithms is their computational complexity,
which results in high computational requirements and possi-
bly challenges for real-time implementation. The solution to
this issue is to employ a hybrid architecture, merging reactive
and deliberate algorithms [9, 11]. An example of a three-
layered hybrid architecture is shown in Fig. 1. In such an
architecture, the top layer can perform long-term planning
from the start position to the goal position, only considering
static obstacles (land, reefs, etc.) while performing optimal
planning with respect to arrival time, energy consumption,
etc. This would typically be performed offline, but may also
be computed online if required. The second layer inputs
the desired nominal path or trajectory, and makes local
adaptations if necessary. The planning horizon of this layer
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should be long enough to plan avoidance maneuvers, but
short enough to ensure computational feasibility. The reactive
layer then tries to follow the trajectory specified by the mid-
level algorithm, and makes local adaptations if necessary.

In this paper, we focus our attention to deliberate mid-layer
COLAV formulated using nonlinear programming (NLP).
Constrained optimization in the form of model predictive
control (MPC) has already been applied for automotive
COLAV [12, 13]. The use of MPC for ASV COLAV has
been investigated in [10], however only using brute-force
techniques by discretization of the search space in a finite
number of control inputs. In this paper, we present an MPC
algorithm for mid-level COLAV, implemented using NLP
and solved using the IPOPT [14] solver in the CASADI [15]
framework. The algorithm is tested with two objective func-
tions, where one generates maneuvers which are compliant
with rule 8 of COLREGS.

The paper is structured as follows: Section II presents
an ASV model and kinematic constraints. An overview of
COLREGS, and some discussion of the most applicable rules
to ASVs is given in Section III. In Section IV, we define
the mid-level COLAV problem as an optimization problem,
while simulation results are shown in Section V. Finally,
concluding remarks and possibilities for further work are
given in Section VI.

II. ASV MODELING

In the scope of deliberate mid-level COLAV, we propose
to use a purely kinematic model. This simplifies the design,
since no vehicle kinetic model is required. For underactuated
ASVs, a kinematic model can be formulated as [16]:

⌘̇ =

2
4

cos( ) 0
sin( ) 0

0 1

3
5u, (1)

where ⌘ =
⇥
N E  

⇤T 2 R2 ⇥ S is the vehicle pose
with N and E representing the north and east position
and  representing the yaw angle (heading). The vector
u =

⇥
U r

⇤T 2 R2 is the vehicle velocity with U and r
representing the vehicle speed over ground (SOG) and yaw
rate (ROT), respectively. Note that the vehicle is assumed
to have zero side-slip, hence the vehicle heading and course
are assumed to be aligned. In addition, note that the ocean
current is not included in (1).

The argument for neglecting the vehicle kinetics and the
ocean current is that the reactive layer will take these into
account when following the mid-level trajectory. However,
some criteria should be employed to ensure a degree of
feasibility with respect to the vessel capabilities. Underac-
tuated ASVs typically employ a rudder for controlling ROT,
and uses the forward thrust from the propeller to control
SOG. For such a configuration, the actuation moment in yaw
is highly dependent on the SOG since the rudder force is
dependent on the fluid velocity over the rudder.

In [16], a nonlinear kinetic model for the Maritime
Robotics Telemetron ASV, shown in Fig. 2, is identified.
The model is of the form:

Fig. 2: The Telemetron ASV. Courtesy of Maritime Robotics.

M(x)ẋ + �(x) = ⌧ , (2)

where x =
⇥
U r

⇤T
, M(x) is a velocity-dependent inertia

matrix, �(x) is a damping vector and ⌧ is a normal-
ized control input. The inertia matrix and damping vector
are formed by a number of polynomial and asymptotic
terms [16]. Keeping in mind that the possible SOG and ROT
are dependent on each other, we use the model to develop
the kinematic limitations:

x 2 Vs =
� ⇥

U r
⇤T 2 R2|Umin(r)  U  Umax(r)

^ rmin  r  rmax

 
, (3)

where rmin < 0 and rmax > 0 are constants, while Umin(r)
and Umax(r) are functions of r. We handle the ROT limi-
tation as constant, while letting the SOG limitation capture
the dependency between the SOG and ROT limitations.

III. THE INTERNATIONAL REGULATIONS FOR
PREVENTING COLLISIONS AT SEA (COLREGS)

COLREGS intends to provide a set of rules which when
followed should avoid ship-to-ship collisions. The rules have
been revised a number of times, to cope with the advances in
technology and the increasing use of the seaways for different
activities.

COLREGS is divided in 5 parts, with a total of 38
rules [17]. Part B (Steering and Sailing Rules) considers the
rules most relevant for implementing COLAV algorithms.
The rules most commonly discussed in the litterature on
autonomous COLAV, see e.g. [2], are rules 13-15, which
describe the overtaking, head-on, and crossing situations:

Rule 13 Overtaking situation: An overtaking situation oc-
curs when a vessel is approaching another vessel
of more than 22.5� abaft her beam. A vessel
overtaking is required to keep clear of the vessel
being overtaken, such that risk of collision is
avoided.

Rule 14 Head on: A head-on situation occurs when two
vessels are approaching at reciprocal (or nearly
reciprocal) courses. This is usually interpreted
as a relative bearing of 180� ± 6�. In such a
situation, both vessels are required to do a port
turn to avoid collision.
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Fig. 3: Graphical interpretation of COLREGS situations.

Rule 15 Crossing: A crossing situation occurs when a
vessel is approaching with a relative bearing of
between 25� abaft her beam and 6� abaft her
bow. In such a situation, the vessel having the
other vessel on her starboard side is required
to give way to avoid collision. If possible, one
should avoid passing in front of the other vessel.

A graphical interpretation of the COLREGS situations is
shown in Fig. 3. Formally, the vessel required to avoid
collision is named the give-way vessel while the other vessel
is named the stand-on vessel.

In addition to rules 13-15, rules 8, 16 and 17 are quite
relevant for autonomous COLAV:

Rule 8 Action to avoid collision: This rule requires that
actions taken to avoid collision should be large
enough to be observable for other ships. An
implication for this is that a series of small
alterations of course and/or speed should not
be applied. If there is sufficient space available,
alterations of course should be the preferred
action to avoid collision.

Rule 16 Action by give-way vessel: This rule dictates that
the give-way vessel should, if possible, take early
and substantial action to keep well clear of the
stand-on vessel.

Rule 17 Action by stand-on vessel: This rule dictates that
the stand-on vessel should keep her speed and
course. However, if it is apparent that the give-
way vessel is not taking action to avoid collision,
the stand-on vessel is required to apply actions
to best avoid collision.

Rule 8 is considered in [10] by limiting the possible actions,
resulting in distinct observable actions. These rules are,
however, seldom considered in the literature. It should be
noted that rule 17 actually requires the stand-on vessel to
not attempt to avoid collision, before it is apparent that the
give-way vessel is not acting to avoid collision. By applying
a hybrid architecture, rule 17 can be handled implicitly by
implementing the latter part in the reactive algorithm.

IV. MPC-BASED MID-LEVEL COLAV
This section describes the parameterization and implemen-

tation of the mid-level COLAV algorithm.

A. Control objective
For the mid-level COLAV algorithm, we want to input a

desired nominal path or trajectory which should be followed
if there is no danger of collision. A trajectory can for example
be a sequence of waypoints together with a desired speed.
By assuming that we wish to follow straight lines between
the waypoints, we can define a desired nominal trajectory:

pd(t) =


Nd(t)
Ed(t)

�
. (4)

Consequently, we can formulate the control objective as that
the vessel trajectory p(t) =

⇥
N(t) E(t)

⇤T
should converge

towards pd(t), while avoiding collisions and obeying COL-
REGS.

B. Obstacle modeling
A common simplification is to model both moving and

static obstacles as circles. We define a static obstacle using a
center position and a radius as Osi

= (psi
, rsi

) 2 R2 ⇥R+.
A set of S static obstacles can then be defined as Os =
{Os1

, Os2
, . . . OsS

}.
Similarly, a moving obstacle can be defined by a

time-varying center position and a radius as Omi(t) =
(pmi

(t), rmi) 2 R2 ⇥ R+, where pmi
: R ! R2. A

set of M moving obstacles is then defined as Om =
{Om1

(t), Om2
(t), . . . OmM

(t)}.

C. Optimization problem construction
To solve the mid-level COLAV problem in Section IV-

A as an optimal control problem (OCP), we first define the
general OCP:

minimize �(⌘(t), u(t))

subject to ⌘̇(t) = F (⌘(t), u(t))

h(⌘(t), u(t))  0,

⌘(t0) = ⌘̄0,

(5)

where � : (R2 ⇥ S) ⇥ R2 ! R is the objective function,
⌘(t) is the vehicle pose trajectory, u(t) is the control input
trajectory and F (⌘(t), u(t)) denotes the kinematic model
(1). The function h : (R2 ⇥ S) ⇥ R2 ! Rnh forms nh

inequality constraints and ⌘̄0 2 R2 ⇥ S is the initial vehicle
state.

Even though the continuous OCP in some cases is possible
to solve e.g. by using Pontryagin’s maximum principle, it
is generally practical to define a nonlinear program (NLP)
by discretizing (5). The discretized OCP can be formulated
using a number of techniques. We choose to use direct
multiple shooting, where both the state and control inputs
are explicitly defined as decision variables. The NLP with
Np prediction steps is:

minimize
w

�(w)

subject to g(w) = 0

h(w)  0,

(6)
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where w =
⇥
⌘T

0 uT
0 . . . ⌘T

Np�1 uT
Np�1 ⌘T

Np

⇤T 2
R5Np+3 is a vector of 5Np + 3 decision variables, and
g(w) 2 Rng is a vector of ng equality constraints.

We define a quadratic objective function:

�1(w, pd1:Np
) =

Np�1X

k=0

⇣
Kp

���pk+1 � pdk+1

���
2

2

+ KU (Uk � Ud)
2 + Kr(rk � rd)

2
⌘
, (7)

where Kp, KU , Kr > 0 are tuning parameters. The desired
SOG Ud and ROT rd can be derived from the desired
nominal path, given by the sequence of desired positions
pd1:Np

=
⇥
pd1

pd2
. . . pdNp

⇤
.

When using multiple shooting, one must employ shooting
constraints to ensure that the control input and vehicle states
satisfy the kinematic model (1). We define an integrator
function f(⌘k, uk) using Runge-Kutta of order 4:

k1 = F (⌘k, uk)

k2 = F (⌘k +
h

2
k1, uk)

k3 = F (⌘k +
h

2
k2, uk)

k4 = F (⌘k + hk3, uk)

f(⌘k, uk) = ⌘k +
h

6
(k1 + 2k2 + 2k3 + k4) ,

(8)

where h is the discretization time step. Given a state and
control input ⌘k and uk, we can now define the vessel state
at the next iteration as ⌘k+1 = f(⌘k, uk). We include the
shooting constraints in the equality constraints g(w) as:

g(w) =

2
666664

⌘̄0 � ⌘0

f(⌘0, u0) � ⌘1

f(⌘1, u1) � ⌘2
...

f(⌘Np�1, uNp�1) � ⌘Np

3
777775

, (9)

resulting in ng = 3(Np + 1) equality constraints.
To guarantee that the resulting vehicle trajectory p(t)

avoids collisions, we must make sure that the vehicle tra-
jectory p(t) does not intersect the obstacles in the sets Os

and Om. In the set Os, we have S static obstacles. For each
obstacle Osi

= (psi
, rsi

) 2 Os we define the function:

hsi
(p1:Np) =

2
66664

r2
si
�
��p1 � psi

��2

2

r2
si
�
��p2 � psi

��2

2
...

r2
si
�
��pNp � psi

��2

2

3
77775
2 RNp. (10)

Similarly, for each moving obstacle Omi
= (pmi

(t), rmi
) 2

Om we define the function:

hmi
(p1:Np, t1:Np) =

2
66664

r2
mi

�
��p1 � pmi

(t1)
��2

2

r2
mi

�
��p2 � pmi

(t2)
��2

2
...

r2
mi

�
��pNp � pmi

(tNp)
��2

2

3
77775
2 RNp,

(11)

where t1:Np =
⇥
t1 t2 . . . tNp

⇤T
contains the time

related to each NLP step. We then define the inequality
constraints:

ho(w, t1:Np) =

2
666666664

hs1
(p1:Np)

...
h

sS
(p1:Np)

hm1(p1:Np, t1:Np)
...

h
mM

(p1:Np, t1:Np)

3
777777775

2 R(S+M)Np,

(12)
which ensure that the resulting trajectory avoids obstacles.

To ensure compliance with the velocity limitations in (3),
we can for each control input ui define the function:

hui
(ui) =

2
664

Umin(ri) � Ui

�(Umax(ri) � Ui)
rmin � ri

�(rmax � ri)

3
775 2 R4, (13)

and form the inequality constraints:

hu(w) =

2
6664

hu0
(u0)

hu1
(u1)
...

huNp�1
(uNp�1)

3
7775 2 R4Np, (14)

which ensure that all control inputs satisfy (3).
Finally, (12) and (14) is combined:

h(w, t1:Np) =


ho(w, t1:Np)

hu(w)

�
, (15)

resulting in nh = (4 + S + M) Np inequality constraints.
By requiring the functions Umin(r) and Umax(r) to be C2

in r, we see that h(w, t1:Np) is C2 in w.

D. COLREGS compliance

The NLP formulation (6), (7), (9) and (15) will be able
to avoid collision with both moving and static obstacles, but
will not necessarily obey the COLREGS rules formulated in
Section III.

Implementing these rules in an NLP problem is a chal-
lenging task, and in this paper we will only investigate
the possibility of obeying rule 8, which requires that the
vessel maneuvers should be large enough to be observable to
other vessels. This implies that applying a sequence of small
alterations in course or speed should be avoided. Naturally,
there are a number of ways to avoid this, including:

• Constraining the ROT and SOG derivatives to only
allow values with magnitude very close to zero or
greater than some threshold.

• Including penalty terms in the objective function which
penalize course and speed alteration depending on the
time to perform it. Slow alterations would then be
penalized more than quick alterations.

Initially, it may seem like a good solution to constrain
the ROT and SOG derivatives to only allow maneuvers
of a given magnitude, avoiding small alterations. However,
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Fig. 4: ROT penalty function with ar = 112, br = 6.25·10�5

and rmax = 0.25 rad/s ⇡ 14.3 deg/s. The function is non-
convex close to the origin, but remains smooth as the zoomed
insert shows.

this would result in a highly non-convex (and even non-
connected) search space. Solving an NLP of this form is
difficult, and highly dependent on initialization. We therefore
investigate the second option with introducing penalty terms
in the objective function. Such penalty terms can either be
defined on the change of course and SOG � k =  k+1� k

and �Uk = Uk+1�Uk, for k = 0 . . . Np�1, or the ROT and
SOG-derivative. Defining the terms on the ROT and SOG-
derivative allows for changing the time step length h, without
changing the behavior of the penalty terms. Since the SOG-
derivative is not part of the NLP (6), we approximate it as
U̇k ⇡ Uk+1�Uk

h .
We wish to ensure that the objective function is C2,

hence special considerations must be made when designing
the penalty terms. Inspired by the normal distribution, we
propose to combine a square and an exponential term as:

q(⇣; a, b) = a⇣2 + (1 � e�
⇣2

b ), (16)

where a, b > 0 control the shape of the function. We define
two functions:

qr(r; rmax) =
100

q(rmax; ar, br)
q(r; ar, br)

qU̇ (U̇ ; U̇max) =
100

q(U̇max; aU̇ , bU̇ )
q(U̇ ; aU̇ , bU̇ ),

(17)

where the parameters ar and br define the shape of the
ROT penalty function qr(r), and the parameters aU̇ and bU̇

define the shape of the SOG-derivative penalty term. The
parameters rmax > 0 and U̇max > 0 are the maximum ex-
pected values of r and U̇ , and are used to scale the functions
such that qr(r), qU̇ (U̇) 2 [0, 100] for r 2 [�rmax, rmax] and
U̇ 2 [�U̇max, U̇max].

The ROT penalty function qr(r) with ar = 112, br =
6.25 · 10�5 and rmax = 0.25 rad/s is shown in Fig. 4. It is
obvious that the function is non-convex, but it is C1.

Assuming that a course alteration is performed with a
constant ROT, the cost of performing a course alteration � 
using the penalty term can be approximated as qr(r)

� 
r ,

r [deg/s]

C
os

t

0 5 10 15
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Fig. 5: Cost of performing a 30 deg course alteration, using
different ROTs. The peak at r ⇡ 0.51 deg/s is the highest
cost, while r = 5.42 deg/s is the minimum after the peak.

where � 
r is the time to execute the turn. From Fig. 5 it

is clear that for a course alteration of 30 deg, the penalty
term motivates choosing a ROT either significantly higher
than 0.51 deg/s, or using very long time to execute the turn.
Notice that this generalizes to an arbitrary turn, since the
cost scales linearly with � .

To avoid that the position error in (7) dominates at large
errors, we introduce the pseudo-Huber cost function:

C(x; �) = 2�2

 r
1 +

⇣x

�

⌘2

� 1

!
, (18)

which for small x approximates a quadratic function x2, and
for large x approximates a linear function with slope 2� [18].
The parameter � > 0 controls where the function changes
from being quadratic to being linear.

Replacing the squared 2-norm position error with the
pseudo-Huber cost function and the quadratic ROT and SOG
cost with the new penalty terms we get the modified objective
function:

�2(w, pd1:Np
) =

Np�1X

k=0

⇣Kp

2
C
⇣���pk+1 � pdk+1

���
2
; �
⌘

+ KU̇qU̇ (U̇k) + Krqr(rk)
⌘
. (19)

Notice that the desired SOG and ROT are implicitly included
in the position error term. We select � = 1 and scale
the position error by 1/2 to get a slope of 1 for large
position errors. This can, however, also be treated as a tuning
parameter in the problem.

V. SIMULATION RESULTS

We simulate a scenario with two static and one moving
obstacle to show the resulting behavior of the mid-level
COLAV algorithm, given the two objective functions (7) and
(19). The mid-level COLAV algorithm is implemented as
an MPC algorithm, where only the first step of the optimal
solution is implemented.

To define and solve the NLP (6) with (9), (15), and the
quadratic and modified objective functions (7) and (19), we

87



TABLE I: Simulation and tuning parameters.

Param. Value Comment

Ns 55 Number of simulation steps
h 10 s Step size
Np 24 Prediction steps
Umin 0 m/s Minimum SOG
Umax 17 m/s Maximum SOG
Quadratic objective function �1:
Kp: 2/3 · 10�4 1/m2 Position error scaling
KU : 1 · 10�1 s2/m2 SOG error scaling
Kr : 3 · 102 1/rad2 ROT error scaling
Modified objective function �2:
Kp 4 · 10�2 Position error scaling
KU̇ 6 · 10�1 SOG-derivative penalty term scaling
Kr : 5 · 10�1 ROT penalty term scaling
[aU̇ , bU̇ ] [8, 2.5 · 10�4] SOG-derivative penalty term param-

eters
[ar, br] [112, 6.25 · 10�5] ROT penalty term parameters

used the CASADI framework (v3.1.0-rc1 for MATLAB) [15]
with the IPOPT solver [14]. From the parameterization in
Section IV is is clear that the NLP problem is non-convex.
IPOPT is however able to handle non-convex optimization.

Simulation and tuning parameters are shown in Table I.
The desired nominal trajectory pd(t) is generated by a set of
waypoints and a desired speed along the path Ud = 10 m/s.
We start the simulation with ⌘0 =

⇥
0 0 0

⇤T
, and initialize

the first iteration of the MPC with the desired nominal
trajectory, and SOG and ROT as zero. Hence:

w0 =
⇥
⌘T

0 uT
0 pT

d1
. . . uT

0 pT
dNp

⇤T
, (20)

with u0 =
⇥
Ud 0

⇤T
. Notice that the initial guess is

infeasible if the desired nominal trajectory intersects with
obstacles. However, IPOPT does not require a feasible initial
guess. Later iterations of the MPC is initialized with the
solution of the previous iteration.

The simulations are run in MATLAB R2016b, on a 2.8
GHz Intel Core i7 processor. The first iteration of the MPC
with the quadratic and modified objective functions takes ap-
proximately 250 ms and 750 ms to solve, respectively. Later
iterations with warm start take approximately 15–25 ms
for the quadratic objective function, and 20–150 ms for
the modified objective function. Hence, with a time step of
10 s, we consider the algorithm with the modified objective
function as implementable in real time. The NLP with the
modified objective function has more local minima than the
NLP with the quadratic objective function, which is why
the runtime with the modified objective function is less
consistent than when using the quadratic objective function.
Guaranteeing a maximum computational time for NLPs is
difficult, but in the event that the optimization problem is not
solved within the required time, the reactive COLAV layer
would still keep the vessel on a collision-free path, although
possibly getting stuck in a local minima.

Figures 6 and 7 show the resulting vessel trajectory using
the quadratic and modified objective functions, respectively.
The vessel trajectory is shown in red, while the colored
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Fig. 6: Simulation result using the quadratic objective func-
tion �1. Note that the size of the ownship (in blue) is
overexaggerated for visibility. Hence, what appears to be a
collision with the moving obstacle is in fact not a collision.
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Fig. 7: Simulation result using the modified objective func-
tion �2. Note that the size of the ownship (in blue) is
overexaggerated for visibility. Hence, what appears to be a
collision with the moving obstacle is in fact not a collision.

lines show the predicted trajectory in each iteration with
blue and yellow in the start and end of the predicted
trajectory, respectively. Furthermore, the numbers 1–4 mark
time instants, where t1 = 0 s, t2 = 80 s, t3 = 290 s
and t4 = 510 s. We clearly see that the modified objective
function results in a trajectory with clear and observable
course changes in contrast to the quadratic objective function.
This is also confirmed from the ROT in Fig. 8 which shows
the input sequences. We also see that the modified objective
function produces a more observable SOG trajectory than
the quadratic objective function.

Both objective functions produce collision-free trajecto-
ries, and avoid the first encounter with the moving obstacle
by passing in front of it at t ⇡ 80 s. An interesting
observation is that with respect to COLREGS, our vessel
should actually keep the course and speed constant here,
and not attempt to avoid collision at an early stage, since
our vessel is deemed the stand-on vessel in this situation. In
the second encounter with the moving obstacle at t ⇡ 500 s,
both algorithms turn to port to avoid collision.

VI. CONCLUSION AND FURTHER WORK

We have designed and implemented an NLP-based mid-
level COLAV algorithm, enabling avoidance of both static
and moving obstacles. The algorithm is simulated with two
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Fig. 8: SOG and ROT trajectories when using the quadratic
and modified objective functions.

different objective functions, where one is designed to ensure
compliance with rule 8 of COLREGS, thus providing observ-
able course and speed changes. The simulation results are
promising and motivate for further development to include
other essential COLREGS rules. Based on the simulations,
the NLP is considered to be real-time implementable with
respect to computational requirements.

Possibilities for further work include:
• Designing objective function terms able to capture rules

13-15 and 17 of COLREGS. These terms can be aided
by a support function, see Fig. 1, to encode which rules
are applicable to each vessel in a given situation.

• Combining the developed mid-level COLAV algorithm
with a reactive algorithm, e.g. continuing the work on
the dynamic window algorithm in [5].
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Abstract—Collision avoidance systems are a key ingredient in
developing autonomous surface vehicles (ASVs). Such systems
require real-time information about the environment, which can
be obtained from transponder-based systems or exteroceptive
sensors located on the ASV. In this paper, we present a closed-
loop collision avoidance (COLAV) system using a maritime
radar for detecting target ships, implemented on a 26 foot high-
speed ASV. The system was validated in full-scale experiments
in Trondheimsfjorden, Norway, in May 2017. The probabilistic
data association filter (PDAF) is used for tracking target vessels.
The output from the PDAF is processed through a least-squares
retrodiction procedure in order to provide the COLAV system
with sufficiently accurate course estimates. A tracking inter-
face provides estimates of target states to the COLAV system,
which is based on the dynamic window (DW) algorithm. DW
is a reactive COLAV algorithm originally designed for ground
vehicles, and we therefore make a number of modifications
to adapt it for use with high-speed ASVs. The closed-loop
experiments demonstrated successful COLAV with this system,
but also disclosed several challenges arising from both the DW
algorithm and the tracking system, motivating for further work.
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1. INTRODUCTION
The cost efficiency and safety of marine operations such as
seabed surveying, surveillance, passenger and goods trans-
port have potential for improvement by moving in the di-
rection of more automatic and autonomous operations. An
enabling technology for this to happen is autonomous colli-

sion avoidance (COLAV). For autonomous surface vehicles
(ASVs), COLAV is a complex task involving challenges with
perception, planning and regulations.

COLAV algorithms may in general be divided into reactive
and deliberate approaches. Reactive algorithms consider a
limited amount of information, often just currently available
sensor data, making the algorithms computationally cheap at
the cost of possibly producing sub-optimal behavior. The
dynamic window (DW) algorithm [13], [10] and the ve-
locity obstacle (VO) algorithm [16] are examples of reac-
tive COLAV algorithms. Deliberate algorithms usually use
greater amounts of information and plan in a longer temporal
setting, making the algorithms more optimal in a global sense
at the cost of increased computational requirements. To be
able to both react to sudden changes in the environment and
performing meaningful long-term maneuvers, reactive and
deliberate algorithms can be combined in a hybrid architec-
ture [18].

ASVs are in general required to follow the International Reg-
ulations for Preventing Collisions at Sea (COLREGS), which
act as “rules of the road” for avoiding collisions at sea [4].
Reactive COLAV is intended as a “last line of defense”
in close-quarter situations, where deliberate algorithms fail
in resolving the situation. In such situations, it may be
necessary to violate COLREGS to avoid collision. In fact,
COLREGS require a vessel to violate the rules if collision
cannot be avoided without violating the rules. Hence, we do
not consider COLREGS in these experiments.

For perception, a transponder-based communication system
may be used. An example of such a system is the automatic
identification system (AIS), which is used to transmit the
position and velocity of a vessel to other vessels. Passenger
ships and vessels with gross tonnage over 300 are obliged to
carry AIS transponders. AIS is being used for navigation at
sea, and can obviously provide useful information about other
vessels’ whereabouts and intentions to a COLAV system.
However, since AIS depends on satellite navigation and data
input from the user, it may contain inaccurate or invalid data
[14]. The information is also restricted to vessels equipped
with AIS transponders. Although lower-cost transponders
for smaller vessels (AIS class B) exist, many vessels such
as leisure craft and kayaks are not equipped with AIS. This
also extends to other objects in water such as navigational
aids and debris. Transmitted information may also be faulty,
either by accidental errors such as transmission failures or
through intentional actions or negligence by the crew [14].

Other means of perception include exteroceptive sensors such
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as radars, lidars and cameras. The main advantage of these
sensors are that they do not depend on other ships to transmit
information, but instead transmit a signal and wait for a re-
turn, or passively capture information from the environment.
This makes detection of kayaks and other small obstacles
possible, but the measurements may be affected by clutter.
The sensors may also have limited range, which means that
objects can be very close before they are detected. This is
usually not an issue for radars. There are several reports
of use of exteroceptive sensors for maritime COLAV. The
complementary properties of different sensors are thoroughly
discussed in [6], with experimental validation. In [20], a
maritime broadband radar intended for smaller recreational
vessels is used for tracking in the joint probabilistic data
association (JPDA) and interacting multiple model (IMM)
framework.

Many target tracking models parametrize the target states as
north and east position and velocity, while COLAV methods
often use the total speed and course of the target. This may
lead to fluctuations in these values, and the course angle in
particular can fluctuate more than it should.

There are several solutions that can be applied to obtain better
course estimates. One could argue that course and speed,
instead of the linear world frame-parameterized velocity vec-
tor, should be used in the state vector. This would lead to a
nonlinear process model. It is not clear that such a model
would give improved performance. More refined models
such as the Best-Norton model [2] require additional tuning
to work well. Current research by the authors is exploring
the utility of particle filtering for heading estimation [11].
Another approach would be to use multiple models within an
IMM framework as in [20]. However, IMM is known to have
limited effect when the so-called maneuvering index [15] is
low. This can often be the case in maritime COLAV, when
ships move relatively slowly compared to the measurement
noise. In these cases, it may be feasible to smooth the target
estimates using a form of retrodiction [5].

In this article, we report on a full-scale experiment where the
DW algorithm was used in conjunction with a probabilistic
data association filter (PDAF) radar-tracking filter to perform
autonomous COLAV. A number of modifications to the DW
algorithm in order to adapt the algorithm for use with high-
speed ASVs are presented. We highlight a number of chal-
lenges arising from the results, motivating for further work.

The rest of the paper is structured as follows: Section 2
describes the platform used for the experiments. Section 3
describes the tracking system. Section 4 describes the DW
algorithm, and the modifications applied to it. Section 5
describes the interface between the tracking and COLAV sys-
tems, while Section 6 show the results. Finally, concluding
remarks and possibilities for further work are presented in
Section 7.

2. EXPERIMENTAL PLATFORM
The vessel used in the experiments described in this paper is
the dual-use Maritime Robotics Telemetron ASV, shown in
Fig. 1. The ASV was equipped with a high grade navigation
system from Kongsberg Seatex, supplemented by real-time
GNSS corrections (CPOS) from the Norwegian mapping au-
thority [22]. Conservative performance estimates for the nav-
igation system are given in Table 1. Given the performance
of the Seapath navigation system, navigation uncertainty is

Figure 1. The Telemetron ASV, a dual-use vessel for both
manned and unmanned operations. Courtesy of Maritime

Robotics.

Table 1. Telemetron ASV specifications.

Component Description
Vessel hull Polarcirkel Sport 845

Length 8.45 m
Width 2.71 m
Weight 1675 kg

Propulsion system Yamaha 225 HP outboard engine
Motor control Electro-mechanical actuation of

throttle valve
Rudder control Hydraulic actuation of outboard

engine angle with proportional-
derivate (PD) feedback control
on engine angle

Navigation system Kongsberg Seatex Seapath 330+
Heading/roll/pitch

accuracy 0.1◦ RMS
Position accuracy 0.1 m RMS

Radar Simrad Broadband 4GTM Radar
Processing platform Intel R© i7 3.4 GHz CPU, running

Ubuntu 16.04 Linux

of minor impact to the target tracking system, and will be
neglected. This is supported by simulation studies in [23] and
[3] which indicated that navigation uncertainty would have to
be significantly higher to have noticeable impact. The vessel
tracking and control system is implemented in the robot
operating system (ROS) [19], and the vessel actuators are
interfaced via a proprietary interface developed by Maritime
Robotics. A summary of the vessel parameters is given in
Table 1.

The Telemetron vessel operates at speeds of up to 18 m/s,
which makes modeling and control of the vessel difficult
since it operates in both the displacement, semi-displacement
and planing regions [12]. In [8], a control-oriented model
of the Telemetron ASV was developed, together with exper-
imental validation of vessel controllers based on the vessel
model. The model is defined in 2DOF using the speed over
ground (SOG) and rate of turn (ROT) as states, denoted
as U [m/s] and r [rad/s], respectively. The DW algo-
rithm specifies a desired velocity which the vessel should
follow. We therefore employ a velocity controller for SOG
and ROT combining a proportional integral (PI) feedback
controller with model-based feedforward of a desired velocity
and acceleration shown to have good performance for the
Telemetron ASV [8].
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Table 2. Tracking module parameters used in the
experiments.

Parameter Value Comment
Tr 2.4 s Radar revolution time
q 0.5 m/s2 Process noise standard devia-

tion
r 6.86 m Measurement noise standard

deviation
Ns 5 Retrodiction window length

3. TARGET TRACKING: THEORY AND
IMPLEMENTATION

The core algorithm of the target tracking system is the proba-
bilistic data association filter (PDAF), which is a single target
tracking method which calculates the association probabil-
ities for each measurement in the validation region of the
target of interest [1]. It is not a multitarget method, but a
parallel bank of PDAFs will be able to handle targets that are
sufficiently temporally and/or spatially spaced. This covers
the majority of the situations encountered in commercial ship
traffic, and is thus chosen for its simplicity. The PDAF
requires point measurements with known measurement noise
covariance. The radar listed in Table 1 provides an array
of spokes consisting of resolution cells with intensity infor-
mation. The radar data must be processed in a detection,
projection and clustering pipeline before it can be used in the
PDAF. This pipeline is described in detail in [24]. The target
motion and measurement model is the nearly constant veloc-
ity (NCV) model [17] with position measurements, given by

xk+1 = F (Tr)xk + vk, p(vk) = N (vk; 0,Q(Tr)), (1)

zk = Hxk +wk, p(wk) = N (wk; 0, r2I), (2)

where x = [pN vN pE vE ]
T is the state vector, con-

taining position and velocity in north and east directions and
v is the process noise. The variable z is the position mea-
surement, whilew is the measurement noise with covariance
r2I where I is the identity matrix. The matrix H extracts
the position elements of the state vector, while the matrices
F (Tr) andQ(Tr) are given as

F (Tr) =




1 Tr 0 0
0 1 0 0
0 0 1 Tr
0 0 0 1


 , (3)

Q(Tr) = q2



T 4
r /4 T 3

r /2 0 0
T 3
r /2 T 2

r 0 0
0 0 T 4

r /4 T 3
r /2

0 0 T 3
r /2 T 2

r


 . (4)

In addition to the radar sampling time Tr, which is given by
the radar revolution time, the NCV model is parametrized
by the covariance of the white noise acceleration q2. This
simple model reduces the risk of overfitting and tailoring the
model to a specific target. A suitable value for the white
noise acceleration standard deviation q was determinted to
be 0.5 m/s2 through an analysis of covariance consistency,
by considering AIS data from several vessels, including the
Telemetron ASV [24]. This is a fairly large process noise
value, which ensures good resilience against track-loss but

also inevitably leads to some fluctuations in the course esti-
mates, as shown in Fig. 6. The course angle is the angle of
the velocity vector, measured clockwise from straight north,
and is calculated as arctan2(vE , vN ) where arctan2 is the
four-quadrant arctangent function.

Improved target course estimation

Several methods for improved course estimation was dis-
cussed in section 1. In this case, the target maneuvering index
is found to be 0.42 from the values in Table 2, which falls
below the limit of where the IMM estimator is preferred over
the regular Kalman filter estimator [15]. Since the assumed
target dynamics are moderately slow, the speed and course
estimates will be improved using a retrodiction procedure.

Assume that the target, for the last Ns scans, have been
moving in a straight line. The motion model for these steps
can be written

xk+1 = F (Tr)xk, k ∈ [K†,K], (5)

where K is the latest timestamp of the estimate of the target,
and K† = K−Ns + 1 is the start of the retrodiction interval.
On this form, the motion of the target for the last Ns scans
are parametrized by a constant velocity and an initial position
xK† . The estimate from the PDAF is written as

x̂k|k = F (tk − tK†)xK† + ek, p(ek) = N (ek; 0,P k|k)
(6)

where x̂k|k and P k|k is the posterior estimate of the PDAF.
The retrodicted estimate of xK† can be calculated by a
standard least-squares calculation,

x̄K† = (F Tr P rF r)
−1F Tr P rx̂r, (7)

where

x̂r =




x̂K†|K†

x̂K†+1|K†+1

...
x̂K|K


 ,F r =




I
F (tK†+1 − tK†)

...
F (tK − tK†)


 , (8)

P r = diag(PK†|K† ,PK†+1|K†+1 . . . ,PK|K), (9)

The retrodicted estimate of xK† can then be used to calculate
the estimate of the target at following timesteps, using (5).

We emphasize that the retrodiction is only used as a post-
processing step for the output to the collision avoidance
method, and not as an integral part of the tracking and pre-
diction. Nevertheless, the estimates of the target used in the
COLAV-algorithm will be affected if the target maneuvers.
There are two main factors that will affect the safety of the
system. The first is the time it takes to detect the maneuver
in the retrodiction method, and the second is the safety
regions of the ASV. The maneuver detection will depend on
the retrodiction time. With the tracking system parameters
shown in Table 2, this amounts to about 12 seconds. This
corresponds to 60 meters with a target velocity of 5 m/s.
This means that the collision and safety regions described in
Section 4 are significantly larger than the distance covered
by the target during a turn. Should this not be the case, the
ASV can take precautionary measures such as increasing the
collision or safety regions, or decreasing its velocity.
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4. DYNAMIC WINDOW: THEORY AND
IMPLEMENTATION

The dynamic window (DW) algorithm was introduced as a
COLAV algorithm for indoor ground robots in 1997 [13].
The algorithm originally assumes that the vehicle is subject
to constant acceleration limits, and predicts future trajectories
using straight lines and circles. ASVs have nonlinear dy-
namics, which result in time-varying acceleration constraints.
Moreover, the dynamics of an ASV is far more complex
than that of an indoor ground robot, rendering the original
prediction approach inaccurate. A modified DW algorithm
for autonomous underwater vehicles (AUVs) moving in the
horizontal plane is presented in [10], proposing a solution to
these issues. This algorithm searches for feasible velocity
pairs consisting of a desired surge speed u and yaw rate r,
and chooses the optimal velocity pair based on an objective
function. A set of feasible velocities is created by joining
three search spaces, which then is sampled and used for
predicting vessel trajectories with a prediction horizon Tp.
The dynamic window contains velocities reachable during a
time window T while respecting actuator rate saturations, and
is defined as:

Vd =
{

(u, r) ∈ R× R
∣∣∣u ∈ [u∗ + u̇minT, u

∗ + u̇maxT ]

∧r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]} , (10)

where u∗ and r∗ are the current surge speed and yaw rate,
and umin, umax and rmin, rmax are time-varying acceleration
limits. The set of possible velocities is defined as:

Vs =
{

(u, r) ∈ R× R
∣∣∣g(u, r) ≥ 0

}
, (11)

where g(u, r) is positive for velocities that are possible to
reach with respect to actuator magnitude saturations.

Two regions are defined around the obstacles, namely the
collision and safety regions. The collision region is a circle,
which if entered is treated as a collision. The safety region is
a new circle outside of the collision region, which is allowed
(but not desirable) to enter, hence acting as a safety margin.
The set of admissible velocities only include velocities which
allow the vehicle to stop before entering the collision region,
and is defined as:

Va =
{

(u, r) ∈ R× R
∣∣u ≤

√
2ρ′(u, r)|u̇min|

∧|r| ≤
{ √

2ρ′(u, r)|ṙmax| , r < 0√
2ρ′(u, r)|ṙmin| , r ≥ 0

}
, (12)

where ρ′(u, r) represents the along-trajectory distance to the
collision region at the next time instant the algorithm is run,
given the velocity pair (u, r). Finally, the optimal velocity
pair is selected through maximizing an objective function:

(ud, rd) = argmax
(u,r)∈Vr

G(u, r;u′d, r
′
d), (13)

where Vr = Vd ∩ Vs ∩ Va, and G(u, r;u′d, r
′
d) is defined as:

G(u, r;u′d, r
′
d) = α·yawrate(u, r, r′d) + β ·dist(u, r)

+ γ ·velocity(u, r, u′d), (14)

where u′d and r′d are inputs to the algorithm, generated by
a line of sight (LOS) guidance system [12], and α, β, γ >

0 are tuning parameters. The yawrate(·) and velocity(·)
terms assign value to choosing a velocity pair close to the
desired velocity (u′d, r

′
d), while the dist(·) term motivate the

algorithm to keep distance to obstacles based on the along-
trajectory distance to the safety region. These are defined as:

yawrate(u, r, r′d) = 1− |r′d − r|
max
r∈Vr

(|r′d − r|)
, (15)

velocity(u, r, u′d) = 1− |u′d − u|
max
u∈Vr

(|u′d − u|)
, (16)

dist(u, r) =
ρ̄(u, r)

1
Tp

∫ Tp

0
‖χ(u, r, t)‖2 dt

, (17)

where χ(u, r, t) is the predicted vessel body velocity and
ρ̄(u, r) represents the along-trajectory distance to the safety
region, both given the velocity pair (u, r).

The maximization in (13) is performed discretely by uni-
formly sampling the dynamic window Vd, and removing the
velocity pairs which are not elements of Vs and Va. In
this process, predicted trajectories for the velocity pairs are
generated using a model of the vehicle closed-loop error
dynamics. See [10] for more details on the modified DW
algorithm.

There are several differences between the AUV application
in [10] and the ASV platform described in Section 2:

1. The model of the Telemetron ASV is formulated in 2DOF
using SOG and ROT, instead of 3DOF using surge, sway and
yaw as in [10].
2. The control system requires a continuously differentiable
velocity trajectory to employ acceleration feed-forward.
3. The Telemetron ASV is not well captured by the AUV
model used in [10].

The first issue is handled by redefining the DW algorithm for
SOG and ROT. This requires a way to model the sideslip of
the vessel, to be able to simulate the vessel kinematics [8].
For these experiments, we assume that the sideslip is small
enough to be neglected. During the identification experiments
in [8], we observed that the sideslip stays below 10◦ when
operating the ASV at moderate speeds without extreme ma-
neuvers.

The second issue is tackled by changing the way we generate
the velocity pairs. Instead of sampling the dynamic window,
we define a dynamic acceleration window:

Ad =
{

(U̇ , ṙ) ∈ R× R
∣∣∣U̇ ∈ [U̇min, U̇max]

∧ṙ ∈ [ṙmin, ṙmax]} , (18)

which we sample to obtain a list of acceleration pairs. We
then define an acceleration trajectory as a piecewise linear
trajectory. For a SOG acceleration sample U̇ ′, the trajectory
is defined as:

U̇(t) =





U̇0 + U̇ ′−U̇0

Tact
t , 0 ≤ t < Tact

U̇ ′ , Tact ≤ t < Tacc
U̇ ′ − U̇ ′

Tact
(t− Tacc) , Tacc ≤ t < Tacc + Tact

0 , otherwise,
(19)
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Figure 2. SOG acceleration trajectories for 5 samples in Ad.

where Tact is the time allowed for changing the actuator
settings and Tacc is the time for acceleration, which should
be equal to the sample time of the algorithm to allow for
continuous accelerations. A collection of 5 SOG acceleration
trajectories with U̇0 = 0 m/s2, Tact = 0.7 s and Tacc = 1 s is
shown in Fig. 2. Trajectories for ROT acceleration is obtained
in a similar way.

The third issue is handled by simply using a kinematic
model to obtain velocity and position trajectories given the
acceleration trajectories. This relies on the velocity controller
being able to track the desired trajectory, without too much
bias introduced from external disturbances. Based on the
experimental validation of the velocity controllers in [8], we
believe that they will be able to quite closely track the desired
velocity, and therefore justify this approach. In addition, the
DW algorithm will be run at a quite high rate, which reduces
the impact of external disturbances.

In addition, it has been found that using only the distance to
the safety region in the distance term (17) of the objective
function (14) may lead to the vessel being trapped in the
safety region [21], [7], essentially disabling the COLAV
aspect of the algorithm. To improve on this, an alternative
distance term including the amount of a trajectory residing
inside the safety region is proposed in [21]. This distance
term does, however, rely on a part of the trajectory residing
outside of the safety region, which may not be the case if the
safety region is large. We therefore interchange the dist(·)
term with a more complex one similar to the one in [21], but
also including the distance to the collision region:

dist(U, r) = κ
ρ̄(U, r) + ρ(U, r)

1
T

∫ T
0
Udt

+ (1− κ)

∑N
n=1

λ(U,r,n)√
n∑N

n=1
1√
n

.

(20)
Here, the function λ(U, r, n) is 1 if point n of the predicted
trajectory resides inside the safety region, and 0 otherwise,
while κ ∈ (0, 1) is a tuning parameter. The variables ρ̄(U, r)
and ρ(U, r) are the along-trajectory distance to the safety and
collision regions, respectively, both given the velocity pair
(U, r). For more details, see [10] and [21].

In the experiments we ran the DW algorithm every second
using 225 m and 350 m as the collision and safety region
sizes, respectively. Further tuning parameters are shown in
Table 3.

5. TARGET TRACKING AND COLLISION
AVOIDANCE INTERFACE

Successfully closing the loop between the target tracking
and COLAV systems requires that these two modules com-

Table 3. COLAV tuning parameters for the experiments.

Parameter Value Comment
Tp 30 s Planning horizon length
Tact 0.7 s Actuator ramp time
Tacc 1.0 s Acceleration time
α 1.0 Yawrate function weight
β 4.0 Distance function weight
γ 1.0 Velocity function weight

Radar

AIS
Track-
manager

LOS
guidance

Dynamic
window

Vessel
controllers

Other
sensors

Figure 3. Diagram illustrating the target tracking and
COLAV interface.

municate in some way. The target tracking module has
to provide the COLAV module with estimated target tracks
in some manner. This can be posed as a software design
problem, with many possible solutions. One way of enabling
communication would be to implement the target tracking
and COLAV functionality in one integrated module, handling
communication implicitly within this module by sharing
state. This is flexible and has the advantage of requiring
very little explicit design, but at the same time makes the
implementation less modular, harder to test and more difficult
to develop and maintain as a team. An explicit interface has
the additional flexibility of abstracting which sensor/sensors
the target estimates originate from, and what kind of COLAV
functionality the estimates are used for.

Within the ROS software framework, there are two main ways
of communicating between separate software modules. The
first is an asynchronous publish-subscribe mechanism, and
the second is a synchronous request-response mechanism.
We have chosen to use the latter model, such that the COLAV
module requests a list of all known targets at specific times,
i.e. a list of target trajectories that are discretized in time.
This places the burden of track management, prediction and
possibly interpolation in the target tracking module. All these
functions are arguably naturally encapsulated within a target
tracking framework. The interface is shown in Fig. 3.

6. CLOSED-LOOP COLLISION AVOIDANCE
EXPERIMENTS

The combined tracking and COLAV system was tested in the
Trondheimsfjord on the 15th to 19th of May 2017.

Scenario description

During the experiments, we tested a number of head-on
situations with a target vessel under our control. The target
vessel was a 17 foot motorboat constructed in glass fibre
and equipped with a radar reflector to improve the visibility
on the radar, as shown in Fig. 4. The target vessel was
also equipped with an emulated AIS transponder using an
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Figure 4. The 17 foot long target vessel, equipped with a
radar reflector to improve radar visibility.

Android phone to transmit the vessel position, course and
speed in the AIS format over the mobile network to the
processing platform onboard the ASV. We also performed
some COLAV experiments using the emulated AIS, but in
the experiments presented here we only used it for ground
truth. The experiments were performed with a constant
desired SOG of 4 m/s, while the guidance system attempts to
follow a straight line towards the initial position of the target
vessel. The target vessel was manually steered at a speed of
approximately 5 m/s, attempting to keep a constant course
towards the initial position of the ASV. The scenarios were
initiated with a distance of at least 900 m between the ASV
and the target vessel.

Experimental results

The first experiment was performed using the PDAF tracking
states for vessel prediction. From Fig. 5, we see that the ASV
traveled too close to the target vessel, finally entering the
collision region, which caused the experiment to be aborted
for safety reasons. The reason for this was the large variations
in course and speed estimates of the target ship, which when
used in an NCV model results in large variations in the
predicted future trajectory of the target vessel. This further
results in that the ASV travels closer than it should to the
target ship, as the DW algorithm in some iterations believes
that the target vessel moves in another direction than the
actual direction of travel. Finally, the target vessel is so close
that there is no option to avoid entering the collision region,
failing the experiment. It is quite apparent from the estimated
target course in Fig. 6 that the predicted target trajectory will
fluctuate a lot. This is also confirmed by Fig. 7 showing the
distance at closest point of approach (DCPA) for the target
vessel, noting that this is dependent on which trajectory the
DW algorithm chooses. One should also note that when
entering the collision region, all velocity pairs are considered
inadmissible, in practice deactivating the DW algorithm.

The second experiment was performed using the retrodicted
tracking states for vessel prediction. In this case, the ASV
avoided the collision region, rendering the experiment as a
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Figure 5. Experiment 1: North-east trajectory of the ASV
and the target vessel, together with the PDAF position
estimate used in the experiment. The experiment was

aborted since the ASV traveled too close to the target vessel,
moving into the collision region shown in red. The green

circle show the safety region.
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Figure 6. Experiment 1: Course estimate of the target
vessel, with and without retrodiction. In this experiment, the
PDAF estimate was used for predicting the target trajectory.
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Figure 9. Experiment 2: Course estimate of the target
vessel, with and without retrodiction. In this experiment, the

retrodicted estimate was used for predicting the target
trajectory.

success. From Fig. 8, we see that the ASV successfully avoids
the target vessel, before returning towards the path specified
by the LOS guidance system. Figures 9 and 10 show the
target course estimate and DCPA for the second experiment,
showing the same trends as for the first experiment.

Fig. 11 shows the distance between the ASV and the target
vessel for both experiments. It is clear that using a retrodicted
target course and speed estimate improves the performance of
the closed-loop COLAV system.

7. CONCLUSION
We have experimentally tested a closed-loop COLAV system
consisting of a radar-based tracking system using PDAF and
a COLAV system based on the DW algorithm. The system
successfully avoided collision with a target vessel when using
a retrodiction filter to generate smooth estimates of the target
vessel course and speed, but failed when not applying such
a filter. This highlights the requirements for the input to the
COLAV system. The tracking system should hence be able to
provide smooth estimates of the target course and speed, but
the COLAV system should also be able to handle inaccurate
estimates of target vessels to increase the robustness of the
closed-loop system. In practice, the DW algorithm became
deactivated when the ASV entered the collision region, since
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Figure 10. Experiment 2: DCPA for the target vessel. The
collision and safety regions are shown in red and green,

respectively.
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this causes all velocity pairs to be considered inadmissible.
The COLAV system should steer the ASV to avoid this
situation, but variations in the tracking estimates can still put
the ASV in this position, revealing an important shortcoming
of the DW algorithm.

Future work will investigate the potential for improvements
in speed and course estimates through multiple model filter-
ing, fixed-lag smoothing techniques and/or nonlinear motion
models. The results also motivate for modifications to the
DW algorithm, or the development of a new algorithm more
robust to variations in the tracking estimates. An attractive
topic is also to combine the reactive COLAV system with the
deliberate COLAV algorithm in [9].
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Abstract: Well-performing low-level vessel controllers are a necessity for marine motion control
applications such as path following, trajectory tracking and collision avoidance for autonomous
surface vehicles (ASVs). Designing such controllers are especially challenging for high-speed
vessels operating in both the displacement, semi-displacement and planing regions. In this
article, we build on a powerful framework for modeling, identification and control of high-speed
ASVs in order to develop a model-based speed and course controller with high performance.
The controller is shown to outperform a gain-scheduled proportional-integral feedback controller
in full-scale experiments in the Trondheimsfjord, Norway. The controllers are compared both
qualitatively and quantitatively using suitable performance metrics.
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1. INTRODUCTION

Kinematic control applications such as path following
and trajectory tracking (Fossen, 2011) rely on high-
performance low-level vessel controllers. The same is the
case for autonomy-enabling collision avoidance (COLAV)
functionality (Kuwata et al., 2014; Eriksen and Breivik,
2017b; Eriksen et al., 2018). Hence, to be able to employ
autonomous surface vehicles (ASVs) for a range of marine
control applications, precise and robust low-level motion
controllers are required.

In general, ASVs are small and agile vessels capable of
operating at high speeds. Such vessels often operate in
both the displacement, semi-displacement and planing re-
gions. In the displacement region, the hydrostatic pressure
mainly carries the vessel weight. When increasing the ves-
sel speed, hydrodynamic effects will increase and eventu-
ally carry the majority of the vessel weight. When the hy-
drodynamic pressure dominates the hydrostatic pressure,
the vessel operates in the planing region, and between the
displacement and planing regions is the semi-displacement
region (Fossen, 2011). Most modeling approaches assume
that the vessel only operates in the displacement region,
which makes modeling of high-speed ASVs challenging.
This again makes it difficult to develop high-performance
low-level motion controllers utilizing mathematical models
of the vessel.

In (Breivik et al., 2008), an ASV speed and course con-
troller using steady-state feedforward in speed is developed
and used in full-scale trajectory tracking experiments with
an ASV moving beyond the displacement region. The
controller is extended with steady-state feedforward in yaw
rate and used for formation control in (Breivik, 2010).

In this paper, we build upon a powerful approach for
modeling, identification and control of high-speed ASVs
operating in both the displacement, semi-displacement
and planing regions (Eriksen and Breivik, 2017a). In par-
ticular, a vessel speed and yaw-rate controller employing
model-based feedforward terms is developed in (Eriksen
and Breivik, 2017a) and shown to outperform other con-
trollers. Here, we extend this controller to also control
the vessel course, which enables the vessel velocity to be
controlled precisely. As such, it is important to note the
difference between heading (yaw angle) and course, where
the former relates to the direction which the vessel bow is
pointing while the course is the direction which the vessel
is traveling. When the vessel is maneuvering or under
influence of external disturbances, the heading and course
will in most cases not be aligned. The performance of the
new model-based speed and course controller is evaluated
through full-scale experiments in the Trondheimsfjord,
Norway.

The rest of the paper is structured as follows: Section 2
presents the Telemetron ASV and gives a summary of the
modeling and identification approach developed in (Erik-
sen and Breivik, 2017a). In Section 3, we develop the new
speed and course controller, while Section 4 presents the
results from the full-scale experiments. Finally, Section 5
concludes the paper and suggests some further work.

2. ASV PLATFORM AND MODELING

The vessel considered in this paper is the Maritime
Robotics’ Telemetron ASV, shown in Figure 1. This is a
dual-use vessel, designed for both manned and unmanned
operations. The vessel is 8.45 m long and capable of speeds
up to 18 m/s. See Table 1 for more specifications.
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Fig. 1. The dual-use Telemetron ASV, which is 8.45 m
long and capable of speeds up to 18 m/s. Courtesy of
Maritime Robotics.

Most ASVs are modeled using the well-known 3 degrees of
freedom (DOF) model (Fossen, 2011):

η̇ = R(ψ)ν (1a)

Mν̇ +C(ν)ν +D(ν)ν = τ + τ environment, (1b)

where η = [N E ψ]
T

is the vessel pose, ν = [u v r]
T

is the vessel body velocity, while τ and τ environment are
the control and environmental forces and moments, re-
spectively. The matrix R(ψ) is a rotation matrix, while
M , C(ν) and D(ν) are the inertia, Coriolis/centripetal
and damping matrices, respectively. Although the model
(1) is frequently used for modeling vessels operating at
high speeds, the model is developed under the assumption
that the vessel operates in the displacement region. The
operating region of a vessel can be approximated by com-
puting the Froude number (Faltinsen, 2005). Using this
number, it can be shown that an ASV with submerged
length of 8 m exits the displacement region at around
3.54 m/s, while entering the planing region at approxi-
mately 8.86 m/s (Eriksen and Breivik, 2017a). Hence, an
alternative model to (1) is required to develop a motion
control system for a vessel like the Telemetron ASV.

2.1 Control-oriented modeling of high-speed ASVs

In (Eriksen and Breivik, 2017a), a data-driven control-
oriented modeling approach for high-speed ASVs is pro-
posed. Most ASVs are underactuated, making it impossi-
ble to independently control surge, sway and yaw simulta-
neously. One usually chooses to control the surge and yaw
motion, leaving the sway motion uncontrolled. Therefore,
a 2DOF model using the vessel speed over ground (SOG)

U =
√
u2 + v2 and rate of turn (ROT) r as states is

suitable for control purposes. The kinematics of the vessel
using SOG and ROT can be described as:

η̇ =

[
cos(χ) 0
sin(χ) 0

0 1

] [
U
r

]

χ̇ = r + β̇,

(2)

where r is the vessel ROT and χ = ψ + β is the vessel
course with β being the vessel sideslip.

To model the vessel dynamics, we define a state vector x =

[U r]
T

and use a normalized 2DOF non-first principles
model to model the vessel dynamics:

M(x)ẋ+ σ(x) = τ , (3)

Table 1. Telemetron ASV specifications.

Component Description

Vessel hull Polarcirkel Sport 845
Length 8.45 m
Width 2.71 m
Weight 1675 kg

Propulsion system Yamaha 225 HP outboard engine
Motor control Electro-mechanical actuation of

throttle valve
Rudder control Hydraulic actuation of outboard

engine angle with proportional-
derivate (PD) feedback control

Navigation system Kongsberg Seatex Seapath 330+
Processing platform Intel R© i7 3.4 GHz CPU, running

Ubuntu 16.04 Linux

where M(x) = diag (mU (x),mr(x)) is a diagonal state-

dependent inertia matrix and σ(x) = [σU (x) σr(x)]
T

is a
vector of damping terms, both being nonlinear in terms of

the state vector x. The vector τ = [τm τδ]
T

is a normalized
control input, where τm ∈ [0, 1] and τδ ∈ [−1, 1] are the
motor throttle and rudder control input, respectively.

The terms of the inertia matrix M(x) and damping term
σ(x) are defined using high-order polynomial functions:

mU (x) = φm(x)TβmU , σU (x) = φσ(x)TβσU
mr(x) = φm(x)Tβmr , σr(x) = φσ(x)Tβσr ,

(4)

where φm(x) and φσ(x) are vectors of basis functions,
called regressors, while βmU ,βmr ,βσU and βσr are pa-
rameter vectors. Notice that the terms are linear in the pa-
rameters, which allows the use of linear regression (Bishop,
2006) to find the optimal parameter vectors. The regres-
sors are defined as a fourth-order polynomial function for
the damping:

φσ(x) =
[
1, U, r, U2, Ur, r2, U3, U2r, Ur2,

r3, U4, U3r, U2r2, Ur3, r4
]T
, (5)

and as the same fourth-order polynomial plus an asymp-
totic function for the inertia:

φM (x) =
[
1, U, r, U2, Ur, r2, U3,

U2r, Ur2, r3, U4, U3r,

U2r2, Ur3, r4, tanh(a(U − b))
]T
, (6)

where a and b are parameters controlling the asymptotic
term. The order of the polynomials is chosen sufficiently
high to capture hydrodynamic damping and actuator
dynamics. The asymptotic term in the inertia regressor
is motivated by experiments showing a large decrease in
the inertia for increasing SOG at low speeds.

2.2 Parameter identification

As mentioned, the linearity of parameters in the terms (4)
allows for the use of linear regression to identify optimal
parameter values. For a model on the form:

y = φ(x)Tβ, (7)

one can, given a set of N data points {x1,x2, . . . ,xN} and
{y1, y2, . . . , yN}, define a weighted square loss function:

ε =
1

N

N∑

i=1

Wii

(
yi − φ(xi)

T β̂
)2
, (8)
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with β̂ being an estimate of the true parameter vector
β, and Wii being a weight on data point i. Defining

Y = [y1 y2 . . . yN ]
T

, X = [φ(x1) φ(x2) . . . φ(xN )]
T

and W = diag (W11,W22, . . . ,WNN ), we can find the

parameter vector β̂ which minimizes (8) using linear
regression as:

β̂ = (XTWX)−1XTWY . (9)

A well-known problem with linear regression is the prob-
lem of overfitting. To reduce this problem, one can in-
troduce regularization, which penalizes parameter vectors
with large parameter values (Bishop, 2006). The loss func-
tion (8) is then reformulated as:

ε =
1

N

N∑

i=1

Wii

(
yi − φ(xi)

T β̂
)2

+ λR(β̂), (10)

where λ > 0 is a regularization parameter and R(β̂) is a
regularization function. In (Eriksen and Breivik, 2017a),
`1 regularization is used, since it favors sparse parameter
vectors. Hence, the regularization function is defined as

R(β̂) =
∥∥∥β̂
∥∥∥
1
.

In (Eriksen and Breivik, 2017a), a number of vessel exper-
iments were conducted in order to obtain measurements
of the vessel inertia and damping. These experiments were
based on series of step responses in the motor throttle
τm and rudder angle τδ. Based on the experiments, three
datasets of measurements were obtained:

Dσ = {{x1,x2, . . . ,xNσ}, {σ1,σ2, . . . ,σNσ}} , (11)

DmU =
{
{x1,x2, . . . ,xNmU },

{mU1 ,mU2 , . . . ,mUNmU
}
}
, (12)

Dmr =
{
{x1,x2, . . . ,xNmr },

{mr1 ,mr2 , . . . ,mrNmr
}
}
. (13)

The set Dσ contains vessel states and damping measure-
ments, DmU contains vessel states and measurements of
SOG inertia while Dmr contains vessel states and mea-
surements of ROT inertia. Using the data in (11)–(13),
the parameter vectors βmU ,βmr ,βσU and βσr in (4) are
identified using linear regression with `1 regularization.
Figures 2 and 3 show the resulting model terms.

Figure 4 shows a comparison between real and simulated
vessel responses for the same control input sequence. The
real vessel response in Figure 4 was not used in the
identification process, hence the comparison can be used
to qualitatively verify the identified model. There are
some deviations between the real and simulated responses,
but the model is considered accurate enough for control
purposes.

Interested readers are referred to (Eriksen and Breivik,
2017a) for more details on the modeling and identification
framework.

3. ASV SPEED AND COURSE CONTROLLER

In (Eriksen and Breivik, 2017a), the model (3) is used for
control of the vessel SOG and ROT using model-based
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Fig. 2. Surface plot of the damping term σ(x). The scatter
points are the data points in Dσ where red, blue and
green points have weights W = 1, W = 0.5 and
W = 0.1, respectively (Eriksen and Breivik, 2017a).
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Fig. 3. Surface plot of the inertia terms inM(x). The scat-
ter points are the data points in DmU and Dmr (Erik-
sen and Breivik, 2017a).

Time [s]

U
[m

/
s]

0 500 1000 1500
0

5

10

15

Time [s]

r
[d

eg
/
s]

0 500 1000 1500
−20

−10

0

10

20

Fig. 4. Comparison of real and simulated vessel responses.
The deviation at high SOG is caused by leaving the
valid domain of the identified model (Eriksen and
Breivik, 2017a).

feedforward terms. A controller named the feedforward
feedback (FF-FB) controller is suggested as:

τFF-FB = M(x)ẋd + σ(xd)

−M(x)Kpx̃−Ki

∫ t

t0

x̃(γ)dγ, (14)

where xd = [Ud rd]
T

is a vector of desired SOG and
ROT, x̃ = x − xd is the control error, Kp > 0 is
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a diagonal proportional gain matrix and Ki > 0 is a
diagonal integral gain matrix. The controller (14) is shown
to have significantly better performance than a gain-
scheduled proportional-integral (PI) feedback controller,
a pure feedforward controller and a feedback-linearizing
controller.

In many applications, it is desirable to control the vessel
kinematics, for instance by controlling the ASV course.
Similar to the design of vessel SOG and ROT controllers
in (Eriksen and Breivik, 2017a), utilizing model-based
feedforward terms should increase the closed-loop per-
formance of a controller also for the vessel kinematics.
Hence, we propose to extend the FF-FB controller (14)
with feedback terms for the vessel course χ, defining the
feedforward-feedback course (FF-FB-C) controller as:

τFF-FB-C = M(x)ẋd + σ(xd)

−M(x)K̄pζ̃ − K̄i

∫ t

t0

ζ̃1(γ)dγ, (15)

where ζ̃ and ζ̃1 are the error terms:

ζ̃ =

[
x− xd

Υ(χ− χd)
]

=



Ũ
r̃
χ̃




ζ̃1 =

[
Ũ
χ̃

]
,

(16)

with χd being the desired vessel course and Υ : R → S1

mapping an angle to the domain [−π, π). The matrices K̄p

and K̄i contain positive proportional and integral gains,
respectively:

K̄p =

[
kpU 0 0
0 kpr kpχ

]

K̄i =

[
kiU 0
0 kiχ

]
.

(17)

Through (2), the relationship between the course and

ROT is stated as r = χ̇ − β̇, where the sideslip β
enters the equation. Currently, we do not have a sideslip
model of the Telemetron ASV. However, we have seen
in experiments that at moderate speeds the sideslip is
sufficiently constant such that β̇ ≈ 0 can be assumed
without major implications. We therefore simplify the
relation by assuming constant sideslip and defining the
desired ROT as:

rd = χ̇d
ṙd = χ̈d.

(18)

Hence, assuming a constant or slowly-varying sideslip, the
controller (15) is a speed and course controller which
is able to precisely control the vessel velocity, which is
required for kinematic control applications.

4. EXPERIMENTAL RESULTS

The controller performance is tested through full-scale
experiments in the Trondheimsfjord in Norway on the 10th

of October 2017 using the Telemetron ASV. The sea state
was considered as slight, which refers to significant wave
heights of 0.5–1.25 m (Prince and Bishop, 1974).

The FF-FB-C controller is compared to a PI feedback
controller with gain scheduling:

τFB-C = −M(x)K̄pζ̃ − K̄i

∫ t

t0

ζ̃1(γ)dγ, (19)

which is named the feedback course (FB-C) controller. No-
tice that the FB-C controller is obtained by removing the
feedforward terms of (15). The same controller parameters
were used for both controllers:

kpU = 0.6 kiU = 0.01

kpχ = 0.15 kiχ = 0.015

kpr = 0.35.

(20)

To generate the derivatives required for the controllers,
the desired SOG trajectory Ud(t) must be continuously
differentiable, while the desired course trajectory χd(t)
must be twice continuously differentiable. To ensure this, a
second order reference filter is used to generate Ud(t), while
a third order reference filter is used to generate χd(t).

4.1 Performance metrics

To quantitatively evaluate the performance of the con-
trollers, performance metrics are useful. For simplicity
in analyzing the performance, we wish to combine both
speed and course errors in the metrics. Since these have
different units, we must introduce some sort of weighted
sum (Eriksen and Breivik, 2017a). To do this, we define
the normalized signals Ū , Ūd, χ̄, χ̄d ∈ [0, 1] for the expected
operational space of the vessel. For the Telemetron ASV,
the expected operating space is up to 18 m/s for SOG, and
2π rad for course since it resides in S1. We then define a
combined error term and control input as:

ē(t) =

∥∥∥∥
[
Ū(t)− Ūd(t)
χ̄(t)− χ̄d(t)

]∥∥∥∥
2

(21)

and
τ̄(t) = ‖τ‖2 . (22)

Different performance metrics are used to evaluate differ-
ent qualities. The integral of absolute error (IAE) penalizes
deviation from the desired speed and course:

IAE(t) =

∫ t

t0

ē(γ)dγ, (23)

and serves as a measure of control precision. The integral
of absolute differentiated control (IADC) has previously
been used as a part of a combined performance metric
in (Sørensen et al., 2016):

IADC(t) =

∫ t

t0

| ˙̄τ(γ)|dγ, (24)

and serves as a measure of wear and tear on the actuators.
The integral of absolute error times the integral of abso-
lute differentiated control (IAE-ADC) combines IAE and
IADC, and is computed as:

IAE-ADC(t) =

∫ t

t0

ē(γ)dγ

∫ t

t0

| ˙̄τ(γ)|dγ, (25)

and is a measure of control precision scaled by wear and
tear (Eriksen and Breivik, 2017a). Finally, the integral of
absolute error times work (IAEW) scales IAE with the
energy consumption (Sørensen and Breivik, 2015), and is
computed as:

IAEW (t) =

∫ t

t0

ē(γ)dγ

∫ t

t0

P (γ)dγ, (26)
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Fig. 5. Test 1: High-speed trajectory with constant SOG
and steps and steady states in course.
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Fig. 6. Performance metrics for Test 1. The FF-FB-C
controller clearly outperforms the FB-C controller on
all metrics except the IADC.

where P (t) is the mechanical power applied by the vessel
motor. Hence, IAEW serves as a measure of the energy
efficiency. In this work, we approximate the mechanical
power as linear with the motor throttle, hence P ∝ τm.

4.2 Full-scale experiments

In this section, we present experimental results from two
test scenarios:

• Test 1: A high-speed trajectory with constant SOG
and step changes in course, with steady states in
between.
• Test 2: A high-speed trajectory with step changes and

steady states in both SOG and course.

Test 1 For the first test, we have a high-speed trajectory
with constant SOG, while attempting to follow a course
trajectory consisting of both steps and steady states. The
resulting trajectories are shown in Figure 5. It is clear that
the FF-FB-C controller follows the desired SOG trajectory
better than the FB-C controller, which also is the case for
the course. In particular, the FF-FB-C controller has a
better transient response. The FB-C controller struggles
to follow a changing reference, while also having problems
with overshoots, which is a natural result of using integral
terms to stabilize the controlled variables.
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Fig. 7. Test 2: High-speed trajectory with steps and steady
states in both SOG and course.
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Fig. 8. Performance metrics for Test 2. The FF-FB-C
controller clearly outperforms the FB-C controller on
all the metrics.

From the performance metrics in Figure 6, we see that
the FF-FB-C controller has the best performance. In
particular, the IAE is much lower with the FF-FB-C
controller than the FB-C controller. The control usage
(IADC) is slightly higher for the FF-FB-C controller, but
when scaled with the control performance (IAE-ADC),
the FF-FB-C outperforms the FB-C controller. Also, the
energy efficiency (IAEW) is much better with the FF-FB-
C controller than with the FB-C controller.

Test 2 The second test consists of steps and steady
states in both SOG and course, testing the performance
both at relatively low and high speeds. The trajectories
are shown in Figure 7, while the performance metrics are
shown i Figure 8. Again, it is clear that the FF-FB-C
controller has much better transient response than the
FB-C controller, both in SOG and course. The FF-FB-
C controller also has the best steady-state performance.
In this scenario, all the performance metrics are in favor
of the FF-FB-C controller. Notice in particular the control
precision (IAE) and energy efficiency (IAEW) which are
2–3 times better with the FF-FB-C controller than with
the FB-C controller.

The performance metrics for both tests are summarized in
Table 2.
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Table 2. Performance metrics for both con-
trollers in both tests. The controller with the
best performance for each metric in each test

is highlighted in bold.

Test
case

Con-
troller

IAE IADC
IAE-
ADC

IAEW

Test 1 FF-FB-C 8.9 1.4·10−1 1.3 1.7·104

FB-C 2.3·101 1.2·10−1 2.8 3.9·104

Test 2 FF-FB-C 1.1·101 7.1·10−2 8.1·10−1 1.5·104

FB-C 3.2·101 1.3·10−1 4.1 4.1·104

5. CONCLUSION AND FURTHER WORK

We have proposed a SOG and course controller for
high-speed ASVs operating in the displacement, semi-
displacement and planing regions. The controller employs
model-based feedforward terms, based on the FF-FB ve-
locity controller developed in (Eriksen and Breivik, 2017a).
Through full-scale experiments in the Trondheimsford,
Norway, the controller is compared to a PI feedback con-
troller with gain scheduling. From the experiments, it is
clear that using model-based feedforward terms in com-
bination with feedback terms greatly improve the control
performance compared to using a pure feedback controller.
The performance is particularly improved for time-varying
references.

The proposed speed and course controller has subsequently
been successfully used for full-scale closed-loop COLAV
experiments during the autumn of 2017 (Eriksen and
Breivik, 2018). In future work, we would also like to use
the proposed controller for other kinematic control appli-
cations, such as for example path following and trajectory
tracking.
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Centre for Autonomous Marine Operations and Systems

Department of Engineering Cybernetics
Norwegian University of Science and Technology (NTNU)

Trondheim, Norway
{bjorn-olav.h.eriksen, morten.breivik}@ieee.org

{erik.wilthil, andreas.flaten, edmund.brekke}@ntnu.no

Abstract

This article presents a new algorithm for short-term maritime collision avoidance (COLAV) named
the branching-course MPC (BC-MPC) algorithm. The algorithm is designed to be robust with re-
spect to noise on obstacle estimates, which is a significant source of disturbance when using extero-
ceptive sensors such as e.g. radars for obstacle detection and tracking. Exteroceptive sensors do not
require vessel-to-vessel communication, which enables COLAV toward vessels not equipped with
e.g. automatic identification system (AIS) transponders, in addition to increasing the robustness with
respect to faulty information which may be provided by other vessels. The BC-MPC algorithm is
compliant with rules 8, 13 and 17 of the International Regulations for Preventing Collisions at Sea
(COLREGs), and favors maneuvers following rules 14 and 15. Specifically, the algorithm can ignore
the specific maneuvering regulations of rules 14 and 15, which may be required in situations where
rule 17 revokes a stand-on obligation. The algorithm is experimentally validated in several full-scale
experiments in the Trondheimsfjord in 2017 using a radar-based system for obstacle detection and
tracking. To complement the experimental results, we present simulations where the BC-MPC algo-
rithm is tested in more complex scenarios involving multiple obstacles and several simultaneously
active COLREGs rules. The COLAV experiments and simulations show good performance.

1 Introduction

Today’s society moves rapidly towards an increased level of automation. The development of autonomous cars is
spearheading this trend, as exemplified by the efforts made by e.g. Google and Uber. In recent years, autonomy has
also become a hot topic in the maritime domain with research on autonomous passenger and goods transport, seabed
surveying and military applications. An example of this is the Yara Birkeland project in Norway, where an autonomous
electrically-powered cargo ship will replace approximately 40000 diesel-powered truck journeys of fertilizer per year
(Kongsberg Maritime, 2018). Reduced cost, increased efficiency and reduced environmental impact may be the most
obvious benefits of autonomy at sea, but the potential for increased safety is not to be overlooked since reports state that
in excess of 75% of maritime accidents are caused by human errors (Chauvin, 2011; Levander, 2017). A prerequisite
for employing autonomous surface vehicles (ASVs) in environments where other vessels may be present is, however,
that the ASVs have robust collision avoidance (COLAV) systems. Such COLAV systems must make the ASVs, as
other vessels, follow the International Regulations for Preventing Collisions at Sea (COLREGs) which contains a set
of rules on how vessels should behave in situations where there is a risk of collision with another vessel (Cockcroft and
Lameijer, 2004). However, COLREGs is written for human interpretation with few quantitative rules, which makes it
challenging to develop algorithms capturing the intention of COLREGs by machine decision-making.

113



Figure 1: A hybrid COLAV architecture with three levels. The support functions provide relevant information for
the COLAV algorithms, including obstacle trajectories, static obstacles from electronic nautical charts (ENC) and
situational awareness in the form of COLREGs situations. The short-term layer does not currently utilize information
from ENC or situational awareness.

COLAV algorithms have typically been divided into reactive and deliberate algorithms. Reactive algorithms are char-
acterized by considering a limited amount of information, originally only currently available sensor information (Tan
et al., 2004), and employing little motion planning in a short time frame. This makes reactive algorithms compu-
tationally cheap, and able to react to sudden changes in the environment. Examples include vessels making sudden
unpredicted maneuvers, late detection of obstacles, etc. However, since reactive algorithms consider a limited amount
of information and employ little motion planning, they tend to make suboptimal choices in complex situations which
makes them sensitive to local minima. Examples of reactive algorithms are the velocity obstacles (VO) (Fiorini and
Shiller, 1998; Kuwata et al., 2014) and the dynamic window (DW) (Fox et al., 1997) algorithms. Deliberate algo-
rithms consider more information and plan for a longer time frame, which results in more optimal choices at the cost
of increased computational requirements. Examples of deliberate algorithms include the A* (Hart et al., 1968) and the
rapidly exploring random tree (RRT) (LaValle, 1998) algorithms.

The previously clear border between reactive and deliberate algorithms have become somewhat artificial since few al-
gorithms only utilize currently available sensor information. However, the idea that the reactive algorithms are capable
of responding quickly to changes in the environment and the deliberate algorithms are capable of performing optimal
motion planning in a longer time frame is still relevant. We therefore choose to rather use the terms “short-term” and
“long-term” algorithms to distinguish the algorithms. In a practical COLAV system, both short-term and long-term
algorithms are useful. For long time frames, all available information should be included, while one may use a less
detailed vessel model for planning. For short-term COLAV, one can include less spatial and temporal information but
may need to use a more detailed model of the vessel to ensure dynamically feasible maneuvers. By combining short-
term and long-term algorithms in a hybrid architecture, the benefits of both algorithms can be combined, ensuring both
responsiveness, feasibility and optimality. An example of a hybrid architecture with three COLAV levels is shown in
Fig. 1. The topmost level, named path planning, is intended to produce a nominal path or trajectory from the initial
position to the goal. The spatial and temporal distance between the initial and goal positions may be large, allowing
only for a limited complexity in this algorithm. For instance, moving obstacles could be neglected at this level. The
mid-level COLAV algorithm tries to follow this nominal path or trajectory, while at the same time performing COLAV
with respect to all obstacles, characterized as a long-term COLAV algorithm. COLREGs is a natural part of this level,

114 Chapter 5. Original publications



since it may be complex to decide the appropriate action with respect to COLREGs. The mid-level algorithm produces
a modified trajectory which is passed to the short-term COLAV layer. This layer performs short-time COLAV making
sure to avoid obstacles performing sudden maneuvers or which are detected too late to be handled by the mid-level
algorithm, while also ensuring that the maneuvers are feasible with respect to the dynamic constraints of the vessel.
The short-term layer can also act as a backup solution to avoid collisions in cases where the mid-level algorithm fails
to produce feasible trajectories, for instance due to time constraints or numerical issues (Eriksen and Breivik, 2017b).
Furthermore, the short-term layer should be able to avoid collision in emergency situations, e.g. when obstacles does
not maneuver in accordance with COLREGs.

COLAV algorithms depend on information about obstacle position, speed and course in order to be able to avoid
collisions. One possible source of such information is using automatic identification system (AIS) transponders.
AIS is a vessel-to-vessel communication system where vessels transmit their current position and velocity to other
vessels carrying AIS transponders (IMO, 2018). Passenger ships and vessels with a gross tonnage of over 300 are
required to carry AIS transponders. This is of course valuable information when it comes to navigation and COLAV
at sea. However, AIS transponders usually rely on satellite navigation and data inputs from the user, which results
in the possibility of transmitting inaccurate or invalid data (Harati-Mokhtari et al., 2007). Also, vessels or objects
not equipped with AIS transponders will not be detected. A more robust approach to obtain information about the
environment is to employ exteroceptive sensors, which have the advantage of not relying on any infrastructure or
collaboration with the obstacles in order to detect them. A commonly used exteroceptive sensor at sea is radar.
However, the data from a radar usually includes a fair amount of noise, which makes this sensor more complex
and difficult to work with than AIS (Eriksen et al., 2018). On-board radars have been used for full-scale COLAV
experiments based on the A* algorithm in (Schuster et al., 2014), and using a modified version of the DW algorithm
in (Eriksen et al., 2018). In (Elkins et al., 2010; Kuwata et al., 2014), other exteroceptive sensors such as cameras and
lidar are used for COLAV.

Model predictive control (MPC) has for a long time been a well-known and proven tool for motion planning and
COLAV for e.g. ground and automotive robots (Ögren and Leonard, 2005; Keller et al., 2015; Gray et al., 2013),
aerospace applications (Kuwata and How, 2011) and underwater vehicles (Caldwell et al., 2010). In the later years,
MPC has also been applied for COLAV in the maritime domain, both using sample-based approaches where one
considers a finite space of control inputs (Švec et al., 2013; Johansen et al., 2016; Hagen et al., 2018) and conventional
gradient-based search algorithms (Abdelaal and Hahn, 2016; Eriksen and Breivik, 2017b). None of these algorithms
does, however, consider the amounts of noise which we expect to encounter using a radar-based tracking system.
Gradient-based algorithms have the benefit of exploring the entire control input space, but the complexity of the
COLAV problem can make it difficult to guarantee that a feasible solution will be found within the time requirements
(Eriksen and Breivik, 2017b). This makes sample-based approaches well suited for short-term COLAV. In (Benjamin
et al., 2006; Benjamin et al., 2010), a protocol-based COLAV algorithm using interval programming is presented. The
algorithm optimizes over multiple functions considering different behaviors, e.g. waypoint following and adherence
to different parts of COLREGs, by combining them in an objective function with adaptive weights. The algorithm
does, however, use vessel-to-vessel communication in order to obtain obstacle information, and is not necessarily well
suited for use with exteroceptive sensors.

1.1 The International Regulations for Preventing Collisions at Sea

COLREGs regulate how vessels should behave in situations where there exists a risk of collision. There are in total 38
rules, where rules 8 and 13–17 are the most relevant ones for designing COLAV algorithms for ASVs, although the
rest must also must be addressed in a COLREGs-compliant system. Rules 8 and 13–17 can be summarized as:

Rule 8: This rule requires, among other things, that maneuvers applied in situations where a risk of collision exists
should be large enough to be readily observable for other vessels. Small consecutive maneuvers should hence
be avoided.

Rule 13: In an overtaking situation, where a vessel is approaching another from an angle of more than 22.5◦ abaft
the other vessel’s beam, the overtaking vessel is required to keep out of the way of the overtaken vessel. The
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Figure 2: Graphical illustration of COLREGs regions as seen from the ownship. The light red regions show areas
where the ownship is required to maneuver, while the light green region show areas where the ownship should keep
the current speed and course.

overtaking vessel is allowed to pass on either side. However, in a case where the overtaken vessel is required
to avoid collision with another vessel it may be required to make a starboard maneuver. To avoid blocking
the path of the overtaken vessel in such a situation, we consider it as most suitable to overtake a vessel on her
port side.

Rule 14: In a head-on situation, where two vessels approaches each other on reciprocal or nearly reciprocal courses (a
margin of ±6 ◦ is often used), both vessels are required to do starboard maneuvers and pass the other vessel
on her port side.

Rule 15: This rule handles crossing situations, where a vessel is approaching another vessel from the side, but not in
the regions considered as a head on or overtaking situation. The vessel with the other vessel on her starboard
side is deemed the give-way vessel, while the other is deemed the stand-on vessel. The preferred give-way
maneuver is to do a starboard turn and pass behind the stand-on vessel.

Rule 16: This rule defines the action for the give-way vessel. It requires that the give-way vessel performs early and
substantial action to avoid collision.

Rule 17: This rule defines the action for the stand-on vessel. It requires that the stand-on vessel keep her current
speed and course, while the give-way vessel maneuvers in order to avoid collision. However, if the give-way
vessel fails in her duty of avoiding collision, the stand-on vessel is required to maneuver such as best aids to
avoid collision. If this occurs in a crossing situation, the stand-on vessel should avoid maneuvering to port if
possible.

Fig. 2 shows a graphical illustration of the situations given by rules 13–15. The interested reader is referred to (Cock-
croft and Lameijer, 2004) for more details on the COLREGs rules.

1.2 Contributions

The authors of this article have focused on short-term and reactive COLAV for ASVs for the last few years, starting
with a modified version of the DW algorithm designed for use with autonomous underwater vehicles (AUVs) (Eriksen
et al., 2016). This algorithm was adapted for use with high-speed ASVs, and tested in conjunction with a radar-
based tracking system (Wilthil et al., 2017) successfully demonstrating closed-loop radar-based COLAV in full-scale
experiments (Eriksen et al., 2018). However, the experiments revealed challenges with using radar-based tracking
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systems for COLAV, especially noisy estimates of obstacle speed and course caused problems. The DW algorithm
is not particularly robust with respect to such noise, causing the vessel to repeatedly change the planned maneuver.
In addition, the DW algorithm assumes the ASV to keep a constant turn rate for the entire prediction horizon. This
does not resemble the way vessels usually maneuver at sea, where one usually performs a corrective maneuver by
changing the course and/or speed, followed by keeping the speed and course constant. These issues motivate us to
develop a new short-term COLAV algorithm which is less sensitive to noisy obstacle estimates while also producing
more “maritime-like” maneuvers.

In this article, we therefore present a new algorithm for short-term COLAV named the branching-course MPC (BC-
MPC) algorithm. This algorithm is based on sample-based MPC and is designed to be robust with respect to noisy
obstacle estimates, which is an important consideration when using radar-based tracking systems for providing ob-
stacle estimates. In contrast to sample-based MPC algorithms previously applied to ASVs, the BC-MPC algorithm
considers a sequence of maneuvers, enabling the algorithm to plan more complex trajectories than just a single avoid-
ance maneuver. Furthermore, the BC-MPC algorithm complies with rules 8, 13 and 17 of COLREGs, while favoring
maneuvers complying with rules 14 and 15. In cases where the algorithm chooses to ignore the maneuvering aspects
of rules 14 and 15, which can be required when rule 17 revokes a stand-on obligation, the maneuvers have increased
clearance to obstacles. The term “COLREGs-compliance” is often abused in the literature by using it for algorithms
only complying with parts of COLREGs. With this in mind, we consider the algorithm as being partly COLREGs com-
pliant, and well suited to handle the short-term aspects in a COLREGs-compliant hybrid COLAV architecture. The
algorithm is implemented on an under-actuatuated ASV and validated through several full-scale closed-loop COLAV
experiments using a radar-based tracking system for providing estimates of obstacle course, speed and position. To
complement the experimental results, we present simulation results where the algorithm is tested in multi-obstacle
scenarios where multiple COLREGs rules apply simultaneously.

1.3 Outline

The rest of the article is structured as follows: Section 2 describes modeling and control of ASVs, Section 3 presents
the BC-MPC algorithm, while Section 4 contains results from the full-scale closed-loop COLAV experiments. To
complement the experimental results, we present simulation results of more complex scenarios in Section 5, including
scenarios with multiple and maneuvering obstacles. Finally, Section 6 concludes the article and presents possibilities
for further work.

2 ASV modeling and control

The vessel of interest in this work is the Telemetron ASV shown in Fig. 3, which is owned and operated by Maritime
Robotics (MR). The vessel is 8.45 m long, and uses a single steerable outboard engine for propulsion, which makes
the vessel underactuated.

2.1 ASV modeling

ASVs are in general small and agile vessels, capable of operating at high speeds. At low speeds the hydrostatic
pressure mainly carries the weight of the vessel, and it operates in the displacement region. When the vessel speed
increases, the hydrodynamic pressure increases, eventually dominating over the hydrostatic pressure. At this point,
we are in the planing region. In between the displacement and planing region we have the semi-displacement region.
The Telemetron ASV is a high-speed vessel, capable of speeds up to 18 m/s, which combined with the vessel length
of 8.45 m makes for a vessel operating in the displacement, semi-displacement and planing regions (Fossen, 2011;
Faltinsen, 2005).

The conventional approach to modeling ASVs is by using the 3DOF model (Fossen, 2011):

η̇ = R(ψ)ν (1a)
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Figure 3: The Telemetron ASV, designed for both manned and unmanned operations. Courtesy of Maritime Robotics.
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Figure 4: Vessel variables. The superscripts (·)n and (·)b denote the NED and body reference frames (Fossen, 2011),
respectively. The variables N , E and ψ represent the vessel pose, u, v and r represent the body-fixed vessel velocity
and U is the vessel speed over ground. The course χ is the sum of the heading ψ and the sideslip β.

Mν̇ +C(ν)ν +D(ν)ν = τ , (1b)

where η =
[
N E ψ

]T
is the vessel pose in an earth-fixed North-East-Down (NED) reference frame, ν =[

u v r
]T

is the vessel velocity and τ =
[
X Y N

]T
is a vector of forces and torque, both given in the body-

fixed reference frame. See Fig. 4 for an illustration of the variables. The matrix R(ψ) is a rotation matrix, while M ,
C(ν) andD(ν) are the mass, Coriolis and centripetal and damping matrices, respectively.

There exist many versions of the model (1) (Fossen, 2011), but they require that the vessel operates in the displacement
region. For the Telemetron ASV, this would require a maximum operating speed of approximately 3.5 m/s (Eriksen
and Breivik, 2017a). This is quite a big limitation, and we therefore rather use a control-oriented non-first principles
model developed for high-speed ASVs (Eriksen and Breivik, 2017a), valid for the displacement, semi-displacement
and planing regions:

M(x)ẋ+ σ(x) = τ , (2)

where x =
[
U r

]T
is the vessel state, with U =

√
u2 + v2 being the vessel speed over ground and r being the

vessel yaw rate, while τ =
[
τm τδ

]T
is a normalized control input. In this article, we also refer to the vessel speed

118 Chapter 5. Original publications



over ground as the vessel speed. The matrix M(x) is a diagonal state-dependent inertia matrix with nonlinear terms
and σ(x) =

[
σU (x) σr(x)

]T
is a vector of nonlinear damping terms. Notice that the model is in 2DOF, designed

for underactuated ASVs, where the speed and course are usually controlled. Using the state variable from (2), the
kinematics can be defined as:

η̇ =




cos(χ) 0
sin(χ) 0

0 1



[
U
r

]

χ̇ = r + β̇,

(3)

where χ is the vessel course and β is the sideslip. For more details on the model, see (Eriksen and Breivik, 2017a).

2.2 ASV control design

As shown in Fig. 1, the COLAV system is built on top of the vessel controllers. Hence, the performance of the COLAV
system can be limited by the performance of the vessel controllers. It is therefore beneficial to use high-performance
vessel controllers ensuring that the maneuvers that the COLAV system specifies are properly executed, not limiting
the performance of the COLAV system.

The model (2) can be used in control design, particularly using it for model-based feedforward in speed and yaw rate
is shown to provide good performance (Eriksen and Breivik, 2017a). A controller named the feedforward feedback
(FF-FB) controller is presented in (Eriksen and Breivik, 2017a), which combines model-based feedforward terms with
a gain-scheduled proportional-integral (PI) feedback controller for controlling the vessel speed and yaw rate. For the
BC-MPC algorithm, we need a controller capable of following a speed and course trajectory. The FF-FB controller has
proven to have high performance in experiments (Eriksen et al., 2018; Eriksen and Breivik, 2017a), so we therefore
extend the FF-FB controller to include course control:

τ = M(x)ẋd + σ(xd)−M(x)Kpζ̃ −Ki

∫ t

t0

ζ̃1(γ)dγ, (4)

where xd =
[
Ud rd

]T
, Kp > 0 is a matrix of proportional gains, Ki > 0 is a diagonal matrix of integral gains,

and:

ζ̃ =



Ũ
r̃
χ̃


 , ζ̃1 =

[
Ũ
χ̃

]
, (5)

where Ũ = U − Ud, r̃ = r − rd and χ̃ = Υ(χ − χd) are the speed, yaw rate and course errors, respectively. The
function Υ : R→ S1 maps an angle to the domain [−π, π).

In the control law (4), we use the desired yaw rate rd and its derivative ṙd. Through (3), the relation between the
course and yaw rate is stated as r = χ̇ − β̇, where the derivative of the sideslip enters the equation. At this stage, we
do not have a sideslip model of the Telemetron ASV. However, we have seen in experiments that at moderate speeds
the sideslip is sufficiently constant to be neglected without major implications. We therefore simplify the relation by
assuming constant sideslip and defining the desired yaw rate and its derivative as:

rd = χ̇d

ṙd = χ̈d.
(6)

The interested reader is referred to (Eriksen and Breivik, 2018) for more details on the speed and course controller.

3 The BC-MPC algorithm

The BC-MPC algorithm is intended to avoid collisions with moving obstacles while respecting the dynamic constraints
of the vessel in order to ensure feasible maneuvers, which is ideal for short-term COLAV. The algorithm is based on
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Figure 5: BC-MPC algorithm overview. The algorithm inputs a desired trajectory from a mid-level COLAV algorithm
or an operator, obstacle estimates from a tracking system and the current vessel state from a navigation system, and
outputs a desired velocity trajectory for the vessel controllers.

model predictive control (MPC), and plans vessel-feasible trajectories with multiple maneuvers where only the first
maneuver is executed. The trajectories have continuous acceleration, which is beneficial for vessel controllers utilizing
model-based feedforward terms, such as (4). To fit well with tracking systems based on exteroceptive sensors, such as
e.g. radars, the algorithm is designed to be robust with respect to noisy obstacle estimates. Furthermore, the algorithm
is designed with the short-term perspective of COLREGs in mind, namely situations where the stand-on requirement
may need to be ignored in order to avoid collision in compliance with rule 17. The algorithm is also modular, so it can
easily be tailored for different applications.

The BC-MPC algorithm can be described by two steps, which will be explained in detail in the following sections:

1. Generate a search space consisting of feasible trajectories with respect to the dynamic constraints of the
vessel.

2. Discretize the search space and compute an objective function value on the trajectories. The optimal trajectory
is then selected as the one with the lowest objective function value.

The BC-MPC algorithm architecture is shown in Fig. 5. The algorithm inputs a desired trajectory, which can originate
from either another COLAV algorithm or directly from a user. The guidance function receives the desired trajectory,
and computes a desired acceleration given a vessel state and time specified by the trajectory generation. The trajectory
generation block creates a set of possible vessel trajectories, given an initial vessel state, initial desired velocity and
a desired acceleration from the guidance function. A tracking system provides obstacle estimates, which are used to
calculate a part of the objective function. The optimization block computes the optimal trajectory based on an objective
function, and outputs this as a desired velocity trajectory to the vessel controller (4).

3.1 Trajectory generation

The search space consists of a number of trajectories, each consisting of a sequence of sub-trajectories each containing
one maneuver. Having multiple maneuvers in each trajectory enables the algorithm to consider complex scenarios
which may require a time-limited speed and/or course change, before selecting a new speed and/or course. In addition,
it will allow the algorithm to consider a complete avoidance situation, consisting of an evasive maneuver and a plan for
converging back to the desired trajectory. Each trajectory is defined by a desired velocity trajectory containing a speed
and course trajectory with continuous acceleration, and feedback-corrected predicted pose and velocity trajectories.
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3.1.1 Trajectory generation: A single step

As mentioned, each trajectory consists of a sequence of maneuvers, resulting in trajectories that branches out from
each other. Hence, the trajectory generation can be divided in repeatable steps. At each step, a set of sub-trajectories,
each containing one maneuver, are computed given an initial vessel configuration, initial time and some step-specific
parameters:

• The number of speed maneuvers NU

• The number of course maneuvers Nχ

• The time allowed for changing the actuator input, named the ramp time Tramp

• The maneuver time length in speed TU and course Tχ

• The total step time length T

We start by generating the desired velocity trajectories, which should be feasible with respect to actuator rate and
magnitude saturations. To ensure feasibility with respect to the actuator rate saturations, we start from the model (2)
by calculating the possible speed and course accelerations given our current configuration as:

Ẋmax = M−1 (τmax − σ(X0))

Ẋmin = M−1 (τmin − σ(X0)) ,
(7)

where Ẋmax =
[
U̇max ṙmax

]T
, Ẋmin =

[
U̇min ṙmin

]T
,X0 is the current vessel velocity and:

τmax = sat (τ 0 + Trampτ̇max, τmin, τmax)

τmin = sat (τ 0 + Trampτ̇min, τmin, τmax) ,
(8)

where Tramp > 0 is the ramp time, τ 0 is the current control input, τmax and τmin are the maximum and minimum con-
trol input, respectively, and τ̇max and τ̇min are the maximum and minimum control input rate of change, respectively.
The saturation function sat(a,amin,amax) is defined as sat : RK × RK × RK → RK with:

a∗i =





amin,i , ai < amin,i

amax,i , ai > amax,i

ai , otherwise,
(9)

for a∗ = sat(a,amin,amax), i ∈ {1, 2, . . . ,K} and (·)i denoting element i of a vector. Following this, we create a
set of possible accelerations as:

Ad =
{

(U̇ , ṙ) ∈ R× R
∣∣U̇ ∈ [U̇min, U̇max], ṙ ∈ [ṙmin, ṙmax]

}
. (10)

The set of possible accelerations is then sampled uniformly to create a discrete set of candidate maneuver accelerations:

U̇ samples =
{
U̇1, U̇2, . . . , U̇NU

}

ṙsamples =
{
ṙ1, ṙ2, . . . , ṙNχ

}
,

(11)

where U̇i, i ∈ [1, NU ] are speed acceleration samples and ṙi, i ∈ [1, Nχ] are course acceleration samples. To be
able to include a specific maneuver in the search space, which can be beneficial e.g. to converge to a specific desired
trajectory, we allow to modify some of the sampled accelerations if a desired acceleration (U̇ ′d, ṙ

′
d) is inside the set

of possible accelerations as follows: If U̇ ′d ∈ Ad, we change the closest speed acceleration sample in U̇ samples to
U̇ ′d. Similarly for course, if ṙ′d ∈ Ad, we change the closest course acceleration sample in ṙsamples to ṙ′d. Following
this, we create a set of candidate maneuver accelerations by combining the speed and course candidate maneuvers as
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ṙmaxṙmin

(U̇′
d
, ṙ′
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Figure 6: Set of possible accelerations shown with the blue line, with initial samples shown as blue circles. The desired
acceleration (U̇ ′d, ṙ

′
d) is shown as a green circle, while the final samples are shown as red crosses.

U̇ samples× ṙsamples. This concept is illustrated in Fig. 6, where Ad is sampled with NU = 3 speed samples and Nχ = 5
course samples.

Given the acceleration samples, we create a set ofNU motion primitives for speed based on the piecewise-linear speed
acceleration trajectories:

U̇d,i(t) =





kU,it , 0 ≤ t < Tramp

U̇i , Tramp ≤ t < TU − Tramp

U̇i − kU,i(t− (TU − Tramp)) , TU − Tramp ≤ t < TU

0, , TU ≤ t ≤ T,

(12)

where kU,i = U̇i
Tramp

, U̇i is the sampled acceleration for speed motion primitive i ∈ [1, NU ], TU > 0 is the speed
maneuver length and T > 0 is the total trajectory length. Similarly, we define Nχ course motion primitives by the
piecewise-linear course acceleration trajectories:

ṙd,i(t) =





kr,it , 0 ≤ t < Tramp

2ṙi − kr,it , Tramp ≤ t < 2Tramp

0 , 2Tramp ≤ t < Tχ − 2Tramp

−kr,i(t− (Tχ − 2Tramp)) , Tχ − 2Tramp ≤ t < Tχ − Tramp

−2ṙi + kr,i(t− (Tχ − Tramp)) , Tχ − Tramp ≤ t < Tχ

0 , 2Tχ ≤ t < T,

(13)

where kr,i = ṙi
Tramp

, ṙi is the sampled acceleration for course motion primitive i ∈ [1, Nχ] and Tχ > 0 is the course
maneuver length. For notational simplicity and without loss of generality, we assumed zero initial time t0 = 0 in (12)
and (13). The acceleration trajectories and parameters forNU = 5 speed motion primitives andNχ = 5 course motion
primitives are illustrated in Fig. 7. Notice that the integral of the course acceleration maneuvers are zero, hence if the
maneuver is initialized with zero yaw rate the maneuver will end with zero yaw rate. The motion primitives (12) and
(13) are chosen as linear piecewise functions in order to ensure a continuous acceleration with a minimum complexity.

Based on the acceleration trajectories, we create trajectories for the desired speed, yaw rate and course by integrating
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(b) Course acceleration motion primitives. Note that the integral of each course acceleration
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Figure 7: Acceleration motion primitives, where T is the step time, Tramp denotes the ramp time while TU and Tχ are
the speed and course maneuver time lengths, respectively.
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Figure 8: Example of NU = 5 speed trajectories with Tramp = 1 s and T = TU = 5 s. Acceleration in the top plot and
speed in the bottom plot.

the expressions (12) and (13) as:

Ud,i(t) = Ud,0 +

∫ t

t0

U̇d,i(γ)dγ, i ∈ [1, NU ]

rd,i(t) = rd,0 +

∫ t

t0

ṙd,i(γ)dγ, i ∈ [1, Nχ]

χd,i(t) = χd,0 +

∫ t

t0

rd,i(γ)dγ, i ∈ [1, Nχ].

(14)

The initial values Ud,0, rd,0 and χd,0 are taken as the corresponding desired values from the last BC-MPC iteration
(or sub-trajectory, if computing trajectories for subsequent maneuvers), such that the desired trajectories passed to the
vessel controllers are continuous. This implies that we do not include feedback in the desired trajectories. Furthermore,
as in Section 2, the vessel sideslip is neglected. This could, however, be included by using a vessel model including
sideslip. A numerical example of 5 speed and 5 course trajectories is shown in figures 8 and 9, where a maneuver
length of 5 s is used for both speed and course. Vessels at sea usually maneuver by either keeping a constant speed
and course or by performing a speed and/or course change and continuing with this new speed and course for some
time. By selecting the initial yaw rate in (14) as rd,0 = 0 we ensure that maneuvers start and end with constant-
course motion, which mimics this behavior while also producing maneuvers that should be readily observable for
other vessels, as required by rule 8 of COLREGs.

Following this, we create a union set of the desired velocity trajectories as:

Ud = {Ud,1(t), Ud,2(t), . . . , Ud,NU (t)} × {χd,1(t), χd,2(t), . . . , χd,Nχ(t)}, (15)

resulting in a total of NU ·Nχ desired velocity trajectories. Notice that the speed trajectories in Ud are continuously
differentiable, while the course trajectories are twice continuously differentiable. Velocity trajectories containing
infeasible steady-state vessel velocities are removed from Ud by checking the feasibility using the vessel model (2)
together with the actuator saturation constraints.

Given the desired velocity trajectories, we calculate the feedback-corrected pose trajectories. To do this, we first
predict the resulting speed and course trajectories, Ūi(t), i ∈ [1, NU ] and χ̄i(t), i ∈ [1, Nχ], respectively. This is done
by simulating the closed-loop error dynamics of the vessel and vessel controllers using the desired velocity trajectories
as the input. In this article, we approximate the error dynamics using first order linear models, which may seem as
quite rough approximations. However, this is justified by noting that the model-based speed and course controller
demonstrates very good control performance for the Telemetron ASV, resulting in small control errors (Eriksen and
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Figure 9: Example of Uχ = 5 course trajectories with Tramp = 1 s and T = Tχ = 5 s. Acceleration in the top plot,
rate in the middle and course in the bottom plot.

Breivik, 2018). Furthermore, the control errors are dominated by environmental disturbances, which is difficult to
model without increasing the complexity to an unnecessarily high level. The closed-loop error models are given as:

˙̃U =
1

TŨ
Ũ

˙̃χ =
1

Tχ̃
χ̃,

(16)

where Ũ = Ū −Ud, χ̃ = χ̄− χd, and TŨ > 0 and Tχ̃ > 0 are time constants. The time constants can be heuristically
determined through simulations and experiments. By solving (16), the predicted speed and course trajectories are
found as:

Ūi(t) = Ũ0e
− 1
T
Ũ

(t−t0)
+ Ud,i(t), i ∈ [1, NU ]

χ̄i(t) = χ̃0e
− 1
Tχ̃

(t−t0)
+ χd,i(t), i ∈ [1, Nχ],

(17)

where Ũ0 = U0 − Ud,0 and χ̃0 = χ0 − χd,0 introduces feedback in the prediction through the current vessel speed
and course, U0 and χ0, respectively. Similarly as (15), we construct a set of predicted velocity trajectories:

Ū = {Ū1(t), Ū2(t), . . . , ŪNU (t)} × {χ̄1(t), χ̄2(t), . . . , χ̄Nχ(t)}. (18)

Combinations of speed and course trajectories that was considered infeasible when forming Ud are also removed from
Ū . Following this, vessel position trajectories p̄(t) =

[
N̄(t) Ē(t)

]T
are calculated from the predicted velocity

trajectories using a kinematic model:

˙̄p =

[
cos(χ̄)
sin(χ̄)

]
Ū , (19)

which is integrated using the current vessel position as the initial condition. The feedback-corrected predicted vessel
pose trajectories are finally combined in the set H̄ as:

H̄ =
{
η̄(t; Ū(t), χ̄(t))

∣∣(Ū(t), χ̄(t)) ∈ Ū
}
, (20)

125



where η̄ =
[
N̄(t) Ē(t) χ̄(t)

]T
.

To summarize, a single step of a trajectory is defined by the set of desired velocity trajectories Ud, the set of predicted
velocity trajectories Ū and the set of set of predicted pose trajectories H̄.

3.1.2 Trajectory generation: The full trajectory generation

A full trajectory consists of multiple sub-trajectories, each containing one maneuver and constructed using the single-
step procedure. This naturally forms a tree structure, with nodes representing vessel states and edges representing
sub-trajectories. The depth of the tree will be equal to the desired number of maneuvers in each trajectory. The tree
is is initialized with the initial state as the root node, which the single-step procedure is performed on, generating a
number of sub-trajectories and leaf nodes. Following this, the the single-step procedure is performed on each of the
leaf nodes, adding the next sub-trajectory and leaf nodes to the existing trajectories and expanding the tree depth. This
procedure is repeated until the tree has the desired depth, resulting in each trajectory having the desired number of
maneuvers. Using the same number of speed and course maneuvers at each level would result in the tree growing
exponentially with the number of levels. To limit the growth, we therefore allow for choosing a different number of
speed and course maneuvers at each level, for instance keeping the speed constant in all levels except the first, only
allowing the speed to be changed during the first maneuver of a trajectory.

The remaining parameters can also be chosen differently for each level, and in principle the acceleration trajectories
(12) and (13) can also be designed using different structures. However, we choose to use the same acceleration
trajectory structure for each level, while also keeping the ramp time and maneuver time lengths constant. This leaves
only the step time length and number of speed and course maneuvers as parameters that can change throughout the
tree depth. Choosing different step time lengths can be considered as an MPC input blocking scheme, requiring that
the step lengths are integer dividable by the algorithm sample time.

A full trajectory generation can hence be defined by the following parameters:

• An initial vessel state including the current desired velocity.

• The number of maneuvers in each trajectory, or levels, defined as B > 0.

• The step time at each level T =
[
T1 T2 . . . TB

]
, the ramp time Tramp and the speed and course maneuver

lengths TU and Tχ, respectively.

• The number of speed maneuvers at each levelNU =
[
NU,1 NU,2 . . . NU,B

]
.

• The number of course maneuvers at each levelNχ =
[
Nχ,1 Nχ,2 . . . Nχ,B

]
.

A set of predicted vessel pose trajectories with B = 3 levels is shown in Fig. 10. The step time is chosen as T =[
5 s 10 s 10 s

]
, making the trajectories 25 s long in total. The trajectories have 5 course maneuvers at the first

level and three in the later levels, while there for illustrational purposes are only one speed maneuver at each step.
Hence,NU =

[
1 1 1

]
andNχ =

[
5 3 3

]
. The ramp time and maneuver lengths are chosen as Tramp = 1 s and

TU = Tχ = 5 s, respectively. Notice that the maneuver length of 5 s results in the second and third maneuver having
a straight-course segment after the turn, which increases the prediction horizon without increasing the computational
load while also increasing the maneuver observability.

Selecting the trajectory generation parameters is a complex task, and it is difficult to provide a general guideline on how
to do this. However, we attempt to provide some thoughts and insight on this. Increasing the number of maneuvers
in each trajectory B increases how complex solutions the algorithm look for, and also increases the computational
requirements. In general, most COLAV situations should be able to solve by a few maneuvers, and selecting three
maneuvers will allow the algorithm to plan for maneuvering out from a desired trajectory, turning parallel to the
trajectory and returning towards the trajectory. The step time of each maneuver T controls the length of the prediction
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Figure 10: A set of predicted pose trajectories with 3 levels.

horizon, and should be selected long enough to cover the expected situations to be handled. The ramp time Tramp,
and the speed and course maneuver lengths TU and Tχ should be selected such that the vessel of interest is capable
of making maneuvers of appropriate magnitude. This implies that vessels with slow dynamics should have longer
maneuver times than vessels with fast dynamics. Since the motion primitives are symmetric, the number of speed
and course maneuversNU andNχ should be selected as odd numbers in order to ensure that keeping constant speed
and course is included in the search space. The actual number of maneuvers should be selected such that the course
and speed deviation between the specific maneuvers are large enough to provide observable maneuvers. Utilizing
simulations with a model of the vessel of interest will be highly useful when deciding on the trajectory prediction
parameters.

3.1.3 Calculating a desired acceleration

In the single-step trajectory generation, a desired acceleration (U̇ ′d, ṙ
′
d) can be used to include a desired maneuver in

the search space. We therefore use a guidance algorithm to ensure that there exists a trajectory in the search space
that converges towards the desired trajectory inputted to the BC-MPC algorithm. To achieve this, we use a modified
version of a path tracking algorithm ensuring vessel convergence to a curved path (Breivik and Fossen, 2004). The
control law is based on line of sight (LOS) guidance (Fossen, 2011), together with defining a desired point on the path
which the velocity of is controlled, named the path particle (PP). The desired course is stated as:

χd,LOS = χpath + arctan
(
− e

∆

)
, (21)

where χpath is the path angle at the desired point, e is the cross-track error and ∆ > 0 is the lookahead distance. The
path particle velocity along the path is stated as:

UPP = U cos(χ− χpath) + γss, (22)

where U is the vessel speed, γs > 0 is a tuning parameter and s is the along-track distance. The guidance scheme is
illustrated in Fig. 11. The control law (22) controls the speed along the path UPP as a function of the vessel speed,
course and the along-track distance to the path particle, letting the vessel converge towards the path with a constant
speed. We rather want to be able to follow a desired trajectory by controlling the vessel speed and course based on the
desired trajectory. We therefore fix the path particle at the desired position on the trajectory, given the current time,
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Figure 11: LOS guidance scheme. The path particle propagates along the path with the speed Upp. The vessel course
is denoted as χ, while χpath denote the current tangential path course and χd,LOS denote the desired course. The
variables e, s and ∆ are the cross-track error, along-track distance and the lookahead distance, respectively.

and by reformulating (22) we obtain a desired vessel speed given the trajectory velocity:

Ud,LOS =





sat
(

Ut−γss
cos(χ−χpath) , 0, Umax,LOS

)
if |cos(χ− χpath)| > ε

sat
(
Upp−γss

ε , 0, Umax,LOS

)
else,

(23)

where Ut is the trajectory velocity and ε > 0 is a small constant to avoid division by zero. The saturation function
ensures that the desired vessel speed is in the interval [0, Umax], where Umax > 0 is the maximum vessel operating
speed. Given a desired speed and course, we compute the desired speed and course acceleration:

U̇ ′d =
Ud,LOS − Ud,0
TU − Tramp

ṙ′d =
χd,LOS − χd,0

Tramp (Tχ − 2Tramp)
,

(24)

which are found by solving (14) for the final desired speed and course. Notice that in cases where there is only one
speed and/or course maneuver, the corresponding desired acceleration should be selected as zero to keep a constant
speed and/or course.

The obvious singularity in (23) when the vessel course is perpendicular to the desired trajectory (and hence cos(χ −
χpath = 0) is handled by avoiding division by zero and ensuring that the desired speed is inside the possible operating
speed of the vessel, which makes it difficult to guarantee stability and convergence of this guidance scheme. However,
the desired acceleration is only used to modify some trajectories in the BC-MPC search space, and will hence not
constrain the algorithm to choose a trajectory based on (24). One could employ other schemes, e.g. (Paliotta, 2017)
which guarantees convergence to curved trajectories. This does, however, increase the complexity by depending on
a detailed 3DOF model of the vessel while also employing a feedback-linearizing controller to control the vessel. It
is in general difficult to obtain detailed models of high-speed ASVs, while time delays, sensor noise and modeling
uncertainties are shown to cause robustness issues when using feedback-linearizing controllers (Eriksen and Breivik,
2017a). Hence, the simplicity of (21)–(23) is appealing when a guarantee of stability and convergence is not required.

3.2 Selecting the optimal trajectory

Given the set of feasible trajectories, we solve an optimization problem to select the optimal trajectory. We start by
defining a cost function to assign a cost to each trajectory:

G(η̄(t),ud(t);pd(t)) = walalign(η̄(t);pd(t)) + wavavoid(η̄(t)) + wttran(ud(t)), (25)
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where (η̄(t),ud(t)) is the predicted vessel pose and desired velocity of a candidate trajectory, align(η̄(t);pd(t))
measures the alignment between the predicted pose trajectory and a desired trajectory pd(t), avoid(η̄(t)) assigns cost
to trajectories traversing close to obstacles, while tran(u(t)) introduces transitional cost in the objective function to
avoid wobbly behavior. The parameters wal, wav, wt ≥ 0 are tuning parameters to control the weighting of the different
objective terms, which can be selected heuristically by simulating the algorithm to obtain the desired behavior. In
general, the avoidance weight wav >> wal in order to ensure that the algorithm prioritizes avoiding obstacles over
following the desired trajectory, while wt can be tuned to control how responsive, and sensitive to noise, the algorithm
will be.

Using (25), we define the optimization problem:

u∗d(t) = argmin
(η̄k(t),ud,k(t))∈(H̄,Ud)

G(η̄k(t),ud,k(t);pd(t)), (26)

where u∗d(t) is the optimal desired velocity trajectory to be used as the reference for the vessel controllers. The
optimization problem is solved by simply calculating the cost over the finite discrete set of trajectories and choosing
the one with the lowest cost.

The next sections describe the different terms of the objective function (25). Notice that we strive to avoid using
discontinuities and logic in order to improve the robustness with respect to obstacle estimate noise.

3.2.1 Trajectory alignment

The alignment between the desired trajectory and a candidate trajectory is used in the objective function (25) to
motivate the algorithm to follow the desired trajectory. Given a desired trajectory pd(t) : R+ → R2, required to be
C1, we obtain a desired course as:

χd(t) = atan2(Ėd(t), Ṅd(t)), (27)

with pd(t) =
[
Nd(t) Ed(t)

]T
. Given this, we define a weighted metric of Euclidean distance and orientation error

as:

align(η̄(t);pd(t)) =

∫ t0+Tfull

t0

(
wp

∥∥∥∥
[
N̄(γ)
Ē(γ)

]
− pd(γ)

∥∥∥∥
2

+ wχ|Υ (χ̄(γ)− χd(γ)) |
)

dγ, (28)

where wp, wχ > 0 are weights controlling the influence of the Euclidean and angular error, respectively, Tfull =∑B
i=1 Ti denotes the entire trajectory prediction horizon.For simplicity, we fix wp = 1 and leave wχ and wal to control

the weighting.

3.2.2 Obstacle avoidance

Obstacle avoidance is achieved by penalizing candidate trajectories with small distances to obstacles. We define three
regions around the obstacles, named the collision, safety and margin regions, respectively. The idea behind this is to
make it possible use different gradients on the penalty depending on how close the ownship is to the obstacle. This,
together with avoiding logic and discontinuities, should improve the robustness with respect to noise on the obstacle
estimates.

We define a time-varying vector between obstacle i and a predicted vessel trajectory as:

ri(η̄(t);pi(t)) = pi(t)−
[
N̄(t)
Ē(t)

]
, (29)

where ri =
[
rN,i rE,i

]T
and pi(t) is the position of obstacle i at time t. The obstacle position in future time is

computed under the common assumption that obstacles will keep their current speed and course (Johansen et al., 2016;
Kuwata et al., 2014; Eriksen et al., 2018), which is a reasonable assumption for relatively short time periods. More
complex techniques can also be applied for predicting the future position of obstacles, for instance based on historic
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Figure 12: Distance di and relative bearing βi to obstacle i. The ownship is marked O/S.

AIS data (Dalsnes et al., 2018) or by estimating the turn rate of the obstacles (Flåten and Brekke, 2017). Using (29),
we define the distance and relative bearing to obstacle i given a predicted vessel trajectory η̄(t) as:

di(η̄(t);pi(t)) = ‖ri(η̄(t);pi(t))‖2
βi(η̄(t);pi(t)) = Υ

(
atan2

(
rE,i(η̄(t)), rN,i(η̄(t))

)
− χi(t)

)
,

(30)

where χi(t) is the course of obstacle i, calculated as χi(t) = atan2
(
Ėi(t), Ṅi(t)

)
with pi(t) =

[
Ni(t) Ei(t)

]T
.

The distance di and relative bearing βi are illustrated in Fig. 12.

The obstacle distance and relative bearing is used to calculate a penalty function, which we use to define the avoidance
function as:

avoid(η̄(t)) =

M∑

i=1

∫ t0+Tfull

t=t0

wi(γ)penaltyi(η̄(γ))dγ, (31)

where M is the number of obstacles, penaltyi(η̄(t)) assigns a penalty to the predicted vessel trajectory η̄(t) at time
t with respect to obstacle i, while wi(t) are time and obstacle dependent weights. The weights can be useful for
prioritizing vessels in multi-obstacle situations where properties like vessel type, size, speed, etc. can be used for
differentiating the importance of avoiding the given vessels in severe situations. The weights can also facilitate time-
dependent weighting, for instance as a heuristic method to incorporate uncertainty on obstacle estimates, combined
with obstacle and time-dependent scaling of the obstacle region sizes. For simplicity, we keep the weights constant at
wi(t) = 1∀ i.

The penalty function can be designed in a variety of ways, with the simplest possibly being a circular penalty function.
When using a circular penalty function, the relative bearing to the obstacle does not matter, and the function can be
defined as:

penaltyi,circular(η̄(t)) =





1 if di < D0

1 + γ1−1
D1−D0

(di −D0) if D0 ≤ di < D1

γ1 − γ1
D2−D1

(di −D1) if D1 ≤ di < D2

0 else,

(32)

where the parameters of di(η̄(t);pi(t)) are omitted for notational simplicity. The variables D2 > D1 > D0 > 0 are
the margin, safety and collision region sizes, respectively, while γ1 ∈ (0, 1) is a tuning parameter controlling the cost
gradient inside the margin and safety regions. The circular penalty function is illustrated in Fig. 13.

A circular penalty function is useful for static objects where there is no preference on which side of the object one
should pass. For moving vessels, it should be considered to be more dangerous to be in front of the vessel than on the
side or behind it, and COLREGs also introduce preferences on which side one should pass an obstacle. An intuitive
approach to handle COLREGs would be to use logic to decide the applicable rule with respect to each obstacle, but
this conflicts with with the idea of designing the algorithm with high robustness to noisy obstacle estimates. Also
noting that the BC-MPC algorithm is intended to be used in a hybrid architecture with a mid-level algorithm taking
a more proactive approach to the COLREGs rules, we here focus our attention towards a smooth and continuous
approximation. In a short-term COLAV perspective, it is not beneficial to constrain the algorithm to strictly follow the
head-on and crossing rules (rules 14 and 15), since rule 17 may require maneuvers ignoring these rules in cases where it
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Figure 13: The circular penalty function value (a) and regions (b).

revokes the stand-on requirement. However, the algorithm should choose maneuvers compliant with rule 14, and rules
13 and 15 when this is possible. We therefore motivate the algorithm to choose maneuvers complying with rules 13–15
by defining an elliptical COLREGs penalty function by letting the region sizes D0, D1 and D2 be dependent on the
relative bearing. Such area-based ship domains are widely used in COLAV algorithms, also for handling COLREGs
(Szlapczynski and Szlapczynska, 2017). Each region is defined by a combination of three elliptical and one circular
segment as:

Dk(βi) =





bk if βi < −π2
akbk√

(bk cos βi)2+(ak sin βi)2
if − π

2 ≤ βi < 0

akck√
(ck cos βi)2+(ak sin βi)2

if 0 ≤ βi < π
2

bkck√
(ck cos βi)2+(bk sin βi)2

if π2 ≤ βi,

(33)

where ak, bk and ck = bk + dCOLREGs with k ∈ {0, 1, 2} define the major and minor ellipses axes. The parameter
dCOLREGs > 0 controls the region expansion of the starboard side of the obstacle. The regions are illustrated in
Figure 14a.

If we were to use (32) with Dk from (33) as the elliptical COLREGs penalty function, the entire collision region
would have a constant penalty. This poses a potential problem since all points inside the region is considered to be
equally costly. For the circular penalty function, this region is so small that the impact is quite low. For the elliptical
COLREGs penalty function, however, it is natural to have a non-constant cost inside the collision region since this is
rather large. We therefore define the elliptical COLREGs penalty function as:

penaltyi,COLREGs(η̄(t)) = inner penaltyi(η̄(t)) +





1 if di < D0

1 + γ1−1
D1−D0

(di −D0) if D0 ≤ di < D1

γ1 − γ1
D2−D1

(di −D1) if D1 ≤ di < D2

0 else,

(34)

where Dk, k ∈ {0, 1, 2} are given by (33) and inner penaltyi(η̄(t)) is an additional cost inside the collision region.
This additional cost is given as:

inner penaltyi(η̄(t)) =





1 if di < D∗0
1− yb(di,βi)

dCOLREGs
if D∗0 ≤ di < D0,

0 else,
(35)
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Figure 14: Elliptical COLREGs penalty function regions (a) and illustration of yb for the inner penalty function (b).

where D∗0 given as:

D∗0(βi) =

{
a0b0√

(b0 cos βi)2+(a0 sin βi)2
if |βi| < π

2

b0 else,
(36)

and yb(di, βi) is the distance from the D∗0 region to the point (di, βi) along the y-direction of the obstacle body frame,
as illustrated in Figure 14b.

The actual parameters of the obstacle function should be selected such that the safety region represent the desired
clearance, while the collision region represents the absolute minimum clearance required. The margin region should
be selected as the distance when we want the ownship to initiate a maneuver, and should be quite much larger than the
safety region. This, together with a quite small obstacle gradient parameter γ1, will make the algorithm less sensitive
towards fluctuating estimates of obstacle position, speed and course. To reduce the number of parameters to select, we
consider that the clearance in front of the obstacle should be twice that behind the ship, hence ai = 2bi, i ∈ {0, 1, 2}.
The COLREGs distance dCOLREGs controls how strict the maneuvering aspects of rules 14 and 15 are enforced.

3.2.3 Transitional cost

An important design criteria for the algorithm is that it should be robust with respect to noise on the obstacle estimates,
making it well suited for use with tracking systems based on exteroceptive sensors. By introducing transitional cost
in the objective function, a certain level of cost reduction will be required to make the algorithm change the current
planned maneuver. This should increase the robustness to noise on the obstacle estimates, while also making the
algorithm less affected by noise in the vessel state estimates and external disturbances, for instance wave induced
motion.
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Denoting the desired velocity trajectory from the previous iteration as u−d (t), which is currently being tracked by the
vessel controllers, the transitional cost is computed as:

tran(ud(t)) =

{
1 if

∫ t0+T1

t0

∣∣Ud(γ)− U−d (γ)
∣∣dγ > eU,min or

∫ t0+T1

t0

∣∣χd(γ)− χ−d (γ)
∣∣dγ > eχ,min

0 else,
(37)

with ud(t) =
[
Ud(t) χd(t)

]T
, u−d (t) =

[
U−d (t) χ−d (t)

]T
and where T1 is the step time of the first trajectory

maneuver. The variables eU,min and eχ,min denote the minimum speed and course difference between the previous
desired velocity trajectory and the candidates:

eU,min = min
ud(t)∈Ud

∫ t0+T1

t0

∣∣Ud(γ)− U−d (γ)
∣∣dγ

eχ,min = min
ud(t)∈Ud

∫ t0+T1

t0

∣∣χd(γ)− χ−d (γ)
∣∣ dγ.

(38)

The transitional cost term is zero if the first maneuver of the candidate desired velocity trajectory ud(t) is the one clos-
est to the desired velocity trajectory from the previous iteration u−d (t), and one otherwise. Notice that the transitional
cost term introduces discontinuities, which we previously stated that we would like to avoid in order to improve the
robustness with respect to noise on obstacle estimates. The transitional cost term does, however, not rely on obstacle
estimates, making the term insensitive to noise on the obstacle estimates and justifying the use of a discontinuous
transitional cost function.

4 Experimental results

Full-scale experiments were conducted in the Trondheimsfjord, Norway, on the 12th of October 2017. This section
describes the experimental setup and results.

4.1 Experimental setup

The Telemetron ASV, briefly introduced in Section 2, was used as the ownship. The vessel is fitted with a SIMRAD
Broadband 4GTM Radar, and a Kongsberg Seatex Seapath 330+ GNSS-aided inertial navigation system was used
during the experiments. See Table 1 for more details on the vessel specifications. The BC-MPC algorithm was imple-
mented in discrete time using the Euler method to discretize the algorithm, see Table 2 for the algorithm parameters.
The parameters was mostly selected heuristically through simulations of the algorithm and the vessel of interest, as
described in Section 3. We inputted a user-specified straight line trajectory with constant speed as the desired trajec-
tory, and used the elliptical COLREGs penalty function for obstacle avoidance. The BC-MPC algorithm was run at a
rate of 0.2 Hz.

The implementation consists of a radar-based tracking system to provide obstacle estimates, the BC-MPC algorithm
and the model-based speed and course controller described in section 2.2 for low-level vessel control. The system was
implemented on a processing platform with an Intel R© i7 3.4 GHz CPU running Ubuntu 16.04 Linux, using the Robot
Operating System (ROS) (Quigley et al., 2009). Fig. 15 shows the implementation architecture.

The tracking system receives spoke detections from the radar through a UDP interface. The detections are transformed
to a local reference frame and clustered together to form one measurement per obstacle, which is a common assump-
tion for many tracking algorithms. The obstacle measurements are used by the radar tracker, which is based on a
probabilistic data association filter (PDAF). See (Wilthil et al., 2017) for more details on the tracking system.

The BC-MPC algorithm interfaces the tracking system using a ROS service, which enables request-response function-
ality for providing obstacle estimates. The BC-MPC outputs a desired velocity trajectory to the model-based speed
and course controller, which specifies a throttle and rudder command to the on-board control system through a TCP
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Table 1: Telemetron ASV specifications.

Component Description

Vessel hull Polarcirkel Sport 845
Length 8.45 m
Width 2.71 m
Weight 1675 kg

Propulsion system Yamaha 225 HP outboard engine
Motor control Electro-mechanical actuation of throttle valve
Rudder control Hydraulic actuation of outboard engine angle with proportional-derivative (PD) feed-

back control
Navigation system Kongsberg Seatex Seapath 330+
Radar Simrad Broadband 4GTM Radar
Processing platform Intel R© i7 3.4 GHz CPU, running Ubuntu 16.04 Linux

Table 2: BC-MPC algorithm parameters.

Parameter Value Description

T
[
5 20 30

]
s Prediction horizon

NU

[
5 1 1

]
Number of speed maneuvers

Nχ

[
5 3 3

]
Number of course maneuvers

Tramp 1 s Ramp time
TU 5 s Speed maneuver length
Tχ 5 s Course maneuver length
TŨ 5 s Speed error model time constant
Tχ̃ 5 s Course error model time constant

∆ 500 m LOS lookahead distance
γs 0.005 1/s LOS along track distance gain

wal 1 Align weight
wav 6000 Avoid weight
wt 4200 Transitional cost weight
wχ 100 Angular error scaling weight

a0 50 m Collision region major axis
a1 150 m Safety region major axis
a2 250 m Margin region major axis
b0 25 m Collision region minor axis
b1 75 m Safety region minor axis
b2 125 m Margin region minor axis
dCOLREGs 100 m COLREGs distance
γ1 0.1 Obstacle cost gradient parameter
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Figure 15: Architecture of the COLAV implementation on the Telemetron ASV.

interface. The on-board control system has an electro-mechanical actuator for controlling the motor throttle, while the
rudder command is handled by steering the outboard engine angle to the desired angle using a PD controller and a
hydraulic actuation system.

The system receives AIS messages over VHF to obtain ground-truth trajectories for the vessels involved in the ex-
periments. Notice that these are subject to the uncertainty of the navigation system providing the AIS data on the
given vessels. They are, however, expected to be much more precise than the estimates from the radar-based tracking
system. Figure 16a shows the inside of the Telemetron ASV, with the navigation system and processing platform.

The Kongsberg Seatex Ocean Space Drone 1 (OSD1) was used as the obstacle. This was originally an offshore
lifeboat, which has been fitted with a full control and navigation system for testing autonomous control systems,
shown in fig. 16b. The vessel is 12 m long, and has a mass of approximately 10 metric tons.

During the experiments, the OSD1 was steered on constant course with a speed of approximately 2.5 m/s (5 knots)
using an autopilot. In addition to the OSD1, several commercial and leisure crafts were present in the area, affecting
some of the scenarios.

We included four different scenarios in the experiments:

1. Head on. The ownship and OSD1 approaches each other on reciprocal courses. With respect to COLREGs,
both vessels are required to perform starboard maneuvers.

2. Crossing from starboard. The OSD1 approaches from 90◦ on the ownship’s starboard side. In this case,
COLREGs requires the ownship to avoid collision, preferably by making a starboard maneuver and passing
behind the OSD1.

3. Overtaking. The ownship approaches the OSD1 from behind with a higher speed. COLREGs requires the
ownship to avoid collision by passing on either side. We prefer, however, to pass the OSD1 on its port side
by doing a port maneuver.
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(a) Erik Wilthil in the back of the Telemetron ASV with the nav-
igation system and the processing platform in the rack to the
right.

(b) The Kongsberg Seatex Ocean Space Drone 2, which is identi-
cal to the Ocean Space Drone 1. Courtesy of Kongsberg Seatex.

Figure 16: The inside of the Telemetron ASV (a) and the Kongsberg Seatex Ocean Space Drone 2 (b).

4. Crossing from port. Similar scenario as crossing from starboard, but here the OSD1 approaches the ownship
from the port side. In this case, COLREGs deems the ownship as the stand-on vessel, and the OSD1 is
supposed to avoid collision. The OSD1 will, however, keep its speed and course, resulting in rule 17 revoking
the stand-on obligation and requiring the ownship to avoid collision, preferably avoiding maneuvering to port.

In the following sections, we present three head-on scenarios, two crossing from starboard scenarios, one overtaking
scenario and one crossing from port scenario.

4.2 Head on: Experiments 1.1–1.3

The first experiments we performed were a number of head-on scenarios. In these scenarios, the desired trajectory
inputted to the BC-MPC algorithm is a straight-line trajectory approaching the OSD1 on a reciprocal course, resulting
in a collision with a relative bearing of 0◦ if the desired trajectory is followed. With respect to COLREGs, both vessels
should perform starboard maneuvers. However, in our case, the OSD1 violates COLREGs by keeping its speed and
course constant throughout the scenario.

To verify that the BC-MPC algorithm worked as it was supposed to, we first used AIS for providing obstacle estimates
in Experiment 1.1. The OSD1 is equipped with an AIS transceiver providing low-noise estimates of the position, speed
and course, originating from a Kongsberg Seatex SeaNav 300 navigation system. As shown in Fig. 17, we successfully
avoid collision in this scenario. This is, however, achieved by performing a port maneuver, which violates the desired
COLREGs behavior of maneuvering to starboard. This is most likely caused by the ownship approaching the obstacle
on the port side of the desired trajectory, which together with the slightly angled obstacle trajectory makes a port
maneuver attractive. The ownship is, however, either in a head-on or stand-on situation, but it is difficult to program an
explicit understanding of this without introducing logic or discontinuous functions, which would reduce the robustness
to noise. In addition, the algorithm is intended to handle short-term situations, in which the vague possibility of an
obstacle making a port maneuver should not be neglected. The elliptical COLREGs obstacle function employs a
soft COLREGs interpretation, which allows the algorithm to consider all actions in emergency situations, including
maneuvering to port when the algorithm believes this is the safest. However, when making such non-conventional
maneuvers, the algorithm requires a significantly increased obstacle clearance, which can be tuned. Notice also that in
a hybrid architecture, the mid-level algorithm should have a harder interpretation of COLREGs which would maneuver
to starboard at an earlier point, avoiding the situation in full as long as nothing unforeseen happen. Moreover, the
maneuver is smooth with a sufficient course change to be readily observable for other vessels. Figure 18a shows
the distance between the OSD1 and the ownship, and the predicted future distance given the trajectory the BC-MPC
algorithm chose at each iteration, while Figure 18b shows the estimated and actual speed and course of the OSD1.
The estimated values are in this case based on AIS, and hence equal to the ground truth. The OSD1 does, however,
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Figure 17: Experiment 1.1: Head-on scenario using AIS for providing obstacle estimates. The ownship and obstacle
initial positions are marked with circles, the estimated obstacle trajectory is shown with the thick orange line, while
predicted future trajectory for the obstacle at each timestep are shown as the thin orange lines. The numbers represent
time markers for each 60 s. The obstacle trajectory in black is located behind the estimated obstacle trajectory in
orange, since they both originate from the same AIS data in this experiment.
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(a) The black line shows the actual distance between the vessels,
while the colored lines show the predicted future distance at each
BC-MPC iteration. Blue represents the start of the predictions
while yellow represents the end.
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Figure 18: Distance to the OSD1 (a) and the estimated speed and course (b) during Experiment 1.1.
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Figure 19: Experiment 1.2: Head-on scenario using the radar-based tracking system for providing obstacle estimates.
The ownship and obstacle initial positions are marked with circles, the estimated obstacle trajectory is shown with the
thick orange line, while predicted future trajectory for the obstacle at each timestep are shown as the thin orange lines.
The numbers represent time markers for each 60 s.

transmit AIS messages quite seldom, introducing some delay in the estimated speed and course.

Following this experiment, we performed several experiments using the radar-based tracking system for providing
obstacle estimates. Fig. 19 shows the results from Experiment 1.2, a similar experiment as the one performed with AIS.
In this experiment, the ownship performs a starboard maneuver in order to avoid collision, as preferred by COLREGs.
As shown in the figure, there is a fair amount of noise on the obstacle estimates, in particularly the course estimate.
This is confirmed by the course estimate shown in fig. 20b, which shows course fluctuations often in excess of 20◦.
Despite this, the ownship performs a smooth maneuver, which demonstrates the BC-MPC algorithm’s robustness with
respect to noise on the obstacle estimates. This is also shown in fig. 20a, where the predicted distance to the obstacle
varies quite much without making the algorithm decide on a new maneuver.

The last head-on scenario, Experiment 1.3, is shown in Fig. 21, where we approach the OSD1 from north-east. The
predicted future obstacle trajectories at each iteration are omitted from the following figures to improve the readability.
This scenario was slightly more complex, as two other vessels unexpectedly entered the scenario. One of these was
a high-speed leisure craft approaching from the west, while the other was a high-speed passenger ferry approaching
from south-east, behind the ownship. The leisure craft did not have AIS, and we do therefore not have a ground-
truth trajectory for this vessel. Fig. 22 shows an image captured by a drone during this experiment, with algorithm
visualization embedded in the lower left corner. As in the previous scenario, we avoid the OSD1 by doing a starboard
maneuver. Following this, we approach the desired trajectory before the passenger ferry approaches from abaft. With
respect to COLREGs, this is an overtaking situation where we are deemed the stand-on vessel, and the passenger ferry
“Trondheimfjord II” is supposed to give way to us. However, as mentioned earlier, the algorithm is designed to also
handle the situations where the give-way vessel does not adhere to its obligations, requiring action by the stand-on
vessel. Hence, the algorithm chooses to do a new starboard maneuver to let the passenger ferry pass. Eventually,
the ferry turns towards the Trondheim Harbor allowing the ownship to approach the desired trajectory once again.
There is some wobbling in the ownship trajectory which is most likely caused by obstacle estimate noise. This could
possibly be avoided by changing the tuning parameters of the BC-MPC algorithm, namely increasing the transitional
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(a) The black line shows the actual distance between the vessels,
while the colored lines show the predicted future distance at each
BC-MPC iteration. Blue represents the start of the predictions
while yellow represents the end.
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Figure 20: Distance to the OSD1 (a), and the estimated speed and course (b) during Experiment 1.2.
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Figure 21: Experiment 1.3: Head-on scenario using the radar-based tracking system for providing obstacle estimates.
The ownship and obstacle initial positions are marked with circles, and the estimated obstacle trajectory is shown with
the thick orange line. The numbers represent time markers for each 60 s. In this experiment, two vessels unexpectedly
entered the scenario bringing the total vessels included up to three. The leisure craft in the upper-left corner was
traveling towards North-East and did not have AIS, so there is no ground truth trajectory for this vessel.
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Figure 22: Drone picture during Experiment 1.3, approximately at the second time mark. The ownship is located in
the middle of the picture, with the OSD1 to the left. The vessel in the background is a high-speed leisure craft. Yellow
arrows in the visualization represent the estimated obstacle speed and course, while the orange line is the desired
trajectory. The blue lines are the feedback-corrected BC-MPC pose trajectories, while the green line is the selected
trajectory. Notice that the estimated course of the OSD1 deviates quite much from the actual vessel course, which was
aligned by the orange line.

cost weight. In this experiment, the amount of estimate noise is even larger than in the previous experiment, with
course fluctuations up to 40◦ as seen in fig. 23b. Still, as shown in fig. 23a and Fig. 21, the BC-MPC manages to
make quite smooth maneuvers, which again shows robustness with respect to obstacle estimate noise. Fig. 24 shows
similar plots for the Trondheimfjord II ferry. Notice that it takes some time before the tracking system detects that the
passenger ferry makes a maneuver, which is due to a limited sample rate on the radar combined with some latency in
the PDAF tracking system.

4.3 Crossing from starboard: Experiments 2.1–2.2

Crossing from starboard is a more complex scenario than the head-on scenario. We performed two experiments with
the OSD1 approaching on collision course from starboard. The scenarios were constructed such that the desired
trajectory coincides with the obstacle trajectory, resulting in a collision with a relative bearing of −90◦ if the desired
trajectory is followed. In such a scenario, the ownship is deemed the give-way vessel and should avoid collision by
preferably maneuvering to starboard and passing abaft of the stand-on vessel.

In Experiment 2.1, shown in Fig. 25, we avoided collision with the OSD1 by maneuvering to port and passing in
front of the obstacle. This can be considered as suboptimal with respect to the preferred action being passing abaft of
the obstacle. Passing in front in a crossing situation is, however, not strictly forbidden by rule 15. Furthermore, the
minimum distance to the obstacle is 214.0 m, meaning that the obstacle is only slightly inside the margin region. With
this in mind, we consider this maneuver to be safe with similar arguments as for Experiment 1.1.

In Experiment 2.2, shown in Fig. 26, we avoided collision by passing abaft of the OSD1, as preferred by COLREGs.
In this experiment, the minimum distance to the obstacle was 106.2 m, significantly closer than when we passed in
front of the obstacle. This is still only slightly inside the margin region, remembering that the elliptical COLREGs
penalty function with the tuning in Table 2 is smaller abaft an obstacle than in front of an obstacle.
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(a) The black line shows the actual distance between the vessels,
while the colored lines show the predicted future distance at each
BC-MPC iteration. Blue represents the start of the predictions
while yellow represents the end.
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(b) Speed and course estimates. The black crosses represent re-
ceived AIS messages, while the orange crosses represent BC-
MPC iterations.

Figure 23: Distance to the OSD1 (a), and and the estimated speed and course (b) during Experiment 1.3.
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(a) The black line shows the actual distance between the vessels,
while the colored lines show the predicted future distance at each
BC-MPC iteration. Blue represents the start of the predictions
while yellow represents the end.
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Figure 24: Distance to the Trondheimfjord II (a), and the estimated speed and course (b) during Experiment 1.3.
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Figure 25: Experiment 2.1: Crossing from starboard scenario using the radar-based tracking system for providing
obstacle estimates. The ownship and obstacle initial positions are marked with circles, and the estimated obstacle
trajectory is shown with the thick orange line. The numbers represent time markers for each 60 s.
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Figure 26: Experiment 2.2: Crossing from starboard scenario using the radar-based tracking system for providing
obstacle estimates. The ownship and obstacle initial positions are marked with circles, and the estimated obstacle
trajectory is shown with the thick orange line. The numbers represent time markers for each 60 s.
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Figure 27: Experiment 3: Overtaking scenario using the radar-based tracking system for providing obstacle estimates.
The ownship and obstacle initial positions are marked with circles, and the estimated obstacle trajectory is shown with
the thick orange line. The numbers represent time markers for each 60 s. The trajectory located at approximately
(1450, 500) originates from a navigational aid, which was detected approximately 130 s into the experiment.

4.4 Overtaking: Experiment 3

Another distinct situation is when the ownship approaches an obstacle from behind, overtaking it. With respect to
COLREGs, the overtaking vessel has to keep out of the way of the overtaken vessel. There are no strict rules on
whether the overtaking vessel should pass the overtaken vessel on the port or starboard side. However, we prefer to
pass on the port side, as this does not block the overtaken vessel’s possibilities in maneuvering to starboard if it finds
itself in a head-on or crossing situation while being overtaken.

Fig. 27 shows Experiment 3, where the ownship overtakes the OSD1. The ownship maneuvers to port, passing the
OSD1 on her port side. The ownship trajectory is quite smooth, but turns towards the desired trajectory a bit early.
This was caused by the radar tracking system detecting a navigational aid in front of the ownship on the port side,
which made maneuvering closer to the desired trajectory preferable. The ownship was approximately 200 m in front
of the obstacle when doing this maneuver. Notice that we currently do not distinguish between dynamic and static
objects in the tracking system, hence this navigational aid was considered as a moving vessel. The closest distance to
the obstacle during the overtaking maneuver was 127.3 m, approximately equal to the size of the margin region on the
port side of an obstacle.

4.5 Crossing from port: Experiment 4

The last scenario we tested was a crossing from port, which may be the most complex of the experiments presented in
this article. This situation was generated similarly as the crossing from starboard situation, but with a relative bearing
of 90◦ instead of −90◦. Here, COLREGs deems the ownship as the stand-on vessel, while the OSD1 is deemed the
give-way vessel. However, the OSD1 keeps its speed and course, requiring the ownship to avoid collision. In such a
situation, COLREGs recommends the ownship to avoid maneuvering to port, favoring a starboard maneuver.
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Figure 28: Experiment 4: Crossing from port scenario using the radar-based tracking system for providing obstacle
estimates. The ownship and obstacle initial positions are marked with circles, and the estimated obstacle trajectory is
shown with the thick orange line. The numbers represent time markers for each 60 s.

Fig. 28 shows the results from Experiment 4, where the BC-MPC algorithm maneuvers the ownship to starboard,
following the recommendations in COLREGs regarding this situation. The algorithm chose to maneuver the ownship
at the minimum speed in order to minimize the distance to the desired trajectory. This minimum speed ensures maneu-
verability of the ownship, and was by coincidence similar as the speed of the OSD1 during the experiment, resulting
in the ownship trajectory following parallel to the obstacle trajectory. Obviously, the ownship could increase the speed
and pass in front of the obstacle, but this is not apparent to the BC-MPC algorithm due to the limited prediction hori-
zon. In a hybrid COLAV architecture, this situation should be solved by the mid-level COLAV algorithm, designed
with a longer prediction horizon than the BC-MPC algorithm.

4.6 Experiment summary

The BC-MPC algorithm has been tested in four different scenarios, each with different desirable behavior. A total of
7 experiments are presented, and the key points and numbers of the experiments are summarized in Table 3.

In the head-on experiments, both AIS and radar tracking was used for providing obstacle estimates. In Experiment
1.1, where we used AIS for providing obstacle estimates, the ownship avoided collision by passing the obstacle on
its starboard side, violating the desired behavior of COLREGs. The ownship did, however, maneuver with increased
clearance to the obstacle compared to experiments 1.2 and 1.3 where we passed the obstacle on its port side in ac-
cordance with the desired behavior of COLREGs. In experiments 1.2 and 1.3, we used the radar tracking system for
obtaining obstacle estimates, which provided estimates with a large amount of noise compared to Experiment 1.1. The
BC-MPC algorithm did, however, not seem to be significantly affected by this noise.

In the crossing from starboard experiments, we only used radar tracking for providing obstacle estimates. In Exper-
iment 2.1, we passed in front of the obstacle. This is not strictly forbidden by COLREGs, but is neither desirable.
The ownship did, however, have a large clearance to the obstacle, as required when performing such non-conventional
maneuvers. In Experiment 2.2, we passed behind the obstacle, complying with the desirable behavior of COLREGs.
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Table 3: Key points and numbers from the experiments. *In Experiment 2.1 we passed in front of the obstacle, while
COLREGs prefers that the ownship pass behind the obstacle. Passing in front is, however, not strictly forbidden.

Experiment type
and number

Obstacle
sensor

Rule 13–15
compliance

Minimum distance
to obstacle

Head on
1.1 AIS No 197.8 m
1.2 Radar Yes 100.8 m
1.3 Radar Yes 132.5 m

Crossing from starboard
2.1 Radar Yes* 214.0 m
2.2 Radar Yes 106.2 m

Overtaking
3.1 Radar Yes 127.3 m

Crossing from port
4.1 Radar N/A 231.7 m

In Experiment 3.1 the ownship overtook the obstacle on its port side. COLREGs does not dictate which side the
obstacle should be passed on, but by maneuvering to port the obstacle is free to maneuver to starboard if it finds itself
in a separate collision situation.

Experiment 4.1 is a crossing situation where the ownship is deemed the stand-on vessel, and the OSD1 is required
to avoid collision. The OSD1 did, however, not fulfill her obligation to avoid collision, requiring that the ownship
avoided collision in accordance with rule 17 of COLREGs. The ownship avoided collision by performing a starboard
maneuver, as suggested by COLREGs.

In two of the experiments, the BC-MPC algorithm chose to ignore the maneuvering aspects of COLREGs rules 14 and
15. This is because the algorithm in scope of a hybrid architecture is designed with a soft COLREGs interpretation,
making the algorithm capable of handling emergency situations where the maneuvering aspect of rules 14 and 15
may need to be ignored. This can e.g. be situations where rule 17 revokes a stand-on requirement, in which the
ownship is required to take such action that best aid avoiding collision, not necessarily strictly following rules 14 and
15. However, in cases where the algorithm choses non-conventional maneuvers ignoring the maneuvering aspects of
rules 14 and/or 15, the obstacle is passed with extra clearance. The soft COLREGs interpretation also avoids the use
of logic, which provides the algorithm with increased robustness towards obstacle estimate noise. This is an important
property when using tracking systems based on exteroceptive sensors such as e.g. radar.

5 Simulation results

To complement the experimental results presented in the previous section, in this section we present simulation results
in more complex situations. The simulations include multi-obstacle scenarios where multiple COLREGs rules apply
simultaneously, also with obstacles that maneuver in accordance with the rules.

5.1 Simulation setup

The simulations are performed with the same tuning parameters as the experiments, shown in Table 2. To focus on
the algorithm performance itself, we present the algorithm with noise-free measurements of the obstacle position,
course and speed during the simulations. In order to challenge the algorithm, we presented it with four multi-obstacle
scenarios:

145



3

2

1

3

2

1
3

2

1

N
o
rt

h
[m

]

East [m]

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800
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3

2

1

3

2

1
3

2

1

N
o
rt

h
[m

]

East [m]

0

100

200

300

400

500

600

700

800

0 200 400 600 800

(b) Obstacles maneuvering in accordance with COLREGs.

Figure 29: Simulation 1: Head on with simultaneous crossing from starboard with non-maneuvering (a) and maneu-
vering (b) obstacles. The ownship and obstacle initial positions are marked with circles, and the numbers represent
time markers for each 60 s.

1. Head on and crossing from starboard.

2. Head on and crossing from port.

3. Head on and crossing from starboard with an extra obstacle.

4. Simultaneous crossing from starboard and port.

The scenarios are simulated both with obstacles not maneuvering, similar as in the experiments, and obstacles maneu-
vering in accordance with COLREGs.

5.2 Head on and crossing from starboard: Simulation 1

In this scenario, shown in Fig. 29, the ownship faces a simultaneous head-on and crossing from starboard situation,
which both require the ownship to maneuver to starboard. With respect to COLREGs, the crossing obstacle has a
stand-on obligation with respect to the ownship, and a give-way obligation with respect to the head-on obstacle. In
this situation, the crossing obstacle should maneuver towards starboard, and pass behind the head-on obstacle, which
should maneuver to starboard in accordance with the head-on situation with the ownship. In fig. 29a, the obstacles
do not maneuver, and the BC-MPC algorithm choose a maneuver to starboard in order to avoid the head-on obstacle
and pass behind the crossing obstacle. In fig. 29b, the obstacles maneuver in accordance with COLREGs, and the
ownship makes a starboard maneuver and passes behind the crossing obstacle. The maneuver is, however, somewhat
smaller than when the obstacles do not maneuver, which is caused by the head-on obstacle cooperating in achieving
the required clearance.

5.3 Head on and crossing from port: Simulation 2

In this scenario, shown in Fig. 30, the ownship faces a simultaneous head-on and crossing from port situation. This
situation is more complex than Simulation 1, since the crossing obstacle requires the ownship to stand on in accordance
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(b) Obstacles maneuvering in accordance with COLREGs.

Figure 30: Simulation 2: Head on with simultaneous crossing from port with non-maneuvering (a) and maneuvering
(b) obstacles. The ownship and obstacle initial positions are marked with circles, and the numbers represent time
markers for each 60 s.

with rule 17, while the head-on obstacle requires the ownship to maneuver to starboard in accordance with rule 14. It
is, however, dangerous to ignore a head-on obligation in order to stand on, and the algorithm should therefore prioritize
the head-on situation. The head-on obstacle should give way to the crossing obstacle and maneuver to starboard in
accordance with the head-on situation with the ownship, while the crossing obstacle should give way for the ownship.
In fig. 30a, the obstacles do not maneuver, and the ownship applies a clear and large maneuver to starboard in order
to avoid the head-on obstacle, and avoid collision with the crossing obstacle. When the obstacles maneuver, shown in
fig. 30b, the BC-MPC algorithm evaluates the predicted clearance given how the obstacles maneuver, and chooses to
stand on. It is clear that the head-on obstacle performs a large maneuver in order to pass behind the crossing obstacle,
which combined with the crossing obstacle’s maneuver makes it safe for the ownship to stand on. Notice, however,
that time delays in estimating the obstacles position, speed and course would delay the ownship in detecting that
the obstacles maneuver. This could, depending on the amount of time delay, make the BC-MPC algorithm initiate a
maneuver to starboard, as when the obstacles did not maneuver.

5.4 Head on and crossing from starboard with an extra obstacle: Simulation 3

In this scenario, shown in Fig. 31, the ownship faces a head-on obstacle, and one crossing obstacle from starboard.
In addition, there is another vessel approaching the ownship with an opposing course on a parallel path. The head-
on obstacle has a stand-on obligation with respect to the crossing vessel, and a head-on obligation with respect to
the ownship. The crossing obstacle has a give-way obligation with respect to the head-on obstacle, and a stand-on
obligation with respect to the ownship. The ownship is in a head-on situation with the head-on obstacle, and has also
to give way to the crossing obstacle. The third obstacle is considered to have sufficient clearance to the ownship and
the two other obstacles to not be considered to be in a collision situation. In fig. 31a, the obstacles do not maneuver,
and the ownship makes a starboard maneuver to avoid the head-on obstacle and pass behind the crossing obstacle.
Following this, the ownship makes a port maneuver in order to avoid interfering with the third obstacle. This is an
example of a situation where including future maneuvers in the search space is beneficial, since the algorithm has to
plan for the port maneuver already when making the starboard maneuver in order see the full picture. Notice that
the ownship has a slow convergence towards the desired trajectory in fig. 31a, which is due to the transitional cost
term introducing a just too large cost for the algorithm to change to a trajectory with a faster convergence. When the
obstacles maneuver, the BC-MPC algorithm chooses a similar, but smaller maneuver, as shown in fig. 31b.
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(a) Obstacles not maneuvering.
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(b) Obstacles maneuvering in accordance with COLREGs.

Figure 31: Simulation 3: Head on with simultaneous crossing from starboard with non-maneuvering (a) and maneu-
vering (b) obstacles. In addition, a third obstacle approaches with an opposing course on a parallel path. The ownship
and obstacle initial positions are marked with circles, and the numbers represent time markers for each 60 s.

Table 4: Key points and numbers from the simulations. HO: Head on, CS: Crossing from starboard, CP: Crossing
from port. *Denotes the extra obstacle approaching with an opposing course on a parallel path.

Simulation type
and number

Rule 13–15
compliance

Minimum distance to obstacle
Non-maneuvering/maneuvering

Head-on Starboard-crossing Port-crossing

1: HO + CS Yes 121.3 m/115.0 m 116.6 m/146.4 m N/A
2: HO + CP Yes 130.6 m/181.7 m N/A 169.6 m/165.4 m
3: HO + CS + extra Yes 124.1 m/115.0 m 124.1 m/146.4 m 241.6 m/308.5 m*
4: CS + CP Yes N/A 124.2 m/112.2 m 167.6 m/192.3 m

5.5 Simultaneous crossing from starboard and port: Simulation 4

In this scenario, shown in Fig. 32, the ownship faces a simultaneous crossing from starboard and port. The obstacles
are in head-on situations with each other. With respect to the ownship, the port obstacle has a give-way obligation,
while the starboard obstacle has a stand-on obligation. The ownship is obliged to stand on with respect to the port
obstacle, and give way to the starboard obstacle. In fig. 32a, the obstacles do not maneuver, and the ownship makes a
large maneuver to starboard to pass behind the obstacle crossing from starboard and avoid to interfere with the obstacle
crossing from port. This simulation is unrealistic since the obstacles collide with each other, but it does nevertheless
provide insight into the performance of the BC-MPC algorithm. When the obstacles maneuver, as shown in fig. 32b,
the ownship still maneuvers to starboard and passes behind the obstacle crossing from starboard. The maneuver is,
however, performed with two subsequent turns, where the second starboard turn is made when the starboard obstacle
turns to port to pass parallel to the other crossing obstacle.

5.6 Simulation summary

Key points and numbers from the simulations are presented in Table 4. To present some insight into how the BC-MPC
algorithm performs in situations with multiple obstacles, and when multiple COLREGs rules apply at the same time,
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(b) Obstacles maneuvering in accordance with COLREGs.

Figure 32: Simulation 4: Simultaneous crossing from starboard and port with non-maneuvering (a) and maneuvering
(b) obstacles. The ownship and obstacle initial positions are marked with circles, and the numbers represent time
markers for each 60 s.

the simulations have focused on more complex scenarios than the experiments. The results both include simulations
where the obstacles continue on straight-line paths, like in the experiments, and simulations where the obstacles
maneuver in accordance with COLREGs. In order to limit the scope, only four simulation scenarios are presented.

The BC-MPC algorithm managed to solve all the scenarios satisfactory, while complying with rules 13–15 of COL-
REGs. In the situations where the ownship was given both stand-on and give-way obligations, the give-way obligation
was prioritized, except in simulation 2 when the obstacles maneuvered. The specific reason for this was that head-on
obstacle made a large avoidance maneuver in order to fulfill its give-way obligation with respect to a crossing obstacle,
which allowed the ownship to achieve a sufficient clearance while obeying the stand-on obligation.

When the obstacles maneuver in accordance with COLREGs, the BC-MPC algorithm generally chooses smaller ma-
neuvers. As shown in Table 4, the minimum distance to head-on obstacles is approximately the same both when the
obstacles maneuver and don’t maneuver, except for Simulation 2 where the head-on obstacle makes a large maneuver.
There is not a clear trend on how the minimum distance to crossing vessels is influenced when obstacles maneuver,
but the number of simulations is anyhow too small to draw any statistical conclusions. Nevertheless, this indicates
that the BC-MPC algorithm has an understanding of the joint responsibility in achieving the required clearance since
it achieves approximately the same clearance regardless of whether the obstacles maneuver or not.

6 Conclusion and further work

We have presented a new algorithm named the branching-course MPC (BC-MPC) algorithm for ASV collision avoid-
ance (COLAV). The algorithm has been validated in closed-loop full-scale experiments in the Trondheimsfjord in
October 2017, using a radar-based system for obstacle detection and tracking. The algorithm performs well and dis-
plays good robustness with respect to noise on obstacle estimates, which is a significant source of disturbance when
using tracking systems based on exteroceptive sensors to provide estimates of obstacle position, speed and course. In
addition to the controlled obstacle, leisure and commercial vessels entered by coincidence some of the scenarios and
were successfully avoided by the BC-MPC algorithm without human intervention. To complement the experimental
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results, we have performed simulations in complex scenarios involving multiple obstacles, where multiple COLREGs
rules apply simultaneously. The simulations are performed both with non-maneuvering obstacles, and obstacles ma-
neuvering in accordance with COLREGs. In the simulations, the BC-MPC algorithm successfully managed to avoid
collision, while maneuvering in accordance with COLREGs.

The BC-MPC algorithm is intended for use as a short-term COLAV algorithm, and should therefore always be able to
find a feasible solution to avoiding collision. This includes situations where rule 17 of COLREGs revokes a stand-on
obligation, possibly requiring the algorithm to ignore the specific maneuvering parts of rules 14 and 15, dictating how
to maneuver in head-on and crossing situations. However, the algorithm is motivated to follow the normal behavior
described by rules 14 and 15 COLREGs when possible, and extra clearance is required if choosing non-conventional
maneuvers ignoring the maneuvering aspects of rules 14 and 15. Hence, we consider the algorithm as being compliant
with rules 8, 13 and 17 of COLREGs, and motivated to follow rules 14 and 15. This makes the algorithm well suited
to handle the short-term aspects in a COLREGs-compliant hybrid COLAV architecture.

The authors have continued the work on the BC-MPC algorithm, specifically on including static obstacles and pro-
viding smoother trajectories with clearer maneuvers, which will be published in (Eriksen and Breivik, 2019). Future
work includes performing an extensive simulation study, analyzing the algorithm’s performance to a greater detail than
what was possible to do in the scope of this article. This should e.g. include the effects of increasing noise levels on
obstacle estimates, and how robust the algorithm is with respect to changes in the tuning parameters. Furthermore, we
would also like to combine the algorithm with a long-term COLAV algorithm in a hybrid architecture.
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Energy-Optimized Hybrid Collision Avoidance for ASVs

Glenn Bitar, Bjørn-Olav H. Eriksen, Anastasios M. Lekkas and Morten Breivik

Abstract— This paper considers the development of a hybrid
planning and collision avoidance architecture for autonomous
surface vehicles (ASVs). The proposed architecture combines a
high-level optimization-based planning algorithm with a mid-
level collision avoidance (COLAV) algorithm based on model-
predictive control (MPC). The high-level planner produces
an energy-optimized trajectory by solving an optimal control
problem via a pseudospectral method, taking into account
known static obstacles and ocean currents. The mid-level al-
gorithm performs MPC by solving a nonlinear program (NLP)
to produce a collision-free local trajectory, also taking into
account dynamic obstacles. In particular, the NLP optimizes
for a combination of following the energy-optimized trajectory
with performing readily observable maneuvers, as defined by
Rule 8 of the International Regulations for Preventing Collisions
at Sea (COLREGs). Numerical simulations are used to verify
that the hybrid architecture produces safe, efficient and readily
observable trajectories.

I. INTRODUCTION

Autonomous ships are currently being explored for trans-
portation and marine operations. The Yara Birkeland project
in Norway [1] is an example of this, where the aim is to
replace 40 thousand truck journeys of fertilizer per year
with an autonomous cargo ship. Specifically, autonomous
surface vehicles (ASVs) can provide reduced costs, risks
and environmental impact, increased operational windows
and introduce new opportunities in ocean operations. In
excess of 75 % of maritime accidents are caused by human
errors, which emphasizes the potential for increased safety
by autonomous technology [2]. Approximately 9 % of Nor-
wegian domestic CO2 emissions originate from ships, which
signifies the potential impact of energy-optimization in ship
technology [3].

A fundamental requirement for ASVs is a robust and safe
collision avoidance (COLAV) system. The ASV must be able
to avoid static obstacles, such as land and shallow waters,
as well avoid dynamic obstacles, including other ships. In
addition, the ASV must perform its maneuvers in compliance
with the International Regulations for Preventing Collisions
at Sea (COLREGs) [4], which are often referred to as the
“rules of the road” for marine vessels.

There exist numerous COLAV algorithms for marine ap-
plications. They may be divided into terms of the temporal
planning horizon, e.g. long-term and short-term algorithms
[5]. Long-term COLAV algorithms include offline planners
as well as algorithms intended to run online, with a large
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tions and Systems, Department of Engineering Cybernetics, Norwegian
University of Science and Technology (NTNU), NO-7491 Trondheim,
Norway. Email: {glenn.bitar, anastasios.lekkas}@ntnu.no,
{bjorn-olav.h.eriksen, morten.breivik}@ieee.org

Fig. 1. Suggested hybrid COLAV architecture with three layers. A high-
level planner is combined with a mid-level COLAV algorithm to form parts
of a hybrid architecture for an ASV. A complete hybrid architecture would
also include short-term COLAV for immediate obstacle avoidance. The
hybrid COLAV architecture should be supported by data from electronic
nautical charts, represented in a suitable manner for the algorithms, as well
as situational awareness functions that track and predict obstacles, perform
risk assessment, etc.

spatial and temporal horizon. Bitar et al. present a long-term
path and trajectory planning algorithm based on pseudospec-
tral optimal control [6], inspired by findings in e.g. [7]. The
algorithm produces energy-optimized trajectories and takes
into account environmental factors, such as ocean current
and static obstacles. Eriksen and Breivik have developed a
long-term COLAV algorithm which takes into account Rule
8 of COLREGs, which requires that maneuvers are readily
observable for other vessels [8]. The algorithm is based
on model predictive control (MPC) and avoids static and
dynamic obstacles by planning local trajectories via a non-
linear program (NLP). The NLP objective function includes
terms to penalize slow changes in course and speed, hence
making the resulting maneuvers observable. Other MPC-
based COLAV algorithms include [9]–[11]. Other long-term
algorithms include a Voronoi diagram-based method [12],
cell decomposition [13], rapidly exploring random trees
(RRTs) [14], with a COLREGs-compliant implementation in
[15].

Short-term COLAV algorithms take into account a lim-
ited spatial and temporal horizon, and plan maneuvers to
avoid immediate collision. Eriksen et al. have developed
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Fig. 2. The Telemetron ASV. Courtesy of Maritime Robotics.

the Branching-Course MPC Algorithm, which produces
collision-free, dynamically feasible local trajectories, aligned
with an input desired trajectory, and is partially COLREGs
compliant [5]. Other examples of short-term COLAV algo-
rithms include dynamic window [16], and velocity obstacles
[17].

Loe [18] and Casalino et al. [19] propose a hybrid COLAV
architecture where the COLAV task is split into two or three
layers to exploit the complementary strengths of long-term
and short-term algorithms. We base our hybrid architecture
on [8], with the structure illustrated in Fig. 1, where the
COLAV system is divided into three layers. The top-level
layer is the path or trajectory planner, which is intended
to run offline prior to a mission, with global information
about static obstacles. To be able to optimize with respect
to energy, it is necessary to use a trajectory rather than
a path, since energy consumption is tightly coupled with
speed and acceleration. The mid-level layer is responsible
for adhering to the parts of COLREGs that are related
to maneuvering, and takes into account information about
local dynamic and static obstacles. The short-term level
is intended to execute dynamically feasible maneuvers and
avoid immediate collision situations. This makes the hybrid
COLAV architecture comply with Rule 17 of COLREGs,
stating that the stand-on vessel (which has right of way)
should take action if the give-way vessel does not, by having
the ability to ignore the COLREGs considerations from the
mid-level.

The authors have worked extensively on several parts of
the hybrid COLAV architecture in Fig. 1. Examples include
long-term COLAV algorithms intended to run offline as high-
level planners [6], [12], or as mid-level algorithms [8], and
short-term algorithms [5], [16]. The short-term algorithms
have been tested in several full-scale experiments with
radar-based obstacle detection and tracking. The COLAV
algorithms are dependent on the performance of the vessel
controllers. Therefore, the authors have also put significant
effort into modeling, identification and control of ASVs [20],
[21]. In this paper, we develop parts of the hybrid architecture
shown in Fig. 1, by connecting and further developing two
existing algorithms [6], [8]. Several improvements have been
made to both algorithms:

• The high-level planner [6] has been extended to work
with a non-first-principles model.

• The mid-level algorithm [8] is extended with relative
velocities as a way to include ocean currents,

• has improved numerical properties, and
• has been extended with an interface for relative tra-

jectory tracking, enabling the ASV to track a desired
trajectory with a time-varying time offset.

Both algorithms utilize a mathematical model of the ASV
Telemetron, depicted in Fig. 2.

The rest of the paper is organized as follows: The updated
mathematical model of the ASV is introduced in Section II.
The high-level planner and the mid-level algorithm are
presented in Section III and Section IV, respectively. A
description of the scenario used to test the approach is
presented in Section V, along with a discussion of our results.
Section VI concludes the paper.

II. ASV MODELING

In [20], Eriksen and Breivik developed a nonlinear dy-
namic model structure for high-speed ASVs operating in the
displacement, semi-displacement and planing regions. They
identified parameters for the Telemetron ASV, which is the
vessel considered in this paper. The model has the form

η̇ = R(χ)x (1a)

χ̇ = r + β̇ (1b)
M(x)ẋ+ σ(x) = τ . (1c)

Here, the pose vector η = [x, y, ψ]> ∈ R2 × S contains the
ASV’s position and heading angle in the Earth-fixed North-
East-Down (NED) frame {n}. The vector x = [U, r]> ∈
X ⊂ R2 contains the ASV’s speed over ground (SOG) U
and the rate of turn (ROT) r. The matrix R(χ) transforms
the SOG and ROT to kinematic velocities:

R(χ) =




cosχ 0
sinχ 0

0 1


 . (2)

The course rate χ̇ is determined by the ROT r and the sideslip
rate β̇. The matrix M(x) ∈ R2×2 represents velocity-
dependent inertia, and σ(x) ∈ R2 is the damping effect.
The ASV is controlled by the control vector τ = [τm, τδ]

> ∈
U ⊂ R2, which contains normalized values for throttle and
rudder, respectively.

The states and controls are restricted to the sets X and U
which are where the model (1) is valid. Detailed information
about the valid sets are found in [20].

A. Extension to relative velocities

The model for Telemetron (1) does not take into account
ocean currents, nor does it separate surge and sway motion.
In this paper, we change (1c) to include relative velocities in
order to account for ocean currents.

The following assumptions are made to include ocean
current disturbances.
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Fig. 3. An illustration of Assumption 2 with ocean currents. The ship’s
absolute surge velocity u is larger than the ocean current velocity in the
surge direction uc, giving a positive relative surge velocity ur = u − uc.
However, in the sway direction, there is no model of the ship’s movement.
Thus we assume that the ship’s relative sway velocity vr is zero, implying
that the sway velocity v is equal to the ocean current velocity in the sway
direction vc. The figure also illustrates the heading and course angles, ψ
and χ.

Assumption 1. The model for SOG U from (1c) is valid for
relative surge velocity ur.

Assumption 2. The relative sway velocity vr is identically
equal to zero.

The reasoning for Assumption 1 is that the majority of
the damping effects during model identification experiments
were due to relative velocity. Assumption 2 may seem
counterintuitive, but since we don’t know anything about
the sway dynamics of the vessel, we assume that the ship’s
sway motion follows the ocean currents, implying that the
sway velocity v is equal to the sway-component of the ocean
current vc. Fig. 3 illustrates this idea.

Under these assumptions we change the model (1c) from
a SOG and ROT model to a relative-velocity model without
loss of generality for the rest of this paper. In fact, any
ordinary ship model may be used for the hybrid architecture.
The new model has the form

η̇ = R(ψ)xr +
[
V >c 0

]>
(3a)

M(xr)ẋr + σ(xr) = τ , (3b)

where xr = [ur, r]
> ∈ Xr ⊂ R2 and Vc = [Vx, Vy]> ∈ R2

describes the ocean current velocity in NED. The set Xr is
equivalent to X, based on the assumptions made for the ocean
current extension. The rest of the symbols are the same as in
(1). The relationship between the absolute surge u and sway
v velocities and the relative surge ur and sway vr velocities
is described by

[
u
v

]
=

[
ur + uc
vr + vc

]
=

[
ur + uc
vc

]
, (4)

where uc and vc are the surge and sway components of the
ocean current velocity.

The ocean current velocity is assumed to be constant and
known in the NED frame. The body-fixed frame {b} has
origin and orientation fixed in the ASV, which results in the

following ocean-current representation:
[
uc
vc

]
=

[
cosψ sinψ
− sinψ cosψ

]
Vc . (5)

III. HIGH-LEVEL PLANNER

The high-level planner solves an optimal control problem
(OCP) by using a pseudospectral method to find an energy-
optimized trajectory, as described in [6]. The OCP is given
by

min
zr,d,τd,tf

∫ tf

0

F (zr,d(t), τd(t), t) dt (6a)

subject to
żr,d(t) = f(zr,d(t), τd(t)) ∀t ∈ [0, tf ] (6b)
hp(zr,d(t), τd(t), t) ≤ 0 ∀t ∈ [0, tf ] (6c)
ep(zr,d(0), zr,d(tf ), tf ) = 0 . (6d)

The symbols used in (6) will be further explained in Sec-
tion III-A. We subscript the states and inputs with (·)d to
emphasize that these are desired values.

A. Cost functional, dynamics, inequality constraints and
boundary conditions

To obtain an energy-optimized trajectory, we utilize an
energy-based cost functional in (6a), with

F (zr,d(t), τd(t), t) = n(τm,d(t))
2·(∣∣cos δ(τδ(t))ur,d(t)

∣∣+
∣∣Le sin δ(τδ(t)) r

∣∣
)
, (7)

where n(τm) is a function that maps the control input τm to
propeller rounds per minute (RPM), δ(τδ) maps the control
input τδ to engine angle, and Le is the length between the
engine and the axis of rotation. Force is often modeled as
being proportional to the square of propeller rate, and the
product of force and velocity gives a measure proportional
to power [22].

The dynamics (6b) are the same as (3), collected in the
model

żr = f(zr, τ ) , (8)

where zr = [η>,x>r ]>, and

f(zr, τ ) =

[
R(ψ)xr + [V >c , 0]>

M(xr)
−1(−σ(xr) + τ )

]
. (9)

Static obstacles are represented in (6c) as elliptic inequal-
ities. The basis for the elliptic inequality is

(
x− xc
xa

)2

+

(
y − yc
ya

)2

≥ 1 , (10)

where xc and yc describe the ellipse center in NED, and
xa and ya describe the sizes of the two elliptic axes. To
allow angled ellipses, the differences x − xc and y − yc
are rotated by the angle α between the direction of xa and
north. Applying the logarithmic function to both sides of
the inequality avoids quadratic growth in x and y, which is
convenient for the solvers, and adding a small value ε > 0
improves the numerical properties when x→ xc and y → yc,
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without changing the inequality. The resulting inequality in
(6c) is:

ho(x, y, xc, yc, xa, ya, α) =

− log

[(
(x− xc) cosα+ (y − yc) sinα

xa

)2

+

(−(x− xc) sinα+ (y − yc) cosα

ya

)2

+ ε

]

+ log(1 + ε) ≤ 0 . (11)

In addition to the static obstacles, the state constraints
xr,d ∈ Xr and control constraints τd ∈ U are also enforced
in (6c).

Boundary conditions (6d) are employed to decide initial
position and velocity, final position, and to set a maximum
end time tf ≤ tf,max. The maximum end-time limitation is
necessary for convergence of the OCP, since without it, the
cost functional is minimized by not using any control action,
resulting in the ship following the ocean currents.

B. Planner output
The OCP solution yields a trajectory zr,d(·) which de-

scribes the motion of the ASV over time t. The notation
zr,d(·) emphasizes that this is not a point zr,d(t) at a certain
time t, but describes a trajectory of states. The planner is
run offline ahead of time, and the x, y coordinates of the
trajectory are used as input to the mid-level MPC algorithm,
i.e. pd(t) = [xd(t), yd(t)]

>, as illustrated in Fig. 4. Fig. 1
shows this interface in the context of the hybrid architecture.

IV. MID-LEVEL COLAV
The mid-level COLAV algorithm is an MPC-based algo-

rithm intended for long-term COLAV with respect to both
static and dynamic obstacles, originally presented in [8]. The
algorithm complies with Rule 8 of COLREGs, producing
maneuvers that are readily observable for other vessels while
following a reference trajectory specified by the trajectory
planner.

In this section, we further develop the algorithm to be able
to perform relative trajectory tracking and improve on the
numeric properties of the algorithm. By relative trajectory
tracking, we mean that we want the algorithm to track a
desired trajectory with a time offset tb ∈ R. This implies that
if the ASV for some reason lag behind the desired trajectory
pd(t) = [x(t), y(t)]>, we may adjust tb to offset the desired
trajectory rather than speeding up to catch up with pd(t).
We define the relative desired trajectory as

p̄d(t) = pd(t+ tb), (12)

where tb is the time offset, which is computed each time
the mid-level algorithm is run. For notational simplicity, we
omit tb from the function parameters since (12) at each MPC
run should be interpreted as a time-shifted trajectory only
dependent on the time t. At a time step t0, denoting the
current time when the MPC is called, the time offset tb is
computed by the optimization problem

tb(t0) = arg min
tb

∥∥pd(t0 + tb)− p(t0)
∥∥
2
, (13)

pd(0)

pd(tf )

pd(t0)p(t0)

p̄d(t0) = pd(t0 + tb)x

y

Fig. 4. Illustration of relative trajectory tracking. The black line shows the
desired trajectory, with the blue circles marking the start position pd(0),
current position pd(t0) and goal desired position pd(tf ). The orange circle
marks the vessel position at time t, while the red point shows the relative
desired position p̄d(t) = pd(t0 + tb).

which can be solved by a simple line search algorithm. Here,
we find the offset tb which minimizes the Euclidean dis-
tance between the current relative desired trajectory position
p̄d(t0) and the current vessel position p(t0). The concept
is illustrated in Fig. 4. In general, other paradigms can be
used to find tb based on the desired behavior. Using the
Euclidean distance makes the algorithm track the desired
trajectory from the closest point.

A similar concept can be employed if the input to the mid-
level algorithm is a geometric path pd(θ) with an associated
along-path speed Ud(θ), where θ ∈ R is a path parameter.
In this case, we compute an initial path parameter

θ0(t0) = arg min
θ

∥∥pd(θ)− p(t0)
∥∥
2
, (14)

and generate a map from time to path parameter θ : R→ R
by integrating

θ̇ =
Ud(θ)√(

∂xd(θ)
∂θ

)2
+
(
∂yd(θ)
∂θ

)2 θ(t0) = θ0(t0) . (15)

This gives θ(t) valid for t ≥ t0. This map is then used to
compute the relative desired trajectory as p̄d(t) = pd(θ(t)).
This would for instance be useful if we would like the mid-
level algorithm to input a waypoint-defined path.

The mid-level algorithm is formalized as the OCP:

min
η,xr

φ(η(·),xr(·)) (16a)

subject to

η̇(t) = R(ψ(t))xr(t) +

[
Vc
0

]
∀t ∈ [t0, t0 + Th] (16b)

hm(η(t),xr(t), t) ≤ 0 ∀t ∈ [t0, t0 + Th] (16c)
em(η(t0)) = 0 , (16d)

where Th > 0 is the prediction horizon. Notice that we use
a purely kinematic model (16b) in the mid-level algorithm,
which is done to reduce the computational load, ensuring that
the algorithm can be run in real time as an MPC algorithm.
In the hybrid architecture in Fig. 1, the output of the
algorithm is passed to the short-term algorithm, which takes
the vessel dynamics into account, ensuring that only feasible
trajectories are fed to the vessel controllers and justifying
neglecting kinetic feasibility in the mid-level algorithm. The
constraint xr ∈ Xr as well as static and dynamic obstacles
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are enforced in (16c), while the boundary constraints (16d)
ensures that the trajectory starts at the current pose η(t0).

To solve the OCP (16), we discretize it over t ∈ [t0, t0 +
Th] using multiple shooting with Np time steps. The vessel
model (16b) is discretized using 4th-order Runge-Kutta,
while the cost functional is discretized using forward Euler.
For more details on the discretization, see [8]. This results
in the NLP:

min
w

φp(w, p̄d,1:Np) + φc(w)

subject to
g(w,η(t0)) = 0

h(w) ≤ 0 ,

(17)

where w = [η>0 ,x
>
r,0, . . . ,η

>
Np−1,x

>
r,Np−1,η

>
Np

]> ∈
R5Np+3 is a vector of 5Np + 3 decision variables, p̄d,1:Np =
[p̄d,1, p̄d,2, . . . , p̄d,Np ] is a sequence of desired positions and
g(w,η(t0)) ∈ R3Np+3 is a vector of 3Np + 3 shooting and
boundary constraints.

A. Objective function

The objective function consists of two terms, where
φp(w, p̄d(t)) ensures convergence to the relative trajectory
and φc(w) ensures that the resulting trajectory is readily
observable. The functions are given as

φp(w, p̄d,1:Np) =

Np∑

k=1

Kpqp
(
pk, p̄d,k

)
(18a)

φc(w) =

Np−1∑

k=0

KU̇qU̇ (U̇k) +Kχ̇qχ̇(χ̇k), (18b)

where the function qp(·, ·) penalizes trajectories deviating
from the desired trajectory, while and qU̇ (·) and qχ̇(·) penal-
ize speed and course changes that are not readily observable
to other vessels. The values Kp,KU̇ ,Kχ̇ > 0 are tuning
parameters, while p̄d,k = p̄d(tk) denotes the desired position
at time tk. Notice that neither the speed U or the course χ
are elements in w, but they can be computed using U =√
u2 + v2 and χ = ψ+ arcsin v

U , respectively. Furthermore,
their derivatives are computed using finite differencing.

To measure the deviance from the desired trajectory, we
want to use the Huber loss function, which is quadratic
around the origin and resembles the absolute value function
above a threshold σ > 0:

H(ρ) =

{
1
2ρ

2 |ρ| ≤ σ
σ(|ρ| − 1

2σ) |ρ| > σ .
(19)

Using the Huber function rather than a quadratic cost avoids
the issue of the position error dominating over the other terms
in the objective function when the position error is large,
ensuring a similar behavior close and far from the desired
trajectory [8]. The Huber function (19) can be used to define
qp(p,pd) as:

qp(p, p̄d) = H(x− x̄d) +H(y − ȳd) (20)

to evaluate a 2-dimensional loss [23].

The Huber function is, however, only C1, resulting in (17)
having a discontinuous Hessian matrix, making the NLP
difficult to solve. In [8], this was circumvented using the
pseudo-Huber function, which is a smooth approximation
of (19). This can, however, cause numerical issues since
the pseudo-Huber function introduces a square root in the
objective function. To remedy this, the Huber function (19)
can be implemented as a quadratic program (QP) [23]:

H(ρ) = min
ω,µ

σω +
1

2
µ2

subject to
− µ− ω ≤ ρ ≤ µ+ ω

ω ≥ 0 .

(21)

This avoids the discontinuity issues by utilizing slack vari-
ables. To use (21) rather than (19) to implement the Huber
function, we combine (17) and (21) to define a new NLP
which is equivalent to (17) [23]:

min
w,ω,µ

φ̄p(w,ω,µ) + φc(w)

subject to
g(w,η(t0)) = 0

h(w) ≤ 0

h̄k(ηk,ωk,µk, p̄d,k) ≤ 0 ∀k ∈ {1, . . . , Np} ,

(22)

where ω = [ω>1 ,ω
>
2 , . . . ,ω

>
Np

]> ∈ R2Np and µ =

[µ>1 ,µ
>
2 , . . . ,µ

>
Np

]> ∈ R2Np are slack variables. The func-
tion φ̄p(w,ω,µ) is

φ̄p(w,ω,µ) =

Np∑

k=1

Kp

(
σ1>ωk +

1

2
µ>k µk

)
, (23)

and h̄k(w,ω,µ) ∈ R6Np encodes the constraints in (21):

h̄k(w,ω,µ, p̄d,k) =



vk + µk + pk − p̄d,k
vk + µk − (pk − p̄d,k)

−ωk


 . (24)

The penalty terms in speed and course change motivates
the algorithm to perform readily observable maneuvers by
penalizing maneuvering with small speed and course changes
more than using large changes. This is done by using a
nonlinear cost based on a combination of a quadratic and
decaying exponential function:

q(ρ; a, b) = aρ2 + (1− e− ρ
2

b ), (25)

where a > 0 and b > 0 are parameters. Using this function,
the penalty terms in speed and course change are defined as

qU̇ (U̇) =
100

q(U̇max; aU̇ , bU̇ )
q(U̇ ; aU̇ , bU̇ ) (26a)

qχ̇(χ̇) =
100

q(χ̇max; aχ̇, bχ̇)
q(χ̇; aχ̇, bχ̇) . (26b)

This results in changing course or speed with a high accel-
eration or turn rate is preferred over changes with low rates
of change, see [8] for more details on the speed and course
change penalty terms.
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B. Obstacle handling and steady-state feasibility

The constraint h(w) ≤ 0 ensures COLAV and that only
steady-state feasible trajectories are specified.

As in the trajectory planning algorithm, static obstacles are
avoided by using elliptic inequalities to define constraints.
For the i-th static obstacle, we define the inequality

hsi(w) =




ho(x1, y1, xc,i, yc,i, xa,i, ya,i, αi)
...

ho(xNp , yNp , xc,i, yc,i, xa,i, ya,i, αi)


 ≤ 0,

(27)
where ho(·) is defined in (11) and xc,i, yc,i, xa,i, ya,i and αi
denote the x and y center coordinates, major and minor axis
lengths and major axis orientation of the i-th static obstacle,
respectively.

Dynamic obstacles are handled by letting the ellipse
parameters be time varying. For the i-th dynamic obstacle,
we define the inequality

hmi(w) =




ho(x1, y1, xc,i(t1), yc,i(t1),

xa,i, ya,i, αi(t1))
...

ho(xNp , yNp , xc,i(tNp), yc,i(tNp),

xa,i, ya,i, αi(tNp))



≤ 0,

(28)
where xc(t), yc(t), xa,i, ya,i and αi(t) denote the time-
varying x and y center coordinates, major and minor axis
lengths and major axis orientation of the i-th dynamic
obstacle, respectively. We assume, without loss of generality,
that the minor and major axis lengths are constant.

Given S static and M dynamic obstacles, we define the
inequality

ho(w) =
[
hs1(w)> . . . hsS (w)>

hm1(w)> . . . hmM (w)>
]>
≤ 0,

(29)

which ensures avoidance of both static and dynamic obsta-
cles.

Similarly as in [8], we ensure steady-state feasibility at
each time step through a constraint hxr,k(xr) ≤ 0 ∈ R4,
which encodes the constraint xr ∈ Xr. To ensure feasibility
for the entire prediction horizon, we define the inequality

hxr (w) =
[
hxr,k(xr,0)> . . . hxr,k(xr,Np−1)>

]>
≤ 0.

(30)
Finally, the inequality constrains are combined as

h(w) =

[
ho(w)
hxr (w)

]
∈ R(M+S+4)Np , (31)

which is used in (22).

V. SIMULATION SCENARIO AND RESULTS

The scenario used for testing the hybrid architecture is
shown in Fig. 5. It consists of two static obstacles (a and
b) and one dynamic obstacle (c) with parameters listed in

TABLE I
OBSTACLE PARAMETERS.

Obstacle xc yc xa ya α

a 5500 m 2000 m 4000 m 1000 m −5◦

b 2000 m 6500 m 4000 m 1000 m 5◦

c∗ 500 m 4800 m 1000 m 400 m −11.25◦
∗ Obstacle c continues with speed 5 m/s and course −11.25◦ after
initialization.

TABLE II
SIMULATION AND TUNING PARAMETERS.

Param. Value Comment

tf,max 1500 s High-level planner time constraint
[Vx, Vy ] [2.5, 0] m/s Ocean current velocity
Ns 165 Number of simulation steps
h 10 s Mid-level step size
Np 36 Mid-level prediction steps
Kp 2 · 10−2 Position error scaling
KU̇ 2 SOG-derivative penalty term scaling
Kχ̇ 7.5 Course-derivative penalty term scal-

ing
[aU̇ , bU̇ ] [8, 2.5·10−4] SOG-derivative penalty term param-

eters
[aχ̇, bχ̇] [112, 1.875·10−4] Course-derivative penalty term pa-

rameters

Table I. The dynamic obstacle (c) has the start position listed
in the table, and continues with a speed of 5 m/s and course
−11.25◦. It comes in the way of the ship in the middle of the
nominal trajectory, which requires the mid-level algorithm to
plan a trajectory around it.

The algorithms are run with the parameters listed in
Table II. The high-level algorithm is implemented using the
pseudospectral optimal control package DIDO for MATLAB
on a desktop computer [7]. The mid-level algorithm is imple-
mented using CASADI [24] and IPOPT [25] for MATLAB
on a desktop computer. Since the mid-level algorithm is
MPC-based, a new solution is computed at every time step,
where only the first step of the solution is implemented.

Fig. 5 shows how the mid-level algorithm modifies the
nominal trajectory to produce collision-free and observable
maneuvers. Fig. 6 shows speeds and course angle plots from
the mid-level algorithm. From Fig. 5, we see that when
the nominal trajectory is free from obstacles, the mid-level
algorithm tracks it well, while performing readily observable
maneuvers. Deviations from the nominal trajectory occur
from time stamp t2, where the mid-level algorithm chooses to
keep a different course to pass behind the dynamic obstacle.
Fig. 6 shows that the SOG U is held at a lower value
to be able to pass behind the obstacle between 400 s and
650 s, which also makes the maneuver more observable,
according to the objective function (18) which discourages
small changes in SOG. The figure also shows that course
changes are performed in large steps, in excess of 30◦,
which is accepted as readily observable maneuvers even in
restricted visibility [4]. When the obstacle is passed, the mid-
level algorithm again tracks the reference speed and moves
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Fig. 5. Test scenario with static and moving obstacles. Nominal trajectory
(striped blue) and resulting trajectory (red) together with predicted trajectory
at every time step of the MPC. The predicted trajectories start with blue
color at t0, and gets more yellow towards the end of the prediction horizon
t0 + Th. The green ellipses are the “real” static obstacles, contained in
blue ellipses which are safety margins. The moving obstacle is a yellow
patch encapsulated by a blue ellipse representing its safety margin. The
time stamps (1, 2, 3) represent times 20 s, 540 s and 1190 s, respectively.
The arrow in the lower-left corner is the ocean current direction.

back to the nominal trajectory. In addition, notice that the
relative surge velocity ur is actively controlled to ensure
readily observable changes in the SOG, especially as the
ASV changes course at around 350 s and 1050 s.

The run time for the high-level planner is between 150 s
and 200 s, depending on the scenario. Since the planner is run
offline before the start of the scenario, high run times are not
detrimental. For the mid-level algorithm, the majority of the
algorithm steps are completed in less than 0.1 s, as seen in
Fig. 7. There are some outliers, but the maximum observed
run time is approximately 0.9 s, which with a step size of
10 s is considered to be real-time feasible. Ideally, the mid-
level algorithm provides safe commands in a timely manner,
but the hybrid architecture allows the short-term COLAV
algorithm to serve as a backup in case of a malfunction above
it in the hierarchy.

VI. CONCLUSION

We have developed and verified parts of a hybrid COLAV
architecture for ASVs. The simulation results show that the
architecture enables an ASV to avoid both static and dynamic
obstacles and produces readily observable maneuvers in
compliance with Rule 8 of COLREGs. In the absence of
dynamic obstacles, the ASV tracks an energy-optimized
trajectory.

Possibilities for further work include:
• Complete the development and implementation of the

three-layered hybrid architecture by including a short-
term COLAV algorithm, e.g. [5], and perform full-scale
experiments.
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• Investigate the possibility of performing periodic high-
level re-planning to increase optimality of the trajectory
by taking into account updated information about envi-
ronmental factors and ship state.

• Investigate if an alternative OCP solver can decrease
run time for the high-level algorithm.

• Include more COLREGs rules in the mid-level algo-
rithm, specifically the required behavior in overtaking,
crossing and head-on situations.
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[25] A. Wächter and L. T. Biegler, “On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming,” Mathematical
Programming, vol. 106, pp. 25–57, 2005.

162 Chapter 5. Original publications



163

Paper H Short-term ASV collision avoidance with
static and moving obstacles

Preprint of B.-O. H. Eriksen and M. Breivik, “Short-term ASV collision
avoidance with static and moving obstacles”, 2019, Submitted to Modeling,
Identification and Control, available at https://arxiv.org/abs/1907.
04877.





Short-term ASV Collision Avoidance
with Static and Moving Obstacles

Bjørn-Olav H. Eriksen and Morten Breivik

Centre for Autonomous Marine Operations and Systems, Department of Engineering Cybernetics,
Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.

E-mail: {bjorn-olav.h.eriksen, morten.breivik}@ieee.org

August 5, 2019

Abstract

This article considers collision avoidance (COLAV) for
both static and moving obstacles using the branching-
course model predictive control (BC-MPC) algorithm,
which is designed for use by autonomous surface vehicles
(ASVs). The BC-MPC algorithm originally only consid-
ered COLAV of moving obstacles, so in order to make
the algorithm also be able to avoid static obstacles, we
introduce an extra term in the objective function based
on an occupancy grid. In addition, other improvements
are made to the algorithm resulting in trajectories with less
wobbling. Themodified algorithm is verified through full-
scale experiments in the Trondheimsfjord in Norway with
both virtual static obstacles and a physical moving obsta-
cle. A radar-based tracking system is used to detect and
track the moving obstacle, which enables the algorithm
to avoid obstacles without depending on vessel-to-vessel
communication. The experiments show that the algorithm
is able to simultaneously avoid both static and moving
obstacles, while providing clear and readily observable
maneuvers. The BC-MPC algorithm is compliant with
rules 8, 13 and 17 of the the International Regulations
for Preventing Collisions at Sea (COLREGs), and favors
maneuvers following rules 14 and 15.

Keywords: Autonomous surface vehicles, collision
avoidance, model predictive control

1 Introduction
All parts of society are currently being automated at a rapid
pace. One example is the development of autonomous
cars, as exemplified by the development efforts made by
e.g. Tesla, Google and Uber. Such a trend is also ongoing
in the maritime domain, where autonomous technology
presents opportunities for increased cost efficiency, in ad-
dition to reducing the environmental impact of goods and
passenger transport. One example of this is theYaraBirke-
land project in Norway, where an electrically-powered au-
tonomous cargo ship will replace 40000 diesel-powered
truckloads of fertilizer each year by 2022 (Paris, 2017).
Furthermore, it is reported that in excess of 75% of mar-
itime accidents are caused by human errors (Chauvin,
2011; Levander, 2017), which also reveals a potential for
increased safety by introducing autonomous technology at
sea. Employing ASVs in areas where other vessels are
present does, however, require a robust COLAV system in
order to avoid collisions and operate safely.

There exists several algorithms for ASV COLAV, e.g.
the velocity obstacle (VO) algorithm (Kuwata et al., 2014),
the A* algorithm (Schuster et al., 2014) and algorithms
based on model predictive control (MPC) and optimiza-
tion (Benjamin et al., 2006; Švec et al., 2013; Abdelaal
and Hahn, 2016; Hagen et al., 2018). These algorithms
are, however, designed with the idea of “one size fits all”,
where the same algorithm is used to solve both situations
requiring proactive and reactive behaviors. A challenge
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Figure 1: A hybrid architecture with three layers. The
support functions provide relevant information for the
COLAV algorithms, including prediction of obstacle tra-
jectories, static obstacles from electronic nautical charts
(ENC) and situational awareness in the form of COLREGs
situations. Courtesy of (Eriksen et al., 2019b).

with this approach is that the algorithm must be able to
solve problems of a wide range sufficiently well, which
makes the algorithm difficult to design and tune. A differ-
ent approach is to utilize a hybrid architecture (Loe, 2008;
Casalino et al., 2009), where the complementary strengths
of different algorithms can be combined in a layered archi-
tecture. An example of a hybrid architecture is shown in
Figure 1, where the COLAV system is divided into three
layers, namely a high-level, mid-level and a short-term
COLAV algorithm. The high-level planner performs long-
term planning by finding a path or trajectory from an initial
position to a goal position while being able to avoid static
obstacles, satisfy time constraints and minimize energy
consumption. The mid-level algorithm attempts to follow
the planned path or trajectory from the high-level planner,
while making local modifications in order to avoid moving
obstacles. This algorithm should be designed to comply
with the maneuvering rules of the COLREGs, which dic-
tates how vessels should behave in situations where there
exists a risk of collision with other vessels (Cockcroft and

Lameijer, 2004). The short-term COLAV algorithm in-
puts the modified trajectory from the mid-level algorithm,
and should have low computational requirements ensur-
ing that the COLAV system can react to sudden changes
in the environment. This algorithm should also serve as a
final safety barrier in situations where e.g. the mid-level
algorithm fails to find a solution (Eriksen and Breivik,
2017b). In addition, the short-term algorithm should have
a shorter planning horizon than the mid-level algorithm,
making it inherently capable of handling situations where
the COLREGs may require ignoring the maneuvering as-
pects of rules 14 and 15 when moving obstacles do not
comply with the COLREGs. The algorithm should, how-
ever, maneuver in accordance with rules 14 and 15 when
the situation allows it.

The authors have performed a significant amount of
work on the hybrid architecture in Figure 1, concerning
e.g. model-based vessel controllers (Eriksen and Breivik,
2017a, 2018), short-term COLAV (Eriksen et al., 2018,
2019b), mid-level COLAV (Eriksen and Breivik, 2017b)
and a high-level planner interfaced to the mid-level algo-
rithm (Bitar et al., 2019). In an upcoming article (Erik-
sen et al., 2019a), we populate the hybrid architecture
with algorithms including the BC-MPC algorithm dis-
cussed in this article, and demonstrate COLAV compliant
with COLREGs rules 8 and 13–17 in simulations. Work
has also been performed on obstacle trajectory prediction
(Hexeberg et al., 2017; Dalsnes et al., 2018). For the short-
term COLAV layer, we initially focused on the dynamic
window (DW) algorithm, using a radar-based tracking sys-
tem for detecting and tracking obstacles (Wilthil et al.,
2017). The reason for using exteroceptive sensors such as
radars for detecting obstacles is that they do not depend
on vessel-to-vessel communication or collaboration with
other vessels, hence enabling avoidance of vessels which
do not have or use automatic identification system (AIS)
transponders. Another questionable aspect of AIS is that
other vessels may provide incorrect information (Harati-
Mokhtari et al., 2007), which can be difficult to detect and
handle. However, there is a fair amount of noise on obsta-
cle estimates originating from systems using exteroceptive
sensors, which the DW algorithmwas shown not to handle
sufficiently well in full-scale experiments (Eriksen et al.,
2018). We therefore developed the BC-MPC algorithm for
short-term COLAV (Eriksen et al., 2019b), which is based
on MPC and designed to be robust to obstacle estimate
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noise. This algorithm is shown to have good performance
in full-scale experiments, but originally only accounts for
moving obstacles.

In this article, we further develop the BC-MPC algo-
rithm to also handle avoidance of static obstacles in addi-
tion to moving obstacles, as well as producing trajectories
with less wobbling. The modified algorithm is verified
in full-scale experiments in Trondheimsfjorden, Norway,
showing good performance. The experiments are per-
formed with virtual static obstacles, while a moving ob-
stacle is detected and tracked using a radar, not depending
on vessel-to-vessel communication.

The rest of this article is organized as follows: Section 2
presents the BC-MPC algorithm and the modifications we
do to it, Section 3 presents the experimental setup and
results, while Section 4 concludes the article and points to
possibilities for further work.

2 The BC-MPC algorithm
The BC-MPC algorithm (Eriksen et al., 2019b) is a
COLAV algorithm designed using sample-based MPC,
intended for short-term COLAV for ASVs. Sample-based
MPC algorithms are based on computing an objective
function over a finite discrete search space and select-
ing the optimized solution, rather than utilizing search
algorithms as in gradient-based algorithms. A benefit of
sample-based algorithms is that they do not have problems
with solving highly nonlinear and non-convex problems,
which in general is difficult for gradient-based algorithms.
This makes sample-based algorithms well suited for use
in the short-term layer in Figure 1. Furthermore, the
BC-MPC algorithm is designed to be robust with respect
to noisy obstacle estimates, which is a significant source
of disturbance when using exteroceptive sensors such as
radars for detecting and tracking obstacles.

With respect to the COLREGs, the BC-MPC algorithm
complies with rules 8, 13 and 17, and favors maneuvers
following rules 14 and 15. In cases where the algorithm
chooses to ignore the maneuvering aspects of rules 14 and
15, which can be required when rule 17 revokes a stand-on
obligation, the maneuvers have an extended clearance to
obstacles.

At each iteration, the algorithm computes a search space
consisting of a finite number of possible trajectories, which

each contains a sequence of maneuvers. Given this search
space, an objective function is computed on the trajecto-
ries, and the optimized trajectory is selected and used as
the reference to the vessel controllers which control the
speed over ground (SOG) and course. The algorithm is
based on MPC, hence only the first part of the optimized
trajectory is used before a new solution is computed and
implemented.

This section presents an overview of the BC-MPC al-
gorithm. Interested readers are referred to Eriksen et al.
(2019b) for more details on the algorithm. In addition, this
section presents modifications enabling the algorithm to
perform static obstacle avoidance and produce trajectories
with less wobbling than the original algorithm.

2.1 Trajectory generation
At each iteration, a new finite search space of possible tra-
jectories is generated. Every trajectory contains a number
of sub-trajectories, each containing one maneuver. This
naturally forms a tree structure, with the nodes represent-
ing vessel configurations and edges representing maneu-
vers. The initial condition is used as the root node, and
the depth of the tree is equal to the number of maneuvers
in each trajectory.

The trajectory generation is performed by a repeatable
maneuver-generation procedure, which when given a ves-
sel configuration computes a set of sub-trajectories each
containing one maneuver. Piecewise linear acceleration
profiles in speed and course serve as a template for the
maneuvers. An example of 5 motion primitives based
on the acceleration profiles in speed and course is shown
in Figure 2. The acceleration profiles are dependent on
the step time length (the maneuver time length) T > 0,
the ramp time Tramp ∈ (0,min(TU2 ,

Tχ
4 )] and the speed and

course maneuver lengths, TU,Tχ ∈ (0,T], respectively.
Given a current vessel velocity, the maximum and mini-
mum speed and course accelerations ÛUmax, ÛUmin, Ûrmax and
Ûrmin are computed using a vessel model.
To improve the convergence properties of the algorithm,

we employ a guidance function which can modify some of
the trajectories in the search space. This is done bymoving
the closest acceleration sample in speed and course to a
desired acceleration generated by the guidance function,
if this is inside the feasible acceleration region.
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ṙmin

2Tramp Tχ − TrampTχ − 2Tramp

(b) Course acceleration motion primitives.

Figure 2: Acceleration motion primitives, where T is the
step time, Tramp denotes the ramp time, while TU and Tχ
are the SOG and course maneuver time lengths, respec-
tively. The symbols ÛUmax, ÛUmin, Ûrmax and Ûrmin denote the
acceleration limits of the vessel at the initial vessel state.
Courtesy of (Eriksen et al., 2019b).

Desired speed and course trajectories Ud(t) and χd(t)
are generated by analytically integrating the acceleration
motion primitives. Numerical examples of 5 speed and 5
course trajectories are shown in figures 3 and 4. It should
be noted that these trajectories are intended as reference
trajectories for the vessel controllers, hence they are ini-
tiated in an open-loop fashion with the current desired
speed and course in order to ensure continuous references
for the vessel controllers. The desired speed and course
trajectories are joined together in a union set of desired
velocity trajectories:

Ud = {Ud,1(t),Ud,2(t), . . . ,Ud,NU (t)}
× {χd,1(t), χd,2(t), . . . , χd,Nχ (t)}, (1)

resulting in a total of NU ·Nχ desired velocity trajectories
where NU ∈ Z+ and Nχ ∈ Z+ are the number of speed
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Figure 3: Example of 5 speed trajectories with ramp time
Tramp = 1 s, and maneuver and step time lengths TU = T =
5 s. Acceleration is shown in the top plot, while speed
is shown in the bottom plot. Courtesy of (Eriksen et al.,
2019b).

and course motion primitives. To include feedback in
the trajectory generation, we use an error model of the
vessel to generate feedback-corrected speed and course
trajectories Ūd(t) and χ̄d(t), which similarly as in (1) is
combined in a set Ūd . The feedback-corrected speed and
course trajectories are used to generate feedback-corrected
predicted pose trajectories:

H̄ = {
η̄(t; Ū(t), χ̄(t))

��(Ū(t), χ̄(t)) ∈ Ū}
, (2)

where η̄(t; Ū(t), χ̄(t)) denotes a kinematic simulation pro-
cedure to obtain the vessel pose.

A full trajectory search space is created by first gen-
erating a set of sub-trajectories by using the maneuver-
generation procedure initialized with the initial vehicle
pose. At this stage, the prediction tree has a depth of
one with the initial vessel pose as the root node and a set
of leaf nodes each reached by one maneuver. Following
this, we append the trajectories with another maneuver by
repeating the maneuver-generation procedure, initialized
on each of the leaf nodes, which increases the depth of
the trajectory prediction tree with one level. This is re-
peated until the trajectory prediction tree has the desired
depth, i.e. each trajectory has the desired number of ma-
neuvers. This concept is illustrated in Figure 5. The
acceleration profile parameters and number of speed and
course motion primitives can be level-dependent, which
allows for shaping the maneuvers differently and avoiding
exponential growth with the number of levels. To reduce
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Figure 4: Example of 5 course trajectories with ramp
time Tramp = 1 s, and maneuver and step time lengths
Tχ = T = 5 s. Acceleration is shown in the top plot, rate
in the middle plot and course in the bottom plot. Courtesy
of (Eriksen et al., 2019b).

the complexity in tuning the algorithm, we use the same
ramp time Tramp and speed and course maneuver lengths
TU and Tχ throughout each level. For a desired trajec-
tory tree depth B (B maneuvers in each trajectory), this
leaves us with deciding the step time lengths of each level
T = [T1,T2, . . . ,TB], and the number of speed and course
maneuvers at each level NU = [NU,1, NU,2, . . . , NU,B] and
N χ = [Nχ,1, Nχ,2, . . . , Nχ,B].
A set of feedback-corrected predicted pose trajectories

for a trajectory generation with B = 3 levels is shown in
Figure 6. The ramp time is Tramp = 1 s, and the speed and
course maneuver lengths areTU = Tχ = 5 s. The step time
lengths areT = [20, 30, 30] s, and the number of speed and
course maneuvers are NU = [1, 1, 1] and N χ = [5, 3, 3].

2.2 Selecting the optimized trajectory
Given a search space of vessel trajectories and a desired
trajectory pd(t) ∈ R2, we solve an optimization problem
to find the optimized desired velocity trajectory u∗

d
(t) =[

U∗
d
(t) χ∗

d
(t)]> as:

u∗d(t) = argmin
(η̄k (t),ud,k (t))∈(H̄,Ud )

G(η̄k(t), ud,k(t); pd(t)). (3)

Level 0

Level 1

Level 2

Figure 5: Illustration of a trajectory prediction tree with
two levels. The red node is the root node containing the
initial vessel configuration. Other colors group nodes and
edges associated with each maneuver-generation proce-
dure, which generate three maneuvers each time (given by
combinations of NU and Nχ satisfying NU ·Nχ = 3). The
tree contains a total of nine trajectories, each consisting of
two sub-trajectories.

The objective function is given as:

G(η̄(t), ud(t); pd(t)) = walalign(η̄(t); pd(t))
+ wav,mavoidm(η̄(t)) + wav,savoids(η̄(t))
+ wt,U tranU (ud(t)) + wt,χtranχ(ud(t)), (4)

where wal,wav,m,wav,s,wt,U,wt,χ > 0 are tuning parame-
ters.

The align(·) function assigns a value to following the
desired trajectory pd(t). The avoidm(·) function assigns
a cost to traveling close to moving obstacles, which de-
pends on the distance to an obstacle for each point on
the predicted trajectories. The maneuvering rules in the
COLREGs, rules 13–15, require the vessel to maneuver
to starboard in head-on situations, and recommend to pass
behind an obstacle if the obstacle approaches from the
starboard side. To motivate the algorithm to follow these
rules, while being free to ignore the specific maneuver-
ing aspects if required in situations where the other vessel
violates the COLREGs, we use the obstacle regions in
Figure 7 when calculating this cost. The regions can be
interpreted as follows: the margin region is allowable to
enter, the safety region is not desirable to enter, while the
collision region should not be entered. Notice that the al-
gorithm will require a larger clearance in situations where
the maneuvering rules in the COLREGs are ignored, e.g.
if maneuvering to port in a head-on situation. See Eriksen
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Figure 6: A set of predicted pose trajectories with three
levels. Notice how the guidance function shifts some of the
maneuvers, marked in dark green, to converge towards the
desired trajectory, which is a straight-north trajectory from
the initial pose (not shown in the figure). For illustration
purposes, the trajectories only contain course maneuvers.

et al. (2019b) for more details on the align(·) and avoidm(·)
terms.

In this article, we introduce the avoids(·), tranU (·) and
tranχ(·) terms. The avoids(·) term assigns a cost to avoid-
ing static obstacles, while tranU (·) and tranχ(·) are transi-
tional cost terms increasing the robustness to noise. These
terms will be discussed in detail in the following two sec-
tions.

2.3 Static obstacle avoidance
Static obstacles are modeled using an occupancy grid,
which allows for easy representation of obstacles with ar-
bitrary shapes like e.g. land and islands. In addition,
static obstacles are padded with a decaying gradient to in-
troduce some smoothness to the static obstacle avoidance
function. Given an occupancy grid O(p) ∈ [0, 100] where
O(p) = 100 and O(p) = 0 represents an occupied and
empty cell, respectively, we define the static obstacle term
as:

avoids(η̄(t)) =
∫ t0+T

t0

O( p̄(γ))dγ, (5)

where t0 denotes the initial time and η̄(t) =[
p̄(t)> ψ̄(t)]>.

a2

Ownship

a1

a0
β

c1

c0

c2

b0

b1

b2

Margin
region

Safety
region

Collision
region

Figure 7: Avoidance cost regions centered at the moving
obstacle, each constructed by one circular and three el-
liptical segments. The green, yellow and red regions are
named the margin, safety and collision regions, respec-
tively. The avoidance cost increases linearly with differ-
ent gradients inside the green and yellow regions, while
the cost is constant inside the red region. The variables
ai, bi and ci , i ∈ {1, 2, 3} denote the region sizes, where
ci = bi + dCOLREGs with dCOLREGs controlling the COL-
REGs expansion. Courtesy of (Eriksen et al., 2019b).

2.4 Speed and course transitional costs
In order to improve the robustness to noise on obstacle
estimates, transitional cost is included in the objective
function, which penalizes changing the planned trajectory
from iteration to iteration. In Eriksen et al. (2019b), a
single transitional cost term is used, which introduces a
cost if one selects a different speed and/or course than the
one closest to the one selected in the previous iteration.
Note that the trajectory prediction is based on sampling
the possible acceleration of the vessel in the current iter-
ation, which implies that the exact trajectory selected in
the previous iteration may not exist in the current search
space.

Here, it is proposed to split the transitional cost term
into separate speed and course terms. This motivates the
algorithm to not alter the course if the speed is changed
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and vice versa, which would not be the case when using
a single transitional cost term. The transitional cost terms
are defined as:

tranU (ud(t)) =
{

1,
∫ t0+T1
t0

��Ud(γ) −U−
d
(γ)

�� dγ > eU,min

0, else,
(6)

tranχ(ud(t)) =
{

1,
∫ t0+T1
t0

��χd(γ) − χ−d (γ)�� dγ > eχ,min

0, else,
(7)

with ud(t) =
[
Ud(t) χd(t)

]>. The variables U−
d
(t) and

χ−
d
(t) denote the current desired velocity trajectory tracked

by the vessel controllers, and T1 is the step time of the first
trajectory maneuver. The variables eU,min and eχ,min de-
note the minimum difference between the current desired
velocity trajectory and the candidates:

eU,min = min
ud (t)∈Ud

∫ t0+T1

t0

��Ud(γ) −U−d (γ)
�� dγ

eχ,min = min
ud (t)∈Ud

∫ t0+T1

t0

��χd(γ) − χ−d (γ)�� dγ.
(8)

3 Experimental results
The modified BC-MPC algorithm was tested in full-scale
experiments in the Trondheimsfjord in Norway on the 27th
of September 2018. This section describes the experimen-
tal setup and presets results from the experiments.

3.1 Experimental setup
The experimental setup was similar to the setup reported
in Eriksen et al. (2019b), using the Telemetron ASV from
Maritime Robotics as the ownship and the Ocean Space
Drone 1 (OSD1) from Kongsberg Seatex as the moving
obstacle. In addition, virtual static obstacles, expanded
with a padding radius, were used to emulate static obsta-
cles. The padding radius was selected as 150 m in most of
the experiments. Notice that this padding radius only re-
lates to static obstacles and that safety margins for moving
obstacles are enforced by the obstacle regions in Figure 7.
The Telemetron ASV, shown in Figure 8, is a 26-foot high-
speed ASV capable of speeds up to 18 m/s and equipped
for both manned and unmanned operations. The OSD1,
shown in Figure 9, is a modified offshore lifeboat with a

Figure 8: The Telemetron ASV, owned and operated by
Maritime Robotics. Courtesy of Maritime Robotics.

Figure 9: The Kongsberg Seatex Ocean Space Drone 2,
which is identical to the Ocean Space Drone 1 (OSD1).
Courtesy of Kongsberg Seatex.

length of 12 m, and was steered at a constant speed of 5
knots during the experiments. The OSD1 played the role
of a moving obstacle in the experiments, and was detected
and tracked using a radar-based tracking system, which
is discussed in detail in Wilthil et al. (2017) and Wilthil
(2019). Both the BC-MPC algorithm and the radar track-
ing system was implemented using the Robot Operating
System (ROS), and was run on a processing platform with
an Intel® i7 3.4 GHz CPU running Ubuntu 16.04 Linux
onboard the Telemetron ASV. See Table 1 for specifica-
tions on the Telemetron ASV and the sensor system.

The BC-MPC algorithmwas run at a rate of 0.2 Hz with
the parameters in Table 2. At sea, vessels typically maneu-
ver with large margins, making it safe to run the BC-MPC

171



Table 1: Telemetron ASV specifications.
Component Description
Vessel hull Polarcirkel Sport 845

Length 8.45 m
Width 2.71 m
Weight 1675 kg

Propulsion system Yamaha 225 HP outboard en-
gine

Motor control Electro-mechanical actuation
of throttle valve

Rudder control Hydraulic actuation of out-
board engine angle with
proportional-derivative (PD)
feedback control

Navigation system Kongsberg Seatex Seapath
330+

Radar SimradBroadband 4G™Radar
Processing platform Intel® i7 3.4 GHz CPU, run-

ning Ubuntu 16.04 Linux

algorithm at this rate. Furthermore, the sample time of
the radar is 2.5 s, which together with the dynamics of
the tracking system algorithms results in the closed-loop
time delay being dominated by the obstacle detection and
tracking system. With the given tuning parameters, the
BC-MPC algorithm has a runtime of approximately 0.4 s
(including interfacing the radar tracking system), allow-
ing for a higher rate if sensors providing faster updates
are available. The tuning parameters are quite similar to
the ones used in the original algorithm, with the exception
of the first step time length, which is selected as 20 s in-
stead of 5 s in Eriksen et al. (2019b). With this tuning,
the algorithm plans for making one maneuver of 5 s at
the current time and keeping a constant course until 20 s
have passed, rather than planning to do a new maneuver
after only 5 s. This represents a more “maritime” way
to maneuver compared to performing rapid consecutive
maneuvers, and the transitional cost terms will motivate
the algorithm to keep a constant course rather than se-
lecting a new planned maneuver. Notice, however, that
the algorithm is still free to choose a new maneuver ev-
ery 5 s, but the transitional cost terms will favor keeping
constant speed and course. To avoid that the vessel con-
troller limited the performance of the COLAV system, we
used a model-based speed and course controller shown to

Table 2: BC-MPC algorithm parameters.
Parameter Value Description
B 3 Trajectory prediction tree

depth
T [20, 30, 30] s Step time lengths
NU [5, 1, 1] Number of SOG maneuvers
N χ [5, 3, 3] Number of course maneuvers
Tramp 1 s Ramp time
TU 5 s SOG maneuver length
Tχ 5 s Course maneuver length

wal 1.5 Align weight
wav,m 6000 Moving obstacle avoid weight
wav,s 30 Static obstacle avoid weight
wt,U 2100 SOG transitional cost weight
wt,χ 1050 Course transitional cost

weight

a0 50 m Collision region major axis
a1 150 m Safety region major axis
a2 250 m Margin region major axis
b0 25 m Collision region minor axis
b1 75 m Safety region minor axis
b2 125 m Margin region minor axis
dCOLREGs 100 m COLREGs expansion

have high performance for high-speed ASVs (Eriksen and
Breivik, 2018).

During the experiments, we tested four different scenar-
ios:

1. A static-only scenario with two static obstacles.

2. A head-on situation with the OSD1 and four static
obstacles.

3. A crossing situation with the OSD1 and one static
obstacle.

4. An overtaking situation with the OSD1 and one static
obstacle.

The desired speed of the Telemetron ASV was 5 m/s in
all the scenarios, except the overtaking scenario where the
desired speed was 8 m/s.

3.2 Scenario 1
Scenario 1 is shown in Figure 10. Here, two static obsta-
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Figure 10: Scenario 1: Static-only scenario. The desired
trajectory intersects with two obstacles, which the ownship
successfully avoids. The blue circle denotes the initial po-
sition, while the text and asterisks mark each 60 s of the
experiment. The yellow patches show the static obsta-
cles, while the dark green contour lines show the padding
regions.

cles block the desired trajectory, requiring the BC-MPC
algorithm to circumvent the obstacles. This scenario may
seemabit unrealistic, since the high-level planner andmid-
level COLAV algorithm should plan paths which avoid
static obstacles. However, the BC-MPC algorithm must
be able to avoid static obstacles in order to stay safe in sit-
uations where we deviate from the desired trajectory, e.g.
when avoiding moving obstacles or in situations where the
mid-level algorithm is unable to produce a solution. The
ownship converges to the desired trajectory before avoid-
ing the first static obstacle by maneuvering to starboard. It
would probably have been better tomaneuver to port, since
thiswould avoid having to pass through the narrow channel
between the first and the second obstacle. The BC-MPC
algorithm does, however, have a limited planning horizon
of 80 s with the current tuning parameters, which makes it
unaware of the narrow channel when making the decision
of maneuvering to starboard. Subsequently, the ownship
converges towards the desired trajectory and passes the
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Figure 11: Scenario 2: Head-on situation. The desired tra-
jectory passes through a narrow channel, which is blocked
by the OSD1. The circles denote the initial positions,
while the text and asterisks mark each 60 s of the experi-
ment. The yellow patches show the static obstacles, while
the dark green contour lines show the padding regions.

second obstacle by having a small distance to the desired
trajectory, which resides slightly inside the padding region
of the static obstacle. After passing the second obstacle,
the ownship converges to the desired trajectory, before
avoiding the first obstacle once again.

3.3 Scenario 2
Scenario 2 is a head-on situation where the desired tra-
jectory goes through a narrow channel composed by two
static obstacles, and the channel entry is blocked by the
OSD1. In this scenario, the padding distance was selected
as 50 m in order to create the narrow channel between the
obstacles. As shown in Figure 11, the ownship avoids the
OSD1 by maneuvering to starboard and hence complying
with the COLREGs. Following this turn, the first static
obstacle is passed on the east side. The ownship returns
to the desired trajectory and travels through the channel
composed by the two last static obstacles.
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3.4 Scenario 3

Scenario 3, shown in Figure 12, is a crossing situation
where the OSD1 approaches from the ownship’s starboard
side, requiring the ownship to give way to avoid colli-
sion according to the COLREGs. In addition, there is a
static obstacle on the starboard side of the ownship, block-
ing the ownship from maneuvering to starboard early. In
compliance with the COLREGs, the ownship performs a
starboard maneuver in order to pass behind the OSD1,
while passing close to the boundary of the static obsta-
cle. When the OSD1 has been passed, the ownship slowly
converges towards the desired trajectory. The reason for
the slow convergence is that the cost that the transitional
cost terms introduces is just too large for the algorithm to
change to a trajectory with a faster convergence. This is
sometimes observed, but does not compromise safety and
is a subject of tuning the transitional cost weights wt,U and
wt,χ.
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Figure 13: Scenario 4: Overtaking situation. The ownship
overtakes theOSD1 by passing on the starboard side, while
avoiding the static obstacle. The circles denote the initial
positions, while the text and asterisks mark each 60 s of
the experiment. The yellow patch shows the static obsta-
cle, while the dark green contour line shows the padding
region.

3.5 Scenario 4
Scenario 4 is an overtaking situation where the ownship
approaches the OSD1 from behind. To allow the vessel
being overtaken to maneuver to starboard if it finds itself
in a separate collision situation, the BC-MPC algorithm
is designed to favor a port turn in overtaking situations.
However, as shown in Figure 13, a static obstacle is block-
ing the port side of the obstacle, which makes the ownship
pass the obstacle on its starboard side. As mentioned, the
BC-MPC algorithm is designed to pass with a larger clear-
ance if passing on the port side rather than the starboard
side, which can be seen by comparing this scenario with
Experiment 3 in (Eriksen et al., 2019b).

3.6 Experiment summary
TheBC-MPCalgorithm is able to avoid collisions in all the
scenarios, while converging to the desired trajectory when
it is not obstructed by obstacles. The resulting ownship tra-
jectories are clear and generally show the intension of the
BC-MPC algorithm. The ownship trajectories are, how-
ever, a bit wobbly when the algorithm traverses alongside
static obstacles. The reason for this is that the trajectory
search space consists of a finite number of trajectories,
of which none may traverse exactly parallel to the static
obstacle. This results in that the algorithm sometimes
choose to “zig-zag” along static obstacles, as seen in Sce-
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Table 3: Minimum distance to obstacles. *The padding
distance in Scenario 2 is 50 m.

Scenario
number

Minimum distance
to static obstacles

Minimum distance
to moving obstacle

Scenario 1 130.4 m –
Scenario 2 31.3 m* 167.1 m
Scenario 3 148.6 m 76.1 m
Scenario 4 115.9 m 145.3 m

nario 1. In the usual case where the mid-level algorithm
would recompute a collision-free trajectory circumventing
the obstacles, the BC-MPC algorithm would however be
able to traverse smoothly along the obstacles by following
the desired trajectory. Also, due to algae growth on the
hull, the vessel dynamics had changed quite a bit since
the model-based vessel controller was tuned, which also
contributed to wobbling in the form of course overshoots.

As seen in Table 3, the ownship travels inside the
padding region of the static obstacles. This is to be ex-
pected, since the objective function is only sensitive to
the static obstacles when the trajectory resides inside of
the padding region. Hence, the padding region and static
avoidance weight wav,s should be selected such that a suf-
ficient safety margin is achieved. A formulation with mul-
tiple regions with different gradients, as for moving obsta-
cles, could make it easier to tune the algorithm to obtain
a desired safety margin to static obstacles. The required
distance to the moving obstacle is a bit more complex to
discuss, since the obstacle regions sizes depend on the
relative bearing. The ownship does, however, stay outside
of the safety region in the head-on and crossing scenar-
ios (scenarios 2 and 3), while we slightly enter the safety
region in the overtaking scenario (Scenario 4).

4 Conclusion and further work
In this article, we have presented two modifications to the
BC-MPC algorithm for ASV COLAV. The first modifica-
tion allows the algorithm to avoid static obstacles in the
form of an occupancy grid. The second modification con-
cerns improved transitional cost terms by introducing tran-
sitional cost in speed and course separately, motivating the
algorithm to not change the course if the speed is changed

and vice versa. In addition, the algorithm tuning has been
changed in order to obtain more “maritime” maneuvers
and better utilize the transitional cost terms. The modi-
fied BC-MPC algorithm is tested in full-scale experiments
in the Trondheimsfjord in Norway. A moving obstacle
is detected and tracked using a radar-based system, while
virtual static obstacles are added in the COLAV system.
Four different scenarios were tested in experiments, all of
which provided good results.

In Eriksen et al. (2019a), the authors have used the
BC-MPC algorithm described in this article in a hybrid
architecture, demonstrating COLAVcompliant with COL-
REGs rules 8 and 13–17 in simulations. In the future, we
would like to perform an extensive simulation study of the
BC-MPC algorithm, in order to analyze the algorithm’s
performance in greater detail.
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ABSTRACT
This paper presents a three-layered hybrid collision avoidance (COLAV) system for autonomous surface

vehicles, compliant with rules 8 and 13–17 of the International Regulations for Preventing Collisions at
Sea (COLREGs). The COLAV system consists of a high-level planner producing an energy-optimized
trajectory, a model predictive control based mid-level COLAV algorithm considering moving obstacles
and the COLREGs, and the branching-course model predictive control algorithm for short-term COLAV
handling emergency situations in accordance with the COLREGs. Previously developed algorithms by the
authors are used for the high-level planner and short-term COLAV, while we in this paper further develop
the mid-level algorithm to make it comply with COLREGs rules 13–17. This includes developing a state
machine for classifying obstacle vessels using a combination of the geometrical situation, the distance
and time to the closest point of approach (CPA) and a new CPA-like measure. The performance of the
hybrid COLAV system is tested through numerical simulations for three scenarios representing a range of
different challenges, including multi-obstacle situations with multiple simultaneously active COLREGs
rules, and also obstacles ignoring the COLREGs. The COLAV system avoids collision in all the scenarios,
and follows the energy-optimized trajectory when the obstacles do not interfere with it.
Keywords: Hybrid collision avoidance, Autonomous surface vehicle (ASV), COLREGs, COLREGs compliant, Model predictive control

(MPC), Energy-optimized control

1 INTRODUCTION

Motivated by the potential for reduced costs and increased safety, the maritime industry is rapidly
moving towards autonomous operations. Following groundbreaking advances in the automotive
industry, many sectors within the maritime industry are considering the benefits of autonomy,
which includes more environmentally friendly operations. For instance, the agricultural chemical
company Yara together with the maritime technology supplier Kongsberg Maritime are developing
the electrical autonomous container vessel Yara Birkeland, which aims to replace 40 thousand yearly
truck journeys in urban eastern Norway1. Another example is the world’s first autonomous car
ferry, Falco, developed by Rolls-Royce (recently bought by Kongsberg Maritime) and Finferries. In

1 https://www.wsj.com/articles/norway-takes-lead-in-race-to-build-autonomous-cargo-ships-1500721202, Accessed 2019-05-
22.
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2018, Falco navigated autonomously between two ports in Finland2. Reports state that in excess of
75 % of maritime accidents are due to human errors (Chauvin, 2011; Levander, 2017), indicating
that there is also a potential for increased safety in addition to the economical and environmental
benefits.

An obvious prerequisite for autonomous ship operations is the development of robust and well-
functioning collision avoidance (COLAV) systems. In addition to generating collision-free maneuvers,
a COLAV system must adhere to the “rules of the road” of the oceans, i.e. the International
Regulations for Preventing Collisions at Sea (COLREGs) (Cockcroft and Lameijer, 2004). These
rules are written for human ship operators and include qualitative requirements on how to perform
safe and readily observable maneuvers. Part B of the COLREGs concern steering and sailing, and
includes the following rules that are the most relevant to a motion control system:

Rule 8 Requires maneuvers to be readily observable and to be done in ample time.
Rules 13–15 Describe the maneuvers to perform in cases of overtaking, head-on and crossing

situations. Participants in crossing situations are defined by the terms give-way and
stand-on vessels.

Rule 16 Requires that a give-way vessel must take early and substantial action to keep clear
of the stand-on vessel.

Rule 17 Consists of two main parts. The first part requires a stand-on vessel to maintain its
course and speed, while the second part allows/requires3 a stand-on vessel to take
action to avoid collision if the give-way vessel is not taking action.

Since the rules are written for humans, with few quantitative figures, a challenge for autonomous
operation is to quantify them into behaviors that can be executed algorithmically. The focus of
the work in this paper is to do that, and to design a hybrid COLAV system that performs motion
planning and generates maneuvers in compliance to rules 8 and 13–17 of the COLREGs.

A number of COLAV approaches considering the COLREGs have been proposed in the past.
This includes algorithms using simulation-based model predictive control (Hagen et al., 2018),
velocity obstacles (Kuwata et al., 2014), rule-based repairing A* (Campbell et al., 2014) and interval
programming (Benjamin et al., 2006). All these approaches are single-layer approaches, where one
algorithm solves the complete COLAV problem.

Another approach to the COLAV problem is to use a hybrid architecture, where the task of planning
an obstacle-free path or trajectory, complying with the COLREGs and ultimately performing safe
maneuvers is divided into layers in a control hierarchy. The idea of hybrid architectures is to divide
the subtasks of the COLAV problem into multiple algorithms, exploiting their complementary
strengths. This also has the side effect of making it easier for human operators or supervisors to
understand the system. Most single-layer algorithms use sample-based approaches that consider a
finite number of discrete control inputs, as opposed to conventional gradient-based search algorithms.
The reason for this is that many gradient-based algorithms are not sufficiently numerically robust,
not allowing a COLAV system to solely rely on such an algorithm. This issue can be handled in
hybrid architectures, constrained by the bottom-level algorithm being numerically robust and able

2 https://www.marinemec.com/news/view,rollsroyce-and-finferries-demonstrate-worlds-first-fully-autonomous-ferry_56102.
htm, Accessed 2019-04-11.
3 Rule 17 allows the stand-on vessel to maneuver when it becomes apparent that the give-way vessel does maneuver to avoid collision. If
the vessels are so close that the give-way vessel cannot avoid collision by itself, Rule 17 requires the stand-on vessel to maneuver.
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Figure 1. Hybrid architecture with three COLAV layers, where the highlighted functions mark the
areas of interest in this article. The COLAV system consists of a high-level planner, a mid-level
COLAV algorithm and a short-term COLAV algorithm. The COLAV system is supported by data
from electronic nautical charts, represented in a suitable manner for the algorithms, as well as
situational awareness functions that track and predict obstacles, interpret the COLREGs and
perform risk assessment.

to handle extraordinary situations where the other algorithms fail. Hence, hybrid architectures also
allows using gradient-based algorithms, which are able to solve problems with large search spaces
more efficiently than sample-based algorithms. The works by Švec et al. (2013) and Loe (2008) are
examples of two-layered hybrid COLAV architectures. The top layers perform trajectory planning
among static obstacles, while the bottom layers perform moving obstacle avoidance in compliance
with COLREGs rules 13–16. Casalino et al. (2009) presents a three-layered hybrid COLAV system
where the top layer also performs trajectory planning amongst static obstacles. The middle layer
avoids moving obstacles, while the bottom layer implements safety functions for handling cases
where the two other layers fail. This approach does, however, not consider the COLREGs.

Figure 1 shows a three-layered hybrid COLAV system for an autonomous surface vehicle (ASV). The
authors have previously worked extensively on different components of this architecture. Examples
include high-level COLAV algorithms (Bitar et al., 2018, 2019b), a mid-level algorithm (Eriksen
and Breivik, 2017b; Bitar et al., 2019a), short-term algorithms (Eriksen et al., 2018, 2019; Eriksen
and Breivik, 2019) and the development of high-performance vessel controllers (Eriksen and Breivik,
2017a, 2018).
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In this paper, we demonstrate the three-layered hybrid COLAV shown in Figure 1 by combining
and extending the COLAV algorithms developed in (Bitar et al., 2019a; Eriksen and Breivik, 2017b;
Bitar et al., 2019b; Eriksen et al., 2019; Eriksen and Breivik, 2019). The high-level planner has a
long temporal horizon, and finds an energy-optimized nominal trajectory from an initial to a goal
position considering static obstacles. Since the high-level planner only considers static information,
it is intended to be run offline, but it can also be run online, for instance if new static obstacles
are detected. The mid-level algorithm attempts to follow this nominal trajectory, while performing
COLAV of moving obstacles in compliance with COLREGs rules 8, 13–16 and the first part of Rule
17. The mid-level algorithm is run periodically with a shorter temporal horizon than the high-level
algorithm, and produces a modified trajectory which is passed to the short-term layer. Both the high-
level and mid-level algorithms use gradient-based optimization. The short-term algorithm attempts
to follow the modified trajectory, while it in compliance with the second part of Rule 17 handles
situations where obstacles ignore the COLREGs. This algorithm also handles other emergency
situations, and uses sample-based optimization to achieve a high level of robustness, ensuring safe
operation if the mid-level algorithm fails to find a solution. The following list summarizes our
contributions:

• The high-level planner from (Bitar et al., 2019b) is modified to include the mathematical model
of the Telemetron ASV in (Bitar et al., 2019a), including ocean currents.

• The development of a state-machine-based COLREGs interpretation scheme.
• The mid-level COLAV from (Bitar et al., 2019a) is modified to include rules 13–16 and the first

part of Rule 17.
• The branching-course model predictive control (BC-MPC) algorithm for short-term COLAV is

modified to reduce oscillatory behavior in turns.
• The three-layered COLAV system is verified in simulations and shown to be compliant with

rules 8 and 13–17.

The rest of the paper has the following structure: The mathematical model of the ASV Telemetron
is described in Section 2. The high-level planner, mid-level and short-term COLAV algorithms
are described in sections 3 to 5, respectively. In Section 6 we present and discuss the simulation
scenarios and results, and we conclude the paper in Section 7.

2 ASV MODELING

The vessel of interest in this article is the Telemetron ASV, which is owned and operated by the
Norwegian company Maritime Robotics and shown in Figure 2. The Telemetron ASV is a high-speed
dual-use vessel propelled by a steerable outboard engine, capable of speeds up to 18 m/s.

Eriksen and Breivik (2017a) presents a model of the Telemetron ASV, which is extended to include
ocean currents in (Bitar et al., 2019a). The model has the form

η̇ = R(ψ)xr +
[
V >c 0

]>

M (xr)ẋr + σ(xr) = τ ,
(1)

where η = [x, y, ψ]> ∈ R2 × S is the vessel pose and V c = [Vx, Vy]> describes the ocean current,
both in the Earth-fixed North-East-Down frame {n}. The vector xr = [ur, r]> ∈ Xr ⊂ R2 is the
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Figure 2. The Telemetron ASV, designed for both manned and unmanned operations. Courtesy of
Maritime Robotics.

vessel velocity under the assumption of zero relative sway motion (Bitar et al., 2019a), where the
set Xr describes the vessel-feasible steady-state velocities where (1) is valid. The transformation
matrix R(ψ) is given by the heading ψ ∈ S as

R(ψ) =




cosψ 0
sinψ 0

0 1


 , (2)

while r ∈ R describes the vessel yaw-rate. The matrix M(xr) is a state-dependent inertia matrix,
while σ(xr) and τ = [τm, τδ]> ∈ U ⊂ R2 describe the vessel damping and control input, respectively.
The set U describes the control inputs where (1) is valid.

3 HIGH-LEVEL PLANNER

To plan the ASV’s nominal trajectory, we use a high-level trajectory planner developed in (Bitar
et al., 2019b). This trajectory planner uses the ASV model described in Section 2 to generate an
energy-optimized trajectory between the start and goal positions. The planning algorithm combines
an A? implementation and an optimal control problem (OCP) solver to generate a feasible and
optimized trajectory.

The high-level planning algorithm consists of three steps: First the A? implementation finds the
shortest piecewise linear path between the start and goal position. Secondly, artificial temporal
information is added to the path, converting it to a trajectory of states and inputs. Finally, the
trajectory is used as an initial guess for an OCP solver, which finds a locally energy-optimized
trajectory near the shortest path. All steps account for static obstacles in the form of elliptical
boundaries.
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3.1 Static obstacles

The elliptical boundaries are described with the inequality:

(
x− xc
xa

)2
+
(
y − yc
ya

)2
≥ 1 , (3)

where xc and yc is the ellipsis center, and xa, ya > 0 are the ellipsis major and minor axes, respectively.
To allow for angled obstacles, the ellipses are rotated clockwise by an angle α. We add a small
constant ε > 0 to each side of the inequality, and take the logarithm to arrive at the following
obstacle representation:

ho(x, y, xc, yc, xa, ya, α) = − log
[(

(x− xc) cosα + (y − yc) sinα
xa

)2

+
(
−(x− xc) sinα + (y − yc) cosα

ya

)2
+ ε

]
+ log(1 + ε) ≤ 0 . (4)

The logarithm operation is applied to reduce the numerical range of the inequality, which helps with
numerical stability of the subsequently described solver, and the constant ε is included to avoid
singularities when (4) is evaluated for (x, y)→ (xc, yc) (Bitar et al., 2019a).

3.2 Trajectory generation and optimization

From a scenario consisting of static obstacles, as mentioned in Section 3.1, we find the piecewise
linear shortest path by performing an A? search on a uniformly decomposed grid. The resulting path
is converted to a time-parametrized full-state trajectory by assuming a constant forward velocity,
and connecting the shortest path with straight segments and circle arcs. The constant forward
velocity is

unom = Lpath
tmax

, (5)

where Lpath is the length of the connected path, and tmax is the maximum allowed time to complete
the trajectory. This full-state trajectory is then used as an initial guess to solve the OCP that gives
the energy-optimized trajectory:

min
z(·),τ (·)

∫ tmax

0
Fhi(z(t), τ (t))dt (6a)

subject to
ż(t) = f(z(t), τ (t)) ∀t ∈ [0, tmax] (6b)
hhi(z(t), τ (t)) ≤ 0 ∀t ∈ [0, tmax] (6c)
ehi(z(0), z(tmax)) = 0 . (6d)

The solution of this OCP is a trajectory of states z(·) and inputs τ (·) that minimizes the cost
functional in (6a). The ASV model from Section 2 is rewritten as ż = f(z, τ ), where z = [η>,x>r ]>
and f(z, τ ) represents (1).
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The cost functional (6a) is chosen to minimize energy. The cost-to-go function is

Fhi(z, τ ) = KeFe(z, τ ) +Kδτ
2
δ , (7)

with tuning parameters Ke, Kδ > 0. The first term consists of a function that is proportional to
mechanical work performed by the ASV:

Fe(z, τ ) = |n(τm)2 · cos δ(τδ)︸ ︷︷ ︸
∝ surge force

·ur|+ |n(τm)2 · sin δ(τδ) · Lm︸ ︷︷ ︸
∝ yaw moment

·r| . (8)

The function n : R+ → R+ maps the control input τm to propeller angular velocity. The function
δ : R→ S maps the control input τδ to outboard motor angle. The second term in (8) is a quadratic
cost to yaw control, included to avoid issues with singularity when solving the OCP.

The inequality constraints (6c) observe state boundaries as well as the static obstacles as represented
in Section 3.1. The boundary conditions (6d) denote initial and final constraints, i.e. start and end
states.

A detailed description of the transcription of the OCP (6) to a nonlinear program (NLP) using
multiple shooting with Nhi shooting intervals is found in (Bitar et al., 2019b).

4 MID-LEVEL COLAV

The mid-level algorithm, initially presented in (Eriksen and Breivik, 2017b) and further developed
in (Bitar et al., 2019a), is a model predictive control (MPC)-based algorithm intended for long-term
COLAV. The algorithm utilizes gradient-based optimization, and takes both static and moving
obstacles into account while attempting to follow an energy-optimized nominal trajectory from the
high-level planner. The algorithm produces maneuvers complying with Rule 8 of the COLREGs,
which requires maneuvers to be made in ample time and be readily observable for other vessels. The
optimization problem is formulated as a NLP, which gives flexibility in designing the optimization
problem.

In this section, the algorithm is extended to also consider COLREGs rules 13–16 and the first
part of Rule 17.

4.1 The International Regulations for Preventing Collisions at Sea (COLREGs)

The COLREGs consists of a total of 37 rules and is divided into five parts (Cockcroft and Lameijer,
2004), where part B (rules 4–19) contains relevant rules on the conduct of vessels in proximity of
each other. The most relevant rules for designing COLAV systems in part B are rules 8 and 13–17:

Rule 8 Action to avoid collision. This rule states that actions taken to avoid collision should
be large enough to be readily observable of other ships, implying that series of small
alternations in speed and/or course should not be applied. The rule also recommends
that course changes should be prioritized over speed changes if there is enough free space
available, and that maneuvers must be made in ample time.

Rule 13 Overtaking. This rule states that a vessel is overtaking another if it approaches the
other vessel with a course more than 22.5° abaft her beam. The overtaking vessel has to
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(A) Head-on situation. (B) Crossing situation.

Figure 3. Illustration of head-on (A) and crossing (B) situations, and how they should be resolved.

stay clear of the overtaken vessel, but there is no statements on which side of the vessel
one should pass.

Rule 14 Head on. When two power-driven vessels approach each other on reciprocal, or nearly
reciprocal, courses, they are in a head-on situation. In such a situation, both vessels
should change their course to starboard, passing each other port-to-port, as shown in
Figure 3A. This rule states no explicit definition on what should be considered to be
reciprocal, or nearly reciprocal, courses, but court decisions indicate head-on situations
exist for opposing courses ±6°. Notice that the rule does not include sailing vessels,
which are covered by Rule 12.

Rule 15 Crossing. When two vessels approach each other such that the situation is not a head on
or an overtaking, it is a crossing situation. The vessel with the other one to her starboard
side is deemed the give-way vessel, while the other vessel is deemed the stand-on vessel.
As shown in Figure 3B, the give-way vessel should maneuver to avoid collision, preferably
by passing behind the stand-on vessel, while the stand-on vessel should keep her speed
and course.

Rule 16 Action by the give-way vessel. Every vessel which is required to keep out of the way
of another vessel should take early and large enough action to safely avoid collision.

Rule 17 Action by the stand-on vessel. This rule requires that a stand-on vessel should keep
its current speed and course. The stand-on vessel may, however, maneuver to avoid
collision if it becomes apparent that the give-way vessel is not taking appropriate actions
to avoid collision. Furthermore, if the stand-on vessel finds itself so close to the obstacle
that collision can not be avoided by the give-way vessel alone, the stand-on vessel should
take such action which best aids to avoid collision. In a crossing situation, the stand-on
vessel should avoid maneuvering to port, since this could lead to a collision if the give-way
vessel maneuvers to starboard.

In the hybrid architecture illustrated in Figure 1, the mid-level algorithm is given the task of
strictly enforcing COLREGs rules 13–16 and the stand-on requirement of Rule 17, while also
complying with Rule 8. In addition, we want the mid-level algorithm to comply with the first part of
Rule 17, by not maneuvering to avoid collision in crossing situations if the ownship is the stand-on
vessel. The COLAV system is inherently capable of adhering to the remaining requirement of Rule
17, where the stand-on vessel is allowed or required to maneuver, by having different prediction
horizons and safety margins in the mid-level and short-term layers. The BC-MPC algorithm does
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not have any limitations of not maneuvering in stand-on situations, and will hence maneuver in
stand-on situations if we come sufficiently close to the obstacle.

The mid-level algorithm as presented in (Bitar et al., 2019a) only complies with Rule 8. Further
in this section, we therefore present improvements to the mid-level algorithm to make it comply
with rules 13–16 and the stand-on requirement of Rule 17.

4.2 COLREGs interpretation

A commonly used concept for interpreting obstacles in COLAV algorithms is to use assign a spatial
region to obstacles, which the ownship should not enter. This approach is commonly referred to
as a domain-based approach. Specially designed ship domains are commonly used for interpreting
the COLREGs in COLAV algorithms, where one usually require a larger clearance to obstacles if
choosing maneuvers that violate the COLREGs (Eriksen et al., 2019; Szlapczynski and Szlapczynska,
2017). This approach is attractive since it continuously captures multiple COLREGs rules, and
does not require logic or discrete decisions. However, such an approach does not strictly enforce the
COLREGs rules, since it will allow maneuvers violating the rules if they are large enough. In addition,
a ship-domain approach will not be able to strictly enforce the stand-on requirement of Rule 17,
since a domain-based approach will avoid collision with all obstacles. One could ignore obstacles with
give-way obligations, but this would require an explicit COLREGs interpretation which conflicts
with domain-based approaches’ core idea of implicit COLREGs interpretation. Therefore, we pursue
an alternative approach to handling the COLREGs in the mid-level algorithm.

To simplify the COLREGs interpretation task, we look at the situation from a static perspective,
assuming that the current COLREGs situations are valid throughout the entire prediction horizon
of the mid-level algorithm. In reality, the COLREGs situations may, however, change during the
prediction horizon depending on both the ownship’s and obstacles future trajectory. For instance,
an obstacle approaching from head on, but far enough away to not be considered as a danger may
be put in a safe state. Hence, the mid-level algorithm will (for the current iteration) act like no
COLREGs rule applies to this vessel for the entire prediction horizon, while the obstacle may get
close enough during the prediction horizon to be considered as a head-on situation. An MPC scheme
of only implementing a small part of the prediction horizon will reduce the implications of this, since
the situation is reassessed each time mid-level algorithm is run, which justifies the assumption of
considering the COLREGs from a static perspective. Investigating the possibilities for dynamically
predicting future COLREGs situations as part of the MPC prediction will be considered as future
work.

4.2.1 State machine

We propose to utilize a state machine in order to decide which COLREGs rule is active with
respect to each obstacle in the vicinity of the ownship. The state machine contains the states:

SF Safe state. This implies that the COLREGs does not enforce any rule with respect to this
obstacle.

OT Overtaking state. This implies that COLREGs Rule 13 applies with respect to this obstacle.
The state machine does not discriminate on whether the ownship is overtaking another vessel
or is being overtaken, but this can be done by looking at which vessel has the higher speed
(Tam and Bucknall, 2010).

HO Head-on state. This implies that COLREGs Rule 14 applies with respect to this obstacle.
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Figure 4. COLREGs state machine. The abbreviations “GSF”, “GSO”, “GOT”, “GGW” and “GHO”
denote geometrical situations, while “entryxx” and “exitxx” denote additional state-dependent entry
and exit criterias.

GW Give-way state. This implies that COLREGs Rule 15 applies with respect to this obstacle,
and the ownship has to give way.

SO Stand-on state. This implies that COLREGs Rule 15 applies with respect to this obstacle,
and the ownship has to stand on.

EM Emergency state. This implies that the obstacle is so close and/or behaves unpredictably,
such that special considerations must be made.

As shown in Figure 4, all transitions have to go either from or to the safe state. This implies that
when the state machine decides that a COLREGs (or emergency) situation exists with respect to
an obstacle, it will not allow switching to another state without the situation being considered as
safe first. One could argue that it should be able to transition between specific states, like e.g. from
head-on, give-way and overtaking to emergency. This is an interesting topic, which should receive
attention in the future. To control the transitions between the different states, we combine the time
to and distance at the closest point of approach (CPA), a CPA-like measure of the time until a
critical point and a geometrical interpretation of the situation.

4.2.2 Entry and exit criteria

CPA is a common concept in maritime risk assessment. Given the current speed and course of the
ownship and an obstacle, CPA describes the time to the point where the two vessels are the closest,
and the distance to the obstacle at this point. Given the position and velocity vector of the ownship
p,v and an obstacle po,vo, the time to CPA is calculated as (Kufoalor et al., 2018)

tCPA =




0 if ‖v − v0‖2 ≤ ε
(p−po)·(v−vo)
‖v−vo‖22

else, (9)
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where ε > 0 is a small constant in order to avoid division by zero in the case where the relative
velocity between the ownship and obstacle is zero. Given tCPA, we calculate the distance between
the vessels at CPA as

dCPA = ‖(p+ tCPAv)− (po + tCPAvo)‖2. (10)

While the CPA is the point where the distance to an obstacle is at its minimum, the critical point
is where the distance to an obstacle crosses underneath a critical distance dcrit. This critical distance
describes a minimum obstacle distance that the mid-level algorithm is designed for. The time to the
critical point tcrit can be calculated by solving the equation

‖(p+ tcritv)− (po + tcritvo)‖2 = dcrit . (11)

In the cases where the distance between the ships does not fall below dcrit, tcrit is undefined.
Otherwise, there are generally two solutions. The interesting solution is the one with the lowest tcrit
value, as this is when the obstacle enters the dcrit boundary.

The state-machine entry criteria in Figure 4 are defined as

entryi =



true if dCPA < d

i,enter
CPA ∧ tCPA ∈ [ti,enter

CPA , t
i,enter
CPA ]

false otherwise
, ∀i ∈ {SO,OT,GW,HO}

entryEM =



true if tcrit < t

EM,enter
crit ∧ tCPA > 0

false otherwise,

(12)

where di,enter
CPA , ti,enter

CPA and ti,enter
CPA for i ∈ {SO,OT,GW,HO} are tuning parameters denoting thresholds

on dCPA and tCPA in order to satisfy the entry criteria for the stand-on, overtaking, give-way and
head-on states. The tuning parameter tEM,enter

crit denotes an upper limit on tcrit in order to enter the
emergency state. The idea behind the stand-on, overtaking, give-way and head-on entry criterias
are that in order for the obstacle to represent a risk, both tCPA and dCPA need to be within some
tunable thresholds. Situations with a very low dCPA, but with a high tCPA, will not trigger the
entry criteria, since the situations will not occur in the near future. Similarly, if tCPA is within the
thresholds, but dCPA is large, this indicates a safe passing where risk of collision does not exist.
The lower bound on tCPA will typically be selected as zero, and is useful to distinguish between
obstacles moving towards of away from the ownship. For the emergency state, the entry criteria
is based on the critical point, at which we are so close that the mid-level algorithm may struggle
with providing meaningful maneuvers. In addition to tcrit being under the threshold t

EM,enter
crit , we

require that tCPA is positive, indicating that we are getting closer to the obstacle. Currently, we only
allow entering the emergency state if the situation is a geometrical give-way or head-on, since an
overtaking situation represents a smaller danger and has less requirement for special consideration.

The state-machine exit criterias in Figure 4 are defined as

exiti =



true if dCPA ≥ di,exit

CPA ∨ tCPA /∈ [ti,exit
CPA , t

i,exit
CPA ]

false otherwise
, ∀i ∈ {SO,OT,GW,HO}

exitEM =



true if tcrit ≥ tEM,exit

crit ∨ tCPA ≤ 0
false otherwise,

(13)
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where di,exit
CPA , t

i,exit
CPA and t

i,exit
CPA for i ∈ {SO,OT,GW,HO} are tuning parameters denoting thresholds

on dCPA and tCPA in order to satisfy the exit criteria for the stand-on, overtaking, give-way and
head-on states. The exit criteria for the emergency state is satisfied if tcrit is larger than the tuning
parameter tEM,enter

exit , or tCPA is negative, implying that the obstacle is moving further away from the
ownship. Note that the exit criterias are obtained by negating the entry criterias, but with other
thresholds in order to implement hysteresis to avoid shattering. In general, we allow for different
tuning parameters for the different states, but in our simulations we see that selecting the same
tuning parameters for all states provides good results. Therefore, we define:

d
i,enter
CPA = d

enter
CPA

ti,enter
CPA = tenter

CPA

t
i,enter
CPA = t

enter
CPA ,

(14)

and
di,exit

CPA = dexit
CPA

ti,exit
CPA = texit

CPA

t
i,exit
CPA = t

exit
CPA.

(15)

4.2.3 Geometrical situation interpretation

Tam and Bucknall (2010) present a geometrical interpretation scheme for deciding COLREGs
situations based on the relative position, bearing and course of the obstacle with respect to the
ownship. We base our geometrical interpretation on a slightly modified version of this scheme,
where we include the sign of tCPA to distinguish between situations where the obstacle moves closer
towards or farther away from the ownship. The geometrical interpretation is shown in Figure 5,
where the geometrical situation is obtained by finding which region the obstacle position and course
resides in. Notice that the head-on region is larger than the threshold of ±6° as described by the
COLREGs. The reason for this is that Tam and Bucknall recommend using a larger region of 22.5°
in order to increase the robustness of the geometrical COLREGs interpretation scheme.

4.3 Interface to the high-level planner

The high-level planner produces an energy-optimized nominal trajectory for the ownship to follow.
However, since the high-level planner does not consider moving obstacles, the speed is the only
time-relevant factor of the desired trajectory. In a case where the ownship for some reason, e.g.
avoiding moving obstacles, lag behind the nominal trajectory, following the nominal trajectory in
absolute time would cause a speed increase in order to catch up with it. Therefore, the mid-level
algorithm performs relative trajectory tracking, where it tracks the nominal trajectory with a time
offset tb ∈ R. This results in a relative nominal trajectory for the mid-level algorithm:

p̄d(t) = pd(t+ tb), (16)

where pd = [Nd(t), Ed(t)]> is the nominal trajectory from the high-level planner. The time offset tb
is calculated each time the mid-level algorithm is run by solving a separate optimization problem,
and is selected such that p̄d(t0) is the point on the nominal trajectory closest to the ownship. See
(Bitar et al., 2019a) for a detailed description of this concept.
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Figure 5. Illustration of the geometrical COLREGs interpretation, where the ownship course
is denoted as χ and θ1, θ2, θ3 denote symmetrical regions given as [22.5°, 90°, 112.5°]. The circles
illustrate obstacles in different relative bearing regions, and have a fixed orientation with respect to the
ownship. The geometrical situations are color-coded and denoted as Gi, i ∈ {SF, SO, OT, GW, HO}
for safe, stand-on, overtaking, give-way and head-on situations, respectively. When two situations
are given, like e.g. GSF/SO, we use the former (SF) if tCPA < 0 and the latter (SO) if tCPA ≥ 0,
analogous to the obstacle moving away or towards the ownship. To decide the geometrical situation,
we first find which relative bearing region the obstacle resides in, before finding which obstacle
region the obstacle’s course resides in. The figure is inspired by (Tam and Bucknall, 2010).

4.4 Optimization problem formulation

The mid-level algorithm is formalized as an OCP:

min
η(·),xr(·)

φ(η(·),xr(·)) (17a)
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subject to

η̇(t) = R(ψ(t))xr(t) +
[
V c

0

]
∀t ∈ [t0, t0 + Th] (17b)

hmid(η(t),xr(t), t) ≤ 0 ∀t ∈ [t0, t0 + Th] (17c)
emid(η(t0)) = 0 , (17d)

where Th > 0 is the prediction horizon, φ(·, ·) is the objective functional, (17b) contains a kinematic
vessel model, (17c) contains inequality constraints and (17d) contains boundary constraints.

Analytical solutions of OCPs are in general not possible to find. A more common approach is to
transcribe the OCP to an NLP, and solve that using a gradient optimization scheme. In our case,
we transcribe (17) into an NLP with Np samples using multiple shooting, where the vessel model is
discretized using 4th order Runge Kutta and the cost functional is discretized using forward Euler.
The resulting NLP is given as

min
w,ω,µ,ξ

φp(w,ω,µ) + φc(w) + φCOLREGs(w) + φξ(ξ)

subject to
g(w,η(t0)) = 0
h(w, ξ) ≤ 0
h̄k(ηk,ωk,µk, p̄d,k) ≤ 0 ∀k ∈ {1, . . . , Np}
ξ ≥ 0 ,

(18)

where w = [η>0 ,x>r,0, . . . ,η>Np−1,x
>
r,Np−1,η

>
Np ]
> ∈ R5Np+3 is a vector of 5Np + 3 decision variables

and p̄d,1:Np = [p̄d,1, p̄d,2, . . . , p̄d,Np ] is a sequence of desired positions. The vectors ω ∈ R2Np ,
µ ∈ R2Np and ξ ∈ RMNp contain slack variables, where M is the number of moving obstacles to be
included in the constraints.

The vector g(w,η(t0)) ∈ R3Np+3 contains shooting and boundary constraints, while h(w) ∈
R(M+D+4)Np , where D is the number of static obstacles, contain inequality constraints ensuring
COLAV and steady-state vessel velocity feasibility. The vectors h̄k(ηk,ωk,µk, p̄d,k) ∈ R6, k ∈
{1, Np} contain constraints on the slack variables ω and µ.

In the following subsections, we describe the terms in (18) in more detail.

4.4.1 Objective function

The objective function contains four functions, where φp(w,ω,µ) introduces cost on deviating from
the relative nominal trajectory p̄d(t), φc(w) introduces cost on using control input, φCOLREGs(w)
is a COLREGs-specific function and φξ(ξ) introduces slack variable cost.

To avoid that the NLP changes behavior when moving away from the nominal trajectory, we wish
to have linear growth in the position error function φp(w,ω,µ). This is achieved by instead of using
quadratic terms in the position error function, we use the Huber loss function which is quadratic
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around the origin and resembles the absolute value function above a given threshold σ > 0:

H(ρ) =




1
2ρ

2 |ρ| ≤ σ

σ(|ρ| − 1
2σ) |ρ| > σ .

(19)

The Huber loss function has a discontinuous gradient, making it slightly complicated to implement
in gradient-based optimization problems. It can, however, be implemented in a continuous fashion by
utilizing lifting, where slack variables are introduced to create a problem of a higher dimensionality
which is easier to solve. Using this technique, φ̄p(w,ω,µ) is defined as

φ̄p(w,ω,µ) = Kp

Np∑

k=1
σ1>ωk + 1

2µ
>
k µk, (20)

where Kp > 0 is a tuning parameter, and ωk ∈ R2 and µk ∈ R2 are slack variables constrained by

h̄k(w,ω,µ, p̄d,k) =



vk + µk + pk − p̄d,k
vk + µk − (pk − p̄d,k)

−ωk


 ≤ 0 ∀k ∈ {1, . . . , Np}, (21)

where pk is the predicted vessel position at time step k, i.e. ηk = [p>k , ψk]>. See (Bitar et al., 2019a)
for more details.

Rule 8 of the COLREGs requires that maneuvers are readily observable for other vessels, implying
that speed and course changes should have a sufficiently large magnitude, and not be performed as
a sequence of small changes. In order to enforce this in the optimization problem, the control cost
function φc(w) introduces a nonlinear cost on the change in speed and course, which makes the
algorithm favor readily observable maneuvers. The function is defined as

φc(w) =
Np−1∑

k=0
KU̇qU̇ (U̇k) +Kχ̇qχ̇(χ̇k), (22)

where KU̇ , Kχ̇ > 0 are tuning parameters, while qU̇ (U̇k) and qχ̇(χ̇k) are the nonlinear cost functions.
Notice that neither the speed over ground (SOG) U nor the course χ are elements of the search
space, but they can be computed as U =

√
u2 + v2 and χ = ψ + arcsin v

U . Their derivatives are
then calculated by finite differencing. See (Eriksen and Breivik, 2017a; Bitar et al., 2019a) for more
details on the control cost function.

The φCOLREGs(w) function introduces a COLREGs-specific cost with respect to obstacles based
on the rule currently applicable as defined by the state machine. We hence tailor the NLP to the
current situation. The function is defined as

φCOLREGs(w) =
Np∑

k=1


 ∑

i∈OHO

KHOVHO,i,k(pk) +
∑

i∈OGW

KGWVGW,i,k(pk)

+
∑

i∈OSO

KSOVSO,k(w) +
∑

i∈OEM

KEMVEM,k(w)

 , (23)
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where OHO,OGW,OSO and OEM contain obstacles which are in the head-on, give-way, stand-on
and emergency states, respectively, and KHO, KGW, KSO, KEM > 0 are tuning parameters. The
functions VHO,i,k(pk), VGW,i,k(pk), VSO,k(w) and VEM,k(w) describe functions capturing head-on,
give-way, stand-on and emergency behavior with respect to obstacle i, respectively. Notice that the
head-on and give-way functions vary with both the obstacle number and time step number, which
is due to the functions depending on the the given obstacles position and course at time step k.

For head-on situations, we define a potential function with a positive value on the obstacle’s
starboard side, and a negative value on its port side. When used in the objective function, this will
favor trajectories passing a head-on obstacle on its port side, in compliance with Rule 14 of the
COLREGs. In addition, the potential function has an attenuation term, reducing the impact of the
function when far away from an obstacle:

VHO,i,k(p) =
tanh

(
αx,HO(x0,HO − x{i,k})

)

2 tanh(αy,HOy
{i,k}) ∈ (−1, 1), (24)

where αx,HO, αy,HO > 0 are tuning parameters controlling the steepness of the head-on potential
function and x̄0,HO > 0 is a tuning parameter controlling the influence of the attenuating potential.
The coordinate (x{i,k}, y{i,k}) is p given in obstacles i’s course-fixed frame (in which the x-axis
points along the obstacle’s course) at time step k, computed as

[
x{i,k}

y{i,k}

]
= R(χi,k)>

(
p− po,k,i

)
, (25)

where po,k,i and ψi,k are the position and heading of obstacle i at time step k. The head-on potential
function with parameters αx,HO = 1/500, αy,HO = 1/400 and x0,HO = 1000 m is shown in Figure 6A.

For give-way situations, we define a similar potential function, but rotated such that the function
is positive in front of an obstacle and negative behind it. This will favor trajectories passing behind
an obstacle, as desirable with respect to Rule 15 when a give-way obligation is active. The give-way
potential function is defined as

VGW,i,k(p) =
tanh

(
αy,GW(yi,k − y0,GW)

)

2 tanh(αx,GWx
i,k) ∈ (−1, 1), (26)

where αx,GW, αy,GW > 0 control the steepness of the give-way potential function and ȳ0,GW < 0
control the attenuation on the port side of an obstacle. The give-way potential function with
parameters αx,GW = 1/400, αy,GW = 1/500 and y0,GW = −500 m is shown in Figure 6B.

In stand-on situations, we want the mid-level algorithm to disregard the obstacle and keep the
current speed and course in order to comply with the first part of Rule 17. One could simply
constrain the algorithm to not maneuver, but this would be perilous in situations where the ownship
simultaneously finds itself in a head-on or give-way situation. In such a situation it would be of
extra importance to choose readily observable maneuvers, and we therefore design the stand-on cost
with the same terms as used in the control cost (22) to amplify the effect:

VSO,k(w) = KU̇qU̇ (U̇k) +Kχ̇qχ̇(χ̇k). (27)
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(A) Head-on potential function. (B) Give-way potential function.

Figure 6. Potential functions ensuring passing on the correct side in head-on and give-way situations.
Yellow indicates a positive value, blue indicates a negative value, while the yellow patch and axis
cross show the obstacle location and course-fixed coordinate system. Used in a minimization scheme,
this will favor starboard maneuvers in head-on situations, and passing behind obstacles in give-way
situations. Note that the obstacle here has zero sideslip, resulting in the heading and course pointing
in the same direction.

If an obstacle is in an emergency state, the obstacle is disregarded in the mid-level algorithm and
left for the short-term algorithm to handle. In such a situation, it is important that the mid-level
algorithm behaves predictable, and we therefore use the same cost function as for stand-on situations:

VEM,k(w) = VSO,k(w). (28)

The slack variable ξ is used in a homotopy scheme, which we introduce to avoid getting trapped
in local minima around moving obstacles. The homotopy scheme is described in further detail in
Section 4.5. The homotopy cost function φξ(ξ) introduces slack cost on ξ:

φξ(ξ) = Kξ1>ξ, (29)

where Kξ > 0 is iteratively increased as part of the homotopy scheme.

4.5 Obstacle handling and steady-state feasibility

The inequality constraint h(w, ξ) ≤ 0 ensures COLAV and steady-state feasibility with respect to
actuator limitations.

Static obstacles are handled similarly as in the high-level algorithm, with (4) representing an
elliptical obstacle with center (xc, yc), angle α and major and minor axes xa and ya, respectively.
The constraint (4) needs to be enforced at each time step. Hence, for the i-th static obstacle, we
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define the constraint

hsi(w) =




ho(x1, y1, xc,i, yc,i, xa,i, ya,i, αi)
ho(x2, y2, xc,i, yc,i, xa,i, ya,i, αi)

...
ho(xNp , yNp , xc,i, yc,i, xa,i, ya,i, αi)



≤ 0. (30)

Moving obstacles are handled in a similar fashion, but letting the ellipsis center position and
angle be time varying. Obstacles in stand-on situations should, however, not be included in the
constraints, since the mid-level algorithm is supposed to stand on in such situations. Moreover, if
an obstacle has entered an emergency state, the obstacle is so close and behaving unpredictably
that the mid-level algorithm should disregard it and leave it for the short-term layer. Hence, for the
i-th moving obstacle not in a stand-on or an emergency situation, we define the constraint

hmi(w) =




ho(x1, y1, xc,i,1, yc,i,1, xa,i, ya,i, αi,1)
...

ho(xNp , yNp , xc,i,Np , yc,i,Np , xa,i, ya,i, αi,Np)


 ≤ 0, (31)

where xc,i,k, yc,i,k and αi,k denote the position and course of the i-th moving obstacle at time step k.

Given D static obstacles and M obstacles not in stand-on or emergency situations, we define the
constraint

ho(w, ξ) =




hs1(w)
...

hsD(w)
hm1(w)

...
hmM (w)




+
[
0
ξ

]
, (32)

where we include slack variables ξ ≥ 0 on the moving obstacle constraints as part of a homotopy
scheme. The reason for using homotopy is that NLP solvers in general only finds local minima, and
can have issues with moving an initial guess “through” obstacles. Normally, this is not an issue, but
for the mid-level algorithm the optimal solution can change drastically from one iteration to another.
This can for instance happen if an obstacle enters a head-on or give-way state, where the solution
can be trapped on the wrong side of an obstacle. In general, homotopy describes introducing an
extra parameter which is iteratively adjusted in order to iteratively move a local solution towards
a global solution (Deuflhard, 2011). In our homotopy scheme, we introduce slack variables on the
moving obstacle constraints, which will allow solutions to travel through obstacles at the cost of a
homotopy cost (29) scaled by the homotopy parameter Kξ. Initially, this is selected as a low value
to have a high amount of slack on the moving obstacles, while it is iteratively increased towards
Kξ → ∞, which results in ξ = 0 and hence no slack on moving obstacles. Currently, we only
introduce slack on moving obstacles, but slack should also be introduced to static obstacles if they
are small enough for the algorithm to be able to pass on both sides, like e.g. rocks, navigational
marks, etc.

Similarly as in (Eriksen and Breivik, 2017b; Bitar et al., 2019a), we ensure steady-state feasible
trajectories at each time step through a constraint hxr,k(xr,k) ≤ 0 ∈ R4, which captures the state
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constraint xr ∈ Xr at time step k. To ensure stead-state feasibility for the entire prediction horizon,
we define the constraint

hxr(w) =




hxr,k(xr,0)
hxr,k(xr,1)

...
hxr,k(xr,Np−1)



≤ 0. (33)

Finally, the inequality constraints are combined as

h(w, ξ) =
[
ho(w, ξ)
hxr(w)

]
∈ R(M+D+4)Np . (34)

5 SHORT-TERM COLAV

For the short-term layer, the branching-course model predictive control (BC-MPC) algorithm is
used, which is a sample-based MPC algorithm intended for short-term ASV COLAV. The BC-MPC
algorithm was initially developed in (Eriksen et al., 2019), extended to also consider static obstacles
in (Eriksen and Breivik, 2019) and is experimentally validated in several full-scale experiments
using a radar-based system for detecting and tracking obstacles. The algorithm complies with
COLREGs rules 8, 13 and the second part of Rule 17, while favoring maneuvers complying with the
maneuvering aspects of rules 14 and 15. Notice that Rule 17 allows a ship to ignore the maneuvering
aspects of rules 14 and 15 in situations where the give-way vessel does not maneuver. The obstacle
clearance will be larger if the algorithm ignores the maneuvering aspects of rules 14 and 15, like
e.g. passing in front of an obstacle in a crossing situation where the ownship is the give-way vessel.
Moving obstacles are in general handled by the mid-level algorithm, making this applicable only in
emergency situations and for obstacles detected so late that the mid-level algorithm is unable to
avoid them.

The algorithm constructs a search space consisting of a finite number of trajectories, which each
contain a sequence of maneuvers. The maneuvers are constructed using a dynamic model of the
ownship and a set of acceleration motion primitives, resulting in feasible trajectories being specified
to the vessel controller. For each maneuver, a discrete set of SOG and course accelerations are
created as

U̇ samples =
{
U̇1, U̇2, . . . , U̇NU

}

χ̈samples =
{
χ̈1, χ̈2, . . . , χ̈Nχ

}
,

(35)

where U̇i, i ∈ [1, NU ] and χ̈i, i ∈ [1, Nχ] denote NU ∈ N and Nχ ∈ N vessel-feasible speed and course
accelerations. Given the acceleration samples (35) and motion primitives for each maneuver in
a trajectory, we create a set of desired SOG and course trajectories Ud. These trajectories have
continuous acceleration, and is designed in an open-loop fashion by using the current reference
tracked by the vessel controller for initialization, rather than the current vessel SOG and course.
The reason for this is that the reference to the vessel controller should be continuous in order to
avoid jumps in the actuator commands. To include feedback in the trajectory prediction, a set of
feedback-corrected SOG and course trajectories Ūd is predicted using a simplified error model of the
vessel and vessel controller. Finally, the feedback-corrected SOG and course trajectories are used to
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compute a set of feedback-corrected pose trajectories:

H̄ =
{
η̄(·)

∣∣∣(Ū(·), χ̄(·)) ∈ Ū
}
, (36)

where η̄(·) denotes a kinematic simulation procedure that given SOG and course trajectories, Ū(·)
and χ̄(·), in Ūd computes the vessel pose. See (Eriksen et al., 2019; Eriksen and Breivik, 2019) for
more details on the trajectory generation procedure.

In order to converge towards the trajectory specified by the mid-level algorithm, a desired
acceleration is computed based on a line-of-sight guidance scheme. In (Eriksen et al., 2019) and
(Eriksen and Breivik, 2019), the samples closest to the desired acceleration in (35) are replaced
with the desired acceleration, given that this is vessel-feasible. A problem with this, is that when
operating at high speeds, the possible acceleration may not be symmetric, resulting in that zero
acceleration (hence keeping a constant speed and course), may not be part of the search space. This
can cause undesirable behavior, since the BC-MPC algorithm will be unable to keep the speed and
course constant, which can cause oscillatory behavior. In this paper, we therefore propose to move
the acceleration samples closest to zero, and adding the desired acceleration as a separate sample,
given that it is vessel feasible. This will make sure that keeping a constant speed and course, as well
as a trajectory converging towards the desired trajectory is included in the search space.

Given the predicted trajectories, the algorithm finds the optimal desired SOG and course trajectory
for the vessel controller u∗d(·) = [Ud(·)∗, χd(·)∗] as

u∗d(·) = argmin
(η̄k(·),ud,k(·))∈(H̄,Ud)

G(η̄k(·),ud,k(·);pmid
d (·)), (37)

where the objective function is given as

G(η̄(·),ud(·);pmid
d (·)) = walalign(η̄(·);pmid

d (·)) + wav,mavoidm(η̄(·)) + wav,savoids(η̄(·))
+ wt,U tranU (ud(·)) + wt,χtranχ(ud(·)). (38)

The variables wal, wav,m, wav,s, wt,U , wt,χ > 0 are tuning parameters, while align(η̄(·);pmid
d (·))

measures the alignment between a candidate trajectory η̄(·) and the desired trajectory from
the mid-level algorithm pmid

d (·). The function avoidm(η̄(·)) ensures COLAV of moving obstacles
by penalizing trajectories close to obstacles, using a non-symmetric obstacle ship domain designed
with the COLREGs in mind. The function avoids(η̄(·)) ensures COLAV of static obstacles by
introducing an occupancy grid, while tranU (ud(·)) and tranχ(ud(·)) introduces transitional costs
to avoid shattering. The transitional terms penalize deviations from the planned trajectory of the
previous iteration, unless changing to the trajectory corresponding by the desired acceleration. See
(Eriksen et al., 2019) and (Eriksen and Breivik, 2019) for more details and descriptions of the terms.

6 SIMULATION RESULTS

The hybrid COLAV system is verified through simulations, which are present in this section. The
simulations include ocean current and both static and moving obstacles. We include moving obstacles
both acting in compliance with the COLREGs, and violating the COLREGs.
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Table 1. Tuning parameters for the high-level algorithm.
Param. Value Comment
tmax Maximum trajectory time

Scenario 1 1420 s
Scenario 2 1420 s
Scenario 3 725 s

Nhi 1000 Number of prediction steps
Ke 1.0 s3/m Energy penalty gain
Kδ 1.0 Quadratic yaw control penalty gain
Lm 4.0 m Length between control origin and outboard motor

The simulations are performed on a computer with an 2.8 GHz Intel Core i7 processor, running
macOS Mojave.

6.1 Simulation setup

The simulations are performed in MATLAB using CasADi (Andersson et al., 2019) and IPOPT
(Wächter and Biegler, 2005) for implementing the high-level and mid-level algorithms. The simulator
is built upon the mathematical model of the Telemetron ASV described in Section 2, and the
model-based speed and course controller in (Eriksen and Breivik, 2018) is used as the vessel controller.

The parameters of the high-level algorithm are listed in Table 1. The mid-level algorithm is
implemented using the parameters in Table 2. The slack variable cost Kξ has five elements,
implying that we use five steps in our homotopy scheme. The mid-level NLP is initially warm
started with the solution from the previous iteration, while each step in the homotopy scheme is
warm started with the solution from the previous step of the homotopy scheme, converging towards
the solution without slack on the constraints. To reduce the computational load and increase the
predictability of the mid-level algorithm, we utilize six steps of each planned mid-level trajectory,
only running the mid-level algorithm every 60 s. This implies that six steps of the predicted solution
will be implemented before computing a new solution, which further implies that the state machine
is also only run every 60 s. If the mid-level algorithm fails in finding a feasible solution, the algorithm
will re-use the solution from the last iteration. This may for instance happen if the algorithm tries
to compute a solution while being inside a moving obstacle ellipse, which sometimes can be the case
when an obstacle is exiting an emergency or stand-on state. The BC-MPC algorithm is run every
5 s, with parameters as described in (Eriksen and Breivik, 2019). Static obstacles are padded with a
safety margin of 150 m for the high-level and mid-level algorithms, while the BC-MPC algorithm
uses a safety margin of 100 m for static obstacles. The reason for having a smaller static obstacle
safety margin for the BC-MPC algorithm is that it tends to struggle with following trajectories
on the static obstacle boundaries. The BC-MPC algorithm would hence not be able to follow
the nominal trajectory if the static obstacle safety margin was the same as for the mid-level and
high-level algorithms.

The simulations are performed without any noise on the obstacle estimates, providing the algorithms
with exact information about the obstacles position, course and speed. The BC-MPC algorithm
has previously been shown to perform well with noisy and uncertain obstacle estimates in full-scale
experiments using radar-based detection and tracking of obstacles (Eriksen et al., 2019; Eriksen
and Breivik, 2019). The mid-level algorithm is likely to have a larger requirement to low noise
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Table 2. Tuning parameters for the mid-level algorithm.
Param. Value Comment

d
enter
CPA 900 m State machine dCPA entry criteria
dexit

CPA 2000 m State machine dCPA exit criteria
[tenter

CPA , t
enter
CPA ] [0, 270] s State machine tCPA entry criteria

[texit
CPA, t

exit
CPA] [−20, 290] s State machine tCPA exit criteria

t
EM,enter
crit 20 s Emergency state tcrit entry criteria
tEM,exit
crit 25 s Emergency state tcrit exit criteria
h 10 s Step size
Np 36 Number of prediction steps
Kp 0.02 Position error scaling
σ 1 Huber loss function threshold
KU̇ 0.3 SOG-derivative penalty term scaling
Kχ̇ 2.5 Course-derivative penalty term scaling
KHO 40 Head-on potential function scaling
[αx,HO, αy,HO] [1/500, 1/400] Head-on potential function steepness parameters
x0,HO 1000 m Head-on potential function attenuation parameter
KGW 40 Give-way potential function scaling
[αx,GW, αy,GW] [1/400, 1/500] Give-way potential function steepness parameters
y0,GW −500 m Give-way potential function attenuation parameter
KSO 3 Stand-on function scaling
KEM 3 Emergency function scaling
Kξ [0.1, 1, 10, 100,∞] Iterative slack variable cost
xa 600 m Moving obstacle ellipsis major axis size
ya 225 m Moving obstacle ellipsis minor axis size

levels on the obstacle estimates, since the state machine in the mid-level algorithm depends on logic
and discrete switching. However, the algorithm is also run less frequently, reducing the required
bandwidth of the obstacle estimates, possibly allowing using smoothing or tracking filters with a
lower process noise if necessary. It may also be feasible to make the mid-level algorithm depend
on data from the automatic identification system, which typically have much lower noise levels
than radar-based tracking systems, while being subject to robustness issues (Harati-Mokhtari et al.,
2007).

We present three scenarios, which demonstrate different important properties of the hybrid COLAV
system:

Scenario 1 This scenario contains two static obstacles, and four moving obstacles of which all
comply with the COLREGs. The moving obstacles demonstrate stand-on, give-way
and head-on situations.

Scenario 2 This scenario contains one static and five moving obstacles. The moving obstacles
demonstrate stand-on with an obstacle ignoring the COLREGs, an overtaking and
a simultaneous head-on, give-way and stand-on situation with obstacles complying
with the COLREGs.

Scenario 3 This scenario contains two moving obstacles, which suddenly perform dangerous
maneuvers close to the ownship, displaying the use of the emergency state.
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(A) Trajectory plot. The initial position of the ownship and obstacles are shown with
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and obstacle poses at given time stamps. The static obstacles are shown in
yellow, with the BC-MPC and mid-level safety margins enclosed around. The
black arrow indicates the ocean current direction.
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plot.

Figure 7. Scenario 1: Trajectory and COLREGs interpretation. The text marks denote the time
steps [150, 600, 1100] s.

6.2 Scenario 1

Scenario 1 contains two static obstacles, four moving obstacles, an ocean current of [−2, 0]> m/s
and is shown in Figure 7. The high-level planner plans a nominal trajectory between the initial and
goal positions at [7000, 200]> m and [0, 7900]> m, respectively. The first obstacle is in a stand-on
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Figure 8. Scenario 1: Speed and angular trajectories. The asterisks mark the same time samples
as in Figure 7.

situation, where it is required to maneuver in order to avoid collision with the ownship, which is
required to stand on. As shown in Figure 7B, the first obstacle is quickly considered as a stand-on
situation, at which the mid-level algorithm disregards the obstacle and continues with the current
speed and course. Following this, the obstacle maneuvers in accordance to the COLREGs, and we
avoid collision. After the first static obstacle, we encounter two crossing vessels where the ownship is
deemed the give-way vessel. In accordance with the COLREGs, we maneuver to starboard in order
to pass behind both obstacles. Notice that the second give-way obstacle is detected as a give-way
situation later than the first, since the entry criteria in the state machine includes the time to
CPA, which is higher for the second give-way obstacle. After avoiding the two give-way obstacles,
we converge towards the nominal trajectory and encounter a head-on situation. This is correctly
identified by the state machine as head on, and we maneuver to starboard in order to avoid collision.
Notice that even though the obstacle maneuvers, we keep the obstacle in the head-on state until
we have passed it. Figure 8 shows the speed and angular trajectories during Scenario 1, where the
desired speed is calculated as the nominal speed at the closest point on the nominal trajectory
given the ownship position. From this, we see that the mid-level and BC-MPC algorithms manage
to track the desired nominal speed before and after the first static obstacle, where no obstacles
require maneuvering away from the nominal trajectory. Notice that when encountering the two
crossing obstacles, the mid-level algorithm chooses to slowly change the course, which is due to
the attenuation of the give-way potential function and the large distance between the vessels. It
would be better to make a clear course change, which is a subject of tuning. After passing the two
crossing obstacles, the mid-level algorithm increases the speed in order to get back to the nominal
trajectory, which is due to the algorithm attempting to keep the speed projected on the nominal
trajectory equal as the desired nominal speed. Furthermore, notice that the mid-level algorithm
actively controls the relative surge speed in order achieve the desired SOG, which is clearly seen
when passing the first static obstacle.
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Figure 9. Scenario 2: Trajectory and COLREGs interpretation. The text marks denote the time
steps [140, 550, 900] s.

6.3 Scenario 2

Scenario 2, shown in Figure 9, is more complex than Scenario 1, with a total of five moving
obstacles, and has an ocean current of [−1, 1]> m/s. The high-level planner plans a nominal trajectory
between the initial and goal positions at [200, 200]> m and [5500, 7000]> m, respectively. The first
obstacle is a crossing vessel, which similarly as in Scenario 1 is deemed to give way for the ownship,
which should keep the current speed and course. However, in this scenario, the obstacle violates
the COLREGs by not maneuvering in order to avoid collision. Therefore, the BC-MPC algorithm
maneuvers to avoid collision when the obstacle gets so close that the safety margins of the BC-MPC
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Figure 10. Scenario 2: Speed and angular trajectories. The asterisks mark the same time samples
as in Figure 9.

algorithms is violated. The BC-MPC algorithm maneuvers to port, as advised by COLREGs Rule
17 for crossing situations where the stand-on vessel has to maneuver, and safely avoid the first
obstacle. The second obstacle is overtaken by the ownship, and correctly considered as an overtaking
situation by the state machine. For such an situation, there is no requirement on how the ownship
should maneuver, except keeping clear from the overtaken vessel. After passing the second obstacle,
we encounter a complex situation with simultaneous head-on, give-way and stand-on obligations. In
this situation, each vessel, including the ownship, finds itself in a situation where a head-on and a
give-way situation require starboard maneuvers, while a stand-on situation requires the vessel to
keep the current speed and course. However, head-on and give-way obligations should be prioritized
higher than stand-on situations, and the situation is quite easily solved by each vessel maneuvering
to starboard and passing behind the vessel crossing from starboard. The mid-level algorithm solves
this situation with the desirable behavior, and converges towards the nominal trajectory after the
situation is resolved. As shown in Figure 9B, the state machine interprets the situations correctly.
From the speed trajectory in Figure 10 it is clear that the mid-level algorithm follows the desired
nominal speed also when overtaking the second obstacle.

6.4 Scenario 3

Scenario 3, shown in Figure 11, contains two moving obstacles on parallel courses with the ownship,
and has an ocean current of [−1, 1]> m/s. The high-level planner plans a nominal trajectory between
the initial and goal positions at [500, 500]> m and [3328, 5399]> m, respectively, which results in a
straight line trajectory with a course angle of 60°. The first obstacle travels at a higher speed than
the ownship, while the second one travels at a lower speed and will be overtaken by the ownship.
Since the obstacles are on parallel paths with the obstacle, the time to CPA is sufficiently high
such that the obstacles are in the safe state, even though the the vessels are quite close. However,
both obstacles make sudden maneuvers to port dangerously close to the ownship and enters on a
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Figure 11. Scenario 3: Trajectory and COLREGs interpretation. The text marks denote the time
steps [170, 480] s.

crossing course with the ownship. With respect to the COLREGs, the ownship is required to give
way to both obstacles since they are crossing from the ownship’s starboard side. One can, however,
argue that the maneuvers displayed by the obstacles are dangerous and displays poor seamanship,
such that the ownship should not be held accountable if a collision occurred. Nevertheless, the
hybrid COLAV system manages to avoid both obstacles. As seen in Figure 11B, the first obstacle
is sufficiently far away from the ownship to be considered as a give-way situation when the state
machine interprets the situation, and the mid-level algorithm plans a trajectory passing behind
the first obstacle. The second obstacle maneuvers to port even closer to the ownship, resulting in
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Figure 12. Scenario 3: Speed and angular trajectories. The asterisks mark the same time samples
as in Figure 11.

Table 3. Minimum distance to static and moving obstacles for the simulation scenarios.

Scenario Minimum distance to
static obstacles

Minimum distance to moving obstacle number
1 2 3 4 5

Scenario 1 93.7 m 634.3 m 596.3 m 522.7 m 726.8 m –
Scenario 2 118.2 m 185.5 m 228.3 m 1097.2 m 575.6 m 842.3 m
Scenario 3 1123.8 m 326.4 m 106.6 m – – –

the distance to the critical point being within the threshold for entering the emergency situation
when the state machine interprets the situation. In this situation, the mid-level algorithm disregards
the obstacle and leaves it to the BC-MPC algorithm to avoid collision. As seen in Figure 12, the
mid-level algorithm both reduces the speed and changes the course to avoid the first obstacle. When
approaching the second obstacle, the BC-MPC algorithm initiates a speed reduction, and after some
time also maneuver to starboard in order to pass behind the obstacle and resolve the situation.

6.5 Simulation summary

The simulation results show that the hybrid COLAV system is able to handle a wide range of
situations, while also behaving in an energy-optimal way when moving obstacles are not interfering
with the ownship trajectory. Table 3 shows the minimum distance to static and moving obstacles
for the scenarios. The minimum distance to static obstacles is in Scenario 1 below the safety region
size of the BC-MPC algorithm, which is intentional and caused by the algorithm using a smooth
penalty function for interpreting static obstacles. The penalty function value increases linearly
when moving further into the safety region, see (Eriksen and Breivik, 2019) for more details. The
minimum distance to moving obstacles is a bit difficult to interpret, since the obstacle ship domains
are non-circular, implying that the required clearance depends on relative position of the ownship
with respect to the moving obstacles. However, we see that we have a larger clearance in head-on,
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give-way and stand-on situations where the obstacles comply with the COLREGs, and do not
perform dangerous maneuvers (as in Scenario 3), compared to overtaking situations. The reason
for this is that when overtaking (obstacle 2 in Scenario 2), we pass the obstacle on a parallel
course, resulting in the minor axis of the moving obstacle ellipsis indicating the required clearance.
Furthermore, we see that obstacle 1 in Scenario 2, which ignores its give-way obligation, comes
significantly closer than other crossing obstacles except for those in Scenario 3. The reason for this is
that the BC-MPC algorithm, which handles this situation, has a lower clearance requirement than
the mid-level algorithm, which still should be considered as safe. In Scenario 3, the two obstacles
display poor seamanship, and behave dangerously. Obstacle 1 is handled by the mid-level algorithm
and passed with a clearance lower than the major axis of the mid-level algorithm, which is caused
by the BC-MPC algorithm “cutting the corner”. The clearance should still be considered safe since
we are behind the obstacle, and the clearance requirements of the BC-MPC algorithm is enforced.
Obstacle 2, which is placed in the emergency state and handled by the BC-MPC algorithm, is passed
with a clearance of only 106.6 m. This is lower than the clearance to Obstacle 1 in Scenario 2 (which
violated its stand-on requirement), and is due to the BC-MPC algorithm having a non-symmetric
obstacle ship domain function allowing for a smaller clearance when passing behind an obstacle
than in front.

For the three scenarios, the high-level planner used an average of 67 s with a maximum of 93 s
to compute the solution. Since the high-level planner is intended to be run off-line, this is well
within reasonable limits. The mid-level algorithm used 0.60 s on average, and a maximum of 2.1 s,
which we consider to be real-time feasible since the mid-level algorithm only is run every 60 s. The
BC-MPC algorithm used 0.29 s on average, and a maximum of 0.63 s, which we also consider to be
real-time feasible when the BC-MPC algorithm is run every 5 s. The BC-MPC algorithm is highly
parallelizable, which could reduce the BC-MPC runtime by a large magnitude if required.

7 CONCLUSION

In this paper, we have presented a three-layered hybrid COLAV system, compliant with COLREGs
rules 8 and 13–17. As part of this, we have further developed the MPC-based mid-level COLAV
algorithm in (Eriksen and Breivik, 2017b; Bitar et al., 2019a) to comply with COLREGs rules 13–16
and parts of Rule 17, which includes developing a state machine for COLREGs interpretation. The
hybrid COLAV system has a well-defined division of labor, including an inherent understanding of
COLREGs Rule 17, where the mid-level algorithm obeys stand-on situations, while the BC-MPC
algorithm handles situations where give-way vessels does not maneuver.

The hybrid COLAV system is verified through simulations, where we in three scenarios challenge
the system with a number of different situations. The scenarios include multi-obstacle situations
with multiple simultaneously active COLREGs rules, and situations where obstacles violate the
COLREGs. Collision is avoided in all the scenarios, and we show that the ownship follows an
energy-optimized trajectory generated by the high-level planner when moving obstacles does not
interfere with this trajectory.

For further work, we suggest to:

• Investigate if using situation-dependent entry and exit criteria parameters in the state machine
improves the performance.
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• Expand the state machine with the possibility of transitioning from head-on, give-way and
overtaking states to the emergency state for situations where obstacles behave dangerously or
hostile.

• Develop a methodology for deciding tuning parameters.
• Perform simulations with noisy obstacle estimates to investigate how the state machine and

mid-level algorithm respond to this.
• Explore the possibilities for integrating the COLREGs interpretation in the mid-level NLP,

relaxing the assumption of the current COLREGs situation being valid for the entire prediction
horizon.

• Simulate scenarios where multiple vessels running the hybrid COLAV system interact with each
other.

• Validate the hybrid COLAV system in full-scale experiments.
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Appendix A

PSEUDOCODE FOR MODEL
IDENTIFICATION OF HIGH-SPEED

ASVS

This appendix contains pseudocode for the model identification procedure
presented in Paper B. Equation and section numbers in this appendix refer
to corresponding equations and sections in Paper B.

Algorithm 1 describes how the regularization parameter weight λ in (11)
is determined using leave-one-out cross validation (CV), in accordance with
Section 3.4.2.

Algorithm 1 Pseudocode for selecting the regularization parameter using
leave-one-out CV
Given a set of regularization parameters λ ∈ {λ1, λ2, . . . , λI} and a data
set D of size ND
ε← 01×I
Divide the data set D into ND combinations of training sets Dt and
verification sets Dv
for i = 1 : I do

for all ND combinations of Dt and Dv do
β ← solution from minimizing (11) using R(·) = ‖·‖1, λ = λi and

(x, y) ∈ Dt
ε̄← evaluate (9) using (x, y) ∈ Dv
εi ← εi + 1

ND
ε̄

end for
end for
Find i s.t. εi = min(ε), and choose λ = λi

Algorithm 2 describes how the damping parameter vectors βσU
and βσr

are found, in accordance with Section 3.4.3.
Algorithm 3 describes how the hyperparameters of the asymptotic inertia

basis functions are found using leave-one-out CV, in accordance with Section
3.4.4.

Algorithm 4 describes how the inertia parameter vectors βmU
and βmr

are found, in accordance with Section 3.4.4.
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214 Appendix A. Pseudocode for model identification of high-speed ASVs

Algorithm 2 Pseudocode for identifying parameters for the damping term
Given the measurement set Dσ
λσU ← Algorithm 1 with D = {(x, y) = (x, σU ) ∈ Dσ}
βσU

← solution from minimizing (11) using R(·) = ‖·‖1, λ = λσU , (x, y) =
(x, σU ) ∈ Dσ and φ(x) from (12)
λσr ← Algorithm 1 with D = {(x, y) = (x, σr) ∈ Dσ}
βσr
← solution from minimizing (11) using R(·) = ‖·‖1, λ = λσr , (x, y) =

(x, σr) ∈ Dσ and φ(x) from (12)

Algorithm 3 Pseudocode for identifying hyperparameters for the asymp-
totic basis function
Given sets of hyperparameters a ∈ {a1, a2, . . . , aI}, b ∈ {b1, b2, . . . , bJ}
and a data set D of size ND
λhyp ← Regularization parameter for identifying (a, b) . Tuning
parameter
ε← 0I×J
Divide the data set D into ND combinations of training sets Dt and
verification sets Dv
for i = 1 : I do

for j = 1 : J do
for all ND combinations of Dt and Dv do
β ← solution from minimizing (9) using (x, y) ∈ Dt
ε̄← evaluate (9) using (x, y) ∈ Dv
εij ← εij + 1

ND

(
ε̄+ λhyp

∥∥∥∥
[
a b

]T ∥∥∥∥
1

)

end for
end for

end for
Find (i, j) s.t. εij = min(ε), and choose a = ai and b = bj



215

Algorithm 4 Pseudo code for identifying parameters for the inertia term
Given the measurement sets DmU and Dmr

(amU , bmU )← Algorithm 3 with D = {(x, y) = (x,mU ) ∈ DmU }
λmU ← Algorithm 1 with D = {(x, y) = (x,mU ) ∈ DmU }, φ(x) from (13)
and (a, b) = (amU , bmU )
βmU

← solution from minimizing (11) using R(·) = ‖·‖1, λ = λmU , φ(x)
from (13) with (a, b) = (amU , bmU ) and (x, y) = (x, σmU ) ∈ DmU

(amr , bmr )← Algorithm 3 with D = {(x, y) = (x,mr) ∈ Dmr}
λmr ← Algorithm 1 with D = {(x, y) = (x,mr) ∈ Dmr}, φ(x) from (13)
and (a, b) = (amr , bmr )
βmr

← solution from minimizing (11) using R(·) = ‖·‖1, λ = λmr , φ(x)
from (13) with (a, b) = (amr , bmr ) and (x, y) = (x, σmr ) ∈ Dmr
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