
Early-stage real estate development
using nonlinear optimization

Nikolai Mathisen Bratsberg
Anne-Marie Mellbye

Industrial Economics and Technology Management

Supervisor: Kjetil Fagerholt, IØT
Co-supervisor: Lars Magnus Hvattum, IØT

Department of Industrial Economics and Technology Management

Submission date: June 2018

Norwegian University of Science and Technology



 



Preface
This thesis concludes our Master of Science degree in Applied Economics and Oper-
ations Research at the Department of Industrial Economics and Technology Man-
agement at the Norwegian University of Science and Technology. The course code
is TIØ4905. The thesis is a continuation of the work done in our specialization
project during the fall 2017.

We would like to thank our supervisors Professor Kjetil Fagerholt and Professor
Lars Magnus Hvattum for their interest in supervising a thesis within an unfamil-
iar topic and their enthusiasm throughout the process. Their advice, guidance and
feedback have been truly valuable. We would also like to express our gratitude
to H̊akon Kongelf for fruitful discussions and feedback. Lastly, we wish to thank
Associate Professor Markus Grasmair for his eagerness to provide insights into the
application of nonlinear optimization methods. The thesis is written in collabora-
tion with an undisclosed company in the real estate industry.

Nikolai M. Bratsberg and Anne-Marie Mellbye

Trondheim, June 2018

i



ii



Abstract
The process of planning the development of an urban site for housing engages many
stakeholders and significant capital over an extended period of time. Without an
accurate way of estimating the value of a site, real estate developers may initi-
ate the process based on the wrong premises, increasing the risk for the company
and its investors. Architects manually design site layout proposals, often uncer-
tain whether they comply with governmental regulations, and of how much of the
potential saleable area is lost in the trial-and-error process. Planning authorities
cannot reliably determine whether one layout design is better than another. The
combination of quantitatively complex regulations and objectives merits the study
of applying optimization techniques in the planning process.

In this thesis, a comprehensive literature review reveals that little research has been
done on the subject and that the solutions and results of related problems are not
directly transferable. For this reason, a high-level model is developed for the prob-
lem of creating site layout designs, referred to as the Site Development Problem
(SDP) in this thesis. The thesis is divided into two parts, where Part I develops a
model for the SDP in two dimensions, while Part II extends this model into three
dimensions. The model in Part I constitutes a single-objective, non-convex, nonlin-
ear optimization problem, in which the objective is to maximize the total ground
floor area of a fixed number of buildings within a site, subject to certain spatial
constraints. The constraints are formulated using a distance that measures the fea-
sibility or infeasibility of a solution. In Part II, the model incorporates heights of
the buildings and the model becomes a single-objective, non-convex, mixed-integer
nonlinear optimization problem, in which the objective is to maximize the aggre-
gated volume of the buildings. The constraints are the same as in Part I, extended
to include restrictions that involve the heights of the buildings.

Employing the method of Sequential Quadratic Programming (SQP) and MAT-
LAB, the formulation is tested on six real sites in the Trondheim area in Part I.
With the main purpose of studying the feasibility of using optimization to produce
site layout designs, the placement of up to eight buildings is tested and discussed.
Although there are no comparable results, visual evaluation of the output shows
that the proposed formulation and solution method appear to produce a high de-
gree of area utilization. The highest utilization obtained is 61.8 %. Four alternative
definitions of the building variable set are proposed, but none obtain significantly
better results than the original formulation. As the performance of SQP is highly
dependent on the quality of the initial solutions provided to it, three strategies
for constructing initial solutions are developed, one of which produces considerably
better results than a random approach. In addition, a comparison is made between
buildings restricted to a rectangular shape and the buildings with an angle used in
the model formulation. The results show that allowing an angle along the length
of the buildings considerably increases the utilization of the site.
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In Part II, a heuristic is developed to solve the non-convex, mixed-integer nonlinear
problem. The heuristic is compared to a naive approach in which the heights are
optimized after the placement of the footprint areas of the buildings. The two so-
lution approaches are tested on three real sites in the Trondheim area. The results
show a gain in volume by including the heights of the buildings in the optimization
process (i.e. using the heuristic) for the two smallest sites. For the largest site, a
gain in volume is seen using the heuristic if there are considerable differences in
the maximum allowable heights in the different zones of the site.

This thesis develops an optimization model in both two and three dimensions for
the site layout design process on an urban site regulated for housing. The results
show that there is significant potential in using optimization techniques to support
the site layout design process. The solutions have a high utilization of the sites, and
can guarantee that the spatial regulations are fulfilled. In addition, the proposed
models and solution method extend existing packing research both in the type of
shapes involved and in the included variables.
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Sammendrag
Denne masteroppgaven omhandler planleggingsprosessen for utviklingen av en ur-
ban tomt regulert for boligutbygging. En slik prosess er kapitalkrevende og in-
volverer mange ulike interessenter over en lang tidsperiode. Uten en nøyaktig
metode for å estimere verdien av en tomt kan det være fare for at boligutbyggere g̊ar
inn i prosessen p̊a feil grunnlag, noe som øker risikoen for boligutbyggingsselskapet
og deres investorer. Arkitekter designer utformingen av tomten manuelt, ofte uten
garanti om at utformingen overholder gjeldende reguleringer for tomten. I tillegg
kan en uviss mengde salgbart areal g̊a tapt ved bruk av denne fremgangsm̊aten
basert p̊a prøving og feiling. Dette kan ogs̊a g̊a utover planleggingsmyndighetene,
som ikke har en sikker metode for å verifisere om utformingen av en tomt er bedre
enn en annen, og om de overholder reguleringsbestemmelsene. Kombinasjonen av
kvantitative, komplekse reguleringer og ønskede egenskaper ved boligbygg legger
grunnlaget for å bruke optimeringsteknikker i planleggingsprosessen av en tomt.

Et omfattende litteraturstudie viser at lite forskning har blitt gjort p̊a omr̊adet, og
at løsningsmetoder og resultater for lignende problemer ikke er direkte overførbare.
P̊a grunn av dette introduseres en versjon av tomteutviklingsproblemet sammen
med en overordnet modell i denne masteroppgaven. Oppgaven er delt inn i to deler,
Del I og Del II. Del I utvikler en modell for problemet i to dimensjoner, mens Del
II utvider problemet til tre dimensjoner. Modellen i Del I utgjør et ikke-konvekst,
ikke-lineært optimeringsproblem med kun ett objektiv. Objektivet er å maksimere
totalt grunnflateareal for et bestemt antall bygninger p̊a en tomt, med visse restrik-
sjoner knyttet til avstanden mellom bygningene. Restriksjonene er formulert ved
å bruke et avstandsm̊al for gyldigheten til en løsning. I Del II inkluderes høydene
p̊a bygningene i modellen, slik at modellen utgjør et ikke-konvekst, ikke-lineært
problem med b̊ade kontinuerlige variable og heltallsvariable. Problemet har fort-
satt kun ett objektiv, n̊a utvidet til å maksimere det totale volumet til bygningene.
Restriksjonene er de samme som i Del I, men utvidet for å inkludere betingelser
som gjelder høydene p̊a byggene.

Formuleringen av problemet er testet p̊a seks ekte tomter i Trondheimsomr̊adet
ved bruk av sekvensiell kvadratisk programmering (SQP) og MATLAB i Del I.
Hovedm̊alet med testingen er å undersøke gjennomførbarheten av å bruke opti-
mering til å utvikle forslag til utforming av tomter. Plasseringen av opptil åtte
bygninger er testet og diskutert. Siden det ikke finnes noe sammenligningsgrunnlag
m̊a resultatene vurderes visuelt. Fra dette viser resultatene at formuleringen og
løsningsmetoden oppn̊ar en høy grad av tomteutnyttelse. Den høyeste graden av
utnyttelse oppn̊add er p̊a 61.8 %. Fire alternative variabelsett er foresl̊att, men
ingen oppn̊ar betraktelig bedre resultater enn det opprinnelige variabelsettet. Re-
sultatene produsert av SQP er i høy grad avhenging av kvaliteten p̊a startløsningene
gitt inn til løsningsmetoden. Derfor er tre ulike strategier for å lage startløsninger
utviklet, der en av dem produserer vesentlig bedre resultater enn en tilfeldig frem-
gangsm̊ate. I tillegg gjøres det en sammenligning mellom rektangulære og vinklede
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bygg. Resultatene viser at det å tillate en vinkel langs lengden av bygningen øker
utnyttelsen av tomten atskillig.

I Del II utvikles en heuristikk for å løse det ikke-konvekse, ikke-lineære problemet
med kontinuerlige og heltallsvariable. Heuristikken sammenlignes med en naiv
løsningsmetode der høydene blir optimert etter at plasseringen av fotavtrykket til
bygningene er satt. De to løsningsmetodene sammenlignes og testes p̊a tre ulike
tomter i Trondheimsomr̊adet. Resultatene viser økt totalt volum ved å inkludere
høydene i optimeringsprosessen (det vil si, ved bruk av heuristikken) for de to min-
ste tomtene. For den største tomten viser resultatene at heuristikken er best om
det er store forskjeller p̊a den maksimale høyden i de ulike høydesonene p̊a tomten.

Denne masteroppgaven utvikler en optimeringsmodell i b̊ade to og tre dimensjoner
for utformingen av en urban tomt regulert for boliger. Resultatene viser at det
finnes stort potensial i å bruke optimeringsteknikker som støtte i denne pros-
essen. Løsningene har høy utnyttelsesgrad, og de kan garantere at reguleringer
som innlemmes i modellen er overholdt. I tillegg utvider de foresl̊atte modellene og
løsningsmetoden eksisterende litteratur innen pakke- og kutteproblemer b̊ade med
hensyn p̊a hvilke former som inkluderes og hvilke variabler modellene bruker.
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Chapter 1

Introduction

More than one half of the world’s population live in urban areas, and virtually all
countries in the world are becoming increasingly urbanized (United Nations, 2015).
This creates a need for new housing to be built at ever increasing levels of density
— raising the risk of lower living quality and substandard housing. In an attempt
to counter this, authorities strive to create more detailed regulations for urban ar-
eas, which significantly complicates the already complex process of early stage site
development (Ratcliffe et al., 2009). In order to illustrate this, an introduction to
early stage site development is given in the following.

Real estate developers continually screen sites to find potential profitable projects.
If the developer decides to buy a property after an initial estimate of the project’s
potential value, a selection of architecture firms are often engaged to conduct more
comprehensive feasibility studies of the project. A feasibility study includes designs
of the proposed layouts and an examination of the legal implications (Lundevall,
2015). In this process, zoning rules produced by local municipalities are important
to consider in order to correctly place the buildings and with that, estimate the
site’s potential value. The zoning rules for an area dictate its purpose, e.g. for
housing, manufacturing or commercial use, and limitations on the placement and
dimensions of buildings (Pressman, 2012). For sites that are regulated for housing,
examples of zoning rules may be (Trondheim Kommune, 2015)

• Total floor area within the site should not exceed X square meters

• The total height of the buildings should not exceed Y meters above leveled
ground

• Orienting oneself in the housing area should be easy

• Roofs and facades should have color Z

As seen in these examples, the rules may be of qualitative or quantitative nature.
While some zoning regulations for residential areas exist to preserve a particular
characteristic of an urban space, the majority are intended to sustain or improve
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safety, mobility, and general quality of living for the residents, by outdoor recreation
areas, sufficient daylight and minimal noise pollution, to name a few (Pressman,
2012). Usually, the architecture firms create a selection of proposals of how to
develop the site. An example of such a proposal is shown in Figure 1.1 by the
architecture firm Alt.arkitektur. The developer then selects the most promising
proposals as bases in the subsequent planning phase (Lundevall, 2015). Thus, in
simple terms, the architect needs to design site layouts that meet or exceed the
client’s goals, while complying with regulations and laws that constrain the layout
geometrically or functionally. The client’s goal is often to maximize the saleable
square meters in order to maximize the profit. With increasingly complex and de-
tailed zoning regulations, the task of balancing this goal while acting in accordance
with the zoning regulations can grow into a highly complicated design process.

Figure 1.1: An example of a feasibility study by Alt.arkitektur on a site in Kongsberg

To illustrate the sophisticated task of building layout design, an example of regu-
lations and how they impact the design process is considered. In order to prevent
the housing from becoming too dense, thus reducing outdoor space, a minimum
amount of outdoor recreation area is required per square meter of saleable floor
area. Moreover, it is usually required that the outdoor area is sufficiently sunlit,
verified by measuring whether it is directly illuminated by the sun more than a
certain amount of time on a specified date (e.g. spring equinox) (PBE, 2012). So,
when an architect increases the size of a building in a feasibility study, more out-
door recreation area is required, but the shadow from the building is now larger,
decreasing the previously approved outdoor area. The task of finding a good solu-
tion in terms of saleable floor area to meet the real estate developer’s goal, while
guaranteeing compliance with zoning rules, is clearly very difficult.

The complication of satisfying the zoning regulations escalates when one wishes to
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maximize or minimize some other quality in addition to saleable area. For instance,
noise pollution is a purely negative quality, and a developer aims to minimize noise
(e.g. from roads or railways) on building facades. Conversely, visible evening sun
is in some countries a highly valuable quality and as such something that many
developers want to maximize to increase the price of the housing units. Indeed, if
the noise pollution and evening sun enter the site from the same direction, then
the optimal orientation of the building is not evident. Creating site layout designs
is an inherently multi-objective activity that demands the balancing of conflicting
goals while adhering to complex, governmental regulations (Pressman, 2012).

The systems and processes involved in creating site layout designs are heavily influ-
enced by tradition, generally relying on manually creating and defining structures
and their properties according to the architect’s knowledge and intuition. Software
has been developed to support this manual flow, allowing the architects to create
structures digitally (Pressman, 2012). However, with the main goal of supporting
the existing work flow, the available plugins for the software provide mostly analytic
services such as calculating the total saleable area, or extracting level of shading or
facade sun at a particular time. The architect must still manually evaluate, at each
step, how to improve a tentative solution in terms of the desired qualities without
violating the regulations and constraints.

The partly manual, complicated method employed today makes early stage site
development a resource-intensive task, and it is hard to determine whether the
final results are feasible with respect to the zoning regulations. This also affects
the planning authorities, which in turn are posed with a similar problem — they
cannot reliably determine whether one plan for development has superior qualities
relative to others. Thus, to achieve quality, the solution is often to reduce the hous-
ing density. While this indeed preserves quality, the effect on profitability can be
dramatic. In addition, high density is generally an objective also for the planning
authorities due to the rapid and increasing urbanization. If the problem is modeled
as an optimization problem, it is possible to generate different solutions that are
guaranteed to meet quantitative zoning regulations, while maximizing the density
and other desirable qualities.

This thesis aims to introduce an optimization model that can incorporate certain
zoning regulations while maximizing the saleable area. The problem, called the Site
Development Problem (SDP) throughout the thesis, was first introduced as a part
of Bratsberg and Mellbye (2017). In Bratsberg and Mellbye (2017), the problem
is defined in two dimensions, the buildings are restricted to a rectangular shape,
and the site is assumed to be convex. The model incorporates zoning regulations
related to the required space between buildings, and the building ground floor area
is used as a proxy for the maximization of saleable area. In this thesis, the Site De-
velopment Problem is extended in two parts. In Part I, the problem is still defined
in two dimensions, but the buildings can be shaped as irregular hexagons, that is,
polygons with six edges. In addition, the site may be non-convex. As in Bratsberg
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and Mellbye (2017), zoning regulations related to the space between buildings are
considered, and the building ground floor area is maximized. In Part II, the op-
timization model introduced in Part I is extended into three dimensions. Zoning
regulations related to the height of the buildings are incorporated. Specifically, the
site is divided into different height zones, in which a maximum allowable height is
dictated within each zone. In addition, the required space between buildings is, in
reality, linked to the height of the buildings. This interrelationship is included in
the extended model, leading to more complex constraints in three dimensions. The
objective of the three-dimensional optimization model is to maximize the volume of
the buildings and thus the saleable area. The buildings are still defined as polygons
with six edges, while the site can be either convex or non-convex.

In Chapter 2 a literature review is conducted and relevant literature is examined.
Next, Part I starts with Chapter 3 which introduces the problem of Part I. In
Chapter 4, a mathematical model based on the problem description in Chapter 3
is presented. Further, the solution method used to solve the mathematical model
in Part I is described in Chapter 5. Based on the mathematical model and the
solution method, a computational study is conducted in Chapter 6. The structure
of Part II is similar to that of Part I. First, the extended problem is introduced in
Chapter 7. In Chapter 8, a mathematical model based on Chapter 7 is developed.
The solution method used to solve the model is described in Chapter 9. The
computational study for Part II is presented in Chapter 10. Lastly, Chapter 11
includes concluding remarks for both Part I and Part II, while Chapter 12 outlines
possible future research areas and extensions to the problems considered in this
thesis.
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Chapter 2

Literature review

In this chapter, a wide and comprehensive literature search is conducted. Section
2.1 examines whether there exists any literature that applies optimization tech-
niques to a problem similar to the Site Development Problem. In section 2.2, the
packing problem is studied due to its similarities to the SDP. In short, the packing
problem allocates a set of smaller objects to one or more larger objects to mini-
mize the waste, or equivalently, to maximize the area or volume that the smaller
objects cover. This is analogous to the SDP, which allocates buildings (smaller
objects) to the site (the larger object) while maximizing the area or the volume of
the buildings. Another problem considered in the literature review due to its ap-
parent similarities to the SDP is the Facility Layout Problem discussed in Section
2.3. This problem type is comparable to the SDP because it concerns the alloca-
tion of facilities on a given area, like the SDP involves the allocation of buildings
on a site. This literature review was first conducted as a part of Bratsberg and
Mellbye (2017), and parts of it are revisited here. In addition, some extensions of
the literature review are done in accordance with the extension of the SDP in this
thesis compared to Bratsberg and Mellbye (2017).

Before searching for articles, a set of relevant keywords is identified. These keywords
are used to search for relevant literature using the web search engine ”Scopus”. A
more detailed description of how the literature search is conducted for each specific
topic is given in the corresponding sections.

2.1 Optimization techniques applied to problems
similar to the Site Development Problem

2.1.1 Material collection
In order to systematically explore literature that discusses the use of optimiza-
tion for problems similar to the SDP, two groups of keywords are developed. The
first group consists of words from the field of operations research, that is: ”opti-
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mization”, ”minimize”, ”maximize” and ”mathematical model”. The second group
consists of words related to the SDP. These are: ”building site”, ”building place-
ment”, ”building size”, ”building form”, ”building geometry”, ”apartment”, ”site
development”, ”building footprint”, ”land allocation”, ”architectural design”, ”ur-
ban site”, ”building layout” and ”spatial planning”. All pairs of words from the
first and the second group are combined in the search.

All the words in the search string must appear in either the title, abstract or
keywords of the article for it to be considered further in the literature review.
The initial search generated 981 articles. From these, only peer-reviewed journal
articles written in English were considered. This left 508 articles. By removing
articles within irrelevant subject areas such as medicine, chemistry and psychology,
and articles with keywords related to these subject areas, the number of papers
decreased to 174. From these, the title and in some cases the abstract of the papers
were examined to determine the relevance of the articles. Papers that study features
not relevant for the SDP, such as structural construction, durability of buildings and
resource allocation, and papers that do not employ optimization techniques were
filtered out. This left 62 papers. The abstract and in some cases the discussion part
of the remaining papers were read to determine their relevance. The papers that
only consider the optimization of small features of a building, for instance pipes
or windows, were filtered out. In addition, papers that predominantly focus on
simulation, and mostly treat the optimization techniques as ”black box” methods,
were excluded in this filtering step. Finally, eight papers were left for full review.
These eight papers also include an article by He et al. (2015) that did not appear in
the search results, but is included in the literature review because it offers valuable
insights. The material collection process is illustrated in Figure 2.1.

Initial search

- Search string
created from the
two groups that
appear in the
title, abstract or
keywords of the
article

981 papers

Only English
journal articles

508 papers

Check overall
relevance

- Only considering
papers within a
relevant subject
area

- Excluding papers
with irrelevant
keywords

174 papers

Filter 1

- Remove articles
that focus on
irrelevant
features

- Remove articles
that do not
employ
optimization
techniques

62 papers

Filter 2

- Remove
articles using
optimization
techniques on
single features
of a building

- Remove
articles that
mainly focus
on simulation

8 papers

Figure 2.1: Material collection process for literature on similar problems to the SDP
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2.1.2 Full review
The articles left for full review are systematized in Table 2.1. The SDP is included
in the last row for comparison with the existing literature. The first column refers
to the articles in Table 2.2. The second column states the objective of the problem
considered in the article. The third column specifies the domain of the problem
considered, whether it is one building, the floor layout of a building, or a single
site, like it is for the SDP. Here, ”urban area” refers to a site that is not regulated
for housing, or an area larger than a site, typically a problem concerning urban
planning. Lastly, the fourth column states the solution method presented in the
articles. Tian et al. (2015) review existing optimization tools for achieving energy
efficient buildings, and do not study a particular problem. This article is therefore
included with blank cells in Table 2.1, column three and four.

Table 2.1: The articles included in the full review systemized and compared to the SDP

Article Objective Domain Solution method
1 Heat gain and loss A building Genetic algorithm
2 Optimal layout Floor layout FSQP
3 Sunlight A site Genetic Algoritm
4 View Urban area Evolutionary alg.
5 Saleable area A site Simulation + heuristic
6 Layout, energy and daylight A building Pareto-based search
7 Dispersion Urban area Genetic algorithm
8 Survey - optimization tools - -
SDP Saleable area A site -

Table 2.2: Articles included in the full review

1 Jin and Jeong (2014)
2 Michalek et al. (2002)
3 Yi and Kim (2015)
4 Reinhard (2015)
5 He et al. (2015)
6 Dino and Üçoluk (2017)
7 Tong (2016)
8 Tian et al. (2015)

There is an on-going trend of incorporating optimization techniques into design
processes to achieve energy efficient buildings (Tian et al., 2015). Two articles that
consider the incorporation of optimization techniques to achieve energy efficient
buildings are Jin and Jeong (2014) and Dino and Üçoluk (2017). Jin and Jeong
(2014) recognize the inherent multi-objective nature of building design, and cre-
ate a multi-objective model with the conflicting objectives of minimizing heat loss
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while maximizing heat gain and solar heat. A genetic algorithm is used to find an
optimal building form with respect to achieving efficient energy performance. A ge-
netic algorithm is inspired by the process of natural selection and uses this process
to find good solutions. Dino and Üçoluk (2017) consider a multi-objective problem
as well. They develop a multi-objective optimization tool for building design, and
perform a Pareto-based search in the design space. A Pareto-based search looks for
a Pareto set of the problem, that is, solutions where none of the objectives can be
improved without degrading another (Dino and Üçoluk, 2017). The layout, orien-
tation and building envelope are optimized for energy and daylight performance.
Energy efficient buildings, and other aspects considered in some of the articles such
as daylight and sunlight, are relevant to consider in an extended, multi-objective
version of the SDP. However, both Dino and Üçoluk (2017) and Jin and Jeong
(2014) perform the optimization on one single building, and do not consider the
relative placement of buildings on a site, like the SDP does. Thus, the objective
and also the domain of these articles are different from the SDP, as seen in Table 2.1.

There are, however, some authors that work with more than a single building and
thus define the domain to be more similar to that of the SDP. Tong (2016) points
to the fact that the relative distribution of buildings has a significant impact on our
perception of the surroundings. Too much clustering or dispersion may both have
negative effects. Thus, the author sets out to create an index that describes the
distribution of buildings. Tong (2016) also incorporates governmental regulations
in the constraints of the problem, similar to the SDP. However, both the regulations
and the application of the index is primarily concerned with green spaces (classified
as urban area in Table 2.1), and not a site regulated for housing like in the SDP.
The regulations of green spaces compared to sites regulated for housing is quite
different as the purpose of the two areas of land is not the same. Reinhard (2015)
also considers an urban area, and uses an evolutionary multi-objective optimization
approach to generate and evaluate a problem where the variables are the same as
for the SDP, that is, the dimensions and placement of the buildings. However, the
utilization is held constant while the view is maximized.

Natural, direct sunlight is often considered an important quality in urban housing
and is part of common zoning regulations. The SDP includes zoning regulations
concerned with daylight by requiring a certain amount of space between each build-
ing. Yi and Kim (2015) propose a genetic algorithm that minimizes the number
of apartments that fail to meet the regulation requirements of minimum hours of
sunlight in Korea. Similar to the SDP, Yi and Kim (2015) define the problem on
a given site to be developed for housing, and consider the relative dispersion of
the buildings. In addition, regulations related to the space between the buildings
are incorporated in the model. However, the objectives of the SDP and the prob-
lem discussed in Yi and Kim (2015) are different, as the SDP only maximizes the
ground floor area or the volume of the buildings, while Yi and Kim (2015) only
consider sunlight.
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Michalek et al. (2002) discuss another problem type that can be partly compared
to the SDP. They develop an optimization model for the architectural floorplan
layout design problem. The problem focuses on placing rooms inside a building.
Because the components to be placed are rooms, they are subject to various con-
straints not applicable to the SDP, such as the need for windows, access halls,
and doors. Nevertheless, the constraints that bound the area of the rooms the
constraints that place the rooms inside the building, and those that ensure no
overlap between rooms are highly relevant to the SDP. The mathematical model
developed is a general nonlinear programming problem, and the authors propose to
use Feasible Sequential Quadratic Programming to solve it. Sequential Quadratic
Programming (SQP) is an iterative method of finding a ”search direction” and a
”step size” by solving quadratic subproblems of the nonlinear programming prob-
lem. Feasible Sequential Quadratic Programming is equivalent to SQP, except that
once a feasible design is found, search directions are altered to maintain feasibility
at every iteration (Michalek et al., 2002).

As illustrated in Table 2.1, there is only one article that defines the same objective
and domain as the SDP. This is the article by He et al. (2015). They address the
spatial aspects defining the rules for site development, exactly like the SDP that
incorporates spatial zoning regulations. He et al. (2015) work with the problem in
three dimensions, and consider individual geometry, spatial relationship with other
buildings and site boundary constraints. This problem is therefore highly relevant
and can provide useful insights. They solve it as a simulation optimization problem
using a heuristic.

To summarize, little research has been done on problems similar to the SDP with
optimization techniques applied. The literature search conducted left only eight
articles for the full review, where only He et al. (2015) consider a problem with
the same objective and domain. Still, the other articles are interesting to study
for the single-objective SDP as it is currently defined, and also for an extended
multi-objective problem.

2.2 Packing problems

The basic structure of packing problems can be described as follows: Two sets
of elements are given, a set of large objects and a set of small objects. All or
some of the smaller objects are grouped into one or more subsets. The subsets are
assigned to the larger objects while maintaining the geometrical conditions, that
is, all small objects must lie entirely within the larger ones and cannot overlap
(Wäscher, Haußner, and Schumann, 2007). From this basic description of packing
problems, it is clear that the SDP has some resemblance to this type of problems.
In the SDP, the set of large objects consists only of one object, namely the site.
The set of smaller objects are the buildings to be placed on the site. In addition,
the geometrical conditions for the SDP and the packing problem are the same.

9



2.2.1 Material collection
As demonstrated in the typology by Dyckhoff (1990) and later Wäscher et al.
(2007), there exists a large variation of packing problems. The keywords used in
the literature search on packing problems are developed based on the typologies by
Dyckhoff (1990) and Wäscher et al. (2007), using words with most similarities to
the SDP. The set of keywords is divided into two groups. The first group consists
of the words: ”packing”, ”cutting”, ”allocation”, ”placement” and ”nesting”. This
group contains words that are often used synonymously with ”packing” in the lit-
erature on packing problems. The exception is the word ”cutting”. It is included
in this group due to the duality between cutting and packing problems and their
common basic structure. For example, packing smaller rectangles into a larger one
may also be seen as cutting smaller rectangles from a larger one (Dyckhoff, 1990).
The second group consists of words that specify the kind of packing problems that
are relevant to compare to the SDP. These words are: ”irregular”, ”irregularly”,
”polygons”, ”rotations”, ”arbitrarily”, ”non-convex” and ”utilization”.

The search is conducted by combining all possible pairs of one keyword from the
first group with one from the second group. To appear in the search result, the title
of the paper has to contain the word included from the first group, while the word
included from the second group has to appear in the title, abstract or keywords of
the article. The initial search generated 11 818 papers. By limiting the search to
include only journal articles written in English, 5 531 articles remained. To further
narrow down the search, only the articles within the research fields of decision
sciences, business management, computer sciences, engineering, and mathematics
were considered. In addition, articles with irrelevant keywords were excluded. This
left 372 articles for further consideration. In addition to the removal of duplicates,
two criteria were developed to further narrow down the search. First, the paper has
to address packing problems. Second, papers that cover packing of circular items
are removed. When these criteria were applied, 50 papers remained. From these,
papers that focus on solving problems with constraints irrelevant for the SDP, such
as constraints related to the texture and material of objects to be used in cutting, or
the selection of larger objects, were filtered out. This is because the SDP has only
one large object (the site), and the selection process of the larger objects is therefore
not relevant to consider. Finally, papers that discretize the problem were filtered
out because the models in these articles are often Mixed-Integer Programming
models (MIP-models). This gives little insight into how to model the continuous
constraints in the SDP. Also, there is too little knowledge of typical solutions to
the SDP to know the error in the objective function a discretization would yield,
or to know the required resolution. In the end, 29 papers were kept for the full
review. Figure 2.2 illustrates the material collection process.
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Initial search

- Search string
created from the
word in group one
that appear in the
title, and the
word from group
two in the title,
abstract or
keywords of the
article

11 818 papers

Only English
journal articles

5 531 papers

Check overall
relevance

- Only considering
papers within a
relevant subject
area

- Excluding papers
with irrelevant
keywords

372 papers

Filter 1

- Remove
duplicates

- Remove articles
that do not
address packing
problems

- Remove articles
about circular
smaller items

50 papers

Filter 2

- Remove articles
with irrelevant
constraints

- Remove articles
that discretize
the problem

29 papers

Figure 2.2: Material collection process for packing problems

2.2.2 Full review

The articles left for full review are systematized in Table 2.3, with one exception.
Bennell et al. (2010) is not included in the table as they do not present a specific
packing problem. Nevertheless, the article provides valuable insight into many of
the concepts used in packing problems and is therefore included in the full review.
Table 2.3 compares relevant properties of the SDP to the various packing problems
the papers discuss. The numbers in the first column of the table correspond to the
articles in Table 2.4.

In both the column ”shape of large item” and ”shape of small items”, the de-
scription irregular is used. An irregular shape refers to a general, non-rectangular,
non-circular shape that can be either convex or non-convex. Thus, the polygonal
shape of the buildings and the convex or non-convex shape of the site in the SDP
are classified as irregular. Further, the word strip is used to describe the shape
of some of the large items. This refers to a rectangle with fixed width and vari-
able length. The last two columns specify whether the authors introduce a new
mathematical model or a new solution method. The abbreviations NLP, MIP, and
MILP stand for Nonlinear Programming, Mixed-Integer Programming, and Mixed-
Integer Linear Programming, respectively. The abbreviation SQP in the solution
method column refers to Sequential Quadratic Programming. The terms heuristic
and metaheuristic are used to describe certain solution methods. The strategy of a
heuristic method is to find a set of rules that work well for the specific application
design. These methods do not guarantee to be optimal but are accepted if they
yield ”good enough” results. The latter is also true for metaheuristics. However,
metaheuristics are more general and less problem-dependent (Tay et al., 2002).
The last four papers in Table 2.3 consider three-dimensional packing problems.
The SDP is included in the last row for comparison with the literature in the full
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review.

Table 2.3: Comparison between the SDP and the articles left for full review

Shape of
large item

Shape of
small items

Fixed
dim.
small
items

Small item
rotation Model Solution

method

1 Rectangle Irregular Yes Continuous - Metaheuristic
2 Rectangle Irregular Yes Discrete - Meatheuristic
3 Strip Irregular Yes No - Metaheuristic
4 Plane Irregular Yes No - Algorithm
5 Strip Irregular Yes No - Metaheuristic
6 Irregular Irregular Yes Continuous - Metaheruristic
7 Convex Rectangle Yes Discrete NLP -
8 Strip Irregular Yes Discrete Metaheuristic
9 Strip Irregular Yes Discrete Local search
10 Rectangle Irregular Yes Continuous - SQP
11 Irregular Irregular Yes Continuous Metaheuristic
12 Convex Rectangle Yes Discrete - Heuristic
13 Strip Rectangle Yes Discrete - Heuristic
14 Strip Irregular Yes Discrete - Metaheuristic
15 Strip Irregular Yes Continuous SQP
16 Strip Rectangle Yes Discrete - Heuristic
17 Irregular Irregular Yes Continuous - Cutting alg.
18 Rectangle Irregular Yes Discrete - Heuristic
19 Strip Convex Yes No MILP -
20 Strip Irregular Yes No MIP -
21 Strip Irregular Yes Discrete - Metaheuristic
22 Strip Irregular Yes Discrete - Metaheuristic
23 Strip Rectangle Yes No - Heurisitc
24 Rectangle Rectangle Area No - Iterative merge
25 3D strip Cubes Yes Discrete - Metaheuristic
26 Irregular Irregular Yes No - Heuristic
27 3D strip Box Yes Discrete - Heuristic
28 3D strip Irregular Yes Discrete - Heuristic
SDP Irregular Irregular No Continuous - -
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Table 2.4: Article overview for Table 2.3

1 Theodoracatos and Grimsley (1995)
2 Jakobs (1996)
3 Bennell and Dowsland (1999)
4 Watson and Tobias (1999)
5 Bennell and Dowsland (2001)
6 Tay et al. (2002)
7 Birgin et al. (2006)
8 Gomes and Oliveira (2006)
9 Imamichi et al. (2009)
10 Yu et al. (2009)
11 Martins and Tsuzuki (2010)
12 Cassioli and Locatelli (2011)
13 Leung and Zhang (2011)
14 Sato et al. (2012)
15 Yu et al. (2012)
16 He et al. (2013)
17 Dalalah et al. (2014)
18 Song and Bennell (2014)
19 Santoro and Lemos (2015)
20 Cherri et al. (2016)
21 Sato et al. (2016)
22 Pinheiro et al. (2016)
23 Wei et al. (2017)
24 Ji et al. (2017)
25 Szykman and Cagan (1995)
26 Egeblad (2009)
27 Allen et al. (2011)
28 Liu et al. (2015)

The shapes of the large and the smaller items

The second column of Table 2.3 states the shape of the large object in each prob-
lem. For the SDP, the shape of the large object is the shape of the site, which
can be either convex or non-convex. In Table 2.3, only Birgin et al. (2006) and
Cassioli and Locatelli (2011) consider a problem where the shape of the large ob-
ject is convex. Birgin et al. (2006) develop a nonlinear programming model for the
packing of rectangles in an arbitrary convex region. Cassioli and Locatelli (2011)
propose a solution method for the same problem considered in Birgin et al. (2006).
The proposed method is a heuristic based on iterated local search. Both packing
problems in Birgin et al. (2006) and Cassioli and Locatelli (2011) are similar to the
SDP in that the large object is convex. However the site in the SDP may also be
non-convex, and the buildings are not restricted to be shaped as rectangles like the
small objects of Birgin et al. (2006) and Cassioli and Locatelli (2011). Thus, there
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are various simplifications and techniques used by Birgin et al. (2006) and Cassioli
and Locatelli (2011) that are not applicable to the SDP.

There are, however, three articles (Tay et al., 2002; Martins and Tsuzuki, 2010;
Dalalah et al., 2014) that propose different solution methods to solve a packing
problem where both the large and the small objects are irregular, like in the SDP.
Both Tay et al. (2002) and Martins and Tsuzuki (2010) propose a metaheuristic to
solve the problem. Tay et al. (2002) argue that a genetic algorithm is a suitable tool
for the irregular packing problem due to a large number of possible arrangements of
the smaller objects. Martins and Tsuzuki (2010), on the other hand, use simulated
annealing to solve the same problem. This algorithm is a simulation of the re-
crystallization of atoms in metal during its annealing (gradually and controlled
cooling). The observation of this process led to the development of simulated
annealing, an algorithm that can skip local minima by exploring a direction that can
locally deteriorate the objective function. The property of being able to ”escape”
a local minimum is the reason why Martins and Tsuzuki (2010) argue that it is
a suitable method, since local minima are frequent in the packing problem with
irregular items. On the contrary to the metaheuristics proposed by Tay et al.
(2002) and Martins and Tsuzuki (2010), Dalalah et al. (2014) develop a new two-
dimensional cutting algorithm. The SDP is similar to all of these problems in that
the shape of both the large object and the smaller objects can be either convex or
non-convex.

Rotation

Another feature the SDP has in common with the packing problems considered in
Tay et al. (2002), Martins and Tsuzuki (2010) and Dalalah et al. (2014), is con-
tinuous rotation of the small items. Theodoracatos and Grimsley (1995), Yu et al.
(2009) and Yu et al. (2012) also solve a packing problem with continuous rotation.
Theodoracatos and Grimsley (1995) suggest a solution method using simulated
annealing. Yu et al. (2009) and Yu et al. (2012) use Sequential Quadratic Pro-
gramming (SQP) to solve a packing problem based on a nonlinear programming
formulation. They compute an overlap index to detect overlap, which is positive
if the shapes overlap and negative if they do not. This overlap index is helpful
when using SQP. Yu et al. (2012) use SQP as the local search strategy and then
employ another strategy (also based on SQP) to escape local minima. These prob-
lems are similar to SDP in that they allow continuous rotation, and can provide
useful and important insights since continuous rotations significantly complicate
the problems. For instance, Cherri et al. (2016) develop MIP models for the Strip
Packing Problem, but do not allow rotation as it will make the proposed models
nonlinear.

The Strip Packing Problem

A significant part of the articles in Table 2.3 considers the large object to have a
fixed width and variable length, as the term Strip in the second column indicates.
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These problems belong to a class of problem known as Strip Packing Problems
(Wäscher et al., 2007). The goal is to minimize the length of the large object by
optimal packing/cutting of the smaller objects. In a way, the SDP can be seen as
the opposite problem to the Irregular Strip Packing Problem. The shapes and sizes
of the objects to be packed in the Irregular Strip Packing Problem are predeter-
mined. For the large object, the shape is known, but the length is to be minimized.
On the contrary, in the SDP, the shape and size of the large object, the site, are
predetermined, while the area of the smaller objects (the buildings) is maximized.

Gomes and Oliveira (2006) are two of many that study the Strip Packing Problem
with irregular-shaped small objects. To detect overlap between the small objects,
they rely on a concept known as the nofit polygon. The nofit polygon is obtained
by fixing one polygon and then tracing the locus of a reference point on another
polygon, as it traces around the edge of the fixed polygon (Bennell et al., 2010).
This creates the nofit polygon. The overlap detection test can now be reduced to
a simple point inclusion test - if the reference point is placed in the interior of the
nofit polygon, the two shapes overlap. If the reference point is on the boundary of
the nofit polygon, the two shapes touch, and if the reference point is in the exterior
of the nofit polygon, then the pieces neither overlap nor touch. The nofit polygon
is the most cited tool for dealing with the geometry of irregular shape cutting and
packing problems (Bennell and Dowsland, 2001). This is also reflected in this liter-
ature review. Apart from Gomes and Oliveira (2006), other articles that consider
the Irregular Strip Packing Problem and use the nofit polygon to detect overlap
include Bennell and Dowsland (2001), Imamichi et al. (2009), Sato et al. (2012),
Sato et al. (2016), Cherri et al. (2016) and Pinheiro et al. (2016).

Apart from the ”opposite” formulation of the objective functions, the SDP also
differs from the Strip Packing Problems that utilize the nofit polygon in that they
only allow discrete rotation or no rotation at all. The shape of the nofit polygon is
different for each new orientation of the polygons, complicating the overlap detec-
tion when continuous rotation is introduced. Out of the problems with continuous
rotation in Table 2.3, only Martins and Tsuzuki (2010) use the nofit polygon to
detect overlap. However, in order to use the nofit polygon, Martins and Tsuzuki
(2010) place the items one at a time in the container. As illustrated, the continuous
rotation present in the SDP complicates the overlap detection as the nofit polygon
cannot be used directly.

Fixed dimensions of small items

A fundamental characteristic distinguishes the SDP from the packing problems
considered in the articles. This difference is illustrated in the fourth column in
Table 2.3, which indicates whether or not the dimensions of the small items are
fixed and predetermined. Table 2.3 shows that, except for one article, all the
other problems have fixed dimensions of the small items. The exception is Ji et al.
(2017). Ji et al. (2017) consider a packing problem known as the soft rectangle
packing problem. This is a packing problem where the area of the small items is
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fixed and the aspect ratio (the ratio of rectangle height to rectangle width) can be
adjusted in certain ranges. The solution method is an iterative merging algorithm
that iteratively merges two rectangles with the least area and then places the
merged rectangles onto the larger object, and determines the aspect ratio of the
sub-rectangles recursively. This packing problem is the only one of the problems in
Table 2.3 that also allows adjustments of the length and width of the small items,
like the SDP. However, the area is still fixed. This is a fundamental difference, as
the maximization of the area or the volume of the smaller items is the objective of
the SDP.

Zoning regulations

Yet another feature that separates the SDP from the various packing problems
described in the literature is the incorporation of zoning regulations related to the
required space between the buildings. This creates a need for open zones around
each of the smaller items. It could be possible to study the building with its open
zones as one object. However this is a simplification in which the properties of the
open zones are not considered. The open zones are allowed to overlap with each
other and can exceed the boundary of the large object, i.e. the site.

Three-dimensional packing problems

Wäscher et al. (2007) report that one- and two-dimensional packing problems are
considered significantly more than three dimensional packing problems, which con-
stitute only 13% of the research papers published. This is reflected in the literature
search, where only four of the articles left for full review examine three-dimensional
packing. The problems defined in three-dimensions (Liu et al., 2015; Allen et al.,
2011; Szykman and Cagan, 1995; Egeblad, 2009) have the same differences com-
pared to the SDP as the two-dimensional problems. None consider open zones
between buildings, all have fixed dimensions of the small items, and the shape of
both the small and the large objects are different. When extending the SDP into
three dimensions, the SDP and the packing problems deviate even more. Recall
that the site in the three dimensional SDP is divided into different height zones
which dictate the maximum allowable height of a building contained within a given
zone. These constraints on the height of the smaller objects are not examined in
the packing problems. The larger object is defined with a given height (Egeblad,
2009), or defined as a box-shaped container with fixed width and length, but un-
constrained height (Allen et al., 2011; Liu et al., 2015). The latter problem type
is the three-dimensional version of the Strip Packing Problem considered above,
and the larger object is classified as 3D strip in Table 2.3. Another characteristic
that separates the two problem types is that the packing problem can stack mul-
tiple objects on top of each other. However, the 3D packing problem still shares
some similarities with the SDP, and the solution methods and models developed
are useful to study. In particular, Egeblad (2009) offers an interesting problem
formulation. The author includes balance in the objective function, ensuring an
evenly distributed placement of the smaller objects. Although the application con-
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sidered by Egeblad (2009) is the loading of ships and trucks, where the importance
of evenly distributed weight is crucial, the balance problem can also be related to
the SDP in that evenly distributed buildings may allow higher density.

To summarize, the literature on cutting and packing problems can be helpful when
studying the SDP as these problems also describe packing smaller objects onto
a larger object to minimize waste of the larger object. Nonetheless, there are a
number of aspects of the SDP that is not considered in the traditional packing
problems due to the different application areas. For instance, the Strip Packing
Problem arises in the furniture, shoe and garment industries, where the raw mate-
rial is given in rolls. Thus, the objective becomes the minimization of the length
of the larger object, that is, the minimization of the use of the raw material. Sev-
eral of the articles mention the application of their work in these industries (e.g.
Gomes and Oliveira, 2006; Imamichi et al., 2009; Chen et al., 2010). The SDP is
a model for real estate development. Therefore, it involves other aspects that are
irrelevant for traditional packing problems. These include the additional problem
of optimizing the size of the smaller items and the consideration of the open zones
around them.

2.3 The Facility Layout Problem
The Facility Layout Problem also exhibits similarities to the SDP. Typically, layout
problems are related to the location of facilities (e.g. machines, departments) in a
plant (Drira et al., 2007). To make sure the facilities do not overlap, the Facility
Layout Problem needs no-overlap constraints similar to the SDP, where the build-
ings are not allowed to overlap. In addition, the space allocated to each facility
in the Facility Layout Problem must take into account a buffer zone around the
facility, for example to operate a machine. This can be compared to the zoning
regulations related to the required space between the buildings in the SDP. How-
ever, based on the survey on the Facility Layout Problem by Drira et al. (2007),
a decision is made not to consider this type of problems further in the literature
review. The problem deviates from the SDP in the both the formulation of the
objective and the constraints. In most of the articles on the Facility Layout Prob-
lem, the main objective is to minimize a function related to the transportation
of parts between the facilities (Drira et al., 2007), an objective not applicable to
the SDP. Although some constraints are useful, these constraints will not provide
any further insight beyond that of packing problems. The no-overlap constraints
are also considered in the packing problems, while the buffer zones in the Facil-
ity Layout Problem are included either in the area of the facility, eliminating the
complications of allowing overlap between the open zones, or by considering the
distances between the facilities as fixed (Heragu and Kusiak, 1988; Braglia, 1996).
Thus, packing problems are studied instead of the Facility Layout Problem because
these problems include the same constraints relevant for the SDP as the Facility
Layout Problem includes, but these problems also have a similar objective to the
SDP, namely to maximize the total area of the items to be packed.
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Part I
The 2D problem: Maximizing the total saleable floor area

of angled buildings on a non-convex or convex site
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Chapter 3

Problem description I: The
2D problem

The problem addressed in this part of the thesis is the two dimensional Site De-
velopment Problem. Consider a real estate developer who wishes to develop a site
for housing such that it maximizes the company’s utility - e.g. saleable square
meters. The task is then to find a layout of apartment buildings such that this
measure of utility is maximized, subject to the zoning rules on the site. As the
SDP is inherently multi-objective and involves complex zoning regulations in prac-
tice, problems of reduced complexity are studied in both parts of the thesis. In
this part, the problem is first and foremost reduced to a single-objective problem
with the only goal of maximizing the total saleable ground floor area. This is a
core objective for commercial stakeholders in the planning process, and therefore
an obvious objective to include in a reduced formulation of the problem. With this
objective, only a subset of spatial zoning rules are formulated as constraints. Since
the ground floor area is the objective to be maximized, the zoning rules included are
the ones that apply to the footprint of the buildings, thus reducing the problem to
a two-dimensional problem. The reduced problem may still yield valuable results,
serving as an approximation of the maximal saleable area and thus the land cover-
age ratio, or utilization, of a site. The results from the formulation and solution can
be used as bases for further conceptual work in the planning process. Finally, be-
fore modeling the larger, more complex SDP, an appropriate and well-functioning
formulation of the purely spatial aspects of the problem is necessary.

3.1 Site
The property owned or evaluated by the developer either has been or will be zoned
by the planning authorities resulting in some area, the site, being approved for
housing development. In practice, the site is defined by a set of coordinates that
constitute its boundary, which in this formulation of the SDP is assumed be a
simple, convex or non-convex polygon. The buildings must be placed fully inside
the site in order to comply with the regulations, as shown in Figure 3.1.
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Figure 3.1: An example of a non-convex site with two buildings

3.2 Buildings
Since real estate developers or the planning authorities can require that a site
should be developed with a certain number of buildings, this is considered fixed in
the problem (Trondheim Kommune, 2015). The buildings are assumed to be angled
along the length, with variable sizes for the angle, length, width and rotation of
each building. Moreover, the study in this part of the thesis does not introduce
any measure of utility or regulations that depend on the height of the buildings.
Thus, the variables of the buildings will be those that vary in the plane, i.e. the
angle, width, length and rotation of the building footprint. The lower and upper
bounds on the width and length of the buildings are determined by best practice
and depend on what the developer believes to suit the target market. This will also
prevent any single building from covering most of the site area. We assume that
there can be no internal overlap between the buildings so that they are treated as
independent building areas.

3.3 Zoning regulations
Each site may have different zoning regulations, but some common constraints
are assumed for the general formulation of the SDP. Certain zoning regulations
require unoccupied space between buildings due to fire safety, daylight regulations
and privacy. To incorporate these regulations, additional unoccupied space (”open
zones”) outside each facade of the buildings must be enforced, as displayed in
Figure 3.2. The open zones are allowed to overlap internally and lie outside the
site boundary (see Figure 3.3), but building structures are not allowed to overlap
with the open zones of other buildings.
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Building footprint

Open zones

Figure 3.2: Building ground floor and open zones

Figure 3.3: Overlap between the open zones, and the open zones and the site boundary

3.4 Objective
Although the objective will vary depending on different factors such as the site,
geographic location and target market, to name a few, the real estate developer
normally wishes to maximize the saleable floor area while complying with regula-
tions. In practice, this is the combined area of all the apartments in the housing
layout. In this formulation, where the height can be considered fixed, this can be
modeled as the combined area of the building ground floors, or building footprint.
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Chapter 4

Mathematical model I

In this chapter, a mathematical formulation of the SDP is presented. First, the
notation used is presented. Next, a high-level formulation is given. The constraints
are not described in detail in this chapter (they are further described in Chapter
5) as they have several possible formulations that each require notational and
algorithmic explanation.

4.1 Assumptions and simplifications
4.1.1 Site
We assume that the boundary of the site is represented by a set of corner points.
The site can be either convex or non-convex.

4.1.2 Buildings
The buildings are shaped by taking a rectangle as a starting point, and then creating
an angle along the length of the rectangle, such that the buildings can be shaped as
non-convex polygons with six corner points. This is illustrated in Figure 4.1. Each
building has open zones on all sides, with fixed and equal width and length for all
buildings. For a building with an angle, the open zones around the outer angle is
created as a triangle with one corner in the angle vertex and two sides equal to
the length of the open zones on the long sides. Figure 4.1 also illustrates the open
zones of the building.
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(a) A building rectangle without a
perceptible angle (but actually an
angle of 180◦) and open zones in
gray

(b) A building with an angle and
open zones in gray

Figure 4.1: Buildings

4.2 Notation

Sets
B Set of buildings
C Set of site corner points

Parameters
W,W Minimum and maximum width of each building
L,L Minimum and maximum length of each building
WO Width of open zone
LO Length of open zone
Xi, Yi Coordinates of ith corner point in C
K Minimum distance from angle point to neighboring site corner point

Variables
wb ∈ R Width of building b
lb ∈ R Length of building b

xb, yb ∈ R Centroid of building b
θb ∈ R Rotation of building b
pb ∈ R Angle point of building b
rb ∈ R Angle of building b

Let vb = (xb, yb, wb, lb, θb, pb, rb) denote the configuration vector of building
b ∈ B, and F (vb) a building footprint with center at (xb, yb), width wb, length lb,
building rotation θb, and angle point pb with angle rb. Figure 4.2a illustrates the
variables of the configuration vector vb, and Figure 4.2b illustrates the parameters
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of the open zones. The building center, (xb, yb), is defined as the center of the
building without an angle, that is, a rectangular building with the same length
and width as the angled building. The length lb of the building is defined as the
”inner” length of the building when it is angled. This is marked with a thicker
line in Figure 4.2a. This implies that the length of the building does not change
with the angle of the building. The building rotation, θb, is measured as the angle
between a vertical line starting in the upper angle point, and the line between the
upper and the lower angle point pb. These lines are illustrated with dashed lines
in Figure 4.2a. The angle point, pb, is placed along the length lb of the building.
For easier visualization, pb is referred to as a point, although it is a single value
in the model that determines the point’s location relative to the building corners.
The angle rb of the building is 180◦ when the building is shaped as a rectangle,
and decreases as the building bends more.

xb, yb

lb
pb

rb

θb

wb

(a) The building configuration vector

WO
WO

LO

LO

LO

LO

(b) A building and its corresponding
open zones

Figure 4.2: The building variables and parameters

4.3 Model

4.3.1 Objective function

maximize
∑
b∈B

wb · lb + w2
b

tan( rb
2 ) (4.3.1)

The objective of the program is to maximize the total area of all the buildings.
The first term of Equation (4.3.1) is the area of the building if it is shaped as a
rectangle, which equals the areas marked in blue in Figure 4.3a. The last term is
the area added due to the angled building shape, which is the area of two equal-
area right-angled triangles created by the dashed line in Figure 4.3a. Figure 4.3b
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illustrates one of the right-angled triangles. The area of the triangle in Figure 4.3b
can be expressed as

A = 1
2 · x · wb (4.3.2)

The tangent of the triangle is calculated and used to find x

tan
(
rb

2

)
= wb

x
=⇒ x = wb

tan( rb
2 ) (4.3.3)

Substituting the expression for x into Equation (4.3.2) gives the area of one of the
triangles. Multiplying by two gives the total area added by the angled shape of the
building, and equals the last term in Equation (4.3.1).

wb

wb

wb

rb
2

rb

(a) The building

rb
2

x

wb

(b) One of the right-angled trian-
gles

Figure 4.3: Calculation of the objective function

4.4 Constraints

4.4.1 Building sizes and rotation
For each building b ∈ B we must have

W ≤ wb ≤W (4.4.1)
L ≤ lb ≤ L (4.4.2)
0 ≤ θb ≤ 2π (4.4.3)
K ≤ pb ≤ lb −K (4.4.4)
π

2 ≤ rb ≤ π (4.4.5)
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4.4.2 No overlap between buildings
Each building is divided into two convex parts to facilitate the detection of overlap.
The buildings are divided along the two angle points as illustrated in Figure 4.4,
creating two half-buildings, denoted P 1(vb) and P 2(vb), i.e. F (vb) = P 1(vb) ∪
P 2(vb). For each pair of buildings, the ground area of one cannot overlap with the

P 1(vb)

P 2(vb)

Figure 4.4: Decomposition of the non-convex angled building into two convex parts,
P 1(vb) and P 2(vb)

open zones, and ground area, of the other. Observe that the open zones around
each building can be decomposed into three different components, the open zones
created by extending the short side of the building, the open zones created by
extending the long sides of the building, and the open zone created around the outer
angle point of the building. Figure 4.5 illustrates this decomposition. From this
decomposition, convex sub-shapes are created. The sub-shapes are represented by
dashed lines in Figures 4.5b, 4.5c and 4.5d. This allows for a simpler formulation of
the building overlap constraints. Let T 1(vb) and T 2(vb) be the trapezoids created
from the open zones on the short sides of building b, illustrated in Figure 4.5b.
Let R1(vb), R2(vb), R3(vb) and R4(vb) represent the four rectangles created from
the open zones on the long sides of building b, as seen in Figure 4.5c. Finally, let
A(vb) be the triangle that covers the space between the open zones on the long
side where the outer angle point is. For each pair of building b, a ∈ B, b 6= a it
must be enforced that

F (vb) ∩
(
T 1(va) ∪ T 2(va)

)
= ∅ (4.4.6)

F (vb) ∩
(
R1(va) ∪R2(va) ∪R3(va) ∪R4(va)

)
= ∅ (4.4.7)

F (vb) ∩A(va) = ∅ (4.4.8)
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(a) A building and all of its correspond-
ing open zones

(b) Open zones on the short sides,
trapezoidal sub-shapes T 1(vb) and
T 2(vb)

(c) Open zones on the long sides,
rectangular sub-shapes R1(vb), R2(vb),
R3(vb) and R4(vb)

(d) Open zone around the outer
angle point, triangular sub-shape
A(vb)

Figure 4.5: Decomposition of the open zones

4.4.3 Containment within site
The open zones are allowed to overlap with the site boundary, while the building
footprint is not. We require for each b ∈ B that

F (vb) ∩ conv(C) = F (vb) (4.4.9)

where conv(C) denotes the convex hull of the site corner points. To then enforce
containment within a non-convex site, a constraint to prevent overlap with the
difference conv(C) \ C is introduced, as shown in Figure 4.6c. Let S ′ = conv(C) \ C
and let S be the set of convex sub-shapes found by decomposing S ′. We require
for each b ∈ B and S ∈ S that

F (vb) ∩ S = ∅ (4.4.10)
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(a) Non-convex site (b) Convex hull (solid) of
non-convex site (dashed)

(c) No-overlap shapes S
(gray)

Figure 4.6: Containment within a non-convex site

4.5 Model properties
For convenience, the mathematical model for the SDP is repeated in full with the
objective function and constraints presented in the previous sections of this chapter.

max
∑
b∈B

wb · lb + w2
b

tan( rb
2 ) (4.3.1)

s.t. F (vb) ∩
(
T 1(va) ∪ T 2(va)

)
= ∅ b, a ∈ B, b 6= a (4.4.6)

F (vb) ∩
(
R1(va) ∪R2(va) ∪R3(va) ∪R4(va)

)
= ∅ b, a ∈ B, b 6= a (4.4.7)

F (vb) ∩A(va) = ∅ b, a ∈ B, b 6= a (4.4.8)
F (vb) ∩ conv(C) = F (vb) b ∈ B (4.4.9)
F (vb) ∩ S = ∅ b ∈ B, S ∈ S

(4.4.10)

W ≤ wb ≤W b ∈ B (4.4.1)
L ≤ lb ≤ L b ∈ B (4.4.2)
0 ≤ θb ≤ 2π b ∈ B (4.4.3)
K ≤ pb ≤ lb −K b ∈ B (4.4.4)
π

2 ≤ rb ≤ π b ∈ B (4.4.5)

The model is a nonlinear program with continuous variables. There are nonlin-
earities both in the objective function and the constraints. The objective function
is nonlinear as it maximizes the area of the footprint of the buildings, and the
constraints (4.4.6) - (4.4.10) are nonlinear because they depend on the shape and
rotation of each building.

It is also important to distinguish between convex and non-convex problems. A
maximization problem is convex if the objective function is concave and the feasible
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region defined by the constraints is a convex set (Lundgren et al., 2010). Recall
that a set C ⊂ Rn is convex if for all points x, y ∈ C and 0 ≤ λ ≤ 1 we have

λx+ (1− λ)y ∈ C (4.5.1)

That is, for any two points x and y in the set, the line segment joining the two
points is fully contained in the set (Nocedal and Wright, 2006). To show that the
given model is non-convex, a counterexample to the proposition that the feasible
set is convex is provided. Consider a building that lies along the site boundary
such that one of its sides is perfectly aligned with the boundary. Assume then
that the rotation is increased such that one corner lies outside the site, yielding an
infeasible placement. If the rotation is increased enough, the same corner can enter
the site again, and the building placement is feasible. Thus, a linear combination
of these two feasible rotational values (for which both corner points are inside the
site boundary) might give a rotation where the corner point is outside the site, and
infeasible. Consequently, the model is non-convex. Another counterexample of
convexity can be provided based on the overlap constraints. Consider a solution in
which two buildings do not overlap. Another solution, where the building indices
are switched, is visually identical and feasible. Taking the mean of these two
identical solutions results in overlap of the buildings and thus infeasibility.
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Chapter 5

Solution method I

In the following chapter, the solution method used to solve the mathematical model
introduced in Chapter 4 is presented. The proposed formulation is implemented
in MATLAB and solved using Sequential Quadratic Programming (SQP). First,
different formulations of the constraints are presented in Section 5.1. The constraint
functions in the formulations are defined such that they provide a measure of
feasibility and infeasibility to the solution method applied. The chosen solution
method used in MATLAB, SQP, is described further in Section 5.2. As seen in
Section 4.5, the formulation of the problem is nonlinear in the objective function,
which maximizes area, and in the constraints, which are dependent on the shape
and rotation of each building. SQP is therefore chosen because it is one of the most
effective methods for nonlinear, constrained optimization problems (Nocedal and
Wright, 2006). Next, alternative definitions of the building variables are presented
in Section 5.3. Lastly, different strategies for constructing initial solutions are
proposed in Section 5.4.

5.1 Constraints
In the following sections, formulations and implementations of the high-level con-
straints (4.4.6)-(4.4.10) in the mathematical model are presented. While the con-
straints in the model are equality constraints, they are implemented as inequality
constraints due to easier implementation. First, a concept used to detect overlap
is introduced, before the constraint formulation that impose no-overlap between
buildings is presented. This is followed by the formulation of the site containment
constraints.

5.1.1 The Hyperplane Separation Algorithm
To detect overlap between the buildings, and between the buildings and the open
zones, the hyperplane separation theorem is applied. Let C and D be two con-
vex sets in Rn that do not intersect (i.e. C ∩ D = ∅). Then, there exists an
a ∈ Rn, a 6= 0, and b ∈ R, such that aTx ≤ b for all x ∈ C and aTx ≥ b for all
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x ∈ D (Gottschalk et al., 1996). In other words, the theorem states that if the two
sets do not intersect, then there exists a hyperplane that separates them. In R2

the hyperplane is a line that separates the two sets. The theorem applied in R2 is
illustrated in Figure 5.1.

C
D

a

aTx ≤ b aTx ≥ b

Figure 5.1: Illustration of the hyperplane separation theorem in R2

An algorithm to detect overlap between two buildings based on this theorem is
developed. This algorithm is referred to as the hyperplane separation algorithm
throughout the thesis. To determine whether or not there exists a line separating
the two convex polygons, as illustrated in Figure 5.1, the shapes are projected onto
a line. This line is called an axis, and the projections are checked for overlap on
this axis. The hyperplane separation algorithm may test many axes for overlap.
However, if the algorithm finds an axis where the projections do not overlap, it can
immediately exit and conclude that there is no overlap between the two shapes.
This is illustrated in Figure 5.2, where the trapezoids in Figure 5.1 are projected
onto the y- and the x-axis. The projections overlap on the y-axis, but not on
the x-axis. Thus, the conclusion can be made that the shapes do not overlap,
without finding an actual hyperplane. An analogy to this method is to think of
a person holding a torch, shining on the two shapes while moving around them,
projecting their shadows onto a wall. If there is a gap in the shadow at any time,
the two shapes do not overlap. Luckily, the hyperplane separation algorithm does
not need to project the shapes onto an axis for all angles. It is enough to project
the shapes onto the normals of the sides of the shapes. Also, since parallel surfaces
will provide normals that lie on the same axis, it is enough to test one of the parallel
sides (Gottschalk et al., 1996).
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C
D

x

y

Figure 5.2: Projections of the two trapezoids onto the x- and y-axis

5.1.2 Building overlap
The hyperplane separation algorithm is used for each pair of convex sub-shape and
half-building as stated in the constraints given in (4.4.6)-(4.4.8). The hyperplane
separation algorithm needs to test all axes that are not parallel of each pair of
sub-shapes and half-buildings. Both the half-buildings and the sub-shapes created
from extending the open zones on the short sides are trapezoids. Two sides are
parallel in a trapezoid and therefore at most six axes need to be tested for each
pair of half-building and sub-shape in constraints (4.4.6). The sub-shapes created
from the open zones on the long sides are rectangles. Thus, at most five axes needs
to be tested for each pair of half-building and rectangle in constraints (4.4.7). The
sub-shape created from the open zone around the outer angle point is a triangle,
and at most six axes need to be tested for each pair of half-building and sub-shape
in constraints (4.4.8).

In addition to detect overlap, it is necessary to find the minimum distance the
buildings have to be moved in order to no longer overlap, or the distance separat-
ing them if they do not overlap. This is a way to model the overlap constraints as
continuous functions. The hyperplane separation algorithm can return a minimum
translation vector (Gottschalk et al., 1996) which will provide this information.
While checking the projections of the shapes for overlap, the algorithm can keep
track of the minimum distance and corresponding axis. However, now the algo-
rithm cannot exit early if it concludes that there is no overlap because there might
be an axis which has not yet been tested with a smaller minimum distance than
the current one.

An algebraic formulation for the algorithm is provided in the following, where the
two sub-shapes are assumed to be trapezoids. Let n̂bl be the unit vector that is
normal (to the right) to the edge ending in corner point cbl, as shown in Figure
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5.3. Assume the building edge vectors are created in the same order, i.e. clockwise
or counter-clockwise. Then the constraint functions can be formulated as

Da,b = max
i=1...4

(
min

j=1...4
{〈caj , n̂bi〉 − 〈cbi, n̂bi〉}

)
(5.1.1)

Db,a = max
i=1...4

(
min

j=1...4
{〈cbj , n̂ai〉 − 〈cai, n̂ai〉}

)
(5.1.2)

and it must be enforced that

max(Da,b, Db,a) ≥ 0 (5.1.3)

for all unique pairs of half-buildings P (va), P (vb), (a, b) ∈ B, b 6= a and the cor-
ners of the sub-shapes. The notation 〈·〉 is used to denote the inner product. The
inner min-problem determines which corner point of building a that lies closest to
building b on the axis defined by vector n̂bi. If the shortest distance in all directions
is negative, then the buildings overlap. Therefore, the constraint requires that at
least one axis has a positive distance ( i.e. a separating hyperplane exists), enacted
by the outer max-problem over axes. Although the implementation only needs to
check three axes, since only one of the parallel sides of the trapezoid needs to be
tested (i.e. max

i=1,3
(·)), all are included here as it allows a simpler formulation.

b

a

ca2

ca3

ca4

ca1
〈n̂bl, ·〉

n̂bl

cbl

〈n̂bl, ca1〉-〈n̂bl, cbl〉

Figure 5.3: Illustration of constraint (5.1.1). The expression finds the normal vector, or
axis, n̂bl such that the shortest distance (the blue line) is the maximum over all the axes
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5.1.3 Containment within site
Constraints (4.4.9) require that the building footprint is contained within the con-
vex hull of the site. These constraints are fulfilled by ensuring that all corner points
of a building are inside the convex hull of the site. The convex hull can be viewed
as an intersection of linear inequalities, so that every building corner point must
be contained in this intersection. There are different ways to define these linear
inequalities depending on the expression used to define the lines that pass through
the site edges. Although the selected formulation is more tedious to develop, it
allows for a natural interpretation. Let (Xi, Yi), (Xj , Yj) be two site corner points
which also are included in the convex hull, and (xkl, ykl) the lth corner point of
building b, as shown in Figure 5.4. An expression for the distance d, the blue
line in Figure 5.4, is developed. It is defined to be the shortest (perpendicular)
distance from a corner point to a site edge, and it is negative when the corner
point is inside the site, zero when it touches the border, and positive outside. Fig-
ure 5.4 shows that the distance can be expressed as the projection of the vector
v = (Xi − xbl, Yi − ybl)T onto the unit normal vector n̂ij. A normal vector for the
edge can be defined as nij = (−(Yj − Yi), Xj −Xi)T = (Yi − Yj , Xj −Xi)T and
its length is thus ‖nij‖ =

√
(Xj −Xi)2 + (Yj − Yi)2. The distance d is calculated

by the projection (Adams and Essex, 2013)

d = nij · v
‖nij‖

= 1
‖nij‖

(
(Yi − Yj)(Xi − xbl) + (Xj −Xi)(Yi − ybl)

)
= 1
‖nij‖

(
(Yi − Yj)xbl + (Xj −Xi)ybl + (XiYj −XjYi)

) (5.1.4)

Now, as the corner points (Xi, Yi), (Xj , Yj) for a site are constant and known, the
expression is linear in the building corner points (xbl, ybl), and can be used to
ascertain that all buildings are inside the convex hull of the site by introducing the
constraint

1
‖nij‖

(
(Yi − Yj)xbl + (Xj −Xi)ybl + (XiYj −XjYi)

)
≤ 0 (5.1.5)

for (i, j) ∈ (C′) ∪ C′1, j = i+ 1, b ∈ B, l = 1, ..., 6 where C′ = conv(C).

Next, constraints (4.4.10) enforce containment within a non-convex site by the
introduction of no-overlap shapes, as previously illustrated in Figure 4.6. The
hyperplane separation algorithm is utilized again to ensure no overlap between the
half-buildings and the no-overlap shapes. The use of the hyperplane separation
algorithm assumes that the no-overlap shapes are convex. If some of the shapes
are non-convex, they are decomposed into convex shapes.
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(Xi, Yi)

(Xj , Yj)

(xbl, ybl)
d

v

n̂ij

Figure 5.4: Calculation of distance to edge

5.2 Sequential Quadratic Programming
The basic idea of SQP is to model the nonlinear optimization problem as a quadratic
subproblem at a given approximate solution, xk. The quadratic subproblem is
solved, and the solution is used to construct a better approximation, xk+1, to the
solution. The method is iterative and creates a sequence of approximations that, if
the method is successful, will converge to a (local) minimum x∗ (Boggs and Tolle,
1996).

The SQP method implemented in MATLAB assumes a general problem of the
form (MathWorks, 2017)

min
x

f(x) (5.2.1)

subject to gi(x) ≥ 0 i = 1, ..., n (5.2.2)
gi(x) = 0 i = n+ 1, ...,m (5.2.3)

where there can be nonlinearities in both the objective function and the constraints.
It follows that the Lagrangian of the problem is given by

L(x, λ) = f(x) +
m∑

i=1
λigi(x) (5.2.4)

The quadratic programming subproblem is obtained by linearizing the nonlinear
constraints, and formulating the objective function as a quadratic approximation
of the Lagrangian. The quadratic programming subproblem is given by

min
d

1
2d

THkd+∇f(xk)T d (5.2.5)

subject to ∇gi(xk)T d+ gi(xk) ≥ 0 i = 1, ..., n (5.2.6)
∇gi(xk)T d+ gi(xk) = 0 i = n+ 1, ...,m (5.2.7)
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where Hk is a positive definite approximation of the Hessian of the Lagrangian at
xk, ∇2

xxL(xk, λk) (MathWorks, 2017; Nocedal and Wright, 2006), and the Lagrange
multipliers λ are defined as free variables for equality constraints and greater than
or equal to zero for inequality constraints. The step d is used to construct a better
approximation to the solution of the original problem. As seen from the expression,
which includes both the Hessian and gradients, the SQP assumes that the objective
and constraints are twice differentiable. The Hessian of the Lagrangian needs to
be approximated with a positive definite Hessian to ensure that the subproblem is
well defined.

The quadratic programming subproblem is solved using an active set strategy
(MathWorks, 2017). An active set strategy is based on trying to identify the set
of constraints that are active at the solution, and treat these constraints as equal-
ity constraints when solving the quadratic programming problem. The solution
of this problem defines the new iterates as (xk + αkdk, λk+1) where dk and λk+1
are the solution and corresponding Lagrange multiplier of the quadratic program-
ming subproblem. The step length αk is determined based on creating a sufficient
decrease in a merit function. The merit function is created to balance the often
competing goals of reducing the objective function and satisfying the inequality
constraints. The merit function combines the decrease in the objective with a mea-
sure of constraint violation, such that the step length will improve the objective
function without too much violation of the constraints (Nocedal and Wright, 2006).

The implementation of SQP in MATLAB treats the objective and constraint func-
tions f(x), gi(x) as black-box functions, in that it only needs the values returned by
a user-defined constraint function and no further information about their structure
(other than the assumptions of SQP). To evaluate the gradients ∇f(xk),∇gi(xk)
at an iterate xk, the method of finite difference approximation is used if analytic
gradients are not provided. One might observe that the overlap constraint func-
tion, as exemplified in Equation (5.1.1), is not everywhere twice differentiable (as
is assumed by SQP), due to use of max- and min-operations. More specifically, it is
not differentiable in the case when the argmax or argmin of Equation (5.1.1) can be
more than one axis or corner, as shown in Figure 5.5. However, as these situations
should be rare, the constraint is almost everywhere differentiable. In addition, SQP
only evaluates the gradient of the constraints when they are active.
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H

H

C
D

Figure 5.5: Both the red and the blue line may be selected as the axis that have the
maximum shortest distance between half-buildings C and D, with distance H

5.3 Alternative building variables
Although the selected variable set for defining the buildings is clear and intuitive, it
is not immediately obvious whether it is the most effective in terms of computing
time, or whether it yields the best results. Therefore, four alternatives to the
building variable set are proposed in this section. All of the alternatives are based
on the common goal to avoid using an angle to define the orientation of the building,
as the original variable set does with θb. The rotation variable θ is bounded within
the interval [0, 2π]. One may observe that if the building is oriented with a rotation
θ′ = 2π and the optimal solution is obtainable by an additional rotation ∆θ such
that θ∗ = θ′+∆θ, then with the defined bounds, the building must be rotated in the
other direction by 2π−∆θ to find the same orientation. Indeed, this may be solved
by increasing the size of the interval, e.g. to [−4π, 4π], as has been implemented
in practice. However, this does not eliminate the problem completely. To avoid
this problem, two of the proposed variable alternatives use certain points on the
building and distances to define a new variable set, while the other two alternatives
use vectors.

5.3.1 Points
Two-corner-points

Let the length of the building be defined by the line segment with end points
(xb1, yb1) and (xb2, yb2), a point pb on the line segment and a height qb, where the
height denotes the perpendicular distance from the point pb to the angled corner
in the building. That is, if the height equals zero, the building will be shaped as a
rectangle. The width of the building is defined as before. The configuration vector
of this formulation is thus defined as vb = (xb1, yb1, xb2, yb2, wb, pb, qb). The
variables are illustrated in Figure 5.6a.
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Mid-width-points

This formulation is similar to the previous, but the end points of the line segment
are now defined as the points in the middle of the width of the building. The idea
behind this alternative to the previous is that the angle point of the buildings can
change from lower angle point to upper angle point without having to rotate the
whole building. That is, the building can bend the other way more easily. Except
for the alternation to the end points of the line segment, the configuration vector
is identical to the other one, that is, vb = (xb1, yb1, xb2, yb2, wb, pb, qb). The
variables that constitute the configuration vector are exemplified in Figure 5.6b.

xb1, yb1

xb2, yb2

qb

pb

wb

(a) Two corner points

xb1, yb1

wbqb

pb
xb2, yb2

(b) Mid-width points

Figure 5.6: The alternative variable sets with defined points

5.3.2 Vector variables
Length-vectors

This variable alternative is called length-vectors because the total length of the
defined vectors equal the length in the original variable set. The variables of this
alternative are a corner point (xb1, yb1), a vector with starting point in the given cor-
ner point, [xb1,yb1], and a second vector with starting point in the end point of the
first vector, given by [xb2,yb2]. The width, wb, is defined as in the previous alterna-
tives. Thus, the configuration vector becomes vb = (xb1, yb1,xb1,yb1,xb2,yb2, wb).
The variables are seen in Figure 5.7a.

Mid-width-vectors

The configuration vector of this alternative is very similar to the length vector
alternative. However, the starting point and the vectors are defined differently. In
this alternative, the starting point for the first vectors is the mid-width point, and
the first vector ends between the upper and lower angled point of the building. This
is where the second vector begins, and it ends in the mid-width point on the other
side. Again, the idea of this alternation to the length vector alternative is that
the building can bend the other way more easily. The other alternatives, except
mid-width, must be rotated 180◦ to bend the opposite direction. The width, wb,

39



is defined as before. This is illustrated in Figure 5.7b. The configuration vector is
vb = (xb1, yb1,xb1,yb1,xb2,yb2, wb).

xb1, yb1
[xb1,yb1]

[xb2,yb2]
wb

(a) Length vectors

xb1, yb1 [xb1,yb1]
[xb2,yb2] wb

(b) Mid-width vectors

Figure 5.7: The alternative variable sets with vectors

5.4 Constructing initial solutions
The SDP might have multiple local optima, and as described in Section 5.2, SQP
most likely returns a local optimum. There is no guarantee that the local optimum
returned by SQP is a good solution to the problem. In order to obtain satisfac-
tory results, the initial solution provided to the solver should be close to a good,
locally optimal solution in order for the solver to more easily converge to such
a solution. Different strategies for producing initial solutions are developed and
described in the following. The SQP is not a feasible-point method (Nocedal and
Wright, 2006), meaning that an initial solution can be infeasible and the method
could still converge to a good solution.

5.4.1 Random
In this approach, the building center points are chosen randomly within the enve-
lope, or bounding box, of the site, and the dimensions and rotations of the buildings
are drawn uniformly at random from within the variable bounds. The buildings
drawn have a rectangular shape. Pseudocode for the strategy is provided in Algo-
rithm 1. The solution constructed may be infeasible as buildings might overlap or
be placed partly or fully outside the site, depending on their shape and size. This
naive approach is developed to allow for easier comparison with other heuristics,
in order to determine whether or not the other heuristics actually provide better
results. An example of output is shown in Figure 5.8.
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Algorithm 1: RandomInitialSolution
Data: Set of site corner points C and number of buildings N
Result: A set buildings B and a set V of initial solution configuration

vectors, vb, for each b ∈ B
begin
B ←− ∅
V ←− ∅
X, X ←− min

Xi

C, max
Xi

C

Y , Y ←− min
Yi
C, max

Yi
C

for b = 1 . . . N do
xb ←− Uniform[X,X]
yb ←− Uniform[Y , Y ]
wb ←− Uniform[W,W ]
lb ←− Uniform[L,L]
θb ←− Uniform[0, π]
vb = (xb, yb, wb, lb, θb)
V ←− V ∪ {vb}
B ←− B ∪ {b}

end
return B,V

end

Figure 5.8: Initial solution with buildings randomly placed within the bounding box of
the site

5.4.2 Open zones outside of the site boundary
The rationale behind the following initial solution strategy is that if as much of
the open zones as possible lie outside the site boundary, the more area of the site
is available to cover with saleable area, that is, the area of the buildings. The
algorithm draws random site edges and places rectangular buildings with the long
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side along the selected edge, such that the entire open zone of this side is outside
the site boundary. The length of the building is selected at random within the
bounds, but shorter than the random site edge. The width is maximal to cover
as much as possible of the open space towards the center of the site. The part of
the site edge that is now covered by the recently placed building is removed from
the set of site edges, and if the remaining parts of the edge are longer than the
minimum building length, then they are included in the set to draw new random
edges from. The strategy may produce infeasible initial solutions when buildings
overlap with the open zones of other buildings, or if two buildings on different edges
overlap. The pseudocode in Algorithm 2 presents the strategy more precisely and
an illustration of an initial solution generated by this method is shown in Figure
5.9.

Algorithm 2: OpenZonesOutsideInitialSolution
Data: Set of site corner points C and number of buildings N
Result: A set buildings B and a set V of initial solution configuration

vectors, vb, for each b ∈ B
begin
B ←− ∅
V ←− ∅
/* Set of feasible site edges, i.e. edges with length

longer than the minimum length L as specified in the
model */

E ←− {E ∈ Edges(C) : ‖E‖ ≥ L}
while |B| < N do

if E = ∅ then
/* No remaining edges to be selected, terminate and

retry */
return

end
b←− |B|+ 1
Eb ←− DrawRandom(E)
vb, Eb1, Eb2 ←− PlaceBuildingOnEdge(Eb,W )
V ←− V ∪ {vb}
B ←− B ∪ {b}
E ←− E \ {Eb}
E ←− E ∪ {Eb1, Eb2}

end
return B,V

end
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Algorithm 3: PlaceBuildingOnEdge
Data: An edge Eb and on which to place a building of random length and

input width wb

Result: A configuration vector of vb of the placed building and the
remaining parts Eb1, Eb2 of the edge that are longer than the
minimum building length L

begin
/* Select random length and compute remaining variables so

that building lies along Eb */
xb, yb, lb, θb ←− ConfigureRandomlyAlongEdge(Eb)
vb ←− (xb, yb, wb, lb, θb)
/* Split Eb into the remaining feasible part of edges. If

no remaining parts, return ∅, ∅ */
Eb1, Eb2 ←− RemainingFeasibleEdgeParts(Eb, vb)
return vb, Eb1, Eb2

end

Figure 5.9: Initial solution with open zones outside the site boundary

5.4.3 Angled building placed in site corner

This initial solution strategy places the buildings in the site corners, with an angle
equal to the angle of the site corner. The idea is to place as much area possible of
the open zones outside the site boundary, while utilizing the increased area gained
by angled buildings. The algorithm draws random site corners, and depending on
whether the site corner is a convex corner or a reflex corner, one of the angled
points of the building is placed in the same point as the selected site corner. A
convex corner is a corner with an angle smaller than 180◦, while a reflex corner is
a corner with an angle greater than 180◦. The building length and width is chosen
randomly within their bounds, while the rotation and the angle of the building is
determined such that the building fits perfectly within the corner point of the site.
The drawn corner point is then removed from the list of available corner points such
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that no two buildings are placed in the same corner. If there are more buildings
than corner points, the algorithm chooses one of the buildings already placed, and
places a new building with the same orientation and angle next to the building
placed towards the center of the site, and such that the open zones of the buildings
perfectly overlap. This initial solution strategy may also produce infeasible initial
solutions. Pseudocode for the strategy is presented in Algorithm 4, and an example
of an initial solution generated by this strategy is shown in Figure 5.10.

Algorithm 4: AngleInCornerInitialSolution
Data: Set of site corner points C and number of buildings N
Result: A set of buildings B and a set V of initial solution configuration

vectors, vb, for each b ∈ B
begin
B ←− ∅
V ←− ∅
/* Set of feasible site edges */
E ←− {E ∈ Edges(C) : ‖E‖ ≥ L}
CE ←− UniqueCorners(E)
while |B| < N do

if CE = ∅ then
/* No remaining corners to be selected */
b←− |B|+ 1
vj ←− DrawRandom(V)
/* Copy a random building and place the new building

next to it */
vb ←− CopyAndMoveInwards(vj)
V ←− V ∪ {vb}
B ←− B ∪ {b}

else
b←− |B|+ 1
Cb ←− DrawRandom(CE)
vb ←− PlaceBuildingInCorner(Cb)
V ←− V ∪ {vb}
B ←− B ∪ {b}
CE ←− CE \ {Cb}

end
end
return B,V

end
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Figure 5.10: Initial solution with the angle of buildings equal to inner angle of the site
corner points

5.5 Smooth approximation of overlap constraint
functions

As described, the model for the SDP is currently non-smooth in the overlap con-
straints. More specificially, the max-min-operation applied in Equation (5.1.1) is
non-differentiable. As SQP and many other solution techniques require that the
problem is continuously differentiable, a smooth approximation of the overlap con-
straint is developed to compare the quality of the solutions found and the impact
on the solution method. Recall that the overlap constraints for two trapezoids are
defined as

max
i=1...6

(
min

j=1...6
{〈caj , n̂bi〉 − 〈cbi, n̂bi〉}

)
≥ 0 (5.1.1)

Tsoukalas et al. (2009) provide a smooth approximation of functions of type

Φ(x) = max
i∈I

min
j∈J

fi,j(x) (5.5.1)

Here, the inner function fi,j can for Equation (5.1.1) be defined as

fi,j(ca, cb) = 〈caj , n̂bi〉 − 〈cbi, n̂bi〉 (5.5.2)

Now, let MI = |I|,MJ = |J | and εI > 0, εJ < 0. Tsoukalas et al. (2009) propose
that

Φ̃(x) = 1
εI

ln
[∑

i∈I

[∑
j∈J

exp (εJfi,j(x))
] εI
εJ

]
(5.5.3)

approximates Φ(x) with lower and upper bound

Φ(x) + lnMJ

εJ
≤ Φ̃(x) ≤ Φ(x) + lnMI

εI
(5.5.4)
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For the SDP model, MI is the number of axes and MJ is the number of points
tested for each axis. So, a differentiable overlap constraint can be defined as

1
εI

ln
[∑

i∈I

[∑
j∈J

exp (εJ · [〈caj , n̂bi〉 − 〈cbi, n̂bi〉])
] εI
εJ

]
≥ 0 (5.5.5)

for only one shape in each pair, to simplify notation. Here, increasing |εI | and |εJ |
will tighten the bounds and yield a more precise approximation.
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Chapter 6

Computational Study I

The computational study tests and compares the alternative building variables, the
different initial solution strategies, and the smooth approximation of the overlap
functions proposed in Chapter 5. In addition, to study the impact by allowing a
more complex shape of the buildings, angled buildings are compared to rectangular
buildings. The tests performed within each solution method category are summa-
rized in Table 6.1. The utilization of the sites, convergence to feasible solutions
and computation time is considered in the evaluation of the different alternatives.

Table 6.1: The alternatives tested within each category

Initial solutions Variables Building shape Approximations
Random generation Original Rectangle Original
Open-zones-outside Two-corner-points Angled Smoothing
Angled-building-

in-site-corner
Mid-width-points
Length-vectors
Mid-width-vectors

The model is solved using MATLAB as described in Section 5.2. The specifications
of the hardware and software used to solve the model is presented in Table 6.2. The
computational study has been conducted on the computing cluster Solstorm at the
Department of Industrial Economics and Technology Management (IØT, 2018).

Table 6.2: Details of the computer hardware and software used

Server Lenovo NextScale nx360 M5
CPU 2x 3,4GHz Intel E5-2643v3 – 6 core
RAM 512 GB
MATLAB version R2017a 64-bit
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6.1 Test instances
Rather than testing the model and solution method on fabricated sites, real sites
are gathered for the study. Through Felles KartdataBase (FKB) (Geonorge, 2017),
Norway’s public cartographical series in digital form, all registered sites in Trond-
heim are collected. Out of the sites, only the sites of area between 5 000−10 000 m2

are kept for the study. From the remaining sites, four non-convex sites and two
convex sites are selected manually to be used in the computational study. These
sites are chosen to reflect the variation in geometry of real sites. The selected sites
can be seen in Figure 6.1. Note that Figure 6.1 does not display the true relative
sizes of the sites.

The upper and lower bounds on the length and the width of the buildings, and
the fixed width and length of the open zones, are given in Table 6.3, together with
the minimum angle point distance. This distance dictates the minimum distance
to the edge of the building along the length where the angle of the building can be
placed. The bounds on the length of the buildings are determined by best practice,
while the bounds on the width are dictated by the common choice to have only
one housing unit through the width of the building, using a rule of thumb to
ensure enough daylight penetration inside each housing unit (Uytenhaak, 2008).
The value of the open zone on the short side (WO) of the buildings is based on
fire safety regulations (PBE, 2012). As the choice should not affect the success of
the formulation and solution method, the shortest allowable open zone distance is
chosen to study the maximum potential of the sites. The selected length of the
open zones on the long sides (LO) is determined based on a zoning rule that is
meant to ensure enough daylight for the apartments of each building (PBE, 2012).
The amount of daylight on the facade of a building depends on the height of the
surrounding buildings and the orientation of each building. Since the height is
not considered in this part of the study, and the orientation of each building is a
variable, an approximate and fixed value for the open zones on all the long sides
is used. Note that all of these values are approximate and based on best practice,
and the exact values (within a reasonable interval) should not affect the general
conclusion about the mathematical formulation and solution method.
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(a) Site 1 (b) Site 2

(c) Site 3 (d) Site 4

(e) Site 5 (f) Site 6

Figure 6.1: The sites used in the computational study

Recall that the number of buildings on each site is assumed fixed, since it is of-
ten a part of the decision maker’s specifications. However, to make sure that the
optimal number of buildings on a site is tested, an approximate interval for the
number of buildings on each site is calculated based on the area of the respective
site. According to the values for the maximum and minimum length and width
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Table 6.3: Values of parameters except site corner coordinates, which are given by the
selected site

Parameter Value

Maximum length L 60 m
Minimum length L 20 m
Maximum width W 14 m
Minimum width W 12 m
Long side open zone LO 15 m
Short side open zone WO 5 m
Minimum angle point distance K 10 m

given in Table 6.3, the lower bound in the interval is computed as the number
of maximally-dimensioned buildings, without an angle, that can be placed within
the area of the site such that there is no remaining space. The calculation of the
upper bound is identical, except that the buildings are the smallest possible. The
calculation assumes that the open zones are a part of the building area, that is,
no open zones can overlap or lie outside the site boundary (contrary to the prob-
lem description). This leaves less area for saleable area, such that the bounds in
the interval underestimates the true bounds in the case where the buildings can
be placed perfectly with overlapping open zones internally and outside the site.
However, as the shape of the sites often complicate the placement of the build-
ings, it is highly unlikely that buildings can be placed perfectly, making up for
the approximation error in the bounds. The intervals with the number of buildings
tested for the sites in Figure 6.1 are shown in Table 6.4, next to the area of each site.

Table 6.4: Area of the sites and the intervals for the number of buildings tested

Site Area of
the site

Minimum number
of buildings

Maximum number
of buildings

1 6911 m2 2 7
2 5393 m2 2 5
3 8292 m2 2 8
4 8036 m2 2 7
5 5247 m2 2 5
6 5180 m2 2 5

Each test is constructed to test one of the solution approaches or formulations
in Table 6.1. A test is performed on the four non-convex sites or on both the
non-convex and convex sites, with the number of buildings specified in the interval
for that site, given in Table 6.4. 30 generated initial solutions are used for one
combination of site and number of buildings.
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6.2 Methodology
The utilization of the sites, convergence to feasible solutions and computation time
are considered when evaluating the different solution methods. The utilization
is computed by dividing the combined area of the buildings by the area of the
site. Only the feasible solutions are considered in the utilization computation and
included in the mean and maximum utilization. For practical and theoretical pur-
poses, both the mean and the maximum utilization are interesting to study. For the
decision maker, the maximum utilization is the most important when the goal is
to maximize the total saleable area. If a selection of feasible site layout designs are
presented, one may argue that if at least one layout provides a degree of utilization
that is acceptable for the decision maker, then the overall problem and solution
approach can be considered successful. However, the value of a single maximum
might not give a true indication of how well a solution approach generally per-
forms compared to another. Although an average solution in itself is not of much
practical value to the decision maker, comparing the mean utilization produced
by two different alternatives can help determine which strategy to apply to a new
site. The convergence to feasible solutions is computed by dividing the number of
times the algorithm produces a feasible solution as the final result, by the number
of generated initial solutions (which is 30 for each combination of site and number
of buildings). The computation time is given in seconds and is the average of each
combination of site and number of buildings, only considering feasible solutions.

To evaluate whether the solution method that provides the highest mean utiliza-
tion is significantly better than the method that provides the second highest mean
utilization, a statistical hypothesis test is conducted. The test evaluates the mean
utilization for each combination of site and a number of buildings. To choose a
suitable test, the samples are tested for normality as this is a prevalent assumption
for some of the common hypothesis tests (e.g. a t-test). Normal quantile plots are
created from the difference in utilization for two different variable sets. A normal
quantile plot is a graph of points where the x-value is from the original set of sam-
ple data, and the y-value is the corresponding z-score, that is, the quantile value
expected from the standard normal distribution (Triola, 2012). If the sample comes
from a normal distribution, the plot should follow a straight line. The plots are
presented in Figure 6.2 and show the difference in utilization provided by the two
variable sets for two, three, five and seven buildings on site 1. A similar pattern is
seen for tests on the other sites and number of buildings. As the plots illustrate, the
plotted points (in blue) show a systematic pattern that does not follow a straight
line (in red). The pattern indicates that the distribution has thinner tails than the
normal distribution. Thus, the normality assumption cannot be applied to the data.

Since the normality assumption does not hold, the Wilcoxon signed rank test is
used. The Wilcoxon signed rank test is a nonparametric test. That is, the test
does not require that the samples come from populations with normal distributions
or any other particular distribution (Triola, 2012). The Wilcoxon signed rank test
assumes that the two samples are dependent or paired. Two samples are consid-
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Figure 6.2: Normal quantile plots

ered paired if the samples are based on some inherent relationship (Triola, 2012).
This is reasonable to assume for the utilization of the sites when testing two differ-
ent solution methods because the only difference between two tests is the solution
method to be tested, since the same 30 initial solutions are used for both methods.
The Wilcoxon signed rank test also assumes that the population of differences has
a distribution that is approximately symmetric. This is acceptable to assume in
this case. The null hypothesis of the Wilcoxon signed rank test is that the popu-
lations of the matched pairs have differences with a median equal to zero (Triola,
2012). The level of significance in the Wilcoxon signed rank test is set to 0.05 by
convention. The test is performed on the solution method that provides the high-
est average utilization and the solution method that provides the second highest
average utilization, as the Wilcoxon signed rank test compares the two to assess
whether one solution method has systematically larger values than another.

The Wilcoxon signed rank test cannot be applied to extreme values of a sample.
To determine if the highest maximum utilization for a given site and number of
buildings is better than the second highest maximum utilization, a value defining
the minimum difference between two solutions is chosen. The value is set to 0.01.
If the difference is larger than 0.01, the highest maximum value is regarded as
considerably higher than the second highest maximum value. If not, the difference
in utilization is too small to be considered important. Recall that sites between
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5 000 − 10 000 m2 are considered in this study, so a value of 0.01 equals an area
between 50− 100 m2 depending on the area of the site. The size of a normal sized
apartment lies within this interval, motivating the choice of 0.01 as it represents a
difference of one apartment (per story of the building) between two highest values.

6.3 Alternative variable sets
In the following, the alternative building variable sets are tested and compared.
To isolate the effect of a change from one variable set to another, the sets are
compared to the original one using the same randomly generated initial solutions.
The test is performed on all of the non-convex sites, with the number of buildings
varying within the interval for each site as specified in Table 6.4. The convex sites
are not used in this test as the variable sets apply to the buildings, and should be
independent of the shape of the sites and whether they are convex or non-convex.
However, all four of the non-convex sites are used in the test to provide more ro-
bust results. The variable sets tested were introduced in Section 5.3 and are for
convenience repeated in Table 6.5.

Table 6.5: The different variable sets tested

Number Variable set
1 Original set
2 Mid-width points
3 Two corner points
4 Length vector
5 Mid-width vector

6.3.1 Utilization
The results for the mean and maximum utilization of the sites are shown in Table
6.6 and Table 6.7, respectively. The numbers for the variable alternatives corre-
spond with those in Table 6.5. If an utilization value is considerable higher than
the utilization yielded by the second highest alternative according to the statistical
significance test for the mean, or the minimum difference for the maximum utiliza-
tion, the result is marked in blue. The tests are performed for each combination of
site and number of buildings. If none of the numbers in a row are marked, the best
mean or maximum utilization is not considerably better than the second best.

As seen in Table 6.6, variable alternative 5, mid-width vector, provides the signifi-
cant highest mean utilization in most of the cases where the Wilcoxon signed rank
test yields a significant result. The mean utilization is significantly best for variable
alternative 5 in almost one third of the cases. The considerable highest maximum

53



Table 6.6: The mean utilization with different variable sets, the best result (if significant)
in each row is marked in blue

Site No. of
buildings

Variable
alt.1[%]

Variable
alt.2[%]

Variable
alt.3[%]

Variable
alt.4[%]

Variable
alt.5[%]

1

2 27.5 28.6 27.2 29.1 29.0
3 38.5 38.6 35.2 39.6 40.2
4 41.7 43.1 41.1 41.9 43.1
5 42.8 43.6 40.9 43.5 41.2
6 43.7 43.0 37.6 39.8 0.0
7 43.2 41.4 38.2 0.0 0.0

2

2 35.3 31.9 32.1 36.4 35.6
3 42.8 40.1 35.5 39.5 42.9
4 44.1 42.7 40.4 45.4 47.7
5 39.9 43.5 40.4 44.6 48.6

3

2 24.7 24.5 24.6 25.0 25.0
3 35.7 34.0 34.0 35.6 36.1
4 43.0 40.2 37.1 42.5 41.9
5 42.2 41.1 40.9 43.0 44.7
6 43.4 44.0 39.9 42.7 46.6
7 41.5 44.1 37.5 46.8 44.9
8 40.3 42.0 38.4 0.0 43.3

4

2 24.8 24.1 23.7 25.1 25.2
3 34.2 32.9 33.3 33.1 36.3
4 41.2 40.6 37.7 44.4 44.1
5 43.3 43.2 39.9 42.0 44.6
6 44.7 45.8 40.3 45.5 46.2
7 43.2 43.7 41.5 0.0 0.0

values marked in blue in Table 6.7 show a different pattern. Here, variable alter-
native 1, the original variable formulation, provides most of the highest maximum
values. However, there are only a few cases in which the maximum value in a row
is considerably higher than the second highest, making it difficult to separate the
different variable alternatives based these results. For instance, variable alterna-
tive 1 provides only two more highest values compared to variable alternative 5.
Further, Tables 6.6 and 6.7 do not suggest that any of the variable alternatives
provides better results for a particular site or a number of buildings.
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Table 6.7: The maximum utilization with different variable sets, the best result in each
row (according to the test in Section 6.2) is marked in blue

Site No. of
buildings

Variable
alt.1[%]

Variable
alt.2[%]

Variable
alt.3[%]

Variable
alt.4[%]

Variable
alt.5[%]

1

2 30.0 30.0 30.0 30.0 30.0
3 44.6 44.4 44.0 45.0 45.0
4 47.5 46.3 48.0 45.5 46.7
5 49.3 49.8 43.7 48.8 46.0
6 50.0 48.9 48.0 45.2 0.0
7 47.6 47.9 42.7 0.0 0.0

2

2 38.4 38.4 38.4 38.4 38.4
3 52.7 46.8 44.0 46.0 49.6
4 49.2 52.8 50.4 46.9 53.6
5 45.6 53.2 48.2 49.2 56.4

3

2 25.0 25.0 25.0 25.0 25.0
3 37.5 37.5 37.5 37.5 37.5
4 47.3 45.5 44.9 47.6 47.2
5 46.8 45.5 49.0 45.5 48.1
6 48.1 47.9 47.2 45.6 48.8
7 46.2 48.0 46.3 46.8 46.0
8 46.6 44.9 44.8 0.0 44.5

4

2 26.1 26.1 26.1 26.1 26.1
3 39.1 38.8 39.1 39.1 39.1
4 49.7 46.3 46.4 48.1 48.5
5 48.3 46.5 47.6 46.6 45.7
6 51.2 50.3 46.2 47.6 52.8
7 46.5 46.6 47.0 0.0 0.0

To study the relationship between the utilization and the number of buildings on
the sites, the maximum utilization is plotted for each site and number of buildings
in Figure 6.3. The steep and straight decrease seen for site 1, 3 and 4 for variable
alternative 4, and in some cases alternative 5, is due to the fact that these alterna-
tives do not find any feasible solutions for these combinations of site and number of
buildings. Apart from this, the variable sets behave quite similar. The increase in
utilization for each site and variable set is steepest when the number of buildings is
in the lower end of the building interval, before it flattens out and slowly starts to
decrease for most of the sites and variable sets. An exception to this observation
is site 2, where most of the variable sets reach their peak at the higher end of the
building interval. A reason for this may be the shape of site 2. As seen in Figure
6.1b, most of the site’s corners are approximately 90◦ (either inner or outer corner
angles), which is not as acute as the many of the corners in the other non-convex
sites. Therefore, a significant amount of the open zones of a building can be placed
outside the site boundary by placing the angle of the building in a corner. This
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allows for a high utilization even when the number of buildings is at the end of
the building interval. In addition, since the site corners are approximately 90◦, the
angle of the building can be at its minimum (i.e. 90◦), which is the angle that
provides the largest building area. In fact, site 2 (combined with variable set 5)
obtains a solution with utilization of 56.4 %, the highest utilization of all of the
sites. This solution is shown in Figure 6.4.
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Figure 6.3: Maximum utilization for the different variable alternatives
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Figure 6.4: The highest utilization obtained for all the variable alternatives and sites -
56.4 % utilization on site 2 with variable alternative 5

Figure 6.3 and Table 6.7 show that all of the variable alternatives find the same
maximum utilization on all the sites when the number of buildings is fixed to two
buildings. This also happens for three buildings on site 3. This indicates that all
the variable alternatives find solutions where the the two (or three) buildings have
the maximal area possible. The utilization for these solutions are naturally the
highest for the smallest site (site 2) and lowest for the largest site (site 3).

6.3.2 Convergence
Although variable alternative 5 yields the best average utilization for all of the
sites, it converges poorly. The convergence to feasible solutions is important to
be able to find good solutions in a tolerable amount of time. The convergence to
feasible solutions for each variable set and number of buildings are shown for each
site in Figure 6.5. The y-axis shows the percentage convergence to feasible solu-
tions. The numbers associated with the different lines refer to the number of the
variable set alternative. The graphs reveal a pattern of decreasing convergence as
the number of buildings increases. This is compatible with the expected behavior
as more buildings lead to less available space on the site, which makes it harder
to find feasible solutions. The green and purple line are variable sets 4 and 5,
the alternatives using vectors. As seen in all four graphs in Figure 6.5, these two
alternatives have the lowest convergence to feasible solutions. This may be due
to the more complex formulation of the constraints when vectors are used. The
three other variable alternatives are more or less equal, although variable set 3 (the
yellow line) generally provides the highest convergence, while variable set 1 (the
blue line) provides the lowest of the three.
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Figure 6.5: Convergence to feasible solution for the different variable sets

6.3.3 Computation time

The average time to reach a feasible solution is the final property tested for com-
parison of the different variable sets. The time is given in seconds. The time is
not included in the average if the solution is infeasible. The results of the average
computation time are presented in Figure 6.6. There is one graph for each site.
The different variable alternatives are shown on the x-axis, where each column is
divided into the different number of buildings tested for the site. The average time
is shown in the y-axis. Since the average time only includes the feasible solutions,
the graph can be misleading if one tries to compare the height of each column. For
instance, variable sets 4 and 5 (the vector formulations) do not find any feasible
solutions for seven buildings on site 4. Therefore, the yellow boxes are not included
in these columns. It does not necessarily mean that variable sets 4 and 5 use less
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time overall.
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Figure 6.6: Average time for each variable set to reach a feasible solution

A few observations can be made by studying Figure 6.6. First, the average time
to find a feasible solution increases with the number of buildings. This is true for
almost all of the combinations tested. Again, this is consistent with expectations as
it is harder to find feasible solutions when the number of buildings increases. This
also influences the time used for each site, where the variable alternatives clearly
use less time on site 2 which at most has five buildings, compared to the largest
site, site 3, which has eight buildings at the most. Second, when comparing the
size of the columns to find which variable set that uses the least amount of time,
no clear pattern is found. Variable set 5 generally has a low column, but this is
mostly due to the fact that the highest number of buildings are not included as it
does not find any feasible solutions. Thus, no conclusion can be made about which
variable set is the best with regards to the computation time.
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To conclude, it is not clear which variable set is preferable. The mid-width-vector
alternative (alternative 5) yields the highest mean utilization, but the convergence
to feasible solutions is too low to produce results within a satisfactory computation
time. The convergence is also quite low for the other vector alternative, the length-
vector formulation (alternative 4). Studying the maximum utilization indicates
that variable alternative 1, the original variable set, is slightly better than the
others. The computation time does not provide enough information to separate
the alternatives. Since a clear conclusion is hard to provide, a choice is made to
continue using the original variable set (alternative 1) in the remaining part of the
computational study.

6.4 Initial solutions
In this section, the initial solution strategies presented in Section 5.4 are tested.
All of the six sites, both the non-convex and the convex sites are used in the tests
of the initial solution strategies. The original variable set is used in all the tests.

In Table 6.8, the mean and maximum utilization are compared for the three differ-
ent initial solution strategies. The solution strategy that places angled buildings
in the site corners yields the highest utilization, both in terms of mean and maxi-
mum utilization. There are not many statistically significant results for the mean
utilization on the non-convex sites (site 1-4), but for the convex sites, the angle-
in-corner-strategy provides the significantly highest mean for 75 % of the combi-
nations tested. In terms of the maximum utilization, there are more considerably
best results on the non-convex sites, but all sites support the conclusion that the
angle-in-corner-strategy is the best. In fact, this strategy provides a considerably
highest maximum utilization for more than half of the combinations tested. On
average, an increase of 2.5 percentage points can be obtained using the angle in
corner strategy compared to both the random and open zones strategy, which pro-
vide approximately the same maximum utilization on average. For sites between
5 000 - 10 000 m2, this amounts to an area of 125 - 250 m2 more saleable floor
area per story of a building. Examining the individual sites, even larger differences
are found. For instance, the maximum utilization attained by the angle in cor-
ner strategy and the strategy providing the second highest utilization (the random
strategy) on site 3, have a difference of 4 percentage points. This equals a floor
area of 332 m2 per story of a building.

An illustration of some of the results obtained from the different initial solution
strategies are shown in Figure 6.7. The figure shows the initial solutions that
produce the maximum utilization on site 3 for the three strategies. The random
generation of initial solutions and the open-zones-outside-strategy obtain a max-
imum utilization on site 3 with six buildings, while the strategy that places the
angled buildings in the site corner points provides the maximum utilization with
five buildings.
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The convergence and computation time of the different initial solution strategies
are also compared. The convergence to feasible solutions is similar for the three
strategies and does not add any further insights. The comparison of the computa-
tion time is more interesting to study. The computation time is plotted in Figure
6.8 for each site. The heights of the columns show the mean computation time
for the given strategies (the strategies are labeled on the x-axis), and the different
colors of the boxes are the different number of buildings. As observed when testing
the alternative variable sets, the average computation time increases as the num-
ber of buildings increases. In addition, a pattern is revealed for the three smallest
sites, site 2, 5 and 6. Here, the random generation of initial solutions clearly has
the highest computation time, followed by the open-zones-outside-strategy, while
the angled-building-in-corner-strategy has the lowest computation time on aver-
age. This can be explained by the fact that the random initial solution strategy
places the buildings randomly, possibly far from any (local) minimum, such that
the solver requires some time to find a good solution. The strategy that places
angled buildings in the site corners may possibly start with an initial solution close
to a (local) minimum, which could explain the low computation time and the high
mean and maximum utilization seen in Table 6.8. However, the same pattern is
not observed for the larger sites, site 1, 3 and 4.

The considerable increase in utilization attained by the angled-building-in-corner-
strategy can lead to a notable increase in the monetary value of a site. In addition,
the computation time on small sites is shorter when using this strategy. Moreover,
the convergence is similar to the different strategies. Thus, a conclusion can be
made that the angle building in corner strategy provides the best results.
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Table 6.8: The utilization of the initial solution strategies, the best results (according
to the tests in Section 6.2) are marked in blue

Mean utilization [%] Maximum utilization [%]

Site No. of
buildings Random Open

zones
Angle in
corner Random Open

zones
Angle in
corner

1

2 27.5 29.7 29.7 30.0 30.0 30.0
3 38.5 40.5 40.3 44.6 45.0 45.0
4 41.7 43.8 44.5 47.5 48.7 52.4
5 42.8 43.1 44.2 49.3 48.6 50.8
6 43.7 42.1 44.9 50.0 48.3 50.7
7 43.2 42.3 43.1 47.6 48.6 46.3

2

2 35.3 36.7 37.0 38.4 38.4 38.4
3 42.8 41.8 47.6 52.7 49.3 53.9
4 44.1 42.6 49.3 49.2 49.5 55.3
5 39.9 41.9 49.4 45.6 48.3 54.5

3

2 24.7 24.8 25.0 25.0 25.0 25.0
3 35.7 35.6 37.1 37.5 37.5 37.5
4 43.0 43.0 44.1 47.3 46.7 48.4
5 42.2 41.2 46.6 46.8 45.6 52.1
6 43.4 41.9 45.1 48.1 47.1 50.0
7 41.5 42.2 46.8 46.2 45.2 50.3
8 40.3 40.6 44.3 46.6 42.9 49.2

4

2 24.8 25.7 25.7 26.1 26.1 26.1
3 34.2 36.5 37.5 39.1 39.1 39.1
4 41.2 42.3 45.9 49.7 50.0 52.1
5 43.3 44.1 49.4 48.3 48.7 56.4
6 44.7 45.1 48.6 51.2 52.3 55.4
7 43.2 43.2 49.6 46.5 49.0 54.5

5

2 37.6 37.0 39.5 39.5 39.5 39.5
3 46.1 43.3 54.4 53.1 52.0 54.7
4 46.4 46.1 57.1 55.2 58.9 57.1
5 44.1 42.6 59.1 53.2 51.4 61.8

6

2 38.6 39.3 39.7 40 40 40
3 43.1 44.8 48.6 49.5 49.2 51.9
4 41.2 44.4 47.6 49.6 48.3 50.4
5 41.8 43.1 46.6 47.2 49.3 50.3
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(a) Initial solution - random generation (b) 48.1 % utilization after optimization
starting from 6.7a

(c) Initial solution - open zones outside (d) 47.1 % utilization after optimization
starting from 6.7c

(e) Initial solution - angled building in
site corners (two buildings under the
others)

(f) 52.1 % utilization after optimization
starting from 6.7e

Figure 6.7: The highest utilization obtained for each initial solution strategy on site 3
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Figure 6.8: Average time to reach feasible solutions for the three different initial solution
strategies
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6.5 Rectangular versus angled buildings
Allowing an angle in the building footprint increases the flexibility in the layout
optimization process. However, it also increases the complexity of the model. An
interesting comparison is therefore the gain in utilization by allowing angled build-
ings compared to rectangular buildings as studied in Bratsberg and Mellbye (2017).
The model developed in Bratsberg and Mellbye (2017) is utilized for the rectan-
gular buildings on the convex sites, and extended to use on the non-convex sites.
The original variable set is used for both rectangles and angled buildings, though
less the angle point and size of angle for the rectangles. Moreover, the random
initial solution generation is used for both. In order to make the comparison fair,
the maximum area possible to achieve for a building is equal for both the angled
and rectangular buildings.

As shown in Table 6.9, a significant gain in utilization is achieved by using angled
buildings and the increased complexity does not inhibit the solution method from
producing dense layouts. Almost one half on the mean utilizations with angled
buildings are significantly larger than the mean utilizations with rectangular build-
ings. The maximum utilization provides even more convincing results, showing
that a substantial gain in utilization can be obtained by allowing angled buildings.
The largest difference is observed on site 2, where a gain in utilization of 7.3 per-
centage points is attained by allowing angled buildings (the difference between the
maximum values for the rectangular and angled buildings on site 2). This amounts
to a floor area of 394 m2 per story of a building.

The increased complexity introduced by the angled buildings does however increase
the computational time substantially. This is illustrated in Figure 6.9. Again, the
computation time is considerably shorter for the smaller sites, and it increases with
the number of buildings for all sites.

The difference in convergence to feasible solutions for rectangular and angled build-
ings is not as considerable as the difference in computation time. The convergence
to feasible solutions is plotted in Figure 6.10 for all of the sites. The difference
in convergence for the two building shapes is highest for site 2, 3, 6 and to some
extent site 5, while it is quite similar for site 1 and 4. Generally, the convergence is
higher for the convex sites. However, this is true also for site 2. Thus, the convex
shape of the sites might not be the reason for a high convergence, but rather the
lower number of buildings and smaller area of the sites.
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Table 6.9: Mean and max utilization using rectangular buildings versus angled buildings.
The best results (according to the tests in Section 6.2) are marked in blue

Mean utilization [%] Max utilization [%]
Site Number of buildings Rectangular Angled Rectangular Angled

1

2 23.2 23.9 24.3 24.3
3 32.7 34.9 36.5 36.5
4 38.3 41.4 44.2 48.3
5 40.3 41.4 43.7 46.8
6 40.6 43.2 43.8 48.4
7 41.0 43.2 45.6 44.6

2

2 26.7 30.7 31.1 31.1
3 35.4 39.3 41.2 46.7
4 38.1 41.8 44.7 52.3
5 38.2 40.0 45.0 50.6

3

2 20.1 20.3 20.3 20.3
3 28.6 29.7 30.4 30.4
4 35.2 38.4 39.4 40.5
5 38.5 41.3 44.1 49.6
6 38.3 42.3 43.0 46.7
7 38.7 43.1 43.4 46.1
8 39.4 41.4 44.2 48.7

4

2 20.1 20.8 20.9 21.1
3 30.1 30.6 31.4 31.7
4 37.8 37.9 41.8 42.3
5 41.9 41.7 47.6 50.0
6 42.2 43.6 45.9 49.9
7 44.0 42.6 46.3 45.8

5

2 29.6 30.8 32.0 32.0
3 37.5 43.8 48.0 48.0
4 42.8 45.0 51.5 55.7
5 41.1 44.1 52.3 52.8

6

2 31.2 32.3 32.4 32.4
3 38.0 43.2 42.5 48.6
4 37.5 41.9 42.9 48.8
5 37.4 38.9 43.3 45.7
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Figure 6.9: Average time to reach feasible solutions, rectangular versus angled buildings
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Figure 6.10: Convergence to feasible solutions, rectangular versus angled buildings
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6.6 Smooth approximation of overlap constraint
functions

SQP requires that the problem to be solved is continuously differentiable, which
due to the overlap constraints, the SDP is not. However, as shown previously in
this chapter, SQP still provides acceptable results. Nonetheless, it is interesting
to compare the quality of the solutions produced when a smooth approximation of
the overlap constraints is used, in relation to the original non-continuously differ-
entiable overlap constraints of the SDP. The four non-convex sites are used in the
tests, together with the original variable set and the random generation of initial so-
lutions. The results for the mean and maximum utilization are shown in Table 6.10.

As shown in Table 6.10, smoothing of constraints yields higher mean and maximum
utilization in almost all cases. In nearly half of the cases, a significant increase in
mean utilization can be obtained. For max utilization, smoothing provides consid-
erable increase in more than half of the test cases. Most notably, it increases the
overall maximum utilization of each site, by an average of approximately 2.1 per-
centage points. In practice, this may lead to an increase of 105-210 m2 of additional
saleable floor area per story, for sites between 5 000-10 000 m2. The maximum uti-
lization obtained using smoothing is seen on site 4 with a utilization of 54.0%. This
solution is presented in Figure 6.11.

Figure 6.11: Maximum utilization on site 4 using smoothing

If studying Figure 6.11 closely, it can be seen that the buildings in the upper
part of the site slightly overlap with the site boundary. When comparing the con-
straint violation of the exact and smooth approximation formulation of the overlap
constraints, it shows that the smooth approximation does indeed allow a larger
constraint violation. However, the gain in utilization is larger than the area the
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constraint violation may contribute with, so that a smooth approximation may
produce better results. To counter the constraint violation, one can increase the
parameters ε until a satisfactory tolerance level for overlap is reached.

Table 6.10: The mean and max utilization of the smooth approximation versus the
original formulation. The best results (according to the tests in Section 6.2) are marked
in blue

Mean utilization [%] Max utilization [%]
Site Number of buildings Original Smooth Original Smooth

1

2 27.5 28.4 30.0 30.0
3 38.5 39.6 44.6 45.0
4 41.7 43.0 47.5 51.5
5 42.8 44.2 49.3 51.2
6 43.7 45.9 50.0 52.9
7 43.2 44.2 47.6 49.7

2

2 35.3 35.1 38.4 38.4
3 42.8 41.4 52.7 53.2
4 44.1 45.8 49.2 53.9
5 39.9 41.7 45.6 48.5

3

2 24.7 24.6 25.0 25.0
3 35.7 36.3 37.5 37.5
4 43.0 41.0 47.3 46.9
5 42.2 42.9 46.8 49.6
6 43.4 43.0 48.1 48.6
7 41.5 43.5 46.2 48.8
8 40.3 40.9 46.6 48.5

4

2 24.8 24.7 26.1 26.1
3 34.2 36.6 39.1 39.1
4 41.2 43.1 49.7 52.1
5 43.3 44.9 48.3 51.1
6 44.7 47.1 51.2 54.0
7 43.2 44.7 46.5 47.3
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Figure 6.12 shows that the use of smooth constraints leads to more feasible solutions
than exact constraints in nearly all cases. With smooth constraints, the average
share of feasible solutions is approximately 19 percentage points higher than with
exact constraints. SQP may struggle to converge around non-differential points in
the solution space possibly leading to too many iterations or termination. How-
ever, as demonstrated in Section 5.2, these points should not be frequent and the
difference in convergence is larger than expected and than what can be explained.
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Figure 6.12: Convergence to feasible solutions, smoothing versus the exact formulation
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Figure 6.13 shows that smoothing leads to longer convergence time than exact
constraints. Although it is difficult to determine the cause, it may be due to a
source of error in the computing cluster used to solve the model. The tests with
the smooth formulation of overlap constraints were conducted later in time than
the tests on the exact model. Increased computing traffic in this period may have
caused an increase in the computation time.
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Figure 6.13: Average time to reach feasible solutions, smoothing versus the exact for-
mulation

72



6.7 The highest utilization obtained on each site
The results shown could be different if different combinations had been tested. All
the tests for the variable sets use the random generation of initial solutions, while
all the initial solution strategies use the original variable set. For instance, an in-
teresting combination to test could be the mid-width-vectors (variable alternative
5) together with the angled-building-in-corner-strategy. The mid-width-vectors
set provides most of the highest mean utilization values but convergences poorly.
Combined with a better initial solution strategy than the random approach, the
convergence may improve. Nevertheless, a choice is made to test only some of the
combinations to avoid all potential combinations of variable sets, initial solution
strategies, shapes of buildings and formulation of the overlap constraints. The so-
lutions with the highest utilization produced for each site with the combinations
tested in this computational study are presented in Figure 6.14. The solutions
using the smooth approximation of the overlap constraints are not included since
these allow some constraint violation.

It is interesting to note that almost all of the highest utilization values are obtained
with the angle-in-corner-strategy as the initial solution strategy. This is consistent
with the results seen in Section 6.4. Since this strategy is only combined with the
original variable set in the tests, the results shown in Figure 6.14 for site 1 and
site 3-6 are produced with the original variable set. Only the result for site 2 is
produced with the random generation of initial solutions and variable alternative
5.
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(a) Site 1 - A utilization of 52.4 % (b) Site 2 - A utilization of 56.4 %

(c) Site 3 - A utilization of 52.1 % (d) Site 4 - A utilization of 56.4 %

(e) Site 5 - A utilization of 61.8 % (f) Site 6 - A utilization of 51.9 %

Figure 6.14: The solutions with the highest utilization obtained for each site out of all
the combinations tested with the exact formulation
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Part II
The 3D problem: Maximizing the total volume

of angled buildings on a non-convex or convex site
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Chapter 7

Problem description II: The
3D problem

The problem addressed in this part of the thesis is still the Site Development Prob-
lem (SDP). In Part I, the aggregated footprint area of the buildings was considered
a proxy for saleable square meters. This is a reduction of the problem as it does not
consider building heights. In this part, the SDP is extended into three dimensions
by introducing building heights. The problem is still a single-objective problem,
now with the goal to maximize the total volume of the buildings.

7.1 Site
The site is defined as in Part I, by a set of coordinates that constitute its boundary,
which can be either a convex or non-convex polygon. With the introduction of
building heights, the site is divided into different height zones. These height zones
are sub-areas of the site and dictate the maximum height of the building that is
placed within, or intersects with, the zones. If a building overlaps with two or
more height zones, the lowest of the zones determines the maximal height. A site
divided into height zones is illustrated in Figure 7.1. In addition to height zones,
a maximum allowable mean height on the site is imposed on the buildings.

7.2 Buildings
The footprint shape of the buildings is defined as in Part I, and the number of
buildings on each site is considered fixed. The height of a building assumed to
be continuous and the same over the whole area of the building. A minimum
bound on the height is set according to a normal residential building story height
(Uytenhaak, 2008). An example building is illustrated in Figure 7.2.
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Figure 7.1: A site with three different height zones

Figure 7.2: A building

7.3 Zoning regulations
As in Part I, additional unoccupied space is enforced around the facade of each
building. Ensuring adequate natural light inside the buildings and enough sunlit
outdoor area are important reasons for requiring additional open space between the
buildings. Naturally, the amount of daylight accessible to each building and sunlit
outdoor area are highly dependent on the height of the buildings that surround it.
Therefore, the size of the open zones is adjusted depending on the height of the
buildings. This is illustrated in Figure 7.3, in which a building casts a shadow in
the direction of another building, and the dashed lines show the light penetration
into the second building. Figure 7.3a shows a feasible solution where the light
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penetration into the ground floor of the second building is acceptable. Figure 7.3b
exemplifies what happens if one more story is added to the first building without
increasing the distance between the buildings. The ground floor on the second
building does not receive sufficient daylight, and the buildings have to be moved
further apart in order to correct this. The shadow of the building is dependent on
where the sun is relative to the building, which will change throughout the course
of the day and throughout the year, and with the placement and orientation of the
building. Regulations are developed specifically for different places in the world,
measuring whether the outdoor area is sunlit more than a certain amount of time
on a specified date (PBE, 2012).

(a) Natural light penetration of a
building next to a four story build-
ing

(b) Natural light penetration of a
building next to a five story building

Figure 7.3: Obstruction of natural light penetration by neighboring buildings

7.4 Objective
In practice, the objective is to maximize the saleable floor area, which is the com-
bined area of all the apartments in the housing layout. The combined volume of
the buildings is used as a proxy for this area.
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Chapter 8

Mathematical model II

In this chapter, a formulation of the extended SDP with heights of the buildings is
presented. First, the notation used is presented. Second, a high-level formulation
of the problem is given.

8.1 Assumptions and simplification
8.1.1 Site
Like before, the site is assumed to be represented by a set of corner points and can
be either convex or non-convex. As a simplification, the site is assumed to be flat.
The site is divided into height zones, sub-areas of the site with different allowable
maximum heights of the buildings. If a building is placed within two or more height
zones, the height zone with the lowest allowable maximum height applies. All the
buildings has to be placed fully inside the site to produce feasible solutions.

8.1.2 Buildings
The building footprints can be shaped either as rectangles or as angled buildings.
A building is assumed to have only one height. A maximum allowable average
height for all the buildings is given. The contribution to the average height of
one building is independent of its footprint area. Moreover, a minimum allowable
height, lower than the mean height, is also given, which applies to all of the height
zones.

8.1.3 Zoning regulations
For convenience, the illustration of the decomposition of the open zones from Part
I is included here. To ensure adequate daylight inside each building and sufficient
sunlit outdoor area, the size of the open zones on the long side of each building
(Figure 8.1c) and around the angle of the building (Figure 8.1d) increases when
the height of the building is increased. The shadow of the building is dependent
on where the sun is relative to the building, which changes with the the placement
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and orientation of each building. Since the latter are variables in the SDP, a
simplification is made. A simple rule of thumb stating that the angle of obstruction
should be no greater than 45 degrees is used in order to find the relationship between
the height of the building and the size of the open zones (Uytenhaak, 2008). The
angle of obstruction is the angle between the ground and the shadow from the
building. Figure 8.2 illustrates the angle of obstruction for a seven story building.
The orientation of the building relative to the sun is not considered, so an angle
of obstruction of 45 degrees is assumed on all of the long sides of the buildings,
including the open zone around the outer angle point of the building. By assuming
this angle on all sides, the total open zone area is overestimated. If the orientation
of the buildings in relation to the sun is known, some open zones do not need an
angle of obstruction as large as 45 degrees. However, this approach guarantees
compliance with the zoning regulations. The open zones on the short sides of the
building (Figure 8.1b) are required due to fire safety regulations, and do not depend
on the height of the building.

(a) A building and all of its correspond-
ing open zones

(b) Open zones on the short sides,
trapezoidal sub-shapes T 1(vb) and
T 2(vb)

(c) Open zones on the long sides,
rectangular sub-shapes R1(vb), R2(vb),
R3(vb) and R4(vb)

(d) Open zone around the outer
angle point, triangluar sub-shape
A(vb)

Figure 8.1: Decomposition of the open zones
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α

Figure 8.2: The angle of obstruction, α

8.2 Notation

Sets
B Set of buildings
I Set of height zones

Parameters
H Minimum allowable height for all buildings
Hi Maximum allowable height in height zone i
H̃ Maximum allowable mean height
N Number of buildings

Variables
wb ∈ R Width of building b
lb ∈ R Length of building b

xb, yb ∈ R Centroid of building b
θb ∈ R Rotation of building b
pb ∈ R Angle point of building b
rb ∈ R Angle of building b
hb ∈ R Height of building b

δbi ∈
{

1, if building b overlaps or is contained within height zone i,
0, otherwise

Let vb = (xb, yb, wb, lb, θb, pb, rb, hb) denote the configuration vector of building
b ∈ B, and F (vb) a building footprint with centroid at (xb, yb), width wb, length
lb, building rotation θb, angle point pb with angle rb, and height hb. The footprint
of the building is defined as in Part I, but the configuration vector has one more
variable since the model is extended to include the building height. The variables of
the configuration vector are illustrated in Figure 8.3. Notice that all the variables
except hb are defined in the plane.
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hb

xb, yb

lb

pb

rb

θb wb

Figure 8.3: The extended building configuration vector

8.3 Model

8.3.1 The objective function

maximize
∑
b∈B

hb ·
(
wb · lb + w2

b

tan( rb
2 )

)
(8.3.1)

The objective function is the volume of the buildings. The footprint area of each
building is calculated as in Section 4.3.1 and multiplied with the height of the
corresponding building.

8.3.2 Constraints
All of the constraints from Section 5.1 still hold, that is, constraints (4.4.1)-(4.4.10).
The additional constraints added when the SDP is extended with building heights
are presented here.

A lower bound on building heights hb for all b ∈ B is included

hb ≥ H (8.3.2)

For each building b ∈ B and height zone i ∈ I it must be enforced that

overlap(F (vb), i) ≤M1δbi (8.3.3)
hb ≤ Hiδbi +M2(1− δbi) (8.3.4)

where M1 and M2 are ”sufficiently large” constants, and overlap(F (vb), i) is a func-
tion that is positive in case of overlap between a building footprint and a height
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zone i, and negative otherwise. A mathematical expression for the function is given
in Part I, Equation (5.1.1). For each building b, constraints (8.3.3) determine if
a building b lies inside or overlaps with a height zone i. M1 can be set equal
to the largest possible building area to ensure that it always is sufficiently large.
Constraints (8.3.4) ensure that the height of building b is lower than each of its
overlapping height zones. M2 can be set equal to the height of the maximum height
zone for those constraints that involve zones which do not overlap with the building
b.

To ensure that the mean height of the buildings is lower than or equal to the
maximum allowable mean height, constraint (8.3.5) is added

1
|B|
∑
b∈B

hb ≤ H̃ (8.3.5)

8.4 Model properties
The model is given by the following objective and constraints. For the full model,
see Appendix A.1.

max (8.3.1)
s.t. (4.4.1)− (4.4.10)

(8.3.2)− (8.3.5)

The model has the same properties as the model introduced in Part I since all
of the constraints from the model in Part I also apply here. Thus, the model is
nonlinear in both the objective and the constraints, and still non-convex due to the
non-convex set formed by the constraints. In addition, due to the binary variables
introduced in constraints (8.3.3) and (8.3.4), the problem becomes a Mixed-Integer
Nonlinear Program (MINLP).
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Chapter 9

Solution method II

While the extended model is more complex, there is significant overlap with the two-
dimensional model of Part I. In the plane, the only extension is the variable length of
the open zones on the long sides of the buildings. As this only changes the size of the
open zones, and not the shapes, the solution methods of Part I are maintained for
the planar parts of the extended problem. However, the height of a building dictates
its possible placements, and binary variables must be introduced to constrain the
building from overlapping with lower height zones. The combination of integer
and continuous variables presents significant challenges. This is outlined in Section
9.1, where a short introduction to solution methods for general MINLPs are given.
Next, a heuristic and a naive solution method for the extended model are presented
in Section 9.2 and Section 9.3, respectively.

9.1 Theoretical considerations
The problem introduced in this part of the thesis is a non-convex mixed-integer non-
linear program (MINLP). Although integer variables make an optimization problem
non-convex (Nocedal and Wright, 2006), a distinction can be made between convex
and non-convex MINLPs. For convex MINLPs, the continuous relaxation is convex.
Thus, even though both convex and non-convex MINLPs are NP-hard in general,
convex MINLPs are far easier to solve than non-convex ones, in both theory and
practice (Burer and Letchford, 2012).

Several efficient and exact solution methods have been devised for the convex
MINLP based on the fact that the continuous relaxation is convex. Two of these
methods include branch-and-bound and outer approximation (Burer and Letch-
ford, 2012). Branch-and-bound is a classical algorithm for solving MINLPs. The
basic idea of such methods is to relax the integer requirement of the variables,
and approach the optimal solution by introducing constraints, or branches, on the
variables. The relaxed problem constitutes an NLP problem, and a variety of NLP
algorithms are available to solve such problems, for instance SQP utilized in this
thesis. Since the continuous relaxation of a convex MINLP is convex, each local
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feasible solution found is a lower bound (assuming a maximization problem) on the
optimal objective value. Therefore, the solution at a node may be used to prune
branches that have a lower objective function value to avoid enumeration of all so-
lutions (Bonami et al., 2011). In the outer-approximation algorithm, the problem
is first solved as an NLP problem where the integer variables are fixed. Due to
convexity, the optimal solution found from solving the NLP problem constitutes
a lower bound on the optimal value of the original MINLP problem (asssuming
it is a maximization problem). Next, a linearization around the optimal solution
of the NLP problem is carried out, and the linearized functions are added to the
problem. The resulting model is a MILP problem. The MILP problem is solved,
and again due to convexity, the optimal solution constitutes an upper bound on the
optimal solution of the MINLP. The steps in the solution method is repeated until
the difference between the lower and upper bounds is within a specified tolerance
(Duran and Grossmann, 1986).

On the contrary, in the non-convex case, the continuous relaxation is in itself a
global optimization problem (Burer and Letchford, 2012). As seen in the previous
paragraph, both the branch-and-bound algorithm and the outer-approximation
method relies on convexity to efficiently exclude certain solutions in order to find
the global optimum. The same is not as easy to do for non-convex MINLP problems
as there are several locally optimal solutions. Nonetheless, there exist concepts
that can be applied to non-convex MINLP problems such that exact algorithms
can be applied to find the optimal solution. Some of these concepts require the
MINLP problem to have certain properties not applicable to the SDP, such as
twice differentiable constraint functions, while others are quite complex (Burer
and Letchford, 2012). Therefore, a choice is made to develop a heuristic to solve
the non-convex MINLP presented in Chapter 8. The use of SQP on the two-
dimensional non-convex SDP solved in Part I produced good solutions despite the
non-convexities present, and a lot of information about the problem is known and
can be utilized in a heuristic.

9.2 The heuristic solution method

The heuristic developed for solving the extended problem is presented in this sec-
tion. It is based on solving a series of subproblems where buildings are bound to
be contained in certain height zones, i.e. a fixed value for the binary variables δ
present in the constraints (8.3.3)-(8.3.4). This is based on the fact that the height
of a building is restricted to the lowest of the height zones it overlaps with. Hence,
if an optimal solution contains a building with height equal to that of the highest
height zone, then this building must be fully contained within that zone. Similarly,
a building with height equal to that of the second tallest zone must be in one or
both of the two tallest zones. Each subproblem can therefore be defined as the
number of buildings that is restricted to each height zone, and can be solved with
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the methods presented in Part I. Let

M(zi) =
⋃
j∈I

Hj≥Hi

zj (9.2.1)

denote the union of height zone zi, i ∈ I, with the adjacent zones that are higher
than it. If building b is placed in zone i, then constraints (4.4.9) that enforce
containment within the site is changed to

F (vb) ∩ conv(M(zi)) = F (vb) (9.2.2)

As it cannot be guaranteed that these zones are convex, the constraints that restrain
the buildings from overlapping with the non-convex part of the zones (4.4.10) is
also altered to

F (vb) ∩
(
conv(M(zi)) \M(zi)

)
= ∅ (9.2.3)

These constraints replace the previous site containment constraints (4.4.9)-(4.4.10)
and binary zone containment constraints (8.3.3)-(8.3.4). With the new restrictions,
the resulting subproblem is an NLP that can solved using SQP and the solution
methods presented in Chapter 5.

The task is then to optimally allocate buildings to height zones, solve several differ-
ent instances of the corresponding subproblem and return the best solution found.
However, due to the non-convexity of the subproblems, it cannot be guaranteed
that the objective value is globally optimal. Consequently, allocations cannot be
conclusively compared and ordered, and the optimal allocation must be approxi-
mated iteratively. The idea is to assume that the buildings can be perfectly placed
inside the zones, such that there is no unoccupied space. As a first measure, the
buildings are distributed with this assumption. Since it is not possible to perfectly
place building footprints into height zones due to variable open zones and irregular
shapes, such an allocation will most likely be too dense in certain zones. If there
is an estimated gain in volume by moving a building from a more dense zone to
another, the buildings are re-allocated accordingly and a new set of subproblem
instances is solved. This procedure continues until a re-allocation proves to be
infeasible, worse than the previous, denser allocation, or until an earlier allocation
is produced again. Pseudocode for the heuristic solution method is presented in
Algorithm 6.
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Algorithm 5: AllocateBuildings
Data: Set of height zones Z = {zi : i ∈ I}, maximum mean height H̃,

number of buildings N , and upper bounds N i on the number of
buildings in each zone i ∈ I, maximal building area A

Result: Number of buildings Ni in each zone i ∈ I
begin

Ni := 0 for all i ∈ I
Ai := Area(zi) for all i ∈ I
hj := 0 for all j ∈ {1, 2, . . . , N}
for n = 1, . . . , N do

H := N · (H̃ −H)−
N∑

j=1
hj

Ĩ := {i : i ∈ I, Ni < N i}

k := argmax
i∈Ĩ

{
min(Ai, A) ·min(H,Hi)

}
if Ak = 0 or Ĩ = ∅ then

No more space in zones given upper bounds.
Terminate and return ∅.

end
Nk = Nk + 1
hn = min(H,Hk)
Ak = Ak −min(Ak, A)

end
end
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Algorithm 6: HeuristicSolutionMethod
Data: Site corner points C, Set of height zones Z, maximum mean height H̃

and number of buildings N . Let M(z) denote the union of zone z
and the adjacent zones that are taller than z ∈ Z.

Result: Optimal solution of building footprints and heights V ∗
begin

V ∗ = ∅
A = AllocateBuildings(Z, H̃,N,N)
while A 6= ∅ and A not previously tested do

VA = ∅
for k = 0, 1, . . . ,K do

Vk := Solution to problem in Chapter 8 with (9.2.1)-(9.2.3) and
random initial values

if feasible and Volume(Vk) > Volume(VA) then
VA = Vk

end
end
if VA = ∅ then

j = argmax
j

{
Aj/Area(zj)

}
Nj = Nj − 1
A = AllocateBuildings(Z, H̃,N,N)

end
else if VA, V

∗ 6= ∅ and VA < V ∗ then
/* Previous allocation was better */
Break

end
else
Zs := Z sorted by decreasing maximum height
for i = 1, . . . , N − 1 do

vmin := Volume of smallest building in zone zi

if vmin < UnusedVolume(zi+1, VA) then
Ai = Ai − 1
Ai+1 = Ai+1 + 1

end
end

end
end
Return V ∗

end
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9.3 The naive solution approach
To determine if the heuristic method yields good results, a naive solution method
is developed for comparison. The naive approach is performed in two steps. First,
the model from Part I is used to optimize the layout of the buildings. The original
variable set formulation is used together with the initial strategy from Section 5.4
that provided the best results, that is, the building-angle-in-site-corner strategy.
The layouts of the feasible solutions are fixed and next the heights are optimized
using SQP in MATLAB.

A few alterations are made to the model in Part I to be able to fairly compare the
naive approach to the heuristic. Recall that the open zones on the long sides and
outside the angle of the buildings depend on the heights of the buildings. In Part
I, these are assumed fixed since the heights of the buildings are not considered in
the model. To prevent the solution of the model from Part I to dictate the heights
based on the size of the open zones, the model is solved with different fixed sizes
of the open zones along the length and angle of the buildings.
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Chapter 10

Computational study II

The computational study tests the heuristic method presented in Section 9.2, and
compares it to the naive approach introduced in Section 9.3. The aggregated
volume of the buildings is studied to evaluate the two solution approaches. The
model is solved using MATLAB, and the specifications of the hardware and software
used to solve the model are the same as in Part I, presented in Table 6.2.

10.1 Test instances
Like in Part I, real sites are gathered for the study through Felles KartdataBase
(FKB) (Geonorge, 2017), Norway’s public cartographical series in digital form.
Only non-convex sites are used in the computational study in this part, but the
model developed can also be utilized on convex sites. Site 1 and 3 from the com-
putational study in Part I are used here as well. In addition, a larger site is chosen
from the real sites with area between 11 000−18 000 m2. The sites are divided into
different height zones. Three alternative compositions of the maximum allowable
heights in the height zones are made for each site. Two of the alternatives have the
same maximum allowable heights, but the distribution of the zones within the site
is different. One alternative ensures increasing height of the buildings into the mid-
dle of the site, as the maximum height zone is placed there. The other alternative
allow increasing heights from one side of the site to the other, as the minimum and
maximum height zone are placed on separate sides of the site. The last alternative
has a larger difference between the maximum allowable heights in the height zones.
Figure 10.1 illustrates the sites and the three different alternatives. The sites are
illustrated from above, with different colors for the different height zones, and a
number indicating the maximum allowable height for the corresponding height zone
(in meters).

The number of buildings tested on each site, together with the area of the sites, are
presented in Table 10.1. The mean height on each site is also stated in Table 10.1,
which is set to 15 meters throughout. For sites A and B (sites 1 and 3 in Part I),
the number of buildings tested on each site is reduced compared to Part I based
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Figure 10.1: The sites with the three alternative distribution of height zones

on the results seen in Section 6.3. That is, the utilization is the highest when the
number of buildings is in the middle to higher end of the building interval. Since
this information is available, five and six building are tested on sites A and B to
provide the most interesting results and limit the computation time. On site C,
the number of buildings tested is fewer than that which the area would maximally
allow. Fewer buildings are used to, hopefully, produce more freedom and flexibility
in the heuristic.

To fairly compare the heuristic to the naive approach, the naive approach is solved
with different fixed sizes of the open zones along the length and angle of the build-
ings. These are chosen based on the maximum allowable heights in the height
zones. Recall that the relationship between the height and the length of the open
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Table 10.1: The area, mean height and number of buildings tested on each site

Area of
the site

Mean
height

No. of
buildings

Site A 6 911 m2 15 m 5 6
Site B 8 292 m2 15 m 5 6
Site C 13 401 m2 15 m 6 7 8

zones is one to one, such that the maximum allowable height in a height zone is also
a test case for the fixed length of the open zones. However, 12 meters is smaller
than the mean height, which may prevent the buildings from reaching the mean
height for the site. For this reason, 15 meters is used as the shortest fixed length
of the open zones. In addition, 36 meters, the largest maximum allowable height,
is only used as fixed length on site C due to the size of sites A and B being too
small. The fixed lengths tested for each site are seen in Table 10.2. To find the
best naive solution, all of the feasible solutions found by solving the problem in two
dimensions are used when optimizing the heights. 30 generations of initial solutions
with the angle-in-corner-strategy are used for each combination of site, height zone,
number of buildings and fixed open zone lengths. The solution with the highest ob-
jective value (largest aggregated volume of buildings) is chosen as the best solution.

Table 10.2: The fixed length of the open zones on the long sides and around the angle
points of the buildings

Fixed length of open zones
Site A 15 m 18 m 27 m
Site B 15 m 18 m 27 m
Site C 15 m 18 m 27 m 36 m

The best solution obtained using the heuristic is compared to the best solution
obtained using the naive approach for each combination of site, number of buildings
and height zone alternative.

10.2 The heuristic versus the naive approach
In this section, the heuristic is compared to the naive approach. The maximum
aggregated volume of each solution is compared when evaluating the solutions.
The maximum volume obtained for the three height zone distribution alternatives
(see Figure 10.1) are presented in Table 10.3. The difference in aggregated volume
between the heuristic and the naive approach is marked in bold.

As described in Section 10.1, the naive solution method is tested with different
fixed open zone lengths. Only the best naive solutions are presented in Table 10.3.
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On site A, the best naive solutions are obtained when the length of the open zones
are fixed to 15 meters for all combinations of number of buildings and height zone
distributions, with one exception. With six buildings and height zone alternative
2, the result when the open zones are fixed to 18 meters is slightly better than the
others. On site B, the best naive solutions for five buildings are obtained when
the length of the open zones are fixed to 15 meters for all height zone alternatives,
while the best solutions for six buildings are obtained when the lengths are fixed
to 18 meters for all alternatives. These observations can be explained by the fact
that site A is smaller than site B, such that in order for a dense enough packing
to occur in the plane, smaller open zones are necessary. The difference in the best
open zone lengths for five and six buildings on site B may be explained by the
fact that there is more available space on a site when five buildings are placed.
Thus, the open zones do not need to be as large in order to retain enough space to
increase its height after the initial placement. When the number of buildings (i.e.
density) is increased, the open zones need to be larger to ensure that the buildings
can increase the heights. Site A and B do not share the same pattern, which may
be caused by the different site shapes. One shape may allow for more open zone
outside the site, giving more space for building footprint. The fixed open zone
length of 27 meters is too large for both sites. The potential in increased heights
does not make up for the lower utilization in the plane due to longer open zones.
For site C, the best naive solutions are obtained with an open zone length fixed to
18 meters for height zone alternative 1 and 3. For height zone alternative 2, the
best solutions are obtained with a fixed open zone length of 15 meters.

As seen in Table 10.3, the heuristic finds a higher maximum volume for all height
zones alternatives and number of buildings on sites A and B. The same does not
hold for site C. The largest difference between the heuristic and the naive approach
is for most of the cases observed on site A. Site A is the smallest site, and thus the
most challenging site as the buildings have to be placed closely together to fit on
the site, while leaving enough space to increase the heights sufficiently. The naive
approach does not consider this balance simultaneously, which may explain the
large difference in the approaches for site A. The overall highest difference is found
on site A with height zone alternative 3 and five buildings. These solutions are
illustrated in Figure 10.2. The figure shows the site from above, with the height of
the buildings given by the number on each building. The large number outside the
site area is the maximum allowable height in the nearest height zone. The height
zones are separated by lines on the site. The difference is 3 851 m3 between the
two solutions, which constitutes a significant amount of saleable area. A large gain
in volume is obtained by the heuristic from the building that is 36 meters high.
The naive approach has placed the buildings with the largest area in the lower
height zones, and does not manage to utilize the maximum height zone in the same
manner as the heuristic. Moreover, the buildings placed in the maximum height
zone do not have enough surrounding space to take on maximum height.

Site B is larger than site A, but the results still show that the heuristic is better for
all cases also on this site, although generally with a lower difference between the
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Table 10.3: The maximum aggregated volume of the buildings obtained by the heuristic
and the naive solution approach. The difference between the approaches marked in bold

Site Number of
buildings

Solution
approach

Alternative 1
[m3]

Alternative 2
[m3]

Alternative 3
[m3]

A

5
Heuristic 17 301 19 515 20 449
Naive 15 779 16 347 16 598
Difference 1 522 3 167 3 851

6
Heuristic 18 415 18 345 18 662
Naive 16 189 16 802 17 096
Difference 2 226 1 543 1 566

B

5
Heuristic 22 838 22 453 21 482
Naive 20 574 21 273 20 678
Difference 2 264 1 180 804

6
Heuristic 21 093 21 865 22 372
Naive 20 686 20 686 20 686
Difference 407 1 179 1 686

C

6 Heuristic 30 626 31 005 30 896
Naive 30 762 31 080 30 762
Difference -136 -75 134

7 Heuristic 32 792 33 759 32 940
Naive 32 345 33 626 32 345
Difference 447 133 595

8 Heuristic 32 237 32 610 33 610
Naive 32 311 33 124 32 311
Difference -74 -513 1 230

two approaches. The combination with the largest difference on site B is seen for
five buildings and height zone alternative 1. The difference is 2 264 m3, thus again,
the heuristic provides a significant gain in saleable area. The heuristic and the
corresponding naive solution are illustrated in Figure 10.3. The heuristic solution
is also the solution with the highest aggregated volume found on site B. As seen in
Figure 10.3, the reason the heuristic finds a better solution is because it places a
large building in the highest height zone, and manages to maximize the height of
this building. In addition, a large building is placed in the second highest height
zone, and the height of this building is also maximized. In the naive approach,
one building obtains the maximum height, but the building has a smaller footprint
area than the one in the heuristic solution.

In the results for site C, the largest site, Table 10.3 shows that the naive solution
sometimes finds better solutions than the heuristic, indicated by a negative number
for the difference. The number of buildings tested on site C is smaller than the
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Figure 10.2: The combination with the overall highest difference. The heuristic solution
is also the solution with the highest aggregated volume on site A

12
27

18

8.1

27

18

12

9.9

(a) Heuristic solution - 22 838 m3

12
27

18

12

15
6

15

27

(b) Naive approach - 20 574 m3

Figure 10.3: The combination with the highest difference on site B. The heuristic
solution is also the solution with the highest aggregated volume on site B

area of the site dictates, such that there is more space available on the site. The
naive approach finds good solutions since there is enough available space on the
site for the buildings to have a large area, in addition to adequate spacing between
them. This enables a sufficient increase in the heights after the fixed placement of
the footprint areas to attain a large aggregated building volume. The solutions in
which the difference between the two approaches is largest in favour of the naive
approach are illustrated in Figure 10.4. The difference in volume is 513 m3. The
naive approach utilizes the corners of the site better than the heuristic, which may
be due to the initial solution strategy used by the naive approach. The heuristic
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uses a random approach for the construction of initial solutions. In addition, the
naive approach, like the heuristic, manages to place a large building in the highest
height zone and obtain a large height for this building. The naive approach has
fewer constraints than the heuristic, and may therefore be able to obtain better
solutions than the heuristic for simpler cases, like the one illustrated in Figure 10.4.
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12 17.1
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27

(a) Heuristic solution - 32 610 m3

12 18

27

12
15.9

12

26.312

12

14.8

15

(b) Naive approach - 33 124 m3

Figure 10.4: The combination on site C with the largest difference between the two
approaches in favour of the naive approach

The results for site C reveal that there is one height zone alternative in which the
heuristic is better than the naive approach for all the number of buildings tested.
This is height zone alternative 3. One may argue that this is the most difficult
height zone alternative to handle. The contribution to the aggregated volume is
potentially huge if a building attains the maximum height, and conversely, a lot of
potential volume can be lost to a poor placement of the building footprint areas.
Since the naive approach places the buildings without knowledge of the maximum
allowable height in each zone, the approach does not manage to take advantage of
the large height allowed in the maximum height zone. The heuristic, on the other
hand, takes the heights into account while the buildings are placed, and manages
to utilize the maximum allowable height. The combination with the largest differ-
ence in volume between the naive approach and the heuristic on site C is 1 230
m3. This is with eight buildings, and the difference is in favor of the heuristic.
Figure 10.5 illustrates the heuristic and naive solutions. As seen in Figure 10.5b,
the highest buildings produced by the naive approach are 18 meters tall, while the
highest building in Figure 10.5a (using the heuristic) is 36 meters tall, producing
a significant gain in volume on the site.

The same observation made for height zone alternative 3 on site C is not seen
for sites A and B. There is no particular pattern that shows which height zone
alternative has the largest difference between the heuristic and the naive approach.
However, the largest difference between the heuristic and the naive approach seen
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Figure 10.5: The combination with the largest difference between the two approaches
on site C

for site A is indeed with height zone alternative 3, the solution illustrated in Figure
10.2a. From this Figure, it is clear that the heuristic is the better approach because
it manages to place a large building in the height zone with the largest allowable
height, and maximizing its height. Nonetheless, the same is not observed for six
buildings on site A or at all on site B. No particular pattern is observed for height
zone alternative 1 and 2. With a larger site and more height zones, the distribution
of the zones may be more important than revealed in these results.

The layouts with highest aggregated volume achieved on the sites are illustrated
in 3D in Figure 10.6 - 10.8. The lighting is added for illustrative purposes. The
2D plot of the same solutions for sites A and B are presented in Figures 10.2a and
10.3a. The 2D plot of the solution with the highest aggregated volume on site C
is shown in Figure 10.9.

Figure 10.6: 3D plot of the highest aggregated building volume (20 449 m3) on site A.
The corresponding 2D plot is presented in Figure 10.2a
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Figure 10.7: 3D plot of the highest aggregated building volume (22 838 m3) on site B.
The corresponding 2D plot is presented in Figure 10.3a

Figure 10.8: 3D plot of the highest aggregated building volume (33 759 m3) on site C.
The corresponding 2D plot is presented in Figure 10.9

27
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Figure 10.9: 2D plot of the highest aggregated building volume on site C - 33 759 m3

To conclude, the results show that the heuristic is better than the naive approach
when the number of buildings placed on a site is relatively large in relation to the
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area of the site. As seen in Section 6.3, this number of buildings is the number of
buildings that maximizes the utilization of the site, and most likely the number of
buildings the developer wants on the site. Moreover, a study of site C, the largest
site, shows that the heuristic finds the highest aggregated volume for the most
challenging case on this site. This is height zone alternative 3, where the difference
between the maximum allowable heights of the height zones is larger. Hence, the
heuristic shows promising results on cases that are more complicated and complex,
cases that are more likely to appear in real life.
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Chapter 11

Concluding remarks

This thesis has discussed the problem of planning the layout of an undeveloped
site regulated for housing, and presented a mathematical formulation and solution
method for generating layout designs. Today, the planning process is burdened by
complex regulations and contradictory goals, making it hard to estimate the value
of a site and create proposals of how to develop it. Even though most aspects of the
problem are quantifiable, little research has been done on the particular subject.
The framework proposed in this thesis can serve as decision support to stakehold-
ers in the planning process by providing many different, good layouts. Overall,
the layouts appear to have high degrees of utilization without violating the zoning
regulations imposed on the site.

An extensive literature search is conducted in order to explore existing research on
similar problems. Due to the sparsity of comparable problems and results, a new,
nonlinear mathematical formulation is proposed and developed in two parts.

In Part I, the problem is reduced to two dimensions, and the mathematical formula-
tion maximizes the area of a given number of buildings, which are subject to spatial
constraints that have been formulated using a distance-based measure of feasibil-
ity and infeasibility. Using SQP, problem instances with up to eight buildings are
solved to local optimua on different test sites within reasonable time. The average
and maximum utilization of the layouts produced appear to be high, and the results
indicate that the optimal number of buildings depend on the site and is not easily
computed analytically. Alternative mathematical formulations of the buildings are
developed for comparison with the more intuitive formulation. Although they do
not yield significantly better solutions, they can be useful in exploring other layouts
in addition to those found by the original formulation. Heuristics for constructing
initial solutions that can be provided to SQP are developed and tested, one of
which shows improvement over a random approach.

In Part II, the model is extended to three dimensions by incorporating building
heights. The mathematical formulation proposed is a mixed-integer nonlinear pro-
gram, and a heuristic is developed to solve the model. SQP and the solution
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methods for Part I is used to solve the subproblems developed in the heuristic.
The difference in aggregated volume between the heuristic and the naive approach
is greatest for the smallest site tested, which is the site with the highest number
of buildings compared to site area. The difference decreases for larger sites. This
indicates that the heuristic is most efficient for the more complicated cases where
a large amount of building area has to be placed on a smaller site.

Based on the results, the mathematical formulation and solution method appear to
be promising for the use of optimization within site layout design and merit further
research.
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Chapter 12

Future research

There are many possible future areas of research for the SDP, most of which were
too comprehensive or too complex to include in this thesis. This chapter highlights
the research questions considered to be the most relevant to increase performance
and broaden the area of application.

12.1 Modeling
Although the SDP studied in this report can provide valuable insights to stake-
holders in the planning process, several extensions to both the objective function
and the constraints are needed to broaden the type of sites and regulations that
can be handled. An evident extension is to extend the model to a multi-objective
optimization problem. For this purpose, other important qualities or goals such
as daylight or view can be optimized. This may help in producing site layout
designs that not only preserve living qualities through constraints, but maximize
them where possible, according to the preferences of the decision maker. In this
context, daylight, or qualities based on illumination by the sun in general, are im-
portant to include as it is highly valued by residents, and may be part of zoning
regulations. This extension will further complicate the objective function and con-
straints, possibly to a degree where SQP and other gradient-based methods may
fail to converge if the functions are not formulated sufficiently smooth and efficient.
Other qualities to introduce may be noise pollution, wind, and mobility. However,
many such qualities cannot be evaluated analytically and must be simulated. This
changes the nature of the problem completely, with the main challenge of solving a
multi-objective problem where one or more objectives require the use of simulation.

Another natural extension of the current model is to allow for more general shapes,
both of the buildings and sites by allowing a different topography. Other shapes
of the buildings may yield better results as they might be easier to place and size
on certain sites. Further, extending the model to handle uneven terrain of the
sites may create a need for different building shapes. Other building shapes may
include buildings with more than one angle point, terraced apartment buildings,
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or ”shifted buildings” (two or more buildings connected without an open zone in
between).

The constraints included in the model in this thesis ascertain that the site layout
design complies with some common zoning rules that dictate the minimum allow-
able distance between the buildings. Some zoning regulations require that a road or
walkway should pass through the site, which complicates the placement and sizing
of buildings. Possible extensions to admit this constraint could be to require that
a set of scenarios of possible walkway placements are provided, or to include it as a
variable, effectively making the boundary and containment constraints dependent
on this variable. All in all, the model can be extended by many quantitative (or
quantifiable) zoning regulations, depending on the location and type of problem at
hand.

12.2 Formulation
In this study, the approach to defining the constraint functions has been to provide
a distance measure of feasibility and infeasibility. An alternative approach is to
evaluate the constraints between buildings, and between the buildings and the
site, by computing the area of overlap instead of the distance. A comprehensive
study into the algorithms and models used in computational geometry, vision and
graphics might reveal approaches that are transferable to the SDP.

12.3 Solution methods
While SQP yields promising results in this thesis, alternative solutions methods
could be tested for comparison. For instance, nonlinear interior-point methods are
together with SQP considered the most powerful algorithms for nonlinear program-
ming (Nocedal and Wright, 2006) and may be worth testing for comparison with
SQP. As SQP only guarantees to find local optima, the initial solutions provided to
the algorithm will significantly influence the quality of the results. Even if some of
the algorithms for generating initial solutions proposed in this thesis produce good
results, other global search strategies might adapt better to the variety of sites,
parameters and number of buildings in practice. These can produce several dif-
ferent approximations of the global optimum, which can be used as input to SQP
for further local optimization. Another research question might be to discretize
parts of the problem and solve it using techniques from integer programming and
bin packing. Local search can then be applied to optimize the discretized problem
further.

Some of the results obtained in the computational study in Part I indicate that a
solution approach using a heuristic may provide good results. One of the heuris-
tics developed to construct initial solutions provides considerably better utilization
than a random approach. In addition, the comparison between rectangular and
angled buildings show that the computation time increases significantly for the
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angled buildings. Thus, developing a more advanced heuristic for the model could
yield interesting results.

The heuristic developed in Part II can be improved by developing more accurate
estimates of good allocations of buildings to height zones. Another area that is
interesting to explore further is whether an established method can be applied to
the non-convex, mixed-integer nonlinear problem in Part II.
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Appendix A

A.1 Full mathematical model - Part II

max
∑
b∈B

wb · lb · hb + w2
b · hb

tan( rb
2 ) (8.3.1)

s.t. F (vb) ∩
(
T 1(va) ∪ T 2(va)

)
= ∅ b, a ∈ B, b 6= a (4.4.6)

F (vb) ∩
(
R1(va) ∪R2(va) ∪R3(va) ∪R4(va)

)
= ∅ b, a ∈ B, b 6= a (4.4.7)

F (vb) ∩A(va) = ∅ b, a ∈ B, b 6= a (4.4.8)
F (vb) ∩ conv(C) = F (vb) b ∈ B (4.4.9)
F (vb) ∩ S = ∅ b ∈ B, S ∈ S

(4.4.10)
hb ≥ H b ∈ B (8.3.2)
overlap(F (vb), hi) ≤M1δbi b ∈ B, i ∈ I (8.3.3)
hb ≤ Hiδbi +M2(1− δbi) b ∈ B, i ∈ I (8.3.4)
1
|B|
∑
b∈B

hb ≤ H̃ (8.3.5)

W ≤ wb ≤W b ∈ B (4.4.1)
L ≤ lb ≤ L b ∈ B (4.4.2)
0 ≤ θb ≤ 2π b ∈ B (4.4.3)
K ≤ kb ≤ lb −K b ∈ B (4.4.4)
π

2 ≤ rb ≤ π b ∈ B (4.4.5)
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