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Problem formulation

The main objective of the ZEN energy system investment problem is to find the
cost-optimal strategic investment decisions of which capacities of different energy
technologies that should be installed in each investment period, while considering
the optimal operation of the energy system with short-term uncertainties taken
into account. It should also fulfill certain emission requirements with regard to
the determined level of ZEN.
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Abstract

This thesis studies an optimization problem regarding investment planning of
energy systems in ZENs, and suggests a two-stage multi-horizon stochastic
programming approach. It aims to provide a useful decision tool for developers
in ZENs, in addition to a model that may be used as a neighborhood module in
EMPIRE.

The main objective is to find cost-optimal investment decisions of which capacities
of different energy technologies that should be installed in each investment period,
while considering the optimal operation of the energy system. Technologies
included in the model are district heating, ST-collectors, PV-panels, heat pumps,
electric boiler, bio boiler, gas boiler, combined heat and power, heat storage and
battery. The high number of included technologies is one of the contributions
of the model. Especially the inclusion of combined heat and power and storage
technologies for both heat and electricity, facilitating load shifting, is important to
emphasize. With the use of feed-in-tariffs, the option of exporting electricity is
also implemented.

Another important contribution of this work is the integrated optimization of
both strategic investments and the operation of the energy system, while taking
operational uncertainties in PV and ST generation, electricity and heat demand,
and electricity and district heating prices into account. The uncertainty is proposed
modeled with a multi-horizon information structure, separating the operational
and strategic investment horizons of the problem. Accompanied by the proposed
scenario generation method, which has proved to be very stable for a number of
problem instances, the complexity of the problem is considerably decreased.

An extensive case study of the pilot project Ydalir is also provided, demonstrating
and validating the model. The practical analysis emphasizes the behaviour of the
model and the considerations that should be taken into account.

This thesis also includes a comprehensive literature review covering research
studying strategic and/or operational decision making within energy systems
on both small and large scales. To our knowledge there does not exist many
studies considering ZENs in particular, implying that the study may be a valuable
contribution to the research area.
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Sammendrag

Denne oppgaven studerer investeringsproblemet tilknyttet planleggingen av
energisystemer i nullutslippsnabolag og foresl̊ar en to-stegs multihorisont stokastisk
programmeringstilnærming. Modellen er utviklet med den hensikt å tilby
beslutningstakere et nyttig verktøy i planleggingsfasen av nullutslippsnabolag.
Den er ogs̊a utviklet med tanke p̊a å kunne representere en nabolagsmodul i
storskalamodellen EMPIRE.

Hovedm̊alet er å finne kostnadsoptimale investeringsbeslutninger som
angir kapasiteten til de energiteknologiene som burde installeres i hver
investeringsperiode, tatt i betraktning av en optimal operasjonell drift av
energisystemet. Teknologiene inkludert i modellen er fjernvarme, solfanger,
solcellepanel, luft- og grunnkildevarmepumper, elektrisk kjel, biokjel, gasskjel,
kraftvarme (CHP), varmelager og batteri. Et stort antall teknologier er
inkludert, og er en av styrkene til modellen. Inkluderingen av kraftvarme
og lagringsteknologier for b̊ade varme og elektrisitet, noe som muliggjør
lastforskyvning, er spesielt viktig å merke seg. Modellen inkluderer ogs̊a
muligheten for å eksportere elektrisitet ved å bruke innmatingstariffer
(feed-in-tarrifs).

Et annet viktig bidrag er den integrerte optimeringen av b̊ade de strategiske
investeringsbeslutningene og den operasjonelle driften av energisystemet, samtidig
som modellen tar hensyn til kortsiktig usikkerhet i solcelle- og solfangerproduksjon,
elektrisitet- og varmeetterspørsel og elektrisitet- og fjernvarmepriser. Usikkerheten
er modellert ved å ta i bruk en multihorisont informasjonsstruktur, som
skiller de to ulike tidshorisontene. I kombinasjon med den foresl̊atte
scenariogenereringsmetoden, som har vist seg å være stabil for et antall ulike
probleminstanser, har problemets kompleksitet blitt redusert. En omfattende
casestudie av pilotprosjektet Ydalir validerer modellen. Denne praktiske analysen
vektlegger modellens oppførsel og hvilke betraktinger som burde overveies.

Oppgaven inkluderer ogs̊a et omfattende litteratursøk som dekker studier
relatert til strategisk og/eller operasjonell beslutningstaking i energisystemer av
ulike skalaer. S̊a vidt vi vet finnes det ikke mange studier som omhandler
nullutslippsnabolag, noe som betyr at denne oppgaven kan være et verdifullt bidrag
til det aktuelle forskningsomr̊adet.
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Chapter 1

Introduction

The energy industry is currently going through a transition phase, aiming toward
a low carbon society which to a high extent exploits the use of renewable energy
sources (RESs) and strives for low greenhouse gas (GHG) emissions. The green
transition comes along with large changes in both technology and organization of
the global energy markets. The liberalization process makes the energy sector more
complex and introduces the possibility of competition between different energy
carriers. New technologies allow an increasing flexibility in energy systems, which
also results in higher complexity within design, operation and maintenance of the
systems. Thus, the need for improved methodologies and tools for planning and
operation of energy systems are more than ever of great importance.

Buildings stand for 36% of CO2 emissions and 40% of energy consumption in
the EU (European Commission, 2017a). The European Commission (2016)
treats buildings as an essential part of Europe’s green transition and the EU
Directive on Energy Performance of Buildings (EPBD) introduced the concept
of Zero Emission Buildings (ZEBs) in 2010. The introduction of ZEBs has
also led to the idea of establishing energy efficient neighborhoods with several
interconnected low-carbon buildings and infrastructures, which together constitute
a Zero Emission Neighborhood (ZEN).

In international literature one typically find tools for optimization of energy
systems which consider either the operational part of the problem or the strategic
investment planning. Studies that cover the operation of energy systems are
usually modeled for a given design of the studied area, and the investment planning
tools are often applicable for regional and global levels and do not consider optimal
operation of the systems to a large extent. Many use multi-objective optimization,
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2 CHAPTER 1. INTRODUCTION

because of the large number of stakeholders with different purposes involved.
Few studies consider stochastic programming and there is also a lack of studies
specifically regarding ZENs.

The goal of this thesis is to provide a two-stage stochastic multi-horizon
optimization model for investment planning of energy systems in ZENs, which will
serve its purpose to decision makers in ZENs. It handles short-term and long-term
dynamics, as well as short-term uncertainties. It enables annual expansion
planning of neighborhoods and optimizes on an aggregated level, implying that
infrastructure is not considered. It optimizes which technologies and how much
capacity to install in each investment period, while considering optimal operation
with uncertainties taken into account. Multi-horizon modeling is used to avoid
the curse of dimensionality when modeling short-term uncertainty in a long-term
model. A big effort is put into developing a stable and representative scenario
generation algorithm and several tests are performed to verify this.

In particular, the model is developed to accompany research in the Research Centre
on Zero Emission Neighborhoods in Smart Cities (FME ZEN). It should serve
as a tool in the research center and a case study on the pilot project Ydalir is
therefore performed in this thesis. The model should also be constructed in such
way, that it is compatible with the European Model for Power system Investment
with Renewable Energy (EMPIRE) and may be used on larger scales. We are not
aware of other small scale stochastic investment planning models, which optimizes
strategic investment decisions while considering optimal operation with short-term
uncertainty, that applies to a ZEN.

In order to put our research problem in context, Chapter 2 provides an introduction
to ZEBs, a presentation of the FME ZEN and the pilot project Ydalir, their
definition of a ZEN, in addition to background on relevant energy technologies.
Chapter 3 provides theory behind relevant operations research methods and a
review of available literature in the appropriate field. Further, the problem studied
in this thesis will be described in more detail in Chapter 4. In Chapter 5 we present
the model design along with essential modeling assumptions and implications of
these, as well as the suggested mathematical formulation of the problem. Chapter
6 presents a data analysis discussing how input data is obtained and handled,
while Chapter 7 discusses the choice of scenario generation method and presents
relevant evaluation methods. Next, in Chapter 8 we test the stability and value
of stochasticity, before the case study is presented in Chapter 9. Finally, Chapter
10 provides a conclusion to our work, while Chapter 11 contains suggestions for
further research.



Chapter 2

Background

Before the ZEN energy system investment problem is discussed in more detail in
Chapter 4, this chapter provides a context and motivation for the study presented
in this thesis. Some of the content in this chapter is taken from the preparatory
work for this thesis, found in Beus et al. (2018). First, it provides motivation
behind inclusion of buildings in the effort to reduce GHG emissions, as well as
an introduction to ZEBs and important definitions accompanying this research
area. Next, a presentation of the FME ZEN and the pilot project Ydalir will be
introduced, as well as the research center’s proposed definition of a ZEN. Lastly,
relevant energy technologies will be presented, in order to give the reader better
insight in the different technology options our mathematical model includes.

2.1 Introduction to Zero Emission Buildings

This section presents the role of buildings in terms of energy consumption and the
importance of studying this area. Further, it provides definitions of nearly and
strictly ZEBs, how the energy balance is performed, and how the ZEB ambition
levels are differentiated.

Buildings are responsible for 36% of CO2 emissions and 40% of energy consumption
in the EU, and around 75% of today’s existing buildings are inefficient (European
Commission, 2017a). The European Commission (2016) treats buildings as an
essential part of Europe’s green transition and the Energy Performance of Buildings
Directive (EPBD) introduced the concept of ZEBs in 2010. The EPBD states that

3
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all new buildings shall be nearly ZEBs from 2020 in order to make buildings a
part of the solution to combat GHG emissions and turn the focus toward energy
efficiency (European Commission, 2017a). Thus, the creation of such buildings
require decision tools regarding planning of design and operation of energy systems
in the buildings.

An overview of existing definitions of ZEBs can be found in Marszal et al. (2011),
while Sartori et al. (2012) give a concrete definition framework. The definition of a
nearly ZEB is stated in the EPBD as follows: ‘nearly zero-energy building’ means
a building that has a very high energy performance. The nearly zero or very low
amount of energy required should be covered to a very significant extent by energy
from renewable sources, including energy from renewable sources produced on-site
or nearby (European Parliament, 2010). ZEBs are basically low energy demand
buildings that to a high extent cover their own demand with on-site generated
renewable energy. Because of this, the buildings will automatically become an
integrated part of the whole energy system.

The EPBD also gives a framework for how the energy balance should be calculated,
which is defined as follows (see Equation 2.1): the annual weighted energy imports
to the building, subtracted the annual weighted energy exports from the building,
summed over all energy carriers i (European Committee for Standardization,
2013). The balance can also be calculated over the whole lifetime of a building.∑

i

fi · importedi −
∑
i

fi · exportedi = G, (2.1)

where fi are the weighting factors. When G = 0, which is when the net balance
of energy consumed and energy generated is zero, the building is considered a
‘strictly’ ZEB. One can relax the strictly zero target to G > 0, achieving a ‘nearly’
ZEB. Whenever using ZEB in the following, it refers to strictly ZEB, otherwise
‘nearly’ will be specified.

Even though EPBD has a framework for what a nearly ZEB should be and how
to determine the energy balance, each member state must define their own

• ambition level for how near zero the ZEB target should be

• weighting factors

• boundary conditions on what energy consumption to include in the
calculation
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The weighting factors fi differs for each energy carrier i and are usually stated as
primary energy (PE) factors measured in kWhPE/kWhf or carbon factors (CO2

emission factors) stated in gram CO2-eq/kWhf . The primary energy factor is the
ratio of all the primary energy used for processing, transporting, extracting and
distribution of the delivered energy, divided by the amount of actual delivered
energy, whereas carbon factors describe how much CO2-equivalent GHGs that are
being emitted per unit of energy delivered.

Since the instantaneous on-site generation of electricity may not always correspond
to the load, a ZEB may exchange electricity with the local grid. Typically, a
building will have the highest energy consumption in the winter, while the on-site
generation will usually be highest in the summer, due to use of RESs such as solar
energy. Thus, the possibility of export to the grid is necessary to meet the ZEB
requirements for the energy balance.

The behaviour of importing electricity at some times and exporting at other times,
leads to the differentiation between symmetric and asymmetric PE factors for
electricity. For symmetrical PE factors the PE factor of import and export of
electricity are equal, whereas for asymmetrical PE factors, the electricity imported
from the grid has a higher PE factor than the electricity exported. Hence, to
achieve a zero balance of primary energy use, one need to export more electricity
than one import.

PE can also be divided into non-renewable PE and total PE, where non-renewable
PE denotes PE only based on non-renewable energy, while total PE includes both
non-renewable and renewable primary energy. Use of PE lead to a Zero Energy
Building (ZEB), whereas use of carbon factors lead to a Zero Emission Building
(ZEB) or Zero Carbon Building (ZCB). In the following, whenever using ZEB, it
embraces both ZEB and ZCB.

The boundaries for what energy consumption to include in the energy balance is
another aspect of defining the ambition level of a ZEB. In Figure 2.1 one can see
the four different ambition levels for an “all electric” (all imported and exported
energy is electricity) building used by Dokka et al. (2013) in a concept analysis.

The emission on the y-axis has to be balanced by electricity production from RESs
in order to meet the different ambition levels. The different levels that are used in
their proposed definition are:

• ZEB-O-EQ, which consists of partly operational energy use, excluding energy
consumed by equipment such as elevators and computer servers
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• ZEB-O containing all operational energy consumption

• ZEB-OM including all operational energy consumption and energy embodied
in the materials (included demolition)

• ZEB-COM, which includes all operational energy use and energy embodied
in both materials and construction of the buildings

Figure 2.1: Levels of ambition in the proposed ZEB definition obtained from
Dokka et al. (2013).

How the ZEB requirement is defined may have a large impact on the choice of
energy technologies when considering both economical and environmental aspects
of the problem. The weighting factors typically play a big role in the choice of
technologies, especially when considering the heat technologies (Noris et al., 2014).

2.2 Zero Emission Neighborhoods

The introduction of ZEBs has also led to the idea of establishing energy
efficient neighborhoods with several interconnected low-carbon buildings and
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infrastructures, which together constitute a ZEN. This section will provide
motivation for studying ZENs and a presentation of the FME ZEN, as well as
a short description of how ZENs are defined according to the research centre.

The increased environmental pollution that is caused by increasing energy use
and waste of energy has contributed to the ongoing green transition process. The
concept of ZEN is a relatively new concept and there does not exist much research
particularly on ZENs. By looking at several buildings at the same time, synergies
between the energy demand profiles of the individual buildings may be realized,
meaning when one building has excess energy, other buildings can use it (Fosso
and Gustavsen, 2016). Optimizing on a neighborhood scale may also reduce strain
on the grid, because more electricity generation will take place on-site where the
consumption also takes place.

The neighborhood dimension is large enough to have an impact, but at the same
time small enough to consider the different technologies explicitly, as well as the
interaction with the users (Fosso and Gustavsen, 2016). In addition, not all
buildings can be built or renovated into ZEBs, because buildings for example
may be protected or placed at difficult sites, which implies that the synergies may
be necessary to reach the desired level of low-carbon societies. The possibility of
competition between different energy carriers and the increasing complexity within
design, operation and maintenance of local energy systems that are introduced with
ZENs provide a basis for the need of improved methodologies and tools for design
planning and operation of energy systems in ZENs.

2.2.1 The FME ZEN

The FME ZEN was established the spring of 2017 at the NTNU in Trondheim.
The main objective of the research centre is to develop solutions that enable the
transition toward a low-carbon society with sustainable neighborhoods that have
zero GHG emissions related to their production, operation and transformation
(Fosso and Gustavsen, 2016). The FME ZEN is organized in six work packages as
follows

• WP1: Analytic framework for design and planning of ZEN

• WP2: Policy measures, innovation and business models

• WP3: Responsive and energy efficient buildings
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• WP4: Energy flexible neighborhoods

• WP5: Local energy system optimization within a larger system

• WP6: Pilot projects and living labs

WP6 is dealing with living labs and pilot projects where new tools and
methodologies that are developed within the other work packages can be tested
on data obtained from real neighborhoods. Most of the pilot projects are only in
the planning phase and some have relatively long planning horizons.

2.2.2 The pilot project Ydalir

Ydalir is an area northeast of the city centre in Elverum, located in the county of
Hedmark in Norway. This area is about 300 decare large and is currently used as
a gravel depot, an activity that will continue in some parts until 2019. Elverum
Tomteselskap AS, a semi-public organization, is the project owner and owns 80%
of the land in Ydalir. They will develop the area together with a number of other
stakeholders, both private and public. The development plan consists of building
a school and a kindergarten, as well as approximately 800 new residential units.
The Ydalir project has high energy and emission ambitions and will serve as an
environmental forerunner project for the city of Elverum (ZEN Research Centre,
2018).

The development will be highly dependent on several factors, among them the
housing market in Elverum and the population growth. The idea is that Ydalir will
cover half of the need for new houses in Elverum each year during the development
period, which means building about 60 houses yearly the next 10-15 years (Tonjer,
2018).

Ydalir is one of the pilot projects in the FME ZEN, enabling them to make use
of the competence available. The goal of Ydalir is to reduce the mobile and
stationary energy demand and GHG emissions, while at the same time finding new
and innovative solutions for developing major neighborhoods. The general idea is
that locally produced energy shall offset the carbon emissions of the neighborhood
(Elverum Vekst AS, 2017).

The pilot project Ydalir has been chosen as the case study of this master’s thesis.
This is mainly because of the project’s high energy and emission ambitions. At the
same time, as this is a pilot project in the FME ZEN, one can expect that later
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development projects may make use of the experiences from this pilot project,
making it representative for future neighborhoods.

2.2.3 Definition of ZEN

The decision of what to include in the definition of a ZEN is an ongoing process
which may change as data from solution testing and tools from the pilot projects
are obtained. As provisionally described in an unpublished memo from the FME
ZEN, a neighborhood can briefly be defined as a cluster of interconnected buildings
(existing or new) and infrastructure (water, roads, communication, sewage and
data lines) that are located within a defined geographical area and with a restricted
boundary to the electrical and thermal grids (Baer and Andresen, 2017). Thus, a
ZEN can be described as a low energy demand defined geographical area that to
a high extent cover its own demand with on-site generated renewable energy. The
energy balance and ambition levels are in this thesis defined according to the same
methods as described for ZEBs in Section 2.1. The definition of ZEN used in this
thesis will conform to this.

2.3 Energy technologies

This section provides an overview of the different technologies that are included
as investment alternatives in our mathematical model. Energy technologies are
system components for conversion, transport and storage. Conversion components
transform primary energy to secondary energy, transportation components
distribute energy, whereas storage components store energy for later use. Energy
transformation and energy conversion is considered the same. The section aims
to give the reader insight in how the components work and a better basis for
understanding the context in which our model operates in. Thus, providing the
reader understanding of what choices a decision maker in a ZEN faces.

Combined heat and power

Combined heat and power (CHP) is a conversion component based on the principle
of cogeneration, where a single source of energy is used for both the production of
electricity and heat (Office of Energy Efficiency and Renewable Energy, 2018a).
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Traditional centralized electricity generation wastes a large amount of the energy
through heat loss, as well as during the distribution of electricity to end users
(U.S. Environmental Protection Agency, 2018). With CHP, the heat that would
normally be wasted is instead recovered and used to meet heating requirements,
thereby providing a greater fuel efficiency. Additionally, since the power is
generated on-site, losses through transmission are avoided.

Solar technologies

Solar photovoltaics (PVs) is the concept of direct conversion of sunlight into
electricity (NASA Science, 2018). Solar cells consist of semiconducting materials
that have the property of absorbing sunlight, resulting in the release of electrons
that flow through the material and generate an electrical current. This process
of converting light (photons) into electricity (voltage) is referred to as the PV
effect. Solar cells can be combined into a module, and multiple modules can be
wired together to form an array. Several arrays can then be connected to form
a PV system (Renewable Energy World, 2018). Since the system has a modular
structure, it is possible to build it to meet almost any electricity need.

Solar thermal collectors (STs) use solar radiation to provide heat. The collector
will absorb solar radiation, convert this into heat, and then transfer this heat to a
fluid that circulates through the collector. The energy obtained can either be used
directly, or it can be stored in a thermal energy storage tank (Kalogirou, 2004).
Solar collectors are either non-concentrating or concentrating. For collectors that
are non-concentrating, the area that intercepts the solar radiation is the same
as the area that absorbs the radiation, whereas a concentrating collector has the
property that the collector area is larger than the absorber area (U.S. Energy
Information Administration, 2018). The two most common types of solar collectors
are the flat plate collectors and evacuated tube collectors, which both fall in under
the category of non-concentrating collectors (Solar Server, 2018).

Heat pumps

Heat pumps (HPs) are designed to transport thermal energy in the opposite
direction of spontaneous heat transfer. They use the physical properties of a
volatile fluid known as a refrigerant. The refrigerant evaporates and absorbs heat
from the external surroundings and is then pressurized and circulated through
the system by a compressor. The refrigerant enter a condenser where it is cooled
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while exchanging heat with the side of the system to be warmed. The pressure is
lowered through an expansion valve and the cycle is repeated (Natural Resources
Canada, 2017). Heat pumps have some impact on the environment since they run
on electricity, but the heat they extract from air, water or ground is constantly
being renewed naturally (Energy Saving Trust, 2018b). Today’s HPs can reduce
the electricity use for heating by approximately 50% compared to other common
heating systems (Office of Energy Efficiency and Renewable Energy, 2018c).

Air source heat pumps (ASHPs) are HPs that extract heat from the ambient or
exhaust air. ASHPs can either be air-to-air, heating the inside air, or air-to-water,
heating underfloor heating systems or larger radiators (Energy Saving Trust,
2018a). HPs work more efficiently at lower temperatures than boiler systems,
giving out low-temperature heat over longer periods of time (Energy Saving Trust,
2018a). This makes them suitable for local energy systems. Ground source heat
pumps (GSHPs) are geothermal HPs which uses pipes that are buried in the ground
to extract heat from down under (Energy Saving Trust, 2018b). GSHPs can be
either ground source or water source HPs, meaning that they extract heat from the
ground itself or a water source to heat water that are carried in the pipes. They
are more expensive than ASHPs to install, but have lower operating costs due to
the advantage of utilizing the relatively constant ground and water temperatures
(Office of Energy Efficiency and Renewable Energy, 2018c).

Boilers

Boilers are used to heat water, and provide either hot water or steam for heating.
Boilers can use different energy carriers to heat the water through heating elements
or use of controlled combustion of fuel (Office of Energy Efficiency and Renewable
Energy, 2018b). Electric boilers (EBs) heat water using only electricity. The water
is heated by running past a heating element in the boiler, often with large surface
areas, so as little heat as possible is lost. They are very efficient and easy to install
(The Green Age, 2018).

Gas boilers (GBs) often use natural gas as fuel, but they can also use propane (U.S.
Department of Energy, 2018). A gas boiler consists of a burner, a combustion
chamber, a heat exchanger, and controls. The burner mixes the fuel and oxygen,
and is equipped with an ignition device to make combustion occur. The platform of
combustion is the combustion chamber and the heat generated here is transferred
to the water via the heat exchanger. Controls regulate the ignition, burner firing
rate, fuel supply, air supply, exhaust draft, water temperature, steam pressure,
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and boiler pressure (Boilers Guide, 2018).

Bio boilers (BBs) burn bio pellets or wood chips to heat water and basically work
the same way as a gas boiler. Bio pellets consist of biomass such as agricultural
waste like crop stalk and straw materials, forestry residue such as sawmill residue,
bark and leaves, or solid waste such as cardboard and waste plastic. Basically any
material can be made into bio pellets as long as it burns, but the most common
are wood chips and other residue from sawmill or forestry industry. Wood chips
can also be used directly as fuel in a bio boiler (Chou, 2016).

District heating

District heating (DH) is a transportation system distributing heat to buildings
from one or more heat sources and heat technologies through a network of insulated
pipes carrying hot water or steam. The heat generators can be different types of
energy technologies such as boilers, STs, HPs, and CHPs, or power stations such
as industrial processing power plants that generate heat as a by-product. In this
way DH can utilize heat that otherwise might have been wasted and contribute to
improved pollution control (Panagiotakopoulou and Papadopoulos, 2015).

Heat storage

A heat storage (HS) is a component that stores thermal energy at large densities,
enabling use of the heat at later points in time. The choice of storage material
depends on the desired temperature range, application of the heat storage and size
of the unit. The shortage of non-renewable sources of energy, the increased gap
between energy supply and demand, and the non-uniform distribution of energy
generated from RESs, makes energy storage technologies important in order to
reduce waste of energy (Dinker et al., 2017).

Battery

The battery works as a temporary local electricity storage or home storage for the
smart electricity grid. Here, the electrical energy is stored in the form of chemical
energy. The current is generated by electrons and ions moving from the negative
to the positive electrodes, and the charging is done when the particles move in
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the opposite direction (Vereecken and Bavel, 2016). Increased use of RESs and
mismatches in supply and demand lead to voltage rises and drops in low voltage
distribution networks. Use of batteries can reduce this problem, especially by
storing excess energy and releasing it later when the sun does not shine or when
the wind does not blow strongly enough (IRENA, 2017), and the RES hosting
capacity of the distribution networks can be intensified (Gavric, 2016).

The technology is developed rapidly as the performance is improving and the costs
are decreasing. Simultaneously, the batteries are getting safer and more efficient.
One also sees that regulatory barriers and conventional energy structures based on
non-RESs are being challenged. Thus, there are several aspects that indicate that
the battery will have a key role in the transition to a sustainable energy system
(Curry, 2017; IRENA, 2017).





Chapter 3

Related literature

Investment planning of energy systems in ZENs is a complex problem which
provides several possible approaches. Most of the content in this chapter
is maintained from our preliminary work in Beus et al. (2018), with some
additional improvements. The first part of the chapter provides an overview
of relevant optimization methods, in particular an introduction to stochastic
programming and multi-horizon modeling, which forms a basis for the model
design and mathematical formulation proposed in Chapter 5. A presentation of
multi-objective optimization will also be given, since this optimization method is
widely used in the following presented literature. Further, we introduce relevant
research studying strategic and/or operational decision making within energy
systems on both small and large scales, to provide a wide selection of different
possible approaches that may be applicable to our problem. Specifically, research
related to ZEBs will first be presented, subsequently relevant studies concerning
larger scale models and lastly literature regarding ZENs. Finally, a review on
batteries will be provided.

The main purpose of our model is to plan and design energy systems in ZENs and
the literature review will therefore mainly focus on investment models. It is limited
to only give an overview of what optimization methods that have previously been
used to solve challenges related to the combination of strategic and operational
decisions, such as combining different time scales and various possible objectives.
Due to this, literature concerning scenario generation will not be reviewed in this
chapter, but rather be introduced as a basis of how we decide to develop our
scenario generation algorithm in Chapter 7.

Several studies concerning local energy system planning do not include batteries in

15
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their models. We find it natural to include a storage component for electricity in
our model and a review on how batteries may be modeled is therefore also included.
The review as a whole aims to give the reader understanding of our decision to
use Lindberg, Doorman, Fischer, Korp̊as, Ånestad and Sartori’s (2016) model as a
basis, how we have chosen to expand their model to be applicable to neighborhoods,
as well as our single-objective, multi-horizon stochastic modeling approach. These
modeling choices will be further discussed in section 5.2 in Chapter 5.

3.1 Introduction to stochastic programming

This section gives an introduction to stochastic programming and introduces the
concept of multi-horizon modeling and why this method is useful compared to
traditional stochastic programming. Multi-horizon stochastic modeling is not
commonly used in the research area of ZEBs and ZENs, but as we have seen
from the following literature review it may be an applicable approach to the
problem presented in this thesis. Hence, this section provides some relevant theory
behind the respective optimization approach, aiming to give the reader a basic
understanding of the method and why it is applicable to our problem.

A lot of real life decisions (some claim all decisions) are affected by uncertainty.
One way of dealing with this uncertainty is stochastic programming. In oppose
to deterministic programming, where the problems are formulated in terms of
known parameters, some parameters are unknown in stochastic programming. The
approach utilizes either known or estimated probability distributions to define
these parameters (Shapiro and Philpott, 2007). Kall and Wallace (1994) state
that deterministic models often provide good solutions for certain data sets and to
certain problems. However, there is no general way to conclude that the solutions
are good without comparing them to the respective stochastic solutions (Kall
and Wallace, 1994). Stochastic programming is more complex than deterministic
programming, but it is in some cases necessary to provide an eligible solution.

In some cases some of the decisions have to be made before relevant information is
available, while some decisions can be delayed until afterward. These cases result
in recourse models, and refer to the opportunity of adapting the solution to the
applicable observed outcome (L. Higle, 2005).

The most widely applied stochastic programming models are two-stage linear
models. In these models the decision maker makes a decision in the first stage, and
then a random event occurs affecting the outcome of this decision. In the second
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stage a recourse decision can be made to compensate for any bad effects of the
first decision. Thus, there is a single first stage policy and a collection of recourse
decisions defining which second stage decision that should be made according to
each random outcome (Shapiro and Philpott, 2007). The model assumes that the
second-stage data can be modeled as a random vector with a known (or estimated)
probability distribution (Shapiro and Philpott, 2007). A standard representation
of the problem is the scenario tree approach. This approach is based on a
discretization of the outcome space of the uncertain data. The random vector is
assumed to have a finite number of possible realizations, called scenarios (Defourny
et al., 2011). A scenario tree is then an explicit distributional representation of
the branching process evoked by the stochastic elements and how they may evolve
over the period of time represented in the problem.

The two-stage problem with recourse exerts the process where an initial decision is
made without knowing the specific outcome of the stochastic parameters, followed
by a new decision after this information is revealed. When this pattern is repeated,
the problem becomes a multi-stage problem (L. Higle, 2005).

The value of the stochastic approach is associated with the decision maker’s
opportunity to delay decisions, thus the explicit evaluation of flexibility (Kall and
Wallace, 1994). However, with several stages and a great number of scenarios,
the stochastic problem quickly becomes large and difficult to solve. Solution
methods that exploit the structure of the multi-stage stochastic problems should
therefore be used (L. Higle, 2005). Commonly used methods are different
types of decomposition methods such as the L-shaped method and stochastic
decomposition. Some estimation methods are also increasingly used (L. Higle,
2005). More on solution methods can be found in L. Higle (2005).

3.1.1 Multi-horizon modeling design

Some problems, as investments in energy systems, contain uncertainty both
on the investment level and the operational level, in addition to that the
uncertainties in the strategic level influence the operational decisions. By solving
this type of problems with the traditional scenario-tree-based multistage stochastic
programming, the model would be unmanageable large. Another challenge is
that the decisions regarding investment strategies will necessarily have a different
time scale than the operational decision aspects. The investment strategies are
determined by decisions with a time scale of months or years, while the operational
decisions are shorter term decisions with time scale of hours or days.
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One method commonly used for solving such problems is to separate the strategic
and the operational decision models and run them in loop, such that strategic
decisions will be updated according to the operational decisions. As it is important
to acknowledge how the operational aspects will affect, and be affected by, the
strategic decisions, this method faces challenges with coordination and convergence
of the different time scales (Kaut et al., 2014).

Kaut et al. (2014) suggest a different way of structuring the scenario-tree
in stochastic optimization. This method is called Multi-Horizon Stochastic
Programming. The method differentiates the scenario tree nodes devoted to the
strategic decisions and the ones devoted to the operational decisions. By this, it
reduces the size of the scenario tree significantly, compared to the standard scenario
tree. The operational nodes are embedded in the respective strategic nodes and
check the feasibility and profitability of the strategic decisions.

The structure of the multi-horizon scenario tree is based on the assumption that
the strategic decisions are not dependent on a typical operational decision, but
rather on the collection of operational decisions made in the previous strategic
decision period (Kaut et al., 2014). The multi-horizon scenario tree is therefore
solely constructed by the strategic nodes, and the operational nodes are sub-trees
associated with the respective strategic nodes. In an investment problem, the
sub-trees will be operational scenarios for a particular investment decision. As
a consequence of the assumption, the model assumes that the first operational
decision after a strategic node does not depend on the last operational decision in
the previous strategic period. Thus, there are no connection between operational
scenarios of two consecutive strategic nodes (Kaut et al., 2014).

An application of the method is shown in Hellemo et al. (2013) where it is used
a multi-horizon stochastic approach when optimizing design and operation of
infrastructure components for production of natural gas.

3.2 Multi-objective optimization

This section provides theory related to multi-objective optimization. As the
following literature review will show, multi-objective programming is a widely used
optimization method in problems considering optimization in ZEBs. Therefore,
this section aims to give the reader a basis for understanding the further described
research. Only the most relevant solution methods emphasized.
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In multi-objective optimization there are multiple objectives to either maximize or
minimize. These objectives are often difficult to compare and in conflict with each
other (López Jaimes et al., 2011). Therefore, in stead of a single optimal solution,
one finds a set of trade-off optimal solutions. These solutions are a set of alternative
good solutions and are called Pareto-optimal. A solution is Pareto-optimal if none
of the other objective functions can be improved without having a negative impact
on the other objective values. The set provides a front, called a Pareto-optimal
front. How to prioritize the solutions is up to the decision maker. Further, a
solution is weakly Pareto-optimal when there does not exist another solution where
one or more objective values are better (López Jaimes et al., 2011).

There are several solution methods to solve a multi-objective problem, and
López Jaimes et al. (2011) distinguish them into two different approaches;
Multi-Criteria Decision Making (MCDM) and Evolutionary Multi-objective
Optimization (EMO). The former represents a set of mathematical programming
techniques in combination with subjective preferences the decision maker may
have. The latter represents algorithms of heuristics. MCDM can further be
categorized according to when the subjective role of the decision maker takes place
in the process; a priori, interactive or posteriori (López Jaimes et al., 2011).

Some of the solution methods consist of converting the multi-objective problem
into a single objective problem. A widely used method for this is the weighted
sum method, which is performed by weighting the individual components in the
objective vector (objective functions) after their relative importance. The outcome
of this method is seen as weakly Pareto-optimal López Jaimes et al. (2011). The
ε-constrained method converts the multi-objective problem to a single-objective by
making all but one objective into constraints, each bounded by a value ε. Next,
the problem is solved iteratively for different ε-values. Both of these methods may
be priori or posteriori. Another commonly used method is Goal Programming. In
this method, all the objectives are assigned goals and treated as targets rather
than absolute constraints. The problem may then be solved as a single-objective
problem (López Jaimes et al., 2011).

Evolutionary algorithms do not guarantee to find the optimal Pareto set, but with
a population approach the Pareto-optimal solutions are found simultaneously in a
single simulation run. This approach is also less sensitive to the shape of the Pareto
front and require less domain information. The genetic algorithm is a widely used
evolutionary algorithm (Lu et al., 2015). A short review other commonly used
evolutionary algorithms can be found in Hamdy et al. (2016).
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3.3 Zero Emission Buildings

This section presents relevant literature studying ZEBs. First, it presents
literature using multi-objective optimization, before considering study’s regarding
single-objective modeling and lastly also multi-horizon stochastic programming.
The section aims to give the reader an insight in the literature that is used as basis
for our model and hence give understanding for the choice of modeling approach
applied to our problem.

In optimization of ZEBs there are different areas to focus on, and there may be
multiple conflicting objective functions when developing models. One can focus
on the emissions, costs, comfort/discomfort, demand/load or life cycle costs, and
several models are therefore based on multi-objective optimization, to take into
account all these aspects. Sun et al. (2015), Hamdy et al. (2013) and Huws and
Jankovic (2014) use a multi-objective approach by step wise varying the design
parameters.

Sun et al. (2015) use multi-objective optimization for design of net ZEBs under
uncertainties. They consider system initial cost, indoor thermal comfort and grid
stress caused by power mismatch. The problem is solved in several steps. In the
first step, the peak cooling load is identified using the stochastic inputs and the
Monte Carlo simulation method. The simulation method is a sample-based method
which uses repeated random sampling to acquire numerical research.

In the second step, the size of the air-condition system and the renewable energy
system, according to different thresholds from the peak load distribution defined
in the previous step, are selected. The thresholds represents the potential risks
that the corresponding air-condition system cannot fulfill. The air-condition
system sizes are determined and based on this the building’s energy demands
are estimated. These are further used to determine the size of the corresponding
renewable energy systems. In the third step the optimal size of the air-condition
system and the renewable system are determined based on the overall performance
of the different combinations from the previous step. According to the weighting
factors determined by the decision maker, the overall performance scores are
obtained and compared to the different thresholds. Hence, the sizes with the
highest overall performance are chosen as the optimal ones.

Hamdy et al. (2013) minimize heat demand and life cycle cost in the first step. This
step provides different building structures. The operational costs are calculated
for each Pareto optimal case in step one, by simulating four different heating
and cooling systems. The last step includes on-site renewable energy generation,
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such as solar thermal collectors and PV, as a way of improving costs and energy
consumption from the cases in the second step.

Huws and Jankovic (2014) use a multi-objective model with three conflicting
objectives; carbon emission, cost and comfort. The optimal design is found by
comparing emission and cost, cost and discomfort, and discomfort and emission.
The building structure is first optimized, before the energy technologies within the
building are determined.

There has also been done a performance comparison of different multi-objective
optimization algorithms for solving nearly-zero-energy design problems (Hamdy
et al., 2016). A review on the different algorithms that are compared can be found
in Hamdy et al. (2016). A conclusion from this comparison is that when the number
of generations was increased, the solutions were improved. Further, when running
each algorithm 20 times with gradually increasing number of evolutions, a two
phase optimization approach using the genetic algorithm had high repeatability to
explore a large area of the solution space and achieved solutions close to optimal
with a great diversity. They also concluded that the minimum required number of
evolutions to stabilize the optimization results of the building energy model was
1400-1800.

Palonen et al. (2009) and Wang, Zmeureanu and Rivard (2005) state that
in multi-objective optimization there exist an advantage of using the generic
algorithm as a solution method, in contrast to the weighted-sum-method, where
there is only one optimal solution given the weighting factors (if used as an a
priori method). The approach of generating a diverse set of Pareto front values
and capturing the extreme solutions to all objective functions is seen as the most
optimal (Palonen et al., 2009).

Lu et al. (2015) compare two different methods for optimization of design
of renewable energy systems in buildings. They compare a single-objective
and a multi-objective optimization method. The multi-objective function is
minimizing costs, emissions and grid interaction and the problem is converted to a
single-objective problem using the weighted sum method a priori. They conclude
that the single-objective optimization model gives the best solution for a given
objective, while the multi-objective model provides richer information, enabling a
more compromised decision.

Lindberg, Doorman, Fischer, Korp̊as, Ånestad and Sartori (2016) claim that the
outcome of the multi-objective models (also the ones solved with weighted-sum
method) depends a lot on the weighting factors between the objectives, making
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it difficult to draw a clear conclusion. Lindberg, Doorman, Fischer, Korp̊as,
Ånestad and Sartori (2016) have therefore chosen single-objective optimization
when optimizing energy systems in ZEBs. The optimization model used in
their research is a dynamic deterministic mixed integer model with hourly time
resolution. The objective function minimizes costs during the lifetime of the
building, and the zero emission/energy aspect is included as constraints. This also
allows the decision maker to set a ZEB-limit, given as a parameter to the model.
The model also differs from the previous mentioned ones, due to the combination
of considering both the investment problem and the operational problem and not
just the investment aspect as the others.

As indicated, within ZEBs there are mostly studies optimizing either the
investment aspect regarding the design or the operational aspect, where the
energy technologies and design of buildings are given (Lindberg, Doorman, Fischer,
Korp̊as, Ånestad and Sartori, 2016; Milan et al., 2012). The separation of the
two aspects may lead to either an operation of a system that is over or under
dimensioned, or a design that is based on a operation that is not optimal (Lindberg,
Doorman, Fischer, Korp̊as, Ånestad and Sartori, 2016). In the multi-objective
models mentioned above, the operation in the investment models are mostly
simulated. The simulation processes are not necessarily a good reflection of the
reality nor the cost-optimal operation.

Milan et al. (2012) has a similar approach as Lindberg, Doorman, Fischer, Korp̊as,
Ånestad and Sartori (2016) where both the operational and the strategic aspects
are optimized simultaneously. The model is an LP problem that optimizes the size
of a 100% renewable supply system by minimizing the overall system costs. The
operational level has an hourly resolution. The limitation of the model constructed
by Milan et al. (2012) is the few technology options that are available and included
in the model.

The model developed by Lindberg, Doorman, Fischer, Korp̊as, Ånestad and Sartori
(2016) have a larger amount of energy technologies to choose from. Both models
take the energy loads as input and the building structure as given. The outputs are
the optimal system configuration and overall costs of the system as well as expected
system performance data, as the operational aspects also are optimized. Both
models are deterministic and Milan et al. (2012) have made the model more robust
by including a safety margin on the supply system dimensions to compensate for
unexpected peaks in demand.

As presented, there are mostly deterministic models existing for optimization of
energy system design in ZEBs. However, there are several sources to uncertainties
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when optimizing these kind of energy systems. As mentioned, simulation is a
commonly used method to handle the uncertainties. Ferrara et al. (2014) are
using a simulation-based optimization method for cost-optimal analysis of nearly
ZEBs. They have build a simulation model for a French single-family house. The
different options for design and the corresponding cost functions are defined. They
use a simulation-based method for minimizing the global cost functions and define
a set of energy efficiency measures that are being combined in different packages
of measures. The energy consumption related to the packages are then calculated
by energy simulation and the costs of the different packages are established. The
one with the lowest cost is determined as the optimal.

The advantage of this approach is the simplicity, but it is difficult to ensure that
all measurements that are relevant are taken into account simultaneously, knowing
that more alternatives make it more complex. Therefore, this approach can not
guarantee to find the most optimal solution for the design problem.

Another approach to deal with the uncertainties in the operational and the
strategic levels is scenario-tree based stochastic modeling. This might provide a
more accurate result, but the size of the scenario tree becomes unmanageable large
very quickly. A decision support system from the EnRiMa project contains both
a stochastic operational model and a stochastic strategic model when optimizing
energy efficiency and risk management in buildings (Cano et al., 2014). This
decision-support system assesses retrofits, investments into new equipment and
decommissions of obsolete installations.

The model uses a multi-horizon stochastic approach to reduce the size of the
scenario tree and to combine the two time scales for the operational and strategic
levels (Kaut et al., 2014; SINTEF and SU, 2012). The model is a two-stage
problem that optimizes both the strategic and operational problem simultaneously.
Investments in new energy technologies are first-stage decisions taken before
uncertainties are resolved, and the operational decisions are the second-stage
decisions that are taken once the values for the uncertain parameters become
known. The operational level has hourly resolution like the others mentioned
above (Cano et al., 2014).

Lindberg (2016) also states that further work on the investment model should be
to apply a stochastic approach to the problem, and by this take the operational
uncertainties into account for the investment decisions.
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3.4 Large scale models

Studies that consider expansion planning with several energy carriers and
technologies are mostly dominated by large scale optimization tools that are
developed for national and global levels. This section reviews optimization
models for expansion planning and/or operation in energy systems on such levels.
Optimization methods used on larger scale models may be relevant to our problem
because a neighborhood will presumably also have similar characteristics to even
larger areas and model design approaches used for these areas may be useful when
expanding a model from being applicable to buildings to neighborhoods. First,
deterministic models will be reviewed, while stochastic models or extension of
deterministic models will be mentioned toward the end.

MARKAL (Loulou et al., 2004), EFOM (Grohnheit, 1991), TIMES (Loulou
et al., 2016) and MESSAGE (Messner and Strubegger, 1995) are all examples
of mathematical models designed to optimize energy systems on larger scales.
MARKAL (MARKet ALlocation) is a mathematical model for optimization in
energy systems in one or several regions, which aims to supply energy services
at least global cost (Loulou et al., 2004). Similar to TIMES (The Integrated
MARKAL-EFOM System), it calculates at all levels of the energy systems and
estimates the energy dynamics over a multi-period horizon, and provides a rich
basis of energy technologies (Loulou et al., 2004, 2016).

The input data to the MARKAL model is developed by users in each region and
the time horizon is also divided into a number of time periods decided by the
user, and may thus differ for each region (Loulou et al., 2004). TIMES may also
be used on more local levels, as well as even larger scales like national and global
levels (Loulou et al., 2016). TIMES combines two different approaches, a technical
engineering one and an economic approach and is used for in-depth energy and
environmental analyses. The model is, similar to all the other mentioned models,
a single-objective model and produces outputs related to least-cost energy system
configurations, which meet the end-use energy demands and fulfills requirements
regarding emissions and use of RESs through various constraints (Loulou et al.,
2016).

TIMES is a bottom-up model, i.e. a very detailed model identifying each energy
technology explicitly by a detailed description of its inputs and outputs and other
technical and economic characteristics (Loulou et al., 2016). Both MARKAL and
TIMES are economic equilibrium models which assumes perfectly competitive
markets for energy carriers. By computing equilibrium on the energy markets,
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they ensure to maximize total surplus (sum of producers’ and consumers’ surplus)
over the entire horizon. This means, prices and quantities in each time period, are
such that the suppliers produce quantities exactly equal to the demands, to the
current price (Loulou et al., 2004, 2016).

EFOM (Energy Flow Optimization Model) is an optimization tool that uses linear
programming and finds a minimum cost solution for the energy network, subject
to several constraints including regulations on GHG emissions (Grohnheit, 1991).
The model is the supply part of the energy model complex of the Commission of the
European Communities (der Voort, 1982). Messner and Strubegger (1995) presents
in their paper MESSAGE, a Model for Energy Supply Strategy Alternatives and
their General Environmental Impact, which similarly to EFOM, is described as a
linear programming model for optimization of energy supply and utilization which
aims to minimize the total system costs. In oppose to EFOM, but similar to
MARKAL and TIMES, MESSAGE also uses dynamic programming and make
decisions dynamically.

Grohnheit (1991) describes his energy system as a network where the energy starts
in a form of primary energy and is flowing through the network via transportation
and conversion components and is lastly transformed into useful energy to satisfy
given energy demands. This is similar to MESSAGE, that includes strong technical
descriptions of energy carriers and technologies, and structures the energy flow in a
so-called chain going from the supply side to the exogenous demand side (Messner
and Strubegger, 1995).

Insights generated from both TIMES and EFOM are obtained via scenario analysis.
Loulou et al. (2016) compare different scenarios according to a reference energy
scenario which is generated by running the model without any policy constraints.
The model produces several least-cost scenarios based on simulations of future
energy demands and supplies from perfect energy foresight, while applying the
policy constraints on the model. When comparing the results, the different energy
technologies that deliver the policy constraints at least cost may be identified
(Loulou et al., 2016). Loulou et al. (2016) solve the model by simultaneously
making investment decisions and operating decisions, as well as decisions regarding
primary energy supply and energy trade. In EFOM scenarios for periods of 20-40
years are constructed by energy demand forecasts, energy prices, emission limits
etc. and each scenario is solved to obtain an optimal solution for investments in
energy technologies (Grohnheit, 1991).

Even though the core paradigms in all the discussed models assume linearity
of the objective functions and constraints and perfect foresight over the entire
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horizons, TIMES and MESSAGE have several extensions beyond the deterministic
LP approaches. The current version of MESSAGE, MESSAGE III, also has the
feature to define investment variables as integers and may then be used on mixed
integer programming problems. It can also handle nonlinear objective functions,
in addition to providing a multi-objective option (Messner and Strubegger, 1995),
similar to many of the models designed for ZEBs, mentioned in Section 3.3.

Among the extensions of TIMES one find the Stochastic Programming TIMES
extension which assumes certain key model parameters to be random, similar
to EMPIRE (European Model for Power system Investment with Renewable
Energy) (Skar et al., 2016) which also is a stochastic investment model. The
Stochastic Programming TIMES extension is still an LP, but the size become much
larger. A multi-stage stochastic program like this, may be solved with complex
decomposition approaches such as Dantzig-Wolfe decomposition with dynamic
column generation or stochastic decomposition methods, or Benders decomposition
algorithm for a two-stage model (Loulou et al., 2016).

However, the current TIMES implementation for stochastic programming is
solved by solving the deterministic equivalence problem. As this may lead
to very large instances, the stochastic TIMES model is very limited. Skar
et al. (2016) solve this by formulating their long-term stochastic power system
investment model as a multi-horizon stochastic program. The multi-horizon
approach makes the problem tractable, by decoupling here-and-now operational
decisions from all future investments and operational decisions, in addition to
coordinating the different time scales well. It optimizes long-term investments
under short-term operational uncertainty (uncertainties such as renewable energy
production and energy demand), while considering both long-term and short-term
system dynamics (Skar et al., 2016).

In these models, the energy system is often modeled with one energy balance per
energy carrier, with energy generation on one side and energy consumption on the
other and several technologies are represented with energy losses and emissions.
These approaches are sufficient on large scale levels, but when modeling on a
neighborhood level, it is not only a question on which resources and what amounts
to use. Questions like where and when investments should be carried out also arise
(Bakken et al., 2007).
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3.5 Local energy system models

This section reviews research on local energy systems such as ZENs, where several
energy carriers and technologies are integrated and optimal investment planning is
needed. It does not exist many studies considering ZENs in particular, but several
approaches to include different energy technologies and carriers on local levels have
appeared the last years.

MODEST (Henning, 1997) and deeco (Bruckner et al., 1997) are both dynamic
linear programming models designed for energy system optimization. MODEST
(Model for Optimization of Dynamic Energy Systems with Time-Dependent
Components and Boundary Conditions) aims to minimize the capital and
operation costs of energy supply and also includes demand-side management
(Henning, 1997). deeco (dynamic energy, emissions, and cost optimization) may
be used for examining competition and interaction between different technologies
and for utilizing RESs. It also has the feature to operate under nonlinear and
time-dependent impacts of parameters on technology efficiencies such as ambient
temperature and insolation.

Both MODEST and deeco may serve as decision support tools for investment
decisions in municipal energy systems, whereas MODEST may also be used on
national levels. MODEST is used to dimension new installations and optimize
the operation of all system components where the various properties are known
at each hour (Henning, 1997), similarly to deeco, which calculates the optimal
combination of energy conversion technologies for given time-series of electricity
and heat demand and energy supply (Bruckner et al., 1997). Hence, both deeco and
MODEST are single-objective deterministic models. MODEST uses simulation,
similar to TIMES (Loulou et al., 2016) and EFOM (Grohnheit, 1991), to consider
different system designs and compare the consequences of different decisions.

Sandou et al. (2005) presents a methodology for short-term optimal scheduling
of cogeneration systems considering heat and electricity demands. The initial
problem is a large, non-linear mixed integer programming problem, which is highly
intractable. Their main idea is to establish an approximate problem, whereas
the computation of an exact solution remains tractable, instead of computing
an approximate solution to the initial problem. Other papers, such as the one
presented by Geidl and Andersson (2005), provides more generalized optimization
approaches for power systems including multiple energy carriers. Geidl and
Andersson (2005) are focusing on the couplings and interactions between the
different power systems and are using the concept of hybrid energy hubs.
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None of these approaches consider expansion planning for multiple energy
infrastructures. Bakken et al. (2007) presents the optimization tool eTransport,
which is a tool for expansion planning in local energy supply systems with multiple
energy carriers and infrastructures. Geography, topology and timing are taken
into account to match the problem on a local level like a municipality or a
neighborhood. eTransport is a single-objective model which minimizes total energy
system cost (investments, operation and emissions), and consists of two nested
models (operational and investment) that run in loop (Bakken et al., 2007). Thus,
it calculates both the optimal diurnal operation and an expansion plan for the
upcoming 20-30 years.

The model has a modular structure, where the physical components and the flow of
energy between them are modelled explicitly. The operational model is using mixed
integer programming, with sub-models for each energy carrier and conversion
component. The operational planning horizon is usually around 24-72 hours, with
typical time-steps of 1 hour. The operational model minimizes operational and
environmental costs for different energy loads in different energy systems for each
operational period (Bakken et al., 2007). The investment model uses dynamic
programming to find an investment plan that minimizes the present value of all
future costs during the planning horizon. It receives the pre-calculated annual
costs, that are obtained for different energy system designs, demands and periods
by solving the operational model repeatedly, as inputs (Bakken et al., 2007).

When optimizing in local energy systems, it is important to identify different
infrastructures within the geographical area (Bakken et al., 2007). eTransport
does exactly this by considering all physical components and geographical topology
for the different energy infrastructures in one model. Transmission distances and
alternative locations are geographical details that are accounted for and it also
handles the competition between different energy carriers. However, the model
is deterministic with predefined demands for electricity and heating, as well as
predefined energy system designs. Hence, it lacks the ability to optimize the size
of specific components in the system and operate under uncertain energy prices
and demand.

3.6 Modeling of battery

For a household or a neighborhood, the storage capacity and the lifetime of
the battery are important aspects. The amount of the electrode material
mainly determine the storage capacity, and the electrolyte that causes the
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ionic conductance between the electrodes determines the power of the battery
(Vereecken and Bavel, 2016). The lifetime is however more difficult to anticipate.
When planning the energy system it is crucial to estimate the operational costs.
These costs are closely connected to the degradation of the battery cells, and the
degradation process is again related to the operational behaviour of the battery.
As the operational pattern is unknown in the planning period, it becomes difficult
to plan the system (Xu et al., 2016).

In order to take the operational costs into account, some studies have been done
with the mission to express the process as a function of battery operations. From
this work both theoretical and empirical degradation models have been developed
(Xu et al., 2016). The theoretical types are based on a degradation due to loss
of lithium ions and other active materials, and Xu et al. (2016) claim that it is
inadequate to link the observations on the operational level to the molecular level.
Thus, it would be incorrect to assume a direct correlation between the process
on a molecular level inside the battery cell and the behaviour of charging and
discharging.

The empirical models are more beneficial for storage planning and operational
studies. Nevertheless, these methods need to be done for each specific case
of energy systems or storage systems, as they are designed specifically for that
application. This is unfortunate, as the process of making the empirical models
both take time and are very expensive (Xu et al., 2016). Xu et al. (2016) therefore
propose a semi-empirical battery capacity degradation model that is based on a
theoretical analysis with experimental observations. Alharbi (2015) has chosen
a more simple method by restricting the operational behaviour of the battery in
advance. In that way the lifetime becomes easier to model, and it becomes more
accurate for those specific patterns proposed. The model is however limited by
these pre-selected patterns.

Batteries are usually considered at its end of life when the capacity has reached 80
% of the initial energy capacity. The degradation of the battery is often divided
into calendrical aging and cycling aging. The degradation due to calendrical aging
happens during the time the battery is not operating. This aging depends on
temperature and SOC. Korp̊as et al. (2017) have modeled a battery where they
take battery degradation into account, and also adds the degradation costs due to
cycling to the objective function.

Experimental results from Delaille et al. (2008) have shown a linear relationship
between battery capacity and the number of equivalent full discharges. Based on
this Korp̊as et al. (2017) calculate the maximum energy throughput of the battery
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during its lifetime by multiplying the average of the initial battery capacity and the
end of life capacity by the minimum depth of discharge and the number of cycles
to failure for the respective depth of discharge. This information can usually be
found in the battery’s technical specifications. This is then used as a measure of
the battery lifetime. They also make sure that the SOC is maintained within a
certain region, in order to prolong the battery lifetime (Korp̊as et al., 2017).

The empirical, theoretical and the semi-empirical models are often complex and
created with the intention to optimize battery energy storage systems and not as
a part of a larger investment model containing several energy technologies and
carriers. Therefore, some design problems do not emphasize this issue that much
and make several different simplifications in the modeling of the battery.

EMPIRE has incorporated batteries in the energy system design problem, and
sets the lifetime as an input parameter independent of operations (Skar et al.,
2016). Yang et al. (2007), on the other hand, have chosen to integrate the
operational aspect by dividing the lifetime into two variables; one for the overall
maximum lifetime, and one for the lifetime associated with the actual operation.
The variable that reaches its maximum first decides the lifetime of the battery.
Arnesen and Borgen (2017) have modeled a battery as a part of a microgrid design
problem. Here, they define a variable that indicates the amount of average energy
throughput of the battery. Further, an upper limit is given as an input parameter
and the lifetime is determined based on when it reaches this upper limit.



Chapter 4

Problem description

This chapter provides a description of the ZEN energy system investment problem
discussed in this thesis.

4.1 Problem statement

The problem studied in this thesis is a single-objective two-stage stochastic
multi-horizon problem for investment planning of energy systems in ZENs. The
main objective is to find the cost-optimal investment choices of which capacities
of different technologies to install in a ZEN energy system each investment period,
while considering optimal operation with uncertainties taken into account. The
constraints restricting operational behaviour should be fulfilled, as well as the
determined level of ZEN, which is ZEN-OM. The degree of ZEN to achieve and
the emission weighting factors to use should be input to the model.

The technologies included as investment alternatives in the problem are ST, ASHP,
GSHP, EB, BB, GB, and CHP for heat generation, CHP and PV for electricity
generation, and heat storage and battery for energy storing. The neighborhood
should also have the possibility to be connected to an external DH grid, enabling
import of heat. Note that this should not be an investment decision, but rather a
choice made beforehand by the decision maker. The neighborhood should also be
connected to the electricity grid, permitting both import and export of electricity.
As the problem is highly dependent on the technologies included, flexibility with
regards to future developments and the inclusion of new technologies should be
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considered in the mathematical formulation.

The investment decisions are considered to be first-stage decisions and are made
at the beginning of each investment period. The operational decisions are made
in the second stage, optimizing the operation of the energy system. All decisions
relates to the neighborhood as an aggregated entity, not considering infrastructure.

The costs associated with the energy system, which are to be minimized, are
investment costs and operational costs. Operational costs consist of fuel costs
and other variable operation and maintenance (OM) costs, import of heat and
electricity, less the revenue from export of electricity. All costs should be
discounted back to year 0. The operational parameters consist of heat and
electricity demand, PV and ST generation, import and export prices, fuel prices
and efficiencies, whereas one or more should be modeled as stochastic input.

On-site energy generation in each operational period is restricted by the total
available capacity of the installed technologies, and depends on the related
efficiencies and amount of fuel consumed. The amount of energy transferred to or
from the storage components also depend on the available capacity, as well as the
amount of energy currently stored. The operation of the storage components is
also restricted by the maximum ramping, the rate at which the storage component
can be charged and discharged. Maximum limits on electricity trade, heat import,
and total installed PV and ST areas, should also be included.

The aggregated heat and electricity demand have to be met in each operational
period. Heat demand must be covered by on-site generation, heat from the heat
storage, or import from the DH grid, whereas electricity demand must be met by
on-site generation, discharge of the battery, or import from the electricity grid.
Loss of excess heat or electricity produced should be allowed.

All technologies have associated investment costs, efficiencies, and lifetimes. The
CHP produces both heat and electricity and should have two affiliated efficiencies.
The efficiencies related to PV and ST are incorporated in their respective
generation parameters, and do not need to be considered explicitly.

The length of the total time horizon, as well as the number of investment periods
are given as input to the model and may be chosen by the decision maker. Since
the uncertainty only is included in the operational perspective, it implies that
the scenarios should have the same length as the investment periods. Each
scenario consists of a number of seasons, and each season consists of a number
of operational periods. The number of scenarios, seasons, and operational periods
are also considered to be input to the model.



Chapter 5

Mathematical model

This chapter provides the proposed formulation of the mathematical model that
has been developed to solve the ZEN energy system investment problem described
in Chapter 4. The proposed mathematical model is continued from our preparation
for this thesis, found in Beus et al. (2018). However, it comprises many important
improvements and adjustments that has been made in the final work, both
related to superior modeling choices and the specific mathematical formulation.
First, a review and justifications of which model design that is chosen will
be presented, before other modeling choices are discussed. Further, important
modeling assumptions along with their implications will be summarized, before
the notation in the model is defined and the mathematical model is presented and
explained.

5.1 Model design

The problem stated in Chapter 4, implies that the model should include
optimization across several horizons, i.e. operational and strategic horizon. The
investment decisions will thereby be directly linked to the operational decisions
made under uncertainties. The benefit of this procedure is emphasized in the
literature review in Chapter 3.

The problem contains different uncertainties at the operational level. To take these
into account we present a scenario-tree based stochastic model. When constructing
the scenario tree it is important to determine when relevant information is
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revealed. In our problem we assume perfect foresight in terms of the strategic data.
Information about the long-term development of electricity and gas prices, prices
and efficiencies of different technologies and potential regulations such as subsidies
and electricity tariffs, are assumed known in the beginning of each investment
period.

The strategic decisions are the first stage decisions in the scenario-tree. In
our problem the strategic decisions are investment decisions related to choice
of technologies and respective capacities. At this point, the future operational
conditions are unknown. After the first stage decisions are made, the operational
conditions for a full investment period are revealed as discrete scenarios based on
probability distributions related to historical data. This is the beginning of the
operational horizon, and the operational decisions are made. These become the
second stage decisions in the model, and are restricted by the decisions made in
the first stage. The operational decisions represent the interaction between on-site
production, export, import and storage.

A investment period is in this thesis defined as five years. Thus, the operational
horizon is five years and one operational scenario represents five years. The
operational periods are based on an hourly time resolution. The strategic decisions
are the same for every investment period, i.e. every fifth year. These decisions
are followed by operational decisions for a set of scenarios within the five years.
The strategic horizon is equivalent to the planning period. Thus, this two stage
structure is repeated every fifth year throughout the planning period, containing
both operational and investment decisions.

If we solve the problem using the traditional scenario-tree structure, we get the
scenario tree with operational uncertainty illustrated in Figure 5.1. Here, the
square nodes represent the strategic decisions, and the circular nodes represent
the operational decisions. The figure shows when decisions are made and when
information is revealed, as described in the paragraph above. As one investment
period lasts for five years, the figure shows the first 15 years of the planning horizon.
From the strategic nodes there are two branches representing two scenarios for each
investment period. The number of scenarios is set to be two in the figure, only
due to simplicity. In practical problems the number of scenarios should be much
higher in order to reflect the reality. The operational scenarios are sequences of
operational decisions made on hourly basis. Thus, one operational period is one
hour. Only the three first periods within an operational scenario are shown in the
figure, while the remaining periods are illustrated by dotted lines. This is also
done for simplicity.
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Figure 5.1: Scenario tree for the multi-stage optimization problem.

The figure illustrates the growth of scenarios as the number of investment periods
increases. With three investment periods, and two scenarios for each strategic
decision, the tree would consist of 23 (8) scenarios. This is a manageable number,
but as mentioned earlier, in real life problems, the number of scenarios are much
higher. The planning horizon would probably be longer as well, closer to 30 years.
If we increase the number of scenarios for each strategic decision to 10, and the
number of investment periods to 6, the corresponding total number of scenarios
would be 106. Hence, this structure provides an explosion in terms of number of
scenarios.

Therefore, we use a multi-horizon scenario tree to solve the stochastic problem.
Even though this method separates the strategic and operational nodes, it still
allows the model to use the operational decisions to evaluate the strategic decisions,
but without the extensive branching. The multi-horizon scenario tree is solely
constructed by the strategic nodes, and the operational nodes are sub-trees
embedded in the respective strategic nodes. This structure is shown in Figure
5.2. The figure illustrates the same problem as earlier with two scenarios for each
strategic decision. The strategic horizon is still 15 years with investment periods
of five years.



36 CHAPTER 5. MATHEMATICAL MODEL

Figure 5.2: Scenario tree for the multi-horizon optimization problem.

As seen in the figure, the number of scenarios decreases significantly. In this case
the total number of scenarios goes from 23 (8) to 2 · 3 (6), whereas if we increase
the number of embedded scenarios and investment periods as before, the total
number of scenarios would go from 106 to 10 · 6. This shows the huge effect the
new structure has on the size of the scenario tree.

As mentioned in section 3.1.1 in Chapter 3, the structure of the multi-horizon
scenario tree is based on the assumption that the strategic decisions are not
dependent on a specific operational decision, but rather on the collection of the
operational decisions made in the previous strategic decision period (Kaut et al.,
2014). In our problem, the investment decision is not dependent on how the
energy system perform in a particular hour, but rather on how the energy system
is expected to perform under varying hourly conditions. Thus, this requirement is
fulfilled.

However, the model also assumes that the first operational decision after a strategic
node do not depend on the last operational decision from the previous period (Kaut
et al., 2014). In our problem this is more challenging in the context of short-term
energy-storage. The model will therefore be an approximation of the standard
stochastic scenario tree. However, it may be assumed that the short-term storages
associated with the renewable energy sources will be empty in the winter. The
periods of time with daylight are shorter in the winter, implying that production
from PV and ST are lower, at the same time as the heat load is higher than for the
rest of the year, due to lower temperatures. Thus, to minimize the approximation
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error, we place the strategic decisions in the winter time.

The problem assumptions based on the problem statement in Chapter 4 and the
modeling design presented in this section are rendered in Table 5.1.

Table 5.1: Problem assumptions

Assumption Description
Assumption 1 Strategic uncertainties are not considered
Assumption 2 Operating conditions are known prior to each investment

period
Assumption 3 The investment decisions are based on the collection of

operational decisions made in the previous investment
decision period

Assumption 4 There is no connection between operation in the last hour
and first hour of consecutive investment periods

Assumption 5 The storage technologies are assumed empty at the beginning
of each investment period

5.2 Modeling choices

As stated in our preliminary work in Beus et al. (2018), Lindberg, Doorman,
Fischer, Korp̊as, Ånestad and Sartori’s (2016) model for ZEBs serves as a basis for
the formulation of the Investment Model for Energy systems in ZENs (IMEZEN),
as it combines optimization of both operational and strategic aspects, as well as
it includes many components. The components included in their model are also
relevant for this thesis, as they study a Norwegian school building, which typically
will consist of many of the same components as for a Norwegian neighborhood.
Many of the components in this thesis are therefore modeled the same way as in
Lindberg, Doorman, Fischer, Korp̊as, Ånestad and Sartori (2016). See literature
review in Chapter 3 for more details about Lindberg, Doorman, Fischer, Korp̊as,
Ånestad and Sartori’s (2016) model and deeper understanding of this choice.

The section starts by discussing how the fulfillment of ZEN requirements is
included in the mathematical model formulation. Further, other modeling choices
that in some way differ from the model in Beus et al. (2018) are discussed. Finally,
an overview of all modeling assumptions for the IMEZEN are presented.
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5.2.1 Fulfilling the ZEN requirement

In the IMEZEN, both costs and emissions are preferred minimized. However, as
emphasized in the literature review in Chapter 3, these objectives are in conflict.
We have chosen to develop a single-objective model where costs are minimized
and restrictions regarding emissions are included as a constraint, as done in
Lindberg, Doorman, Fischer, Korp̊as, Ånestad and Sartori (2016). This is oppose
to multi-objective optimization, which, as seen in the literature review in 3, is
heavily dependent on the solution method and might give a compromised solution
that is difficult to draw a clear conclusion from. Also, restricting the emissions as
a constraint still makes it easy for the decision maker to choose the degree of ZEN,
and establish the best trade-off for that specific neighborhood problem.

The ZEN requirement is included as a hard constraint in the proposed
mathematical modeling formulation. This means that the requirement must be
fulfilled. In reality this might provide infeasible solutions for higher degrees of
ZEN, and one can discuss if the requirement in reality rather will serve as a soft
constraint. This implies that the requirement of the ZEN degree goes from being
something one must fulfill to something one wants to fulfill. In this case, one
minimizes the penalty related to exceeding the required ZEN degree, in addition
to the main costs. In the mathematical formulation, this implies adding a variable
representing the amount by which the restriction value is exceeded to the right
hand side of the ZEN constraint. The variable is also added to the objective
function, where it is multiplied by a penalty cost. This method is similar to goal
programming, mentioned in Chapter 3 as a multi-objective solution method, as
the ZEN degree serves as a goal rather than an absolute requirement.

We have chosen not to use this in the case study, as this alternative approach has
the drawback of setting a realistic penalty, which requires a judgmental function
that is difficult to establish. Therefore, this area of interest is open to further
research.

5.2.2 Binary variables

In Beus et al. (2018) there are three binary variables in the model. Two of these
are connected to import and export of electricity, and prohibit import and export
in the same hour. This is based on Lindberg, Doorman, Fischer, Korp̊as, Ånestad
and Sartori (2016). Importing electricity from the grid always has a higher cost
than what one will earn from exporting to the grid. Because of this, removing
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these binary variables from the model will not influence the behaviour related to
export and import of electricity. To reduce the run time, we have therefore chosen
to model import and export of electricity as continuous variables.

The third binary variable in Beus et al. (2018) is related to whether or not the
neighborhood is connected to an external DH grid. To reduce the run time we
have chosen to model this as a binary input parameter instead of a variable. This
is reasonable because access to an external DH grid may be very case specific
and agreements like this might be carried out early in the planning phase. It is
therefore easy for a decision maker to give this as input.

5.2.3 Battery formulation

In Beus et al. (2018) we present a battery formulation with lifetime measured in
number of full charges, without taking battery degradation into account. This was
mainly inspired by work in Arnesen and Borgen (2016). The literature review
presented in Chapter 3 suggests different possible ways to model the battery
lifetime, with and without degradation of the battery cells. The most common
ways to model the lifetime are either in number of years, reflecting the calendrical
aging, or the number of equivalent full discharge cycles, reflecting aging due to
operation of the battery. One could, as Yang et al. (2007), model the battery
lifetime using two variables; one for each of the mentioned lifetime measures. Then,
the one that reaches its end of lifetime first, would be applicable.

In order to keep the convexity of the model and avoid non-linear constraints,
degradation is not included in the IMEZEN. Further, for simplicity, it is chosen to
formulate the battery lifetime in terms of years only. This reflects the formulation
used in EMPIRE (Skar et al., 2016), where the battery lifetime also is modeled
independent of operation. This assumption is valid as commercial batteries have a
guaranteed lifetime and thus would be replaced at zero cost if the usage is damaged
before the end of its lifetime. The guarantee is typically based on standard usage
of the battery, implying steady cycling. It is legitimate to assume standard usage
of the battery in a neighborhood, because we see no reason to expect that the
battery will be used less than what is considered as standard, if it shows to be
profitable to invest in. The battery is still a very expensive technology and it will
presumably not be profitable to invest in unless it is extensive need for it. It is also
beneficial to model on the same detail level as EMPIRE, since our model should
be compatible with this larger scale model.

In order to keep the convexity of the model and avoid non-linear constraints,
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degradation is not included in the IMEZEN. One could for example model the
battery the same way as Korp̊as et al. (2017) to account for degradation, but as
the IMEZEN is not an operational problem and the main focus for this model
is the investment decisions, this is assumed too detailed. Ramping constraints
representing max charge and discharge rates on the battery are included, since
these are technical specifications accompanying a battery.

5.2.4 Ramping rate of HS

In Beus et al. (2018) the heat storage is modeled in such way that it is possible to
fully charge and equivalently fully discharge in one hour. This implies that very
large heat fluxes may occur when the heat storage becomes large. This may cause
unrealistic behaviour of the HS, and we choose to introduce a maximum ramping
rate. This means that the HS can only be filled and emptied with a certain rate
of heat at any time.

We assume this will lead to more realistic and optimal operation of the heat storage.
This assumption is justified by Wang, Lin, Chen and Lee (2005), who state that
an energy storage device has optimal charge and discharge performance under
35 − 40% fill ratio. This implies that a heat storage is not optimal operated if it
is charged or discharged fully within one hour.

However, it might be hard to set a value on this limit, because heat flux depends
on many factors such as material, insulation, volume, surface area, temperature
differences and type of heating element of the heat storage. This is up to the
decision maker to consider if the ramping constraints are chosen to be included.

5.2.5 Maximum PV and ST areas

In some cases there might exist an actual limit on the total area that can be covered
by PV-panels and/or ST-collectors. To eliminate the possibility of installing very
large capacities of PV and ST to achieve the desired level of ZEN, one can include
restrictions on the size of areas of PV and ST based on physical area restrictions
in the applicable neighborhood.
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5.3 Modeling assumptions

In addition to the problem assumptions, a number of modeling assumptions have
been made in order to simplify the the mathematical formulation of the problem
considered in this thesis. An overview of the modeling assumptions is rendered in
Table 5.2.

Table 5.2: Modeling assumptions

Assumption Description
Assumption 6 There is no correlation between operation in the last hour

and first hour of consecutive seasons
Assumption 7 The storage technologies are assumed empty at the beginning

of each season
Assumption 8 Costs related to fuel (natural gas and wood chips) are

constant
Assumption 9 Investment costs of technologies are constant
Assumption 10 Salvage values are not accounted for
Assumption 11 Variable OM costs only consist of fuel costs
Assumption 12 There are no direct costs related to consumption of heat

from the heat storage, electricity from the battery and on-site
generated energy from PV and ST

Assumption 13 The neighborhood has a central heating system
Assumption 14 Domestic hot water demand and space hating demand are

not differentiated
Assumption 15 There is no minimum limit on installed capacities
Assumption 16 All technology efficiencies used as input are constant
Assumption 17 The efficiency of the heat storage is only related to the energy

loss when the energy is stored
Assumption 18 No degradation of capacities of the different technologies are

considered
Assumption 19 All technologies have lifetimes measured in years
Assumption 20 Inverters have the same lifetimes as the associated

technologies
Assumption 21 The generation technologies have no maximum rampings
Assumption 22 The technologies bear no restrictions on annual full-time

hours
Assumption 23 The CHP may overproduce heat or electricity
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The first modeling assumption, given as Assumption 6, states no correlation
between the last operational hour of one season and the first operational hour
of the following season. This is assumed as a consequence of how the scenario
generation algorithm is performed. This assumption also ensures that the main
assumption related to the multi-horizon modeling design used in this thesis is
fulfilled, implying that the first hour of an investment period always is the first
hour of a season.

The HS and the battery are assumed empty at the beginning of each season, as
rendered in Assumption 7. This assumption is based on the previous assumption
and is made to simplify the problem. This assumption also makes the constraints
related to maximum ramping of the HS and the battery unproblematic. However,
this simplification also implies that seasonal heat storage will be problematical to
include. Because of this, we do not consider a seasonal heat storage in the model.

Assumption 8 concerns the costs related to fuel such as natural gas and wood
chips consumed by BB, GB and CHP. These costs are assumed deterministic and
constant throughout the time horizon, unlike the other operational parameters.
This is a reasonable assumption because the price of wood chips and natural gas
delivered in tanks do not fluctuate on an hourly basis. This is a case specific
assumption, and may be less applicable if the neighborhood studied is close to a
gas grid.

The investment costs are also assumed constant throughout the time horizon.
This is rendered as Assumption 9 in the table. In reality some technology prices
are expected to have an significant decrease, and this could be reflected by an
associated rate. However, constant prices make the problem more tractable, and
the time horizon would need to be relatively long in order for the price difference
to be large.

No salvage values of the technologies are accounted for, as stated in Assumption
10. This implies that if the modeling horizon ends before the end of the lifetime of a
technology, the salvage value of the technology will not be accounted for. This may
influence the investment decisions in terms of not installing new technologies in the
last investment periods, but rather invest in larger capacities when the remaining
time of the horizon equals the lifetime of a technology. This will especially be
applicable for short modeling horizons.

Variable OM costs other than costs related to fuel is not included in the model, as
stated by Assumption 11. This is reasonable because the fuel costs often constitute
the majority of the variable OM costs. The remaining variable OM costs are
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therefore left out of the calculations due to simplicity.

Assumption 12 states that costs associated with self-consumption of on-site heat
and electricity generation, as well as heat consumed from the heat storage and
electricity from the battery, are assumed to be zero, i.e. they have no direct
operational costs. This is a reasonable assumption because utilizing sun as an
energy source does not entail any costs. Heat consumed from the heat storage and
electricity consumed from the battery are energy that are already produced and
the costs related to this can therefore be assumed zero at the time of consumption.

Assumption 13 states that the neighborhood is assumed to be equipped with a
central heating system. Central heating systems are flexible and is adaptable to
many different heat technologies and is therefore a very provident heating solution
Enova (2010). This assumption also enables the aggregated level of optimization,
which does not emphasize infrastructure. Therefore, it is legitimate to assume that
the neighborhood already has the infrastructure needed to distribute the energy.

We do not differentiate between domestic hot water demand and space hating
demand, which Assumption 14 states. This is done for simplicity and because
most of the heat technologies can meet both demands. If the demands were
separated, it would require a higher number of variables, which would result in
a more complex model. Thus, these demands are merged and it is assumed that
all heat technologies can generate heat to cover this total demand.

Assumption 15 states that there is no minimum limit on the capacities of the
technologies installed. The capacity installed of an energy technology in an
investment period is defined as a continuous, non-negative variable for all the
energy technologies. Considering the fact that costs often are dependent on the
unit size, where larger units have lower specific costs NOK/kW than smaller
units, the model runs the risk of installing very small capacities of some energy
technologies. On the other hand, as this model covers an entire neighborhood, the
demand is of such a magnitude that this will probably not be an issue. However,
if it turns out to be a problem, a possible solution is to redefine these variables to
be semi-continuous, thus forcing a minimum amount of installed capacity.

All technology efficiencies that are used as input to the model are constant,
implying that there is a linear relation between energy generation and fuel
consumption no matter the circumstances. This also implies that the CHP has
a constant relationship between heat and electricity production. This is rendered
in Assumption 16. Setting the efficiencies constant is a simplification to keep
the linearity of the problem. In reality the efficiencies varies with load, and
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the efficiency related to HPs, defined by the coefficient of performance (COP),
is in reality heavily dependent on the ambivalent temperature. Note that this
assumption does not include PV and ST as their efficiencies are incorporated in
their respective generation parameters.

Assumption 17 addresses the efficiency of the heat storage. This technology could
be modeled using several efficiencies as there are losses associated with charging,
discharging and storing. In the IMEZEN, the efficiency is assumed to only include
losses that occur when the heat is stored, as this represents the main loss.

For simplicity it is assumed that there is no degradation of capacity associated
with the different technologies, seen in Assumption 18. This implies that all
technologies will work equally well throughout their individual lifetimes. Annual
fixed OM costs may be included in the investment costs and will then substantiate
the reasonableness of this assumption.

Each technology is assumed to have a lifetime modeled in terms of years, stated
in Assumption 19. This is a natural measure of lifetime for most technologies.
However, the lifetime of batteries is more complex, but as discussed in section
5.2.3, this is also an reasonable assumption for the battery.

The electricity technologies, i.e. PV, CHP and battery, must have related inverters
that can convert between AC and DC power to be able to interact with each other,
the grid and to deliver power to the end users. As stated in Assumption 20 these
additional equipment are assumed to have the same lifetimes as their respective
technologies. In reality they usually have shorter lifetimes, but this assumption is
made due to simplicity.

Assumption 21 emphasizes that the energy generating technologies do not have
any associated ramping rates restricting the technologies from having large jumps
and/or drops in operation. This assumption may lead to unrealistic operation
of some technologies, especially referring to typical base load technologies such as
CHP and ground source heat pump, which are designed to meet relatively constant
demands. Since it presumably not will affect the investment decisions to a high
degree, the assumption is considered reasonable.

Assumption 22 implies that the technologies can be operated at any time, without
considering maximum annual full-load hours which applies to certain technologies.
In reality the technologies may need to be stopped occasionally in order to perform
maintenance work, among other things. This is excluded to simplify the model
and is legitimate as the main focus of our model is the investments and not the
operation.
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As stated in Assumption 23, the CHP may generate excess heat or electricity that
result in losses in favor of meeting electricity or heat demand, respectively. This
assumption is made as there in some cases may be more cost beneficial to let some
energy be lost, in order to meet another energy demand.

5.4 Mathematical formulation

This section provides the proposed mathematical formulation of the IMEZEN.
First an overview of the different sets, indices, parameters and variables will be
presented in order to give an orderly view of the different mathematical symbols.
Further, the multi-horizon stochastic model will be presented. The objective
function and all of the constraints will be explained in detail, while also describing
the corresponding symbols explicitly in the text.

5.4.1 Sets and indices

A summary of all sets and indices is given in Table 5.3 and Table 5.4, respectively. I
is defined as the set of time periods in the investment time horizon and is indexed
by i. I = {1, 2, ..., j}, where j is the number of investment time periods. All
investment time periods have the same length, given in years, and each investment
period consists of a number of seasons. The set of seasons is defined as S =
{1, 2, ..., l}, where l is the number of seasons, and is indexed by s. Further, there is
a set of operational periods related to each season s, defined as Os = {1, 2, ..., hs},
where hs is the number of time periods in the operational time horizon in season
s. An operational period is indexed by o and its length is given in hours. All
operational periods have the same length, but the number of operational periods
in a season s, defined as hs, is not the same for all seasons. This is explained in
section 7.1.3 in Chapter 7. As this problem is subject to operational uncertainty,
there is also a set of operational scenarios included in the model. This set is
defined as Ω = {1, 2, ...,m} and is indexed by ω. The number of operational
scenarios related to each operating time horizon is given by m.

Additionally, there are sets related to the energy technologies included in the
model. Let TH be the set of heat technologies, including solar thermal collectors,
air source heat pump, ground source heat pump, electric boiler, bio boiler, gas
boiler, district heating, and combined heat and power. The available power
technologies, PV-panels and CHP, are collected in the set TE. There are also two
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sets denoting storage technologies, T SH and T SE, one for heat storage technologies
and one for power storage technologies respectively. The storage technologies
included are a heat accumulator tank for heat storage and a battery for electricity
storage. Let T be the collection of all energy technologies, given by the union of the
heat, power and storage technologies. This is defined as T = TH∪TE∪T SH∪T SE,
where all the related sets are indexed by t. Finally, F is defined as the set of energy
carriers and is indexed by f .

Table 5.3: Sets

Set Description
I investment time periods
Ω operational scenarios
S seasons
O operational time periods
TH heat technologies, TH = {ST,ASHP,GSHP,EB,BB,GB,DH,CHP}
TE power technologies, TE = {PV,CHP}
T SH heat storage technologies, T SH = {HS}
T SE power storage technologies, T SE = {B}
T all energy technologies, T = TH ∪ TE ∪ T SH ∪ T SE
F energy carriers, F = {el imp, el exp, heat, bio, gas}

Table 5.4: Indices

Index Description
i investment time period
ω operational scenario
s season
o operational time period
t technology
f energy carrier

5.4.2 Parameters and variables

All parameters are listed in table 5.5, defined by uppercase letters. The variables
are defined by lowercase letters and are listed in table 5.6. Superscripts are used
as a way of differentiating similar parameters and/or variables, while subscripts
define the indices correlated to each parameter and/or variable.
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Table 5.5: Parameters

Parameter Description
Cti Total investment cost for technology t in investment period i

[NOK/kW]
R Discount factor
CG Total annual grid charge for the whole time horizon [NOK]
CDH Total connection charge to the district heating grid [NOK]
N Length of an investment period [years]
K Length of an operational period [hours]
πω Probability of scenario ω
αs Scaling factor for the operational costs in season s
Lt Expected lifetime of technology t [years]
DH
iωso Heat demand of the neighborhood in period i in scenario ω in season

s at time o [kWh]
DE
iωso Electricity demand of the neighborhood in period i in scenario ω

in season s at time o [kWh]

P f
iωso Price of energy carrier f ∈ {el imp, el exp, heat} from/to the grid

in period i in scenario ω in season s at time o [NOK/kWh]
P f Price of energy carrier f ∈ {bio, gas} [NOK/kWh]
ηHt Efficiency of technology t ∈ TH ∪ T SH
ηEt Efficiency of technology t ∈ TE ∪ T SE
QST
iωso Specific solar heat generation in period i in scenario ω in season s

at time o [kW/m2]
Y PV
iωso Specific PV electricity generation in period i in scenario ω in season

s at time o [kW/kWp]
Q Maximum import from the district heating grid [kW]

Y
imp

Maximum import from the electricity grid [kW]

Y
exp

Maximum export to the electricity grid [kW]
V t Maximum ramping rate per kWh installed capacity of technology

t ∈ T SH ∪ T SE [kW/kWh]
A Maximum area of PV and ST installations [m2]
A Conversion factor for PV capacity [m2/kWp]
δDH Binary parameter, 1 if the neighborhood is connected to external

district heating, 0 if not
γ Degree of ZEN
Wf Weighting factor for energy carrier f [gCO2−eq/kWh] or

[kWhPE/kWh]
WEmb Weighted embodied energy [gCO2−eq] or [kWhPE]
WRef Weighted energy imports with γ = 0 [gCO2−eq] or [kWhPE]
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Table 5.6: Variables

Variable Description
xti Installed capacity of technology t in period i [kW]
qtiωso Heat generated by technology t ∈ TH in period i in scenario ω in

season s at time o [kWh]

qimpiωso Heat imported from the district heating grid in period i in scenario
ω in season s at time o [kWh]

rtiωso Resource consumed by technology t ∈ TH \ {ST,DH} in period i in
scenario ω in season s at time o [kWh]

stiωso Energy stored in storage technology t ∈ T SH ∪ T SE in period i in
scenario ω in season s at time o [kWh]

ytiωso Electricity generated by technology t ∈ TE in period i in scenario ω
in season s at time o [kWh]

yimpiωso Electricity imported from the grid in period i in scenario ω in season
s at time o [kWh]

yexpiωso Electricity exported to the grid in period i in scenario ω in season s
at time o [kWh]

v+
iωso Electricity discharged from the battery in period i in scenario ω in

season s at time o [kWh]
v−iωso Electricity charged to the battery in period i in scenario ω in season

s at time o [kWh]

5.4.3 Multi-horizon stochastic model

This section provides a detailed explanation of the mathematical model, using
the sets, indices, parameters and variables presented in the previous section.
The objective function is explained, as well as each of the constraints. The full
mathematical model can be found in Appendix A.

Objective function

The model minimizes total costs while meeting the electricity and heat demand
of the neighborhood and fulfilling the restrictions regarding emissions imposed
by the degree of ZEN, γ. The single objective function minimizes discounted
investment and operational costs over the defined lifetime of the model. The
defined lifetime is the same as the investment time horizon, more specifically the
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number of investment periods, |I|, times the length of each investment period, N .

Equation (5.1) states the objective function which sums the discounted investment
costs for each technology t and the total discounted operational costs.

min z =
∑
i∈I

1

(1 +R)(i−1)·N

(∑
t∈T

Ctixti +
∑
ω∈Ω

πω
∑
s∈S

1

(1 +R)b
s−1
|S| c

αs
∑
o∈Os

ctotOiωso

)
+CG + CDH · δDH

(5.1)

The objective function sums all costs for the investment periods i ∈ I, discounted
for the first year in the investment period. The discount factor is given by R, and
the costs are discounted for year (i− 1) ·N , where i is the investment period and
N is the length of the investment periods. With N = 5, the costs are discounted
for year 0, 5, 10, ... throughout the planning period.

The costs related to an investment period is given by two terms. The left term sums
the investment cost for each technology t ∈ T . The investment cost is given by the
cost of investing in one unit kW, kWh or m2 of technology t in investment period
i, Cti, multiplied by the installed capacity of this technology in the corresponding
investment period, xti.

In the right term, the sum of the operational cost, ctotOiωso, for all periods o ∈ Os in

season s is multiplied by a scaling factor αs, and discounted for year
⌊
s−1
|S|

⌋
in the

investment period. ctotOiωso is the total operational cost in period i in scenario ω in
season s at time o, and is given by Equation (5.2) explained below. With N = 5
as the length of the investment period, the costs are discounted for years 0, 1, 2,
3 and 4. The seasonal scaling factor, αs, ensures that the operational costs in a
season are scaled to reflect their annual costs, as each season is represented with
a subset of hours. The scaled and discounted operational costs are then summed
for all seasons, and multiplied by the probability of scenario ω, πω. Finally, the
costs are summed for all scenarios ω ∈ Ω.

A grid charge, CG, calculated as the total grid charge for all buildings in the
neighborhood over the defined lifetime, is added to the discounted investment
costs and the total operational costs. This grid charge is known and is given as a
parameter to the model.

Finally, the connection charge to the district heating grid, CDH , is also calculated



50 CHAPTER 5. MATHEMATICAL MODEL

for the entire neighborhood and given as a parameter to the model. This is then
added to the total costs of the neighborhood in the objective function, if the
neighborhood has decided to connect to the district heating grid. This decision is
given as a binary parameter to the model, defined as δDH .

The total operational costs for a operational period o ∈ Os in season s in scenario ω
in investment period i is defined by ctotOiωso. This is calculated, as shown in Equation
(5.2), as the sum of operational costs less the operational revenue. The operational
costs are given as the cost of energy imports, more specifically the price for each
energy carrier, P f

iωso or P f , multiplied by the amount of electricity imported, yimpiωso,
the amount of heat imported from the district heating grid, qimpiωso or the amount
of resource consumed, rtiωso. The operational revenue is given by the feed-in-tariff
on electricity export, P el exp

iωso , multiplied by the amount of electricity exported to
the grid, yexpiωso.

ctotOiωso = P el imp
iωso · yimpiωso + P bio · (r(CHP )iωso

+r(BB)iωso) + P heat
iωso · q

imp
iωso + P gas · r(GB)iωso − P el exp

iωso · y
exp
iωso

(5.2)

The term “operating period” will hereafter be used when referring to an operational
period o in season s in scenario ω in investment period i, given by iωso. This term
is defined for all operational periods o ∈ Os, all seasons s ∈ S, all scenarios ω ∈ Ω,
and all investment periods i ∈ I.

Boilers and heat pumps

Equation (5.3) shows the energy balance for the boilers, and the heat pumps. The
balance is defined for each heat technology t ∈ TH \ {CHP,DH, ST} and for
every operating period iωso. It ensures that the heat generated by a technology t,
qtiωso, equals the amount of energy resource consumed by that technology, rtiωso,
multiplied by its efficiency, ηHt . Note that the type of resource consumed differs
for the technologies. The gas boiler consumes natural gas, the bio boiler consumes
wood chips, and the electric boiler and heat pumps consume electricity.

qtiωso − rtiωso · ηHt = 0, t ∈ TH \ {CHP,DH, ST},
i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(5.3)
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Equation (5.4) is the capacity constraint for the boilers and the heat pumps.
The capacity constraint reflect that the heat generated by a technology t in any
operating period iωso cannot exceed the available capacity of the corresponding
technology. The heat generated by heat technology t is given by qtiωso. The
available capacity at any point in time is denoted as the sum of the capacities
installed in the investment periods prior to the current one, where the capacity
installed in investment period i is defined by xti. The investment periods included
in the sum are defined by a counter τ , starting from investment period i− Lt

N
+ 1,

where Lt is the lifetime of the respective technology and N is the length of an
investment period. This ensures that the available capacity only includes the
installed capacities that have not yet reached the end of their lifetime. The
expression

∑i
τ=i′ xtτ will in the following be referred to as the available capacity of

technology t in investment period i. Note that the available capacity is multiplied
by the length of an operational period, K, in order to ensure the value reflects the
maximum amount of energy that can be generated during an operational period,
given in kWh. This type of unit conversion will be used hereafter when necessary.

qtiωso −K ·
i∑

τ=i′

xtτ ≤ 0, i′ = max{1, i−
⌊
Li
N

⌋
+ 1},

t ∈ TH \ {ST,DH,CHP},
i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(5.4)

Combined heat and power

The CHP is modeled similar to the boilers and the heat pumps, but with one
efficiency for heat generation and another for electricity generation. These energy
balances are stated by Equation (5.5) and (5.6), and are defined for each operating
period iωso. The balances ensure that the heat generated, qCHPsωo, and the
electricity generated, yCHPsωo, is equal to or lower than the resource consumed by
the CHP, rCHPiωso , multiplied by the corresponding efficiency, ηHCHP or ηECHP . Note
that the energy balances of the CHP are inequalities. The reason for this is to
allow for heat or electricity loss. Also note that the variable denoting the resource
consumed in an operating period is the same in both balances, thus providing a
connection between them. This shows that when the CHP consumes the resource,
in this case wood chips, it generates both heat and electricity.
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qCHPiωso − rCHPiωso · ηHCHP ≤ 0, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os (5.5)

yCHPiωso − rCHPiωso · ηECHP ≤ 0, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os (5.6)

The capacity constraint for the CHP is also modeled using two constraints, given by
Equation (5.7) and Equation (5.8). As the CHP generates both heat and electricity,
the total energy generation needs to be restricted by the available capacity. This is
imposed by ensuring that heat or electricity generation in an operating period iωso,
q(CHP )iωso and y(CHP )iωso, cannot exceed the available capacity. However, the ratio
between heat and electricity generation is restricted by their constant efficiencies.
For this reason, the available capacity for either heat or electricity generation
is defined by multiplying the available capacity of the CHP by a fraction of the
efficiency for heat or electricity, ηHCHP or ηECHP respectively, and the total efficiency
for the CHP, ηHCHP + ηECHP . The available capacities for heat and electricity are
also multiplied by the length of an operational period, K, in order to obtain the
correct unit.

q(CHP )iωso −
ηHCHP

ηHCHP + ηECHP
K ·

i∑
τ=i′

x(CHP )τ ≤ 0,

i′ = max{1, i−
⌊
Li
N

⌋
+ 1}, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(5.7)

y(CHP )iωso −
ηECHP

ηHCHP + ηECHP
K ·

i∑
τ=i′

x(CHP )τ ≤ 0,

i′ = max{1, i−
⌊
Li
N

⌋
+ 1}, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(5.8)

District heating

The decision of connecting the neighborhood to an external district heating grid is
given by a binary input parameter δDH , implying the decision is made beforehand.
If the parameter equals one, the neighborhood has the option of importing heat
from the district heating grid. The parameter value is valid for the entire planning
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horizon, implying that the lifetime of the grid connection is equal to the defined
lifetime for the model.

Equation (5.9) model the DH system as a heat technology with constant efficiency,
defined for every operating period iωso. It ensures that the heat generated,
q(DH)iωso, equals the heat imported from the district heating grid, qimpiωso, multiplied
by the corresponding efficiency, ηHDH . Equation (5.10) ensures compliance with
the technical restriction on the maximum amount of heat that can be imported
from the grid during an operating period. This maximum amount is defined by
the installed capacity of the connection to the grid, Q, which is given as an input
parameter to the model. Note that the value is multiplied by the length of an
operating period, K, converting this value to the correct unit. It is also multiplied
by the binary parameter, δDH , thus ensuring the maximum value of heat import
is zero if the neighborhood is not connected to a district heating grid.

q(DH)iωso − qimpiωso · ηHDH = 0, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os (5.9)

q(DH)iωso ≤ K ·Q · δDH , i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os (5.10)

Solar thermal collectors and photovoltaic panels

The specific solar heat generation in an operating period iωso, QST
iωso, is given as an

input parameter to the model. This is different from the utilized ST heat, which
is a variable defining the heat generated by the solar thermal collectors, q(ST )iωso.
The reason for this distinction is to account for situations where the heat storage
tank is full and the actual heat generated is larger than the heat demand. When
this occurs, some of the actual heat generated will be lost, implying that the
amount of utilized ST heat will be lower than what is generated. This is reflected
in Equation (5.11), which states that the utilized heat from ST collectors can be
either equal to or lower than the actual heat generation multiplied by the available
capacity of the ST collectors. The specific solar heat generation is also multiplied
by the length of an operational period, K, in order to obtain the correct unit.

q(ST )iωso −K ·QST
iωso ·

i∑
τ=i′

x(ST )τ ≤ 0, i′ = max{1, i−
⌊
LST
N

⌋
+ 1},

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(5.11)
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Similarly as for the ST collectors, there is an input parameter for PV, Y PV
iωso,

denoting the specific PV electricity generation. Equation (5.12) ensures that the
variable reflecting the electricity generated by this technology, y(PV )iωso, is either
equal to or lower than the specific PV electricity generation multiplied by the
available capacity. The specific PV electricity generation is also multiplied by the
length of an operational period, K. Note that this constraint can be considered
an equality in the case where there is no restrictions on the amount of electricity
than can be exported to the electricity grid. However, in the model explained here,
there is a restriction on the maximum amount of electricity that can be exported
in an operating period iωso, given by Equation (5.15). Such a restriction imposes
the possibility of a situation where the electricity storage is full, the maximum
export limit is reached, and one has generated excess electricity, resulting in a loss
of electricity.

y(PV )iωso −K · Y PV
iωso ·

i∑
τ=i′

x(PV )τ ≤ 0, i′ = max{1, i−
⌊
LPV
N

⌋
+ 1},

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(5.12)

The amount of ST collectors and PV panels that can be installed is physically
restricted by the size of the available area, reflected in Equation (5.13). This
constraint ensures that the sum of the available capacities of PV and ST does not
exceed the available area, A. Note that, as the PV capacity is given in kWp, the
available capacity of PV is multiplied by a factor A.

A ·
i∑

τ=i′

x(PV )τ +
i∑

τ=i′′

x(ST )τ ≤ A, i′ = max{1, i−
⌊
LPV
N

⌋
+ 1},

i′′ = max{1, i−
⌊
LST
N

⌋
+ 1}, i ∈ I

(5.13)

Grid constraints

Equation (5.14) and (5.15) ensure that the electricity imported, yimpiωso, and the
electricity exported, yexpiωso in each operating period iωso, cannot exceed their

respective maximum values, Y
imp

and Y
exp

respectively. Note that the maximum
values are multiplied by the length of an operating period, K.
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yimpiωso ≤ K · Y imp
, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os (5.14)

yexpiωso ≤ K · Y exp
, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os (5.15)

Heat balance

For all operating periods except of those defining the first operational period in
each season, the heat balance is given by Equation (5.16). It ensures that the
heat demand of the neighborhood is met in each investment period i ∈ I, scenario
ω ∈ Ω, season s ∈ S and operational period o ∈ Os \ {1}. The balance states
that the sum of the heat generated by all heat technologies t ∈ TH , denoted by
qtiωso, plus the heat stored at the beginning of the operating period, equals the
heat stored at the end of the operating period, s(HS)iωso, plus the heat demand of
the neighborhood, DH

iωso. The content of the heat storage at the beginning of an
operating period is defined as the heat stored at the end of the previous operational
period, s(HS)iωs(o−1), multiplied by the efficiency factor ηHHS.

∑
t∈TH

qtiωso+ηHHS ·s(HS)iωs(o−1)−s(HS)iωso = DH
iωso, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os\{1}

(5.16)

Heat storage

The heat storage is assumed empty in the beginning of each season. This ensures
that there is no connection between seasons, or between an operational scenario in
one investment period and an operational scenario in the next investment period.
Equation (5.17), defined for each investment period i ∈ I, scenario ω ∈ Ω, and
season s ∈ S, reflects the heat balance of the first operating period in each season.
As the content of the heat storage in an operating period is defined by the heat
stored at the end of this period, the constraint ensures that the heat stored at
the end of the first operating period in a season, s(HS)iωs1, equals the sum of the
heat generated by all heat technologies t ∈ TH , qtiωs1, less the heat demand of the
neighborhood, DH

iωs1.

∑
t∈TH

qtiωs1 − s(HS)iωs1 = DH
iωs1, i ∈ I, ω ∈ Ω, s ∈ S (5.17)
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The heat stored in any given operating period iωso is limited by the available
capacity of the heat storage, as defined by Equation (5.18). s(HS)iωso is a variable
representing the amount of heat stored at the end of the defined period. Note that
the installed capacity of the heat storage is given in the unit of kWh.

s(HS)iωso −
p∑

τ=i′

x(HS)i ≤ 0, i′ = max{1, i−
⌊
LHS
N

⌋
+ 1},

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(5.18)

The heat storage is restricted by maximum ramping constraints, reflected in
Equation (5.19), (5.20) and (5.21). Equation (5.19) and (5.20) ensure that the
absolute value of the difference between heat stored at the end of the operating
period, s(HS)iωso, and the heat stored at the beginning of the operating period,
s(HS)iωs(o−1), is less than or equal to the maximum rating, V (HS). The maximum
rate is given as a parameter to the model, specified as a rate per unit installed
capacity, kW/kWh, and is multiplied by the installed capacity of the HS and the
length of an operational period, K, to get the total amount of kWh that can be
stored or extracted from the HS during an operational period. These constraints
are defined for each operating period iωso except from the first operating period
in a season.

ηHHS · s(HS)iωs(o−1) − s(HS)iωso − V (HS) ·K ·
p∑

τ=i′

x(HS)i ≤ 0,

i′ = max{1, i−
⌊
LHS
N

⌋
+ 1}, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os \ {1}

(5.19)

ηHHS · s(HS)iωs(o−1) − s(HS)iωso + V (HS) ·K ·
p∑

τ=i′

x(HS)i ≤ 0,

i′ = max{1, i−
⌊
LHS
N

⌋
+ 1}, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os \ {1}

(5.20)

Equation (5.21) ensures that the heat stored at the end of the first operating period
in a season s(HS)iωs1 is less or equal to the ramping rate multiplied by the installed
capacity of the HS and the length of an operational period, K.
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s(HS)iωs1 − V (HS) ·K ·
p∑

τ=i′

x(HS)i ≤ 0, i′ = max{1, i−
⌊
LHS
N

⌋
+ 1},

i ∈ I, ω ∈ Ω, s ∈ S
(5.21)

Electricity balance

The electricity balance of the neighborhood is reflected by Equation (5.22).
This balance ensures that the electricity demand of the neighborhood, DE

iωso, is
covered in any operating period iωso. Note that the heat technologies t that
consume electricity as their resource, i ∈ {EB,ASHP,GSHP}, increase the
total electricity demand of the neighborhood. The total demand has to equal
the electricity supplied by the neighborhood. The electricity supplied is given as
the sum of the electricity generated by the power technologies t ∈ TE, ytiωso, added
the electricity discharged from the battery, ηEBv

+
iωso, and the electricity imported

from the grid, yimpiωso. The electricity charged to the battery, v−iωso, and the electricity
exported to the grid, yexpiωso, is then subtracted from the electricity supply of the
neighborhood. Note that the electricity obtained from discharging the battery is
the product of its efficiency, ηEB , and the energy that is actually discharged, v+

iωso.

∑
t∈TE

ytiωso + ηEBv
+
iωso + yimpiωso − v−iωso − y

exp
iωso −

∑
t∈T ′

rtiωso = DE
iωso,

I ′ = {EB,ASHP,GSHP}, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(5.22)

Battery constraints

The constraints explained in this section are all related to the battery, which is used
as a storage for electricity. Equation (5.23) is the storage balance for the battery.
This balance ensures that the state of charge, the SOC, is updated at the end of
each operating period, except of the first operating period in each season, which
is treated in Equation (5.24). It states that the SOC at the end of an operating
period, s(B)iωso, equals the SOC at the beginning of the period, s(B)iωs(o−1), added
the electricity charged to the battery during the period, v−sωso, less the electricity
discharged from the battery during the period, v+

iωso. The electricity charged to
the battery is multiplied by the conversion efficiency, ηEB , in order to account for
the efficiency loss in this process.
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s(B)iωso−s(B)iωs(o−1)−ηEBv−iωso+v+
iωso = 0, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os\{1} (5.23)

Similarly as for the heat storage, the SOC is assumed to be zero in the beginning of
each season, and thus also each operational scenario. This is reflected by Equation
(5.24), ensuring that the SOC at the end of the first operating period in a season,
denoted by s(B)iωs1, has to equal the energy charged to the battery during the
first operating period. The energy charged to the battery is the product of the
conversion efficiency for charging the battery, ηEB , and the electricity charged to
the battery, v−iωs1.

s(B)iωs1 − ηEBv−iωs1 = 0, i ∈ I, ω ∈ Ω, s ∈ S (5.24)

The amount of energy stored in the battery restricts what can be discharged
from the battery. Equation (5.25) ensures that the electricity discharged from
the battery during each operating period, denoted by v+

iωso, is less than or equal to
the storage content at the end of the previous period, s(B)iωs(o−1). This constraint
is not defined for the first operating period in each season.

v+
iωso − s(B)iωs(o−1) ≤ 0, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os \ {1} (5.25)

The amount of electricity that can be discharged from the battery during the first
operating period in each season is instead restricted by Equation (5.26). Since the
battery is assumed empty at the beginning of each operating period in a season,
the right hand side of Equation (5.25) can be substituted with zero, resulting in
Equation (5.26). This implies that it is not possible to discharge electricity from
the battery during the first operating period in a season.

v+
iωs1 ≤ 0, i ∈ I, ω ∈ Ω, s ∈ S (5.26)

Similar to the constraint regarding maximum discharge from the battery, there is
also a constraint regarding the maximum energy charged to the battery, reflected
by Equation (5.27). The maximum amount of energy that can be charged to the
battery during an operating period, v−iωso, is restricted by the unused capacity of
the battery. The unused capacity is equal to the sum of the installed capacities of
the battery, x(B)τ , only including the installed capacities that have not yet reached
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the end of their lifetime, less the energy that was stored in the battery at the end
of the previous operating period, s(B)iωs(o−1). Note that the installed capacity of
the battery in a period is given in kWh. This constraint is not defined for the first
operating period in a season.

ηEBv
−
iωso −

i∑
τ=s′

x(B)τ + s(B)iωs(o−1) ≤ 0, i′ = max{1, i−
⌊
LB
N

⌋
+ 1},

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os \ {1}
(5.27)

Equation (5.28) reflects the energy capacity constraint of the battery. It ensures
that the energy stored in the battery at any point in time, s(B)iωso, is less than or
equal to the installed capacity of the battery, x(B)τ , only including the installed
capacities that have not yet reached the end of their lifetime.

s(B)iωso −
i∑

τ=i′

x(B)τ ≤ 0, i′ = max{1, i−
⌊
LB
N

⌋
+ 1},

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(5.28)

The battery is also restricted by its maximum charging and discharging power
rating, reflected in Equation (5.29) and (5.30). These equations ensure that the
energy discharged from the battery during an operational period, v+

iωo, and the
energy charged to the battery during an operational period, v−iωo is less than or
equal to the maximum power rating, V (B), multiplied by the installed capacity of
the battery and the length of an operational period, K, similar to the ramping
constraints for the HS.

v+
iωso − V (B) ·K ·

i∑
τ=i′

x(B)τ ≤ 0, i′ = max{1, i−
⌊
LB
N

⌋
+ 1},

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(5.29)

v−iωso − V (B) ·K ·
i∑

τ=i′

x(B)τ ≤ 0, i′ = max{1, i−
⌊
LB
N

⌋
+ 1},

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(5.30)
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ZEN constraint

Finally, as the model is developed as a single-objective problem where costs are
minimized, it is necessary to add a constraint related to the fulfillment of the
desired degree of ZEN. The ZEN constraint is reflected in Equation (5.31). In
the left term, the total energy import in an operational period o is calculated by
summing the energy import of each energy carrier, f , where each is multiplied
by its corresponding weighting factor, Wf . The operational energy import is then
summed for all operational periods in season s, and multiplied by the scaling
factor αs, before it is summed for all seasons s ∈ S. Finally, it is summed over
all operational scenarios ω ∈ Ω, where each is multiplied by its probability, πω,
and then summed for all investment periods i ∈ I. This calculation only includes
the energy carriers that are either imported or exported from the neighborhood
and represents the net effect. In the next term, the embodied energy is given as a
parameter to the model, denoted by WEmb.

∑
i∈I

∑
ω∈Ω

πω
∑
s∈S

αs
∑
o∈Os

(
Wel imp · yimpiωso −Wel exp · yexpiωso +Wheat · qimpiωso

+Wbio ·
(
r(BB)iωso + r(CHP )iωso

)
+Wgas · r(GB)iωso

)
+WEmb = (1− γ) ·WRef

(5.31)

On the right hand side, WRef , is the weighted energy imports, calculated when the
degree of ZEN, γ, equals zero. Thus, this parameter is determined by calculating
the left hand side of Equation (5.31). This value is then used as input to the
model when the ZEN constraint is imposed by requiring a degree of ZEN selected
by the decision maker. This parameter has a value between zero and one, where
γ = 1 indicates that the neighborhood fulfills the requirements of a ‘strictly’ ZEN
by setting the right hand side of the constraint equal to zero. If γ = 0, the model
will find the cost-optimal solution under the condition that the ZEN constraint is
completely relaxed.



Chapter 6

Data analysis

This chapter presents a review of how the input data used when testing the
IMEZEN is obtained and how this data is analyzed and pre-processed. Parameters
such as the binary parameter deciding whether or not the neighborhood is
connected to an external DH grid, the reference values for emission factors and the
degree of ZEN are parameters that vary and will be specified in the computational
study in Chapter 8 and the case study in Chapter 9. Some parameters and
constraints are left out of what we later will refer to as our base case. These
are ramping of the HS, maximum PV and ST areas and maximum electricity and
DH grid constraints. This is done to see how the model performs without any
maximum limits. These constraints and the applicable value of the associated
parameters may be very case specific and unnecessary, and can be included if the
decision maker view it as valuable and necessary. The constraints showing to be
applicable to the case studied in this thesis will be applied in the case study in
Chapter 9. Thus, the corresponding parameter values will be presented directly in
Chapter 9, and will therefore not be specified in this chapter.

Most of the input data are obtained from Norwegian data sources and are, where
possible, directly connected to the pilot project Ydalir. The chapter starts by
presenting the parameters that are given as deterministic input to the model.
These include financial parameters, fuel prices, emission factors, embodied energy,
technological data such as costs, efficiencies and lifetimes, length of periods, as well
as weighting factors of scenarios and seasons. Lastly, the operational data that are
used when generating the scenarios and later used as stochastic input parameters
to the model are presented. The fixed electricity grid charge will be presented
along with its associated stochastic operational data. Some simplifications are
made, and these and their implications will be presented and discussed in this
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chapter. Where deemed necessary, justification of applicability of the obtained
data will be given.

All prices and costs that are given as input to the model are in 2018 NOK and
included the value added tax (VAT), unless otherwise specified. Our model is
operating on an aggregated level and does for example not emphasize how much
heat that are consumed by the dwellings and how much that are consumed by
the school and the kindergarten. The same applies to import and export of
electricity, investment in technologies and purchase of fuel. In reality, the school
and kindergarten should not pay VAT, as the VAT is tax-deductable and generally
not an expense for service, industry and public administration (The Norwegian
Tax Administration, 2018). The dwellings should pay VAT and because of the
ratio between costumers in the neighborhood that are imposed to pay VAT and
the ones that are entitled to refrain from paying, the simplification to include
VAT on all costs and incomes is made. It is also done to have a better basis for
comparison when the results for the different cases are discussed in Chapter 9.

6.1 Financial data

The discount rate used in this thesis is 4 % and is the same as the one used
in Sidelnikova et al. (2015). It is based on a recommendation for governmental
projects with a lifetime of less than 40 years.

6.2 Fuel prices

The bio boiler and the combined heat and power technologies are based on use
of dry wood chips as fuel, as forestry industry is very common in the area in and
around Elverum. Eidsiva Bioenergi, which is the local district heating supplier,
mainly uses wood chips residue bought from local forestry industry retailers for
heat production in their plant (Dahl, 2018) and the nearby campus at Evenstad
also uses local wood chips for their CHP unit (Backe, 2018). It is likely that
Ydalir will make use of local resources like this to reduce costs and emissions
from transport (Dahl, 2018). The gas boiler is based on consumption of liquefied
natural gas delivered in tanks, while it does not exist a gas grid close to Ydalir
(Dahl, 2018). Prices are given including VAT.
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Wood chips

The price of wood chips used in this thesis is 0.3963 NOK/kWh, included delivery.
This price is based on prices stated in the agreement between the pilot project
Evenstad Campus and Rena Forst Bionenergi, which is a local supplier of wood
chips (Backe, 2018). The price stated in their agreement is 312.50 NOK/m3

and 1875 NOK for delivery. The distance from the supplier to Ydalir is a bit
shorter, and a delivery price of 1800 NOK is assumed. It is further assumed that
one delivery contains 30m3 wood chips and an energy content of 940 kWh/m3 is
assumed for chips of 10 % moisture (Helin, 2005). 10 % moisture is chosen because
the chips used as fuel in the CHP unit at Evenstad have a required moisture < 15%
(Selvig et al., 2017). Thus, the wood chips price is calculated based on this.

Natural gas

The price for natural gas in this thesis is set to 0.8125 NOK/kWh (Kverndalen,
2018). It is important to note that this is just an estimate, without taking the
desired volume into account, implying that it might not necessarily be the exact
price. The natural gas prices are not transparent and it is hard to find realistic
prices for gas delivered in tanks, while it differs for each case and is heavily
dependent on transportation costs, which again depend on the desired volume
(Kverndalen, 2018).

6.3 Emission factors

The emission factors considered in this thesis are carbon factors and primary
energy factors. As mentioned in Chapter 2, carbon factors describe how much
CO2-equivalent GHGs that are being emitted per unit of energy delivered, whereas
primary energy factors are the ratio of all the primary energy used to deliver the
energy, divided by the amount of actual delivered energy. Both emission factors
are widely used and their values are fiercely discussed in the research community.
The discussion of which values that are most correct to use originate in political
frameworks and is out of the scope of this thesis. Values obtained from reliable
references are therefore rendered in this section, without discussing the values
themselves in particular. The values of these factors should therefore be considered
carefully by the decision maker when performing a real case.
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Carbon factors

Table 6.1 shows the CO2 factors used in this analysis. Every country can decide
which factors they want to use, making it a way of deciding what energy carriers
are favoured in the specific country. This can for example be based on political
decisions or on the available natural resources. The CO2 factors listed here are
based on Norwegian conditions and are obtained from Otterlei (2014) and are the
same as Eidsiva Bioenergi uses for their local district heating grid in Elverum
(Dahl, 2018). It is important to note that the Norwegian CO2 factors usually have
lower values than the European ones for electricity and biomass.

Table 6.1: CO2 factors

Energy carrier CO2 factor
[g CO2 -eq/kWh]

Electricity 110
Wood chips 12
Natural gas 243
District heating1 14.77

1 Calculated based on the local district heating supplier

The CO2 factor for DH is calculated the same way as for the primary energy factor
for DH, with a CO2 factor for fossil oil equal to 289 (Otterlei, 2014) and the CO2

factor for wood chips equal to the one listed in Table 6.1.

Primary energy factors

The primary energy factors are listed in Table 6.2. The PE factors for electricity,
wood chips and natural gas are obtained from the proposed European standard
values in European Committee for Standardization (2013). The PE factor for
district heating is calculated based on the local district heating grid in Elverum.
Eidsiva Bioenergi (Dahl, 2018) states that they use 99 % bio fuel and 1 % fossil oil
for the heat production in their local grid. Thus, the PE factor for DH is calculated
based on this, with a PE factor for fossil oil equal to 1.05 (European Committee
for Standardization, 2013) and for wood chips equal to the one showed in Table
6.2.

Note that all PE factors listed in the table are symmetrical values. For electricity,
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Table 6.2: Primary energy factors

Energy carrier Primary energy factor [kWhp/kWhs]
Total Non-renewable

Electricity 2.00 2.00
Wood chips 1.05 0.05
Natural gas 1.05 1.05
District heating2 1.05 0.06

2 Calculated based on the local district heating supplier

which is the only two-way energy carrier considered in this thesis, one can also
divide the PE factor into symmetrical and asymmetrical values, meaning that
export and import of electricity may have different PE factors in the asymmetrical
case. Only symmetrical values are included here, based on the fact that energy
exported to the grid will avoid an equivalent energy generation somewhere else
in the grid, indicating that exported energy should have the same PE factor as
imported energy from the grid (Sartori et al., 2012).

The non-renewable PE factors reflect how much of the energy carrier is based on
non-renewable energy. For electricity and natural gas the total and non-renewable
PE factors are equal, indicating that the primary energy used to bring the
electricity to the grid is based solely on non-renewable energy. In contrast, the total
PE factor for wood chips is much higher than the non-renewable one, reflecting
that most of the primary energy used for the production of wood chips are based
on renewable energy.

6.4 Embodied energy

The energy embodied in the materials is set to zero. Thus, the ambition level of the
model is corresponding to ZEN-O; containing all operational energy consumption.

6.5 Technological data

This section will present the input parameters regarding data connected to the
technologies that are included as investment alternatives in our model. First some
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background on which factors that have contributed to the choice of the selected
data will be provided. Further, data regarding costs and subsequently efficiencies
and lifetimes will be presented and discussed.

Most of the technological data are collected from a report published by “The
Norwegian Water Resources and Energy Directorate” (Sidelnikova et al., 2015),
which we consider a reliable and applicable data source to our problem, as it reflects
the Norwegian market. The exceptions are data used for the battery and heat
storage, as no applicable values were found for these technologies in Sidelnikova
et al. (2015). By using data from the same report for most technologies, a certain
level of consistency is ensured, especially with regard to what is included in the
investment costs, as well as the ratio between costs for the different technologies.

Each technology included in the model has a technology cost, lifetime and
efficiency associated with it, that are used as input parameters to the model.
For most technologies, the investment cost and in some cases also the lifetimes
and efficiencies, will be highly dependent on the size of the component. We
have collected two sets of technological data inputs; one representative for
neighborhoods and one representative for individual residential buildings. The
data applicable to buildings can be seen in Appendix B. Larger technology sizes
are chosen as a basis for neighborhoods than for buildings. The sizes are selected
based on the load profiles that are used to generate stochastic input to the model.
Figures 6.1 and 6.2 shows duration curves for heat and electricity demand for the
whole neighborhood, respectively. A duration curve depicts the demand sorted
from highest to lowest and may be used to determine the share of base and peak
loads.

Figure 6.1: Duration curves for mean and peak heat demands, showing sorted
demands from highest to lowest during one year.
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Figure 6.1 includes one duration curve that represents the mean of the 15 years
that are used to generate scenarios from and one duration curve for the year that
contains the peak heat demand hour, being the year 2001. From the curves one
can see that the base load is around 500 - 1000 kW, whereas the top loads are
about 1400 kW and 2500 kW for the mean and peak load, respectively. For most
technologies the available capacities are either 1000 kW or 10000 kW. As 10000
kW are a lot larger than the peak demands, heat technologies with capacities
of typically 1000 kW are selected as a basis when collecting the data for the
neighborhood case. To cover the top loads, larger technologies should be used,
implying that technologies used for top load may have cheaper prices per kWh
than reflected in this thesis.

Figure 6.2: Duration curve for electricity demand, showing sorted demand from
highest to lowest during one year.

Figure 6.2 shows the duration curve for the electricity load profile that are used
to generate scenarios from. One can see that the base load is around 400 kW,
whereas the peak load is about 650 kW. Based on this, typically sizes of 1000
kW are chosen as a basis when collecting technological data for the electricity
technologies applicable to neighborhoods.

6.5.1 Technology costs

The technology costs for a neighborhood can be seen in Table 6.3. The table shows
which capacity sizes that are used as a basis for the different technologies, in which
unit this capacity is measured and the cost measured in NOK per unit of this unit.
See footnotes for exceptions. The references of where the data are collected from
are also listed in the last column.
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Table 6.3: Technology costs - neighborhood size

Technology Size Unit Technology cost Reference
[NOK/Unit]

EB 1000 kW 1 726.61 Sidelnikova et al. (2015)
GB 1000 kW 1 663.68 Sidelnikova et al. (2015)
BB 1000 kW 26 012.71 Sidelnikova et al. (2015)
ASHPa−w 1000 kW 9 939.65 Sidelnikova et al. (2015)
GSHPw−w 1000 kW 19 382.94 Sidelnikova et al. (2015)
ST 300 m2 5 365.21 Sidelnikova et al. (2015)
DH - - 25 0003 Tonjer (2018)
CHP 10000 kW 34 519.69 Sidelnikova et al. (2015)
PV 1000 kWp 23 599.97 Sidelnikova et al. (2015)
HS 0.5 m3 1 021.334 The Danish Energy Agency

and Energinet (2012)
Battery 200 kWh 9 601.75 Lambert (2016)

3 [NOK/household connected to DH grid]
4 [NOK/kWh]

Note that all costs are given in 2018 NOK including VAT and include both
equipment costs and installation costs. For all costs obtained from Sidelnikova
et al. (2015), the values are originally given in 2013 NOK. The total technology
costs are obtained by converting the investment costs and annual fixed OM
costs (where applicable) to their corresponding values in March 2018 NOK with
CPI-values gathered from Statistics Norway (2018). Then, the 2018 value of annual
fixed OM costs are calculated for the entire lifetime of the technologies by using
the present value of an annuity factor with the discount rate of 4 % (Investopedia,
2018d). These values are then added together and constitute the total technology
costs.

The cost of the CHP is based on a size of 10 000 kW total capacity, as this was
the smallest size found in Sidelnikova et al. (2015). This is larger than what
is applicable to the neighborhood studied in this thesis, implying that the price
might be a bit low. The cost related to PV is based on ground mounted PV
panels measured in kilo watt peak power and includes inverter. The cost for DH
is obtained from the contract between Ydalir and Eidsiva Bioenergi, stating that
each connected household must pay a connection fee of 25 000 NOK (Tonjer,
2018). In this thesis the same connection fee is also assumed for the school and
the kindergarten, making the value of this parameter represented by CDH equal
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to 20 050 000 NOK.

For the battery, the cost is obtained from Lambert (2016) for the Tesla Powerpack
battery. This cost includes bi-directional inverter and cabling and site-support
hardware. The cost is originally given in 2016 USD and is calculated to 2018
USD with CPI values from U.S. Official Inflation Data (2018b) and converted to
2018 NOK with the currency obtained from Norges Bank (2018a) April 18. 2018.
Installation cost gathered from Tesla Inc. (2018b) is also added to the technology
cost.

The cost for the heat storage is collected from The Danish Energy Agency and
Energinet (2012) and is an estimated value obtained from a graphical plot. Only
small or very large sizes of heat storages were found, and the price is therefore
chosen to be based on a quite small heat storage, implying that this price might
be a bit high when applied to this neighborhood case. The cost of the HS is
originally given in 2011 EUR and is converted to 2018 NOK by calculating it to
its corresponding value in 2018 EUR with CPI values from U.S. Official Inflation
Data (2018a). Then, the currency from Norges Bank (2018b) April 16. 2018 is
used to convert it to 2018 NOK.

6.5.2 Efficiencies and lifetimes

Efficiencies and lifetimes of the technologies are listed in Table 6.4. The lifetimes
are given in years and are defined as the economic lifetimes of the technologies.
This means the expected period of time during which the technologies are useful
to the average owner (Investopedia, 2018c). The economic lifetime is often shorter
than the technical lifetime, implying that the technologies might still be working
after the end of their lifetime.

The efficiencies of the heat pumps are the COP-values. These values vary with
the heat source temperature, which in this case is either air or ground water, and
the supply temperature, which is the temperature of the accumulator tank to be
heated. The values are obtained for HPs with an supply temperature of 50 ◦C. The
efficiencies of PV and ST are not listed in the table. This is because actual PV
and ST generation is given directly as input, and the efficiencies are incorporated
in these parameters, as explained in subsections 6.9.5 and 6.9.4, respectively.

Note that the CHP is described with two efficiencies; one heat efficiency and one
for electricity. Sidelnikova et al. (2015) suggests a total efficiency of 0.90, where
the electricity share amounts 0.24. The heat efficiency is calculated by subtracting
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the electricity share from the total efficiency.

Table 6.4: Efficiencies and lifetimes - neighborhood size

Technology Efficiency Lifetime Reference
EB 0.98 20 Sidelnikova et al. (2015)
GB 0.92 20 Sidelnikova et al. (2015)
BB 0.86 20 Sidelnikova et al. (2015)
ASHPa−w 2.45 15 Sidelnikova et al. (2015)
GSHPw−w 3.1 15 Sidelnikova et al. (2015)
ST – 25 Sidelnikova et al. (2015)
DH 1.00 100 Dahl (2018)
CHP 0.665/ 0.246 20 Sidelnikova et al. (2015)
PV – 25 Sidelnikova et al. (2015)
HS 0.99 20 Lindberg, Fischer, Doorman, Korp̊as

and Sartori (2016) and The Danish
Energy Agency and Energinet (2012)

Battery 0.88 20 Tesla Inc. (2018a) and Saft Batteries
(2018)

5 Heat efficiency
6 Electricity efficiency

There is assumed no loss on import of heat from the DH grid. Eidsiva Bioenergi
pays for the internal losses in their grid up to the customer’s facility (Dahl,
2018). We assume that no heat imported from the DH grid will be lost in the
neighborhood. Since the DH grid is an external facility, we assume that the lifetime
of this plant will not influence the neighborhood. To prevent this parameter from
affecting the model’s decisions, it is sat to an arbitrary large value, in this case
being 100 years.

For the Tesla Powerpack battery system, no guaranteed lifetime is specified in
Tesla Inc. (2018a). The lifetime for the battery is therefore gathered from Saft
Batteries (2018) which is another large producer and supplier of batteries. Lifetime
predictions for the battery Intensium R© Smart of similar size and with same type
of field of application as the Tesla Powerpack is chosen to represent the lifetime of
the battery in this thesis.
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6.6 Length of periods

The length of an investment period is in this thesis set to 5 years, considering
the possibility of the model being included as a module in EMPIRE, which also
operates with five-year periods. The length of an operational period is 1 hour.
This is done for simplicity and for the same reason as for investment periods.

6.7 Probability of scenarios

As a scenario tree is used as input to the model, each scenario is weighted with a
factor, making sure the total contribution from all scenarios equal 1. This value is
simply set to be the same for all scenarios by

πω =
1

|Ω|
, (6.1)

where πω is the probability of scenario ω, and |Ω| is the number of scenarios.

6.8 Seasonal scaling factor

The seasonal scaling factor, αs, defines the contribution from parameters and
variables for a given season s to an annual figure. This is to ensure that the
operational costs calculated represent a full year of operation, not considering leap
years. There are two seasonal scaling factors used, one for all regular seasons and
one for all extreme seasons. The concept of seasons will further be explained in
section 7.1.3 in Chapter 7. Note that the inclusion of extreme seasons in each
annual scenario is a way of ensuring that the energy system is capable of meeting
peak demand, implying that they represent situations that rarely occurs. For this
reason, the scaling factor for the extreme seasons are set to equal 1. As each
extreme season consists of 48 hours, this means that the two extreme seasons in
total represent 96 hours of a year. The regular seasons represent the rest of the
year. The seasonal scaling factor for each of the four regular seasons is thus given
by
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αs′ =
8760− 96

4 ∗ |Os′ |
, (6.2)

where Os′ is the number of hours in a regular season s’, which is 168 hours in this
case. The scaling factor used for the regular season is thus approximately 12.893.

6.9 Stochastic operational data

This section provides a description of the operational data that comprises
the short-term uncertainty considered in the mathematical formulation of the
IMEZEN. This includes hourly profiles for the electricity and heat demand, the
electricity and heat prices, and the PV and ST generation. The price and
production parameters are collected as historical data series, whereas the demand
profiles are predicted load profiles. The historical data is gathered from the years
2000 to 2014, as it is the range from which we were able to obtain data for all
parameters, resulting in 15 different hourly profiles. It should be noted that only
a single hourly profile is included for the electricity demand.

The quality of the data gathered has been analyzed and cleaned as deemed
necessary before used as input for the scenario generation algorithm. Note that
leap year data is disregarded by removing the 24 last data entries from each leap
year, thus ensuring that all yearly hourly profiles consist of 8760 hours. The
last day of the year is removed in order to maintain the correlations between
consecutive hours within a year. Hence, the connection between the last hour in
one year and the first hour in the next year is lost, but this has no influence as the
scenario generation method always samples data within one year. The technique
used for handling missing values is explained for the relevant parameters in the
corresponding sections.

6.9.1 Energy demand

Hourly energy demand profiles, for both heat and electricity demand, have been
provided by Lindberg (2018) using the regression model methodology as described
in Lindberg (2016). Separate demand profiles are provided for each building
type in Ydalir, resulting in three different demand profiles for residential units,
the kindergarten, and the school. Note that all demand profiles are for passive
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buildings and that the demand profiles represent average buildings, implying that
the variation between different households is not reflected. As the energy demand
profiles for all residential units are assumed identical, and thus perfectly correlated,
an important aspect of the ZEN concept is lost. If a variety of residential energy
demand profiles had been included, one would be able to take advantage of
the synergies between the load profiles of the different units. This follows from
the concept of portfolio theory, as diversification leads to a flattened aggregated
demand where peaks from individual energy demand profiles are smoothed out
(Investopedia, 2018b). It should be noted that the effect from the synergies
between different building types are included as the IMEZEN considers the demand
for the entire neighborhood, aggregating the demand for the kindergarten, the
school, and the residential units. However, these synergies are probably minimal
as Ydalir is mainly comprised of residential units. Thus, the gain from taking
advantage of synergies between buildings is probably much higher for more diverse
neighborhoods and is easily incorporated by changing the input data.

As the historical data series for heat demand and electricity demand are given in
Wh/m2, they are aggregated in order to reflect the size of the neighborhood at
the given point in time. Thus, the heat and electricity data series given to the
scenario generation algorithm as input is the total demand for the neighborhood.

Heat demand

The prediction of hourly heat demand profiles is also based on historical
temperature data. For this case study, hourly temperature data for the Oslo
area has been downloaded from the Norwegian Meteorological Institute’s publicly
available web portal7.

When analyzing the heat demand data series, the focus has been on the hourly
profiles for residential units as they represent most of Ydalir. The daily average
heat demand for a residential unit is presented in Figure 6.3. This is calculated
as the average of all 15 heat demand profiles. The average temperature is
also included in the figure, showing the negative correlation between the heat
demand and the temperature. It can be observed that the heat demand is higher
at the beginning and at the end of the year, and lower during the summer.
This seasonality characteristic should therefore be accounted for by the scenario
generation method.

7www.eKlima.no
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Figure 6.3: Average daily heat demand for a residential unit of 100 m2

Another aspect that should be considered is the hourly variation. This can be
observed in Figure 6.4, which shows the average heat demand for each hour in the
week. The general fluctuations within each day seem to follow the same pattern,
where the demand is at its highest during the morning hours and at its lowest in the
middle of the night. Also note that the peak demand is somewhat elevated during
the weekend, represented by hours 121 to 168, compared to the weekdays. These
patterns are as expected, but are important to consider when creating scenarios
in order to keep the connection between consecutive hours and include both the
hourly and daily variations.

Figure 6.4: Average hourly heat demand for a residential unit of 100 m2
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Electricity demand

The prediction of hourly electricity demand profiles is not based on temperature
data, as is the case for the heat demand, but only on the building type and
geographical position. Thus, only one hourly electricity demand profile is provided
for each building type in Ydalir. This is different from the other operational data
series and will be handled by the scenario generation method.

The average daily electricity demand for a residential unit is presented in Figure
6.5. As for the heat demand, there is higher demand during the winter, and
lower demand during the summer. The variation is however much lower than for
the heat demand, implying that the effect of seasonality is less dominant. Still,
both energy demand profiles show that the seasonality must be considered by the
scenario generation algorithm.

Figure 6.5: Average daily electricity demand for a residential unit of 100 m2

The hourly variation has also been analyzed for the electricity demand. This
is shown in Figure 6.6. From this it is clear that the electricity demand differs
from the heat demand, as the peak within a day is in the evening and not in
the morning. Further, it can be observed that there is also a difference between
weekdays and weekends, where the demand during the morning hours are higher
in weekends than in a weekday. The peak demand in the evening is however the
same, regardless of what day of the week it is. These patterns show the importance
of maintaining both hourly variations in a day and daily variations during a week,
similarly as for the heat demand.
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Figure 6.6: Average hourly electricity demand for a residential unit of 100 m2

6.9.2 Electricity prices

The electricity prices in Norway are divided between the grid charge that is paid
to the local grid company and an electricity cost paid to the chosen company that
delivers the electricity (Ånestad, 2014). In Elverum where the Ydalir project is
placed, the local grid company is “Eidsiva Nett” and the local electricity company
is “Eidsiva Energi”. Therefore, the grid charges are based on values obtained
from Eidsiva Nett, whereas the electricity prices are based on values from Eidsiva
Energi. Because most of the neighborhood will consist of dwellings and private
users and since the neighborhood should be able to sell on-site generated electricity
to the grid, the tariffs and agreements that are selected are the ones applicable
to plus-customers and private households. A plus-customer is defined as an end
user with both consumption and production behind their connection point, which
is not allowed to feed in more than 100 kW at any time (Eidsiva Nett AS, 2018a).
They are not required to hold a licence from The Norwegian Water Resources and
Energy Directorate to produce and sell electricity (Hoff, 2018).

Electricity bought

For plus-customers the grid charges for import of electricity are the same as for
regular consumers, and the grid charges are therefore taken from Tariff sheet 1.0
applicable for households (Eidsiva Nett AS, 2018b). The grid charges, including
fixed charges for residential buildings, the school and the kindergarten and required
energy charges applicable for all types of buildings, are presented in Table 6.5.
Tariff E10 has been chosen for the dwellings, E25 for the kindergarten and E65 for
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the school. Tariff E10 reflects a maximum load of 10 kW, whereas Tariff E25 and
E65 reflect maximum loads of 25 and 65 kW, respectively (Hoff, 2018). From the
electricity load profile in Section 6.9.1, no load for households exceeds 10 kW and
the maximum loads for the kindergarten and school are around 23 and 63 kW,
respectively. The tariffs are selected based on this.

Note that the energy charge is the same for all tariffs, whereas the fixed charge
is what differentiates them. The payment of 0.01 NOK/kWh to Enova is really
only valid for consumption registered for household purposes. The school and
kindergarten would in reality be entitled to pay a fixed charge of 800 NOK/year
exclusive VAT instead of the variable charge. As already mentioned simplifications
are made and this is one of the simplifying assumptions. This implies that the
charges representing the school and kindergarten are higher than what is actually
the case in reality.

Table 6.5: Grid charges - Eidsiva Nett (Tariff E10, E25 and E65)

Charges Price Unit
Fixed charge dwellings 3 538 [NOK/year]
Fixed charge kindergarten 12 356 [NOK/year]
Fixed charge school 23 006 [NOK/year]
Energy charge 8

Summer 9 0.2948 [NOK/kWh]
Winter 10 0.3073 [NOK/kWh]

8 Included required payments to the energy fund Enova of 0.01 NOK/kWh (excl. VAT) and
consumption tax of 0.1658 NOK/kWh (excl. VAT)
9 Summer: April - October
10 Winter: November - March

Since Eidsiva is the local grid and electricity company, we assume that Ydalir
will buy their electricity from “Eidsiva Energi”. The agreement “Innlansspot” is
chosen to collect prices on electricity (Eidsiva Energi AS, 2018). These are listed
in Table 6.6.
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Table 6.6: Electricity prices - Eidsiva Energi (Innlansspot)

Charges Price Unit
Fixed charge 540 [NOK/year]
Electricity cost Spot price [NOK/kWh]
Energy charge11 0.045 [NOK/kWh]

11 Included required el-certificate charge

The spot price is the hourly spot prices for electricity given in NOK/kWh. These
have been obtained from Nord Pool via allowed access to their FTV-server (Foyn,
2018). The collected prices are the hourly electricity spot prices from years 2000 to
2014 for the Oslo-area. One hour each year were found to be missing in the data,
and these hours are filled in by the average of the one previous and one following
hours. The spot prices are converted to their corresponding values in March 2018
NOK with CPI-values obtained from Statistics Norway (2018) and the VAT (25
%) is added. The total price on electricity bought in a given hour is the historical
spot prices in 2018 NOK, added the ENOVA-charge and energy charge paid to
Eidsiva Nett and Eidsiva Energi, respectively. A plot of the total electricity prices
over one year can be seen in Figure 6.7. The values are an average of prices from
2000 to 2014. The plot shows a tendency of lower prices in the summer and a
gradual increase toward the winter months.

Figure 6.7: Daily mean electricity price [NOK] for one year
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Further, Figure 6.8 shows how the electricity price vary throughout a week. It is
not as distinct pattern throughout one week as for one year, but it may seem to be
a tendency of higher prices in the mid-week. The diurnal variation is characterized
by higher prices in the morning and evening, and lower in the night.

Figure 6.8: Hourly mean electricity price [NOK] for one week

These electricity price time series are used in the generation of scenarios given as
stochastic input to the model. The scenario generating algorithm should therefore
be developed in such way that it catches the diurnal, weekly and yearly variations
caused by the spot price.

Note that the spot price is the only stochastic part of the total variable electricity
price. The other charges are assumed identical for each year in the time period of
year 2000 to 2014. The fixed charges are annual charges that are added together
and given as deterministic input to the model, represented by the parameter CG.
This parameter adds up to be 2 865 762 NOK. Hence, this charge is also assumed
to be the same each year of the time horizon.

Electricity sold

The electricity sold to the grid has an energy charge of 0.0375 NOK/kWh paid
to Eidsiva Nett and an energy charge of 0.015 NOK/kWh paid to Eidsiva Energi
(Hoff, 2018). The energy charge paid to Eidsiva Nett is obtained from Tariff
sheet 7.1 applicable for plus-customers (Eidsiva Nett AS, 2018a). The income of
exporting electricity to the grid is calculated by subtracting these energy charges
from the electricity spot price. Note that these energy charges are also considered
deterministic and the spot price is again the uncertain part. The price of selling
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electricity will follow the same curve as electricity sold, shown in Figure 6.7.

6.9.3 DH prices

“Eidsiva Bioenergi” is the local district heating company in Elverum and there
is already settled an agreement on delivery of heat to the neighborhood (Tonjer,
2018). Based on that the neighborhood mainly will consist of new residential
buildings, the costs of importing heat from the grid is obtained from Tariff F4
applicable to new residential buildings (Dahl, 2018). The grid charges and the
heat prices can be seen in Table 6.7 and Table 6.8, respectively. It is not possible
to export heat to the grid.

Table 6.7: Grid charges - Eidsiva Bioenergi (Tariff F4)

Charges Price Unit
Fixed charge 0 [NOK/year]
Energy charge12 0.2948 [NOK/kWh]
Down fuse effect 0.0625 [NOK/kWh]

12 Included required el-fee

Table 6.8: Heat prices - Eidsiva Bioenergi (Tariff F4)

Charges Price Unit
Heat cost Spot price [NOK/kWh]
Energy charge 0.0375 [NOK/kWh]
ENOVA-charge 0.01 [NOK/kWh]

The total price on heat bought in a given hour is all these variable charges added
together. Note that the spot price is again the part that makes up the stochastic
part of the total heat price, whereas the other values are assumed to be constant
over all years reaching from 2000 to 2014. Thus, the heat price will follow the
same development as the total electricity price shown in the figures presented in
the previous section.
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6.9.4 ST heat generation

To provide ST heat generation data, the radiation on a tilted surface is needed.
Equation 6.3 shows how the radiation incident on a tilted surface, Smodule, is
related to the solar radiation measured perpendicular to the sun, Sincident. α is the
elevation angle and β is the tilt angle of the module measured from the horizontal
plane.

Smodule = Sincident · sin(α + β) (6.3)

α is again calculated from

α = 90− φ+ δ, (6.4)

where φ is the latitude and δ is the declination angle which is defined as

δ = 23.45◦ ·
[

360

365
· (284 + d)

]
, (6.5)

where d is the day of the year. The equations 6.3 - 6.5 are gathered from PV
Education (2018).

Sincident is collected from Renewables.ninja (2018). The latitude and longitude
used are respectively 60.8925◦ and 11.5799◦, representing where Ydalir is being
developed. The data set used is “MERRA-2 (global)”, which is not a data set based
on Europe. Thus, the climatic conditions may not be representative for Europe,
but are for simplicity assumed to be approximately the same. The elevation angle,
β, is assumed to be 41◦, which is the same angle as used for the PV modules
presented in the next section. Smodule is calculated for the same period as the
other stochastic parameters, from year 2000 to 2014.

ST heat generation for every hour is then calculated using Equation 6.6 and 6.7
from Lindberg, Doorman, Fischer, Korp̊as, Ånestad and Sartori (2016). First, the
efficiency of a flat plate solar thermal collector is defined as

ηST = c0 − c1
Tcollector − Tambient

IRRtilt

− c2
(Tcollector − Tambient)2

IRRtilt

, (6.6)
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where Tcollector is the temperature of the solar thermal collector representing the
output temperature, Tambient is the ambient temperature and IRRtilt is the total
irradiation on a tilted plane, earlier defined as Smodule. The constants c0, c1 and
c2 are determined by laboratory experiments, and are the same values as used in
Lindberg, Doorman, Fischer, Korp̊as, Ånestad and Sartori (2016), equalling 0.789,
3.545 and 0.017 respectively.

Tcollector needs to be determined exogenously, and as Equation 6.6 shows, the
efficiency decreases when Tcollector increases. As there is assumed no differentiation
between DHW and SH demand, and ST can be utilized for both, the value of
Tcollector is not intuitive. In this case Tcollector is determined to be 50◦C, which
is the same output temperature as for the heat pumps. This is done to ensure
consistency.

ST heat generation for every hour, QST , is then the irradiation, IRRtilt, multiplied
by the efficiency, ηST , as stated in Equation 6.7.

QST = IRRtilt · ηST (6.7)

ST heat generation, measured in kWh/m2
collector, is then calculated for every hour

from January 1. 2000 to December 31. 2014, and used as input for the scenario
generation.

When analyzing the heat generation data one observes a clear seasonality and a
diurnal variation. Figure 6.9 shows the daily mean heat generation from ST in
one year, where one can see a greater heat generation in the middle of the summer
compared to the rest of the year.

Figure 6.9: Daily mean ST generation and irradiation for one year
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The diurnal variation is shown in Figure 6.10 where the hourly mean heat
generation during 24 hours is presented. These patterns are as expected, as heat
generation from ST is positively correlated with the irradiation from the sun. This
is important to pay attention to and capture in the scenario generation process.

Figure 6.10: Hourly mean ST generation for one day

6.9.5 PV electricity generation

PV electricity generation is gathered from Renewables.ninja (2018), using the same
values for latitude and longitude as for the ST profiles. The data set “CM-SAF
SARAH (Europe)” is however used, representing data gathered in Europe. System
loss is set to 10%, whereas the tilt angle used is 41◦ and the azimuth angle
0◦, as these values are seen as realistic values to represent a PV installation
located in Elverum (European Commission, 2017b; Energikanalen AS, 2018). PV
electricity generation is gathered for every hour from 2000 to 2014, and used as
input for scenario generation, and further as a stochastic input parameters to the
mathematical model.

Hourly PV generation is positively correlated with irradiation, as for ST
generation, and one can therefore observe the same patterns as shown in Figure
6.9 and 6.10 for ST generation in the previous section.





Chapter 7

Scenario generation and
evaluation methods

As the mathematical model presented in this thesis is stochastic, this chapter is
meant to give the reader knowledge about how the stochasticity of the IMEZEN
is dealt with through scenario generation, as well as evaluation methods used to
analyze both the scenario generation algorithm and the value of stochasticity for
the IMEZEN. An introduction to scenario generation will be given and the scenario
generation algorithm developed in this thesis will be presented. Further, theory
behind evaluation methods regarding the algorithm will be presented, as well as
theory related to evaluation of the stochasticity. These test are further used in the
computational study in Chapter 8.

7.1 Scenario generation

This section presents an introduction to scenario generation, as well as some theory
on how the scenario generation method should be selected, in order to fit the
respective stochastic data. Some literature regarding scenario generation is also
reviewed, and lastly a discussion on which procedure that may be most applicable
to our problem will be provided.

Stochastic programming relies on an adequate modeling of the uncertainties which
is expressed through scenarios. This involves approximating random variables by
a discrete distribution of a limited number of outcomes (Kaut and Wallace, 2007).

85
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Note that these variables are not decision variables in the model, but rather input
that may vary. The quality of the outcome from the optimization model is further
heavily dependent on the scenario generation. As stated in Kaut (2003); a “bad”
tree can lead to a “bad” solution. The term tree refers to a scenario tree.

Thus, scenario generation is of high importance in stochastic programming.
One could even risk an infeasible computation without an approximation of
distributions (Mitra, 2008). However, Høyland et al. (2003) state that scenario
generation also seems to be the most challenging and time consuming in practice.
The goal is to approximate in a way that provides a solution close to the true
optimal solution without including too many outcomes, so the model can be solved
in reasonable time (Kaut, 2006).

It is further important to find the best trade-off between a realistic and a simple
mathematical model. A detailed model (with many scenarios) can result in a very
complex problem, maybe even infeasible, as well as it increases the computation
time. On the other hand, including few scenarios might provide a simple and
insufficient image of the reality.

The main goal is to provide good solutions from the IMEZEN. There are different
methods for generating scenarios, and as the quality of the generation is problem
dependent, it is difficult to conclude whether a method is good or bad on a general
basis (Kaut and Wallace, 2007). A high quality approximation is not equivalent
to finding a statistical approximation. Kaut and Wallace (2007) state that some
methods approximate distributions perfectly when the number of outcomes go
to infinity, but may perform poorly with fewer outcomes. On the other hand,
some methods do not guarantee convergence to the true distribution, but may still
perform well for stochastic programming modeling purposes.

Some standard methods used are statistical methods, sampling and simulation
approaches. Statistical methods involve determining statistical properties of a
random variable such as moments to a distribution of data. Then, values of
statistical properties can be used to find the best fitted theoretical distribution to a
given data set, and be used to generate scenarios (Mitra, 2008). Sampling consists
of sampling from either historical data or a fitted distribution, thus providing the
scenario values. Simulation approaches provide scenario values by simulating an
underlying stochastic process. This method uses random numbers as input to an
equation, and the result, the realizations of the random variables, are then used
as the scenario values. In addition to these methods, there do also exist hybrid
methods which combine these standard types, e.g. by creating a mix of sampling
and moment matching (Mitra, 2008).
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7.1.1 Selection of method

Even though the scenario generation method is problem dependent, there are some
criteria to go by when generating good scenarios. It is crucial to account for the
dependencies between the random variables in the stochastic processes (Kaut,
2006). This is done by either assuming independence, or by using correlations or
covariances. It is further essential to account for auto-correlations and seasonal
variations within the data sets.

In Kaut (2006), it is stated that a good scenario generation should influence the
solution as little as possible. In addition, the scenario based solution should
converge to the true optimum with an increasing number of scenarios, and if fewer
scenarios provide an equally good solution, the eliminated scenarios are redundant.
The distance from the true distribution in the statistical sense is not as important.

Once having selected the scenario generation method, one should measure the
quality of the method. Kaut and Wallace (2007) discuss how to evaluate methods
and emphasize that the quality is based on the performance rather than the
theoretical properties. Kaut and Wallace (2007) explain the evaluation methods
in-sample stability and out-of-sample stability. These metrics are explained in
section 7.2.1 below and are used to evaluate the selected scenario generation
method in Chapter 8.

7.1.2 Literature regarding scenario generation

As the choice of method is problem dependent, it is interesting to investigate
what methods that have been used in similar problems. The scenario generation
methods in Skar et al. (2016), Seljom and Tomasgard (2015) and Arnesen and
Borgen (2017) have been studied and a review of these will be given in this section.

In Skar et al. (2016) the year is divided into four seasons, while Seljom and
Tomasgard (2015) and Arnesen and Borgen (2017) splits the year into twelve
seasons, one for each month of the year. By dividing the year into seasons, they
make sure possible seasonal effects are reflected in the scenarios. Similarly for
all, the scenarios are constructed by randomly sampling sets of consecutive hours
from the historical data, including one sample for each season. By using historical
data, they avoid an incorrect assumption about the distribution of the stochastic
process. Furthermore, since the same set of hours is sampled for all of the random
variables, possible correlations between different variables are preserved. The
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auto-correlation between hours within each profile is also kept, as each sample
is a set of consecutive hours.

All of the methods rely on sampling from historical data. This is adequate under
the assumption that the historical data for the random variables, in these cases
weather and load data, are representative for the future. In addition, a high
number of observations of weather data is often available, which is required for the
direct use of historical data in scenario generation.

After a scenario tree has been constructed, the general idea in the methods studied
has been to make sure the scenario tree generated fits the underlying historical data
series with the use of moment matching. In Skar et al. (2016), the constructed
scenario tree is simply checked to see that the sampled data profiles closely match
the mean and variance of the respective underlying raw data series. In Seljom
and Tomasgard (2015) several scenario trees are constructed and evaluated with
moment matching, however only considering one random variable, wind data, for
the evaluation. The trees are compared using a deviation measure, where the four
first moments are normalized and equally weighted, and the “best fitted” tree is
selected. Finally, the sampled data for the other random variable, price data, is
included in the scenarios.

Arnesen and Borgen (2017) use an approach similar to Seljom and Tomasgard
(2015). The main difference is that they evaluate and compare the constructed
scenario trees seasonally, selecting one tree for each season, and then combining
the parts from the selected trees into one final tree. They include two random
variables, wind speed and irradiance, in the moment matching, while the last
random variable, load demand, is included in the final scenario tree and simply
checked for acceptable values of mean and variance. A final verification step is also
performed, making sure the scenarios follow the same distribution as historical
data.

7.1.3 Scenario generation method for the IMEZEN

This section presents and explains the scenario generation method developed
during the work with what is enclosed in this thesis. The scenario generation
method used for the IMEZEN includes aspects from Skar et al. (2016), Seljom and
Tomasgard (2015) and Arnesen and Borgen (2017). First, the scenario generation
algorithm is explained. This algorithm creates a scenario tree that represents a
single year, resulting in an annual scenario sub-tree. Then, the technique used to
assemble the final multi-horizon scenario tree for the IMEZEN is presented, where
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the final scenario tree consists of several sub-trees.

The scenario generation algorithm

The input to the scenario generation algorithm is a set of pre-processed historical
data series, one for each random variable. These are multi-annual hourly
profiles for heat demand, PV generation, ST generation, electricity import prices,
electricity export prices, and district heating import prices. For the electricity
demand, only one hourly profile is included. The collection and pre-processing
of these profiles are explained in section 6.9 in Chapter 6. An extra step of
pre-processing is performed on the profiles for the heat and electricity demand.
This is because the demand is dependent on which year in the time horizon of the
model the scenario tree will represent as the neighborhood is expanded gradually.

The pseudo-code for the scenario generation algorithm is outlined in Algorithm 1.
The method is an iterative random sampling method where the representation of
one year is a collection of consecutive hours grouped into seasons to reduce the size
of the scenario tree and thus the computation time. The year, more specifically
each scenario, is divided into four regular seasons and two shorter peak seasons
which account for extreme load situations, similar to Skar et al. (2016). In this
case, each regular season is represented by 168 hours, a full week. This way we
obtain auto-correlations not only between hours, but also between days, and we
capture the weekly variations. The seasonal variations are also captured when the
year is divided into seasons. It is however important to emphasize that this method
assumes independence between the seasons. The possible correlations between the
different variables are captured when choosing the same historical hours for every
random variable.

For each regular season s ∈ {1, 2, 3, 4}, line 1 to 14, the algorithm will begin by
calculating the four first moments of the historical data series, as defined by the
second line. This is done separately for each random variable r, only including the
values corresponding to season s. The creation of a single seasonal sub-scenario
ω, line 7 to 10, is done by sampling. First, a day d′ is randomly selected from the
set of days in season s, denoted by Ds. The first hour of day d′, hour 00:00-01:00,
is the first hour in the sample. The sample consists of |Os| consecutive hours,
given by the number of operational periods in season s, in this case 168 hours.
Additionally, a year k′ is randomly selected from the set of years with historical
data, K. Then, data is collected for each random variable r, corresponding to the
sample defined. Since the historical electricity demand only has one hourly profile,
the data sampled for this random variable will only be defined by the set of hours
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and not the randomly selected year.

This process is repeated until a pre-defined number of seasonal sub-scenarios, |Ω|,
has been generated. The set of seasonal sub-scenarios thus represents one seasonal
scenario sub-tree, u. In line 12, the four first moments is calculated for the seasonal
sub-tree u for each random variable r, where each calculated moment m is given by
momenttreeurm. In line 13, the deviation in statistical moments between the seasonal
scenario sub-tree u and the underlying historical data is calculated by

deviationu =
∑
r∈R

∑
m∈M

∣∣∣momenthistrm −momenttreeurm

momenthistrm

∣∣∣, (7.1)

where R is the set of random variables, M = {1, 2, 3, 4} is the set representing
the four first moments, and momenthistrm is the historical moment m calculated
for random variable r. Note that the deviation for each moment m and random
variable r is normalized, and that the total deviation for the seasonal scenario
sub-tree, deviationu, is the sum of all normalized deviations.

After a pre-defined number of seasonal sub-trees, |U |, have been generated, the
tree with the lowest deviation, u′s, is selected as the seasonal scenario sub-tree
representing season s. In line 17, after selecting the “best fitted” tree for every
regular season, the selected seasonal scenario sub-trees are merged into one scenario
tree. Assuming independence between seasons, the seasonal scenario sub-trees are
merged randomly, meaning each sub-scenario in one seasonal sub-tree is connected
to a randomly chosen sub-scenario from another seasonal sub-tree. Finally, two
extreme seasons, s ∈ {5, 6}, are added to each scenario in the merged scenario
tree, where each extreme season consists of 48 hours. The idea behind including
extreme seasons is to ensure that the energy system is capable of meeting peak
demand.

The process of adding the first extreme season, based on peak heat demand, is
defined by lines 21 to 24. In line 21, a year k′ is randomly selected from the set of
years with historical data, K. Then, the hour with the maximum heat demand is
selected from the hourly profile for year k′. The sample representing this extreme
scenario is from this defined as an interval of hours, with the maximum hour h′

placed in the middle of the sample. The length of the interval is defined by |Os|, the
number of operational periods in the first extreme season. Data for each random
variable r is then included in scenario ω.
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Algorithm 1 Scenario generation algorithm

1: Input: Pre-processed historical data series for each random variable r
2: Output: A scenario tree matching the underlying historical data
3: for all regular seasons s ∈ {1, 2, 3, 4} do
4: Calculate the four first moments of the historical data for each random

variable r
5: for all seasonal scenario sub-trees u ∈ U do
6: for all seasonal sub-scenarios ω ∈ Ω do
7: Select a random day d′ from Ds

8: Create a sample of |Os| consecutive hours, starting from the first hour
of day d′

9: Select a random year k′ from K
10: Populate sub-scenario ω with sample data for each random variable r
11: end for
12: Calculate the four first moments of seasonal scenario sub-tree u for each

random variable r
13: Calculate the deviation from the historical data using moment matching
14: end for
15: Select the seasonal scenario sub-tree u′s from U with the least deviation
16: end for
17: Merge the seasonal scenario sub-trees, u′s, selected for each season s, into one

scenario tree
18: for all scenarios ω ∈ Ω do
19: for all extreme seasons s ∈ {5, 6} do
20: if s = 5 then
21: Select a random year k′ from K
22: Select maximum hour h′ from historical heat demand data of year k′

23: Create a sample from interval [h′ − (|Os|/2), h′ + (|Os|/2)− 1]
24: Populate scenario ω with sample data for each random variable r
25: else
26: Find all maximum hours from historical electricity demand data
27: Select a random hour h′ from list of maximum hours
28: Create a sample from interval [h′ − (|Os|/2), h′ + (|Os|/2)− 1]
29: Select a random year k′ from K
30: Populate scenario ω with sample data for each random variable r
31: end if
32: end for
33: end for
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The second extreme season is based on peak electricity demand. As the historical
electricity demand only has one hourly profile, the sampling is somewhat different
from the method used for the first extreme season. After analyzing the electricity
demand, the cyclic nature of the hourly profile was revealed, resulting in the
discovery that a number of hours had the maximum value. For this reason, the
process of creating the second extreme season, line 26 to 30, begins by finding
all the hours having the maximum electricity demand. From this, a hour h′ is
randomly selected. This hour is then placed in the middle of the sample interval,
similar to the execution in line 23. Before adding data for each random variable
r to scenario ω , a year k′ is randomly selected as the historical year from which
the data is collected.

Note that the moments are calculated across all hours and sub-scenarios within a
season. An alternative way is the method used in (Arnesen and Borgen, 2017),
where moments are calculated separately for each hour across all scenarios within
a season.

Assembling the multi-horizon scenario tree

This subsection aims to discuss and justify the technique used for assembling
the multi-horizon scenario tree for the IMEZEN, considering what might be most
applicable to the model and the stochastic input data used in this thesis.

In Skar et al. (2016) and Arnesen and Borgen (2017), the same scenario tree is used
for all investment periods in the entire time horizon of the model, which basically
implies that all years are represented by the same set of scenarios. This has recently
been changed in EMPIRE, by instead creating a different representative annual
scenario tree for each investment period, meaning that only the five years within
the same investment period are assumed represented by the same set of scenarios.
An argument for choosing this approach could be that in the case of the IMEZEN
being used as a module in EMPIRE, applying the same level of granularity would
be sufficient.

On the other hand, an important aspect of the IMEZEN is the inclusion of
the gradual development of a neighborhood. E.g. in the case of Ydalir, the
area is developed incrementally, building new houses every year throughout the
development period, and thus increasing the electricity and heat demand annually.
Thus, if a representative annual scenario tree for each investment period was to be
used for the case of Ydalir, the annual size increments of the neighborhood could
not be included.
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In order to include the development aspect, a different annual scenario sub-tree can
be created for each year in the investment period. The scenario tree representing an
investment period would then consist of five different annual scenario sub-trees,
one for each year in the investment period. This would essentially increase the
number of operational periods in an investment period scenario, as this scenario
would consist of the operational periods in five different years, instead of repeating
the same operational periods five times. In order to make the model more realistic
and relevant for decision makers, including a larger variation of operational periods
and incorporating annual developments is important. At the same time, this choice
will not exclude the possibility of using the IMEZEN as a module in EMPIRE,
provided that the run time is kept under a certain level.

The technique selected for assembling the multi-horizon scenario tree for the
IMEZEN consists of creating a different scenario tree for each investment period.
These investment period scenario trees are created by generating a annual scenario
sub-tree, using the scenario generation algorithm presented, for each of the five
years in the investment period. Then, the annual scenario sub-trees are merged
together into one investment period scenario tree. When merging together the
annual scenario sub-trees, each scenario in one annual sub-tree is connected to a
randomly chosen scenario from another annual sub-tree. This is done randomly in
order to make sure none non-existing dependencies are imposed on the relationship
between years, hence assuming there are no correlation between years. E.g. if
a scenario for one year has very high electricity prices, the electricity prices in
the following year are uncorrelated. This is similar to the approach used in the
scenario generation algorithm when creating a annual scenario sub-tree by merging
together seasonal sub-trees. Finally, when a scenario tree has been created for all
investment periods, the assembled multi-horizon scenario tree is used as input to
the IMEZEN.

7.2 Evaluation of the scenario generation

method

This section will provide different evaluation methods that may be performed to
identify the stability of the scenario generation algorithm and the value of modeling
stochastic rather than deterministic. First, two stability tests will be explained,
followed by some short theory of the expected value of perfect information and the
value of the stochastic solution.
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7.2.1 Stability of the algorithm

This subsection presents in-sample and out of sample stability testing. The main
goal of scenario generation is to procure a small optimality gap. The ideal method
to evaluate the scenario generation method is thus to test the optimality gap and
by this test if the scenario-based solution is optimal and not suboptimal (Kaut
and Wallace, 2007).

If we define the true random vector as ξ̃ and the random scenario tree as ξ̂, then
the error of approximating the random vector ξ̃ by ξ̂ is defined by

e(F, F̂) = ... = F(x̂∗)− z∗ (7.2)

where F is the true objective function, x̂∗ is the optimal solution of the
approximated problem, and z∗ is the objective value of the true problem.

However, it is often difficult or impossible to test this property as it requires solving
the optimization problem with the true random vector. As this is not possible in
most practical problems other weaker requirements such as stability is used to
evaluate the quality of the scenarios.

Kaut and Wallace (2007) state that when evaluating scenario generation methods,
the focus should be on whether the method provides stable solutions rather than
how well it approximates the underlying stochastic process. Further, it is presented
two requirements that are used to test if the generation method is stable; In-sample
Stability and Out-of-sample Stability.

In-sample stability

In-sample stability requires that regardless of which scenario tree used, generated
by the same data and with the same setting, the objective value of the stochastic
problem stays approximately the same. Without in-sample stability the results
are random and we can not verify the quality of the results.

In practice, this stability test is done by generating k scenario trees ξ̂k provided
by the same scenario algorithm with the same input and settings. For each ξ̂k
the optimization problem is solved and the optimal solution x̂∗k is obtained. The
stability requirement is then
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F̂k(x̂
∗
k) ≈ F̂l(x̂

∗
l ) (7.3)

where F̂ is the approximated problem.

Out-of-sample stability

Out-of-sample stability requires that the real performance of the solution is not
dependent on which scenario tree that is used. In other words, when solving the
stochastic programming problem with different scenario trees, ξ̂∗k, generated from
a random vector, ξ̃, one should get approximately the same value as the value of
the true objective function:

F(x̂∗k) ≈ F(x̂∗l ) (7.4)

However, when using this definition of out-of-sample stability, the true objective
function F(x) needs to be evaluated, and as mentioned earlier, this is often
impossible in practical problems. Thus, when testing for out-of-sample stability,
one would use a weaker form of this requirement using the approximated problem
F̂.

If we have two scenario trees ξ̂k and ξ̂l and their respective optimal solutions x̂∗k
and x̂∗l , then a stable method will meet the requirements

F̂k(x̂
∗
k) ≈ F̂k(x̂

∗
l ) (7.5)

F̂l(x̂
∗
l ) ≈ F̂l(x̂

∗
k) (7.6)

and finally

F̂k(x̂
∗
l ) ≈ F̂l(x̂

∗
k) (7.7)

This means that the objective function stays approximately stable when we use a
different sample than was used for finding the solution.

In practice, the stability test is done by generating k scenario trees ξ̂k, then solving
the problem with each one of them, and obtaining optimal solutions x̂∗k for k =
1...k, and finally, using Requirement 7.7 to evaluate stability.
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Kaut and Wallace (2007) focus on the importance of both in-sample and
out-of-sample stability. They state that stability tests should always be run,
starting with the in-sample test and then running some out-of-sample tests, if
feasible. Note that having in-sample stability without out-of-sample stability
would mean that the real performance of the solution is dependent on the scenario
tree used. Having out-of-sample stability means that the real performance of the
optimal first-stage solution is stable and does not depend on the scenario tree
used, but without also having in-sample stability one would not know how good
the solutions really are.

7.3 Value of stochasticity

This subsection presents how one can evaluate the value of stochastic modeling.
When modeling we strive to include the important aspects of the problem, and
leave out the ones that are considered less important. Most real problems are
affected by randomness, but if one choose to include this randomness in the model,
it will lead to a model much more computationally challenging to solve than their
deterministic counterpart (Kall and Wallace, 2003). Based on this, it is valuable
to discuss if the randomness is one of the less important aspects in our problem,
i.e. determine whether the more simpler versions provide solution near optimality
or if they are incorrect. The real value of solving more difficult programs can be
found through the expected value of perfect information (EVPI) and the value of
the stochastic solution (VSS) (Birge and Louveaux, 2011).

EVPI

EVPI gives the maximum amount the decision maker is willing to pay for a
complete information about the future (Birge and Louveaux, 2011), and is defined
as the difference between the wait-and-see solution (WS) and the recourse problem
(RP) solution:

EV PI = RP −WS (7.8)

RP is the objective value of the stochastic problem, and WS is the expected
value when solving all scenarios as independent deterministic problems (Birge and
Louveaux, 2011).
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VSS

VSS gives the expected value of planning with uncertanties compared to the
deterministic counterpart (Birge and Louveaux, 2011), and is defined as the
difference between the expected result of using the expected value solution (EEV)
and the RP:

V SS = EEV −RP (7.9)

The expected value solution is obtain from solving the expected value problem
(EV), which is the problem where all random variables in the stochastic program
are replaced with their expected values.

Alternative measures of the quality of the deterministic solution

The V SS is often used to show how important it is to use a stochastic model.
However, if the model has hard constraints, one will often find that the V SS is
∞. This happens if the problem becomes infeasible when calculating the expected
cost of the deterministic solution. At the same time, the expected cost of using
the deterministic solution can be arbitrarily bad with the use of soft constraints by
setting high penalties (Wallace, 2011). In these situations one will not really know
whether the deterministic solution provides useful information for the stochastic
setting. For this reason, some alternative measures are included, as defined in
Maggioni and Wallace (2012).

First, a measure of the structure of the deterministic solution is introduced,
denoted as Test B in Maggioni and Wallace (2012). This measures the loss of
using the skeleton solution (LUSS), and is defined as the difference between the
expected skeleton solution value (ESSV) and the RP :

LUSS = ESSV −RP (7.10)

The ESSV is obtained by fixing all first stage variables which are at zero, or at
the lower bound, in the expected value solution and then solving the stochastic
program.

Secondly, a measure of the upgradeability of the deterministic solution is
introduced, denoted as Test C in Maggioni and Wallace (2012). This measures
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the loss of upgrading the deterministic solution (LUDS), and is defined by the
difference between the expected input value (EIV) and the RP :

LUDS = EIV −RP (7.11)

The EIV is obtained by considering the expected value solution as a starting
point for the stochastic model, only allowing it to be upgraded, thus testing if the
solution is upgradeable.



Chapter 8

Computational study

This chapter provides an evaluation of the performance of the IMEZEN and the
scenario generation algorithm proposed in this thesis. First, the hardware and
software used when running the model is described, as well as the solver settings
applied. Then, the results from the stability testing and the value of stochasticity
will be presented and analyzed.

The base case used in this computational study is solved using the IMEZEN as
formulated in section 5.4 in Chapter 5. Recall that ramping of the HS, maximum
PV and ST areas and maximum electricity and DH grid constraints are not
included in the base case. The base case is further defined by a degree of 100
% ZEN and the use of carbon emission factors. The level of ZEN used is ZEN-O,
excluding weighted embodied energy in materials. In addition, the neighborhood
is connected to a DH grid and the investment time horizon is set to 30 years. From
the stability test results, an applicable number of scenarios will be selected and be
part of the base case further used in this thesis.

The choice of using carbon emission factors is made on the basis that these are the
most widely used factors in Norway and because their values are gathered from
local references. The degree of 100 % ZEN is chosen since this is the desired goal.
The length of the time horizon is selected on the basis of the planning horizon in
EMPIRE, which is until 2050. Also, the length of the time horizon will include
both the development period of Ydalir, as well as a period of 15 years after the
neighborhood is completed. The other input parameters are described in Chapter
6. Test cases that deviates from the base case will be specified.

99
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8.1 Hardware and software

This computational study has been performed on an Intel R©Core TMi7-7700 CPU
processor at 3.60 GHz and 32 GB RAM with operating system Windows 10
Education 64-bit. The software used is FICO R©Optimizer Suite with Xpress-IVE
Version 1.24.18 64-bit, Xpress Mosel version 4.6.0 and Xpress optimizer version
31.01.09.

8.2 Solver settings

Initial testing showed that the computation time of the IMEZEN was highly
dependent on the algorithm used when solving the linear program in Xpress.
The default setting is that the selection of the algorithm will be automatically
determined by the Optimizer, which is often sufficient for most users of commercial
optimization software. However, in large problems, as is the case for the IMEZEN,
it can be a lot to gain from customizing the solution procedure.

The selection of algorithms for solving the linear program in Xpress consists of
dual simplex, primal simplex, and Newton barrier. In order to determine the best
algorithm to be used for the IMEZEN, some simple tests were performed on three
different instances all using three scenarios, defined by the degree of ZEN applied.
The results from these tests is shown in Table 8.1.

Table 8.1: Computation time using different algorithms in Xpress, given in
minutes

ZEN degree Dual simplex Primal simplex Newton barrier
0 % 125 28 3

50 % 3385 2728 18
100 % 7194 2306 27

It is clear from the results presented that there is a substantial gain in computation
time when applying the Newton barrier algorithm, especially when the degree of
ZEN is larger than 0 %. Therefore, this solver setting is used throughout this
computational study and in the case study in Chapter 9.
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8.3 Stability tests of the IMEZEN

The stability testing is a way of validating the scenario generation method. As
the stability of the scenario generation method is problem dependent, the tests
will only reveal the stability of the problem instance that is being tested. For the
IMEZEN, a problem instance depends on a number of parameters. Changes in
these parameters will change the optimal solution, and, as the tests consider the
stability of the optimal solution, these changes can potentially have an impact on
the stability. This implies that one can only trust that the problem instances that
have been tested for stability actually produce stable results. Performing stability
tests on all problem instances would be extremely time consuming and is not part
of the scope for this master’s thesis. For this reason, the stability tests will only
be performed on a subset of the possible problem instances, focusing on the base
case. Still, the more problem instances that prove to provide stable results, the
more the scenario generation method can be trusted.

Another important aspect to consider is the number of scenarios included in the
scenario tree. A high number of scenarios results in a large tree, thus increasing
the computation time when running the optimization model as well as the stability
tests. For this reason, the stability tests will be performed using scenario trees with
an increasing number of scenarios. The results will then be evaluated to determine
the number of scenarios that should be used for other parts of this computational
study, considering which level of stability and computation time is satisfactory.

8.3.1 In-sample stability

In this section, the results from the in-sample stability testing of a number of
relevant problem instances are presented. The focus is on instances defined by the
base case, but with varying values of the ZEN degree. The tests are performed
using an increasing number of scenarios. Note that the number of scenarios equals
the number of scenarios in each investment period, and that a different scenario
tree is generated for every investment period.

All problem instances tested are listed in Table 8.2. For each combination of a
problem instance and a specified number of scenarios, ten full scenario trees are
created using the scenario generation method explained in Chapter 7. Then, for
each combination, the IMEZEN is solved ten times, one time for each scenario tree
generated. The objective value is recorded each time, and for each set of ten runs,
the coefficient of variation (CV) is calculated as the ratio of the standard deviation
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to the mean (Investopedia, 2018a). The CV is used as it provides a measure of the
degree of variation between the results from the different scenario trees, and can
be used to compare this variability across the different sets. Thus, by evaluating
the CV value, one can determine if F̂k(x̂

∗
k) ≈ F̂l(x̂

∗
l ). Note that the fixed costs

have been excluded from the objective function in these tests as they are the same
for all combinations and would decrease the CV value erroneously if included.

Table 8.2: Problem instances tested for in-sample stability

Instance Emission factor ZEN degree # of scenarios
Instance 1 - 0 % 1, 2, 3, 4, 5
Instance 2 Carbon 50 % 1, 2, 3, 4, 5
Instance 3 Carbon 100 % 1, 2, 3, 4, 5

The results from the in-sample stability testing is presented in Figure 8.1. The
combinations with two scenarios have slightly higher CV values compared to other
combinations for Instance 1 and 2, but all CV values calculated are below 2 %.
This illustrates that the objective value variation is quite small in general. For
Instance 2 and 3, the CV value is even below 1 % for all combinations having
three or more scenarios. Thus, for all combinations tested, we conclude that there
is in-sample stability in the objective function.

Figure 8.1: Average coefficient of variation [%] for all problem instance
combinations
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Note that the stability is also calculated for the case with a single scenario. This is
valid as a scenario is created for each investment period, meaning the full scenario
tree for the whole time horizon in fact consists of the same number of scenarios as
there are investment periods. Thus, as the time horizon used is 30 years, which is
equivalent to six investment periods, the combinations with a single scenario are
actually solved with six different scenarios, one for each investment period.

Also note that, as most stochastic programming problems have a flat objective
function (Kaut and Wallace, 2007), these results do not indicate in-sample stability
of the solutions. A simple investigation of the first-stage solutions suggest that the
composition of the energy technologies invested in are close to identical for different
combinations of the same problem instance, but there is some variation in the size
of the capacities installed in the different investment periods. Thus, a high level
of out-of-sample stability can be expected, but this is not guaranteed.

The computation time will also be taken into account when deciding the number
of scenarios that should be used for later evaluations. Figure 8.2 plots the average
computation time, in minutes, for all problem instances, with the number of
scenarios on the x-axis. For Instance 1, the computation time is almost the
same for all combinations, explained by the fact that the ZEN constraint is not
applied and this has a great impact on the computation time. For the other
instances, the computation time increases with an increasing number of scenarios.
The computational time ranges from around 1-2 minutes for a single scenario, to
almost 90 minutes for five scenarios. This illustrates the great impact a small
increase in the number of scenarios has on the computation time.

Figure 8.2: Average computation time [minutes] for all problem instance
combinations
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The in-sample stability testing indicates that the scenario generation method
provides a satisfactory level of in-sample stability for all the combinations tested.
This suggests that the number of scenarios does not impact the in-sample stability
significantly. However, there are other reasons for why one would want to
use a higher number of scenarios even if it increases the computation time.
When investigating the average objective values for each combination, there is
an observable tendency where the combinations with a low number of scenarios
has lower objective values, especially the case with a single scenario. One
might think that they provide better solutions, but in reality they are probably
optimistic and underestimate the objective value. This is similar to what happens
for deterministic problems (in the case of convex minimization), which always
underestimate the actual expected cost (Birge and Louveaux, 2011). The observed
tendency can be seen in Figure 8.3, where the the number of scenarios are
represented on the x-axis and the y-axis is the objective value deviation from
the average. The deviation is calculated as the average objective value for ten
runs of the same combination, divided by the average of all 50 runs of the same
problem instance. From this it is clear that the average objective values for each
problem instance seem to stabilize when the number of scenarios used are three or
more. This can indicate that three scenarios might be a good choice as it also is
in-sample stable and the computation time is acceptable.

Figure 8.3: Average objective value deviation from problem instance average for
each combination
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8.3.2 Out-of-sample stability

After determining that the scenario generation method is in-sample stable, the
next step is to evaluate its out-of-sample stability. The general idea behind the
out-of-sample stability is to test a solution on a different scenario tree than the one
used to find it, thus testing the real performance of the solution. The out-of-sample
tests have been performed on all the same combinations of instances, number of
scenarios, and scenario trees as the ones tested for in-sample stability. However,
as the base case in this thesis is the problem instance with a ZEN degree of 100
%, only the results related to this instance will be presented and discussed.

In section 7.2.1 in Chapter 7, three requirements an out-of-sample stable method
should meet are presented. The main requirement, F̂k(x̂

∗
l ) ≈ F̂l(x̂

∗
k), requires one

to perform pairwise tests on different scenario trees. Considering that we have
created 50 scenario trees for each problem instance, this would require performing
12251 pairwise tests for each problem instance if all combinations are to be tested.
As an alternative testing method, we have instead created a large reference tree
with 100 scenarios on which all solutions will be tested, only considering the
requirement given by F̂k(x̂

∗
k) ≈ F̂l(x̂

∗
k). The reference tree, l, is built using the same

scenario generation method, generating 100 scenarios for each of the six investment
periods. Then, for each combination and scenario tree k tested for in-sample
stability, the first-stage solution, x̂∗k, is used as fixed input for the reference tree,
and the objective value, F̂l(x̂

∗
k), is recorded. In order to determine whether the

requirement is met, the relative difference between the objective values is calculated
for each k as defined by Equation (8.1). The relative difference is given by the
absolute deviation between the objective values divided by the average objective
value.

ˆ|Fk(x̂
∗
k)− F̂l(x̂

∗
k)|

(F̂k(x̂
∗
k) + Fl(x̂

∗
k))/2

(8.1)

Then, for each combination tested for in-sample stability, the average relative
difference of all the ten scenario trees tested is calculated. In addition, the objective
values obtained by each solution on the reference tree, F̂l(x̂

∗
k), is evaluated as

a measure on the performance of the different combinations. The results for
the combinations related to problem instances with a ZEN degree of 100 % are
presented in Figure 8.4, where the x-axis shows the number of scenarios and the
y-axis shows the relative difference. A secondary y-axis is also included, showing

1 50·(50−1)
2
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the average objective value obtained on the reference tree. It can be observed
that both the relative difference and the average objective value decrease when
the number of scenarios increase. This shows that the combinations with a high
number of scenarios are more stable and perform better on the reference tree.
However, the differences in both stability and objective value are very small for
all combinations with more than a single scenario, indicating that they are all
out-of-sample stable. It should be noted that the results for the other problem
instances are a bit different, but that the stability measure is below 2.50 % for all
combinations with two or more scenarios.

Figure 8.4: Relative difference using Equation 8.1 for all combinations with a
ZEN degree of 100 %, as well as the objective value obtained on the reference tree

Considering the results from both in-sample and out-of-sample stability testing,
there is no clear candidate with respect to the number of scenarios to use for
later analysis in this computational study. Taking only the out-of-sample tests
into account, the combinations with a single scenario are dismissed as candidates
as they are significantly less stable than the other combinations. With regard
to the other combinations, they have quite similar performances on both the
in-sample and out-of-sample tests. However, the combinations using two scenarios
did perform slightly worse than the others in the in-sample tests. For this reason,
we have decided to use three scenarios for the remaining parts of this computational
study. This is valid for the problem instances tested as there is extremely little
to gain in stability performance from increasing the number of scenarios. Also,
a computation time of about 30 minutes for the problem instances including the
ZEN constraint is acceptable.

After deciding to use three scenarios, a set of supplementary out-of-sample tests
have been completed. These tests are pairwise tests, included to make sure that
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the results obtained in later analysis are not influenced by the scenario tree used.
The tests are performed by taking the first-stage solution obtained from using
one scenario tree, and then using this as fixed input when solving the problem
for another scenario tree, and vice versa. The objective values obtained for each
pair are recorded and their similarity evaluated. The tests are only performed on a
subset of all possible pairs as the goal is simply to verify the out-of-sample stability
results from using the reference tree. The relative difference is calculated for the
five pairs tested and for all the three requirements related to the out-of-sample
stability. The results for the problem instance with a ZEN degree of 100 % are
shown in Table 8.3, only including the average values for the pairs tested. Note
that the relative differences for all requirements are very low, implying a high level
of stability. The results for the other problem instances are not presented, but it
should be noted that these were satisfactory as well.

Table 8.3: Out-of-sample stability results from pairwise testing using 3 scenarios

ZEN degree F̂k(x̂
∗
k) ≈ F̂k(x̂

∗
l ) F̂l(x̂

∗
l ) ≈ F̂l(x̂

∗
k) F̂k(x̂

∗
l ) ≈ F̂l(x̂

∗
k)

100 % 0.08 % 0.07 % 1.03 %

Hereafter, there will always be used scenario trees with three scenarios, also when
testing or analyzing other problem instances. As mentioned, performing stability
tests on all problem instances used would be extremely time consuming. Therefore,
we assume that, as the scenario generation method has been tested on several
different problem instances and combinations and proved to be very stable, this
will probably also be the case for other problem instances.

8.4 Value of the IMEZEN

In this section the value of stochasticity related to the IMEZEN will be tested.
The tests are related to the theory presented in section 7.3 in Chapter 7.

8.4.1 EVPI

The structure of the multi-horizon model assumes independence between the
investment periods, and therefore no connection between scenarios in consecutive
periods. However, the process of obtaining the WS involves solving all scenarios
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as independent deterministic problems, which further implies that the simplicity
of the structure is eliminated, as all possible combinations of scenarios in the
multi-horizon model have to be tested. Thus, in this case, calculating the WS
indicates solving 36 (729) independent problems. This is extensive work, and may
also be computationally demanding.

In light of this complexity, one could also discuss the relevance of the EV PI for
the IMEZEN. In practice, one can say that the EV PI provides a value of how
much a better forecasting technology is worth when solving the problem. For the
IMEZEN, this would require forecasting the spot price, weather conditions, and
the heat and electricity demand. Here, one can argue that particularly the weather
conditions, which are used as a basis for several stochastic parameters, are subject
to an external uncertainty that is hard to eliminate regardless of the forecasting
method.

Considering the limited opportunities for perfect information as well as the
complexity of obtaining the WS, we have decided not to analyze the EV PI in this
thesis. Instead, other measures have been investigated and discussed to a larger
extent.

8.4.2 VSS

The V SS of the IMEZEN is calculated for three different problem instances,
differentiated by the degree of ZEN used. The instances are otherwise equal to
the base case. One scenario tree is used for all tests as the scenario generation
method proved to be satisfactory stable for these problem instances. The scenario
tree used is generated with three scenarios in each of the six investment periods.
Note that the fixed costs have been excluded from the objective function in these
tests as they are the same for all instances and we want to evaluate the difference
in the variable costs.

When calculating the EEV , one first has to obtain the solution from solving the
EV problem. In order to solve the EV problem, all random variables have to
be replaced by their expected values. Recall that the scenarios in the stochastic
problem are created to represent one investment period consisting of five years,
where each year consists of four regular seasons with 168 operational hours each
and two extreme seasons with 48 operational hours each. As the structure of
the IMEZEN is based on the assumption of seasonal variation, this should also
be considered when calculating the expected values. However, a representation
of the extreme seasons is not included as extreme values in themselves are not
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representative expected values. Instead, the expected value of each of the 168
operational hours in each of the four regular seasons are calculated, resulting in
672 (168 · 4) expected values representing one year in the investment period. In
order to also include the development aspect of the IMEZEN, the expected values
are calculated for every year of the development period, reflecting the expected
annual increase in heat and electricity demand from the increase in the size of the
neighborhood. The results for the three instances tested are presented in Table
8.4.

Table 8.4: VSS for the IMEZEN, calculated for three problem instances

ZEN degree EEV RP VSS ∆
0 % 67 900 602 67 535 284 365 319 -0.54 %

50 % Infeasible 89 814 408 N/A N/A
100 % Infeasible 186 230 641 N/A N/A

For each instance, the table lists the ZEN degree used, the EEV obtained, the RP ,
the V SS, and the change in the objective value when going from the EEV to the
RP . The RP obtained for the instance with a ZEN degree of 0 % shows a relatively
small improvement of 0.54 %. This is not very surprising when considering that
the scenarios generated are based on moment matching with historical data, which
is similar to the idea behind the calculation of the expected values of the random
parameters. The extreme seasons are however not reflected in the expected values,
an aspect that potentially can lead to an undersized or inflexible solution. This
might be the main reason for the improvement, but as the extreme seasons are
weighted with a small value in the objective solution, it does not affect the EEV
negatively to a large extent. An undersized or inflexible energy system is therefore
not expected to perform very badly in the case where one only has to cover demand,
as one always has the possibility of importing both heat and electricity from the
respective grids at an acceptable cost. But, in situations where the ZEN constraint
is applied, we expect that the impact from having an undersized or inflexible
system will be greater. For the problem instances tested with a ZEN degree of 50
% and 100 %, the EEV could not be calculated as the problems were infeasible.
As mentioned in section 7.3 in Chapter 7, this is typical for stochastic problems
that have a hard constraint, which is the case for the IMEZEN. One might say that
the corresponding V SS for these instances thus is ∞, but this does not provide
any real information about the quality of the deterministic solution.

In order to evaluate the V SS, the ZEN constraint is transformed into a soft
constraint (as explained in section 5.2 in Chapter 5), and the penalty cost is set to
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a high value. This reflects that not fulfilling the ZEN constraint should be a last
resort and not a realistic option. The value is arbitrarily set to 1 NOK/gCO2−eq,
only making sure that the RP does not change its optimal solution and objective
value. The results from using the IMEZEN with a soft ZEN constraint for the
three instances tested are presented in Table 8.5.

Table 8.5: VSS for the IMEZEN with penalty, calculated for three problem
instances

ZEN goal EEV Penalty Achieved VSS ∆
0 % 67 900 602 - 0.00 % 365 319 -0.54 %

50 % 128 472 035 35 296 463 47.26 % 38 657 627 -30.09 %
100 % 242 010 699 63 394 546 95.07 % 55 780 059 -23.05 %

The RP is not included in the table as this is the same as listed in Table 8.4.
Instead, the penalty cost from solving the EEV is listed, as well as the ZEN
degree achieved. The EEV of the first instance is the same as previously because
the penalty is only related to the ZEN constraint, which is not imposed for this
instance. For the other two instances it is interesting to observe the ZEN degree
achieved by the deterministic solution in the stochastic setting. This can provide
some information with regard to how large a buffer one should include when
solving the EV , if one wants to avoid solving the stochastic problem. In this
case, a buffer of about 5 % seems reasonable in order to account for its tendency
to underestimate. This is however specific for these problem instances and not
guaranteed to work for other instances. Note that the improvement obtained by
using the RP is quite high, about 30 % and 23 %, but that the interpretation
of these values are closely related to the choice of penalty cost. As mentioned in
section 7.3 in Chapter 7, one can make the V SS take an arbitrarily high value
by setting a high penalty cost. As the penalty cost in this case is not intended
to reflect the reality, the concrete V SS is not discussed. However, in cases where
the ZEN constraint in reality should be fulfilled, meaning the actual penalty cost
is high, these results strongly suggest that the V SS is high and thus is worth the
effort of solving the stochastic problem.

The results presented suggest that the V SS is high, but, as mentioned in section
7.3 in Chapter 7, this does not tell us a lot about the quality of the deterministic
solution or why the V SS is high. Therefore, the LUSS and LUDS will be
calculated and discussed.
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8.4.3 LUSS

This is a measure of the loss of using the skeleton solution, providing an evaluation
of what the deterministic solution does wrong. The LUSS has been calculated
for the same three instances as the ones used for the V SS, also using the same
scenario tree, and the results are presented in Table 8.6. The RP is the same as
before and is not included in the table, but its computation time is listed. Note
that the computation time listed for the ESSV is the total computation time for
solving both the EV problem and the ESSV .

Table 8.6: LUSS for the IMEZEN, calculated for three problem instances

ZEN degree ESSV LUSS ∆ ESSV [sec] RP [sec]
0 % 67 535 339 54.97 0.00 % 44 185

50 % 89 814 408 0.00 0.00 % 691 1 029
100 % 186 230 641 0.00 0.00 % 1 0120 1 590

From the table it is observed that the LUSS is zero or close to zero for all three
instances tested. This indicates that the choice of variables in the deterministic
solution is good, but that their values are wrong. In this case this means that the
technologies chosen in the deterministic solution are the same as those chosen in the
RP , but that the capacities installed in different periods are different. The reason
why the LUSS is above zero for the first instance is that the stochastic problem
installs a very small gas boiler in one investment period while it is not included
in the deterministic solution, making the resulting ESSV barely above the RP .
These results are only tested on a subset of the possible problem instances, but
they imply that the structure of the deterministic solution can be very useful. An
alternative to solving the IMEZEN to obtain the optimal solution could therefore
be to solve the deterministic problem to find which technologies should be included,
and then solve the stochastic problem to decide the capacities that should be
installed of the technologies in the different investment periods. This is the reason
why the computation time for these two alternatives has been included in Table
8.6, showing that one can save some time and still obtain an optimal solution
by using the structure of the deterministic solution. It should however be noted
that the computation time listed for the ESSV is only a sum of the computation
time used to solve both problems, and some overhead might be expected related
to the process of reusing the solution from the deterministic problem. But, it
might be an alternative to consider using the skeleton solution in cases where a
more complex problem is solved. This can be applicable to situations where it
is necessary to include some of the constraints left out from the base case. An
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example is the inclusion of the maximum limit of the area available for PV and
ST. This increases the complexity of the problem, but is only necessary in some
cases. This is however not investigated further.

8.4.4 LUDS

This is a measure of the loss of upgrading the deterministic solution, providing
an evaluation of the upgradeability of the deterministic solution. The LUDS has
been calculated for the same three instances as the ones used for the V SS and the
LUSS, also using the same scenario tree, and the results are presented in Table
8.7. The RP is the same as before and is not included in the table.

Table 8.7: LUDS for the IMEZEN, calculated for three problem instances

ZEN degree EIV LUDS ∆
0 % 67 819 816 284 532 -0.42 %

50 % 91 969 556 2 155 149 -2.34 %
100 % 186 668 480 437 839 -0.23 %

For all instances tested we have that 0 < LUDS < V SS, implying that the
deterministic solution is partially upgradeable. This means that the solution is
upgraded from the deterministic solution, but it is not as good as the RP . The
upgrade does not result in an optimal solution, but it will provide feasible solutions,
which is an important improvement from the deterministic solution. But, as the
V SS for two of the instances were not obtained due to infeasibility, it is difficult
to evaluate the value of the upgrade. It should be noted that the computation
times are not listed, but that they are comparable to the case of the ESSV .

Still, as the LUDS for all instances tested are relatively low, it can be interesting
to discuss the possibility of using the deterministic solution as a lower bound for
the stochastic solution. This will not be investigated in this thesis, but is only
mentioned as an interesting aspect.



Chapter 9

Case study – Ydalir

In this chapter, a case study on the pilot project Ydalir is performed, in addition to
a practical analysis of the model to verify its applicability to other real cases. First,
the case study will be performed for the base case, as well as the other included
emission factors. Subsequently, a practical analysis will follow, where the model’s
sensitivity with regard to changes in certain parameters will be identified. The
model will also be tested for different types of neighborhoods, where the availability
of different technologies will be restricted in one or another way. Lastly, the value
of thinking ZEN rather than ZEB will be evaluated, by testing the model for both
a ZEN and a neighborhood consisting of independent ZEBs. The characteristic of
the chapter is that results followed by corresponding discussions will be presented
continuously within the different sections.

9.1 The base case

In this section, the base case is tested. First, results from testing the base case
with different degrees of ZEN will be presented, and the main tendency of the
investment decisions will be discussed. Further, results showing the operational
behaviour will also be discussed.

Figure 9.1 shows the sum of installed capacities of the different technologies over
the entire investment time horizon, for an increasing degree of ZEN. The objective
values representing the total costs are also plotted, using the secondary y-axis of
the graph. Note that the installed capacity of the heat storage is given in kWh.

113
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Figure 9.1: Total installed capacities and costs for increasing degree of ZEN,
using carbon factors

For 0 % ZEN, ASHP and small amounts of GB are installed. Further, one
can observe a tendency where a higher degree of ZEN leads to higher installed
capacities of CHP and PV. A small amount of GSHP is also installed for 20 %
ZEN.

This result seems logical as the heat pump has a high efficiency and thus generates
heat at a relatively low cost, only consuming a small amount of electricity.
However, as the value of the carbon factor for electricity is high, the investment
decision shifts toward a more environmental friendly solution as the degree of ZEN
increases, replacing the use of the heat pump as heat technology with the CHP.
The CHP has a high investment cost, but is preferred as it consumes wood chips,
which has a lower weighting than electricity.

Figure 9.1 also shows that the installed capacity of the HS is relatively stable for
0 - 20 % ZEN, increases between 20 % and 50 % ZEN, and then stabilizes again
from 50 % ZEN. This coincides with larger investments in the CHP, and it is clear
that bio fuel becomes the most dominant resource in the energy system when the
degree of ZEN increases.

Another observation that can be seen in Figure 9.1 is that the total costs have
a relatively linear increase from 0 - 50 % ZEN, and also from 50 - 100 % ZEN,
whereas the slope is much steeper for the latter. This is as expected as an increase
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in the degree of ZEN will reduce the solution space, implying that the objective
value will either stay the same or increase. However, as the slope becomes steeper,
the relative cost of increasing the degree of ZEN becomes higher. Thus, the
willingness to pay for a higher degree of ZEN is an important aspect that needs
to be considered when applying the IMEZEN.

It is also interesting to investigate how the electricity demand and heat demand
are covered. Figure 9.2 shows the annual energy generation and energy imports,
calculated as an average of the five years reaching from year 20 to 25 for scenario 1.
This period is chosen because it illustrates the total demand of the neighborhood
with the operational behaviour stabilized, as it is after the development period
has been completed. The heat and electricity demand are included in the figure as
areas in the background to show how these are covered by on-site generation and
import of energy. Note that the electricity demand does not include the electric
demand related to the operation of the heat pumps. Also note that only the
technologies invested in are included in this graph.

Figure 9.2: Average annual demand covered by on-site energy generation and
import, using carbon factors

For the case of 0 % ZEN, it can be observed that the heat demand is mostly covered
by the ASHP. In addition, some of the heat demand is covered by importing heat
from the DH grid and by the GB (not visible on the graph). The electricity demand
is covered by importing electricity from the grid. For higher degrees of ZEN, the
amount of electricity imported decreases, whereas the heat import first increases
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before it decreases again. The decrease in energy imports is replaced by on-site
energy production from the CHP and PV, making the neighborhood more and
more self-sufficient as the degree of ZEN increases.

For 80 % and 100 % ZEN, one can see that the electricity supplied to the
neighborhood exceeds the electricity demand. The reason for this is that some
of the electricity generated on-site is exported to the grid in order to compensate
for emissions. This explains the large increase in PV capacity and some of the
increase in CHP capacity that can be seen in Figure 9.1. Note that for 0 % ZEN
and 20 % ZEN the electricity supplied that exceeds the electricity demand is not
exported but used as a resource by the heat pumps in order to generate heat.

The IMEZEN makes its investment decisions by simultaneously optimizing the
operational decisions. Thus, it is also interesting to study the operation. Figure
9.3 - 9.6 show how the model performs on the operational level. The degree of
ZEN used is 100 %, representing the base case.

Figure 9.3 shows how the electricity demand (red line) is covered by electricity
generation and electricity import (stacked areas) for a representative week in a
winter season. This shows that the electricity demand is covered in all hours.
The CHP acts as a base load technology, generating a constant amount of energy
throughout the season. This is reasonable as wood chips are low at cost and have
a low carbon factor. Electricity imported from the grid and electricity generated
from the PV installations are used as top load technologies to cover peak loads.
As expected, the figure also shows that electricity is exported to the grid when
there is overproduction from the CHP and PV installations (blue line).

Figure 9.3: Electricity balance for a representative week in season 1
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Figure 9.4 shows how the heat demand (black line) is covered by heat generation,
heat import and heat from storage (stacked areas), for a representative week in a
winter season. As for the electricity, the CHP is used as a base load technology
and generates heat constantly throughout the season. When the heat generation
exceeds the heat demand, the excess heat is stored. This is seen by the yellow line
in the figure. Further, when the heat generation from the CHP alone is insufficient
to cover heat demand, heat from the DH grid and the heat storage are used. This
indicates that DH and heat storage are used as top load technologies. Again,
this seems reasonable as the CHP consumes wood chips. In the extreme seasons,
the operational behaviour is similar to the behaviour in the winter season. These
results are therefore not included.

Figure 9.4: Heat balance for a representative week in season 1

In the summer season, the demand is low relative to the rest of the year. Figure
9.5 shows how the electricity demand is covered for a representative week in the
summer. One can see that the base load technology still is the CHP. However, the
top load technology in this case is PV, and there is almost no electricity imported
from the grid. This is reasonable as the PV generation is much higher in the
summer, and one manages without importing any electricity most of the time.
During the night, when there is no PV generation, the CHP covers the demand
alone as it is lower at this time. The figure also shows that excess electricity is
exported to the grid, which is to be expected.
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Figure 9.5: Electricity balance for a representative week in season 3

Figure 9.6 shows how the heat demand is covered for a representative week in the
summer season. Here, one can observe that as the heat demand is much lower in
the summer compared to the winter season, all demand is covered by the CHP.

Figure 9.6: Heat balance for a representative week in season 3

Figure 9.5 shows that the electricity generated by the CHP is constant in the
summer season, implying that the heat generated is also constant. However, some
of the heat generated is unused, explaining why it does not appear to be constant
in Figure 9.6. This means that loss of heat occurs in all hours where the excess
heat is not stored. This suggests that the operation of the CHP is mainly driven
by the need for electricity, and that it is more beneficial from a cost perspective
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to incur heat loss in order to cover the electricity demand. This is reasonable as
electricity imported from the grid has a higher carbon factor than wood chips,
and thus, when the degree of ZEN is 100 %, on-site production of electricity is
preferred.

The operation of the HS seems unnecessary during some hours in the summer
season, as heat is stored and then later used, even though the CHP overproduces
heat at all times. This does not affect the optimal solution since there are no
costs related to the use of the HS. This happens as it is indifferent whether there
is constantly a heat loss from the CHP or whether there is less heat loss in some
hours when heat is stored, and then more heat loss in other hours as the heat
stored is used.

Table 9.1 shows the investment decisions, reflecting the distribution of the installed
capacities over the six investment periods. Note that only the technologies installed
are included in the table.

Table 9.1: Installed capacities of the included technologies in each investment
period

Technology Investment period

1 2 3 4 5 6
CHP 203.30 211.59 987.95 221.67 – –
PV – 4 522.42 – – – –
HS 217.96 182.85 303.18 – – –

From the table one can see that the CHP is installed in investment period 1,
2, 3, and 4, with a larger capacity being installed in investment period 3. This
investment pattern may be related to the lifetime of the CHP, which is 20 years.
It can be observed that the largest capacity is installed when there is 20 years left
of the optimizing horizon. This is a reasonable decision when considering that the
model does not account for salvage values of the technologies. Thus, in order to
utilize the installed capacity of the technology, it is profitable to invest when the
remaining time horizon is equal to the lifetime of the technology. However, one
can see that a small capacity of CHP is installed in investment period 4, when
the remaining time horizon is shorter than the lifetime of the CHP. The CHP
capacity installed in investment period 1 has at this time only five years left of its
lifetime, indicating there might be necessary to re-invest in this technology. Still,
the decision to invest in period 4 is probably due to a combination of reasons,
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including the need for re-investment and the desire to maximize the utilization of
the technologies, but also considering that the present value is lower for investment
costs placed further into the future. Note that no technologies are installed in the
two last investment periods. This is reasonable as the utilization of the installed
technology capacities in these periods would be low. One can see the same pattern
for the other technologies as well. Especially the PV investment, as the entire
capacity is installed in one investment period, which presumably is related to its
lifetime of 25 years.

The development period, which lasts three investment periods, is also reflected in
the investment decisions. This is observed as, for the CHP and HS, investments are
made throughout the development period, gradually increasing the total capacity
of these technologies as the size of the neighborhood also increases. This is to be
expected when considering the discounting of future costs and the fact that there
is no need to install in units that will not be utilized right away.

9.2 Different emission factors

In this section an evaluation of the effect from using different emission factors is
included. This evaluation is performed by testing the IMEZEN with both total
PE factors and non-renewable PE factors. These results will be analyzed using the
same degrees of ZEN as when testing the base case. The focus will in this section
be on the investment decisions. A comparison of using all the different emission
factors will be provided. Note that 0 % ZEN is equivalent for all emission factors.

9.2.1 Total PE factors

Figure 9.7 shows the total capacity of the installed technologies and the related
cost from using total PE factors, and has the same characteristics as Figure 9.1,
which was explained for the case with carbon factors. Note that the installed units
for 0 % ZEN are the same regardless of the weighting factors applied.
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Figure 9.7: Total installed capacities and costs for increasing degree of ZEN,
using total PE factors

The figure shows that the technologies installed are ASHP, GSHP, HS, and PV. The
investment in GSHP, ASHP and HS seems to stabilize from 20 % ZEN, whereas
the installation of PV has a relatively linear increase relative to the degree of ZEN.
One can also see that the total costs have an increase similar to the installed PV
capacity. Thus, the large investments in PV explains the increase in total costs,
implying that accomplishing the goal of 100 % ZEN is quite expensive.

Figure 9.8 shows the average annual on-site energy generation and import,
calculated for the same years and same scenario as for carbon factors. This graph
also depicts the same as Figure 9.2, which was explained for carbon factors. A
big difference from the base case, where carbon factors are used, is that there is
no investment in the CHP technology. This is sensible when considering that the
total PE factor of bio fuel does not favor this energy carrier in the same way as
carbon factors. In fact, the total PE factor is the same for wood chips, gas and
heat import, while it is higher for electricity. This also impacts the amount of
heat imported from the DH grid, as this energy carrier is not as favourable as
when using carbon factors. It can be observed that investments in heat pumps
are made instead, even though they consume electricity, and that electricity is
also imported from the grid. This can be explained by the fact electricity is not
as unfavorable as when applying the carbon factors. Also, this is the preferred
energy system composition for 0 % ZEN, implying that it is the best choice from
a cost perspective.
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Figure 9.8: Average annual demand covered by on-site energy generation and
import, using total PE factors

However, contrary to the case with 0 % ZEN, the GSHP is preferred over the ASHP
for higher degrees of ZEN. Although the investment cost of the ground source heat
pump is greater than for the air source heat pump, it has a higher COP value which
presumably makes up for this. Thus, due to the required fulfillment of the ZEN
degree, the ground source heat pump is preferred because it is able to generate
more electricity than the air source heat pump from the same amount of electricity.

One can also see from Figure 9.7 that the PV capacity installed is much higher
compared to the investments made in the base case. This is to be expected when
the heat technologies installed consume electricity, which increases the need for
compensation of emissions, and thus the need for exporting electricity. As there
is no limit on the maximum amount of electricity exports, all excess electricity
generated by PV is exported, as seen in Figure 9.8. As PV is a emission free
producer of electricity, the investments made in this technology are huge. In this
case, one may consider restricting the investment in PV by including a limit on
the area that can be used for PV installments and/or a limit on the export of
electricity within an hour. This will ensure a more realistic solution, although
there is a possibility of the problem becoming infeasible if the restrictions are too
tight. A short discussion regarding this issue will follow in section 9.3.4.

9.2.2 Non-renewable PE factors

Figure 9.9 shows the total capacity of the installed technologies and the total costs
when using non-renewable PE factors. It has the same characteristics as Figure
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9.1, which was explained for the case with carbon factors, and Figure 9.7, which
was presented for the case with total PE factors. Note that the installed units for
0 % ZEN are the same regardless of the weighting factors applied.

Figure 9.9: Total installed capacities and costs for increasing degree of ZEN,
using non-renewable PE factors

From the graph one can see that, as the ZEN degree increases, the investment in
heat pumps decreases and the investment in CHP increases quite linearly. For 20
% ZEN, GSHP is also installed. Note that, similar to the carbon factors, bio fuel
is favored by the non-renewable PE factors. This is reflected through the extensive
investments in CHP for high degrees of ZEN.

Figure 9.10 shows the average annual on-site energy generation and import,
calculated for the same years and same scenario as for the other emission factors.
This graph depicts the same as Figure 9.2 and Figure 9.8 does for the carbon and
total PE factors, respectively.

From this figure one can see that the import of electricity is reduced when the
ZEN degree increases. For 100 % ZEN, the CHP is almost able to cover the total
electricity demand by itself. Import of electricity is presumably only used to cover
the peak loads in the extreme seasons and during the winter season. It can also be
observed that the utilization of the connected DH grid is very low for high ZEN
degrees, contrary to the increase in heat import seen from 0 - 50 %. It is reasonable
that heat is imported from the DH grid to cover the peak loads in the cases where
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the installed capacity of the CHP is low. As the installed capacity of the CHP
increases, more heat is generated on-site. A higher percentage of the peak loads
are thus covered by the CHP, meaning the need for heat import decreases.

Figure 9.10: Average annual demand covered by on-site energy generation and
import, using non-renewable PE factors

From Figure 9.9 one can see that the heat storage investment culminates around
50 % ZEN. From 20 - 50 % ZEN, the increase is similar to the increase seen when
using the other weighting factors, and from 50 - 100 % there is a decrease in the
installed capacity of HS. This is the same development as for the heat import from
the DH grid seen in Figure 9.10, and may be explained by the increase in CHP
capacity. As the CHP generates electricity in excess of the demand in order to
export electricity, thus compensating for emissions, a large amount of heat is also
generated. Hence, the heat generated by the CHP often exceeds the heat demand.
This indicates that the need for storing heat decreases, as the operation of the
CHP, driven by the need for electricity, ensures that the heat demand is covered
most of the time.

9.2.3 Effect of the emission factors

This case study has shown that the IMEZEN is very sensitive to the emission
factors used, and that the definition of 100 % ZEN is dependent on these factors.
Figure 9.11 shows the total installed capacities and the total costs for the case of
100 % ZEN when using the three different emission factors.
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Figure 9.11: Total installed capacities and total costs for 100 % ZEN, using
different emission factors

The figure shows the difference in the composition of technologies selected when
applying the different emission factors. For both carbon factors and non-renewable
PE factors the investment in CHP is large, which can be seen in relation to
their favoring of bio fuel. This is especially prominent for the non-renewable
PE-factors, as the CHP is the only energy generating technology installed. As
mentioned before, the high ZEN degree results in an operation of the CHP with
over-production of heat, incurring large amounts of heat loss.

The figure also shows the immense PV investment that occurs when using the
total PE factors. In this case the PV is used to produce electricity that can be
exported in order to achieve the goal of 100 % ZEN. Additionally, due to the fact
that the installed heat technologies consume electricity and because the electricity
demand is covered by importing electricity when there is no PV production, an
even larger amount of PV is installed.

When applying the carbon factors, which is the base case, one can see that the
technologies installed are a combination of the technologies selected when using
total PE factors and non-renewable PE factors. Here, both the CHP and PV is
used to cover the electricity demand and to export electricity in order to achieve
the goal of 100 % ZEN, in addition to the CHP being used to cover the heat
demand.

The figure also provides a clear view of how the installed capacity of PV drives
the total costs. PV has only an associated investment cost, and does not have any
variable costs related to its operation. Still, as the investment cost is relatively
high, this has a large influence on the total costs. It is clear that the case where
total PE-factors are used is the one with the highest cost. These results imply
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that the selection of which emission factors to use has a large impact on the
optimal decisions and the corresponding objective value. Therefore, it is important
to emphasize that the values of these factors should be studied carefully before
running the IMEZEN. Also, as these values are of political interest, which values
are considered to be the most “correct” might depend on the region or country in
question.

9.3 Practical analysis

In this section a practical analysis is performed, identifying the sensitivity of the
IMEZEN to changes in certain parameters. The analysis mainly focuses on how the
changes affect the investment decisions, as the IMEZEN is an investment model.
However, the operational behaviour will be commented where deemed necessary.
First, the sensitivity to an increase in the bio fuel price will be identified. Further,
it will be tested how the IMEZEN reacts to changes in the investment cost of the
battery, as well as its reaction to restricting the electricity export. Finally, tests
using maximum limits on PV and ST areas, as well as maximum ramping of the
HS, are performed. The base case will be used throughout this practical analysis,
only changing the parameters that are being evaluated, unless otherwise specified.

9.3.1 Increased bio fuel price

The bio fuel price used in this thesis is based on local resources. As stated
in Enova (2010), a disadvantage of bio fuel is that there is a lack of access to
it, dependent on geographical locations, and that there is a limited production
nationwide. Also, transportation costs constitute a large amount of the fuel costs,
which implies that wood chips is more expensive for neighborhoods placed far from
a supplier. Therefore, it might be interesting to study how the model will behave
when optimizing a similar neighborhood, but without having wood chips available
as a local resource. A short analysis will follow.

When increasing the bio fuel price, the amount of CHP installed decreases and
shifts towards larger investments in PV. Also, the energy imports, of both heat
and electricity, becomes more extensive. When the bio fuel price is doubled,
investments in ground source heat pump are also made. The invested capacity
in heat storage first increases, before it decreases when the installed capacities
of heat generating technologies decrease, and the heat import from the DH grid
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becomes more prominent.

The initial increase in heat storage is assumed related to the fact that the operation
of the CHP becomes more expensive with higher fuel costs. Thus, the desire to
utilize the excess heat generated by the CHP and reduce the heat loss, results in
more heat being stored for later use. When the bio fuel price is further increased,
the investment in CHP decreases, thus reducing the excess heat production and
the need for storage. The reduction in the installed CHP capacity is a natural
reaction to the increased bio fuel price as its low fuel costs was one of the main
reasons for the selection of this technology in the base case.

9.3.2 Reduced battery price

The price of the battery is the technology cost that is expected to decrease the most
in the future. Because of this, it would be interesting to see how much the price has
to decrease in order for the IMEZEN to invest in this technology. This evaluation is
performed by solving the IMEZEN for different values of the investment cost. The
price of the battery was gradually decreased until an investment in this technology
was made.

The results from these tests revealed that the battery price has to decrease with
as much as 99.4 % before the battery is included in the energy system. Note that
even with this price reduction only an unrealistically small capacity is installed,
and the battery price should therefore decrease even more in order for the IMEZEN
to invest in a more realistic capacity size. However, this implies that an extremely
large decrease in the battery price is required. It is important to point out that
these results depend on the other input parameters used, and that other results
may be obtained for a different neighborhood.

Another aspect to consider is the case where large capacities of PV is installed
and there is a limit on the maximum electricity that can be exported at the same
time. In this case, the battery may be of interest, enabling one to generate PV,
store the excess electricity, and then export the energy stored steadily in order to
achieve the ZEN goal. The percentage of which the battery price has to decrease
will therefore presumably be highly dependent on the export limit set. This is a
valid assumption as the operation of the PV installments is very inflexible because
it depends on the solar irradiation, thus having a storage provides flexibility as
excess electricity produced can be stored for later use or export. Therefore, a test
to see how the IMEZEN reacts when there is a maximum limit on the electricity
export is also performed.
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9.3.3 Maximum export of electricity

The maximum export limit is in this evaluation set equal to the maximum demand
in the historical load profile for the entire neighborhood, specifically 650.67 kW.
The export of electricity is regulated by tariff sheet 7.1 for plus-customers, and this
states that a connected unit cannot exceed the maximum power limit of 100 kW
at any point in time (Eidsiva Nett AS, 2018a). Note that this value is related to
political restrictions and may undergo changes in the future. However, this limit
is very high if we consider it as a limit for a single building and aggregate it for the
entire neighborhood, and very low if we assume only one connection point between
the grid and the neighborhood. Therefore, the export limit is instead based on
the electricity load profile. This is reasonable because it is likely that the power
capacity of the installed connection points to the electricity grid will reflect the
expected demand.

Results showing the change in investment behaviour when including the maximum
limit on electricity export is presented in Figure 9.12. The figure shows the total
installed capacities and the total costs. Note that only the technologies that are
invested in are included in the figure. When solving the IMEZEN the base case
values are used, i.e. also the original battery price.

Figure 9.12: Total installed capacities and total costs with and without
maximum electricity export limit

The graph shows that the installed capacity of PV is almost halved when applying
the maximum export limit, whereas the investment in CHP is increased. A small
capacity of the electric boiler is also installed, which might be due to situations
where the export limit is reached and there is still excess electricity. Then, the
excess electricity can be utilized by the electric boiler to generate heat, instead of
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for example importing heat from the DH grid. Utilization of on-site produced
electricity incurs no emissions or costs, and will therefore be favored over for
example heat import.

We have also included a test aiming to identify how much the battery price has
to decrease before it is included as an investment, when the maximum limit on
electricity export is applied. These tests are performed the same way as described
in the previous section. The results show that the battery price would have
to decrease with 81.07 %, before the battery was installed. This confirms our
assumption that the battery would be of a higher interest when it is not possible
to export unlimited amounts of electricity.

9.3.4 Maximum PV and ST areas

The installment of the PV and ST technologies may physically depend on the
actual available area that can be covered by PV panels and ST collectors. Ydalir
is a 300 000 m2 large area, where buildings constitute around 86 500 m2. If one
assume angled roofs and that about 70 % of the south facing sides may be covered,
this implies there is 30 275 m2 available roof space for PV and ST (Gupta, 2012).
One can also look at the possibility of having a small free-standing ground mounted
PV and ST park. By assuming that around 150 000 m2 of the area will be used for
other facilities, like green areas, infrastructures and other municipal areas, it leaves
about 60 000 m2 for a park. Since the installed capacity of PV is given in kWp,
we estimate that 1 kWp PV corresponds to 10 m2 (Gupta, 2012). Considering
that the total PV installed in the base case is less than 6000 kWp, and no ST is
installed, this would require an area of approximately 60 000 m2. Thus, we have
chosen to use the limit calculated from the available roof space, 30 275 m2, in order
to test how this affects the optimal solution of the base case.

When applying the maximum area limit, the entire area is utilized for PV
installments. The installed capacity is thus lower than in the base case. At the
same time, more CHP and less heat storage are installed. The increase in the
CHP capacity installed is probably a compensation for the decrease in electricity
generation from PV. Since the CHP consumes wood chips, which has an associated
carbon factor, it is necessary to export even more electricity in order to compensate
for this. Also, as a higher CHP capacity is installed for the sake of electricity
production, the amount of excess heat produced increases. This implies that the
need for a short-term heat storage decreases, because there is enough heat produced
to cover the demand most of the time.
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An evaluation from including a maximum PV and ST area limit for the case using
total PE factors is also performed. The reason for this is that the investment in
PV installments was extremely high when these factors were used, as described in
section 9.2.1 above. As stated, in these type of situations it might be necessary to
limit the PV installments, as the optimal solution proposed is very area demanding.
The maximum limit is in this case set to 60 000 m2, based on the discussion above.
When this limit was applied, the problem became infeasible, implying that it was
not possible to reach a degree of 100 % ZEN without installing more than 60 000
m2 of PV-panels. This verifies earlier statements regarding the fact that reaching
the goal of 100 % ZEN may in some cases be impossible to accomplish.

9.3.5 Maximum HS ramping

The rate at which a heat storage can operate is hard to determine. It depends on
many factors, and will in this evaluation simply be tested for arbitrary values to
see how this affects the investment decisions. The maximum ramping capability of
the heat storage is first set to 0.2 kW/kWh, meaning that the storage can be fully
charged within five hours. The same applies to the discharge rate. The results
showed that the limit does not affect the investment decisions to a large extent.
It somewhat influences the operational behaviour, but these changes are minor.
When the limit is set to 0.05 kW/kWh, implying that the heat storage can be fully
charged or discharged within 20 hours, it has a large influence on the investments
as it does not install HS at all.

As seen in the analysis of the base case, the operation of the heat storage is
short-term. This is expected since the heat storage is restricted in terms of being
forced to be empty at the beginning of each season. As each season is represented
by a single week, this implies that the storage components must be empty at
the beginning of each week, not allowing long-term usage of the heat storage.
A decreased ramping parameter implies a more long-term operation of the heat
storage. Since the formulation of the IMEZEN does not allow for long-term storing
of heat, it is reasonable that the heat storage is left out of the investments as this
parameter decreases. Note that the over-estimated price of the heat storage used
in this thesis may impact the sensibility to changes in this parameter.

Considering that the value of this rate is hard to determine, as well as the fact
that the inclusion of a ramping rate will increase the complexity of the IMEZEN,
this operational issue is not investigated further. This is also because the main
focus of the IMEZEN is the investment decisions, and not the operational aspect.
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9.4 Different types of neighborhoods

It is important to establish whether the model developed is applicable to different
types of neighborhoods, and not only for the case study presented in this thesis.
Therefore, different changes in technology types and available resources are done,
to show how the model reacts to these changes. First, a case where the CHP
technology is based on gas fuel instead of bio fuel is tested followed by a case
where bio fuel is not available at all. Further, a comparison between only having
local heat generation and only using a district heating grid is presented.

9.4.1 Restricted access to bio fuel

In the Ydalir case, investments in CHP and the use of bio fuel are dominating when
using both carbon factors and non-renewable PE factors. However, combustion of
bio products causes local particle pollution and emissions of soot (Enova, 2010),
which might be a problem when using large amounts of bio fuel in urban areas.
Another disadvantage of using bio fuel is the imbalance in availability across the
country (Enova, 2010). This especially applies to bio pellets and wood chips. Based
on this, it is interesting to investigate the optimal investments in a neighborhood
where the CHP is based on gas instead of wood chips, as well as a neighborhood
where bio fuel is not an option at all.

In the first case the CHP is remodeled to consume gas instead of wood chips.
The price and efficiencies of the CHP is assumed the same as before. In reality,
a CHP based on gas is cheaper, and may also have a different ratio between the
efficiencies (higher electricity share and lower heat share) (Sidelnikova et al., 2015).
A simplification is made in this evaluation and this is thus not considered.

In the latter case, the CHP still consumes gas, but the bio boiler is no longer
included as an investment alternative. Figure 9.13 shows the results from the two
cases, along with results from the base case.

For the first case considered, it is cost-effective to continue using bio fuel, rather
investing in the bio boiler instead of the CHP. The decrease in the use of bio fuel
can be observed in Figure 9.14, which shows the import of heat and electricity, the
export of electricity, and the consumption of bio fuel in all three cases. The cost
of wood chips is thus sufficiently low for the model to invest in a more expensive
technology. One can also see an increase in the installed PV capacity in Figure
9.13, compensating for the reduction in on-site electricity production. Further, the
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heat storage capacity is reduced. This is probably due to the reduction in local
heat generation, and thus a decline in the amount of excess heat. As mentioned
earlier, operating the CHP leads to heat loss during the summer season when the
heat demand is low. Thus, a reduction in the installed CHP capacity results in a
reduction of the heat loss. However, as the CHP is not installed at all, an increase
in heat import from the district heating grid is necessary, as seen in Figure 9.14.
Heat import from the grid is still used as top load technology.

Figure 9.13: Total installed capacities and costs for the base case, CHP with gas,
and without bio fuel

When excluding bio fuel completely, investments in ST and a small investment in
GSHP are preferred, as seen in Figure 9.13. The heat storage capacity is here close
to zero, which is reasonable as the heat generation from ST is concentrated in the
summer season, and a short term storage is thus not beneficial. The investment
in PV is slightly higher in this case compared to the previous case. This may be
due to the fact that the heat pumps consume electricity and, as the ZEN degree
is 100 %, it will therefore be beneficial to generate this electricity on-site instead
of importing electricity from the grid.

The objective value increases significantly when going from the base case to either
of the other cases, as seen in Figure 9.13. This shows that when the access
to bio fuel is restricted, the investment in power technologies shift towards PV
installments, which increases the total costs as we have seen in earlier evaluations.
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Figure 9.14: Total energy imports and exports and consumption for the base
case, CHP with gas and without bio fuel

9.4.2 Local vs. district heat generation

In a neighborhood, one often chooses to utilize heat from either a local or an
external facility. For the pilot project Ydalir it is already established an agreement
to be connected to the external district heating grid which is present in Elverum,
but local heat technologies within the neighborhood are still considered as potential
investments. This is reflected in the case study performed above, where both local
heat generation and the DH grid is included in order to retain the flexibility in the
choice of investments. This is done as a combination of these might be beneficial.

In the base case, heat import from the DH grid is only used as a top load technology.
This might imply that it is not beneficial for the neighborhood to be connected
to the DH grid at all. The connection fee is included in the objective function
as a fixed sunk cost, and does not affect the optimal solution. In addition, some
neighborhoods do not have the possibility of connecting to an external DH grid. It
is therefore interesting to investigate how the optimal solution changes when the
DH grid is not a part of the energy system. The fixed connection charges for the
DH grid are in this case excluded from the objective function. Then, the objective
values, and thus the profitability of being connected to the grid, can be evaluated.

As one often chooses either local heat generation or connecting to an external DH
grid, the case where heat import from the grid is the only available source of heat
is also considered. In this case, all other heat technologies are excluded and cannot
be a part of the solution. Note that heat storage is still included as an option.
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The profitability of these two cases will be compared to the base case.

Figure 9.15 shows the objective values and the capacities for the installed
technologies in the base case, the case without DH grid, and the case where DH
is the only option.

Figure 9.15: Total installed capacities and costs for the base case, without DH
and for DH only

For the case of DH only, when excluding all local heat technologies, heat import is
obviously the only heat source used. The other changes in investments are seen in
the amount of PV capacity installed, which is increased by 10.7 % from the base
case. This is presumably to compensate for the decline in electricity generation
from the exclusion of the CHP. In addition, the large increase in PV is explained
by the fact that the neighborhood has to achieve a degree of 100 % ZEN, and heat
import has a higher carbon factor than local heat generation based on bio fuel. The
increase in heat import is illustrated in Figure 9.16, which shows the changes from
the base case regarding heat import and electricity, export of electricity and bio
fuel consumption. It is clear that there is an increase in both heat and electricity
import compared to the base case, which both require compensation through an
increase in PV capacity and thus electricity export.

On the other hand, in the case where the DH grid is excluded, several other
technologies are included in the energy system, illustrated by Figure ??. EB,
ASHP, and a small amount of GB are all included as top load technologies, used
to cover peak loads, since heat import is no longer an option. With regard to
PV, the opposite from the case with DH only is observed, as the installed PV
capacity is decreased. This is a consequence of the change in top load heat
technologies, as the heat imported is replaced by an increase in the CHP capacity,
which consumes bio fuel, and the ASHP and EB, both using on-site generated
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electricity to produce heat. Figure 9.16 shows that the emissions from energy
imports require less compensation as there is a decrease in both electricity import
and heat import, and this is not offset by the increase in the bio consumed as
bio has a lower carbon factor. Thus, there is less need for PV installments and
electricity export.

Figure 9.16: Total energy imports and exports and consumption for the base
case, without DH and for DH only

An interesting finding is that, even though the case without DH invests in a higher
number of technologies, the objective value is lower than for the base case. The cost
decreases by 1.8 % and indicates that, in the case of Ydalir, it is more cost-effective
not being connected to Eidsiva’s DH grid. However, this difference in costs is not
huge, and one also needs to consider the potential benefits from having an external
DH grid available, which may increase the reliability of the energy system. It is
also clear that a combination of local heat generation and DH generation is the
second best choice, whereas the use of DH only is the most costly choice with an
increase of 22.9 % from the base case. Finally, it should be noted that all input
data naturally have a great impact on these results, and should be considered
carefully before drawing any concluding remarks concerning whether or not this
really is the case for Ydalir.
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9.5 ZEN vs. ZEB

The focus of this computational study has been to investigate different aspects
of the IMEZEN. However, there has not been any emphasis on the value of the
IMEZEN relative to the concept of ZEBs. This would require more extensive
research, but a simple analysis is provided in this section.

As the IMEZEN considers the neighborhood as a single unit with all demand
aggregated, the same model can be applied to a building by only changing the
input data. The load profiles for the heat and electricity demand need to reflect
the demand for a building, and all input data related to the technologies should
reflect the smaller technology sizes needed for a single building. The technology
data gathered to represent the building technologies may be seen in Appendix B.
Also note that the CHP is not included as a technology when solving the model
for a building, as this technology is based on large-scale units.

In order to compare the two concepts, we need to solve the model separately for a
single residential unit, a kindergarten and a school, which are the components
included in Ydalir. Then, the results obtained from solving the model for a
residential unit need to be scaled up by the number of residential units in the
entire neighborhood. This is valid as the load profiles are assumed to be the
same for all residential units in the neighborhood. In addition, the scaling needs
to consider the development of the neighborhood as not all residential units are
built the first year. In reality this would require solving the model once for each
year in the development period, as one will only be able to scale up the solutions
for the units built at the same time. However, as the load profiles are assumed
identical, we can aggregate the demand for all residential units, solving the model
as a ZEN consisting of only residential units. Note that this would not be valid in
the case where the residential units have different load profiles. The model is also
solved separately for the kindergarten and the school as they have different load
profiles. Finally, the objective values for all components are added together and
compared to the objective value obtained from solving the IMEZEN. The results
are presented in Table 9.2, where the last row shows the difference in objective
values. Note that the fixed costs have been excluded from the total objective
values in this table in order to emphasize the difference in variable costs, and that
the fixed costs are the same for both concepts.

It can be observed that the value of the ZEN concept is extremely high, saving more
than 100 mill. NOK compared to the case of aggregated ZEBs. However, this is
not a completely realistic number as the infrastructure of the neighborhood is not
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considered in the IMEZEN, thus excluding all costs related to the infrastructure.
On the other hand, the synergies between the different energy demand profiles is
expected to have a positive impact on the total costs of a ZEN, but this aspect
is only captured to a very small degree in the data, as explained in Chapter 6.
Therefore, one could expect the value of ZEN to be even higher by including this
aspect. This implies that the high value of the ZEN is almost exclusively related
to the difference in technology costs when compared to the case with aggregated
ZEBs. This is to be expected, but it is interesting to consider how this influences
the investment decisions.

Table 9.2: Objective values for a ZEN and for the case of aggregated ZEBs

– Residential Kinder School Total
ZEN – – – 186 000 000
Agg. ZEBs 274 475 417 7 629 718 20 753 141 302 858 275
∆ – – – -116 858 275

Table 9.3 lists the total amount of installed capacities from solving the model for
the two cases. The ZEN invests in three technologies; CHP, PV and HS, while
all of the ZEBs invest in a combination of PV and BB. It should be noted that
the size of the BB installed in each ZEB is unrealistically small. This happens
because there is no minimum limit imposed. However, when solving the ZEB
models without the BB, the only compensation comes from an extremely small
increase in the capacity of the PV installed. Thus, in reality one would probably
only install PV in the ZEB cases and cover the heat demand by import of heat
from the DH grid.

Table 9.3: Total installed capacities of technologies for a ZEN and for the case of
aggregated ZEBs

Technology ZEN Agg. ZEBs

BB 0 kW 360 kW
CHP 1 625 kW 0 kW
PV 4 521 kWp 9 324 kWp
HS 682 kWh 0 kWh
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An interesting observation is that the total amount of PV installed is almost
doubled for the aggregated ZEB case compared to the ZEN. As discussed in section
9.3.4, there are physical restrictions on the available area in reality that imply that
the ZEB solution is infeasible in practice. This shows that the concept of ZEN
might even be necessary to achieve the environmental ambitions, at least at an
acceptable cost, as it can reduce the PV installed by more than 50 % with the
inclusion of CHP for on-site production of both heat and electricity.

With a higher degree of on-site production, the ZEN solution also reduces the
strain on the grid significantly. This is illustrated by Figure 9.17, showing the
total energy imports and exports for the whole time horizon of 30 years for both
cases. The total electricity imports are reduced by almost 75 % when going from
the case of aggregated ZEBs to the ZEN case, the heat imports are reduced by
around 85 %, and the electricity exports are reduced by more than 35 %. Thus,
the strain on the grid can be reduced immensely by applying the concept of ZENs.

Figure 9.17: Total energy imports and exports for a ZEN and for the case of
aggregated ZEBs



Chapter 10

Concluding remarks

In this thesis we have developed the IMEZEN, a single-objective two-stage
stochastic multi-horizon optimization model for investment planning of energy
systems in ZENs. The model optimizes both long-term investments and short-term
operational dynamics over the whole time horizon, while taking into account the
short-term operational uncertainties.

The proposed model includes a high number of technologies; electric boiler, gas
boiler, bio boiler, air source heat pump, ground source heat pump, combined heat
and power, solar thermal collectors, photovoltaic panels, district heating, heat
storage and battery. Emphasis should especially be put on the inclusion of storage
components for both heat and electricity as this enables load shifting and a certain
degree of demand side flexibility. Export of electricity is also enabled by imposing
feed-in-tariffs.

For stochastic programs considering both strategic investment decisions and
operational decisions, the number of scenarios increases exponentially with the
number of investment periods. When applying a long time horizon, these
multi-stage stochastic problems quickly become intractable for commercial solvers.
To resolve this issue, the multi-horizon information structure is applied, reducing
the number of scenarios significantly and transforming the multi-stage stochastic
problem to a multiple two-stage stochastic problem. This has proved to be
applicable to the IMEZEN.

This thesis also provides a scenario generation method developed for the IMEZEN,
supplying the model with a representation of the random variables related to the
operational dynamics. The method is based on a combination of sampling from

139



140 CHAPTER 10. CONCLUDING REMARKS

historical data and moment matching. It has been extensively tested for different
problem instances, validating its high stability for a number of these instances.
This testing showed that the IMEZEN has an acceptable computation time, which
is about 30 minutes. In addition, the IMEZEN has been evaluated with regard
to the value of its stochasticity. The results showed that the stochastic problem
is valuable in the context of avoiding infeasibility, but also that the deterministic
skeleton solution is of high quality.

A comprehensive case study on the pilot project Ydalir has also been performed.
The main focus has been to evaluate the base case, providing a thorough analysis
of both the investment decisions and the operational aspect. From this evaluation
we conclude that the preferred technologies when using carbon factors as weighting
factors for emissions are PV and CHP. The effect from using other emission factors
has also been observed. This showed that there is a great increase in both PV
installments and costs when applying the total PE factors, as well as the CHP
was replaced by heat pumps. When applying the non-renewable PE factors, only
CHP was installed, and the total costs were similar to the base case. From this it
can be concluded that the choice of emission factors determine the energy system
composition as well as the total related costs. A practical analysis related to the
base case is also completed, where one of the main findings is that the battery is
only included in the energy system after a extremely large price reduction.

Finally, a study of different types of neighborhoods is included. This proves that
the IMEZEN is applicable to a variety of different neighborhoods, and that it can
be useful for decision makers in ZENs, as it provides a set of investment decisions
regarding the technologies that should be included in the energy system, as well as
the specific capacity sizes of each technology. This also implies that the IMEZEN
may be incorporated as a module into EMPIRE, as it is able to represent a number
of different neighborhoods.

Some shortcomings has also been identified during the work with this thesis.
Primarily, only a small variation in building types and energy demand profiles
were gathered in the data analysis and thus included in the aggregated demand
profiles for the neighborhood. Because of this we were not able to evaluate the
possible advantages from utilizing the synergies between different buildings and
demand profiles. However, a short analysis of the comparison between the concept
of ZEN and the concept of ZEB is presented, concluding that there is a great
value in applying the concept of ZEN. Secondly, salvage values related to the
technologies installed are not included in the IMEZEN. This influences the optimal
solution, especially with regards to when the investments are made, and is therefore
considered as a weakness of the model.
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An important contribution from this thesis is the extensive study performed
regarding the ZEN concept, as there does not exist many optimization studies
regarding this research area. In conclusion, both the IMEZEN and the
corresponding scenario generation method have proved to provide reasonable
results in reasonable time.





Chapter 11

Future research

During the work with the proposed IMEZEN presented in this Master’s Thesis,
we have recognized several aspects of the problem which advantageously can
be studied to a larger extent. There are three main directions which we find
interesting to pursue; strategic uncertainty, demand side flexibility and additional
technologies.

Exploiting the potential of the multi-horizon information structure may be
investigated by including uncertainty on the strategic level. The question of
whether the strategic uncertainty will provide any value to the model, despite
a higher complexity, is interesting to study. The prediction of future load data is
especially of interest in this context. The load data used in this thesis have been
subject to short-term uncertainty, whereas the long-term development of demands
are not considered. Even though the energy industry aims toward a low carbon
society and demands are expected to decrease with the introduction of ZENs, one
can also argue that electricity demand might increase due to a gradual increase in
charging of electric vehicles, new types of electric demand for heating purposes, and
the use of power demanding appliances. This implies a larger power variability
and less predictability of the demand. The impact of including such long-term
developments would be interesting to consider.

The assumptions of constant long-term prices and costs are also interesting to
view in terms of strategic uncertainty. Long-term prices are related to future
changes in the price of different energy carriers, whereas long-term costs are related
to the development of future investment costs of the technologies. The growing
uncertainty in demand also causes increasing uncertainty related to market prices
of energy carriers. In addition, some technologies, i.e. especially battery, PV and
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ST, are expected to have a significant decrease in price. Including these aspects
in the model could therefore also be of interest.

The changes in electricity systems and markets all over the world involve an
increased value of the flexibility in energy systems. As electricity demand is
expected to increase, higher peak loads are also expected to occur. Demand side
flexibility is a future-oriented feature, which the energy systems become more and
more able to deliver as advanced infrastructures, distributed storage technologies,
and intelligent information and communications technologies are introduced as
parts of the energy system solutions.

Including peak load tariffs on import of electricity may also enforce a certain
degree of flexibility on the demand side and cause load relief of the electricity grid
by smoothing out the peaks. It would also be interesting to reflect the synergies
between load profiles of the individual buildings, a possible flexibility arising from
the ZEN concept, which is not considered to a large extent in this thesis. In reality,
inclusion of these aspects are expected as technology and policy measures change,
and will presumably lead to smoother peak loads and ease the strain on the grid.
As this is one of the main purposes of introducing ZENs and smart energy systems,
the inclusion of these aspects would be a beneficial improvement of the model in
order for it to become a useful decision tool in the future.

Including additional technologies would also be an interesting direction to pursue.
Power from especially wind, but also waves and tidal, could be incorporated
as alternative energy sources. Further, as the introduction of ZENs lead to
extensive use of RESs, which are characterized by intermittent uncontrolled energy
generation, the inclusion of advanced storage and distribution technologies are of
high relevance. This may also lead to a higher degree of the desired load shifting.
Firstly, seasonal storage may be an important addition to the model. Further,
it may be interesting to investigate the opportunities of including hydrogen
technology. A larger neighborhood may benefit from hydrogen production from
excess electricity, by later providing electricity from stored hydrogen when there
is an electricity deficit. Supercapacitors are also an emerging energy storage
technology that might be relevant to include in a model for a future energy system.
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Appendix A

min z =
∑
i∈I

1

(1 +R)(i−1)·N

(∑
t∈T

Ctixti +
∑
ω∈Ω

πω
∑
s∈S

1

(1 +R)b
s−1
|S| c

αs
∑
o∈Os

ctotOiωso

)
+CG + CDH · δDH

(A.1)

where

ctotOiωso = P el imp
iωso · yimpiωso + P bio · (r(CHP )iωso + r(BB)iωso) + P heat

iωso · q
imp
iωso

+P gas · r(GB)iωso − P (el exp)
iωso · yexpiωso

(A.2)

s.t.

qtiωso − rtiωso · ηHt = 0, t ∈ TH \ {CHP,DH, ST},
i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(A.3)

qtiωso −K ·
i∑

τ=i′

xtτ ≤ 0, i′ = max{1, i−
⌊
Li
N

⌋
+ 1},

t ∈ TH \ {ST,DH,CHP},
i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(A.4)

qCHPiωso − rCHPiωso · ηHCHP ≤ 0, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os (A.5)

yCHPiωso − rCHPiωso · ηECHP ≤ 0, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os (A.6)
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q(CHP )iωso −
ηHCHP

ηHCHP + ηECHP
K ·

i∑
τ=i′

x(CHP )τ ≤ 0,

i′ = max{1, i−
⌊
Li
N

⌋
+ 1}, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(A.7)

y(CHP )iωso −
ηECHP

ηHCHP + ηECHP
K ·

i∑
τ=i′

x(CHP )τ ≤ 0,

i′ = max{1, i−
⌊
Li
N

⌋
+ 1}, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(A.8)

q(DH)iωso − qimpiωso · ηHDH = 0, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os (A.9)

q(DH)iωso ≤ K ·Q · δDH , i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os (A.10)

q(ST )iωso −K ·QST
iωso ·

i∑
τ=i′

x(ST )τ ≤ 0, i′ = max{1, i−
⌊
LST
N

⌋
+ 1},

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(A.11)

y(PV )iωso −K · Y PV
iωso ·

i∑
τ=i′

x(PV )τ ≤ 0, i′ = max{1, i−
⌊
LPV
N

⌋
+ 1},

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(A.12)

A ·
i∑

τ=i′

x(PV )τ +
i∑

τ=i′′

x(ST )τ ≤ A, i′ = max{1, i−
⌊
LPV
N

⌋
+ 1},

i′′ = max{1, i−
⌊
LST
N

⌋
+ 1}, i ∈ I

(A.13)
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yimpiωso ≤ K · Y imp
, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os (A.14)

yexpiωso ≤ K · Y exp
, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os (A.15)

∑
t∈TH

qtiωso + ηHHS · s(HS)iωs(o−1) − s(HS)iωso = DH
iωso,

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os \ {1}
(A.16)

∑
t∈TH

qtiωs1 − s(HS)iωs1 = DH
iωs1, i ∈ I, ω ∈ Ω, s ∈ S (A.17)

s(HS)iωso −
p∑

τ=i′

x(HS)i ≤ 0, i′ = max{1, i−
⌊
LHS
N

⌋
+ 1},

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(A.18)

ηHHS · s(HS)iωs(o−1) − s(HS)iωso − V (HS) ·K ·
p∑

τ=i′

x(HS)i ≤ 0,

i′ = max{1, i−
⌊
LHS
N

⌋
+ 1}, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os \ {1}

(A.19)

ηHHS · s(HS)iωs(o−1) − s(HS)iωso + V (HS) ·K ·
p∑

τ=i′

x(HS)i ≤ 0,

i′ = max{1, i−
⌊
LHS
N

⌋
+ 1}, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os \ {1}

(A.20)

s(HS)iωs1 − V (HS) ·K ·
p∑

τ=i′

x(HS)i ≤ 0,

i′ = max{1, i−
⌊
LHS
N

⌋
+ 1}, i ∈ I, ω ∈ Ω, s ∈ S

(A.21)
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∑
t∈TE

ytiωso + ηEBv
+
iωso + yimpiωso − v−iωso − y

exp
iωso −

∑
t∈T ′

rtiωso = DE
iωso,

I ′ = {EB,ASHP,GSHP}, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(A.22)

s(B)iωso − s(B)iωs(o−1) − ηEBv−iωso + v+
iωso = 0,

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os \ {1}
(A.23)

s(B)iωs1 − ηEBv−iωs1 = 0, i ∈ I, ω ∈ Ω, s ∈ S (A.24)

v+
iωso − s(B)iωs(o−1) ≤ 0, i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os \ {1} (A.25)

v+
iωs1 ≤ 0, i ∈ I, ω ∈ Ω, s ∈ S (A.26)

ηEBv
−
iωso −

i∑
τ=s′

x(B)τ + s(B)iωs(o−1) ≤ 0, i′ = max{1, i−
⌊
LB
N

⌋
+ 1},

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os \ {1}
(A.27)

s(B)iωso −
i∑

τ=i′

x(B)τ ≤ 0, i′ = max{1, i−
⌊
LB
N

⌋
+ 1},

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(A.28)

v+
iωso − V (B) ·K ·

i∑
τ=i′

x(B)τ ≤ 0, i′ = max{1, i−
⌊
LB
N

⌋
+ 1},

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(A.29)
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v−iωso − V (B) ·K ·
i∑

τ=i′

x(B)τ ≤ 0, i′ = max{1, i−
⌊
LB
N

⌋
+ 1},

i ∈ I, ω ∈ Ω, s ∈ S, o ∈ Os

(A.30)

∑
i∈I

∑
ω∈Ω

πω
∑
s∈S

αs
∑
o∈Os

(
Wel imp · yimpiωso −Wel exp · yexpiωso +Wheat · qimpiωso

+Wbio ·
(
r(BB)iωso + r(CHP )iωso

)
+Wgas · r(GB)iωso

)
+WEmb = (1− γ) ·WRef

(A.31)





Appendix B

For the building case no loads for a family house exceed 3 kW for heat and 1
kW for electricity. The smallest available technologies with typically capacities
around 10 kW are therefore chosen to represent this case. The school and the
kindergarten have higher loads, and should be represented with larger technologies.
An assumption is made and the smallest technologies are also used to represent the
technology data used as input for the school and kindergarten in the building case.
This might lead to higher technology costs for the school and the kindergarten,
than what is really the case in reality. The technology costs for building
technologies can be seen in Table B.1 and the efficiencies and lifetimes may be
seen in Table B.2.

The costs for the technologies are handled the same way as explained in Chapter
6 for the neighborhood technologies. The cost obtained for the battery are from
Tesla Inc. (2018b) and represent the Tesla Powerwall 2 battery. This cost is already
given in 2018 NOK. Note that CHP is not an included technology for the building
case, while this technology is not reasonable to install in a single building.
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Table B.1: Technology costs - building size

Technology Size Unit Technology cost Reference
[NOK/Unit]

EB 10 kW 12 021.71 Sidelnikova et al. (2015)
GB 10 kW 19 197.88 Sidelnikova et al. (2015)
BB 150 kW 35 044.70 Sidelnikova et al. (2015)
ASHPa−w 10 kW 15 037.00 Sidelnikova et al. (2015)
GSHPw−w 10 kW 27 476.08 Sidelnikova et al. (2015)
ST 6 m2 12 050.04 Sidelnikova et al. (2015)
DH - - 25 0001 Dahl (2018)
PV 5 kWp 31 756.34 Sidelnikova et al. (2015)
HS 0.15 m3 7 728.982 The Danish Energy Agency

and Energinet (2012)
Battery 13.5 kWh 7 280.56 Tesla Inc. (2018b)

1 [NOK/household connected to DH grid]
2 [NOK/kWh]

Table B.2: Efficiencies and lifetimes - building size

Technology Efficiency Lifetime Reference
EB 0.98 20 Sidelnikova et al. (2015)
GB 1.00 20 Sidelnikova et al. (2015)
BB 0.84 20 Sidelnikova et al. (2015)
ASHPa−w 2.40 15 Sidelnikova et al. (2015)
GSHPw−w 2.90 15 Sidelnikova et al. (2015)
ST – 25 Sidelnikova et al. (2015)
DH 1.00 – Dahl (2018)
PV – 25 Sidelnikova et al. (2015)
HS 0.99 15 Lindberg, Fischer, Doorman, Korp̊as

and Sartori (2016) and The Danish
Energy Agency and Energinet (2012)

Battery 0.90 10 Tesla Inc. (2018b)
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