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Problem Description

Real-time optimization of petroleum production is a challenging problem. Rapidly chang-
ing conditions demand short solution times, while complex reservoir dynamics lead to
complicated models. Uncertainty in the problem requires a decision maker to consider the
trade-off between maximizing oil production and remaining feasible with respect to gas
capacity constraints.

The objective of this thesis is to develop real-time optimization models able to provide
decision support in production planning of a petroleum field. The risk aversion of the
decision maker varies with field conditions. Consequently, this thesis aims to provide de-
cision support enabling the identification of an optimal solution given variable appetite for
risk. An important goal is to keep solution times sufficiently low in a real-time setting. To
this end, the models are based on historical data from the field. The models developed in
this thesis are tested on a simplified representation of a real oil field from the Norwegian
Continental Shelf.

Well characteristics are modeled with neural networks. By combining modern techniques
in machine learning, estimates of uncertainty both in the data and in the models are ob-
tained. The neural networks are incorporated into the optimization models. The value of
planning with uncertainty is demonstrated in several optimization settings, and for variable
levels of risk aversion.
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Summary

Real-time optimization (RTO) of petroleum production is concerned with maximizing
daily oil production by suggesting minor adjustments to the system and frequently re-
solving the optimization model. A central part of the problem consists of modeling well
production outputs as a function of decision variable inputs.

Most petroleum production fields have an upper limit on the rate of gas they are able to
handle under normal conditions. Providing decision support for adhering to this constraint
is complicated by uncertainty in the gas output rates of wells, stemming from uncertain
measurement data and the well model approximations to the data. Accounting for both
sources is necessary in order to avoid underestimating the total uncertainty.

A maximally risk-averse system operator seeks to avoid gas capacity constraint breaches
at all times. However, if the utility of the operator is unknown, there exists a set of Pareto
optimal solutions that describe the trade-off between petroleum production and uncertainty
in the gas output. In this thesis, we formulate a robust stochastic mixed integer linear pro-
gram (MILP) for the case of maximum risk aversion, and a multi-objective optimization
problem (MOP) which models the oil production and gas uncertainty trade-off.

We propose a novel model of well outputs as a function of inputs, combining state-of-the-
art neural network (NN) techniques and thereby obtaining a statistically grounded distri-
bution of outputs, capturing both data and model uncertainty. The NN well models are
reformulated as MILPs and included in the optimization problems. Two scenario genera-
tion procedures based on the NN well models are presented, producing Factor and Markov
Weighted scenarios. A recourse algorithm (RA) is developed, modeling the discovery of
new information as operational changes are implemented. We test the models developed
in this thesis on a simplified representation of a real oil field.

Scenarios are represented by NN MILPs or special ordered sets. Results show NN MILPs
offer poor scalability as the number of scenarios in the problem increases. Identified weak-
nesses in the Factor scenarios cause excessively conservative solutions and make them in-
compatible with cases where initial production levels are known. The value of planning
with uncertainty in the robust problem depends on the choice of a suitable penalty metric
for infeasible solutions, but is found to be significant. The RA offers significant perfor-
mance gains over the standard robust approach in certain cases. However, performance
estimates are slightly optimistic due to simplifications in the RA implementation.

MOP results prove to be suited for identifying the optimal solution for a given level of risk
aversion. In particular, we obtain confidence intervals for the probability of a gas capacity
constraint breach given a specified minimum oil output. Convergence of the RA and the
MOP results indicate that Markov Weighted scenarios are a sensible representation of the
distribution of the uncertainty in the problem.

v



Sammendrag

Sanntidsoptimering (RTO) av petroleumsproduksjon omhandler maksimering av daglig
oljeproduksjon ved å foreslå små justeringer av produksjonssystemet, og å hyppig op-
pdatere og løse optimeringsproblemet. Modellering av sammenhengen som beskriver
brønnproduksjon som en funksjon av beslutningsvariable er en sentral del av problemet.

De fleste oljefelt har øvre begrensninger på raten av gass systemet er i stand til å håndtere
under normale forhold. Beslutningsstøtte som søker å overholde disse begrensningene må
forholde seg til usikkerhet i brønnproduksjon. Denne usikkerheten har opphav i usikre
brønnmålingsdata og usikkerhet som innføres under modelleringen av brønnene. Optimal
beslutningsstøtte bør ta hensyn til begge kilder.

En maksimalt risikoavers systemoperatør ønsker å unngå å bryte øvre begrensninger på
gassproduksjon til enhver tid. For en operatør med variabel risikoaversjon må risikoen
for å bryte begrensningene avveies mot maksimeringen av oljeproduksjon. For denne op-
eratøren er optimale beslutninger beskrevet av et sett bestående av Paretooptimale løsninger.
I denne oppgaven formulerer vi et robust stokastisk blandet heltallsproblem (MILP) med
hensyn på maksimal risikoaversjon. Et multiobjektiv-problem (MOP) modellerer avveiin-
gen mellom oljeproduksjon og usikkerhet i gassproduksjon.

Vi foreslår en ny modell for brønnproduksjon basert på å kombinere moderne teknikker
innen nevrale nettverk (NN). Brønnmodellene estimerer distribusjoner for produksjon-
srater, og fanger opp usikkerhet i både data og modeller. Arkitekturen i de nevrale net-
tene er strukturert slik at en reformulering til et NN-MILP er mulig. Følgelig inkluderes
brønnmodellene i optimeringsproblemene som formuleres i denne oppgaven. Basert på
den estimerte distribusjonen av brønnproduksjon, utvikles prosedyrer for å generere to
distinkte typer scenarier: Faktorscenarier og Vektet Markov-scenarier. En regressalgo-
ritme (RA) er utviklet for å modellere utnyttelsen av ny informasjon som blir tilgjengelig
ettersom operasjonelle endringer i feltet utføres. Modellene i denne oppgaven er testet på
en forenklet fremstilling av et oljefelt på norsk sokkel.

Et scenario er enten formulert som et NN-MILP eller som et ordnet sett (SOS2). Resul-
tater i det tekniske studiet i denne oppgaven tyder på at NN-MILP er lite skalerbart dersom
antall scenarier i optimeringsproblemet øker. Flere svakheter med Faktorscenarier påvises.
Sterk bias i kurven for brønnproduksjon fører til overdrevent konservative løsninger av det
robuste stokastiske problemet når denne typen scenarier benyttes. Videre er Faktorscenar-
ier inkompatible med spesifisering av kjente produksjonspunkt.

Vi viser at verdien av å planlegge med usikkerhet i det robuste problemet er signifikant,
men sterkt avhengig av en veldefinert straff av brudd på begrensninger i problemet. Ved
bruk av RA-en øker verdien av den optimale løsningen, og i enkelte tilfeller er økningen
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svært lovende. Estimatene på økningen er imidlertid optimistiske, ettersom forenklinger
er gjort i implementeringen av RA-en.

Resultater fra MOP-et synliggjør optimale løsninger for alle nivåer av risikoaversjon,
og lar oss beregne sannsynligheten for at en gitt løsning overholder begrensninger på
gassproduksjon. Sammenstillinger av resultater fra RA-en med Vektet Markov-scenarier
og MOP-et, viser at begge modeller konvergerer mot tilnærmet samme løsninger. MOP-et
er basert direkte på distribusjonen av usikkerhet slik den er estimert av brønnmodellene.
Den tilnærmede konvergensen er derfor en indikasjon på at Vektet Markov-scenarier in-
nehar de samme statistiske kvalitetene som denne distribusjonen, noe som er en ønskelig
egenskap ved prosedyrer for å generere scenarier.
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Chapter 1
Introduction

Petroleum is one of the main sources of energy in the world as well as the main ingredient
in a wide range of products used in day-to-day life. Among the most important applica-
tions of petroleum are energy for transportation, industrial power, heating and lighting,
and production of fertilizers. The use of petroleum resources for energy production causes
emissions damaging the environment. As a consequence, the use of alternative technolo-
gies to harvest energy from renewable sources is becoming increasingly widespread. Nev-
ertheless, oil and gas still constitute around 56 % of the total energy consumption in the
world according to estimates from the International Energy Agency (2018).

Figure 1.1: Volume of Norwegian export of crude oil and natural gas in gas form (SSB Statis-
tikkbanken, 2018).

The oil industry is a vital part of the Norwegian economy. However, in the last five years,
the total value of the Norwegian petroleum export sees a decline of almost 25 % (see Fig-
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ure 1.1). This downturn is largely a consequence of increased shale oil activity in the USA
and increased production in the Middle East, resulting in an oversupply in the market and a
drop in oil price over the recent years. Despite a drop in the price of oil, an increase is seen
in the volume of oil and gas exported from Norway over the last four years. More than
half of the total valued export from the country in 2017 stems from oil and gas products
(SSB Statistikkbanken, 2018).

With lower oil prices, margins of oil companies decline. Development of new oil fields
requires large capital expenditures, which companies face with reluctance in times with
uncertain or low oil prices (PwC, 2017). Thus, increasing the profitability and production
efficiency of existing fields is an increasingly important task for players in the petroleum
industry.

As production efficiency is a top priority for petroleum production entities, short-term
operational planning problems receive much attention. While operational planning is con-
cerned with maximizing production outputs on a daily basis, rapidly shifting conditions
during production means even a daily plan may fail to adapt properly. Thus, operators
may wish to update and re-solve the planning problem several times each day. Increas-
ing computational power coupled with modern sensor equipment makes such an approach
possible, giving rise to the field of real-time optimization (RTO).

Machine learning techniques are widely used in the RTO of oil fields. In the existing
literature, this often involves the use of heuristics to produce field wide solutions. Com-
monly used techniques include neural networks (NNs), genetic algorithms and ant colony
optimization. NNs are also used in pre-processing steps, typically modeling well produc-
tion functions. Recent advances in the literature regarding NNs focus on the prediction
of a target distribution rather than point estimates, since the latter potentially is a poor
representation of reality in cases where uncertainty is present. Predicting a distribution
facilitates the inclusion of uncertainty into the problem setting in which the NN is imple-
mented. However, uncertainty estimates are rarely included in the application of NNs in
the RTO of oil fields. Consequently, improvements to the RTO of oil fields are achievable
by adopting modern NN techniques for estimating uncertainty.

This thesis explores the possibilities of such modern NN techniques, with the purpose of
providing decision support to a production engineer aiming to maximize oil production
while adhering to constraints on the gas production. Constraint breaches are potentially
costly, and avoiding breaches is complicated by uncertainty regarding the output rates of
wells. As a result, the engineer is faced with a trade-off between risking infeasibility and
maximizing output rates. Since the risk aversion of the decision maker varies with field
conditions, this thesis aims to provide decision support accommodating the preferences of
the field engineer at any given time.

We formulate a robust stochastic mixed integer linear program (MILP) which models a
risk-averse decision maker, and a multi-objective program (MOP) which models the vary-
ing risk aversiveness of the field engineer. Well outputs as a function of inputs are modeled
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using NNs trained on historical measurement data from the field. The data exhibits sig-
nificant uncertainty in the form of noise, and in estimating the well production rates, we
introduce model uncertainty to the problem. Combining methods for estimating uncer-
tainty in both the data and models, we obtain statistically grounded approximations to the
distributions of the well output functions. The NN well models are constructed such that a
reformulation of the networks as MILPs is possible, enabling the inclusion of these models
into the optimization programs. Distribution estimates from the NNs facilitate the devel-
opment of scenario generation procedures in the robust stochastic MILP.

To our knowledge, this thesis represents the first work to utilize NNs to incorporate es-
timates of the uncertainty in both measurement data and well models in the RTO of
petroleum fields. Furthermore, the representation of NNs as MILPs is a novel approach to
the use of machine learning techniques in optimization problems providing decision sup-
port to a petroleum field engineer.

This thesis is developed in cooperation with Solution Seeker, a Norwegian start-up com-
pany specializing in artificial intelligence and optimization software for RTO of upstream
petroleum and gas production. The models developed in this report are applied to a sim-
plified representation of an oil field on the Norwegian Continental Shelf.

Following the introduction, relevant background is presented in Chapter 2. A literature
study follows in Chapter 3, and an overview of relevant theoretical topics is given in
Chapter 4. Chapter 5 presents a description of the problem considered in this thesis. The
optimization models are formulated in Chapter 6, and the NN well models are presented
in Chapter 7. The implementation and solution method of these models are described in
Chapter 8. In Chapter 9, case specific data is presented along with a brief analysis, before
a computational study follows in Chapter 10. Finally, concluding remarks are offered and
future research suggested in chapters 11 and 12, respectively.
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Chapter 2
Background

In this chapter, relevant background to the topics presented in this thesis is introduced.
The sections are kept relatively brief and high-level as a thorough discussion is beyond
the scope of this thesis. A more comprehensive introduction to background topics in
petroleum production optimization can be found in Grimstad (2015).

The chapter is organized as follows. Section 2.1 introduces general nomenclature in the
petroleum production industry and presents a typical oil field structure. Next, Section 2.2
introduces some important aspects regarding pressure in the production system. Section
2.3 discusses optimization over different time horizons.

2.1 The Petroleum Production System
An offshore production system consists of several interconnected modules with corre-
sponding interdependencies. The general structure of an oil field is shown in Figure 2.1.
The platform, unless unmanned, is the workplace of the well operator. Each platform has
one or several wells, pumping up oil, gas and water from a reservoir. The well operator
controls the well by adjusting its available parameters, e.g., the current rate of gas lift in-
jection and the choke opening. The choke level is a measure of the opening size of the
valve in the well head through which oil, gas and water flow. When the choke of a well-
head is shut, there is no output from the given well. Gas lift is the general term for the
use of pressurized gas to supplement natural formation gas in the reservoir with the aim
of lifting the fluids contained in the reservoir by increasing the pressure. The reservoir is
the subsurface structure where the oil and gas are located prior to extraction and is thereby
the target for well drilling. It is defined by Schlumberger Limited (2017) as ”a subsurface
body of rock having sufficient porosity and permeability to store and transmit fluids”.
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Figure 2.1: General structure of a petroleum production field. Wells belonging to certain platforms
may route their output to several separators. Gas rate capacity constraints may be present at several
points in the production flow.

The flow coming from the well is a mixture of water, oil and gas, which is separated
into its respective parts (or simply into fluids and gas) in a separator before any other
post-processing is performed. The flows from a given set of wells are either merged in a
manifold and then fed into one of the connected separators or routed directly from the well
to a separator. Separators and wells usually have upper flow limits, which the onshore
team of production and reservoir engineers needs to take into account. This upper flow
limit may be a physical limitation of the separator or well itself, or be a result of limita-
tions downstream of the separator.

When upper flow limits on gas are exceeded, equipment is worn down at a higher rate than
under normal conditions. There is also a risk of expensive equipment being destroyed,
such as the multiphase flow meters (MPFM). The MPFMs are used to gauge the produc-
tion of a single well. Even though the data from an MPFM is not always accurate, it is
often used as a basis for operational decisions. It is therefore essential to keep the device
functional. However, when damages to the equipment do occur, it can be expensive or for
all practical purposes impossible to repair or replace it (Dahl et al., 2005). Such accidents
also cause a greater workload for the operators and engineers, and exceeding system flow
restrictions is therefore in general avoided.
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An onshore team receives production data from the wells in the reservoir and analyzes it,
before communicating to the well operator a set of adjustments to some input parameters
to be executed. This set may be a sequential set of actions, or actions in no specific order.
In the process of analyzing the data, many petroleum engineers use optimization software
in addition to their experience and knowledge. This software ranges from commercial
spreadsheets to sophisticated optimization models and machine learning applications. The
flow of information described in this paragraph is visualized graphically in Figure 2.2.

Figure 2.2: The flow of information in a production system, Morken and Sandberg (2016).

2.2 Well Characteristics

As oil flows out of a reservoir through a well, it is expected that some amount of natural
gas flows out alongside it. A common metric used to describe a petroleum well is its gas-
oil ratio (GOR), which denotes the volume of gas flowing out relative to the volume of oil
flowing out under standard conditions, as defined by the Norwegian Ministry of Petroleum
and Energy and the Norwegian Petroleum Directorate (2018).

At early stages of their life cycle, wells are typically categorized as naturally flowing. A
naturally flowing well is one capable of sustaining high production levels without requir-
ing the assistance of enhanced oil recovery (EOR) techniques, due to high pressure in
the reservoir to which the well is connected. As the well and reservoir mature, reservoir
pressure may drop to a level at which the well is no longer naturally flowing due to the
extraction of liquids and gas. At this point, in order to continue producing the well must
either be turned into a pumping well or some other means of artificial lift must be intro-
duced. Brown (1982) provides an overview of the different artificial lift methods available.
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Operating a well is the process of tuning available decision variables in order to control its
production rates of various phases. We make a distinction between explicit and implicit de-
cision variables. Explicit decision variables denote variables over which the well operators
have direct control. Examples of explicit decision variables include the choke opening, gas
lift injection rates and the routing decision for each well. Implicit decision variables refer
to variables over which the production engineer has no direct control. Such parameters
include a variety of physical parameters, such as the bottom-hole pressure, the tempera-
ture in the wellhead and back-pressure effects. Implicit variables may not be observable
through measurements or sensors. Tuning explicit variables affect the implicit variables;
increasing the gas lift injection rate generally increases pressure in the well-head.

2.3 Supply Chain Planning Horizons

The petroleum production industry is the backdrop of a diverse supply chain, from the
extraction of crude oil from subsea reservoirs to the delivery of a finished product to cus-
tomers. An example of a petroleum sector supply chain is shown in Figure 2.3. Although
the details of a supply chain may vary, all petroleum producing entities are invariably faced
with a spectrum of planning problems. These planning problems span from the long-term
planning and development of new fields to operational well control problems which may
have to be tackled several times each day.

Figure 2.3: Supply chain in the petroleum production industry, Neiro and Pinto (2003).

Thus, planning problems in the petroleum sector vary significantly in scope and time hori-
zon. Not only does this necessitate different solution approaches for different problem
types, but it also makes integrated planning difficult. Ensuring that the daily operations of
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a platform are in accordance with a 10-year field exploitation plan is both challenging to
model and solve. The planning problems are further complicated by factors of uncertainty,
a canonical example being the fluctuating oil price.

Combining planning problems of all time horizons in a single model leads to a problem
so complex it is by all practical measures impossible to solve. A more useful approach is
to organize problems according to the time horizon with which they are concerned; prob-
lems are then tackled in a hierarchical manner. Long-term plans place restrictions on and
provide guidelines for shorter horizon problems as one moves down the hierarchy.

Several propositions for organizing planning problems in a hierarchy according to time
have been presented, with the perhaps most common being the notion of the strategic, tac-
tical and operational planning levels. More recently, the RTO level has been introduced as
the planning level with the shortest time horizon (Bieker et al., 2007). An overview of the
four levels and associated time horizons can be seen in Figure 2.4.

Figure 2.4: Four levels of planning in petroleum production, Morken and Sandberg (2016).

The advent of the real-time optimization level is driven by the increased availability and
quality of measurement data being recorded in the oil field. At the core of RTO lies an
optimization model that is continuously being updated with recorded data from the pro-
duction field. The goal of RTO, as coined by Sequeira et al. (2002), ”is to operate a plant,
at every instant of time, as near to its optimum operating conditions as possible”.

Solving problems in a real-time optimization setting entails both opportunities and restric-
tions. For instance, the capabilities of modern data collection in production fields may
synergize well with models that benefit from frequently being updated with new data.
However, the goal of staying as close to optimality at every instant of time means solution
times need to be kept low and frequent re-runs of the model are typically necessary.

The focus of this section is real-time optimization, and a full discussion of the integrated
planning of an entire petroleum supply chain is beyond the scope of this thesis. The
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interested reader is referred to Leiras et al. (2011) for a thorough literature review, or
Neiro and Pinto (2004) for an example of a supply chain optimization framework.
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Chapter 3
Literature Study

This chapter presents a literature study of relevant topics within optimization in the petroleum
industry. For more comprehensive literature studies, two recommended surveys of opti-
mization in the petroleum production industry are Rashid et al. (2012) and Khor and Elka-
mel (2017).

This chapter is organized as follows. First, a review of early optimization applications to
maximizing production in oil fields is given in Section 3.1.1. Then, non-linear approaches
are presented in Section 3.1.2, after which piecewise linear approaches are discussed in
Section 3.1.3. Modern machine learning approaches are presented in Section 3.1.5, before
economic aspects of petroleum production optimization are discussed in Section 3.1.4. A
brief overview of the use of neural networks in optimization is given in Section 3.2, and
Bayesian neural networks are reviewed in Section 3.3. A table of selected references is
presented in Section 3.4. Finally, comments on the literature study are given in Section
3.5.

3.1 Optimization Methods for Petroleum Production Wells

A crucial step in the optimization process of any petroleum production system is mod-
elling the well output as a function of its input decision variables. In general, obtaining
good approximations to the true well output curves increases model complexity, solution
times and computational requirements. Conversely, approximations of a less complex na-
ture may result in inaccurate solutions due to lacking in flexibility. This section presents
different approaches as they appear in the literature, as well as selected machine learning
and economic perspectives.
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3.1.1 Early Optimization in the Petroleum Industry
An early focus of optimization in the petroleum industry on an operational level is the
performance of a single producing well. Nodal analysis, first developed by Schlumberger
and later regarded as a general approach to well analysis, divides a single well into distinct
nodes and models the interactions between the nodes. Mach et al. (1979) present an exam-
ple of nodal analysis. Bahadori et al. (2001) incorporate nodal analysis in the optimization
of gas lift injection rates.

Authors considering optimization over an entire production field, rather than a single well,
develop heuristics that improve on single well nodal analysis. Perhaps most well known
is the method of equal slopes. The method is based on the concept of incremental gas-oil
ratio (IGOR), which describes the volume of gas lift required to produce an incremental
barrel of oil. Kanu (1981) applies equal slopes to a system of wells while considering
economic factors. The main idea is to step-wise allocate additional volumes of gas lift
according to the economic slopes until all gas lift is spent. Weiss et al. (1994) show math-
ematically that applying the equal slopes method based on IGOR yields optimal production
levels.

Several issues with the method of equal slopes are identified in later works. The proof by
Weiss et al. (1994) assumes it is always optimal to utilize all gas lift available. In reality,
physical phenomena such as back pressure (see Section 2.2) lead to sub-optimal oil pro-
duction if the gas lift injection rate is excessively high. Nishikiori et al. (1995) point out
that the method of equal slopes suffers when wells do not respond immediately to opera-
tional adjustments, as it may converge slowly and get stuck in local optima.

3.1.2 Non-Linear Modelling
With increasing computational power, many complex models are later developed and
solved in the literature. Several early non-linear models address the problems with the
method of equal slopes.

Lang and Horne (1983) compare step-wise linear programming with dynamic program-
ming for a gas lifted well problem. Nishikiori et al. (1995) present a non-linear quasi-
Newton solution method in which gas lift injection rates act as decision variables. The
convergence rate depends heavily on an initial solution guess but is potentially faster than
a gradient approach. Buitrago et al. (1996) address the case where wells respond slowly to
gas lift injection with a non-linear model. Dutta-Roy and Kattapuram (1997) consider well
interactions and use sequential quadratic programming to solve the resulting optimization
problem. They contend that any model ignoring well pressure interactions is overly opti-
mistic due to the significance of back pressure when wells share pipelines.

Zhang et al. (1985) devise the Penalty Successive Linear Programming algorithm and pro-
vide a convergence proof for non-linearly constrained problems of general form. The
algorithm is suited for highly constrained problems and is in certain cases quadratically
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convergent. The approach is proven to be robust enough to be applied in modern non-
linear approaches such as Kosmidis et al. (2004, 2005).

Alarcón et al. (2002) optimize production output in an oil field by modeling oil production
as a function solely dependent on gas lift injection rates. They present a novel mathe-
matical fit to the non-linear gas output curve of each well, and subsequently solve the
non-linear problem using sequential quadratic programming (SQP). A concluding remark
is that minimizing the uncertainty regarding the estimated well output curves is critical to
the success of the model.

Wang (2003) uses a two-level programming approach to determine the optimal short-term
production rates and well input variable settings. In this structure, the top problem is the
optimization of well connections and the bottom problem is a rate allocation problem,
with gas lift injection rates and choke openings as decision variables. The top problem
is solved by partial enumeration (PE) while the bottom problem is solved using an SQP
method. Well interaction effects are captured by non-linear relationships.

Grimstad et al. (2016) use B-splines to approximate pressure drop correlations in a mixed
integer non-linear program (MINLP) formulation. B-splines are applied in a regular in-
terpolation grid, as determining irregular knot positions is noted to be a difficult problem.
The optimization formulation is well tailored to the CENSO (Convex Envelopes for Spline
Optimization) solution framework. The model is tested on three cases of increasing com-
plexity which are solved to both global and local optimality. Obtaining a solution cer-
tificate of global optimality is deemed too computationally expensive for RTO for larger
cases, but the small gap between global and local optimality indicates that the formulation
produces a largely convex NLP relaxation with stable and promising local results.

3.1.3 Piecewise Linearization
Although non-linear programming has the ability to capture complex relationships be-
tween wells, solution times may be excessively long. As a compromise between model
complexity and efficient solution methods, several works turn to piecewise linear models.

An early work by Fang and Lo (1996) applies separable programming principles with
piecewise linear well output curves to solve a gas lift allocation problem with the simplex
method. Although showing promising results, the model is limited to concave well output
curves. This limitation may lead to poor approximations of the true curve in real case
applications since assuming concavity limits the generalization power of the model.

Kosmidis et al. (2005) present a MINLP formulation of a complete production field with
the intention of providing a more holistic model than previous approaches. Non-linear
well output curves are approximated by discretized, piecewise linear functions which are
stored as look-up tables for each well. The authors remark that the accuracy of the model
depends on the granularity of the piecewise linear functions, and claim that once the look-
up table is constructed, it is valid for the lifetime of each well. As a well matures and
physical conditions in the reservoir change, such a claim may not hold over a longer time
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horizon.

A comparative study of piecewise linear formulations for well operations is conducted by
Misener et al. (2009). Four approaches are considered, and the study concludes that the
classic approach by Nemhauser and Wolsey (1988) is inefficient. The classic approach in-
volves using binary variables to activate linear segments which are subsequently weighted
by a combination of the corresponding endpoints. Efficiency gains can be achieved by a
formulation without binary variables using Special Ordered Sets of type 2 (SOS2).

Bieker (2007) applies piecewise linearization to approximate non-linearities in the pres-
sure drop in well pipelines. Gunnerud and Foss (2009) further build on this approach to
construct a model suitable for decomposition techniques. The resulting mixed integer lin-
ear program (MILP) is based on a piecewise linearization in three dimensions by using a
regular grid of breakpoints and SOS2.

Silva and Camponogara (2014) apply multidimensional piecewise linear models to a petro-
leum optimization problem, and show a tight formulation of routing constraints within the
oil field. To describe the non-linear nature of the output function, several approaches
to piecewise linearization are suggested, and a thorough computational analysis of the
options is given. While the authors suggest expanding the model to include additional
physical factors, the model is compatible with a formulation only encompassing explicit
decision variables such as gas lift injection rates and choke openings.

3.1.4 Economic Perspectives in Petroleum Production Optimization

Several authors contend that the goal of any optimization approach in the petroleum pro-
duction industry should be concerned with maximizing profits and not the total volume of
oil produced per day. Such models incorporate the economic aspects of production in an
oil field, such as lift gas compression costs and fluctuating oil prices.

Early approaches to economic optimization typically rely on the method of equal slopes,
adjusted for costs and profits. Some relevant examples are presented in Simmons (1972),
Redden et al. (1974) and Kanu (1981). Mora et al. (2005) construct a model which maxi-
mizes the net present value (NPV) of an oil field. The NPV of the asset is evaluated over
a 10-year horizon with present-time well parameters estimated by a simulator. A notable
result is that the gas lift injection rate that maximizes oil production is found to be inade-
quate in maximizing the NPV of the asset. Khishvand et al. (2015) use daily cash flow as
the objective to be maximized, and find that gas lift compression costs have a significant
impact on the solution quality.
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3.1.5 Machine Learning Applications to Petroleum Production Opti-
mization

With a surge in popularity over the recent years, machine learning (ML) applications to
petroleum production optimization are numerous. ML techniques are applied to parts of
the optimization approach such as estimating parameters in a pre-optimization step, or to
produce a complete solution of the optimization problem. In the latter case, a guarantee of
optimality is rarely given for the obtained solution, effectively producing heuristic meth-
ods.

A notable early example of applying ML to a pre-optimization step of petroleum produc-
tion optimization is given by Stoisits et al. (1992, 1994). NNs with back-propagation are
used to obtain a model of the well output curve, which subsequently is integrated into a
simulator and optimizer. The performance and computation speed of the total field opti-
mization are later improved upon by the application of a genetic algorithm (GA) in Stoisits
et al. (1999). Gharbi et al. (1997) use NNs to predict petroleum-fluid properties such as the
GOR and bubble-point pressure based on real data from the Middle East. The NN achieves
higher accuracy than conventional regression techniques. In a more recent work, Shokir
et al. (2017) apply NNs to produce a well output model and estimate bottom-hole pressure
levels. Their implementation is able to predict oil well parameters outside of the training
set with satisfying accuracy, proving particularly accurate for the well output curve as a
function of gas lift injection rates. Again, the NN is integrated into a complete optimiza-
tion system. Saputelli et al. (2002) take a hierarchical approach to the development of data
driven models with a focus on NNs. They note that artificial NNs are powerful tools when
used to assist in frequent optimization in petroleum production.

For the approach of using ML techniques to producing a full solution to an optimiza-
tion problem, Martinez et al. (1994) show an early application of a genetic algorithm to
a field-wide problem formulation. Results show a significant increase in oil production
in comparison to single-well optimization. Ray and Sarker (2006) apply an evolutionary
algorithm (EA) to a multi-objective formulation of the production maximization problem.
The conflicting objectives are maximizing oil production while minimizing lift gas injec-
tion rates. In a computational study, the EA compares favorably to the results obtained by
Buitrago et al. (1996). The algorithm produces satisfying solutions to a problem with 56
wells in a few seconds.

Zerafat et al. (2009) apply ant colony optimization (ACO) to a large scale petroleum pro-
duction field and compare results to approaches such as SQP (Dutta-Roy and Kattapuram,
1997) and a GA (Ray and Sarker, 2006). They find that ACO, although slightly outper-
formed by the GA, is able to produce good results that outperform the classical approaches
such as SQP.

Hamedi et al. (2011) apply particle swarm optimization (PSO), which they find to out-
perform the SQP approach as presented by Alarcón et al. (2002). Ruz-Hernandez et al.
(2010) construct a neural network which is able to produce solutions for single- and two
well systems. Their results compare favorably to a commercial optimization software, but
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no discussion of the ability of the neural network to generalize to larger problems is given.

As noted, bio-inspired algorithms such as EA, ACO and PSO are commonly characterized
as meta-heuristics which give no guarantee of optimality. Although some convergence
proofs exist (see Villalobos-Arias et al. (2006) or Stutzle and Dorigo (2002)), in practice
the algorithms are not used as exact optimization procedures.

3.2 Neural Networks in Optimization
Early stages of applying NNs to optimization problems involve the design of circuit sys-
tems able to solve complex tasks in a rapid manner. An influential early model is presented
by Tank and Hopfield (1986), who propose a highly interconnected circuit NN of analog
processors. Several researchers build on these ideas. Kennedy and Chua (1988) design
circuit based NNs for non-linear programming, while Simon et al. (1988) focus on sys-
tems tackling integer linear programs for the job-shop scheduling problem (Manne, 1960).
Refinements to the design of the NNs are found in Rodriguez-Vazquez et al. (1990) and
Xia (1996), while Zak et al. (1995) provide a comparative study of circuit based NNs for
LP.

Zhang (2013) thoroughly examines the application of NNs in optimization problems. A
wide range of problem classes is discussed, including linear programming, quadratic pro-
gramming and general non-linear programming.

Szegedy et al. (2013) solve an optimization program in order to generate adversarial input
data to trained NNs. The formulation is able to cause high rates of misclassification in
state-of-the-art networks, and represents a novel take on the combination of an optimiza-
tion model and NNs. Cheng et al. (2017) examine the resilience of neural networks to
input noise or maliciously constructed input examples. The problem of determining re-
silience is solved as an optimization model, in which the entire NN is reformulated as a
mixed integer program (MIP).

Fischetti and Jo (2017) examine the reformulation of a deep NN as a MILP. They present
a method for tightening the bounds on the resulting constraints and provide applications
to both hand-written digit recognition and adversarial examples.

3.3 Bayesian Neural Networks
A distinct interpretation of NNs stems from Bayesian probability theory, giving rise to
the term Bayesian neural network (BNN). Early ideas are found in Buntine (1991) and
MacKay (1992) where probabilistic frameworks for back-propagation during learning are
presented, denoted as Bayesian back-propagation. Contrary to the standard approach for
NN learning, the Bayesian back-propagation places prior beliefs on the distributions of
weights in the network, and considers their corresponding posterior probabilities as well
as the likelihood of the network. Hinton and Van Camp (1993) consider the distributions
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over NN weights in line with the Minimum Description Length principle (Rissanen, 1986),
and add Gaussian noise in weight parametrization.

Following the aforementioned ideas, Nix and Weigend (1994) propose a novel NN archi-
tecture in order to predict target mean and variance simultaneously. The architecture con-
sists of two output units, each with their separate hidden layer. Optimization is performed
by maximizing the log-likelihood of the network outputs. Once trained, the network is
able to provide a measure of the uncertainty in its predictions as described by its estimated
variance. This approach is often referred to as Mean-Variance Estimation (MVE), and
although it is capable of predicting distributions rather than point estimates, it is not fully
Bayesian since it does not consider the posterior probability of its weights. Bishop (1994)
develops a more advanced Mixture Density Network which is able to approximate a mix-
ture of distributions and is particularly well suited for inverse regression problems.

As noted by Neal (1995), an inherent challenge with the Bayesian interpretation of NNs
is the generally intractable problem of integrating posterior probabilities when calculat-
ing predictions. In what may be considered the first comprehensive treatment of BNNs,
Bishop (1995) discusses strategies for tackling this integral. Of special interest in this the-
sis are the simplifying Gaussian approximations used in e.g., the MVE network of Nix and
Weigend (1994), and Monte Carlo methods. Neal (1995) provides an example of the latter
by presenting a hybrid Monte Carlo algorithm. In a later work, de Freitas (2003) uses a
reversible jump Markov Chain Monte Carlo simulation algorithm to handle the intractable
calculations and proves its convergence.

Although the NN presented by Nix and Weigend (1994) is to some extent able to capture
uncertainty in the predictions of the network, Dybowski and Roberts (2001) note that con-
fidence intervals based on this uncertainty alone underestimate the true uncertainty. This
is due to the inability of the network to capture model uncertainty, making variance esti-
mates biased. The underestimation of uncertainty in predictions by an MVE network is
confirmed in comparative studies of prediction intervals by Papadopoulos et al. (2001),
Ding and He (2003) and Khosravi et al. (2011a). However, approximations to the model
uncertainty can be obtained by methods such as bootstrapping, as Heskes (1997) shows.

Lampinen and Vehtari (2001) note the sensitivity of a BNN to the selection of prior dis-
tributions. They show in 3 case applications that poor assumptions during the modeling
phase lead to wrong models with high probabilities as specified by the likelihood function.

Modern work on BNNs turns to what is known as Variational Inference (VI) to handle
the difficulties of intractable integrals over posterior probabilities. According to Graves
(2011), the main idea behind VI is the replacement of a problematic distribution by an
approximate distribution which is more amenable to numerical methods. The divergence
between the true distribution and the approximation is minimized, a concept which relates
to optimization of the Minimum Description Length as presented by Hinton and Van Camp
(1993).
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Graves (2011) presents a tractable VI scheme for neural networks and shows the result-
ing calculations for various choices of posterior distributions over the weights in a neural
network. The scheme is applied to phoneme recognition and achieves reductions in the
number of weights required in the network as well as improved generalization over tradi-
tional neural networks. Blundell et al. (2015) introduce a new back-propagation scheme
for learning distributions over weights, based on a VI approximation to the true posterior
distribution. BNNs trained with the scheme display improvements in generalization per-
formance over traditional NNs. Other recent works of interest on VI include Kingma and
Welling (2013) and Rezende et al. (2014).

Following the reparametrization trick of Kingma et al. (2015), Gal and Ghahramani (2015)
show how a multilayer perceptron with arbitrary depth, non-linearities and dropout (Sri-
vastava et al., 2014) applied after every weight-layer is mathematically equivalent to an
approximation of a probabilistic deep Gaussian process (Rasmussen, 2004). Notably, Gal
(2016) finds that optimizing a neural network with dropout is equivalent to VI in a BNN
under certain conditions. This allows for the estimation of model uncertainty for any
NN with dropout. A connection between Gaussian processes and BNNs is also shown in
Louizos and Welling (2016), where a matrix-variate Gaussian distribution is used in the
BNN.
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3.4 Table of Selected References

Table 3.1: Selected Works Presented in the Literature Study

Decision Variables

Article Objective Problem
Type

Solution
Method

Gas
Lift

Choke Routing Physical
Factors

Lang and Horne
(1983)

Oil produc-
tion

Non-linear DP Yes No No Yes

Stoisits et al.
(1992, 1994)

Oil produc-
tion

Non-linear NN, Simula-
tor

Yes No No No

Nishikiori et al.
(1995)

Oil produc-
tion

Non-linear Quasi-
Newton

Yes No No No

Buitrago et al.
(1996)

Oil produc-
tion

Non-linear Stochastic-
heuristic
hybrid

Yes No No No

Fang and Lo
(1996)

Oil produc-
tion

PWL
MILP

Separable
program-
ming

Yes No No No

Dutta-Roy and
Kattapuram
(1997)

Oil produc-
tion

Non-linear SQP Yes No No No

Stoisits et al.
(1999)

Oil produc-
tion

Non-linear NN, GA Yes No Yes Yes

Alarcón et al.
(2002)

Oil produc-
tion

Non-linear SQP Yes No No No

Wang (2003) Oil produc-
tion

Non-linear Partial enu-
meration,
GA

Yes Yes Yes No

Kosmidis et al.
(2005)

Profits MINLP Sequential
MILP

Yes Yes Yes Yes

Mora et al. (2005) NPV of as-
set

Non-linear Simulation Yes No No Yes

Ray and Sarker
(2006)

Oil produc-
tion

PWL
MILP

NSGA-II Yes No No Yes

Bieker (2007) Oil produc-
tion

PWL
MILP

B&B Yes Yes No Yes

Gunnerud and
Foss (2009)

Oil produc-
tion

PWL
MILP

DWD, LD Yes No Yes Yes

Zerafat et al.
(2009)

Oil produc-
tion

Non-linear ACO, GA Yes No No No

Ruz-Hernandez
et al. (2010)

Oil produc-
tion

Non-linear NN Yes No No No

Silva and Cam-
ponogara (2014)

Oil produc-
tion

PWL
MILP

B&B Yes No Yes Yes

Khishvand et al.
(2015)

Daily cash
flow

Non-linear GRG, SLP Yes No No No

Grimstad et al.
(2016)

Oil produc-
tion

Non-linear CENSO,
BONMIN

Yes No Yes Yes

Shokir et al.
(2017)

Oil produc-
tion

Non-linear NN Yes No Yes No
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Table 3.2: Nomenclature used throughout the literature study and in the table of selected references.

Literature Study Nomenclature

Abbreviation Item

PWL Piecewise Linear

B&B Branch & Bound

LD Lagrange Decomposition

DWD Danzig-Wolfe Decomposition

SLP Successive Linear Programming

MILP Mixed Integer Linear Program

MINLP Mixed Integer Non-Linear Program

DP Dynamic Programming

SQP Sequential Quadratic Program

NN Neural Networks

GA Genetic Algorithm

NSGA-II Non-Dominated Sorting Genetic Algorithm II

ACO Ant Colony Optimization

GRG Generalized Reduced Gradient

CENSO Convex Envelopes for Spline Optimization

BONMIN Basic Open-source Nonlinear Mixed Integer programming

In Table 3.1, a selection of works is presented. For each article, the objective being max-
imized is listed, along with the problem type and solution method. In addition, the mod-
eling choice regarding which decision variables the authors include is shown in the four
rightmost columns. Table 3.2 gives an overview of the nomenclature used in the table of
selected references.

The majority of work focuses on maximizing the total oil production in the oil field. This
is achieved by a variety of problem formulations that are either linear, piecewise linear or
non-linear, with complexity generally increasing in the same order. Solution methods are
more varied still, with applications ranging from decomposition techniques to the popular
NSGA-II algorithm. As is evident from the decision variable columns, all of the presented
work incorporates explicit decision variables in the model formulation, a consequence
of focusing on precisely such models. However, the modeling choices with respect to
physical factors vary.
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3.5 Comments on the Literature Study
The literature study is introduced with the conflicting priorities of obtaining a good ap-
proximation to well output curves and the need to keep model complexity low enough to
allow for fast and efficient solving. As there is no single best prioritization, the resulting
implementations are many and diverse.

Several of the early approaches to optimization in the petroleum industry described in
Section 3.1.1, such as the method of equal slopes, are outperformed by more recent ap-
plications. Such approaches are considered outdated by modern standards. An example
of the contrary is the nodal analysis, which is still in use in modern simulation software,
e.g., PROSPER (2015). However, nodal analysis is concerned with describing the fluid
mechanics of a producing well while this thesis seeks to avoid optimizing over physical
parameters such as bottom-hole pressure.

A strong argument for non-linear optimization is the fact that modelling pressure interac-
tions between wells is difficult in a linear fashion, a point which is emphasized by Dutta-
Roy and Kattapuram (1997). This consideration is a returning motivation in several of the
works presented in Section 3.1.2. A range of different solution strategies is presented to
alleviate the long solution times often associated with non-linear programming. Nonethe-
less, reported solution times are often in the order of hours or days. If the application of
the optimization model requires re-solving several times per day, the computational re-
quirements of non-linear approaches may make them ill-suited for the relevant application
of this thesis. Even so, non-linear formulations with acceptable solve times are presented,
e.g., by Grimstad et al. (2016). However, solving such models often requires the use or
development of specialized solution strategies of which not all guarantee optimality.

Piecewise linear mixed integer models seek to achieve a satisfying complexity while keep-
ing computational requirements low. Numerous ways of modelling oil field production
systems are presented in Section 3.1.3, both including and excluding physical parameters
such as pressure drop and pipeline characteristics. Models which exclude physical param-
eters are closely related to the scope of this thesis, and typically approaches including such
parameters can be adapted to optimize solely over explicit decision variable settings.

The successful application of machine learning techniques to optimization problems in the
RTO of oil fields is a widely examined topic in the recent years and is exemplified by e.g.,
Sra et al. (2011). Several such applications are presented in Section 3.1.5, with the main
distinction being whether or not machine learning is applied to produce a complete solu-
tion, or as a pre-optimization step to e.g., approximate a well output curve. The latter case
is compatible with virtually any solution approach. This approach benefits from effective
function approximation with machine learning while still guaranteeing a global optimum
using traditional optimization methods. Such a combination of machine learning and op-
timization is applied in this thesis.

In Section 3.1.4, some economic perspectives to petroleum production optimization are
presented. Several authors argue that any agent in the petroleum production industry is
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mainly concerned with maximizing profits, measured by, e.g., net present value or cash
flow, rather than actual barrels of oil. Although this argument is sound, virtually any model
maximizing oil production is adaptable to incorporate costs and profits with relative ease.
Thus, the main area of interest is tackling the difficulties in modeling well output curves,
and keeping solve times down.

Using NNs to tackle optimization problems is far from a new concept. Early examples in
Section 3.2 are based on circuit modelling. However, the reformulation of a trained NN as
a MILP is a relatively new concept which is yet to be explored fully. Several interesting
topics are discussed in more recent works, such as adversarial input distortion and network
resilience.

Finally, in Section 3.3 we present a brief study of BNNs and related ideas. Proponents of
BNNs typically contend that the single point estimate of a regular NN is an oversimplifi-
cation of the real target distribution and its uncertainty. BNNs provide powerful statistical
tools which give access to uncertainty estimates. However, the corresponding computa-
tional cost is often prohibitively large. Recent results linking BNNs and Gaussian pro-
cesses show that such uncertainty estimates in certain cases can be obtained almost for
free. The most relevant result to this thesis is the use of dropout to estimate model uncer-
tainty.
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Chapter 4
Theory

This chapter describes relevant theory supporting the implementations and models in this
report. The chapter is organized as follows. First, Section 4.1 introduces topics that are
relevant in the setting of supervised learning. Then, neural networks (NN) and their most
important features are presented in Section 4.2, before modern topics on estimating uncer-
tainty in NNs are provided. Finally, an introduction to concepts of optimization is given in
Section 4.4.

4.1 Supervised Learning and Model Selection

The task of using some set of input variables to predict the value of some set of output vari-
ables is what is characterized as supervised learning. There are countless approaches to
supervised learning; examples include linear regression, kernel methods, neural networks
and splines. Ideally, which approach to use is carefully selected in accordance with the
problem characteristics at hand. This section describes some general concepts related to
selecting the optimal model fit within some chosen approach to supervised learning.

In the following discussion, we assume that our observed data is generated by some system
described by

y = f(x1, ... , xn) + ε (4.1)

where the function f captures the joint predicative relationship of y on some domain X =
x1, ... , xn ∈ D ⊂ Rn which in this setting contains our data. The ε term describes the
dependence of y on terms not in D and is thus not observable given our data. We make
the assumption that the expected value of ε is 0. The problem of interest in supervised
learning is to find a model f̂ which approximates f .
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4.1.1 The Bias-Variance Trade-off
Given our definition of the system generating our observed data described in Equation
4.1, we can examine the squared-error loss (see Equation 4.6) of some model fit f̂ to
f . According to Hastie et al. (2009), the expected prediction error at some input point
X = x0 is decomposed according to the following set of equations:

Err(x0) =E[(y − f̂(x0))2 |X = x0]

= σ2
ε + [E[f̂(x0)]− f(x0)]2 + E[f̂(x0)− E[f̂(x0)]]2

= σ2
ε + Bias2(f̂(x0)) + Var(f̂(x0))

= Irreducible Error + Bias2 + Variance (4.2)

The first term in Equation 4.2 represents the variance of the target function around its true
mean, and is irreducible in that we cannot avoid it unless σ2

ε = 0. Bias is the amount the
mean of our model deviates from the true mean. Variance is the expected squared devia-
tion of our model around its mean. Both the squared bias term and the variance term are
elements of the error that in theory are reducible to 0 given the true model and infinite data
with which to calibrate it. However, in real applications, access to near infinite is probably
unrealistic and there is a trade-off between minimizing bias and minimizing variance.

In general, models with high bias and low variance tend to be less complex in their struc-
ture. This implies that the model has limited flexibility and is unable to fit the data points
well. An example of this occurs when we fit a linear regression line to a noisy linear data
set with certain extreme outliers - the single line is not flexible enough to capture points
that deviate far from the main trend. However, the line generalizes well outside the train-
ing set if the data mostly follows the linear trend.

Figure 4.1: Illustration of the bias-variance trade-off for a theoretical regression model, Roe-
Fortmann (2012)

On the other hand, models with high variance and low bias in general tend to be more

24



complex, and are able to capture such outliers with their increased flexibility. An example
of this is fitting a high order polynomial to a data set with similar characteristics as pre-
viously described. The bias-variance trade-off occurs because models with high bias may
be underfit to the data and unable to capture the right signal, while models with high vari-
ance may be overfit to the data and capture noise instead of the true signal - such models
generalize poorly outside the training set.

Ideally, the point at which we cannot achieve a reduction in either bias or variance without
incurring a greater increase in the other is where we find our optimal model. This is
illustrated in Figure 4.1. In practice, it is not straightforward to select a model with the
optimal hyperparameters even if we are aware of the bias-variance trade-off. Estimating
the prediction error of a model requires the use of certain applicable methods, such as
cross-validation (Section 4.1.4).

4.1.2 Aleatoric and Epistemic Uncertainty
According to Kendall and Gal (2017), there are two distinct types of uncertainty which
need to be accounted for when we model a function to some observed data: aleatoric un-
certainty and epistemic uncertainty. This relates to the error decomposition from Equation
4.2 in that the aleatoric uncertainty represents the irreducible error, while epistemic uncer-
tainty incorporates both model bias and variance. The prediction uncertainty is expressed
as

V arPrediction = V arAleatoric + V arEpistemic (4.3)

In the following, we assume that we are given input data x with corresponding output data
y. We refer to one arbitrary pair of input and output data as x∗ and y∗, respectively.
Aleatoric uncertainty captures inherent noise in the observations. If we assume homoscedas-
tic variance in the data, the aleatoric uncertainty is constant and can be described by the
model precision τ , or equivalently by the variance σ2. Thus we obtain

V arAleatoric[y
∗] := τ−1I = σ2 (4.4)

If we assume that certain regions of the data contain more aleatoric noise than others, the
variance is heteroscedastic. In such cases, aleatoric uncertainty is a function of x∗, given
by

V arAleatoric[y
∗] := τ−1[x∗]I = σ2[x∗] (4.5)

Epistemic uncertainty captures the uncertainty in our model parameters and is therefore
often referred to as model uncertainty. Given infinite data, we can explain away such un-
certainty. Since this rarely is possible in real applications with limited data available, we
need to account for the epistemic uncertainty present in our model by some applicable
method.
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4.1.3 Error Metrics
Several approaches to measuring the error of regression fit f̂ to some function f exist. No
single best metric quantifies the fitting error, but the following metrics provide different
insights and are sensitive to different aspects of the data.

Mean Squared Error (MSE) is a measure of the distance between a regression line and a
set of points. It is calculated by taking the mean of the squared difference between the
points and the regression line. Thus, MSE is given by

1

N

N∑
n=1

(f̂(xn)− f(xn))2 (4.6)

where f̂(xn) is the value estimated by the regression line in the point xn, and f(xn) is
the true value of the data point. Due to the squaring, large deviations are weighted more
heavily than small ones. Thus it is sensitive to any outliers in the data. Taking the root of
MSE leads to the also commonly used Root Mean Squared Error (RMSE).

The standard deviation (SD) is a measure of the dispersion of a set of values. A low
SD suggests that the data values are close to the mean of the data values, while a higher
SD points towards a larger deviation from the mean. The SD is often used to express
confidence intervals and distributions and is expressed in the same units as the data. The
formula for calculating the SD from sample data (meaning not the entire population) is
given by

SD =

√√√√√ N∑
i=1

(xi − x)2

N − 1
(4.7)

where xi is the sample point i, and x is the average of xi for all sampled points
i = 1, ..., N .

In-Sample and Out-of-Sample Error

We distinguish between in-sample and out-of-sample errors. The former refers to how our
regression fit performs with respect to the data set to which it was fit. The latter refers to
how our regression fit performs on data it has never seen before. When fitting a regres-
sion model, a common way of tracking in-sample and out-of-sample error is by dividing
the data set into three separate subsets: a training set, a validation set and a test set, with
the training set typically comprising a larger part of the original set, e.g., 80%-10%-10%,
respectively.

The training set is the subset on which we perform the regression fit. Thus, the training
error is a measure of in-sample error. The validation set is used to measure how our fit
performs on unseen data and is a measure of out-of-sample error. After fitting a model
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to the training data, we use the validation set and validation error to assist in tuning the
parameters of the model to reduce out-of-sample error. Finally, after deciding the model
parameters, we evaluate the model on the test set to obtain the test error. The test error
gives us an improved estimate of the out-of-sample error of the model.

It is essential to keep the test set completely separate from the training and model selection
procedure. If the model performance on the test set is used to select model parameters,
the test set essentially becomes a second validation set. This is referred to as peeking, and
it invalidates the improvement in the estimate of out-of-sample error provided by the test
error.

Normally Distributed Errors

We are able to calculate the probability of a function value given an input value if we make
certain assumptions regarding the distribution of the data, or equivalently the distribution
of the error of the function that generated the data. We assume that the observed data
y is sampled from some function f(x) with normally distributed errors, where a pair of
arbitrary input and output data are denoted by xi and yi. According to Nix and Weigend
(1994), the probability density function (PDF) of f(x) is given by

P (yi|xi,N ) =
1√

2πσ2(xi)
exp

(
−[yi − µ(xi)]

2

2σ2(xi)

)
. (4.8)

The PDF denotes the probability that the real output data yi is generated by f(x) given
the input xi and the distributionN (µ(x), σ2(x)). Here, µ(x) and σ2(x) are the mean and
the variance of f(x), respectively. Taking the natural logarithm of both sides, we get an
expression for the log-likelihood:

lnP (yi|xi,N ) = −1

2
ln(2π)− 1

2
ln[σ2(xi)]−

[yi − µ(xi)]
2

2σ2(xi)
. (4.9)

4.1.4 Cross-Validation

Cross validation is a method of estimating the prediction error of a model fit f̂ . More
precisely, the method estimates the out-of-sample error; that is the average generalization
error that occurs when we apply our method to an independent test sample that was not
present in the training step (Hastie et al., 2009). For a data set with N observations, K-fold
cross validation consists of splitting the dataset intoK parts of (roughly) equal size. Then,
we leave each part out of the training process and record the error of our trained model
when predicting over the data in the part that was left out. The prediction error from each
of the k = 1, 2, . . . ,K iterations of model training and subsequent testing are averaged to
give an estimate of the total prediction error. Let f̂−k(x) be the fitted model with the kth
part of the data omitted from the training procedure. We define a mapping function g(i)
which for a data point i = 1, 2, . . . , N returns the part k in which i was omitted from the
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training set. The cross-validation error estimate is given by

CV (f̂) =
1

N

N∑
i=1

L(yi, f̂
−g(i)(xi)) (4.10)

where L(yi, f̂
−g(i)(xi)) represents the loss function. We apply this principle to assist in

model selection by comparing cross-validation estimates of errors between models trained
with different hyperparameters. Let f̂(x, α) be a model fitted to data x using hyperpa-
rameters α and A be a user-specified set of hyperparameters of interest. We then choose
optimal hyperparameters α∗ according to

α∗ = argminα∈A (CV (f̂(α, x)). (4.11)

After selecting optimal hyperparameters, the model is trained on the entire training set
without leaving any parts out.

The parameter K determines the size of the left out testing set for each round. In the ex-
treme, setting K = N yields what is referred to as leave-one-out cross-validation. In this
case, a single data point is left out in each step, and the prediction error for this data point
is recorded. The value chosen for K affects both computational efforts expended and the
behavior of the prediction error estimate.

For large values of K, we observe that we must refit and test our model numerous times to
obtain the prediction error estimate. This procedure is potentially computationally taxing.
We also observe that for K close to or equal to N , the estimate of the prediction error is
virtually bias-free since the K different training sets differ only in a few (or none) points
K −N . The variance of this estimate is however large. For small K, there potentially is
considerable bias since large portions of the data set are left out during training, but the
variance is low.

What constitutes a proper value for K is subject to discussion, and K should be se-
lected after inspecting the specific problem at hand. Nonetheless, certain values are rec-
ommended as a compromise in the bias-variance trade-off, by for instance Breiman and
Spector (1992). Two popular such values are K = 5 and K = 10.

4.2 Neural Networks
Extensive theory exists regarding NNs. In the following, we give brief introductions to the
most important concepts.

4.2.1 Introduction to Neural Networks
A neural network is a machine learning approach where a network of densely connected
neurons learns to perform a task by analyzing training examples. More precisely, a neural
network is a two-stage non-linear statistical regression or classification model, with the
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two stages being called forward passing and backward passing. The network is loosely
based on how biological nervous systems, such as the brain, handle information with elec-
trical impulses sent between neurons. Structurally, neural networks are separated into
layers, as shown in Figure 4.2. The first layer (input layer) and the last (output layer) are
the only ones that are observed by the user. The layers in between are therefore called hid-
den layers. Neurons in a given layer are usually connected to neurons in their neighboring
layers, but not to other neurons in the same layer. One of the most common types of neural
networks is a feed-forward network, meaning that information flows in one direction from
the input layer, through the hidden layers, and ends up in the output layer.

Figure 4.2: The basic structure of a fully connected feed-forward neural network with one input
layer, one hidden layer and one output layer.

Each neuron is initially given a bias, and each connection between neurons is given a
weight. These weights and biases are tuned during training. The neurons also have a
defined activation function, dictating which operations each neuron performs on its input
before passing it as output to neurons in the next layer. A standard operation, often re-
ferred to as the linear activation function, is multiplying the outputs of the previous layer
by their corresponding weights leading to the given neuron and adding the bias term of
the given neuron. Some examples of additional activation functions are sigmoid, softmax,
maxout and the Rectified Linear Unit (ReLU), which is discussed in more depth in Sec-
tion 4.2.2. The network as a whole calculates the network loss according to a specified
function. That is, the loss is some measure of its output error, i.e., the output compared to
the correct case label or value. Common loss functions are MSE and cross-entropy. The
goal of the training of the neural network is to minimize this loss, while at the same time
avoiding overfitting, a process often referred to as generalizing. This process is explained
in Section 4.2.3.

The generic way of minimizing the loss of the network is to train the neurons using a
method called back-propagation. Back-propagation can be split into two parts; the forward
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pass and the backward pass. In the forward pass, the weights and biases are locked, and the
output of the network is calculated from a training case input. Next, the loss is calculated
and passed back through the network to adjust the weights and biases. In this algorithm,
parameters for a neuron which contributes a lot to the loss of the network are adjusted
more heavily in the backward pass than for neurons which contribute less.

4.2.2 Rectified Linear Units
The rectified linear unit is a popular choice of activation function in the neurons of a neural
network. The ReLU function returns the maximum of its input and 0, that is

ReLU(xj) = max{0, xj} (4.12)

where xj is the output of the linear activation function of the neuron. This output is given
by

Nk−1∑
i=1

W k
ijx

k−1
i +Bkj = xkj (4.13)

where xkj is the output of the linear activation function in neuron j in layer k, Nk is the
number of neurons in layer k, W k

ij is the weight from neuron i in layer k − 1 to neuron j
in layer k and Bkj is the bias of neuron j in layer k.

Figure 4.3: A piecewise linear graph, computed by multiplying the output of four ReLU-functions
with their corresponding weight and summing.

The output of a ReLU is always non-negative, so to be able to form non-convex (or non-
concave) piecewise linear functions, the outputs of several ReLU-functions are multiplied
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with a corresponding (possibly negative) weight and summed. An example of this is shown
in Figure 4.3, where four ReLU-functions make up a non-convex piecewise linear function.
Note that if all weights have the same sign, the resulting function is a convex (or concave)
piecewise linear function. When combining multiple ReLUs, the resulting piecewise linear
function is segmented according to the points at which each of the ReLU-functions it is
constructed of takes values above 0.

4.2.3 Training a Neural Network
In this section, the back-propagation method, introduced in Section 4.2.1, is elaborated
on. Assume we want to train a neural network, f̂(x), to approximate some function, f(x),
given a set of true x and y values (y = f(x)). Each training run starts with a forward
pass, meaning that the network is given some input x∗ and returns some output, ŷ∗. By
comparing the output to the true label value, y∗, the loss function calculates the loss, L.
This is followed by a backward pass, which is where the training happens. Training a
neural network is an iterative process, where each iteration involves one forward pass and
one backward pass.

As mentioned in Section 4.2.1, training the network means adjusting its weights and bi-
ases. The value by which each parameter is adjusted is found by calculating the gradient of
the loss function with respect to the parameter, i.e., by calculating the partial derivative of
the loss with respect to the parameter. This is achieved by applying the chain rule, yielding
the gradient

∇L(wij) =
∂L

∂wij
=

∂L

∂outj
· ∂outj
∂inj

· ∂inj
∂wij

(4.14)

for two given neurons, indexed by i and j, where wij is the weight from neuron i to
neuron j, inj is the input to neuron j including the bias of the neuron itself, and outj
is the output of neuron j after the activation function, respectively. When updating the
biases, the weight variable in Equation 4.14 is replaced by the bias variable, bj , which
yields

∂inj
∂bj

= 1 =⇒ ∇L(bj) =
∂L

∂bj
=

∂L

∂outj
· ∂outj
∂inj

. (4.15)

The weight updates are calculated recursively, starting at the output layer. As a result of
the backward pass, the degree to which each weight is adjusted depends on how much it
contributes to the network loss in the latest forward pass. The gradients are then used by
the implemented optimization algorithm to update the parameters of the neural network.

4.2.4 Optimization Algorithms in Neural Networks
In NNs, optimization algorithms, or optimizers, are used to train the network, usually to
minimize some loss function. The most commonly used optimizer is the Gradient Descent
(GD), which updates parameters according to

θ = θ − µ · ∇L(θ) (4.16)
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where ∇L(θ) is the gradient (Equation 4.14) of the loss function, L(θ), with respect to
parameters θ, and µ is the learning rate. Stochastic Gradient Descent (SGD) is a variant of
GD, where the parameters are updated after each training example. This is known to cause
the parameters to fluctuate, which helps to escape local optima but may impede conver-
gence. The fluctuation makes the method sensitive to the learning rate parameter, which
is constant throughout the optimization and equal for all model parameters. The learning
rate can be thought of as how quickly the network adapts to new data. Setting a learning
rate that both leads to convergence and allows the escape from local optima is difficult.
This difficulty is noted as a weakness of the SGD (Walia, 2017).

Figure 4.4: Loss of a NN trained with Adam compared to other GD-based optimizers (Kingma and
Ba, 2014)

Momentum is introduced to reduce the fluctuations. Momentum works by remembering
the gradient of the last iteration and thereby slowing the possibility of the algorithm to alter
direction and speed when traversing the solution space. The issue of constant learning
rate is handled by adaptive optimizers, such as the Adaptive Moment Estimation (Adam,
Kingma and Ba (2014)). Adam uses exponentially decaying averages of past squared
gradients and past gradients to scale the learning rate for each parameter in each training
iteration. The effect of this is similar to that of momentum. In Figure 4.4, the loss of NNs
when training on the famous machine learning data set MNIST with Adam is compared
to other optimizers. The plot shows a significantly lower loss for Adam compared to the
other GD-based optimizers.
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4.2.5 L2 Regularization
L2 regularization, also called weight decay, is a technique used to avoid overfitting in NNs.
The idea is to add a regularization term given by

β

2n

∑
γ

γ2 (4.17)

to the loss function of the NN. Here, n is the size of the training set, γ are the parameters,
i.e., weights or bias terms, and β is a user determined parameter deciding the intensity
of the regularization. The regularized loss function punishes having weights and biases
that are large in absolute value. Not all parameters end up approaching zero since the
original term in the loss function is still in play. If the reduction in error from increasing
the absolute value of a parameter is larger than the punishment of the regularization term,
the parameter is allowed to increase in absolute value. However, regularization can drive
some neurons to a weight and bias of zero, thereby effectively neutralizing the neuron and
decreasing the complexity of the network. The β parameter decides the relative importance
of the two terms in the loss function. A low β encourages minimization of the original cost
function, and a high β encourages low weights.

4.2.6 Dropout
Dropout is a technique for avoiding overfitting in NNs. E. Hinton et al. (2012) introduce
the technique and achieve a considerably lower validation set error compared to networks
trained without dropout (and without other regularization techniques). When applying
dropout, a binary variable is assigned to each neuron in the specified layers, which typi-
cally includes all hidden layers or all hidden layers and the input layer. The binary variable
takes the value 0 with probability p, in which case the output value of the corresponding
neuron is set to 0. The random dropout makes the network less likely to produce complex
co-adaptions, meaning it to a lesser extent overfits the training data and to a greater extent
generalizes. Dropout thus typically makes the network perform with a greater loss on the
training data, but with a lower loss on previously unseen data.

During the test or validation phase of the network, often referred to as making predictions,
forward passes without dropout are performed. Since all neurons in this phase are active,
each layer receives a greater total value from the previous layer than when some neurons
are dropped out. For this reason, the outputs of the neurons must either be scaled up dur-
ing training (inverted dropout) or scaled down during testing (dropout). Inverted dropout
scales the neuron output by 1

1−p in the training phase, while regular dropout scales outputs
by 1− p in the testing phase.
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4.3 Estimating Uncertainty with Neural Networks
In many applications, NNs are used to obtain point estimates of the target variable. Such
estimates contain no information of how confident the NN is in its prediction. In this
section, we show how NNs are able to estimate a target distribution rather than point esti-
mates. Following ideas from BNNs, both epistemic and aleatoric uncertainty is included
in the estimated distribution.

4.3.1 Bayesian Neural Networks and Dropout as a Variational Distri-
bution

A Bayesian neural network (BNN) (MacKay, 1992) is a probabilistic interpretation of a
NN in which we place a prior belief over the distribution of the weights and bias terms.
For a BNN with i = 1, 2, . . . , I layers, an often used prior for the weight matrix Wi of
layer i is p(Wi) = N (0, 1). Given input data x and corresponding output data y, both of
size N , we can estimate the posterior probability of our parameters given our data. That
is, if we define ω = {W1,b1, . . . ,WI ,bI} to be the weight and bias parameters of our
BNN, the posterior probability is given by

p(ω|x,y). (4.18)

We then perform inference, i.e., the prediction of an output value y∗, for a new input value
x∗, by

p(y∗|x∗,x,y) =

∫
p(y∗|x∗,ω)p(ω|x, y)dω. (4.19)

Equations (4.18) and (4.19) are generally not tractable. We therefore define a variational
distribution, qθ(ω) with its own set of parameters θ, which approximates the posterior
probability. The idea is to select a variational distribution that is easier to handle. To en-
sure sufficient accuracy, we attempt to minimize the distance between our approximation
and the true posterior using the Kullback-Leibler (KL) divergence (Kullback and Leibler,
1951), given by

KL(qθ(ω)||p(ω)) =

∫
qθ(ω)

p(ω|x,y)
dω. (4.20)

According to Gal (2016), minimizing the KL divergence is equivalent to minimizing the
negative evidence lower bound loss function, given by

LVI(θ) = −
N∑
i=0

∫
qθ(ω) log p(yi|fω(xi))dω +KL(qθ(ω)||p(ω)). (4.21)

Here, fω(xi) denotes the BNN output in point i. Using Monte Carlo integration and
optimizing over a subset S of size M of the data, we approximate this loss function as

LVI(θ) ≈ L̂MC(θ) = −N
M

∑
i∈S

log p(yi|fω(xi)) +KL(qθ(ω)||p(ω)). (4.22)
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We now consider the loss function of a NN with dropout applied to its weight parameters.
Treating this NN as the variational distribution qθ(ω), we let the weights and biases of the
NN with dropout be denoted by θ. We let the loss function of such a NN, using, e.g., MSE
as the error metric, be denoted by Ldropout(θ), and stress that this NN is not assumed to be
a BNN. In a recent result, Gal (2016) shows that minimizing Ldropout(θ) is equivalent to
minimizing L̂MC(θ), since under certain assumptions about the BNN prior, the following
property holds

∂

∂θ
Ldropout(θ) =

1

Nτ

∂

∂θ
L̂MC(θ). (4.23)

Here, τ denotes the model precision, i.e., the reciprocal of the prior variance. This result
has important implications. Any NN trained with dropout is equivalent to a BNN, and the
task of performing inference is tractable. This also lets us utilize BNN methodology to
assess the epistemic model uncertainty.

4.3.2 Epistemic Uncertainty Using Dropout
In Section 4.3.1 it is shown how a NN with dropout amounts to performing variational
inference in a BNN. An estimate of model uncertainty can then be obtained. To this end,
we define a dropout probability, pi, for each layer i in the network, excluding the input
and output layers. During forward passes, the output of the model varies as a result of the
dropped neurons. We consider a NN with an arbitrary number of output neurons d ∈ D.
Given N forward passes, with f ŵnd (x∗) being the network output of output dimension d in
forward pass n, and ŵn being the realization of the weight matrix in pass n = 1, 2, . . . , N
as a result of the realized dropout, we approximate the expected value, y∗d , of output di-
mension d by

Ẽ[y∗d] :=
1

N

N∑
n=1

f ŵnd (x∗) −−−−→
N→∞

E[y∗d]. (4.24)

This process of averaging several forward passes with dropout is referred to as Monte
Carlo (MC) dropout. We capture the model uncertainty in a similar way. The epistemic
variance is approximated by

Ṽ arEpistemic[y
∗
d] :=

1

N

N∑
n=1

f ŵnd (x∗)T f ŵnd (x∗)− Ẽ[y∗d]T Ẽ[y∗d] −−−−→
N→∞

V arEpistemic[y
∗
d].

(4.25)

4.3.3 Aleatoric Uncertainty
If we assume that the aleatoric variance of our data is homoscedastic, aleatoric uncertainty
is described by the parameter τ−1 for the entire input domain. However, in the case of het-
eroscedasticity, the variance is a function of x. In the following, we assume the data points,
y, are sampled from some function f(x), with normally distributed errors. To capture the
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heteroscedastic uncertainty, it is possible to construct a neural network with two outputs:
µ(x) and lnσ2(x). The former is an approximation of the mean of the mentioned distribu-
tion, while the latter is an approximation of the natural logarithm of the aleatoric variance.
The reason for re-parameterizing, i.e., using the natural logarithm of the aleatoric variance
instead of the aleatoric variance itself, is to ensure that the variance output returned from
the network always produces non-negative values when we transform it to the aleatoric
variance. This is achieved by taking the natural exponential function of the lnσ2-term.

The loss function of the network fits the µ(x)-output to y, while at the same time ad-
justing the lnσ2(x)-output to an approximation to the natural logarithm of the aleatoric
uncertainty of f(x). The following loss function is applied in the NN, as described by Nix
and Weigend (1994),

L =
∑
i∈I

1

2

(
[yi − µ(xi)]

2

σ2(xi)
+ ln[σ2(xi)]

)
. (4.26)

This loss function is based on the expression for the log-likelihood defined in Equation
4.9. The first term of the log-likelihood is removed since it is constant. The loss-function
is then obtained by taking the negative of the trimmed log-likelihood and summing over
the data points, i ∈ I .

4.3.4 Prediction Uncertainty

The ideas behind aleatoric and epistemic uncertainty leads to the NN with dropout and the
two output neurons as described in the previous section. Using the network architecture
described in Section 4.3.3, we let output dimension d = 1 correspond to the output neuron
predicting µ(x) and output dimension d = 2 correspond to the output neuron predicting
lnσ2(x). The output neurons vary with the dropout realization in each forward pass.
Letting µn(x∗) and lnσ2

n(x) be the outputs of the network during forward pass n =
1, 2, . . . N , we have

µn(x∗) = f ŵn1 (x∗) (4.27)

lnσ2
n(x∗) = f ŵn2 (x∗) (4.28)

Inserting the re-parameterized network output for aleatoric uncertainty and Equation (4.25)
for epistemic uncertainty into the expression for prediction uncertainty (4.3), we obtain

Ṽ ar[y∗] =
1

N

N∑
n=1

exp (lnσ2
n) +

1

N

N∑
n=1

µ2
n −

(
1

N

N∑
n=1

µn

)2

. (4.29)

The first term represents the heteroscedastic aleatoric uncertainty and the second and third
terms represent the epistemic uncertainty. Here, we have dropped the dependence on x∗

for readability.
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4.4 Optimization
In this section, a selection of relevant concepts in stochastic and multi-objective optimiza-
tion are presented.

4.4.1 Stochastic Optimization
We present a brief introduction to topics in stochastic optimization that are relevant to this
thesis. For more thorough treatments, the interested reader is referred to King and Wallace
(2012) or Prékopa (2013).

A canonical example of a stochastic optimization problem is the two-stage recourse prob-
lem. We define decision variables x and y, and a random vector to be observed ξ. Further-
more, we define the order in which decisions and observations are made as (1) decisions
x, (2) observation of ξ and (3) decisions y. The problem is denoted as a two-stage prob-
lem since decisions are made in two distinct stages, i.e., variables x correspond to the first
stage decisions while variables y correspond to the second stage decisions. We define the
second stage problem as

min qTy (4.30)
s.t.

Tx +Wy = ξ (4.31)
y ≥ 0 (4.32)

where the first stage variables x are assumed to be fixed, q denotes the cost vector in
the second stage objective, and Equations (4.31) and (4.32) define the feasible region for
decision variables y. Clearly, the existence of a solution for the second stage problem
for all possible realizations of ξ depends on the fixed value for x. We denote by K the
region for which such a solution indeed exists for all ξ, and let q(x, ξ) be the optimal
objective value for the second stage problem. When we make decisions x before observing
ξ, we are interested in the expected value of the second stage problem given our first stage
decisions, that is, we are interested in Q(x) = E [q(x)]. Given cost vector c for the first
stage decisions, we define the two-stage recourse problem as

min cTx +Q(x) (4.33)
s.t.
Ax = b (4.34)
x ≥ 0 (4.35)

where constraints (4.34) and (4.35) define the feasible region for x. Since the second stage
decisions are made after the observation of ξ, they are commonly referred to as the re-
course decisions. Intuitively, the two stage recourse problem consists of making decisions
x before observing all unknown factors with the intent of minimizing first stage costs and
the expected cost of the second stage problem, given that we are able to identify optimal
recourse decisions y after observing said random factors.
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So far, we have made no assumptions regarding the distribution of ξ. A continuous dis-
tribution means we integrate over the support of ξ when calculating Q(x), a task that is
in general considered intractable for all practical problems. Assuming that we instead are
dealing with a discrete random variable vector, we let Ξ denote the finite set of realizations
of ξ, and write ξs ∈ Ξ for outcome s = 1, 2, . . . , |Ξ| of the random variables. Commonly,
we refer to such discrete realizations of the random variables as scenarios. In such cases,
if the probability ps of scenario ξs occurring is known, we have

Q(x) =

|Ξ|∑
s=1

psq(x, ξs). (4.36)

The two-stage recourse problem is well studied, and extensive theory regarding problems
of this type exists in the literature. An important concept in this thesis is robustness.
Informally, we characterize the robustness of a solution as its ability to withstand random
effects. Conversely, we characterize the flexibility of a solution as its ability to accom-
modate random effects. Various sources use the terms differently. In this thesis, we refer
to a solution as robust if it is able to withstand random effects regardless of the realized
outcome. In the two-stage setting, a first stage solution x̂ is robust if

T x̂ +Wy = ξs, s = 1, 2 . . . |Ξ| (4.37)

In other words, robustness involves the guaranteed feasibility of the second stage problem
for all possible outcomes of the random variables, i.e., x̂ ∈ K. Note that this notion of
robustness is not dependent on the existence of the recourse decisions y. Problems for
which no recourse actions are available after observing the random variable have a similar
definition of robustness. In general, robust solutions require the sacrifice of flexibility and
subsequently obtain conservative objective values.

4.4.2 Scenario Generation and Stability
In the previous section, we note that continuous random variables generally lead to in-
tractability when solving a stochastic problem. Many algorithms for solving stochastic
problems assume the randomness is represented by a discrete variable. An important is-
sue thus arises when we model a problem from a real setting in which the randomness is
known to have a continuous distribution. In such cases we discretize the randomness using
some method, often referred to as scenario generation.

Generally, the goal is to discretize in such a way that it cannot be observed in the obtained
solution of the model that a discrete approximation is used, i.e., results are identical to
results obtained when using the true continuous distribution. Consequently, our discrete
scenarios ideally capture all aspects of the continuous distribution that are of importance
to the solution of the optimization problem. In practice, it is often not possible to verify
whether or not this is the case.

Robust solutions provide an illustrative example of the problem of discrete approxima-
tions. Assume we discretize some known continuous distribution of a random variable in
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our problem, but fail to capture the behavior of the tail in which the worst case outcomes
are situated. Upon solving the problem, we obtain a solution which the model claims is
robust to all random variable outcomes since the solution is always feasible for the dis-
crete scenarios we include in the model. However, once we implement the solution in real
life, we cannot choose to disregard tail probabilities, and our solution may fail horribly.
Clearly, the scenario generation is part of the modelling process and is of crucial impor-
tance to ensure we model the problem in a sensible way. We often use in-sample and
out-of-sample stability to measure the quality of generated scenarios.

If a scenario generation procedure is not deterministic in nature, it produces different sce-
nario trees from different runs with the same data. According to King and Wallace (2012),
in-sample stability ensures that we achieve roughly the same solution regardless of which
scenario tree we use in our optimization. Let Ti and Tj be two different scenario trees
generated using the same non-deterministic scenario generation procedure. Solving our
optimization problem using each tree, we obtain solutions x∗i and x∗j , respectively. We
have in-sample stability if

F (x∗i , Ti) ≈ F (x∗j , Tj) (4.38)

where F (xn, Tn) is the objective value of solution xn for scenario tree Tn. Furthermore,
we have out-of-sample stability if

F (x∗i , ξ) ≈ F (x∗j , ξ) (4.39)

where ξ denotes the true distribution of the random variables in our problem. That is, we
solve our problem with two different sets of generated scenarios and evaluate the solutions
in a setting in which the uncertainty is no longer approximated by the same discretization
or sub-sample that generated the scenarios. Out-of-sample stability ensures we have not
generated some stability in the scenarios that is not present in the real problem. How-
ever, evaluating a solution using the true random distribution is often difficult. If the true
distribution is discrete but with an immense number of realizations, we are often able to
measure out-of-sample stability since evaluating solutions is typically computationally in-
expensive compared to solving the problem. Other approaches include the construction of
simulations, or the weaker out-of-sample stability condition

F (x∗i , Tj) ≈ F (x∗j , Ti). (4.40)

This (weaker) condition for out-of-sample stability states that solutions obtained when
solving a model for a generated scenario tree yield approximately the same objective val-
ues when evaluated in a different scenario tree.

4.4.3 VSS & EVPI
In general, solving a stochastic optimization problem, denoted as the recourse problem
(RP), is harder than solving its deterministic counterpart. However, the stochastic formu-
lation captures aspects of the problem that the deterministic model is unable to. We refer
to the value of the stochastic solution (VSS) as the measure of the difference in the ob-
jective value when planning with uncertainty from when planning with expected values
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only. That is, the VSS denotes how much a decision maker is willing to pay to incorporate
uncertainty into the modelling. For a minimization problem, it is expressed as

V SS = EEV −RP (4.41)

where EEV is the expectation of the expected value model. The EEV is calculated by set-
ting all uncertain parameters to their expected value and taking the expectation in objective
value from evaluating the solution in all scenarios. Note that the VSS is never negative if
the model solutions are evaluated over the same set of scenarios as are included in the
stochastic model, because planning with uncertainty never decreases the value of the solu-
tion in such cases.

The expected value of perfect information (EVPI) is defined as the difference in objective
value between the wait-and-see (WS) solution and the RP. To calculate the WS, we first
solve the model for each scenario with perfect information regarding the outcome of the
uncertain variables. Then, WS is the expectation in objective value of these solutions over
all scenarios. As the name suggests, EVPI denotes how much a decision maker is willing
to pay for perfect information about the stochastic variables before making a decision.
Thus, for a minimization problem, it is given by

EV PI = RP −WS. (4.42)

In summary, for a conventional stochastic minimization problem with recourse, the fol-
lowing properties hold

EEV ≥ RP ≥WS (4.43)
EV PI ≥ 0 (4.44)
V SS ≥ 0 (4.45)

4.4.4 Multi-Objective Programming
Multi-objective optimization problems (MOPs) include more than one objective function.
A MOP with k objectives is typically of the form

max f1(x)

max f2(x)

... (4.46)
max fk(x)

s.t. x ∈ S

where S is the set of feasible solutions. The objectives are often conflicting in that an
improvement in one objective results in a lower value for one or more of the others. Thus
there is no single optimal solution to the problem, but a set of solutions which we call
Pareto optimal. Pareto optimality is based on the notion of dominance. A solution is dom-
inated if there exists a solution that is strictly better for at least one of the objectives, while
not being worse for any of the other objectives. A solution is strictly dominated if there
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exists another solution that is strictly better for all objectives.

These two classifications of domination serve as the basis for two types of Pareto optimal-
ity. A solution is Pareto optimal if it is not dominated by any other solution, and weakly
Pareto optimal if it is not strictly dominated by another solution. A set of (weakly) Pareto
optimal solutions constitutes a (weak) Pareto front. This means that in a weak Pareto front,
there might exist solutions that are strictly better for some of the objectives and equally
good for the others. Such solutions are called weakly efficient solutions. An example of a
weak Pareto front is shown in Figure 4.5.

Figure 4.5: A Pareto front for a two objective functions with weakly efficient solutions. The two
objectives, f1(x) and f2(x) are both maximized.
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Chapter 5
Problem Description

In the following, the problem description is divided into two parts. First, the general
aspects of RTO in a petroleum production setting are described, followed by an outline of
the structural specifics of a petroleum production field.

Real-Time Optimization of Petroleum Production

Modern production of petroleum relies on the use of optimization in many key areas of the
value chain. In this thesis, we are concerned with the real-time optimization of petroleum
production based on historical measurement data. The real-time optimization provides
decision support for a production engineer, with the main goal of maximizing petroleum
production over a short time horizon while adhering to capacity constraints on uncertain
production rates.

Historical measurement data from the oil field is used to build models of well outputs given
input decision variables. Noise in the data and regions for which no measurements exist
complicate the well modeling process and introduce considerable uncertainty with respect
to the true output rates of each well. We aim to produce well models capable of capturing
both the estimated output rates and the associated uncertainty.

Exceeding upper flow limits in the production system is costly. Although the objective
value in RTO of petroleum production measures oil output rates, the main concern of the
field engineer with respect to uncertainty is avoiding gas capacity constraint breaches. We
simplify the problem in this thesis by treating oil production rates as deterministic, mean-
ing any uncertainty in the problem is located in the gas production rates.

The well models are incorporated into the formulation of optimization problems. We aim
to formulate problems able to provide insights into the effect of planning with uncertainty
in a robust manner, as well as the trade-off between maximizing petroleum production
and minimizing uncertainty in gas production. The short time horizon of RTO problems
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typically implies they are solved repeatedly, often several times per day. It is vital that
decision support arrives in a timely manner since field conditions continuously change,
making outdated solutions no longer applicable. Thus, an important consideration is the
computational requirements of solving our optimization problems.

Which set of operational adjustments to implement is ultimately decided by the production
engineer. Ideally, decision support from the optimization models comes in a form that is
directly implementable in the field. Consequently, we include in the well and optimization
models explicit decision variables which the engineer can directly control.

In summary, the problem of interest in this thesis consists of modeling the performance
and uncertainty of petroleum field wells, and including the well models in the formulation
of RTO problems. Finally, the problem involves presenting the uncertainty in the obtained
solutions in a manner that provides value to a production engineer with a variable degree
of risk aversion.

Petroleum Field Structure

In the following, the general structure of a petroleum production field is characterized.
The field is comprised of a number of production units, i.e., wells, each belonging to a
platform. The routing hierarchy in the production field is organized as follows. Wells pro-
duce a mix of oil and gas which is routed to a separator. Separators split the production
phases and route the resulting streams of oil and gas to an export line. The export lines
lead production phases off-site.

A well may route its production flow to a subset of the separators in the field, depending
on which platform the well belongs to. A well is only able to route to a single separator at
any given time. The routing decision is made separately for each well, effectively allow-
ing two wells belonging to the same platform to route to different separators. The function
mapping from input variables to the outputs of a well is dependent on which separator it
routes to.

There are a number of constraints present in the oil field production environment. Separa-
tors and wells have a capacity limit on the amount of gas they are able to process per time
unit. This capacity is individual for each well and separator. The main export line is also
subject to an upper limit on the gas rate.

Operational constraints are imposed by the preferences and risk aversion of the field oper-
ator. The operator typically wishes to limit the number of operational changes, as well as
the relative change in decision variable settings with respect to the current operating point.
That is, the operator prefers to implement small adjustments to decision variables and may
have individual preferences for the upper limit on the relative change in the positive and
negative direction for each variable separately.
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Chapter 6
Optimization Models

This chapter presents and formulates MILP optimization models. The chapter is structured
as follows. In Section 6.1 we formulate a stochastic model for the problem of optimizing
petroleum production. A deterministic model follows from the stochastic model if all
stochastic variables are locked to an assumed known scenario. We then formulate a neural
network as a MILP in Section 6.2, before a simple model using Special Ordered Sets
of Type 2 (SOS2) is presented in Section 6.3. Finally, a multi-objective version of the
deterministic model is presented in Section 6.4.
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6.1 Stochastic Model
We now formulate a stochastic model for maximizing oil production in an oil field. Since
all uncertainty in the problem is assumed to be located in the gas production, the objective
function is deterministic. For now, we make no assumptions regarding the model rep-
resenting well production output as functions of decision variable inputs, but treat these
models as general functions. A deterministic model follows from the stochastic model if
scenario-indexed variables are locked to an assumed known scenario s ∈ S, where S is
the set of scenarios.

Model

Sets

S Set of scenarios

K Set of input dimensions

P Set of platforms

Ip Set of wells belonging to platform p

U Set of separators

Up Set of separators connected to platform p

Pu Set of platforms connected to separator u

Indices

i Well

k Input dimension

u Separator

p Platform

s Scenario

Parameters

Rik Upper limit relative change for input dimension k of well i

Rik Lower limit relative change for input dimension k of well i

M
O

iu Upper limit for oil output for well i when routing to separator u

M
G

ius Upper limit for gas output for well i when routing to separator u in
scenario s

M iku Upper limit for input dimension k for well i when routing to separator u
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Yi 1 if well i is producing prior to optimization, 0 otherwise

N Maximum number of operational changes

Xik Initial setting of input dimension k for well i

QGu Capacity gas for separator u

QT Capacity for total gas export

QWi Capacity for gas output locally in well i

G∗ Total amount of gas all platforms retain on-site for energy purposes

Variables

õiu Piecewise linear approximation of oil production function for well iwhen
routing to separator u

g̃ius Piecewise linear approximation of gas production function for well i
when routing to separator u in scenario s

xik Setting for input dimension k for well i

xi Vector of input settings xik for all input dimensions k for well i.

φik 1 if input dimension k of well i is adjusted, 0 otherwise

ziu 1 if well i routes its output gas and oil to separator u, 0 otherwise

Functions

fOiu(xi) Function mapping from input vector xi to the output of oil
when routing from well i to separator u

fGius(xi) Function mapping from input vector xi to the output of gas in scenario s
when routing from well i to separator u
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Objective Function
The goal of the optimization is to maximize the oil production rate, i.e., the sum of the
approximated piecewise linear functions õi for each well i summed over connected sepa-
rators u.

max ψ =
∑
p∈P

∑
i∈Ip

∑
u∈Up

õiu (6.1)

Piecewise Linear Approximations of Oil and Gas Production
For each pair of well and connected separator, we construct a piecewise linear approxi-
mation function for each production phase, i.e., oil and gas. We constrain the function so
that it equals the production rate when well i is routing to separator u, and 0 otherwise.
This modeling step is necessary in order to sum over all production output in the objective
function and separator gas constraints. TheM

O

iu andM
G

ius variables take values according
to the maximum output of oil and gas, respectively, for well i when routing to separator u,
and scenario s in the case of gas output.

Oil approximation function constraints:

õiu ≤ M
O

iuziu ∀ p ∈ P, i ∈ Ip, u ∈ Up (6.2)

fOiu(xi)− õiu ≤ M
O

iu(1− ziu) ∀ p ∈ P, i ∈ Ip, u ∈ Up (6.3)

õiu − fOiu(xi) ≤ 0 ∀ p ∈ P, i ∈ Ip, u ∈ Up (6.4)

Gas approximation function constraints:

g̃ius ≤ M
G

iusziu ∀ p ∈ P, i ∈ Ip, u ∈ Up, s ∈ S (6.5)

fGius(xi)− g̃ius ≤ M
G

ius(1− ziu) ∀ p ∈ P, i ∈ Ip, u ∈ Up, s ∈ S (6.6)

g̃ius − fGius(xi) ≤ 0 ∀ p ∈ P, i ∈ Ip, u ∈ Up, s ∈ S (6.7)

Routing to at Most One Separator
Each well can route to a maximum of one separator.∑

u∈Up

ziu ≤ 1 ∀ p ∈ P, i ∈ Ip (6.8)

Forcing Input to Zero When Not Producing
If a well is not producing, we constrain its input variables to take a value of 0 for all input
dimensions. The big-M value, M iku, takes on the maximum recorded value for input k
when routing from well i to separator u.

xik ≤
∑
u∈Up

M ikuziu ∀ p ∈ P, i ∈ Ip, k ∈ K (6.9)
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Robust Separator and Well Capacity Constraints
In each separator, there is a constraint on the rate of the gas that flows through it. The sum
of the contributions from each platform that routes gas to a given separator must therefore
be less than or equal to the separator capacity. The gas production is also constrained
locally in each well.∑

p∈Pu

∑
i∈Ip

g̃ius ≤ QGu ∀ u ∈ U , s ∈ S (6.10)

g̃ius ≤ QWi ∀ p ∈ P, i ∈ Ip, u ∈ Up, s ∈ S (6.11)

Total Export of Gas
The main export line is subject to a constraint on the total gas rate flowing through it. Gas
retained in the field for energy purposes on platforms is subtracted from the total export.∑

p∈P

∑
i∈Ip

∑
u∈Up

g̃ius −G∗ ≤ QT ∀ s ∈ S (6.12)

Maximum number of operational changes
The value of φik is 1 if an operational change is made in the setting of input dimension
k for well i, and 0 otherwise. The total number of operational changes is not allowed to
exceed the maximum limit. ∑

p∈P

∑
i∈Ip

∑
k∈K

φik ≤ N (6.13)

Tracking Operational Changes
We constrain the φik variables to take the value of 1 if an operational change is made in
input dimension k for well i. By altering the values of Rik and Rik, the maximum relative
change in the positive and negative direction in input dimension k for well i is adjusted. A
well may be be shut off from any prior production level, or turned on from input setting 0.
The rightmost terms of constraints (6.14) and (6.15) make sure this is allowed, while also
forcing φik to take the value 1 in this case, where M ik = maxu∈Up{M iku} ∀ p ∈ P, i ∈
Ip, k ∈ K.

Xik − xik ≤ XikRikφik +Xik(1−
∑
u∈Up

ziu)(1−Rik) ∀ p ∈ P, i ∈ Ip, k ∈ K

(6.14)

xik −Xik ≤ XikRikφik + (1− Yi)M ikφik ∀ p ∈ P, i ∈ Ip, k ∈ K
(6.15)
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Variable Bounds

õiu ≥ 0, ∀ p ∈ P, i ∈ Ip, u ∈ Up (6.16)
ziu ∈ {0, 1}, ∀ p ∈ P, i ∈ Ip, u ∈ Up (6.17)
g̃ius ≥ 0, ∀ p ∈ P, i ∈ Ip, u ∈ Up, s ∈ S (6.18)
xik ≥ 0, ∀ p ∈ P, i ∈ Ip, k ∈ K (6.19)
φik ∈ {0, 1}, ∀ p ∈ P, i ∈ Ip, k ∈ K (6.20)

(6.21)
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6.2 MILP Formulation of Neural Networks with ReLU
Activation Functions

In this section, we formulate a NN as a MILP modeling a possibly non-linear function
g(x), mapping from some input vector x0 to an output vector xL defined as in the model
below. We assume that the ReLU activation function is used in all layers of the network.
The model assumes that the NN may include any number of input neurons. Since our
purpose here is to obtain a general formulation of a network mapping from some input to
an output, we do not specify a specific optimization objective but note that it is possible to
maximize or minimize the modeled function.

Model

Parameters

Nl Number of neurons in layer l

L Number of layers

Wijl Weight between neuron i in layer l − 1 and neuron j in layer l

Bjl Bias of neuron j in layer l

Indices

j Neuron

l Layer

Variables

xjl Output from neuron j in layer l

xj0 Input j to the neural network

sjl Negative component of the output from neuron j in layer l

zjl Indicating whether xjl or sjl are forced to zero in neuron j in layer
k

Vectors

x0 Vector containing inputs x1,0, ..., xN0,0

xL Vector containing outputs x1,L, ..., xNL,L

Functions

g(x) The function to model. Takes as input x0 and gives as output xL
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ReLU Neuron Activation Function
The output of each neuron is the maximum of 0, and the sum of its inputs multiplied with
their respective weights plus the bias term. To represent this as a linear program, the output
is decoupled into a positive and a negative component, xjl and sjl, respectively.

nl−1∑
i=1

Wijlxi(l−1) +Bjl = xjl − sjl l = 1, ..., L, j = 1, ..., Nl (6.22)

Uniqueness
To ensure uniqueness of the solution to constraint (6.22), at least one of (xjl, sjl) is at any
time equal to zero. The binary zjl variables are used as indicator variables for this purpose.
The big-M values M+

jl and M−jl correspond to the maximum pre-rectified positive and
negative output values, respectively, for neuron j in layer l.

xjl ≤ M+
jl (1− zjl)

sjl ≤ M−jl zjl

}
l = 1, ..., L, j = 1, ..., Nl (6.23)

Variable Bounds

xjl ≥ 0, l = 1, . . . , L, j = 1, . . . , Nl (6.24)
sjl ≥ 0, l = 1, . . . , L, j = 1, . . . , Nl (6.25)
zjl ∈ {0, 1}, l = 1, . . . , L, j = 1, . . . , Nl (6.26)
xj0 ≥ 0, j = 1, . . . , N0 (6.27)
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6.3 Special Ordered Sets Formulation
In this section, we formulate a SOS2 MILP, modelling a possibly non-linear function g(x),
mapping from some input vector x to an output vector ỹ defined as in the model below.
Since our purpose here is to obtain a general formulation of a function mapping from some
input to an output, we do not specify an optimization objective but note that it is possi-
ble to maximize or minimize the modeled function. In the following, we assume that the
input space has been divided into a set R of ordered, discrete breakpoints r, each point
representing an input value. This model is formulated with only one input variable, but
generalizes to higher dimensional input (see, e.g., Gunnerud and Foss (2009)).

Model

Sets

K Set of input dimensions

D Set of output dimensions

R Set of breakpoints

Indices

k Input dimension

d Output dimension

r Breakpoint

Parameters

Yrd Value of output dimension d for breakpoint r

Xrk Value of input dimension k for breakpoint r

Variables

λr Weighting variable for breakpoint r

xk Input variable for input dimension k

ỹd Piecewise linear output for dimension d

Vectors

x Vector containing inputs x1, . . . , x|K|

ỹ Vector containing outputs ỹ1, . . . , ỹ|D|

Functions

g(x) The function to model. Takes as input x and gives as output ỹ
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Linking Input and Output Values
We constrain each ỹd and xk to take the value of our outputs and inputs of the modeled
function. The sum of the weighting variables is set equal to 1 to ensure no infeasible values
are produced.

ỹd =
∑
r∈R

Yrdλr ∀ d ∈ D (6.28)

xk =
∑
r∈R

Xrkλr ∀ k ∈ K (6.29)∑
r∈R

λr = 1 (6.30)

Variable Bounds

xk ≥ 0 ∀ k ∈ K (6.31)
λr ≥ 0 ∀ r ∈ R (6.32)
λr SOS2 ∀ r ∈ R (6.33)
ỹd free ∀ d ∈ D (6.34)
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6.4 Multi-Objective Optimization Model
In this section, we formulate a multi-objective optimization model for a petroleum pro-
duction oil field. The model is based on the deterministic model. That is, it is based on the
stochastic model formulated in Section 6.1, with stochastic variables locked to an assumed
known scenario s ∈ S. Using the same sets, indices, variables and functions, we make the
following modifications to the model.

New Variables

X Matrix of dimensions |K| × |I| containing input setting vectors for all
wells in the field

New Function

gG(X) Function mapping from field-wide input vector X to the uncertainty in
output of gas in the field

New Multi-Objective Function
The objectives of the optimization are to maximize the total oil production rate and mini-
mize the uncertainty in gas production. We rewrite to obtain a minimization objective for
both terms and obtain as the multi-objective

min [ψ(X), ω(X)] (6.35)

where

ψ(X) = −
∑
p∈P

∑
i∈Ip

∑
u∈Up

õiu (6.36)

ω(X) = gG(X) (6.37)

The function gG(X) is here treated as a general function mapping from the input settings
of all wells in the field to some measure of uncertainty. The output is some measure of the
uncertainty in the field pertaining to gas outputs, such as the sum of all uncertainty (given
that it is additive), or the uncertainty of the well with the maximum uncertainty, making
the ω(X)-objective a minmax function.
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Chapter 7
Well Models

The optimization models in this thesis are formulated using a general function that takes
as input the choke level of a well and gives as output the oil and gas production of the
well with some measure of uncertainty for the gas output. Countless approaches exist to
modelling this function. In this chapter, we discuss the motivation behind modelling the
well outputs as neural networks. First, Section 7.1 gives a high level explanation of the
concept of the well model. Then, Section 7.2 describes the well model we obtain from
applying the ideas from Section 4.3. Finally, modelling assumptions made throughout this
chapter are discussed in Section 7.3.

7.1 Well Model Concepts

In the modelling process of a well, we make assumptions regarding the relationship that
describes output production rates as a function of input decision variables. In our setting,
we assume that this relationship can be modelled with a single input variable, the choke
setting, to a sufficiently accurate degree. In Section 5, it is assumed that oil output rates
are deterministic in nature, while there is uncertainty with respect to gas output rates that
needs to be accounted for. Figure 7.1 summarizes what a black-box version of our de-
scribed well model is able to output given choke setting inputs.

Figure 7.1: Visualization of what a well model takes as input and produces as output.
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Given our specification of input variables and outputs from the well model, numerous
choices for modelling their relationship are available. No standard approach exists in the
literature. We now define two important properties that will guide our choice of well model
representation:

1. The difficulty or ease with which we are able to update the well model with new
data points.

2. The difficulty or ease with which we are able to incorporate the model in an opti-
mization framework.

The first property is important since RTO typically involves frequent solving of an opti-
mization model which ideally considers the most recent data we have learned from op-
erating the field. Whenever new data is available, we update our mapping from inputs
to outputs. If the choice of well models means they need to be created from scratch in
order to consider new data, computational requirements may prevent us from performing
the updates frequently. On the other hand, if the well models are able to start from their
current state and learn to consider new data points, updating is a less taxing task.

The second property is important because the well models form the basis for the repre-
sentation of wells in our optimization problems. Limiting the loss of accuracy in any
approximations we apply when transforming our well models into MILP representations
is vital. The scalability of the optimization problems is another consideration that affects
our well modelling choices.

Based on these properties, we represent the well model as a NN. This choice both lets us
swiftly update the model with new data, and, assuming that the proper activation functions
are applied, lets us reformulate the model as a MILP with relative ease.

7.2 Neural Network Well Model

Combining the ideas of Section 4.3, we obtain a dropout NN able to produce the outputs
from our conceptual well model from Section 7.1. Considering property 1 from Section
7.1, NNs are ideal models for frequently adding new data since the network is able to re-
sume learning from its current state. An example of this is shown in Figure 7.2. Here, we
first train a well model to points sampled from the function f(x) = sin(x). A gas output
model is used in this case, estimating both the mean, plotted as the solid blue line, and
total uncertainty represented by the blue shades, each corresponding to a standard devia-
tion from the mean. We then add noise to a part of the input domain and resume training.
The network updates its predicted uncertainty in the noisy region, as is seen by the ex-
panded uncertainty around the added noise. The estimated mean curve is only slightly
altered. This resumed training is considerably less computationally taxing than training a
new model from scratch after noise is added.
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Figure 7.2: A well model trained on a sine curve before and after noise is added. The solid blue line
represents the predicted mean, while each blue shade corresponds to a standard deviation from the
mean.

Considering property 2 from Section 7.1, NNs are compatible with an optimization frame-
work to a certain extent. If we choose linear or piecewise linear activation functions, NNs
are reformulated as MILPs with relative ease. However, non-linear uncertainty compo-
nents require sampling before we are able to represent them in a MILP model. This is
discussed in Section 8.2.2.

An example visualization of a final NN well model is seen in Figure 7.3, where MC
dropout is used to approximate a distribution for gas production and the estimated mean
for oil production. The blue lines represent the mean, and the blue shades correspond
to a standard deviation from the mean. The figures represent the two outputs from the
conceptual well model described in Section 7.1.

Figure 7.3: a) Example NN approximation of the distribution of the gas output of a well. The line
represents the mean, and the blue shades each represent one standard deviation from the mean. b)
Example NN approximation of the mean of the oil output of a well.
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7.3 Well Model Assumptions

Physical factors like pressure, temperature, friction and water in the reservoir are not in-
cluded in this model. In reality, these factors are explanatory variables for a function that
describes the oil and gas output of a producing well, as visualized in Figure 7.4a). When
we make the simplifying assumption that a single input dimension explains the output
functions properly, we are projecting a high dimensional function down to a single dimen-
sion. In doing so, we inevitably lose part of our ability to explain the output function.
However, we assume that the choke setting contains sufficient explanatory information
such that a reasonable approximation is still possible to obtain. Furthermore, in the prob-
lem description of this thesis we state as a goal the inclusion of explicit decision variables
in the problem which the decision maker is able to directly control. The choke setting is
one such decision variable, with other examples including routing decisions and gas lift
injection rates.

Figure 7.4: a) Shows what a real-world black box function takes as input and gives as output.
b) Shows the approximation used in this report. Choke is the initial input and a neural network
approximation is performed on the outputs of the black box function, to estimate distributions for oil
and gas production.

Using Equation 4.26 as the loss function in our NN well model means we assume that the
generating function of our well measurement data has normally distributed errors. This
assumption allows us to predict the distribution of the well gas output. If the normal dis-
tribution is a poor approximation to the true generating function, we may end up with a
poor estimate. This issue is discussed in Chapter 12.

We further note that wells are assumed to be independent of each other in our well models.
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This assumption is not completely accurate in a real setting, since wells may share riser
pipelines and are typically connected to the same reservoir.

Figure 7.4b) gives a visual representation of the approximations applied in this thesis.
We assume that there exists some function f mapping from the choke level to the oil
and gas production. This function is unknown, so we approximate the distribution of f
using a neural network, based on observed outputs for varying inputs. In this thesis, these
observations are represented by historical well measurements.
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Chapter 8
Solution Method

In this chapter, we present the implementations of the models and methods described in
this thesis. First, an overview of the components that form a solution framework is pre-
sented in Section 8.1. Then, Section 8.2 discusses the implementation of the well models
described in Chapter 7. Section 8.3 presents the generation of scenarios for stochastic
optimization, and approximations to the EVPI and VSS are described in Section 8.4. A
heuristic recourse algorithm is described in Section 8.5, before implementation details of
the optimization models are provided in Section 8.6.

8.1 Solution Framework
In this report, we develop optimization models based on historical data from a petroleum
production field. As the models we present are unable to incorporate raw measurement
data directly, the overall solution structure takes the form of a pipeline of different proce-
dures. An overview of this pipeline is shown in Figure 8.1.

We provide a short summary of the different components in the solution method, while
more detailed descriptions follow in subsequent sections.

1: Instruments and sensors in the production field record measurements during well tests
or using MPFMs. We assume that any data validation has already been performed.

2: Measurements are stored as well data in a comma separated values (.csv) file. This file
format allows for easy reading into, e.g., Python scripts.

3: In the first approximation step, the production mean and variance for oil and gas output
are approximated using neural networks, as described in Chapter 7.

4: Datapoints, to be used in stochastic formulations, are sampled from the well models.
The data points can be sampled in two manners: 1) from the mean and the variance of the
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Figure 8.1: Holistic view of the solution framework from measurements to decision support.

outputs of a well separately, or 2) from some distribution capturing both the mean and the
variance, and thereby sampling one of many possible realizations or scenarios for a given
well. Sampled points are represented as SOS2 or NN MILPs.

5: In this stage, scenarios for the stochastic model are generated based on data sampled
from the well models. Then, the robust stochastic optimization model maximizes oil pro-
duction based on the scenarios and problem specific input.

6: In the multi-objective optimization model, the oil production is maximized and the total
variance of the system is minimized, using the same problem specific input as the robust
stochastic model.

7: The problem specific input includes constraint right-hand sides and the current operat-
ing point.

8: The output from the optimization models provides decision support and suggested sys-
tem settings.

8.2 Well Model Implementations
We implement the well models as described in Chapter 7. Several steps are required;
pre-processing of data, hyperparameter selection, NN training and sampling of non-linear
uncertainty estimates. The pre-processing step is implemented by a discounting algorithm.
A detailed presentation of this algorithm is found in Appendix A.

8.2.1 Tuning Neural Network Hyperparameters
No method exists for accurately determining the optimal hyperparameters for neural net-
works. In practice, we perform a grid or randomized search over the parameter space
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and choose values which yield the best performance. The mean test score with 3-fold
cross-validation is used to measure performance. Grid and randomized search lead to a
combinatorial explosion of the search space as we increase the number of hyperparame-
ters to search over. A way to limit this effect is to only search over a subset of all available
parameters, and use heuristic rules for setting the remaining ones. We use heuristic rules
based on what is considered reasonable values in the literature, from case studies of well-
known problems. In Table 8.1, we present an overview of hyperparameters for our neural
network models and our approach used to determine their corresponding values.

Reformulating our NNs as MILPs constrains us to linear or piecewise linear activation
functions. We thus choose ReLU as activation functions in all hidden layer neurons, and
linear activation functions in output neurons. We use the Adam optimizer and its recom-
mended default learning rate alpha parameter setting of 0.001. Recommended values for
the batch size typically are in the order of 32− 512. Keskar et al. (2016) show that larger
batch sizes can lead to poor generalization of NN models. We thus choose a batch size
of 32. To limit the time expended during grid search, we set the number of grid search
training epochs to 5,000. The network performance after this number of epochs gives a
good indication of hyperparameter performance. A higher number of epochs is used when
training the final networks to be applied in an optimization model.

This leaves a smaller subset of hyperparameters to be determined by a grid and random-
ized search; regularization term, dropout rate, the number of layers and the number of
neurons in each layer. Prior to searching, we determine a search space for each parameter.
The number of hidden layers and the number of neurons in each such layer directly affect
the number of variables we introduce in our optimization model when reformulating the
network as a MILP. Thus there is a trade-off between a sufficiently complex model and the
computational cost we incur when introducing more integer variables in our optimization
model. Since our regression task is a relatively simple problem compared to complex neu-
ral network applications such as image recognition, we find it reasonable to assume that
1 or 2 hidden layers with 20-40 neurons provide sufficient complexity. The regularization
and dropout rates are sampled from ranges of what are common values found in the liter-
ature (see, e.g., Bergstra and Bengio (2012)).

Table 8.1: The available hyperparameters when training a neural network.

Hyperparameter Symbol Determination Method Search Space

Regularization Term λ Grid/Randomized Search [1 × 10−6, 1 × 10−2]

Dropout Rate p Grid/Randomized Search [5 × 10−2, 4 × 10−1]

Number of Hidden Layers L Grid/Randomized Search 1, 2

Number of Neurons in Hidden Layers N Grid/Randomized Search 20, 40

Learning Rate α Heuristic Rule N/A

Batch Size B Heuristic Rule N/A

Training Epochs T Heuristic Rule N/A

Activation Function φ Heuristic Rule N/A
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For each well, the hyperparameters from the grid and randomized search yielding the best
performance are used to train the corresponding NNs and obtain the well models.

8.2.2 Sampling the Variance of the Well Models
Once we obtain our trained NN well models, we incorporate the models in a MILP opti-
mization model. The Factor scenario generation procedure (Section 8.3.2) and the multi-
objective optimization model (Section 8.6) both require a piecewise linear representation
of the well model variance. However, the variance-output from the well model is not of
a piecewise linear nature. This is because MC dropout is used to estimate the epistemic
uncertainty, and the aleatoric uncertainty involves the natural exponential function of the
output of the neural network.

To transform uncertainty estimates to a piecewise linear form, the variance is sampled
from the well model for different values of the input variable. We then approximate the
sampled points by linear or piecewise linear functions, e.g., another NN or a SOS2 for-
mulation. Assuming that we train the NN to interpolate the sample points, the approaches
produce equivalent results when incorporated in an optimization model. There are, how-
ever, differences in how these approaches scale with higher dimensional inputs. For a
discussion regarding this topic, see Section 10.1 and Chapter 12. Note that contrary to the
variance, we are able to directly reformulate the the mean output of the NN well model,
assuming it uses linear or piecewise linear activation functions.

The NNs in the well model use MC dropout in order to estimate the mean output. When
we reformulate the NNs as MILPs, applying dropout is no longer practically feasible. We
defer a discussion and study of the differences between the MC dropout and NN MILP
estimated mean to the computational study in Section 10.2.2.

8.3 Scenario Generation
For the optimization model developed in Section 6.1, a scenario s is represented by a
function fGius(x) which provides a mapping from input vector x to the gas output of well i
when routing to separator u. In this section we develop two different scenario generation
procedures for generating fGius(x) based on our well models, which we name the Factor
scenario generation and the Markov Weighted scenario generation.

Note that indices for wells i and separators u have been dropped for ease of notation for
the remainder of this section.

8.3.1 Desirable Properties of Generated Scenarios
When a given well is producing, we assume that the true input and output values are ob-
servable in the oil field. However, the true production function for the remaining input
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domain is uncertain. A generated scenario therefore ideally is able to intersect a known
operating point, so that a status quo can be maintained by not changing any input variables.

A scenario also ideally is not excessively complex to generate. When setting new oper-
ating points, the system may require the generation of a large number of new scenarios
within a short window of time.

In this thesis, our belief of the underlying distribution of the uncertainty in the problem is
represented by the normal distributions obtained from the well model NNs. Following the
discussion in Section 4.4.2, we wish to discretize the uncertainty in the gas output such
that our scenarios capture all relevant aspects of this distribution. One straightforward
approach is to sample directly from the NN well model distribution N (µ(x), σ2(x)) for
some uniformly distributed x in the input domain. As seen in Figure 8.2, the result of this
approach is a rapidly fluctuating scenario. In reality, we do not expect that minor changes
in the choke settings lead to extreme variations in the gas output. That is, we expect
a higher degree of smoothness in a scenario well curve than is observed in Figure 8.2.
Consequently, it seems the method of directly sampling from the well model distribution
fails to produce meaningful scenarios.

Figure 8.2: Scenario as the dashed green line, sampled from a well model distribution, with the
mean as the solid black line and each blue shade representing a standard deviation.

8.3.2 Factor Scenario Generation
The idea behind the Factor scenario generation procedure is to represent the gas output of
a well by a linear combination of its mean gas output µ(x) and the standard deviation of
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its gas output σ(x), that is

gGs (x) = µ(x) +Asσ(x) (8.1)

where As represents the factor for the standard deviation of the gas output for the well
in scenario s. Negative factors produce negative output values in certain cases, so we
re-parameterize the output as

fGs (x) = max(0, gGs (x)). (8.2)

From our well models described in Chapter 7 we obtain µ(x) and σ(x). Thus generat-
ing one scenario s consists of choosing one constant factor As for each well when paired
with each of its connected separators. We draw these constant factors from some random
distribution with mean 0 and variance 1, for example, the triangular or truncated normal
distribution. It is desirable to use a truncated distribution as we do not wish to generate
scenarios with factors that are excessively large in absolute value. If we choose the (trun-
cated) normal distribution N (0, 1), approximately 68% of generated scenario curves fall
within 2 standard deviations of the mean.

Since we model well output variance as heteroscedastic, the Factor scenario generation
procedure is not equivalent to shifting the mean gas output by a constant amount. Regions
of the curve are distorted differently along the input axis according to the estimate of σ(x).
The deviation from the mean relative to the standard deviation is constant for all input val-
ues x in a single scenario.

Examples of different Factor scenarios are visualized in Figure 8.3. Here, 10 scenarios are
plotted with the mean of the well represented by the black line, while the two shades of
blue represent one standard deviation from the mean each. A variety of factors are selected
for visualization purposes. In reality, most scenarios are clustered close to the mean with
some outliers when drawing from, e.g., the truncated normal distribution.

In order to incorporate Factor scenarios in a MILP optimization model, we need a piece-
wise linear representation of µ(x) and σ(x). From our well models we reformulate the
NN as a MILP to obtain the piecewise linear µ̂(x). We obtain the piecewise linear approx-
imation σ̂(x) through sampling the variance and either fitting a new NN to the sample or
using SOS2 variables, as described in Section 8.2.2. The re-parameterization from Equa-
tion (8.2) is implemented by the following equations:

fGs (x) = g+
s (8.3)

µ̂(x) +Asσ̂(x) = g+
s − g−s (8.4)

g+
s ≤ M+(1− zs) (8.5)

g−s ≤ M−zs (8.6)

g+
s ≥ 0 (8.7)

g−s ≥ 0 (8.8)
zs ∈ {0, 1} (8.9)
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Figure 8.3: Ten Factor scenarios plotted with the mean (black) and the standard deviation from the
mean (each shade of blue representing one standard deviation).

Here, M+ and M− represent the maximum value of the Factor scenario gas output in
the positive and negative direction, respectively. The g+ and g− variables represent the
positive and negative component of the Factor scenario gas output, respectively, while zs
is an indicator variable to force uniqueness of the solution to Equation (8.4). Not forcing
uniqueness leads to g+

s and g−s effectively becoming free variables with infinitely many
solutions to Equation (8.4). In such cases we are not able to recover the positive compo-
nent of the scenario and end up with unpredictable values.

An attractive feature of this scenario generation procedure is that µ(x) and σ(x) are sce-
nario independent. Regardless of the number of scenarios we include in our stochastic op-
timization model, we require only two piecewise linear models per possible well-separator
pair. Furthermore, generating scenarios is simple and efficient.

A drawback of the Factor scenario generation procedure is that the scaling occurs along the
entire input axis. Thus an inherent weakness of this scenario generation procedure is the
inability of the generated curves to deviate from the general shape of the mean. The param-
eterization over As instead of over x thus introduces considerable bias in the scenario, and
factor generated scenarios never intersect the mean curve (except in the case of As = 0).
Additionally, there exists a unique mapping from an input-output pair (x, fGs (x)) to a sce-
nario factor As since no two scenarios intersect the same point. In Figure 8.4 the plotted
Factor scenario is the only scenario to intersect the point marked by the red dot. One
consequence of this is that specifying an initial input setting and corresponding output gas
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value for a well-separator pair forces all scenario constants for this pair to take the same
value. To the model, the production curve has in this case become deterministic for the
specific well-separator pair. The Factor scenarios are therefore more suited in applications
where we either are uncertain about initial output values, or where one or more wells are
switched off prior to optimization.

Figure 8.4: A Factor scenario shown as the green dotted line is generated with a pre-specified point
marked with a red dot. The plotted scenario is the only Factor scenario to intersect the pre-specified
point.

8.3.3 Markov Weighted Scenario Generation
The Markov Weighted scenario generation procedure is based in part on the Markov as-
sumption that the conditional probability of future states is independent of past states,
given the present state. In our setting, we consider a state to be a point describing an in-
put setting and a corresponding gas output value. We find the Markov assumption to be
reasonable in this setting since we do not expect that minor modifications to the choke set-
tings lead to extreme variations in the corresponding output rates. Such extreme behavior
is observed in the approach described in Section 8.3.1, where the output of each state is
drawn independently of the previous state.

Under the Markov assumption, the dependence of a previous state has a smoothing effect
on the curve. We note that it is possible to vary this smoothing effect by varying the num-
ber of previous states on which any state depends. For instance, exponential smoothing has
the ability to depend on an arbitrary number of past states. We model the dependence on
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the previous state only, based on our assumptions and expectations of the smoothness of
each scenario curve. In the following, we limit the discussion to a single input dimension.
The procedure can, however, be adapted to higher dimensions with minor modifications.

Assume that the input domain is divided into N discrete points and that input and out-
put values are denoted by xn and gGs (xn), respectively, for n = 1, 2, . . . , N . Under the
Markov assumption, we let gGs (xn) be dependent on a weighted combination of one of its
neighbors in the input domain, given by gGs (x̂n), and a random draw from the distribution
of the well models developed in Chapter 7, given by α ∼ N (µ(xn), σ2(xn)). That is, we
let

gGs (xn) = wgGs (x̂n) + (1− w)α (8.10)

where w < 1 represents the weighting variable and is user-specified. Since Equation 8.10
produces negative output values in certain cases, we re-parameterize to obtain

fGs (xn) = max{0, gGs (xn)}. (8.11)

For any point xn, a single neighbor x̂n is selected as the state xn partially depends on.
We select neighbors such that no cross dependencies occur. In other words, if we start the
generation in a point xn > 0, all points xm where m > n depend on points xm−1, while
all points xk where k < n depend on points xk+1. If we start in x1 = 0, all points xl
where l = 2, 3, . . . , N depend on points xl−1. Thus, in order to start generating scenarios,
we specify a starting point somewhere in the input domain and a corresponding output
value. This point represents a ground truth through which the Markov Weighted scenario
gas curve intersects. We choose either an initial input setting for which the current gas
output rate is known, or the 0 input point for which we with certainty have a gas output
rate of 0 since the well is shut off. We note that if we specify w = 0, the method is equiv-
alent to the random distribution draw approach as discussed in Section 8.3.1 and shown in
Figure 8.2.

Starting with the known point, we then iterate and construct a scenario by obtaining values
for the remaining N − 1 points. Algorithm 1 shows the step-wise procedure. A few com-
ments on the details of the implementation are in order. Lines 5−7 create the choke values
for which we will sample the scenario gas output curve. If an initially known point is spec-
ified, the algorithm first iterates in the positive choke direction from the known point up to
the maximum choke setting of 100, before iterating downward from the known point to the
minimum choke setting of 0. Lines 11 and 17 create a scaling parameter which is 1 (and
hence redundant) in all cases except for the neighbors Y [̂i−1] and Y [̂i+1] of the specified
known point. This is necessary since the change in choke value is less when moving from
the pre-specified point to its neighbors than it is when moving between other neighboring
points. Sampling the scenario with less spacing in the input dimension close to the spec-
ified point leads to increased volatility around it since the curve is allowed to vary more
”often”. This behavior is the opposite of what we expect to see in a real scenario since we
normally associate lower uncertainty with points close to a known production setting. We
thus scale down the variance of the random draw for Y [̂i− 1] and Y [̂i+ 1]. If no initially
known point is specified, the algorithm iterates from the 0 choke and gas output point, and
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no scaling occurs.

The algorithm returns a Markov Weighted scenario, represented by a set of choke values
and corresponding gas output values. In order to incorporate such scenarios in an optimiza-
tion model, we need a piecewise linear formulation of the scenario curves. Representing
the points with SOS2 variables is a straightforward task, particularly in the case of a single
input dimension. Alternatively, a neural network with ReLU activation functions is fit to
the scenario curves and reformulated as a MILP in the optimization model.

Algorithm 1: Algorithm for generating a Markov Weighted scenario for a single
well-separator pair. Single input dimension implementation.

Input : Weight parameter w < 1
Number of sampling points N
Distribution of well-separator gas output given by well models

N (µ(x), σ(x))
Optional: An initial choke setting x̂ and corresponding gas
output value ŷ

Output: A scenario represented by a set of choke values X and corresponding gas
output values

1 if (x̂, ŷ) not specified then
2 (x̂, ŷ)← (0, 0);
3 λ∗ = 100

N ;
4 Let Y ← {0, . . . , N} be a new array;
5 X ← {0, λ∗, 2λ∗, . . . , Nλ∗};
6 X ← X ∪ {x̂};
7 Sort X by increasing choke values;
8 î← index of x̂ in X;
9 for i = î+ 1 to N do

10 x← X[i];
11 λ← X[i]−X[i−1]

λ∗ ;
12 α ∼ N (µ(x), σ(x)2);
13 Y [i]← max{0, w ∗ Y [i− 1] + (1− w) ∗ ((α− µ(x)) ∗ λ+ µ(x))}
14 end
15 for i = î− 1 to N do
16 x← X[i];
17 λ← X[i+1]−X[i]

λ∗ ;
18 α ∼ N (µ(x), σ(x)2);
19 Y [i]← max{0, w ∗ Y [i+ 1] + (1− w) ∗ ((α− µ(x)) ∗ λ+ µ(x))}
20 end
21 return X , Y ;

Figure 8.5: Procedure for generating a Markov Weighted scenario for a single well-separator pair.
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Figure 8.6 shows 10 Markov Weighted scenarios generated with no initial point specified,
meaning the algorithm starts its iteration from the point of 0 choke and 0 output gas. 10
points are sampled and weight parameter w = 0.4 is used. Figure 8.7 shows 10 Markov
Weighted scenarios generated with the same hyperparameter settings, but with a known
point specified. All scenarios intercept the point, marked by a red dot in the figure.

Figure 8.6: Ten Markov Weighted scenarios plotted with the mean as the solid black line and each
shade of blue representing one standard deviation from the mean.

Figure 8.7: Ten Markov Weighted scenarios plotted with a known operating point marked by the
red dot. The mean is given by the solid black line and each shade of blue represents one standard
deviation from the mean.

73



Two hyperparameters are user specified when generating Markov Weighted scenarios: The
weighting w between neighboring points and the random draw, and the number of points
N in which the scenario curve is sampled. In general, lower values forw and higher values
for N increase the volatility of the generated scenario since the curve is allowed to vary to
a larger extent more often. The number of sampling points N also affects the complexity
of the scenario in the optimization problem, i.e. the number of breakpoints needed in a
SOS2 representation and the minimum amount of neurons needed in the NN MILP rep-
resentation. Visualizations of how the smoothness of Markov Weighted scenarios varies
with the hyperparameters are found in in Appendix D. Determining the optimal hyperpa-
rameters is case dependent. In our case, 10 sampling points (11 if the 0 choke setting is
counted) are used, along with a weight w = 0.4, producing sufficiently smooth scenarios
which are not overly complex to represent as MILPs.

8.4 Value of the Stochastic Solution and Perfect Informa-
tion

The concepts of VSS, EVPI and EEV we introduce in Section 4.4.3 are in their conven-
tional sense developed for multi-stage recourse problems. The stochastic optimization
model we formulate in Section 6.1 consists only of a single decision stage with a robust
formulation to ensure that the uncertain gas output does not exceed the gas capacity con-
straint for any of the scenarios the problem includes. We cannot directly calculate the
VSS, EVPI and EEV because solutions, when evaluated in external ”true” scenarios, are
infeasible if the solution fails to adhere to the gas capacity constraint. We thus must turn
to some approximation of the value of solving a stochastic robust optimization model over
a deterministic one, as well as the EVPI. We perform this approximation over a set of true
scenarios s ∈ S.

Our approach is to introduce a penalty if the suggested solution of the optimization model
is infeasible given the true scenario. A possible penalty is to record an objective value of
0 whenever infeasibility occurs. We call this approach the Strict penalty. We observe that
this penalty makes no distinction between a constraint breach of 1 SOR and a breach of
100,000 SOR. A less strict alternative is to assume that we are always able to revert the op-
timization solution to the initial operational settings if these are feasible. Thus, in the case
of an infeasible solution, we simply record the objective value of the initial setting prior
to optimization if it is feasible. We call this approach the Reversion penalty. If the initial
setting is infeasible, e.g., due to a constraint right-hand side changing, we cannot revert.
In a real application, the production engineer at this point takes action to reach feasibility.
We therefore assume that wells are shut off in some prioritized order until feasibility is
reached. We call this approach the Switch-Off penalty, applicable to cases in which we
have no feasible initial setting or where the initial setting corresponds to all wells being
shut off. We choose the simple priority of first switching off wells that violate individual
gas output constraints, if any. If this does not produce a feasible solution we turn wells off
in the order of highest to lowest GOR in the hopes of reducing gas output at minimal cost
to oil output.
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Note that in the case of the WS solution, infeasibility never occurs since the optimization
model reduces to a deterministic robust formulation with perfect information.

Let ψ∗(x∗) be the objective value of the optimal solution x∗ to an optimization model,
which may be a deterministic model based on expected values in the EEV case, a stochas-
tic robust formulation or a WS model with perfect information. Let ψ0(x0) be the objective
value of our initial production setting x0, and ψOFF (x∗) the objective value obtained af-
ter switching wells off from an infeasible solution according to a priority list. For a true
scenario s, the true objective value ψs is calculated according to the following equations.

Strict penalty:

ψs(x
∗) =

{
0 if x∗ infeasible
ψ∗(x∗) otherwise

(8.12)

Reversion penalty:

ψs(x
∗) =

{
ψ0(x0) if x∗ infeasible
ψ∗(x∗) otherwise

(8.13)

Switch-Off penalty:

ψs(x
∗) =

{
ψOFF (x∗) if x∗ infeasible
ψ∗(x∗) otherwise

(8.14)

In real applications, the appropriate penalty is case dependent and ideally is determined by
field engineers with intimate knowledge of the relevant production system.

8.5 Heuristic Recourse Algorithm
In Section 2.1, the way in which decisions in the petroleum production field are imple-
mented is discussed. When we solve an optimization model, the obtained objective value
is a measure of how well we expect our solution to perform if we implement all suggested
operational changes. In a real application, operational changes are often implemented in a
serial manner with significant time passing between each change to let the production sys-
tem settle in a steady state. Ideally, an RTO model is updated with new data and resolved
between each such change. In this section, we develop an algorithm that attempts to model
this sequential implementation strategy.

From Chapter 7 we obtain well models in which the gas output is uncertain, while we
formulated the gas output capacity constraint as a hard limit in the optimization mod-
els developed in Chapter 6. Thus there is a possibility that implementing an operational
change in the field yields an infeasible solution. In such cases, the optimization models
do not include recourse decisions and are unable to produce a suggested action that moves
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the solution to feasibility.

In a real application, if an implemented operational change leads to infeasibility it is par-
tially or fully reverted. However, we are not back to square one; we gain information
about the nature of the gas output curve of the well. We find it reasonable to attempt to up-
date the RTO model with this new information in order to produce more accurate solutions.

Algorithm 2: Algorithm for step-wise optimizing petroleum production with re-
course actions.

Input : Set of initial case specific parameters P
Maximum number of allowed changes N
Number of scenarios in the optimization model S
A change prioritization criteria ϕ(X)
Markov Weighted scenario S∗ containing true well curves,
i.e., fG∗ius(·) for all well-separator pairs i, u.

Output: The total number of infeasible settings that occurred, final true oil and gas
output, final input settings.

1 Model← Stochastic model initiated with parameters P;
2 infeasible count← 0;
3 for n← N to 1 do
4 Set maximum allowed changes in Model to n;
5 Solution← Solve Model to optimality;
6 X∗ ← optimal choke settings for Solution;
7 x∗change ← choke setting of well selected by priority criteria ϕ(X∗);
8 (i∗, u∗)← index of prioritized well and connected separator;
9 Gx

∗
change ← New gas output for x∗change, i.e. fG∗(i∗,u∗)s(x

∗
change);

10 GTOT ← Total new true gas output if we implement x∗change;
11 if GTOT > QT or Gx

∗
change > QGi then

12 infeasible count← infeasible count+1;
13 else
14 Model← update with new choke setting x∗change;
15 end
16 if x∗change 6= 0 then
17 Model← replace fG(i∗,u∗)s(·) with fG∗(i∗,u∗)s(·) for all scenarios s
18 end
19 end

Figure 8.8: Algorithm for implementing sequential changes as suggested by a stochastic optimiza-
tion model.

Algorithm 2 shows a recourse algorithm (RA), which models the process of performing
one change at a time and updating the optimization model with true well performance data
after each change. One run of the algorithm requires a specification of the ground truth
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scenario which the model learns as it implements changes. The for loop initiated in line 4
iterates from the maximum number of changes allowed down to a single allowed change.
As we solve the stochastic model in the loop with more than one change allowed, we need
to make a choice regarding which suggested change to implement first. The priority cri-
teria function ϕ(X) implements this choice according to our preferences. Typically we
implement negative changes to choke settings prior to positive ones, as doing the opposite
often means we visit an infeasible state. When no negative changes are suggested, we
choose which well to implement a positive change in according to a heuristic. One simple
heuristic is to sort all wells from lowest GOR to highest, and then select the first well in
the list for which the optimization model suggests a change.

If a suggested change does not lead to infeasibility in the ground truth scenario, it is imple-
mented in the model in line 15 of the algorithm. Note that in line 17, the model learns the
ground truth for the well it suggests a change for (unless the change is to switch a well off),
regardless of whether the suggested change leads to infeasibility or not. This is because
in a real application, the infeasible suggestion is implemented and then rolled back after
observing infeasibility. Thus we still gain information about the true well performance
even when reverting the operational change in the well.

We remark that if the RA is applied to cases where the initial setting is infeasible, the
algorithm is altered slightly. Infeasible initial states are possible when the right-hand side
of the gas capacity constraint suddenly changes, e.g., due to separator failure. In such
cases, we allow implementing operational changes that lead to an infeasible state, until
a feasible state is visited. Without this modification, the algorithm causes all changes to
be reverted until only 1 permitted change remains. At this point, the optimization model
typically is forced to switch a well off in its entirety in order to reach feasibility. With the
modification, the model is allowed to gradually approach feasibility while limiting the loss
in oil production. In such cases, the RA returns an infeasible count of 1 if it failed to reach
feasibility and 0 otherwise.

When the model learns the ground truth, it does so for the entire well curve. This is slightly
unrealistic as we in reality only gain a new data point and other unvisited input settings
are still uncertain. Consequently, any performance gains we obtain from the RA over the
standard robust model are optimistic estimates of gains that are achievable in a real setting.
Possible approaches to a more realistic model of the process of learning points of the true
well curves are discussed more thoroughly in Chapter 12.

8.6 Multi-Objective Program Implementation
The multi-objective model formulated in Section 6.4 minimizes total negative oil output
ψ(X) and some measure of total uncertainty ω(X). Here, X represents the set of choke
settings for all wells in the problem. Our well models yield an estimate of the variance
σ2
i (xi) of the gas output of each well i. Note that the indices for separators are dropped

for ease of notation. Since we assume in Section 7.3 that wells are independent of each
other, a measure of total uncertainty is given by the sum of the variances of all wells. That
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is, we let

ω(X) =
∑
i∈I

σ2
i (xi). (8.15)

This optimization objective requires a piecewise linear representation of σ2
i (xi), obtained

using the sampling methods described in Section 8.2.2. A few notes on the choice of
objective are in order. First, since we have estimates of the mean and variance of the sum
of gas outputs of all wells, we are able to calculate the probability of breaching the total
gas capacity constraint. The calculations depend on the assumption of normally distributed
errors in the true function generating our data, as stated in Section 7.3. Furthermore, we
stress that we in the following calculations do not consider the probability of breaching
individual well capacity constraints since the resulting calculations require estimation of
the conditional cumulative probability distribution. Let the probability of breaching the
constraint given (field wide) solution X∗ be denoted by P (Infeasible|X∗), the summed
variance in gas output be denoted by ω(X∗) and the summed mean gas output be denoted
by µ(X∗). We have

Z∗ =
X∗ − µ(X∗)√

ω(X∗)
(8.16)

P (Infeasible|X∗) = Φ (Z∗) (8.17)

where Φ(·) denotes the standard cumulative normal distribution and Z∗ is the standardized
Z-score for our solution. An attractive objective function for the total uncertainty is then to
minimize P (Infeasible). However, in our case we assume that variance is heteroscedastic.
Thus the denominator in the Z-score is a function of X, and the problem is no longer
linear. Nonetheless, extracting P (Infeasible|X∗) from a solution obtained with ω(X∗) as
the objective is possible. We permute the objective by adding a small factor multiplied
with µ(X∗) in order to favor solutions with lower gas output in the case of ties, and denote
the probability obtained from this approximation by P̂ (Infeasible|X∗). We note that our
approximation is a conservative estimate of the optimal probability obtained through non-
linear optimization, that is,

P̂ (Infeasible|X∗) ≥ P (Infeasible|X∗). (8.18)

Since no single optimum exists for a multi-objective optimization program, we generate
the Pareto front of non-dominated solutions. Several approaches to generating the front
exist in the literature. We choose the ε-constrained method (Changkong and Haimes, 1983)
due to its simple implementation and ability to generate non-convex and non-concave parts
of the Pareto front. In the ε-constrained approach for a minimization problem, one of the
multiple objective functions is chosen to be the goal of the optimization. The remaining
functions are constrained to be less than or equal to specified target values. The model
is repeatedly solved with varying target values in order to generate the Pareto front. We
let the sum of gas output variances ω(X) remain as the objective to be minimized and
constrain the negative total oil output ψ(X). This yields the following single objective
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program:

min ω(X) (8.19)
s.t.
ψ(X) ≤ εj (8.20)
X ∈ A (8.21)

where A is the feasible domain specified by the multi-objective model in Section 6.4 and
εj is the target value in iteration j. In order to obtain sensible values of εj , we first solve

min ψ(X) (8.22)
s.t.

X ∈ A (8.23)

to obtain the minimum value of ψ(X), denoted by Q∗. We then let

εj =
j

N
Q∗, j = 1, 2, . . . , N (8.24)

whereN denotes the number of points from the Pareto front we calculate. The ε-constrained
method produces a weak Pareto front (see Section 4.4.4).
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Chapter 9
Case Study

In this chapter, we introduce the case that is used as a test case for the models and frame-
works developed in this report. Section 9.1 introduces the simplified representation of the
case-specific field and its structure. Section 9.2 discusses the data sets which are based on
well test measurements from the field. Finally, in Section 9.3 constructed initial cases to
be used in the computational study are presented.

9.1 Case Specific Oil Field

Figure 9.1: Graphic description of the case structure. The case involves wells 1-7, connected to the
oil separator. (Morken and Sandberg, 2016)

The case is based on a large oil field on the Norwegian Continental Shelf. It involves
seven anonymized wells from the field, connected to one common separator. The wells are
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dubbed W1, W2, W3, W4, W5, W6 and W7, and are represented by the wells connected
to the oil separator in Figure 9.1. The objective of the case is to maximize oil production,
and the only case-specific constraints are explained in the following bullet points:

• Total gas export - the total gas export from the oil separator must not exceed a given
value. Under normal conditions this value is 250,000 SOR.

• Gas flow from each well - the amount of gas being routed from each well to the
separator must not exceed a given value. Under normal conditions this value is
54,166 SOR.

The decision variable for each well is the choke valve opening level.

9.2 Data Analysis
The data source is comprised of a set of measurements from the wells presented in Section
9.1. These measurements include values for gas output, oil output and certain physical
parameters such as well-head pressure. In addition, each measurement includes a time
stamp. The decision variable (choke) at the moment when the measurements are made
is stored alongside the corresponding production output rates, and together they make up
what we refer to as a data point.

Figure 9.2: The oil output of well W6 plotted with the choke level of the data points.

There are 1,311 measurements for each well, resulting in a total number of data points of
9,177. The data for oil and gas output for different choke settings for well W6 can be seen
in Figure 9.2 and 9.3, respectively. The majority of the data points are clustered around
the input domain range from about 35 to 45.
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Figure 9.3: The gas output of well W6 plotted with the choke level of the data points.

Several of the wells contain data with significant gaps in the domain range, where most
measurements are gathered in a few concentrated clusters. Figure 9.4 shows another trend
in the data of multiple production output measurements which are present for similar de-
cision variable values. This Figure is a zoomed in view of the plot for gas output for W1,
focused on the area where the data points are the most clustered. For minuscule changes
in the choke x-value, there are relative differences of up to almost 100% on the gas out-
put y-axis. Data exhibiting this behavior may be poorly suited for regression, and the
discounting algorithm presented in Section A.1 is applied to such wells.

Figure 9.4: Well W1 with differences in gas output of up to 20,000 SOR for similar choke levels.
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9.3 Initial Scenarios

In this section, three initial scenarios are introduced. The scenarios are dubbed case A, B
and C for simplicity, and are summarized in Table 9.1, Table 9.2 and Table 9.3, respec-
tively.

Initial case A starts in an operational setting that is feasible and where there is slack on the
restriction on total gas capacity. This allows for increasing production of oil and gas, and
changing the operating point by, e.g., switching wells on or off.

Table 9.1: Well settings and outputs for the unused total gas capacity case.

Initial Case A: Under Total Gas Capacity

Well Choke Setting Oil Output Gas Output

W1 72.98 28.75 39942.14

W2 47.07 12.60 53520.27

W3 0.00 0.00 0.00

W4 0.00 0.00 0.00

W5 47.84 21.56 50477.35

W6 62.60 24.75 47852.05

W7 50.34 18.54 50547.29

Sum - 105.66 242339.10

Total Gas Capacity 250000.00

Individual Gas Capacity 54166.00

Maximum Amount of Changes 3
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Table 9.2: Well settings and outputs for the breached total gas capacity case.

Initial Case B: Over Gas Capacity

Well Choke Setting Oil Output Gas Output

W1 72.98 28.75 40023.99

W2 0.00 0.00 0.00

W3 40.00 18.38 42823.11

W4 22.52 8.31 9828.87

W5 53.23 24.40 51929.03

W6 62.61 24.76 51915.69

W7 53.43 19.62 53866.87

Sum - 124.23 250389.60

Total Gas Capacity 225000.00

Individual Gas Capacity 54166.00

Maximum Amount of Changes 3
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Table 9.3: Well settings and outputs for the zero production case.

Initial Case C: Zero Production

Well Choke Setting Oil Output Gas Output

W1 0.00 0.00 0.00

W2 0.00 0.00 0.00

W3 0.00 0.00 0.00

W4 0.00 0.00 0.00

W5 0.00 0.00 0.00

W6 0.00 0.00 0.00

W6 0.00 0.00 0.00

Sum - 0.00 0.00

Total Gas Capacity 250000.00

Individual Gas Capacity 54166.00

Maximum Amount of Changes 6

Initial case B starts in an infeasible operational point, where the total gas capacity con-
straint is breached. This scenario is typically the result of the right hand side of the total
gas capacity constraint shifting downwards, e.g. as a result of system failure or mainte-
nance. We also add additional restrictions on the turning off and on of wells. We assume
that the production engineers are unwilling to perform drastic changes to the operating
point, but instead wish to move to feasibility by performing smaller changes and tweak-
ing the choke levels. Thus, we restrict the optimization model so that no wells that are
switched off prior to optimization may be switched on, and no wells that are producing
prior to optimization may be switched off.

Initial case C starts with all wells switched off. Consequently, no information about the
well gas output curves is known prior to optimization. This allows for the solution methods
described in Chapter 8 to unfold in a different way than when in more active starting points.

86



Chapter 10
Computational Study

In this chapter, we present the results of applying the implemented models to the test case
from the Norwegian Continental Shelf. Since the test case is a simplified representation of
a real oil field, real data with which solutions can be compared does not exist. The focus
of this study is therefore on comparing the different presented approaches to each other
and discussing corresponding similarities and differences.

All computations are performed on a 3.40GHz Intel Core i7-6700 CPU with 32 GB RAM.
Python version 3.6 is used as the programming language. The Keras (Chollet et al., 2015)
library is used for all NN related tasks, and the Gurobi (2014) solver is used for the opti-
mization modeling.

This chapter is organized as follows. In Section 10.1, the results from a technical study
investigating solution times and scenario stability are presented. Results from the well
model implementations are discussed in Section 10.2, before an optimization study of the
initial cases defined in 9.3 is provided in Section 10.3. Finally, in Section 10.4 the re-
sults from the implementation of the multi-objective program are presented, and a relation
between RA and MOP results is studied.

10.1 Technical Study
In this section, we examine the technical aspects of our well models and our stochastic
optimization models.

10.1.1 Problem Size
Solution times are of vital importance in an RTO setting. The model of interest in this
study is the stochastic model formulated in Section 6.1. Parameters affecting the solution
time of our models include the number of wells in the problem, the number of scenarios
we include in our model and, when NN MILP reformulation is used, the NN well model
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architectures. In Section 10.2.1, we identify architectures yielding the best performance
and apply these to the well model NNs. Thus the architectures of our NN MILPs are not
variable in the problem. Our emphasis in this section is on the effect of varying the number
of scenarios.

Two procedures for generating scenario well curves fGius(·) are presented; The Factor pro-
cedure in Section 8.3.2 and the Markov Weighted procedure in Section 8.3.3. A Markov
Weighted scenario is generated from a set of samples. In this technical study, we use 11
samples per scenario. The performance of the Markov Weighted models thus depends on
the efficiency of the representation of this sample set as a piecewise linear function. The
NN MILP formulation consists of a single hidden layer with 20 neurons, while the SOS2
representation places a breakpoint for each sample in a scenario. Finally, the Factor sce-
nario model requires 3 NN MILPs per well (gas and oil mean and gas variance), regardless
of the number of scenarios. Each NN in the Factor model consists of a single hidden layer
with 40 neurons.

Figure 10.1: Solution times using the Factor and Markov Weighted scenario generation procedures
applied to case C.

Results for the Factor model and the Markov Weighted model using both SOS2 and NN
MILPs are shown in Figure 10.1 for case C. The results show that the optimization model
solution time is lowest when representing well curve scenarios using the SOS2 Markov
Weighted type formulation. The Factor scenario model is more computationally expen-
sive to solve, while the Markov Weighted model with NNs reformulated as MILPs clearly
is the most computationally taxing. When solving the problem using Markov Weighted
NNs for 100 scenarios, the average solution time is 825 seconds (13.75 minutes). This
measurement is not included in the figure for readability purposes. Based on expert knowl-
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edge from our industry partner, solution times of an RTO model ideally do not exceed ten
minutes on the system used in this computational study. From the problem size results, it
is clear that the Markov Weighted NN model quickly becomes too computationally expen-
sive to solve within a reasonable time in an RTO setting.

Intuitively, we expect the Factor model to scale well since increasing the number of scenar-
ios in the model does not involve the addition of more NN MILPs. However, the scalability
of this model is poor compared to the SOS2 Markov Weighted model. Furthermore, the
two models using Markov Weighted scenarios, in essence, are two distinct representations
of the same piecewise linear functions. Again we see that the NN MILPs offer poor scal-
ability. These results imply that our formulation of NN MILPs leads to excessively long
solution times in the Gurobi solver used in the experiments. Since SOS2 is a well-known
modeling technique which many commercial solvers are able to exploit efficiently, alter-
native NN MILP formulations or improved branching strategies for our formulation may
help to close the gap. The case used in this study models inputs as one dimensional. We
note that SOS2 representations suffer from the curse of dimensionality when applied to
higher dimensional inputs, a result confirmed in Malvik and Witzøe (2017). Subsequently,
NN MILP formulations may perform better in comparison to SOS2 in case applications of
higher dimensions. A discussion of further research topics based on the technical study is
found in Chapter 12.

10.1.2 Stability Testing

To measure the in-sample stability of our scenario generation procedures, we solve case
A with Markov Weighted and Factor scenarios. For each number of scenarios, we gen-
erate 100 samples and solve the model with each sample. The objective values are then
recorded. As a quantitative measure of in-sample stability, we use the standard deviation
of the objective value over the 100 samples. We repeat the procedure for both scenario
generation methods.

Figure 10.2 shows the standard deviation of the objective value as the number of scenarios
in the stochastic optimization model increases for Markov Weighted and Factor scenarios.
The results are similar for the two scenario generation procedures, with the Factor sce-
narios leading to a slightly lower standard deviation. One possible explanation for this is
that a Factor scenario with a large positive factor leads to a high GOR across the entire
input domain for the given well. In a robust stochastic formulation, this causes the Fac-
tor scenarios to produce more conservative solutions which are slightly more stable, thus
leading to the lower standard deviation. In Figure 10.3 we plot the mean objective value
obtained with the two scenario generation procedures, again for case A. This confirms that
the Factor model is more conservative in its solutions.

The standard deviation obtained for 500 Markov Weighted and Factor scenarios comprises
0.45% and 0.57%, respectively, of the average objective value for the same number of sce-
narios. When increasing the number of scenarios above 400, we observe diminishing
returns in the reduction of the standard deviation of the Markov Weighted scenarios. We
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conclude that both scenario generation procedures offer sufficient stability for 400 scenar-
ios or more.

Figure 10.2: The standard deviation of the objective value as a function of the number of scenarios
in the optimization model for the Factor and Markov Weighted scenario generation procedures.

Figure 10.3: Mean objective value obtained from stability tests for case A, using Factor and Markov
Weighted scenario generation procedures.
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In Section 4.4.2, it is shown that measuring out-of-sample stability requires the compari-
son of the objective values obtained using different scenario trees. However, in the relevant
problem of this thesis, it is assumed that all uncertainty is located in the gas output of wells.
Since gas outputs are present in constraints in the optimization problem only, we always
have perfect out-of-sample stability in the theoretical sense. That is, a solution, represented
by a set of choke values, always produces the same oil output regardless of which scenario
tree it is evaluated over since oil outputs are deterministic. The standard approach to mea-
suring out-of-sample stability makes little sense in our application. Nonetheless, we are
interested in measuring if our scenario generation procedures capture the relevant aspects
of the underlying distribution and if the scenarios produce stable results in an ”out-of-
sample” setting. An approximation to out-of-sample stability by comparison of the MOP
and a model based on Markov Weighted scenarios is discussed in Section 10.4.4.

10.2 Well Model Results
We now present the results from implementing well models using the methodology de-
scribed in Chapter 7.

10.2.1 Neural Network Hyperparameters
Grid and randomized search are used to identify the NN hyperparameters that yield the
best performance when approximating the well curves. Performance is measured by mean
test scores using 3-fold cross-validation, as presented in Section 4.1.4. Since we do not,
in general, know how the well performance curves compare across wells, we search for
parameters for each well for gas and oil separately. The hyperparameters yielding the best
test scores for each well are found in Table 10.1 and Table 10.2 for the gas and oil output,
respectively. Higher test scores indicate a better result. The test scores take negative values
due to the NN loss function, presented in Section 4.3.3. The table includes results for the
regularization term λ, the dropout rate p, the number of hidden layers L and the number
of neurons in each hidden layer N . A comprehensive list of the top 3 test score results for
each well, phase and search method is found in Appendix A.

In Table 10.1 we see that there are differences in the identified hyperparameters for approx-
imating the gas output curves. The largest differences are found in the values for regular-
ization term λ in the grid search results, where the highest value 1.00× 10−4, found for
W3, is two orders of magnitude larger than the lowest, 1.00× 10−6, found for all wells
except W3 and W7. Thus the grid search indicates that the W3 and W7 NNs are more
prone to overfitting the data. However, for the randomized search, all λ terms are of the
same order of magnitude. Here, the largest values for the regularization term are found for
wells W5 and W6. Based on these results it is difficult to draw any conclusions regarding
which well NN is more likely to overfit its data.

The dropout rate p generally yields the best performance for values in the range of 0.033−
0.079. The complexity of a NN increases with the number of hidden layers L and neu-
rons in these layers N . Both grid and randomized search find that complex architectures
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Table 10.1: Hyperparameter search results for gas output.

Hyperparameters

Well Search Type Avg. Test Score λ p L N

W1
Grid -4.66 1.00 × 10−6 0.050 2 40

Randomized -4.71 1.49 × 10−5 0.033 2 39

W2
Grid -5.57 1.00 × 10−6 0.050 2 40

Randomized -5.79 6.34 × 10−5 0.013 2 30

W3
Grid -6.58 1.00 × 10−4 0.050 2 40

Randomized -6.75 2.98 × 10−5 0.063 2 28

W4
Grid -7.16 1.00 × 10−6 0.050 2 40

Randomized -7.27 4.26 × 10−5 0.035 2 33

W5
Grid -7.24 1.00 × 10−6 0.050 2 40

Randomized -7.11 7.18 × 10−5 0.037 2 36

W6
Grid -6.76 1.00 × 10−6 0.050 2 40

Randomized -6.82 7.93 × 10−5 0.012 2 29

W7
Grid -6.65 1.00 × 10−5 0.050 2 40

Randomized -7.45 6.13 × 10−5 0.079 2 35

Table 10.2: Hyperparameter search results for oil output.

Hyperparameters

Well Search Type Avg. Test Score λ p L N

W1
Grid -6.35 1.00 × 10−2 0.050 2 20

Randomized -6.22 9.33 × 10−6 0.014 2 37

W2
Grid -4.67 1.00 × 10−4 0.050 2 40

Randomized -4.69 6.93 × 10−5 0.026 2 31

W3
Grid -10.94 1.00 × 10−5 0.150 2 20

Randomized -8.72 1.48 × 10−5 0.260 2 7

W4
Grid -5.88 1.00 × 10−2 0.050 2 20

Randomized -5.96 3.73 × 10−5 0.067 2 10

W5
Grid -7.71 1.00 × 10−2 0.050 2 20

Randomized -7.08 9.5 × 10−5 0.074 2 5

W6
Grid -7.78 1.00 × 10−2 0.050 2 20

Randomized -7.36 1.86 × 10−5 0.012 2 6

W7
Grid -8.71 1.00 × 10−3 0.050 2 20

Randomized -7.64 9.17 × 10−5 0.110 2 9

92



Table 10.3: Top results from hyperparameter search over complex architectures for gas output. The
first two rows show results for increased depth and the last two rows show results for increased
width.

Hyperparameters

Well Search Type Avg. Test Score λ p L N

Expanded
Depth

W1
Grid -4.76 1.00 × 10−6 0.050 4 20

Randomized -4.58 3.88 × 10−6 0.034 3 11

W2
Grid -5.53 1.00 × 10−6 0.050 3 40

Randomized -5.50 4.89 × 10−6 0.031 2 23

Expanded
Width

W1
Grid -4.63 1.00 × 10−6 0.050 2 70

Randomized -4.86 3.39 × 10−6 0.047 1 79

W2
Grid -5.57 1.00 × 10−6 0.050 2 60

Randomized -6.51 3.05 × 10−6 0.032 1 79

produce the best performance. Consequently, these results suggest better test scores may
be achieved if we expand the search space with respect to architecture parameters. We
conduct an additional search over strictly more complex architectures to see if significant
improvements to the test score can be obtained for two selected wells, W1 and W2. We
search over an increase in width, i.e., 1− 2 hidden layers with 40− 80 neurons each, and
an increase in depth, i.e., 3−4 hidden layers with 10−40 neurons each. The top expanded
grid and randomized search results are presented in Table 10.3. Comparing the depth and
width test scores to Table 10.1, we see that the best improvement is less than 5%, and the
test score is worse in half of the cases. If we reformulate the NN as a MILP, adding hidden
layers and neurons leads to an increase in the number of integer variables and constraints.
Thus, we conclude that for our application, 2 hidden layers offers sufficient complexity for
our well models for the gas output.

The oil output results in Table 10.2 exhibit a larger spread than for the gas output. No-
tably, for some wells, we observe stricter regularization in the best performing results.
Since dropout has the effect of regularization, we expect that setting a large λ term and
a low rate p produces somewhat comparable results to a small λ and a high p. However,
from the results, we see that high dropout rates and large regularization terms yield sim-
ilar test scores to low dropout rates and small regularization terms. From these results, it
seems NN performance is more dependent on architecture than regularization intensity in
the oil output case. In such cases, we may be more interested in searching over parame-
ters which affect the test scores to a greater extent, e.g., by setting regularization intensity
using heuristic rules and instead including the learning rate in the search space. However,
it is also possible that the parameter space we include in the search space is too limited to
capture the dropout rates and regularization terms that yield the actual best performance.
With respect to the bias-variance trade-off discussed in Section 4.1.1, we may be in a sit-
uation where the search space only covers a small region of the trade-off curve, yielding
similar test scores in both extreme ends.

The use of heuristic rules to determine certain NN hyperparameters is a strategy to avoid
the combinatorial explosion of the grid and randomized searches in high dimensions. It is
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impossible to verify optimality of the determined hyperparameters, and in light of the dis-
cussion above, alternative search spaces are interesting to examine. This topic is discussed
in Chapter 12.

Once the best performing hyperparameters are identified for each well and phase, we are
able to train the NN well models.

10.2.2 Neural Network Well Models

The result of a fully trained well model as described in Chapter 7 is plotted in figures 10.4
and 10.5 for well W7 for the oil and gas outputs, respectively. The data points shown in
the figures are discounted using discount Algorithm A.1 with a grid of size 100× 1 along
the choke and output axes, and α = 1.5. This means that the plot includes at most 100 data
points. In this case, the amount of data points is reduced from 1,308 to 33. The time spent
training a network on the original data points is 502.69 seconds. After discounting, train-
ing time is reduced to 37.82 seconds. Thus, as a side effect of applying the discounting
algorithm, the NN training is considerably quicker. Training times for different interval
sizes in the discounting algorithm for well W7 are found in Appendix A. The optimal fi-
delity of the discount algorithm is case dependent since data characteristics determine how
aggressively we wish to phase out old measurements. Determining this fidelity thus relies
on intimate knowledge of the relevant case. For the case in this thesis, we use a 100 × 1
discount grid for all wells.

Figure 10.4: NN Well model for the oil output W7. Data points are discounted by discount algorithm
A.1 and represented as dark blue dots in the figure. The solid blue line represents the estimated mean.
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Figure 10.5: NN Well model for the gas output W7. Data points are discounted by Algorithm A.1
and represented as dark blue dots in the figure. The solid blue line represents the estimated mean,
while each blue shade corresponds to a standard deviation.

Reformulating our well model NNs as MILPs in the optimization model leads to a slight
change in how the NN estimates its mean output. Prior to reformulation, MC dropout is
used to approximate the mean over several forward passes as in Equation 4.24. However,
applying dropout during forward passes is complicated in the MILP reformulation of the
NN. Thus, we instead perform one forward pass through the piecewise linear NN MILP
without dropout, scaling outputs as described in Section 4.2.6, to calculate the mean out-
put. If there is a large difference between the estimated mean using MC dropout and the
estimated mean of the single forward pass, we lose accuracy in the MILP reformulation.
With this in mind, we now examine the difference between the two approaches to calcu-
lating the mean output.

In the following, we denote the estimated mean for choke level x ∈ X by µMC(x) when
using MC dropout, and µoff(x) using a single forward pass without dropout. Figure 10.6
shows the deviation between µMC(x) and µoff(x), for NNs trained with dropout rates
p1 = 0.05, p2 = 0.15 and p3 = 0.26 for well W3. Here, the dark blue dots represent
the well measurement data points. Calculations for the mean absolute deviation are shown
in the top row in Table 10.4. We include p3 since it is the highest dropout rate identified
by the hyperparameter search for oil output for W3 in Section 10.2.1. For all three rates,
the mean absolute deviation between the two curves over the entire choke domain is less
than 0.3 SOR. Our findings confirm results by Srivastava et al. (2014), who empirically
observe small deviations for simple NN architectures.

Two regions of interest are identified in the plots. The highest observed choke value in
the measurement data for W3 is xmax = 50.50, and the first region of interest consists of
choke values x ∈ {X ⊂ X |x > xmax}. For all three dropout rates, µMC(x) exhibits
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increased volatility in this region. This is a result of different realizations of the random
dropout masks leading to more variation in the NN output for regions in which no data is
observed. Consequently, the deviation between the two calculations for the mean is larger
in this region, as is seen in the bottom row of Table 10.4. Nonetheless, the mean absolute
deviation is still small compared to the total output, and we deem this gap to be acceptable
for choke values x ∈ X .

The second region of interest is located around the lowest choke setting for which the es-
timated mean oil output takes a positive value. This setting is different for µMC(x) and
µoff(x), with the difference increasing with higher dropout rates. Consequently, a higher
choke setting is required before positive production is observed when using µoff(x). Since
the gap quickly closes as the choke level increases, this deviation occurs solely when wells
are marginally producing. We conclude that the deviation in this area is acceptable in our
application since it is present only in a very contained region.

In summary, we find that the deviation of the estimated mean that occurs when we no
longer apply dropout in a NN reformulated as a MILP is insignificant in the relevant case
of this thesis.

Table 10.4: Mean absolute deviation of MC dropout mean and NN prediction without dropout.
The top row shows the calculation over the entire input domain, while the bottom row shows the
calculations for the region of the input domain in which choke values exceed the highest observed
measurement data point.

Dropout rate 0.05 0.15 0.26

Avg. deviation, x ∈ X 0.26 SOR 0.14 SOR 0.19 SOR

Avg. deviation, x ∈ X 0.33 SOR 0.18 SOR 0.21 SOR

Figure 10.6: Mean of MC dropout compared to NN prediction without dropout for well W3.
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10.3 Robust Optimization Study
In this section, we present results from the stochastic optimization model applied to the ini-
tial cases defined in Section 9.3. We use the penalty approaches introduced in Section 8.4
to compare solutions for different model settings. First, we examine results from directly
and simultaneously applying all suggested changes in the optimal solutions. Results from
applying operational changes sequentially in the Recourse Algorithm are then presented
before we discuss and compare the approaches.

10.3.1 Stochastic Optimization Results
We now present results from evaluating the solutions of our robust stochastic model ap-
plied to initial cases A, B and C. For each initial case and number of scenarios, the model
solution is evaluated in 200 different scenarios that we treat as distinct ground truths. These
true scenarios are kept out of the optimization model. We note that in this section, all op-
erational changes suggested by the model are assumed to be implemented simultaneously
when we evaluate solutions.

In the following, we show an excerpt of results aiming to give the reader insight into how
solutions evolve as we increase the number of scenarios in the problem. Full results for
a wider range of scenario sizes are found for all cases and models in Appendix B. Tables
10.5, 10.6 and 10.7 show results for cases A, B and C, respectively. Each table includes
results for both the Markov Weighted scenario models and the Factor scenario models.
The # Infeasible column denotes the number of ground truths (out of 200) in which the
model solution is infeasible. The average objective value under each penalty approach is
shown. Note that the WS solution is equal for both scenario model types in all cases.

Table 10.5: Initial case A: The EEV, WS and stochastic optimization model objective values using
Markov Weighted scenarios and Factor scenarios.

Markov Weighted Scenarios Factor Scenarios
Strict Reversion Strict Reversion

Model/Scenarios # Infeasible Penalty Penalty # Infeasible Penalty Penalty
EEV 56 91.82 123.71 37 101.15 122.22
WS 0 134.18 134.18 0 134.18 134.18

5 64 92.41 126.22 0 116.16 116.16
15 22 118.23 129.86 0 116.16 116.16
30 11 125.44 131.25 0 115.88 115.88
50 9 125.74 130.50 0 115.78 115.78
400 0 127.86 127.86 0 108.57 108.57

Some observations are made from the results for the three initial cases. First, we see that
the Factor model behaves strangely for case B, producing identical solutions that are in-
feasible in all ground truth scenarios for any scenario number. In Section 8.3.2 it is shown
that providing a known point, i.e., a choke setting with corresponding gas output, leads
to a single possible Factor representation for the relevant well. Thus the Factor model
reduces to a deterministic model in case B except for well W2, since this is the only well
that is switched off prior to optimization. However, since the specification of case B dis-
allows turning on wells that are not initially producing, uncertainty is eliminated from the
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Table 10.6: Initial case B: The EEV, WS and stochastic optimization model objective values using
Markov Weighted scenarios and Factor scenarios.

Markov Weighted Scenarios Factor Scenarios
Strict Reversion Strict Reversion

Model/Scenarios # Infeasible Penalty Penalty # Infeasible Penalty Penalty
EEV 190 6.00 98.21 200 0 100.93
WS 0 120.37 120.37 0 120.37 120.37

5 113 48.18 99.18 200 0 100.93
15 62 72.57 101.52 200 0 100.93
30 14 94.97 100.58 200 0 100.93
50 4 98.73 100.50 200 0 100.93
400 1 97.81 98.61 200 0 100.93

Table 10.7: Initial case C: The EEV, WS and stochastic optimization model objective values using
Markov Weighted scenarios and Factor scenarios.

Markov Weighted Scenarios Factor Scenarios
Strict Reversion Strict Reversion

Model/Scenarios # Infeasible Penalty Penalty # Infeasible Penalty Penalty
EEV 166 22.55 99.43 169 19.52 93.47
WS 0 131.86 131.86 0 131.86 131.86

5 122 48.28 108.27 99 61.82 111.24
15 63 83.08 114.22 2 110.90 111.85
30 25 102.93 115.35 2 110.90 111.85
50 14 107.86 114.70 1 106.65 107.08
400 7 108.31 111.64 0 100.24 100.24

problem. The resulting solution is therefore always identical. This solution is infeasible
because the deterministic Factor curves fail to represent the ground truth scenarios accu-
rately. Case B highlights the weakness of the Factor scenario generation procedure when
known points are specified. We conclude that the Factor model is not a suitable model for
case B.

For cases A and C, the Factor model produces solutions that are feasible in all 200 ground
truth scenarios even with a modest number of scenarios. However, the obtained objec-
tive value is generally lower for the Factor model than for the Markov Weighted once
the number of scenarios is sufficiently high. With 400 scenarios, the Markov Weighted
model obtains objective values that are 17.8% and 11.4% higher than the Factor model
for cases A and C respectively, when applying the switch-off penalty. This suggests that
optimal solutions of the Factor model are conservative, avoiding infeasibility in ground
truth scenarios at the cost of optimal objective values. We note that this confirms the result
in Section 10.1.1. For case A under the Reversion penalty, the Factor model obtains a
higher objective value for the EEV than for the robust stochastic model using any number
of scenarios, yielding a negative VSS. This suggests that when subject to certain penalties,
the conservatism of the Factor model detracts value from the decision maker rather than
adding it.

Generally, case C leads to a higher number of infeasible settings than cases A and B
for nearly all scenario sizes and scenario generation procedures (except for the unsuited
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Factor model for case B). In case C all wells are shut off prior to optimization, and we are
uncertain about all regions of the well curves. For cases A and B, the generated scenarios
intersect known points for initially producing wells, and the well models are less uncertain
in close proximity to such known points. Thus we expect case C to be generally more
uncertain, which is confirmed by the higher number of infeasible settings. We also see
that there is a large difference in mean objective value for the Strict and Reversion/Switch-
Off penalty for models with less than 100 scenarios, except for the Factor model for case
A. This difference is a function of the number of infeasible solutions, since these do not
contribute to the average objective value in the Strict penalty approach. As the number of
infeasible solutions decreases with a higher number of scenarios, the difference between
the Strict and Switch-Off/Reversion penalties diminishes.

Figure 10.7: VSS and EVPI for a number of scenario sizes for the Strict penalty for initial case C.

The Markov Weighted VSS and EVPI for initial case C under the Strict and Switch-Off
penalty are plotted for various numbers of scenarios in Figures 10.7 and 10.8, respectively.
Identical plots for cases A and B are found in Appendix B. Clearly, different penalty
approaches lead to different values for the VSS. While the VSS for 400 scenarios with the
Strict penalty is 80.72, the Switch-Off penalty with the same number of scenarios yields a
VSS of 6.77. The large difference in VSS highlights the importance of carefully selecting
a suitable penalty to infeasible solutions in a robust optimization model. If the penalty
does not reflect the true utility of the decision maker, we end up with a poor understanding
of model performance.
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Figure 10.8: VSS and EVPI for a number of scenario sizes for the Switch-Off penalty for initial
case C.

10.3.2 Recourse Algorithm Results

We first examine the objective values attained by the RA and the behavior of the VSS and
EVPI. Then, we look at an example of an iteration performed by the algorithm to study its
behavior. In light of the weaknesses of the Factor scenario model identified in the previous
section, throughout this section we present results for the RA using Markov Weighted
scenarios only.

Markov Weighted Scenarios for Initial Cases

As in the previous section, for each initial case and number of scenarios, the model solu-
tion is evaluated in 200 different scenarios that we treat as distinct ground truths. We use
the same 200 ground truths as for the standard stochastic robust model, in the interest of
comparing solutions in Section 10.3.3. These true scenarios are kept out of the optimiza-
tion model, but are gradually learned by the RA as changes are implemented.

Table 10.8 shows results from running the RA for a selected number of scenario sizes for
all three initial cases. As in the previous section, complete tables with results for a wider
range of scenario sizes are found in Appendix B. The # Infeasible column for cases A and
C denotes the number of ground truths in which the RA is forced to revert one or more
changes due to visiting an infeasible state. Note that as discussed in Section 8.5, in case
B an implemented change is not reverted even though the resulting solution is infeasible
if the model is still moving toward feasibility. The # End States Infeasible column for
case B therefore represents the number of ground truth scenarios in which the RA failed
to reach feasibility after expending all its permitted changes. Thus, while for cases A and
C infeasible moves are reverted as the algorithm iterates, it is appropriate to penalize the
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RA in case B whenever it fails to reach feasibility.

Results from applying the Strict and Switch-Off penalties to the RA in case B are shown
in Table 10.9. The difference between the penalty-free RA average objective value and the
objective value under the Switch-Off penalty is less than 3.5% for all numbers of scenar-
ios, and is negligible for models with 20 or more scenarios since the number of infeasible
states is 2 or less for these models. Considering the model with 15 scenarios, the RA fails
to reach a feasible end state in more than 10% of the ground truths. However, the differ-
ence between the penalty-free objective value and the Switch-Off penalty is only 0.47%,
lower than we expect with a relatively high infeasibility rate. This indicates that in the
cases where the RA ends in an infeasible state, it breaches the gas export capacity con-
straint by a marginal amount. However, this result is not obvious from considering the
# End States Infeasible column in Table 10.9. We conclude that accounting not only for
the number of times the end state is infeasible, but the amount by which the gas capacity
constraints are breached may provide clearer insight in cases where we start in an initially
infeasible state and move towards feasibility.

For case B, the number of infeasible states visited is not strictly decreasing with an in-
creasing number of scenarios. Whether or not the RA reaches feasibility in case B typi-
cally depends on how conservative its final suggested operational change is. As we add
scenarios, the solution path of the RA changes, i.e., which wells it changes and the order
of these wells. As a consequence, the final well to change also varies with the number of
scenarios, and the number of infeasible states may increase as scenarios are added to the
model. Nonetheless, we see a clear trend in the results, with the RA stabilizing at 1 or 2
failures to reach feasibility for problems with 30 scenarios or more.

Table 10.8: Recourse algorithm results for Markov Weighted scenarios.

Initial Case A: Under Cap. Initial Case B: Over Cap. Initial Case C: Zero
Model/ # Infeasible Avg. Objective # End States Avg. Objective # Infeasible Avg. Objective

Scenarios Moves Value Infeasible Value Moves Value
EEV 56 125.18 78 104.77 183 109.20
WS 0 134.18 0 120.37 0 131.86

5 60 126.96 15 102.94 119 112.79
15 12 130.47 22 106.10 46 117.64
30 11 131.05 0 104.25 15 116.69
50 8 129.83 2 102.61 13 115.88

400 2 128.20 1 104.29 4 112.49

Figure 10.9 gives a visual representation of the development of the EVPI and VSS of the
RA result for case C as the number of scenarios increases. Identical figures are found for
cases A and B in Appendix B. The RA objective value is volatile for models with few sce-
narios since the number of infeasible states visited at first decreases quickly as we increase
the number of scenarios above 5. As the number of scenarios increases, the objective value
stabilizes at 112.49 SOR, yielding a VSS of 3.29.

In tables 10.8 and 10.9, the maximum of the VSS (corresponding to the maximum average
objective value) is not found when solving the model with the maximum number of scenar-
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Table 10.9: Penalized recourse algorithm results for Markov Weighted scenarios, case B.

Initial Case B Penalized
Model/ # End States Avg. Objective Strict Switch-Off

Scenarios Infeasible Value Penalty Penalty
EEV 78 104.77 64.9 101.14
WS 0 120.37 N/A N/A

5 15 102.94 95.15 101.47
15 22 106.10 94.47 105.60
30 0 104.25 104.25 104.25
50 2 102.61 101.60 102.49

400 1 104.29 103.52 104.27

Figure 10.9: VSS and EVPI for a number of scenario sizes for initial case C.

ios, 400, for any of the initial cases A, B or C. For the number of scenarios that maximize
the objective value and thus the VSS, the model performs changes that visit infeasible
states in 11, 29 and 27 ground truth scenarios for cases A, B (Switch-Off penalty) and C,
respectively. Consequently, the maximum objective value comes at the risk of stressing
the production system with numerous infeasible states. This result is expected in a robust
formulation, where including few scenarios in the model leads to an incomplete represen-
tation of the uncertainty in the problem and weaker robustness against feasibility.

Similar to the results in Section 10.3.1, we find that the RA produces a higher number of
infeasible states for case C than what is found for cases A and B. Again, this is due to the
model being uncertain about the entirety of the gas curve for all wells prior to optimizing,
since no initially known points are specified in case C.

We defer a more thorough discussion of the RA results to Section 10.3.3, where obtained
objective values are compared to the results from implementing changes simultaneously.
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Single RA Run

We now examine a single run of the RA for case B with 25 scenarios in the optimization
model. For convenience, we remind the reader that the total gas export capacity in this
case is 225,000 SOR, the individual well gas production capacity is 54,166 SOR and the
number of allowed operational changes is 3. In the initial state prior to optimization, the
total gas output is 250,387 SOR.

In Figure 10.10, each optimization step in the RA is represented by a box, while triangles
indicate the flow of the algorithm. Each box contains information on the initial choke
levels prior to the optimization, the changes suggested by the optimization, and the choke
levels after implementing a single change. The well for which the RA chooses to imple-
ment a change is selected according to the priority lists shown at the top of the figure, and
is in each step marked with a thick border in the Change column under Model Solution.
The priority list for increasing the choke settings is based on sorting wells from lowest
average GOR to highest, while the list for choke decrease is the reverse of the aforemen-
tioned. The intermediate results after implementing the selected change are shown in the
top half of each box and include which well is changed, whether or not the solution is fea-
sible and any constraint breaches, the new oil output, the expected gas output before the
change is implemented and the realized gas output after the implementation. The choke
values after the implementation, dubbed New State Chokes, are then carried on to the next
optimization step as Initial State Chokes. Choke values are marked with red in infeasible
solutions and green in feasible solutions. The example run is never close to breaching
individual gas capacity constraints, and in the interest of avoiding clutter in Figure 10.10,
individual well gas outputs are not shown.

We now consider the details of the RA run in Figure 10.10.

Step 1. In the first optimization step, the model is solved with 3 allowed changes. A neg-
ative change is suggested for wells W7 and W5, while a positive change is suggested for
well W3. The RA prioritizes negative changes first, and since W7 ranks second and W5
ranks sixth in the choke decrease priority list, W7 is selected as the well to change. After
implementing the change, the realized gas output is 5,447 SOR lower than expected. At
this point, the state is still infeasible by approximately 6,000 SOR.

Step 2. As a result of the lower than expected gas output, the second optimization solution
recommends decreasing the choke level for well W6 instead of well W5. The suggested
increase for well W3 remains the same as in the suggested solution in the first step, i.e.,
an increase of 18.00. Again, the RA prioritizes the negative change first, selecting W6
as the well to change. The planned increase in W3 is justified by the model expecting
a feasible state upon decreasing the choke for W6, which is observed by an expected gas
output in step 2 of 223,488 SOR, about 1,600 SOR lower than the total gas capacity. How-
ever, after performing the choke decrease, well W6 produces almost 7,000 SOR more gas
than expected. The realized gas output yields a new state that is still infeasible by about
5,000 SOR.
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Step 3. Faced with a higher than expected gas output that yields an infeasible state, the
RA suggests as its final change a decrease in the choke level for well W3 by 9.22 instead
of the positive change it originally suggested in steps 1 and 2. This reduction yields only
slightly more gas output than expected in the final state, and the result is a solution that is
feasible by about 1,800 SOR.

The final oil output rate the RA achieves in this example run is 97.67 SOR. If all 3 changes
from the solution suggested in step 1 are implemented simultaneously, the resulting state
is feasible, with an oil output rate of 106.51 SOR and a total gas output rate of 216,314
SOR. In other words, implementing 3 changes simultaneously in this case leads to both
lower gas output and higher oil output. When the RA learns the true production output of
well W7 in step 1, the uncertainty regarding all other wells remains unchanged. With its
limited amount of 25 scenarios, the model has a poor representation of the uncertainty in
well W6, causing it to underestimate the rate of gas this well produces. Thus, even though
the decision to change W6 instead of W5 is more informed than the decision to implement
all changes simultaneously, the final result is significantly worse. Clearly, discovering in-
formation about the true performance of wells is potentially of little value if the underlying
uncertainty is not properly represented in the model. In Section 10.3.3, we compare results
for the RA with simultaneous changes for a wider range of scenario sizes.

We note that in a setting with perfect information, the implemented change in each step
corresponds to a suggested change from the solution of the first step optimization since
the realized gas output always equals the expected gas output. Thus, a WS model always
follows its first solution and the RA provides no added value in such cases.
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Figure 10.10: A single run of the RA for case B. The optimization model includes 25 scenarios.
Well priority lists decide which of the suggested well chokes are changed. The solutions of the
optimization model change as the RA learns more about the true production of the wells. Infeasible
solutions are colored in red, while feasible solutions are colored in green.
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10.3.3 Stochastic Optimization Results Comparison

We now compare results for the simultaneous change penalty approaches with the RA.
Since the EEV is different for these approaches, we cannot directly compare the VSS.
However, since the same 200 ground truths are used to evaluate all models in this study,
we are able to compare the obtained objective value of the approaches directly. We note
that this is equivalent to comparing the EVPI since the WS solution is equal for all three
approaches, i.e., the Strict and Reversion/Switch-Off penalties and the RA. In Section
10.3.2, RA solutions for case B are penalized whenever infeasible in the ground truth sce-
nario. For convenience, in the following discussion with respect to RA results for case B,
we consider the results obtained under the Switch-Off penalties. Since the difference in
the RA objective value under the Strict and Switch-Off penalties for case B is found to be
1% or less for models with 30 or more scenarios in the previous section, this distinction
has an insignificant impact on the relevant discussion.

In the following, all results for all model types pertain to the models using Markov Weighted
scenarios since important weaknesses with the Factor scenarios are identified in Section
10.3.1.

Figures 10.11, 10.12 and 10.13 show the comparison of objective values for case A, B
and C respectively. In all figures, the blue and green solid lines denote the objective val-
ues obtained when implementing changes simultaneously, penalized with the Strict and
Reversion/Switch-Off penalties, respectively. The solid black line denotes the objective
value obtained with the RA.

Figure 10.11: The obtained average objective values of the RA, and the Strict and Reversion penal-
ties for initial case A.

In all cases, the number of infeasible solutions is typically high for models with few sce-
narios regardless of whether simultaneous changes or the RA are used. The objective value
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under the Strict penalty is low as a consequence but approaches the Reversion/Switch-Off
penalty and RA as the number of scenarios increases in all cases. The gap between the
Strict penalty and the Switch-Off penalty is higher for case C than for A and B for models
with a high number of scenarios. For cases A and B, the gap is 0.00 and 0.47 at its lowest,
respectively, while for case C the lowest gap is 3.32. The reason for this is the higher de-
gree of uncertainty in case C, noted in Section 10.3.1 for the robust model implementing
changes simultaneously, and in Section 10.3.2 for the RA.

Figure 10.12: The obtained average objective values of the RA, and the Strict and Switch-Off
penalties for initial case B.

Figure 10.13: The obtained average objective values of the RA, and the Strict and Switch-Off
penalties for initial case B.
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In cases A and C, regions exist for which the average objective value obtained by the RA
is lower than the value obtained by implementing all changes simultaneously using the
Reversion or Switch-Off penalties. These regions are mainly located where models con-
tain less than 200 scenarios. Making decisions based on new information in the RA leads
to unstable results for models with insufficient numbers of scenarios, confirming results
from Section 10.3.2, where the value of learning true well outputs is found to depend on
the ability of the model to represent uncertainty in the problem.

In all three initial cases, the objective values are more volatile for lower numbers of scenar-
ios and seem to stabilize for models with 200 scenarios or more. The relative performance
of the three approaches is different depending on the number of scenarios we select as
our sample. In the previous sections, it is shown that we are not always able to avoid in-
feasibility even with the maximum number of scenarios. We find it reasonable to use the
performance of the approaches with 400 scenarios as the benchmark since we optimize
in a robust setting and these models provide the highest robustness against infeasibility.
However, a decision maker with a higher appetite for risk may prefer to set a different
benchmark.

Table 10.10 shows the objective values for the three approaches with 400 scenarios in the
models, for case A, B and C. The RA is higher in all initial cases, with values 0.27%,
5.74% and 0.76% higher than the Reversion/Switch-Off penalties for cases A, B and C
respectively. Compared to the Strict penalty, the RA achieves an improvement of 0.27%,
6.60% and 3.86%.

The large improvement in objective values from the RA when compared to implementing
changes simultaneously for case B warrants a discussion. In case B, we start in an in-
feasible point due to the right-hand side of a constraint shifting in the negative direction.
The nature of this shift determines how realistically the RA models a real setting. The
RA requires letting the system settle in a steady state between each single implemented
change. Since this process may take hours in a real oil field, the RA implicitly assumes
the system is able to spend considerable time in an, albeit decreasingly, infeasible state
as it sequentially moves towards feasibility. If the nature of the constraint shift is dra-
matic and requires feasibility to be achieved as fast as possible, the RA is ill-suited to the
task. In such cases, the observed gain in objective value is not realistically achievable.
Nonetheless, for less dramatic shifts, e.g., planned maintenance, the results indicate that
updating model with observed data can yield significant performance gains. However, in
Section 8.5 it is noted that since the RA learns the entire true well output curve of a well
for which an operational change is performed, RA results are an optimistic estimate of the
performance we expect to see in a real application. If a more realistic learning process is
modeled, it is unclear from our results whether or not the performance gain from the RA
is significant. Considering case A, where the average (optimistic) gain is only 0.27%, we
may expect this gain to be insignificant in a realistic setting. Modifications to the learning
process of the RA are discussed in more detail in Chapter 12.
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Table 10.10: Objective value comparison for the penalty approaches and the RA for 400 scenarios
included in the models.

Initial Case
Approach A B C

Strict Penalty 127.86 97.81 108.31
Reversion/Switch-Off Penalty 127.86 98.61 111.64

RA 128.20 104.27 112.49

10.4 Multi-objective Programming

In this section, we show the results from the MOP, implemented as described in Section
8.6. The MOP is a deterministic model which seeks to find solutions where the oil pro-
duction is maximized, and the total gas uncertainty is minimized. The problem is solved
for the three initial cases introduced in Section 9.3.

The objective values of the solutions are visualized as a Pareto front for cases A and B,
with the visualization for case C found in Appendix C. Exhaustive data for the Pareto
fronts is also found in Appendix C. Such a Pareto front serves as a set of options for the
production engineer. Depending on the current risk aversion of the engineer and other sit-
uational factors, he or she may prefer solutions from different regions of the Pareto front.
For each visualization, we present five plots. These plots represent the problem solved
with 1− 5 permitted changes and allow us to examine how the Pareto front varies with the
number of changes we wish to perform. Here, the y-axis represents the confidence level
of a model that its solution is feasible with respect to the total gas capacity constraint.
The calculation for this confidence is shown in 8.6. Note that we represent confidence in
percentage units throughout this section.

10.4.1 MOP: Case A

In case A, we start in an operating point in which we are close to, but below the maximum
gas capacity constraints. In Figure 10.14, we see that for any number of permitted changes,
the solution is guaranteed to be feasible for oil output levels slightly above 105 SOR. This
is expected since the output of oil is 105.66 SOR in the initial setting of this scenario.

The maximum achievable oil output is relatively similar for all solutions permitting 2 or
more changes, with the largest difference being 3.1% between 5 and 2 permitted changes.
Almost any desired level of oil output is achievable with only a few allowed changes as a
consequence. However, the confidence of the model that the resulting solution is feasible
differs significantly for lower and higher numbers of permitted changes. The confidence
levels for 3, 4 and 5 changes follow each other closely for oil outputs lower than 125, after
which differences appear, and the model with 5 changes is the most confident. Clearly,
2 allowed changes produces significantly lower confidence levels than 3 − 5 changes for
large regions of the oil output rates. Uncertainty estimates from the well models explain
this behavior. In general, moving a well choke setting far from a previously observed value
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is associated with high uncertainty since we do not know how the well output behaves in
such regions. In the case considered in this study, output measurements do not exist for
choke settings above 60. Consequently, increasing oil production by changing only a few
wells forces the model to implement choke settings for which the output rate estimates
exhibit high degrees of uncertainty. Higher confidence is obtained if the model is allowed
to perform minor changes for several wells, keeping choke levels closer to previously ob-
served measurements where uncertainty estimates are lower.

The sharp drop in confidence for the model with 2 changes, from 65.75% to 25.58% be-
tween an oil output of 128.46 and 129.83, corresponds to a change in the configuration of
wells that are producing in the solution. Specifically, at this point the model begins pro-
ducing from well W2, inducing a significantly higher risk of infeasibility. This indicates
that well W2 is a well with high levels of uncertainty associated with the oil output rate
it produces in the solution. The qualitative properties of solutions in the Pareto front are
discussed in more detail in Section 10.4.5.

Figure 10.14: Pareto front for case A and 1-5 allowed changes.

10.4.2 MOP: Case B

The initial operating point in case B is an infeasible one, where the total gas capacity con-
straint is breached. In Figure 10.15 the model with 1 permitted change yields a maximum
confidence level of 97.95%. Thus, the model is unable to guarantee feasibility when only
a single change is permitted. For the models with 2 or more changes allowed, smaller
differences in confidence levels are observed when compared to the plot for case A in
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Section 10.4.1. The maximum difference between these models is found for an oil output
of 111.11, where the model with 5 changes allowed is 8.34% more confident in its solu-
tion than the model with 2 changes allowed. The plots for 4 and 5 changes are identical,
indicating that 4 changes are the maximum amount needed to obtain the most confident
solution for any desired oil output level. Thus, we observe diminishing returns on the in-
crease in confidence gained by allowing more changes.

The initial oil output is 124.22 in case B. The MOP results show that the maximum prob-
ability of reaching a feasible state without incurring a loss in the oil output in this case
is 18.18%, obtained for the model with 4 or 5 changes (since these produce equivalent
fronts). Thus, a decision maker who wishes to maintain the initial oil output level in the
event of a reduction in the total gas capacity, observes that doing so entails that the proba-
bility of a constraint breach is over 80%.

Figure 10.15: Pareto front for case B and 1-5 allowed changes.

10.4.3 MOP: Case C

In this case, all models with 1− 4 permitted changes produce solutions that are always, or
nearly always feasible, while models with 5 − 7 changes produce identical Pareto fronts.
The figure that shows the results for case C is therefore not discussed in detail but is in-
cluded in Appendix C.
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10.4.4 Comparing MOP and RA Solutions
When considering the MOP Pareto front, an optimal robust solution is found for the point
on the front yielding the highest oil production while still guaranteeing P (Feasible) = 1.
In Section 8.6, we simplify the MOP calculations for P (Feasible) by disregarding the
probability of breaching the individual well gas capacity constraints. The subsequent loss
of accuracy in the calculation of P (Feasible) depends on whether the relevant case is
constrained more tightly by the total gas capacity constraint than the individual capacity
constraints for each well. If we produce gas at a rate close to individual gas constraints
in the optimal solution, the MOP estimate of P (Feasible) is not realistically achievable
for a robust formulation considering both constraint types. We therefore note that in the
following discussion, the MOP confidence level is artificially high when compared to the
RA since the latter is robust against both constraint breaches while the former is not.

We now compare results for case C. RA and MOP uncertainty estimates are straight-
forward to compare when all regions of well output curves are uncertain, i.e., when no
initially known points are specified. Figure 10.16 shows RA and MOP solutions for 6
changes in case C, with results for RA labeled according to the number of scenarios the
model includes. The optimal robust solution on the MOP line is marked with a red dot,
corresponding to a 100% confidence of feasibility for an oil output of 112.01 SOR. The
probability of feasibility, P (Feasible), is for the RA calculated as the number of feasible
solutions it obtained in Table 10.8 relative to the 200 ground truth scenarios, with the cor-
responding oil output of the RA found in the same table.

Figure 10.16: Pareto front for case C and 6 allowed changes, with RA solutions from Table 10.8
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With 5 scenarios, the RA is feasible in 81 out of 200 ground truth scenarios, corresponding
to a confidence level of 40.50% and oil output of 112.79 SOR. The number of infeasible
solutions produced quickly drops as we increase the number of scenarios, with 20 scenar-
ios yielding feasible solutions in 173 out of 200 ground truths for a confidence level of
86.50%, and increased oil output of 119.35 SOR. Thus, the RA solution with 20 scenarios
dominates all solutions obtained for models with fewer scenarios. As we further increase
the number of scenarios, the RA produces more conservative solutions which offer higher
confidence of feasibility at the cost of lower oil outputs. Except for the solution for 300
scenarios which is dominated by the solution for 400 scenarios, the RA results form a
Pareto front for models with 20− 400 scenarios. We note that the oil output of the RA de-
pends on the sample of scenarios included in the problem, particularly for small scenario
samples. Thus, the bias of the scenario sample causes large variations in the oil output,
and the behavior of models with few scenarios may vary significantly for different sam-
ples. That is, for repeated experiments we expect large variations in the behavior of the
RA solutions for scenario sizes 5− 100. For models with more than 100 scenarios where
bias is lower, confidence levels and oil outputs are approximately equal.

The RA solution does indeed seem to approach the optimal robust solution in the MOP
Pareto front for models with 200 scenarios or more. The remaining gap between the 400
scenario RA solution and the optimal solution marked by the red dot may be due to the
previously noted artificially high confidence of the MOP Pareto front. We also note, as
discussed in Section 10.3.2, that the RA fails to produce solutions that are feasible in all
200 ground truth scenarios even with 400 scenarios in the model in case C. Thus, it is
possible the gap is closed for RA models with a higher number of scenarios.

In the comparison above, the MOP confidence is based on the estimated well model dis-
tribution. The RA includes Markov Weighted scenarios which are generated based on this
distribution and a Markov assumption. Since the two models converge to approximately
the same optimal solution in a robust setting, the Markov Weighted scenario generation
procedure seems to be a sensible representation of different well output curve realizations
given the estimated distribution. That is, the scenario generation procedure does not pro-
duce scenarios which poorly reflect our belief of the underlying distribution. Informally,
we may think of this as an indication of the out-of-sample stability of the scenario genera-
tion procedure, since solutions obtained using the scenarios yield approximately the same
objective values as solutions obtained using the underlying distribution.

10.4.5 Analyzing the Solutions in a Pareto Front
In this section, we investigate how the well configurations change in the solution as we
adjust the value of εj in the ε-constrained method. We consider case A and generate the
Pareto front with 2 allowed changes, similarly to the plot in Section 10.4.1. Now, for each
solution point in the front, we color the point according to the combination of wells that
are producing. The results are presented in in Figure 10.17. Here, each color corresponds
to a unique configuration of producing wells. The choke level value for each well is vari-
able within each color, but the configuration of which wells are active is unchanged. Table
10.11 shows which wells are active for each unique combination.
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Figure 10.17: Pareto front for case A with 2 changes. The front represents the trade-off between
maximizing oil output while attempting to ensure infeasibility. Each color represents one unique
combination of wells producing in the solution.

Table 10.11: For each color in Figure 10.17, the check mark in each well column indicates if the
well is producing or not in the configuration. The top row (blue) corresponds to the lowest oil output
and the highest confidence P (Feasible), while the bottom row (red) corresponds to the highest oil
output and the lowest confidence P (Feasible).

Well
Solution W1 W2 W3 W4 W5 W6 W7

X X X
X X X
X X X X
X X X X
X X X X X
X X X X X
X X X X X X

Initial Configuration X X X X X

In Table 10.11, we see that some wells are more favored than others depending on the
risk aversion of the decision maker. For example, W3 is one of the first wells in which
production is ceased in the solution as the constraint on oil production is loosened. This
indicates that W3 has a high oil output relative to the other wells but at the cost of high gas
output and/or uncertainty. Consequently, W3 produces only for high levels of oil output,
i.e., when the model is forced to produce from W3 in order to satisfy the constrained oil
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production. As soon as solutions satisfying the constrained oil output rate without W3 are
identified, it is switched off. On the other hand, W1 and W6 are switched on in every
solution in the Pareto front. This indicates that producing from W1 and W6 yields low gas
outputs and corresponding variance in gas output relative to the oil output.
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Chapter 11
Concluding Remarks

In this thesis, we consider the real-time optimization of an offshore petroleum production
field. The problem involves maximizing oil production on a daily basis by performing mi-
nor adjustments in the field and frequently re-solving the optimization models. Historical
measurement data from the field forms the basis for modelling well output functions. Two
sources of uncertainty in estimated gas outputs, epistemic and aleatoric, make adhering to
gas capacity constraints in the field complicated. The risk aversion of the field engineer
with respect to breaching these constraints is assumed to vary with field conditions.

We formulate a robust stochastic MILP modelling a maximally risk averse field engineer,
and a MOP modelling variable risk aversion. Well output functions and the correspond-
ing uncertainty are modelled with NNs, reformulated as MILPs and incorporated into the
optimization models. Two distinct scenario generation procedures, Factor and Markov
Weighted, are developed for the robust problem. A recourse algorithm which aims to ex-
ploit the discovery of new data points as we implement changes in the field is presented.
Finally, all components are integrated into a seamless solution pipeline and tested on a
simplified representation of a real oil field.

An important contribution of this thesis is a novel well model based on NN architectures
able to predict distributions for the target output. We combine this architecture with a
recently developed technique for estimating model uncertainty, using MC dropout to ap-
proximate variational inference in a BNN. To our knowledge, this is the first work to utilize
NNs able to capture both epistemic and aleatoric uncertainty in estimated output rates.

The technical study compares two different NN MILP representations with a model us-
ing SOS2. Results show that the SOS2 model yields the quickest solution times, while
NN MILP scalability is poorer than expected. The difference is particularly evident in
the case of Markov Weighted scenarios, where both formulations represent the exact same
piecewise linear functions. Although alternative branching strategies may help close the
gap, results indicate that the NN MILP formulation is an inefficient representation of a
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piecewise linear function with a single dimensional input. However, due to the curse of di-
mensionality, SOS2 scales poorly in cases of higher dimensional input and further testing
is needed to determine which formulation offers the superior solution times in such cases.

We solve the robust stochastic problem for three initial cases for both scenario genera-
tion procedures. The Factor scenarios suffer from substantial bias due to their inability to
deviate from the shape of the mean curve, producing overly conservative solutions. Fur-
thermore, the scenarios reduce to deterministic curves when initially known production
points are specified. Due to these issues, the Factor scenarios are found to be unsuited
models of well output function realizations in their current form. Results using Markov
Weighted scenarios show that planning with uncertainty in the optimization models adds
value compared to planning with expected values. However, the VSS strongly depends on
the way infeasible solutions are penalized. If the penalty does not reflect the true utility of
the decision maker, we end up with a poor understanding of model performance.

The recourse algorithm outperforms the stochastic robust model by 0.27% 5.74%, and
0.76%, for cases A, B and C respectively, when using the softest punishment on infeasible
solutions obtained from the robust model. However, due to simplifications in its imple-
mentation the RA represents an optimistic estimate of the value we expect to gain from
learning true well output functions. Furthermore, the RA assumes that it is always pos-
sible to let the production system settle in a steady state before implementing operational
changes. This is not realistic in certain settings where reaching feasibility as quickly as
possible is the top priority. Thus, we expect performance gains from applying the RA in a
real application to be lower than reported in the computational study.

The results from the MOP optimization yield Pareto fronts maximizing the probability of
feasibility for a given oil output. Constraining the number of operational changes in the
problem increases the risk of infeasibility. Higher confidence levels are obtained by allow-
ing numerous smaller changes since this allows wells to operate in regions of relatively
low uncertainty. Analyses of the well configurations of different solutions in the Pareto
front reveal insights into well uncertainty characteristics. Specifically, results show how
certain well configurations are preferable to others depending on the desired oil output.

An optimistic estimate of the optimal robust solution is located in the MOP Pareto front,
maximizing oil output while guaranteeing feasibility. When comparing RA and MOP re-
sults, we find that the models converge to approximately the same optimal robust solution.
This indicates that the Markov Weighted scenario generation procedure properly repre-
sents our belief of the underlying distribution of the stochastic variables in the problem.
Thus, an informal indication of out-of-sample stability is obtained.

In conclusion, the novel well models proposed in this thesis offer a flexible representation
of epistemic and aleatoric uncertainty. Incorporating these models into the RTO problems
facilitates decision support for a production engineer who is concerned with maximizing
oil production while considering uncertainty. In particular, the models developed in this
thesis enable the decision maker to identify optimal solutions for any level of risk aversion.
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Chapter 12
Future Research

In this chapter, we give ideas and suggestions for further research topics. Several chal-
lenges with the models proposed in this thesis are identified in the computational study
which require closer examination. In the following, we keep the discussion at a concep-
tual level.

The well models developed in this thesis provide the estimated distribution of the output
rate given any setting of the input decision variables. These models provide flexible tools
applicable to a variety of stochastic problems. A natural extension of the robust stochastic
model in this thesis is modeling both oil and gas output rates as uncertain. Additionally,
numerous alternative optimization applications exist that make use of the acquired distri-
butions. For instance, it is possible to minimize the expected value of any gas capacity
constraint breach by considering conditional value at risk (CVaR). A multi-stage stochas-
tic model including recourse decisions is another possible formulation that further makes
use of the uncertainty estimates of the well models.

In Section 8.5, we discuss the way in which operational changes are implemented in a
petroleum production field. After performing one or more changes, the production system
is typically allowed to settle in a steady state. Upon reaching this steady state, we are in a
position to approximate the output rates of the system in its new setting. The RA presented
in this thesis models this process but updates the optimization model with true informa-
tion regarding the entire production curve of the well for which a change was made. In
reality, we have at this time only observed a single new point of the true production curve
of the well. Furthermore, the initially known point for this well now represents a slightly
outdated data point, since conditions in the field may change while the system settles in
its new steady state. An interesting topic for further research is to generate new scenarios
once the system has moved to a new steady state. In the new scenarios, the current op-
erating point with corresponding output rates is treated as the known point. The previous
operating point is treated as uncertain, but less so than unobserved parts of the well curve
since we have a relatively recent measurement data point for this input setting. Scenar-
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ios are allowed to deviate slightly from the previous point, e.g., half a standard deviation.
This method potentially allows a closer approximation of reality than what is possible in
the current implementation of the RA.

The case application in this thesis is based on a single dimensional input, i.e., the choke
level. In Section 10.1.1, the SOS2 formulation for Markov Weight scenarios offers con-
siderably better scalability than NNs reformulated as MILPs. However, for cases with
higher input dimensionality, SOS2 requires grid approximations which may quickly be-
come computationally intractable. In such cases, NN MILPs likely scale better due to the
fact that increasing the dimension of the input merely involves adding another input neu-
ron to the NN. The increase in integer variables and constraints in the MILP reformulation
of the NN is in this case relatively modest. Nonetheless, the identified scaling problems
of the NN MILP formulation with Markov Weighted scenarios need to be addressed if the
optimization models are to be applied to large problem instances with high dimensionality
input. Relevant research topics include an effective branching strategy and methods for
calculating bounds on the objective value. Alternative formulations of NNs as MILPs are
also of interest.

In Section 4.3.3 we use a loss function based on the log-likelihood of the predicted out-
put and corresponding variance. The log-likelihood assumes that the errors of the function
generating our data are normally distributed. In a real application, this assumption may not
be realistic. Extensive work exists regarding the use of NNs to predict intervals containing
the target variable rather than point estimates, known as the field of predictive intervals
(PIs). Several methods and architectures do not rely on assumptions regarding the dis-
tribution of the target function, with interesting works including Khosravi et al. (2011a),
Khosravi et al. (2011b) and Pearce et al. (2018). We suggest conducting a feasibility study
to examine if such NN architectures are suitable for integration in a MILP optimization
framework. PIs potentially provide superior flexibility since no assumptions regarding the
underlying distribution are made.

In Section 8.2.1, we use heuristic rules and standard values in the literature to determine
a subset of the NN well model hyperparameters. Consequently, the grid and randomized
searches conducted in Section 10.2.1 are only conducted for parameters with regulariza-
tion effects, i.e., the L2 regularization term λ and the dropout rate p, and architecture
parameters, i.e., the number of hidden layers L and the number of neurons N in each such
layer. We are not able to verify whether or not the defined search space lets us identify the
hyperparameters yielding the best performance. Thus, further studies examining results
from searching over different sets of hyperparameters are of great interest, for instance,
examining the effect of varying the learning rate parameter.
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Appendix A
Well Model Appendix

In this appendix, supplementary content regarding the well models used in this thesis is
supplied.

A.1 Discounting Overlapping Data Points
In the well measurements, there are cases where a well has several data points with sig-
nificantly varying production output values for approximately the same input values. For
examples of this phenomenon, see Section 9.2. Potential reasons for this is that the mea-
surements are conducted far apart in time or for different back pressures. If such cases are
left untreated, regression may place excessive weight on a few outdated input values and
behave undesirably.

To overcome the obstacle of overlapping data points, a discount algorithm is implemented
which handles the case in which time differences are the cause of the varying output mea-
surements for similar input settings. A variety of discounting approaches exist, the two
most common being hyperbolic and exponential discounting. In exponential discounting,
some attribute of interest is chosen and points are discounted with respect to this attribute
by multiplying with an exponential factor.

In a data set consisting of measurements from petroleum production, we find it reasonable
to assume that recent measurements describe well performance more accurately than old
ones. Thus, we discount with respect to the time stamp of each data point. The factor

by which we discount a point is given by e−α
t−tk
∆t , where α is a user specified parameter

and the fraction t−tk
∆t is the relative age of data point k with time stamp tk compared to

the newest data point with time stamp t. The fraction takes values from 0 to 1 due to the
divisor ∆t, which represents the time difference between the oldest and newest data point.
The parameter α controls the rate at which points are discounted. That is, the higher the
value of α, the less weight we place on old data points.
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Algorithm 3: Algorithm for consolidating data points using a discount rule.
Input : A target phase p, either oil or gas.

A set D = {(X1, Y1), ... , (XN , YN )} of N data rows. Xn = {cn, tn}
where cn is the choke level and tn is the start time of well test n. Yn = {pn} where
pn is the target output rate of well test n.

A discounting factor α.
A number of intervals I and J for the input and output
dimensions, respectively.

Output: A consolidated data set D̂ = {(X̂1, Ŷ1), ... , (X̂M , ŶM )} of M ≤ N data
rows.

1 D̂ ← ∅
2 c∗ ← maxn=1...N (cn)−minn=1...N (cn)

I

3 p∗ ← maxn=1...N (pn)−minn=1...N (pn)
J

4 for i← 1 to I do
5 Di ⊆ D ← {(Xk, Yk) ∈ D | ic∗ ≤ ck < (i+ 1)c∗};
6 for j ← 1 to J do
7 Dij ⊆ Di ← {(Xk, Yk) ∈ Di | jp∗ ≤ pk < (j + 1)p∗};
8 if |Dij | ≥ 2 then
9 t← max

(Xk,Yk)∈Dij (tk);
10 t← min

(Xk,Yk)∈Dij (tk);
11 ∆t← t− t;
12 λSUM ← 0;
13 cij , t

ij
, pij ← 0;

14 for (Xk, Yk) ∈ Dij do
15 λk ← e−α

t−tk
∆t ;

16 λSUM ← λSUM + λk;
17 cij ← cij + λkck;
18 t

ij ← t
ij

+ λktk;
19 pij ← pij + λkpk;
20 end
21 X

ij ← { cij

λSUM
, t

ij

λSUM
};

22 Y
ij ← { pij

λSUM
};

23 D̂ ← D̂ ∪ {(Xij
, Y

ij
)};

24 else if |Dij | = 1 then
25 D̂ ← D̂ ∪ Dij ;
26 end
27 end

Figure A.1: Discounting algorithm
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The discounting algorithm, shown in Figure A.1, works as follows. The input domain
space is first divided into a user specified number of intervals of equal length in line 2.
The algorithm then loops through each of the intervals. The set of points belonging to
the current interval is defined in line 4. If an interval contains more than one data point, a
single point replaces the original points in the interval. The discount factor of each original
point is calculated in line 12. The replacing point is then constructed by taking the discount
weighted mean of the points within the interval in lines 19 − 20. Note that setting α = 0
amounts to taking the mean of all data points in each interval, whereas setting α > 10
effectively amounts to exclusively weighting the newest data point.

A.2 Hyperparameter Search

This section lists the top 3 hyperparameter results for grid and randomized search, for each
well and phase.

Table A.1: Hyperparameter grid search results for oil output.

Hyperparameters
Well Rank Avg. Test Score λ p L N

W1
1 -6.35 1.00 × 10−2 0.05 2 20
2 -7.76 1.00 × 10−5 0.05 2 20
3 -11.54 1.00 × 10−6 0.05 2 20

W2
1 -4.67 1.00 × 10−4 0.05 2 40
2 -4.68 1.00 × 10−5 0.05 1 40
3 -4.69 1.00 × 10−6 0.05 1 40

W3
1 -10.94 1.00 × 10−5 0.15 2 20
2 -12.67 1.00 × 10−5 0.05 1 20
3 -13.89 1.00 × 10−3 0.05 1 20

W4
1 -5.88 1.00 × 10−2 0.05 2 20
2 -5.94 1.00 × 10−3 0.05 2 20
3 -5.96 1.00 × 10−3 0.15 2 40

W5
1 -7.71 1.00 × 10−2 0.05 2 20
2 -14.27 1.00 × 10−2 0.05 2 20
3 -16.88 1.00 × 10−6 0.15 2 20

W6
1 -7.78 1.00 × 10−2 0.05 2 20
2 -8.61 1.00 × 10−5 0.05 2 20
3 -21.08 1.00 × 10−4 0.05 2 20

W7
1 -8.71 1.00 × 10−3 0.05 2 20
2 -15.90 1.00 × 10−2 0.05 2 20
3 -17.34 1.00 × 10−3 0.25 1 20

A.3 Well Model Plots

This section contains figures of fully trained well models for all wells in the case of this
thesis.
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Table A.2: Hyperparameter randomized search results for oil output.

Hyperparameters
Well Rank Avg. Test Score λ p L N

W1
1 -6.22 9.33 × 10−6 0.014 2 37
2 -8.61 6.62 × 10−5 0.035 1 20
3 -10.19 7.52 × 10−5 0.018 2 19

W2
1 -4.69 6.93 × 10−5 0.026 2 31
2 -4.73 2.81 × 10−5 0.041 1 25
3 -4.74 5.87 × 10−5 0.042 2 35

W3
1 -8.72 1.48 × 10−5 0.26 2 7
2 -11.54 8.49 × 10−5 0.055 2 10
3 -11.58 7.05 × 10−5 0.37 1 11

W4
1 -5.96 3.73 × 10−5 0.067 2 10
2 -5.97 5.56 × 10−5 0.15 1 5
3 -6.17 7.08 × 10−5 0.36 1 12

W5
1 -7.08 8.20 × 10−5 0.060 1 9
2 -8.99 2.34 × 10−5 0.33 1 5
3 -9.69 9.50 × 10−5 0.074 2 5

W6
1 -7.36 1.86 × 10−5 0.12 2 6
2 -7.93 4.36 × 10−5 0.087 2 8
3 -8.44 5.16 × 10−5 0.25 2 5

W7
1 -7.64 9.17 × 10−5 0.11 2 9
2 -7.92 1.67 × 10−5 0.14 1 7
3 -8.47 5.28 × 10−5 0.018 2 11

Table A.3: Hyperparameter grid search results for gas output.

Hyperparameters
Well Rank Avg. Test Score λ p L N

W1
1 -4.66 1.00 × 10−6 0.05 2 40
2 -5.14 1.00 × 10−5 0.05 1 20
3 -5.26 1.00 × 10−4 0.05 1 20

W2
1 -5.57 1.00 × 10−6 0.05 2 40
2 -6.16 1.00 × 10−5 0.05 2 40
3 -6.32 1.00 × 10−6 0.05 2 20

W3
1 -6.58 1.00 × 10−4 0.05 2 40
2 -6.65 1.00 × 10−6 0.05 2 40
3 -6.75 1.00 × 10−5 0.05 2 40

W4
1 -7.16 1.00 × 10−6 0.05 2 40
2 -8.32 1.00 × 10−5 0.05 1 20
3 -8.33 1.00 × 10−4 0.05 1 20

W5
1 -7.24 1.00 × 10−6 0.05 2 40
2 -8.37 1.00 × 10−5 0.05 1 20
3 -8.65 1.00 × 10−4 0.05 1 20

W6
1 -6.76 1.00 × 10−6 0.05 2 40
2 -7.65 1.00 × 10−5 0.05 1 20
3 -7.63 1.00 × 10−4 0.05 1 20

W7
1 -6.65 1.00 × 10−5 0.05 2 40
2 -7.59 1.00 × 10−6 0.05 2 40
3 -7.59 1.00 × 10−4 0.05 2 40
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Table A.4: Hyperparameter randomized search results for gas output.

Hyperparameters
Well Rank Avg. Test Score λ p L N

W1
1 -4.71 1.50 × 10−5 0.033 2 39
2 -4.71 4.40 × 10−5 0.14 2 39
3 -4.73 9.25 × 10−5 0.033 2 33

W2
1 -5.79 6.34 × 10−5 0.013 2 30
2 -6.29 1.60 × 10−5 0.061 2 26
3 -6.35 6.16 × 10−5 0.14 2 28

W3
1 -6.75 2.98 × 10−5 0.063 2 28
2 -7.70 5.12 × 10−5 0.034 1 31
3 -7.73 5.41 × 10−5 0.39 2 17

W4
1 -7.27 4.26 × 10−5 0.035 2 33
2 -7.63 2.81 × 10−5 0.059 2 23
3 -8.35 2.91 × 10−5 0.25 1 29

W5
1 -7.11 7.18 × 10−5 0.037 2 36
2 -9.23 7.66 × 10−5 0.11 1 6
3 -9.07 4.52 × 10−5 0.17 1 13

W6
1 -6.82 7.93 × 10−5 0.012 2 29
2 -7.36 4.38 × 10−5 0.10 2 30
3 -7.68 9.45 × 10−5 0.15 1 37

W7
1 -7.45 6.13 × 10−5 0.079 2 35
2 -7.52 8.11 × 10−5 0.068 2 31
3 -7.60 8.69 × 10−5 0.065 2 30

Figure A.2: Well model for oil production of well W1.
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Figure A.3: Well model for oil production of well W2.

Figure A.4: Well model for oil production of well W3.

Figure A.5: Well model for oil production of well W4.
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Figure A.6: Well model for oil production of well W5.

Figure A.7: Well model for oil production of well W6.

Figure A.8: Well model for oil production of well W7.
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Figure A.9: Well model for gas production of well W1.

Figure A.10: Well model for gas production of well W2.

Figure A.11: Well model for gas production of well W3.
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Figure A.12: Well model for gas production of well W4.

Figure A.13: Well model for gas production of well W5.

Figure A.14: Well model for gas production of well W6.
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Figure A.15: Well model for gas production of well W7.

A.4 Technical Study
The following table contains the total training time for a NN for well W1 as the grid fidelity
of the discounting algorithm varies.

Table A.5: Training times for different discounting parameters. W1, trained for 40,000 epochs.

Sections Sections Data points Seconds
x-axis y-axis after discount spent training

25 1 11 9.71
50 1 17 9.63

100 1 28 9.91
25 10 28 10.17
50 10 40 10.32

100 10 58 18.62
25 50 65 18.62
50 50 89 19.76

100 50 121 29.57
25 100 97 19.84
50 100 131 30.21

100 100 170 41.32
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Appendix B
Stochastic Optimization Appendix

In this appendix, supplementary content regarding the stochastic robust model and the RA
is supplied.

B.1 Stochastic Robust Optimization Model

In this Section, full results from implementing changes simultaneously with the stochastic
robust model are supplied.

Figure B.1: VSS and EVPI for a number of scenario sizes for initial case A with Strict penalty and
simultaneous implementation of changes.
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Figure B.2: VSS and EVPI for a number of scenario sizes for initial case A with Reversion penalty
and simultaneous implementation of changes.

Figure B.3: VSS and EVPI for a number of scenario sizes for initial case B with Strict penalty and
simultaneous implementation of changes.
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Figure B.4: VSS and EVPI for a number of scenario sizes for initial case B with Switch-Off penalty
and simultaneous implementation of changes.

Figure B.5: VSS and EVPI for a number of scenario sizes for initial case C with Strict penalty and
simultaneous implementation of changes.
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Figure B.6: VSS and EVPI for a number of scenario sizes for initial case C with Switch-Off penalty
and simultaneous implementation of changes.

iv
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B.2 Recourse Algorithm

In this section, full results for the RA are supplied.

Figure B.7: VSS and EVPI of Recourse Algorithm for a number of scenario sizes for initial case A.

Figure B.8: VSS and EVPI of Recourse Algorithm for a number of scenario sizes for initial case B.
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Figure B.9: VSS and EVPI of Recourse Algorithm for a number of scenario sizes for initial case B
with Strict penalty.

Figure B.10: VSS and EVPI of Recourse Algorithm for a number of scenario sizes for initial case
B with Switch-Off penalty.
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Figure B.11: VSS and EVPI of Recourse Algorithm for a number of scenario sizes for initial case
C.
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Appendix C
MOP Appendix

This appendix provides full results from solving the MOP for all initial cases.

In the following tables, p(f) represents P(Feasibility), exp oil represents the oil output in
SOR in the corresponding figures and alpha denotes the fraction j

N in Equation 8.24, i.e.,
the fraction of the optimal oil output for εj .

C.1 Case A

Table C.1: Data for Pareto front for case A, as shown in Figure 10.14

1 change 2 changes 3 changes 4 changes 5 changes
alpha exp oil p(f) exp oil p(f) exp oil p(f) exp oil p(f) exp oil p(f)
0.01 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 7.63 100 %
0.02 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 7.63 100 %
0.03 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 7.63 100 %
0.04 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 7.63 100 %
0.05 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 7.63 100 %
0.06 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 10.80 100 %
0.07 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 10.80 100 %
0.08 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 11.25 100 %
0.09 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 15.43 100 %
0.10 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 15.43 100 %
0.11 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 18.42 100 %
0.12 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 18.42 100 %
0.13 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 18.42 100 %
0.14 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 19.68 100 %
0.15 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 23.05 100 %
0.16 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 23.05 100 %
0.17 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 23.90 100 %
0.18 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 25.31 100 %
0.19 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 26.71 100 %
0.20 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 28.12 100 %
0.21 85.94 100 % 65.47 100 % 40.72 100 % 36.38 100 % 35.30 100 %
0.22 85.94 100 % 65.47 100 % 40.72 100 % 36.38 100 % 35.30 100 %
0.23 85.94 100 % 65.47 100 % 40.72 100 % 36.38 100 % 35.30 100 %
0.24 85.94 100 % 65.47 100 % 40.72 100 % 36.38 100 % 35.30 100 %
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Table C.1 continued from previous page
1 change 2 changes 3 changes 4 changes 5 changes

alpha exp oil p(f) exp oil p(f) exp oil p(f) exp oil p(f) exp oil p(f)
0.25 85.94 100 % 65.47 100 % 40.72 100 % 36.38 100 % 35.30 100 %
0.26 85.94 100 % 65.47 100 % 40.72 100 % 39.55 100 % 36.55 100 %
0.27 85.94 100 % 65.47 100 % 40.72 100 % 39.55 100 % 37.96 100 %
0.28 85.94 100 % 65.47 100 % 40.72 100 % 39.55 100 % 39.36 100 %
0.29 85.94 100 % 65.47 100 % 40.72 100 % 40.64 100 % 40.77 100 %
0.30 85.94 100 % 65.47 100 % 53.51 100 % 47.18 100 % 42.18 100 %
0.31 85.94 100 % 65.47 100 % 53.51 100 % 47.18 100 % 46.10 100 %
0.32 85.94 100 % 65.47 100 % 53.51 100 % 47.18 100 % 46.10 100 %
0.33 85.94 100 % 65.47 100 % 53.51 100 % 47.18 100 % 46.39 100 %
0.34 85.94 100 % 65.47 100 % 53.51 100 % 47.64 100 % 47.80 100 %
0.35 85.94 100 % 65.47 100 % 53.51 100 % 49.04 100 % 49.20 100 %
0.36 85.94 100 % 65.47 100 % 53.51 100 % 50.45 100 % 50.61 100 %
0.37 85.94 100 % 65.47 100 % 53.51 100 % 51.85 100 % 52.02 100 %
0.38 85.94 100 % 65.47 100 % 53.51 100 % 53.25 100 % 53.42 100 %
0.39 85.94 100 % 65.47 100 % 61.13 100 % 54.65 100 % 54.83 100 %
0.40 85.94 100 % 65.47 100 % 61.13 100 % 56.05 100 % 56.23 100 %
0.41 85.94 100 % 65.47 100 % 61.13 100 % 57.45 100 % 57.64 100 %
0.42 85.94 100 % 65.47 100 % 61.13 100 % 60.05 100 % 59.05 100 %
0.43 85.94 100 % 65.47 100 % 61.13 100 % 60.25 100 % 60.45 100 %
0.44 85.94 100 % 65.47 100 % 61.13 100 % 61.66 100 % 61.86 100 %
0.45 85.94 100 % 65.47 100 % 64.31 100 % 63.06 100 % 63.26 100 %
0.46 85.94 100 % 65.47 100 % 64.31 100 % 64.46 100 % 64.67 100 %
0.47 85.94 100 % 65.47 100 % 64.93 100 % 65.86 100 % 66.07 100 %
0.48 85.94 100 % 73.97 100 % 71.93 100 % 67.26 100 % 67.48 100 %
0.49 85.94 100 % 73.97 100 % 71.93 100 % 68.66 100 % 68.89 100 %
0.50 85.94 100 % 73.97 100 % 71.93 100 % 70.85 100 % 70.29 100 %
0.51 85.94 100 % 73.97 100 % 71.93 100 % 71.46 100 % 71.70 100 %
0.52 85.94 100 % 73.97 100 % 71.93 100 % 72.87 100 % 73.10 100 %
0.53 85.94 100 % 73.97 100 % 73.22 100 % 74.27 100 % 74.51 100 %
0.54 85.94 100 % 73.97 100 % 74.60 100 % 75.67 100 % 75.92 100 %
0.55 85.94 100 % 81.60 100 % 75.99 100 % 77.07 100 % 77.32 100 %
0.56 85.94 100 % 81.60 100 % 77.37 100 % 78.47 100 % 78.73 100 %
0.57 85.94 100 % 81.60 100 % 78.75 100 % 79.87 100 % 80.13 100 %
0.58 85.94 100 % 81.60 100 % 80.13 100 % 81.27 100 % 81.54 100 %
0.59 85.94 100 % 81.60 100 % 81.68 100 % 82.68 100 % 82.94 100 %
0.60 85.94 100 % 83.89 100 % 82.89 100 % 84.08 100 % 84.35 100 %
0.61 85.94 100 % 83.89 100 % 84.27 100 % 85.48 100 % 85.76 100 %
0.62 85.94 100 % 84.73 100 % 85.66 100 % 86.88 100 % 87.16 100 %
0.63 85.94 100 % 87.76 100 % 87.04 100 % 88.28 100 % 88.57 100 %
0.64 85.94 100 % 87.76 100 % 88.42 100 % 89.68 100 % 89.97 100 %
0.65 85.94 100 % 91.35 100 % 89.80 100 % 91.08 100 % 91.38 100 %
0.66 85.94 100 % 91.35 100 % 91.18 100 % 92.48 100 % 92.79 100 %
0.67 85.94 100 % 91.56 100 % 92.56 100 % 93.89 100 % 94.19 100 %
0.68 93.56 100 % 92.93 100 % 93.95 100 % 95.29 100 % 95.60 100 %
0.69 93.56 100 % 94.30 100 % 95.33 100 % 96.69 100 % 97.00 100 %
0.70 93.56 100 % 95.66 100 % 96.71 100 % 98.09 100 % 98.41 100 %
0.71 93.56 100 % 97.03 100 % 98.09 100 % 99.49 100 % 99.81 100 %
0.72 93.56 100 % 98.40 100 % 99.47 100 % 100.89 100 % 101.22 100 %
0.73 93.56 100 % 99.76 100 % 100.85 100 % 102.29 100 % 102.63 100 %
0.74 100.13 100 % 101.13 100 % 102.23 100 % 103.69 100 % 104.03 100 %
0.75 100.13 100 % 102.50 100 % 103.62 100 % 105.10 100 % 105.44 100 %
0.76 100.13 100 % 103.86 100 % 105.00 100 % 106.50 100 % 106.84 100 %
0.77 100.13 100 % 105.23 100 % 106.38 100 % 107.90 100 % 108.25 100 %
0.78 100.13 100 % 106.60 99 % 107.76 100 % 109.30 100 % 109.66 100 %
0.79 103.31 100 % 107.96 99 % 109.14 100 % 110.70 100 % 111.06 100 %
0.80 103.31 100 % 109.33 99 % 110.52 100 % 112.10 100 % 112.47 100 %
0.81 103.81 100 % 110.70 98 % 111.91 99 % 113.50 100 % 113.87 100 %
0.82 105.09 100 % 112.06 98 % 113.29 99 % 114.90 99 % 115.28 100 %
0.83 106.37 98 % 113.43 97 % 114.67 99 % 116.31 99 % 116.68 99 %
0.84 107.65 94 % 114.80 95 % 116.05 96 % 117.71 98 % 118.09 98 %
0.85 108.94 94 % 116.16 93 % 117.43 96 % 119.11 96 % 119.50 97 %
0.86 110.22 89 % 117.53 90 % 118.81 96 % 120.51 96 % 120.90 95 %
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Table C.1 continued from previous page
1 change 2 changes 3 changes 4 changes 5 changes

alpha exp oil p(f) exp oil p(f) exp oil p(f) exp oil p(f) exp oil p(f)
0.87 111.50 75 % 118.90 86 % 120.20 95 % 121.91 93 % 122.31 93 %
0.88 112.78 67 % 120.26 76 % 121.58 94 % 123.31 91 % 123.71 91 %
0.89 114.06 59 % 121.63 74 % 122.96 91 % 124.71 89 % 125.12 87 %
0.90 115.34 52 % 123.00 72 % 124.34 88 % 126.11 84 % 126.53 83 %
0.91 116.63 45 % 124.36 71 % 125.72 84 % 127.52 79 % 127.93 77 %
0.92 117.91 46 % 125.73 69 % 127.10 73 % 128.92 73 % 129.34 72 %
0.93 119.19 41 % 127.10 67 % 128.48 67 % 130.32 57 % 130.74 58 %
0.94 120.47 36 % 128.46 66 % 129.87 62 % 131.72 52 % 132.15 51 %
0.95 121.75 31 % 129.83 26 % 131.25 45 % 133.12 43 % 133.55 44 %
0.96 123.03 25 % 131.20 24 % 131.25 45 % 134.52 35 % 134.96 38 %
0.97 124.31 21 % 132.56 23 % 132.63 34 % 135.92 28 % 136.37 32 %
0.98 125.60 17 % 133.93 22 % 134.01 27 % 137.32 22 % 137.77 24 %
0.99 126.88 13 % 135.00 20 % 134.52 23 % 138.73 17 % 139.18 17 %

C.2 Case B

Table C.2: Data for Pareto front for case B, as shown in Figure 10.15

1 change 2 changes 3 changes 4 changes 5 changes
alpha exp oil p(f) exp oil p(f) exp oil p(f) exp oil p(f) exp oil p(f)
0.01 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 7.63 100 %
0.02 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 7.63 100 %
0.03 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 7.63 100 %
0.04 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 7.63 100 %
0.05 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 7.63 100 %
0.06 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 10.80 100 %
0.07 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 10.80 100 %
0.08 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 11.25 100 %
0.09 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 15.43 100 %
0.10 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 15.43 100 %
0.11 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 18.42 100 %
0.12 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 18.42 100 %
0.13 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 18.42 100 %
0.14 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 19.68 100 %
0.15 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 23.05 100 %
0.16 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 23.05 100 %
0.17 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 23.90 100 %
0.18 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 25.31 100 %
0.19 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 26.71 100 %
0.20 85.94 100 % 65.47 100 % 40.72 100 % 28.75 100 % 28.12 100 %
0.21 85.94 100 % 65.47 100 % 40.72 100 % 36.38 100 % 35.30 100 %
0.22 85.94 100 % 65.47 100 % 40.72 100 % 36.38 100 % 35.30 100 %
0.23 85.94 100 % 65.47 100 % 40.72 100 % 36.38 100 % 35.30 100 %
0.24 85.94 100 % 65.47 100 % 40.72 100 % 36.38 100 % 35.30 100 %
0.25 85.94 100 % 65.47 100 % 40.72 100 % 36.38 100 % 35.30 100 %
0.26 85.94 100 % 65.47 100 % 40.72 100 % 39.55 100 % 36.55 100 %
0.27 85.94 100 % 65.47 100 % 40.72 100 % 39.55 100 % 37.96 100 %
0.28 85.94 100 % 65.47 100 % 40.72 100 % 39.55 100 % 39.36 100 %
0.29 85.94 100 % 65.47 100 % 40.72 100 % 40.64 100 % 40.77 100 %
0.30 85.94 100 % 65.47 100 % 53.51 100 % 47.18 100 % 42.18 100 %
0.31 85.94 100 % 65.47 100 % 53.51 100 % 47.18 100 % 46.10 100 %
0.32 85.94 100 % 65.47 100 % 53.51 100 % 47.18 100 % 46.10 100 %
0.33 85.94 100 % 65.47 100 % 53.51 100 % 47.18 100 % 46.39 100 %
0.34 85.94 100 % 65.47 100 % 53.51 100 % 47.64 100 % 47.80 100 %
0.35 85.94 100 % 65.47 100 % 53.51 100 % 49.04 100 % 49.20 100 %
0.36 85.94 100 % 65.47 100 % 53.51 100 % 50.45 100 % 50.61 100 %
0.37 85.94 100 % 65.47 100 % 53.51 100 % 51.85 100 % 52.02 100 %
0.38 85.94 100 % 65.47 100 % 53.51 100 % 53.25 100 % 53.42 100 %
0.39 85.94 100 % 65.47 100 % 61.13 100 % 54.65 100 % 54.83 100 %

iii



Table C.2 continued from previous page
1 change 2 changes 3 changes 4 changes 5 changes

alpha exp oil p(f) exp oil p(f) exp oil p(f) exp oil p(f) exp oil p(f)
0.40 85.94 100 % 65.47 100 % 61.13 100 % 56.05 100 % 56.23 100 %
0.41 85.94 100 % 65.47 100 % 61.13 100 % 57.45 100 % 57.64 100 %
0.42 85.94 100 % 65.47 100 % 61.13 100 % 60.05 100 % 59.05 100 %
0.43 85.94 100 % 65.47 100 % 61.13 100 % 60.25 100 % 60.45 100 %
0.44 85.94 100 % 65.47 100 % 61.13 100 % 61.66 100 % 61.86 100 %
0.45 85.94 100 % 65.47 100 % 64.31 100 % 63.06 100 % 63.26 100 %
0.46 85.94 100 % 65.47 100 % 64.31 100 % 64.46 100 % 64.67 100 %
0.47 85.94 100 % 65.47 100 % 64.93 100 % 65.86 100 % 66.07 100 %
0.48 85.94 100 % 73.97 100 % 71.93 100 % 67.26 100 % 67.48 100 %
0.49 85.94 100 % 73.97 100 % 71.93 100 % 68.66 100 % 68.89 100 %
0.50 85.94 100 % 73.97 100 % 71.93 100 % 70.85 100 % 70.29 100 %
0.51 85.94 100 % 73.97 100 % 71.93 100 % 71.46 100 % 71.70 100 %
0.52 85.94 100 % 73.97 100 % 71.93 100 % 72.87 100 % 73.10 100 %
0.53 85.94 100 % 73.97 100 % 73.22 100 % 74.27 100 % 74.51 100 %
0.54 85.94 100 % 73.97 100 % 74.60 100 % 75.67 100 % 75.92 100 %
0.55 85.94 100 % 81.60 100 % 75.99 100 % 77.07 100 % 77.32 100 %
0.56 85.94 100 % 81.60 100 % 77.37 100 % 78.47 100 % 78.73 100 %
0.57 85.94 100 % 81.60 100 % 78.75 100 % 79.87 100 % 80.13 100 %
0.58 85.94 100 % 81.60 100 % 80.13 100 % 81.27 100 % 81.54 100 %
0.59 85.94 100 % 81.60 100 % 81.68 100 % 82.68 100 % 82.94 100 %
0.60 85.94 100 % 83.89 100 % 82.89 100 % 84.08 100 % 84.35 100 %
0.61 85.94 100 % 83.89 100 % 84.27 100 % 85.48 100 % 85.76 100 %
0.62 85.94 100 % 84.73 100 % 85.66 100 % 86.88 100 % 87.16 100 %
0.63 85.94 100 % 87.76 100 % 87.04 100 % 88.28 100 % 88.57 100 %
0.64 85.94 100 % 87.76 100 % 88.42 100 % 89.68 100 % 89.97 100 %
0.65 85.94 100 % 91.35 100 % 89.80 100 % 91.08 100 % 91.38 100 %
0.66 85.94 100 % 91.35 100 % 91.18 100 % 92.48 100 % 92.79 100 %
0.67 85.94 100 % 91.56 100 % 92.56 100 % 93.89 100 % 94.19 100 %
0.68 93.56 100 % 92.93 100 % 93.95 100 % 95.29 100 % 95.60 100 %
0.69 93.56 100 % 94.30 100 % 95.33 100 % 96.69 100 % 97.00 100 %
0.70 93.56 100 % 95.66 100 % 96.71 100 % 98.09 100 % 98.41 100 %
0.71 93.56 100 % 97.03 100 % 98.09 100 % 99.49 100 % 99.81 100 %
0.72 93.56 100 % 98.40 100 % 99.47 100 % 100.89 100 % 101.22 100 %
0.73 93.56 100 % 99.76 100 % 100.85 100 % 102.29 100 % 102.63 100 %
0.74 100.13 100 % 101.13 100 % 102.23 100 % 103.69 100 % 104.03 100 %
0.75 100.13 100 % 102.50 100 % 103.62 100 % 105.10 100 % 105.44 100 %
0.76 100.13 100 % 103.86 100 % 105.00 100 % 106.50 100 % 106.84 100 %
0.77 100.13 100 % 105.23 100 % 106.38 100 % 107.90 100 % 108.25 100 %
0.78 100.13 100 % 106.60 99 % 107.76 100 % 109.30 100 % 109.66 100 %
0.79 103.31 100 % 107.96 99 % 109.14 100 % 110.70 100 % 111.06 100 %
0.80 103.31 100 % 109.33 99 % 110.52 100 % 112.10 100 % 112.47 100 %
0.81 103.81 100 % 110.70 98 % 111.91 99 % 113.50 100 % 113.87 100 %
0.82 105.09 100 % 112.06 98 % 113.29 99 % 114.90 99 % 115.28 100 %
0.83 106.37 98 % 113.43 97 % 114.67 99 % 116.31 99 % 116.68 99 %
0.84 107.65 94 % 114.80 95 % 116.05 96 % 117.71 98 % 118.09 98 %
0.85 108.94 94 % 116.16 93 % 117.43 96 % 119.11 96 % 119.50 97 %
0.86 110.22 89 % 117.53 90 % 118.81 96 % 120.51 96 % 120.90 95 %
0.87 111.50 75 % 118.90 86 % 120.20 95 % 121.91 93 % 122.31 93 %
0.88 112.78 67 % 120.26 76 % 121.58 94 % 123.31 91 % 123.71 91 %
0.89 114.06 59 % 121.63 74 % 122.96 91 % 124.71 89 % 125.12 87 %
0.90 115.34 52 % 123.00 72 % 124.34 88 % 126.11 84 % 126.53 83 %
0.91 116.63 45 % 124.36 71 % 125.72 84 % 127.52 79 % 127.93 77 %
0.92 117.91 46 % 125.73 69 % 127.10 73 % 128.92 73 % 129.34 72 %
0.93 119.19 41 % 127.10 67 % 128.48 67 % 130.32 57 % 130.74 58 %
0.94 120.47 36 % 128.46 66 % 129.87 62 % 131.72 52 % 132.15 51 %
0.95 121.75 31 % 129.83 26 % 131.25 45 % 133.12 43 % 133.55 44 %
0.96 123.03 25 % 131.20 24 % 131.25 45 % 134.52 35 % 134.96 38 %
0.97 124.31 21 % 132.56 23 % 132.63 34 % 135.92 28 % 136.37 32 %
0.98 125.60 17 % 133.93 22 % 134.01 27 % 137.32 22 % 137.77 24 %
0.99 126.88 13 % 135.00 20 % 134.52 23 % 138.73 17 % 139.18 17 %
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C.3 Case C

Table C.3: Data for Pareto front for case C, as shown in Figure C.1

1 change 2 changes 3 changes 4 changes 5-7 changes
exp oil p(f) exp oil p(f) exp oil p(f) exp oil p(f) exp oil p(f)

0.01 6.54 100 % 6.54 100 % 6.54 100 % 6.54 100 % 6.54 100 %
0.02 6.54 100 % 6.54 100 % 6.54 100 % 6.54 100 % 6.54 100 %
0.03 6.54 100 % 6.54 100 % 6.54 100 % 6.54 100 % 6.54 100 %
0.04 6.54 100 % 6.54 100 % 6.54 100 % 6.54 100 % 6.54 100 %
0.05 6.54 100 % 6.54 100 % 6.54 100 % 6.54 100 % 6.62 100 %
0.06 6.54 100 % 6.54 100 % 6.54 100 % 6.90 100 % 7.95 100 %
0.07 6.54 100 % 6.54 100 % 6.54 100 % 8.05 100 % 9.27 100 %
0.08 6.54 100 % 6.54 100 % 7.22 100 % 9.20 100 % 10.59 100 %
0.09 6.54 100 % 6.54 100 % 8.13 100 % 10.35 100 % 11.92 100 %
0.10 6.54 100 % 6.54 100 % 9.03 100 % 11.50 100 % 13.24 100 %
0.11 6.54 100 % 7.18 100 % 9.93 100 % 12.66 100 % 14.57 100 %
0.12 6.54 100 % 7.84 100 % 10.84 100 % 13.81 100 % 15.89 100 %
0.13 6.54 100 % 8.49 100 % 11.74 100 % 14.96 100 % 17.22 100 %
0.14 6.54 100 % 9.14 100 % 12.64 100 % 16.11 100 % 18.54 100 %
0.15 6.54 100 % 9.79 100 % 13.55 100 % 17.26 100 % 19.86 100 %
0.16 6.54 100 % 10.45 100 % 14.45 100 % 18.41 100 % 21.19 100 %
0.17 6.54 100 % 11.10 100 % 15.35 100 % 19.56 100 % 22.51 100 %
0.18 6.54 100 % 11.75 100 % 16.26 100 % 20.71 100 % 23.84 100 %
0.19 6.54 100 % 12.41 100 % 17.16 100 % 21.86 100 % 25.16 100 %
0.20 6.54 100 % 13.06 100 % 18.06 100 % 23.01 100 % 26.48 100 %
0.21 6.54 100 % 13.71 100 % 18.97 100 % 24.16 100 % 27.81 100 %
0.22 6.54 100 % 14.36 100 % 19.87 100 % 25.31 100 % 29.13 100 %
0.23 6.54 100 % 15.02 100 % 20.77 100 % 26.46 100 % 30.46 100 %
0.24 6.68 100 % 15.67 100 % 21.67 100 % 27.61 100 % 31.78 100 %
0.25 6.96 100 % 16.32 100 % 22.58 100 % 28.76 100 % 33.11 100 %
0.26 7.24 100 % 16.98 100 % 23.48 100 % 29.91 100 % 34.43 100 %
0.27 7.52 100 % 17.63 100 % 24.38 100 % 31.06 100 % 35.75 100 %
0.28 7.79 100 % 18.28 100 % 25.29 100 % 32.21 100 % 37.08 100 %
0.29 8.07 100 % 18.93 100 % 26.19 100 % 33.36 100 % 38.40 100 %
0.30 8.35 100 % 19.59 100 % 27.09 100 % 34.51 100 % 39.73 100 %
0.31 8.63 100 % 20.24 100 % 28.00 100 % 35.66 100 % 41.05 100 %
0.32 8.91 100 % 20.89 100 % 28.90 100 % 36.81 100 % 42.38 100 %
0.33 9.19 100 % 21.55 100 % 29.80 100 % 37.97 100 % 43.70 100 %
0.34 9.46 100 % 22.20 100 % 30.71 100 % 39.12 100 % 45.02 100 %
0.35 9.74 100 % 22.85 100 % 31.61 100 % 40.27 100 % 46.35 100 %
0.36 10.02 100 % 23.51 100 % 32.51 100 % 41.42 100 % 47.67 100 %
0.37 10.30 100 % 24.16 100 % 33.41 100 % 42.57 100 % 49.00 100 %
0.38 10.58 100 % 24.81 100 % 34.32 100 % 43.72 100 % 50.32 100 %
0.39 10.86 100 % 25.46 100 % 35.22 100 % 44.87 100 % 51.65 100 %
0.40 11.13 100 % 26.12 100 % 36.12 100 % 46.02 100 % 52.97 100 %
0.41 11.41 100 % 26.77 100 % 37.03 100 % 47.17 100 % 54.29 100 %
0.42 11.69 100 % 27.42 100 % 37.93 100 % 48.32 100 % 55.62 100 %
0.43 11.97 100 % 28.08 100 % 38.83 100 % 49.47 100 % 56.94 100 %
0.44 12.25 100 % 28.73 100 % 39.74 100 % 50.62 100 % 58.27 100 %
0.45 12.53 100 % 29.38 100 % 40.64 100 % 51.77 100 % 59.59 100 %
0.46 12.81 100 % 30.03 100 % 41.54 100 % 52.92 100 % 60.92 100 %
0.47 13.08 100 % 30.69 100 % 42.45 100 % 54.07 100 % 62.24 100 %
0.48 13.36 100 % 31.34 100 % 43.35 100 % 55.22 100 % 63.56 100 %
0.49 13.64 100 % 31.99 100 % 44.25 100 % 56.37 100 % 64.89 100 %
0.50 13.92 100 % 32.65 100 % 45.16 100 % 57.52 100 % 66.21 100 %
0.51 14.20 100 % 33.30 100 % 46.06 100 % 58.67 100 % 67.54 100 %
0.52 14.48 100 % 33.95 100 % 46.96 100 % 59.82 100 % 68.86 100 %
0.53 14.75 100 % 34.60 100 % 47.86 100 % 60.97 100 % 70.19 100 %
0.54 15.03 100 % 35.26 100 % 48.77 100 % 62.12 100 % 71.51 100 %
0.55 15.31 100 % 35.91 100 % 49.67 100 % 63.28 100 % 72.83 100 %
0.56 15.59 100 % 36.56 100 % 50.57 100 % 64.43 100 % 74.16 100 %
0.57 15.87 100 % 37.22 100 % 51.48 100 % 65.58 100 % 75.48 100 %
0.58 16.15 100 % 37.87 100 % 52.38 100 % 66.73 100 % 76.81 100 %
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Table C.3 continued from previous page
alpha 1 change 2 changes 3 changes 4 changes 5-7 changes

exp oil p(f) exp oil p(f) exp oil p(f) exp oil p(f) exp oil p(f)
0.59 16.42 100 % 38.52 100 % 53.28 100 % 67.88 100 % 78.13 100 %
0.60 16.70 100 % 39.18 100 % 54.19 100 % 69.03 100 % 79.45 100 %
0.61 16.98 100 % 39.83 100 % 55.09 100 % 70.18 100 % 80.78 100 %
0.62 17.26 100 % 40.48 100 % 55.99 100 % 71.33 100 % 82.10 100 %
0.63 17.54 100 % 41.13 100 % 56.90 100 % 72.48 100 % 83.43 100 %
0.64 17.82 100 % 41.79 100 % 57.80 100 % 73.63 100 % 84.75 100 %
0.65 18.09 100 % 42.44 100 % 58.70 100 % 74.78 100 % 86.08 100 %
0.66 18.37 100 % 43.09 100 % 59.61 100 % 75.93 100 % 87.40 100 %
0.67 12.03 100 % 43.75 100 % 60.51 100 % 77.08 100 % 88.72 100 %
0.68 12.30 100 % 44.40 100 % 61.41 100 % 78.23 100 % 90.05 100 %
0.69 12.58 100 % 45.05 100 % 62.31 100 % 79.38 100 % 91.37 100 %
0.70 12.86 100 % 45.70 100 % 63.22 100 % 80.53 100 % 92.70 100 %
0.71 13.14 100 % 46.36 100 % 64.12 100 % 81.68 100 % 94.02 100 %
0.72 13.42 100 % 47.01 100 % 65.02 100 % 82.83 100 % 95.35 100 %
0.73 20.32 100 % 47.66 100 % 65.93 100 % 83.98 100 % 96.67 100 %
0.74 20.60 100 % 48.32 100 % 66.83 100 % 85.13 100 % 97.99 100 %
0.75 20.88 100 % 48.97 100 % 67.73 100 % 86.28 100 % 99.32 100 %
0.76 14.53 100 % 49.62 100 % 68.64 100 % 87.43 100 % 100.64 100 %
0.77 14.81 100 % 50.28 100 % 69.54 100 % 88.59 100 % 101.97 100 %
0.78 15.09 100 % 50.93 100 % 70.44 100 % 89.74 100 % 103.29 100 %
0.79 15.37 100 % 51.58 100 % 71.35 100 % 90.89 100 % 104.62 100 %
0.80 15.64 100 % 52.23 100 % 72.25 100 % 92.04 100 % 105.94 100 %
0.81 15.92 100 % 52.89 100 % 73.15 100 % 93.19 100 % 107.26 100 %
0.82 16.20 100 % 53.54 100 % 74.05 100 % 94.34 100 % 108.59 100 %
0.83 16.48 100 % 54.19 100 % 74.96 100 % 95.49 100 % 109.91 100 %
0.84 23.38 100 % 54.85 100 % 75.86 100 % 96.64 100 % 111.24 100 %
0.85 23.66 100 % 55.50 100 % 76.76 100 % 97.79 100 % 112.56 100 %
0.86 23.94 100 % 56.15 100 % 77.67 100 % 98.94 100 % 113.89 100 %
0.87 24.22 100 % 56.80 100 % 78.57 100 % 100.09 100 % 115.21 100 %
0.88 24.50 100 % 57.46 100 % 79.47 100 % 101.24 100 % 116.53 99 %
0.89 24.77 100 % 58.11 100 % 80.38 100 % 102.39 100 % 117.86 98 %
0.90 25.05 100 % 58.76 100 % 81.28 100 % 103.54 100 % 119.18 97 %
0.91 25.33 100 % 59.42 100 % 82.18 100 % 104.69 100 % 120.51 96 %
0.92 25.61 100 % 60.07 100 % 83.09 100 % 105.84 100 % 121.83 93 %
0.93 25.89 100 % 60.72 100 % 83.99 100 % 106.99 100 % 123.16 92 %
0.94 26.17 100 % 61.37 100 % 84.89 100 % 108.14 100 % 124.48 89 %
0.95 26.45 100 % 62.03 100 % 85.80 100 % 109.29 100 % 125.80 85 %
0.96 26.72 100 % 62.68 100 % 86.70 100 % 110.44 100 % 127.13 81 %
0.97 27.00 100 % 63.33 100 % 87.60 100 % 111.59 100 % 128.45 75 %
0.98 27.28 100 % 63.99 100 % 88.50 100 % 112.75 100 % 129.78 70 %
0.99 27.56 100 % 64.64 100 % 89.41 100 % 113.90 99 % 131.10 56 %
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Figure C.1: Pareto front for case C and 1-7 allowed changes. 1-3 changes are always feasible and
not included in the plot. See Table C.3 for the relevant data.
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Appendix D
Scenario Generation Appendix

This appendix provides results from varying the hyperparameters of the Markov Weighted
scenario generation procedure.

Figure D.1: Markov Weighted scenarios for a variety of weighting parameters w and number of
sampling points. Scenario in dashed green line, well model mean in black solid line and 2 well
model standard deviations in shades of blue.
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