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Abstract

Pathological tremor is the most prevalent movement disorder in the world, where ∼14.5%
of people aged 50-89 years suffer from it. The most common types of tremor are by far
essential tremors (ET) and Parkinson Disease (PD). Many people experience the shaking
as embarrassing, and Social Anxiety Disorder is a common occurrence among people
with ET. Today’s treatments for tremors consists mainly of medication or neurosurgery,
but unfortunately, tremor is not adequately managed in ∼25% off all patients.

Our end goal is to reduce tremors in the upper limb with a mechanical solution in a
non-embarrassing way. In cooperation with Estenstad [1] a design for a vibration absorber
for reducing pathological hand tremor was developed. The system is semi-active, and the
design consists of a dual parallel vibration absorber that can tune into two frequencies
in the hand tremor. For the system to be able to work in real time, an estimator that can
track these frequencies is needed. This thesis presents the development and validation
of a frequency estimator for tracking multiple frequencies in pathological hand tremor
for real-time applications; the Band-limited Multiple Weighted Fourier Linear Combiner
(BMWFLC). Multiple tests with real and simulated tremor data was carried out to validate
its performance. Using a simulated signal of a rest tremor modulated by two frequencies,
the filter had two stable estimates in under 3 seconds with an error under 0.053 Hz for
both. The filter showed good performance when tested on real data from both action and
rest tremor. The algorithm was also implemented on an 8-bit microcontroller and tested on
a 1DOF test rig that simulates pathological hand tremor with flexion-extension movement.
The algorithm ran in real-time, but not with the ideal resolution or frequency window size,
and only tracked one frequency. An upgrade of the microcontroller is suggested to increase
the performance.

To the authors’ knowledge, this is the only frequency estimator for pathological tremor
estimation that can estimate frequencies that are close in the frequency domain and the first
with the capability to estimate over two frequencies simultaneously.





Sammendrag

Patologisk tremor er den mest utbredte bevegelsesforstyrrelsen i verden, hvor ∼14.5% av
folk i alderen 50-89 år lider av det. De vanligste typene tremor er Essensiell Tremor (ET)
og Parkinsons Sykdom (PS). Mange opplever skjelvingene som pinlig, og sosial angst
er vanlig blant personer med ET. Dagens behandlinger for tremor består hovedsakelig av
medisinering eller nevrokirurgi, men dessverre får ikke ∼25% av pasientene tilstrekkelig
behandeling.

Vårt mål er å redusere rystelser i øvre lem med en mekanisk løsning på en ikke-
sjenerende måte. I samarbeid med Estenstad [1] ble det utviklet et design for en vibrasjons-
demper for å redusere patologisk hånd tremor. Systemet er semi-aktivt, og designet består
av en dobbel parallell vibrasjonsdemper som kan justere seg til to frekvenser i hånd tremo-
ren. For at systemet skal kunne fungere i sanntid, er det nødvendig med en estimator som
kan estimere disse frekvensene. Denne oppgaven presenterer utvikling og validering av
en frekvensestimator for å estimere flere frekvenser i patologisk hånd tremor for sanntids-
applikasjoner; en Band-limited Multiple Weighted Fourier Linear Combiner (BMWFLC).
Flere tester med ekte og simulert tremor data ble utført for å validere ytelsen til estimato-
ren. Ved hjelp av et simulert signal av hvile tremor modulert av to frekvenser hadde filteret
to stabile estimater på under 3 sekunder med en feil under 0,053 Hz for begge. Filteret vis-
te god ytelse når den ble testet på ekte data fra både handling og hvile tremor. Algoritmen
ble også implementert på en 8-bits mikrokontroller og testet på en testrigg med en som
simulerer patologisk håndskjelving med fleksjon-utvidelse bevegelse. Algoritmen kjørte i
sanntid, men ikke med den ideelle oppløsningen eller frekvensvinduestørrelsen, og bare
en frekvens ble estimert. En oppgradering av mikrokontroller foreslås for å øke ytelsen.

Til forfatterens kunnskaper er dette den eneste frekvens estimatoren for patologisk tre-
mor som kan estimere frekvenser som ligger nært i frekvensdomenet og den første med
evnen til å estimere over to frekvenser samtidig.





Preface

This master thesis presents the development process of a wearable device for upper limb
tremor suppression. The problem was first addressed in the course Experts in team at NT-
NU in the spring of 2017. When the course ended, the team was eager to continue the
development, as we had faith in the idea, and were eager to solve the problem. Hence, the
team kept working on the problem, and during this spring the development has been the
basis of this master project. The work done previous to the master was mainly focused on
finding competitors on the market, through market analysis, and not so much on the tech-
nology behind our envisioned product. This master thesis is focused on the software part
of the device. However, the device has been developed in partnership with Ida Estenstad
who has written a master thesis from a mechanical point of view, which is focused on the
mechanical and hardware parts of the device.

Both students had completely different specialization projects the previous semester,
so the work on this master has only spanned one semester. Some parts of the thesis have
been written in collaboration with Ida Estenstad since they overlap between our thesis, and
is approved by our supervisors. The parts are: chapter 1, section 2.1, section 2.2 and the
introduction for chapter 3.

The linear actuator from chapter 8 was lent to us by Stefano Brevik Bertelli from the
Department of Engineering Cybernetics. Help was provided to find and old project report
that had used the actuator, but it contained no useful information on how to use it. The
setup was done solely by the students and took us over two weeks to get it to do what we
wanted. The microcontroller from chapter 8 is my own, and the two sensors were bought
with money we have won from pitching our idea in competitions.

Geir Mathisen has been my supervisor and has helped me get a structure for my thesis,
given me deadlines and guided me to the right people to discuss my thesis. Jan Tommy
Gravdahl has been my technical supervisor, the one I have discussed and presented my
Ideas too, and he has given me feedback on them.

The development tremor suppression concept has been in collaboration with Ida Es-
tenstad. I have solely developed all of the algorithms presented as new in this thesis, and
new knowledge has mostly been gained from reading research papers and from books on
the relevant topics.
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Kapittel 1
Introduction

1.1 Background and motivation

Tremor is the most prevalent movement disorder in the world, where ∼14.5% of people
aged 50-89 years suffer from it [7]. The most common types of tremor are by far essential
tremors (ET) and Parkinson Disease (PD) [8]. It is estimated that about 26000 people
suffer from ET [9], and 8000 from PD [10] in Norway today; worldwide the numbers
are over 300 and 10 million respectively [11, 12]. The tremors affect people differently.
Among others, they can make it challenging to perform basic, daily tasks such as drinking
coffee or brushing teeth, or profession specific precision work such as painting and surgery.
Many people experience the shaking as embarrassing [13], and Social Anxiety Disorder is
a common occurrence among people with ET [14].

Today’s treatments for tremors consists mainly of medication or neurosurgery, the most
common method for the latter is Deep Brain Stimulation (DBS), which is a neurological
procedure and involves the implementation of a medical device deep inside the brain [15].
Although DBS has proven to be an effective treatment for tremors caused by PD, pati-
ents in Norway are only considered for the operation when symptoms cannot be treated
adequately by medication, and they reduce the patient’s life quality [16]. The DBS does
not work optimal for everyone [17], the effect can decrease over time [18], and it can lead
to some severe side effects, like cognitive decline - processing speed and work memory
[19]. When it comes to medication, side effects are common, and many patients abandon
their treatment because of this [20, 21]. The effectiveness of drugs also decreases over time
[22]. As a result, many patients are left without any treatment for their tremor, and tremor
is not effectively managed in up to 25% of all patients according to some estimates [23].
A good option for them may be too suppress the tremor mechanically.
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Kapittel 1. Introduction

1.2 Problem description
The presented problem forms the basis of this project, and this thesis is built around the
following problem:

How to reduce tremors in the upper limb with a mechanical solution in a non-embarrassing
way?

The aim of this project is to design a system that suppresses tremors in the hand by
a mechanical solution. The system will consist of a wearable device worn on the wrist
or arm, that suppresses the tremors actively or passively. The assignment will consist of a
literature study of tremors from PD and ET to find out what frequency, amplitude and force
they have, and get a better understanding of how tremors work on the body in general.
Using the knowledge gained from the study, one or more actuators or dampers will be
designed/chosen. After this, the development of the device itself will start, where one
or several prototypes should be made and evaluated. The prototype should have all the
necessary sensors to measure the tremors.
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1.3 Project scope

Scope
Design a system that suppresses the tremors in the hand in one dimension by a me-
chanical solution

Objectives
Mechanical engineering: Cybernetics and robotics:

• Execute a literature study of existing
solutions and relevant technology.

• Choose one or more concepts to test.

• Build a test rig that simulates a
shaking arm.

• Develop and build a prototype for
testing

• Conduct experimental tests of con-
cept(s)

• Measure the amount of suppression
when the concept is applied to the
test rig.

• Investigate how the concept can be
implemented in a wearable design
worn on the wrist.

• Execute a literature study of existing
solutions and tremor estimation met-
hods.

• Choose one or more estimation met-
hods to implement.

• Develop a tremor estimation algo-
rithm to estimate two frequencies for
real-time applications..

• Test and validate developed algo-
rithm with real and simulated tremor
data.

• Test the developed algorithm for
real-time applications on the test rig.

Out of Scope

• Build a prototype of the concept implemented in a wearable device.

• Test of concept when the frequency is not stationary.

• Test the concept in several dimensions.

Tabell 1.1: Project Overview
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Kapittel 1. Introduction

1.3.1 Thesis structure
The background and motivation from this chapter describe the problem that forms the
basis of the following work. Chapter 2 presents the basic theory about tremors, relevant
technology, and relevant concepts. Chapter 3 presents literature of existing technology,
both on the marked and concepts in the research phase. In chapter 4 the concept design for
our vibration absorber is presented, and an outline of what parts of the absorber will be in
focus in this thesis is given. In chapter 5 existing tremor estimators are reviewed, and a new
design for a frequency estimator is presented. In chapter 6 the real dataset and the methods
for generating the simulated dataset are shown. Chapter 7 presents time-frequency analysis
methods, the necessary tools used to analyze tremor data. In chapter 8 the setup of the test
rig used for testing vibration absorbers presented. In chapter, 9 the results from the new
filters performance on real and simulated data, and when it is running in real time on the
test rig are presented. In chapter 10 the results are then discussed. In chapter 11 possible
future work is presented
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Kapittel 2
Basic Theory

2.1 Tremor theory
Tremor is a rhytmic, oscillatory movement produced by alternating or synchronous con-
tractions of antagonist muscles.[24] Everyone can experience tremors in their hands when
doing precision work. This kind of tremor is called Physiological tremor and is considered
to be normal. Physiological tremor is normally not of inconvenience for people, except
for, for example, eye surgeons. Pathological tremor on the other hand, impairs a patient’s
function and is visible to the naked eye [25]. Tremor is often categorised as Rest tremors,
Postural tremors or Kinetic tremors. Rest tremor is prevalent when the affected body part
is in complete rest, supported against gravity. Often the tremors disappears or are reduced
when the body part is activated [2]. Postural tremor is prevalent when the affected body
part is maintaining a posture against gravity, while Kinetic tremor is prevalent when the
body part is performing a voluntary activity [2]. Both postural tremor and kinetic tremor
are forms of Active tremors, and will disappear when the affected body part is at rest [2].

Several diagnosis’ and conditions will cause tremors. The frequency range of the tre-
mor is different depending on the syndrome. In table 2.1 different syndromes are listed
together with the frequency range normal for the syndrome.

2.1.1 Essential tremor

The prevalence of ET is uncertain, as the diagnostic criteria varies and as many people
with ET do not seek medical attention [26]. However, it has been estimated that about
0.4-6% of the population suffer from ET [9]. The prevalence increases with age, and it has
been estimated that about 6-9% of the population over the age of 60 experience tremor
due to ET [2]. The prevalence of ET is uncertain, as the diagnostic criteria varies and as
many people with ET do not seek medical attention [26]. However, it has been estimated
that about 0.4-6% of the population suffer from ET [9]. The prevalence increases with age,
and it has been estimated that about 6-9% of the population over the age of 60 experience
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Kapittel 2. Basic Theory

Tremor syndrome Frequency [Hz]
Enhanced physiological tremor 10-14
Essential tremor syndrome 4-12
Primary orthostatic tremor 14-18
Task spesific tremor 4-8
Holmes tremor 3-5
Tremor of Parkinson disease 3-7
Cerebellar tremor 5-7
Palatal tremor 2-6
Dystonic tremor 5-7
Alcoholic tremor 3-4
Toxic and drug induced tremor 5-10
Psychogenic tremor Variable

Tabell 2.1: Different tremor syndromes and their corresponding frequencies [2]

tremor due to ET [2]. The tremor frequency of ET is in the range of 4-12 Hz (table 2.1).
However, the most common is a frequency in the range of 7-10 Hz [2]. The frequency has
been shown to decrease by 0.06-0.08 Hz each year. The decrease in frequency is shown
to correlate with an increase in amplitude [27].

ET normally gives a movement in the wrist of the characteristic flexion extension (figur
2.1), and might also give an abduction movement of the fingers (figure) [2].

Figur 2.1: Flexion (left) and extension (right) movement of the wrist.

2.1.2 Parkinson Disease

Parkinsonism is a syndrome manifested by a combination of the following six features:
tremor-at-rest, rigidity, bradykinesia, loss of postural reflexes, flexed posture and freezing.
The most common form of parkinsonism is Parkinsons Disease (PD), first recognized by
James Parkinson in 1817. [24]. About 100 years after Parkinson published An Essay on
the Shaking Palsy, the lack of dopamine-containing cells in the brain was recognized.
Levadopa is now a commonly used treatment to reduce symptoms in relation to PD. The
prevalence of Parkinson is increasing as life expectancy increases. This is estimated to
double the prevalence of Parkinson to 9 million people (on a world basis) by the year
of 2030 [25]. The prevalence is about 1% in the age group 50-70 year and somewhat
higher among people older than 70 years [10]. Rest tremor is, as already mentioned, a
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2.1 Tremor theory

characteristic feature of Parkinson Disease. The tremor frequency of Parkinson’s disease
is in the range of 3-7 Hz (table 2.1), and the tremor is often most prominent in the distal
part of an extremity. Parkinson’s normally gives a movement in the wrist characterized by
pronation supination (figure 2.2).

Figur 2.2: Pronation (left) and supination (right) movement of the wrist.

The prevalence of Parkinson is increasing as life expectancy increases. This is esti-
mated to double the prevalence of Parkinson (on a world basis) by the year of 2030 [25].

2.1.3 Tremor stability

Tremors are spatially complex movements. Pathological hand tremors are generally com-
posed of concurrent rotations of more than one axis of the wrist: pronation–supination,
combined with wrist flexion-extension and/or ulnar flexion and extension. In general, tre-
mors are best approached as nonstationary processes, tremors with a recording time ten
seconds or less, the frequency may appear to be stable, but even on the timescale of 1 min,
tremors are generally highly labile. Even if the tremor persists as one continuous record,
its component frequencies shift, split into sidebands, exhibit harmonics, and have variable
power [28].

2.1.4 Harmonics and fundamental frequencies

Spectral analysis of a tremor signal might show a spectrum consisting of multiple com-
ponents of significant amplitude. It can be hard to distinguish between peaks that shows
the existence of separate tremor mechanisms and peaks that are consequences of fluctua-
tions in the frequency (harmonics). [29] If a signal is periodic with frequency f , the only
frequencies composing the signal are integer multiples off f . These multiples of the fre-
quency are named harmonics, while the frequency f is named the fundamental frequency.
[30] Even though the harmonics often are found in spectral analysis of tremors, there are
no studies that have discovered the reason for their presence, as which muscle groups re-
sponsible for tremor that participate in the production of harmonic components. [31]. In
[32] 18 PD patients hand and finger tremors where studied in the time and frequency do-
main. Results showed that the second harmonic makes a large contribution to the tremor,
and they concluded that it should not neglected in the designing of tremor suppression
devices.
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Kapittel 2. Basic Theory

A component of significant amplitude might also be present due to the existence of a
separate tremor mechanism, giving two fundamental frequencies. The presence of two pe-
aks in the tremor spectrum has been used as an argument for the existence of two present
tremor mechanisms. However, since multiple peaks can be caused by variations in fre-
quency and amplitude, the spectrum alone cannot conclude on the existence of two tremor
mechanisms. [29] Gebai et. al. did recently investigate this matter by developing a model
of the human arm that describes the flexion motion at shoulder, elbow and wrist joint. [33]
They tested three scenarios: One where a DVA was tuned to the wrist joint’s response,
due to shoulder muscle activation (first natural frequency). One where a DVA was tuned
to the wrist joint’s response, due to elbow muscle activation (second natural frequency).
In the last scenario they tested with both DVA’s, to suppress both natural frequencies. The
damping were close to 100% when using two DVA’s and showed significant increase in
damping from using only one DVA. This is an indication of that the tremors might consist
of two fundamental frequencies.
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2.1 Tremor theory

2.1.5 Comparison of tremor diseases

Enhanced physiolo-
gical tremor Essential tremor Parkinson disease

Common body parts
affected Hands Hands, head, voice Hands or arms, legs,

chin

Accompanying sym-
ptoms

None or symptoms of
anxiety state None

Rigidity, bradykine-
sia and postural in-
stability

Frequency 10-14 Hz
Mainly 7-10 Hz (but
may range from 4 to
12 Hz)

3-6 Hz

Positional compo-
nent Posture>Kinetic

Kinetic>Posture,
may have a slight
resting component if
severe

Resting (may have
a postural/kinetic or
re-emergent compo-
nent in severe cases)

Symmetry Bilateral, symmetric Bilateral, can be
mildly asymmetrical

Initially unilateral,
bilateral and asym-
metrical in advanced
stage

Course Usually none pro-
gressive Progressive Progressive

Response to alcohol Minimal or none Responds signifi-
cantly None

Effect of caffeine,
stress, stimulants Increases Increases Increases

Inheritance None
Autosomal dominant
with variable pene-
trance

Sporadic or related to
genetics of Parkinson
disease

Tabell 2.2: Comparison of Enhanced physiological tremor, essential tremor and parkinson disease
[2]
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2.2 Vibration damping
To reduce tremors, methods used in other application areas where suppression of vibrations
are necessary has been investigated. There are examples of applications where vibrations
are useful, but most often this motion is not desired, and several methods have been used
to avoid it. Stiffening, damping and isolation are all methods to avoid vibrations. However,
in the application of suppressing tremors, damping is the most relevant method. Damping
consists of reducing the resonance peaks by dissipating the vibration energy. [34]

Damping can be done either passively, actively or semi-actively. With passive damping
the kinetic energy is usually transformed into heat. An option is to use a transducers as an
energy converter, to transform vibration energy into electrical energy. With semi-active
damping a passive damper is used but there is a possibility of controlling one or several
properties. The active damping is done with an actuator actively suppressing the vibrations,
working in the opposite phase of the undesired vibration.
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Figur 2.3: Vibration absorber types

In Figure 2.3 we see the three different absorbers [35], they are

• Passive - Mass, stiffness and damping are decided at the design stage

• Semi-active - Stiffness, damping and/or mass properties can be changed to minimise
the response

• Active - A dynamic force is applied to the system to minimize the response
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2.3 Adaptive filter

This section will present the basic principles of an adaptive filter needed to understand the
tremor estimation algorithms reviewed in section 5.1.1. Signal processing and adaptive
filters are a well established field, and the following theory is excerpts from the book
Adaptive Signal Processing [36] by Widrow and S.D. Stearns. Bernard Widrow.

2.3.1 Adaptive linear combiner

An adaptive linear combiner (ALC) is is also called a non-recursive adaptive filter. A dia-
gram of a multiple-input linear combiner with desired response and error signal is shown
in figure 2.4. There also exists a single-input linear combiner, but we will only look at the
multiple-input type, since this is the relevant one for us. The ALC consists of a signal input
vector xNk, an adjustable weight vector wNk, a summing unit, and a single output signal
yk. The procedure for adjusting the weights is often called weight adjustment. The com-
biner is called linear because the output is a linear combination of the input components,
when the weights have a fixed setting. The input vector xk can be seen as simultaneous
inputs from N + 1 different input sources, the k stands for stands for the sampling time.
In some multiple-input systems, a bias weight is required, which basically adds a variable
bias into the sum, yk. This can be accomplished by setting the first input element , x0k,
equal to 1, then the weight w0k becomes the bias weight.

The signal input vector

xk =
[
x0k x1k . . . xNk

]T
(2.1)

The weight vector

wk =
[
w0k w1k . . . wNk

]T
(2.2)

The input-output relationship

yk =

N∑
n

wnkxnk (2.3)

The input-output relationship using vector notation

yk = xTk wk = wTk xk (2.4)

In an ALC with performance feedback, like in figure 2.5, the weight vector wk is adjusted
to make the output yk resemble the desired signal dk as closely as possible. This is done
by comparing the output with the desired signal to obtain the error signal εk, and then
adjusting the weight vector to minimize the error.

The error signal

εk = dk − yk (2.5)
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2.3.2 Performance surface
The mean-square-error (MSE) performance surface for the adaptive linear combiner is a
quadratic function of weights when the input signal and the desired response are statisti-
cally stationary. The error signal with index k from figure 2.4 is

εk = dk − yk (2.6)

Substituting (2.4) into the error signal gives us

εk = dk − xTk w (2.7)

Now we take the square of (2.7), dropping the subscript k for convenience, since we don’t
want to adjust the weights for this discussion.

ε2k = dk − wT xkxTk w− 2dkxTk w (2.8)
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Then we take the expexted value of (2.8) which will give us the MSE, and will be desig-
nated by ξ

MSE , ξ = E
[
d2k
]

+ wTE
[
xkxTk

]
w− 2E

[
dkxTk

]
w (2.9)

A portion of a typical two-dimensional mean-square error function for is shown in figu-
re 2.6. The z axis represents the mean-square error, and the x and y axis represents the
weights w1 and w0 respectively. The function plotted is called the performance surface,
and has a parabolic shape or a hyperparaboloid if there are more than two weights. The
optimal weight vector it is w∗ is the point of minimum-square error and is located at the
lowest point on the performance surface. With a quadratic performance function there is
only a single global optimum and no local minimum exist.

Figur 2.6: Surface of two-dimensional quadratic performance surface. The optimum weight vector
is located at bottom of the surface, for this example w∗ = (1.1, 1.5) and the minimum MSE is 0.0.

2.3.3 LMS algorithm

The least-mean-square (LSM) algorithm is designed to descend the performance surface,
and minimize the MSE. To accomplish this it uses a gradient descent (sometimes called
steepest descent) type of algorithm (2.11), this is the LMS algorithm. Here ∇̂k (2.10) is an
estimate of the gradient to ξ = E[ε2k]. To find this estimate, ε2k is used as an estimate of ξ.
In (2.11) µ is the gain constant, it regulates the speed and stability of the adaptation. From
equation (2.11) we can see that the LMS algorithm can be implemented without squaring,
averaging, or differentiation, making it simple and efficient. This makes it a good choice
for use in real-time systems.
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∇̂k =


∂ε2k
∂w0

...
∂ε2k
∂w0

 = 2εk


∂εk
∂w0

...
∂εk
∂wN

 = −2εkxk (2.10)

wk+1 = wk − µ∇̂k
= wk + 2µεkxk

(2.11)

Σ

...

x0k

x1k

xNk

Σ
"k

+
−

+

+

+

yk

dk

LMS

wNk

w1k

w0k

Figur 2.7: Adaptive linear combiner with the LMS algorithm

14



2.4 Fourier Series

2.4 Fourier Series

2.4.1 Trigonometric Fourier Series
Any arbitrary periodic function can be expressed as an infinite sum of weighted sinuso-
ids, this is called a Fourier series. The Fourier series can be expressed in three different
forms, exponential, amplitude-phase and trigonometric, we will only use the latter. The
trigonometric Fourier series of a periodic function f(t) is given by

f(t) = a0 +

∞∑
n=1

[an cos (2πnf0t) + bn sin (2πnf0t)] (2.12)

The relationship between angular frequency, ω [rad/s], and the linear frequency, f [Hz]
is shown by the following equation

ω = 2πf (2.13)

Equation (2.12) can therefor also be written as

f(t) = a0 +

∞∑
n=1

[an cos (nω0t) + bn sin (nω0t)]

The Fourier component a0 is the dc component (the time average) of function f(t). The
Fourier components an and bn are the amplitudes of the cosinusoids and sinusoids, respec-
tively. The frequency f0 is the fundemental frequency and the frequency of every trem
is an integer multiple of f0, the resulting waves are called harmonics. So the first wave of
the Fourier series, n = 1, is the fundamental wave (1st harmonic), the next wave , n = 2,
is called the 2nd harmonic and has the frequency 2f0. The frequencies of the harmonics
are strictly integer multiples of the fundamental frequency: f0, 2f0, 3f0, . . . nf0.[37, 38]

2.4.2 Magnitude spectrum
To draw the magnitude spectrum for a trigonometric Fourier series we need to consider
both an and bn. To find the magnitudes to the harmonics of the two coefficients we take
the root-sum-square (RSS) [39]

Mn =
√
a2n + b2n (2.14)

The distinction between amplitude and magnitude can be somewhat confusing, and often
these two terms are used interchangeably. Lets try to make the destination as clear as pos-
sible how these will be used when we talk about Fourier series. The Fourier components
an and bn are the amplitudes of the cosinusoids and sinusoids, respectively, they can have
both positive and negative values. When we take the RSS of these two we get the magni-
tude, which is always positive. The amplitude and magnitude can have the same value in
some cases [40]. The magnitude spectrum for the Fourier series can now be drawn, where
the y-axis magnitude and the x-axis is frequency.
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To make a small example we can take the Fourier series of a square wave with the funda-
mental frequency f0 = 1 Hz

Square(t) = sin 2πt+
sin 3 · 2πt

3
+

sin 5 · 2πt
5

+ . . . =

∞∑
n=1

sin (2n− 1)2πt

2n− 1
(2.15)

This is an odd function, meaning that it is symmetric about the origin. It contains only
sinusoids, not cosinusoids, so an = 0. The magnitudes become Mn =

√
a2n + b2n =√

b2n. For this Fourier series, the amplitudes bn of the sinusoids will be the same as the
magnitude Mn, since all the values of bn are positive. The magnitudes spectrum of the first
5 harmonics can be seen in Figure 2.8.
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Figur 2.8: Magnitude spectrum for first five harmonics
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In Figure 2.9 the magnitude spectrum and the time series of the signal in the same plot.
We call the three first harmonics for h1, h2 and h3, with the magnitudes M1 = 1, M2 = 1

3
and M3 = 1

5 , and linear frequencies, f1 = f0 = 1, f2 = 3f0 = 3 and f3 = 5f0 = 5,
respectively.

h1 = 1
↓
M1

· sin 2π · 1
↓
f1

· x, h2 =
1

3
↓
M2

sin 2π · 3
↓
f2

· x, h3 =
1

5
↓
M3

sin 2π · 5
↓
f3

· x

Taking the sum of h1, h2 and h3 gives us the signal in the blue field, we see that the square
wave starts to take form, the more harmonics we add the better the approximation gets.
The magnitude spectrum is plotted in the red field.

Figur 2.9: Combined plot of the three first harmonics from the Fourier series for a square wave
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Kapittel 3
Existing technology

The work done previous to the master was mainly focused on finding competitors on the
market, through market analysis, and not so much on the technology behind our envisioned
product. This review aimed to get an overview of what solutions that already exist and on
research done in the field; to get inspiration and technical insight before choosing our final
concept. This review is divided into three parts: active, semi-active and passive vibration
absorbers. See definition of the absorber types in section 2.2.

3.1 Active

3.1.1 Exoskeletons
Exoskeletons are a widely researched technology for rehabilitation, assistive robotics, and
human power argumentation [41]. Some research has also been done in the subcategory of
upper limb tremor suppression.

The WOTAS (Wearable Orthosis for Tremor Assessment and Suppression) [42, 43]
which is a 3DOF upper-limb exoskeleton robot, using three flat brushless DC motors +
pancake gears, designed for monitor and diagnosis. They develop two control strategies
for tremor suppression, one active and the other passive. 1) Tremor reduction through
impedance control, which modifies the stiffness, dampening and mass properties of the
upper limb to suppress the tremor. 2) Notch filtering at tremor frequency, a strategy that
implements an active noise filter at the tremor frequency. The WOTAS was tested on six
patients suffering from essential tremor, achieving a tremor suppression of roughly 80%.
The patients considered that the use of such a device could cause social exclusion because
of its size.

Other exoskeletons that has been developed for tremor suppression is a 1DOF elbow
orthosis using a DC motor [44] (Figure 3.1b), a 2DOF exoskeleton using DC motors [45]
3.1c) and a 1DOF exoskeleton using pneumatic actuators [46] (Figure 3.1d). Showing
99.8%, 77% and 96.93% tremor suppression respectively. These results are from simula-
tions, not real patients like in the WOTAS study.
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(a) (b)

(c)
(d)

Figur 3.1: (a) WOTAS, (b) Voluntary-Driven Elbow Orthosis with Speed-Controlled Tremor
Suppression, (c) An integrated wearable robot for tremor suppression with context aware sensing, (d)
Real-Time Pathological Tremor Identification and Suppression in Human Arm via Active Orthotic
Devices

3.1.2 Electrical stimulation

A range of research has been done on electrical stimulation for pathological tremor suppres-
sion; electrical muscle stimulation (EMS) [47–54], Functional electrical stimulation (FES)
[55–62] and Transcutaneous electrical nerve stimulation (TENS) [63]. One of the most re-
cent contributions is the Tremor’s glove [54], a medical device that incorporates tremor
detection module and EMS to detect an suppress resting hand tremor. The glove is shown
to be effective in suppressing resting hand tremor among PD patients in a randomized
sham-controlled trial. The patients were asked to score the pain felt by the glove using a
visual analog scale (VAS), and the score was significantly higher in the Tremor’s glove
group compared to the sham group. The Tremor’s glove and the sham glove can be seen
in Figure 3.2.

3.1.3 Utensils

Liftware [64] is a collection of products of self-stabilizing and leveling handles and at-
tachments designed to help people with hand tremor limited hand and arm mobility. One
of their products is the Liftware SteadyTM[3], which is an electronic stabilizing handle
with a selection of different attachments. In Figure 3.3 we can see the handle with a spoon
attachment. The handle contains motion sensors to detect the tremor, and two DC motors
are used to stabilize the attachment.
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Figur 3.2: (A) Components of Tremor’s glove, including an adjustable glove, control box, and smart
phone. (B) Patient wearing Tremor’s glove (C) Patient wearing sham glove

Figur 3.3: Liftware SteadyTM[3] with spoon attachment

3.1.4 Vibration
Twenty patients with upper limb tremor due to multiple sclerosis (MS) had vibration ap-
plied to the tendons of the wrist extensor muscles by a commercially available vibration
probe. Patients used a motion tracking device to move a cursor on a computer screen, do-
ing a memory-guided slow wrist step-tracking task. The accuracy of tracking was used to
determine damping of the tremor by tendon vibration. There was a reduction in tremor
amplitude of 28% as measured by the motion tracking system [65]. Project Emma is an
ongoing research project at Microsoft [66]; they are developing a device they called Em-
ma Watch (Figure 3.4a), a watch-like device that introduces a rhythmic vibration effect
through small motors around the wrist. Another device in development by different com-
pany is the ARC pen [67] (Figure 3.4b). The ARC pen uses high-frequency, low amplitude
vibration, which stimulates the muscles in the hand. Both the ARC pen and Emma Watch
are in the research stage, and reliable data on their tremor suppression capabilities are hard
to find.

3.2 Semi-active
In [68] they develop DVA system with the ability to change its stiffens, and tune it for
specific tremor frequencies. The device formes a rectangular spring mass damper system,
on each side, weight is suspended by two springs made out of shape memory alloy (SMA)
(Figure 3.5). The SMA alloy springs can change the stiffens when different amounts of
current run through it. When testing the system experimentally at 3 Hz, a reduction in the
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(a) (b)

Figur 3.4: (a) Emma Watch (b) ARC Pen

acceleration of 40% was archived.
A self-tunable DVA system designed for PD tremor suppression [69]. By using pie-

zoelectric micro-pumps, pumping water in and out of a tank, they vary the mass of the
system; tuning the absorbers resonant frequency. The prototype they designed was big, but
they argue that it is possible to build it small enough for a human arm by choosing the
correct components. An experimental setup showed a reduction of 57% for simulated PD
tremor.

Figur 3.5: Tremor suppression with shape memory alloy vibration absorber
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3.3 Passive solutions

3.3 Passive solutions

3.3.1 Dynamic Vibration Absorber
The Vib-bracelet is a passive absorber device for dampening pronation/supination tremor
[70]. It is based on the principles of dynamic vibration absorption, tuned to the frequency
of the hand tremor. The Vib-bracelet consists of two co-centric rigid rings: an inner open
ring attached to the wrist and an outer ring connected with springs to the inner ring. An
image of the bracelet is seen in Figure 3.6. Experiments and simulations on a 1DOF system
showed that the device damped tremors in the 4-6 Hz range, with a maximum amplitude
damping of 83%.

Figur 3.6: Vib-bracelet

In recent years a large number of papers have been published from The International Uni-
versity of Beirut in Lebanon on passive vibration absorbers for reduction of hand tremor
for PD patients [4, 71–76]. In their research, they have tested many passive vibration ab-
sorbers connected to the wrist. They have run simulations on a 3DOF model of the hu-
man arm, modeled in the horizontal plane to describe the flexion-extension motion at the
shoulder, elbow and wrist joints, to find how much different absorbers reduce tremor in the
respective joints. They find that the dual parallel absorber and dual series elastic-viscous
damper absorber are the two most effective configurations.

In their latest paper [4] they check the performance of the dual parallel passive absor-
ber in reducing the tremor. They make a model of the absorber, Figure 3.7b, and attach it
to the 3DOF hand model in Figure 3.7a, obtaining a 5 DOF system. The 2DOF absorber is
formed of two single DVA’s ’absorber 1’ and ’absorber 2’. The two absorbers are directly
connected to the forearm in parallel. The tremor is modeled as a sinusoidal function con-
taining two resonant frequencies with white noise added. In their simulations the absorber
was able to reduce 77.98-80.62%, 60.34-69.95% and 54.39-69.81% of tremor amplitude
at the shoulder, elbow and wrist joints, respectively. The study shows that the 2 DOF DVA
tuned at both resonance frequencies was very effective in reducing the tremor’s amplitu-
de, which suggests that design a mechanical system like this could be useful in helping
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pathological tremor patients.
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Figur 3.7: (a) Model of a single absorber connected to the forearm of the hand [4] (b) 2 DOF parallel
absorber

3.3.2 Limb weights

Applying a weight is one of the most established treatments for pathological hand tremor
[77]. Weighted cuff where provided 50 patients with tremor due to a range of neurological
conditions [78]. Different methods were used to find the optimal weight for each patient. A
combination of clinical, photographic and accelerometer recordings to asses the weighted
cuffs effect. 29 patients had an objective reduction in their tremor, 18 of these felt like
the reduction was useful for performing everyday tasks. 12 patients used the cuffs over
six months and continued to report improvements. Patients with tremor due to multiple
sclerosis and non-progressive lesions in the cerebellum benefited most, while patients with
Parkinson’s disease did not see any benefit.

An example of a system that uses weights to reduce pathological hand tremors is the
Readi-Steadi R© Anti-Tremor Orthotic Glove System [5], which is a product already on the
market today. The glove is custom fitted to each patient, where multiple weights are added
to the glove. It was designed to reduce resting and action tremor for people of all ages
suffering from mild to severe hand tremors.

3.3.3 Gyroscope

The GyroGloveTM uses a gyroscope, which is a spinning disc, attached to the back of
the hand to reduce hand tremors [6] (Figure 3.9). With the self-calibrating properties of
the gyroscope, the glove can reduce tremors up to 90%. Tester has reported that using the
glove feels like moving your hand through thick syrup: The motion is free and slower [79].

24



3.4 Conclusion

Figur 3.8: Readi-Steadi R© Anti-Tremor Orthotic Glove System [5]

Figur 3.9: The GyroGlove TM [6]

3.4 Conclusion

The tremor suppressor should be formed as a bracelet and be small enough so people will
wear it without being embarrassed. It should also minimize any kind of discomfort, like
heavy weight or pain.

Active solutions need some kind of power source to drive the actuators, and often ne-
ed a lot of power. The WOTAS exoskeleton. It achieved a tremor suppression of roughly
80% on ET patients. The clear downside to this suppressor is its sheer size, the patients
considered that the use of such a device could cause social exclusion. The solutions that
use vibrators don’t need as much power, because they draw small amounts of current, and
can therefore be made smaller. There is little research on the effect of vibrators for tre-
mor suppression; in one study with patients with upper limb tremor due to MS, tendon
vibration on the wrist only showed a 28% reduction in tremor amplitude. Electrical stimu-
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lation makes the patients feel discomfort as the study with the Tremor’s glove showed, and
therefore not a technology we want to use.

Passive solutions needs little or no power to work and can therefore work for long peri-
ods of time and don’t need any large battery pack or power source. The GyroGloveTMis
a passive solution who actually needs power. There is little information about this tech-
nology but they claim the glove can reduce tremors up to 90%. Tester has reported that
using the glove feels like moving your hand through thick syrup: The motion is free and
slower. We will not go for this technology because of its negative effect; it doesn’t just
damp tremor, but all movement. Limb weights is one of the most established treatments
for pathological hand tremor, but a study showed that patients with PD did not see any
benefit of wearing weighted cuffs. One solution that uses DVA is the Vib-bracelet. This
shows good results in experiments, but is only tested experimentally on a 1DOF system.
The device damped tremor with a maximum amplitude damping of 83%. The design is
nice, and could possible made so people wouldn’t be embarrassed when wearing it . The
International University of Beirut in Lebanon vibration absorbers for reduction of hand
tremor for PD patients has in recent years published many papers on passive DVA for
tremor suppersion. They us a 3DOF model of the human arm to test different absorbers,
and their numbers should threfore be a bit more realstic the for the Vib-braclet that used
a 1DOF model. In their latest paper [4] they check the performance of the dual parallel
passive absorber in reducing the tremor. In their simulations the absorber was able to redu-
ce 77.98-80.62%, 60.34-69.95% and 54.39-69.81% of tremor amplitude at the shoulder,
elbow and wrist joints, respectively.

There is done little research on semi Semi-active solutions for tremor suppression and
the two papers presented got 40% and 57% reduction respectively. The used a both used a
1DOF DVA for their suppressor. The advantages semi-active solutions are clear, they have
the benefits of being small and use little power, like the passive solution, and the advantage
that it can be tuned in real time to the tremor frequency.

Based on our findings form the review, the system want to design will be based on the
passive dual parallel absorber [4], which show great results for dampening pathological
hand tremor in simulations, and make it into a semi-active tremor suppressor; by using
SMA alloy springs in the absorber and change the stiffens by running different amounts of
current through it.
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From our review of existing technologies we gained enough knowledge to come up with
a concept for our tremor suppressor. The design will be based on the passive 2DOF pa-
rallel absorber (Figure 4.1a) that has shown great results for dampening pathological hand
tremor in simulations [4]. In the original paper this is a passive absorber, and the absorber
had to be tuned to specific tremor frequency. Since tremor change over time (section 2.1.3)
we want to make a semi-active solution so the system can adapt in real time to changes in
tremor frequency. This can be achieved by making the spring constants in the damper vari-
able, by using springs made out of shape memory alloy (SMA) (Figure 4.1b). We call this
system the semi-active dual parallel absorber. In the original paper the two 1DOF absor-
bers in the 2DOF parralel absorber where tuned to two different frequencies in the tremor.
A design for a vibration absorber is presented called semi-active dual parallel absorber.
The
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Figur 4.1: (a) Dual parallel absorber (b) semi-active dual parallel absorber with variable spring
constants

In section 2.1.4 we write about harmonics and fundamental frequencies in pathological
hand tremor. We want our system to be able to adapt to the two frequencies in the tremor
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with the most power. This can be a fundamental frequency with a strong 2nd harmonic, or
it can be two fundamental, which both have larger amplitude than their harmonics. To tune
the spring constants in the dual parallel absorber we need to know what two frequencies
are most dominant in the signal. For this we need a estimator that is able to estimate the
these frequencies in real time. The general system for our tremor absorber can be seen
in Figure 4.2a. The main focus for this thesis is outlined in Figure 4.2b. I will find or
develop an algorithm that can estimate multiple frequencies in real time. Test the algorithm
on real and simulated tremor data, and finally implement i onto hardware to see if its
capable of running in rel time. As mentioned in the introduction, there are two students
working together on this problem. The second thesis will focus on the mechanical part of
the problem, which is the design and optimization of the dual parallel vibration absorber
[1]. The final system design we end up with in the end can be seen in Figure 4.2d.
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Figur 4.2: (a) The general system design of the tremor absorber (b) Focus of this thesis (c) Focus of
the mechanical thesis (d) The final system design

The focus of this paper is not on the design process for the concept of the tremor absorber;
this is explained in more detail in Estenstad [1].
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Tremor estimation

The relationship between angular frequency, ω [rad/s], and the linear frequency, f [Hz]
is shown by the following equation.

ω = 2πf (5.1)

ω and f will be used interchangeably throughout the text. For clarity to the reader, e.g.
when a tremor has a frequency of 6Hz this is the linear frequency, f , in this case the
angular frequency would be ω = 2π × 6Hz ≈ 37.7 rad/s.
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5.1 Tremor estimators

For our proposed system, an estimator that can estimate multiple frequencies in the hand
is needed. It should be able to estimate the two frequencies with the most power. If there
is only one fundamental frequency in the tremor, this would be the 1st and 2nd harmonics.
In some tremors there may be two fundamental frequency, and in that case the estimator
should estimate those.

Section 5.1.1 presents a review of currently available frequency estimators. The con-
clusion from the review is; there does not exist an estimator that can fulfill our require-
ments. The decision is made to design an estimator for this purpose, the final filter is cal-
led the Band-limited Multiple Weighted Fourier Linear Combiner (BMWFLC). The filters
that the BMWFLC is based upon are presented in the following sections: section 5.1.2 the
FLC filter is presented, in section 5.1.3 the WFLC filter is presented, in section 5.1.4 the
BMFLC filter is presented and in section 5.1.5 the E-BMFLC filter is presented. Final-
ly the BMWFLC filter is presented in section 5.2, a filter designed for tracking multiple
frequencies in pathological hand tremor.

5.1.1 Estimators

In recent years there seems to be an increasing interest in the development of algorithms
that can accurately estimate pathological tremors [80–91]. Some of the most used fil-
ters for tremor estimation are based on the Fourier Linear Combiner (FLC) [92] filter;
the Weighted Fourier Linear Combiner (WFLC) [93], the Band-limited Multiple Fouri-
er Linear Combiner (BMFLC) [94] and the Enhanced Band-limited Multiple Fourier Li-
near Combiner (E-BMFLC) [86]. Especially the BMFLC and the recently developed E-
BMFLC have shown high precision for extracting pathological tremor from the complete
motion signal of the human hand. The estimation accuracy of the BMFLC has been shown
to be 96-98% [95], and the E-BMFLC have statistically significant improvement of both
accuracy and consistency in extracting pathological hand tremor for patients with PD and
ET compared with the BMFLC [86].

Although the BMFLC wasn’t initially intended for frequency estimation, a formula
was developed that can estimate the frequency of the input signal. By weighting the con-
tribution of each FLC, an estimate of the frequency is obtained [91]. For a first-order
Fourier series, it is expressed as:

ωk =

n∑
r=0

(
a2r + b2r

)
ωr∑r=0

n (a2r + b2r)
(5.2)

The frequency estimation of the BMFLC was compared to an iteration of the WFLC filter,
the KF-WFLC filter; a cascade filter consisting of a WFLC for frequency tracking, feeding
it into a Kalman filter (KF) for estimating the tremor amplitude. The comparison show-
ed that both filters provided accurate frequency estimation, though the KF-WFLC results
were smother. For overall tremor tracking, the BMFLC performance was slightly worse
than that of the KF-WFLC, mainly because of the improved amplitude tracking for the
latter. In [84] they develop a new algorithm, based on the fast Fourier transform (FFT),
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called sliding fast Fourier transform (SFFT). It’s an algorithm that estimates the instan-
taneous tremor parameters such as the time-varying dominant frequency and amplitude.
The algorithms frequency estimation was compared to the WLFC and the ABPF. It was
faster to adapt when the frequency in the signal made sudden changes than the WFLC,
and the estimated frequency of SFFT was more stable with small changes compared with
ABPSF. This algorithm was not tested for real-time applications; they say they will carry
out experiments in the future to test the feasibility of this out.

In [82] they make a filter they call the high-order WFLC-based Kalman filter. When
the measured signal first enters the filter, it gets decomposed into two parts using two 1st
order band-pass Butterworth filters. The two band-passed signals are then fed int each their
filter, WFLC 1 and WFLC 2, where filter 1 obtains the 1st harmonic and filter 2 obtains the
combination of higher harmonics. Finally, the KF adopts the estimated harmonic frequen-
cies and the filtered harmonic signal from both channels to create the estimated tremor.
The KF was added for better amplitude estimation. Their results show that the high-order
WFLC-based KF performs better than the WFLC.

The WFLC algorithm adapts to a single frequency present in the tremor signal, but
for tremor signals modulated by two or more frequencies close in the spectral domain,
the performance of the WFLC will be degraded [94]. The BMFLC filter was designed to
overcome this exact weakens; adapting to a signal with multiple dominant frequencies.

All the methods for frequency estimation mentioned above, except for [82], estimates only
one frequency from the signal. Although the filter in [82] can estimate two frequencies, it
is based on the WFLC algorithm which has shown to be inferior to the BMFLC when a
signal modulated by two or more frequencies close in the spectral domain [94]. This filter
does not take into account the possibility that multiple fundamental frequencies might be
present in the signal, and can’t estimate two fundamental frequencies if they are close in
the frequency domain.

In early stages of the project, the filters FLC, WFLC, BMFLC and E-BMFLC where im-
plemented and tested to get a better understanding of how they work. During this period
an idea for a new filter was envisioned, a filter that could estimate multiple frequencies in
the tremor signal, regardless of their placement in the frequency domain. The filter builds
on the BMFLC (E-BMFLC) filter, which has shown to significantly outperform the WFLC
filter when estimating a signal modulated by two or more frequencies [94]. A decision was
made to pursue the development of the new filter. The new filter is called the band-limited
multiple-WFLC (BMWFLC) and is presented in section 5.2.
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5.1.2 FLC
The FLC is designed for modeling and estimating a quasiperiodic signal of known fre-
quency by adapting the amplitude and phase of a reference signal, in real-time with zero
phase shift [92]. The reference signal is generated artificially by a dynamic truncated Fou-
rier series

yk =

n∑
r=1

ark sin(rω0k) + brk cos(rω0k) (5.3)

where k is the sampling instance, yk the is estimated signal, n is the number of harmonics
in the model, µ is the adaptive gain parameter, and the Fourier coefficients ark and brk
are the adaptive weights for their respective harmonic frequency rω0. Then xk and wk are
defined

xk =

[
[sin(ω0k) sin(2ω0k) · · · sin(nω0k)]T

[cos(ω0k) cos(2ω0k) · · · cos(nω0k)]T

]
(5.4)

wk =

[
[a1k a2k · · · ank]T

[b1k b2k · · · bnk]T

]
(5.5)

Using (5.4) and (5.5) the linear combiner can be written as

yk = wTk xk (5.6)

The error between the input signal sk and the estimated signal, yk is

εk = sk − yk = sk − wTk xk (5.7)

and the recursive LMS algorithm used to update the weights of wk

wk+1 = wk + 2µxkεk (5.8)

The FLC architecture can be seen in Figure 5.1.
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Figur 5.1: FLC architecture

5.1.3 WFLC
The WFLC is an extension of the FLC algorithm first presented in [93], and like the FLC
it models the tremor input as a dynamic truncated Fourier series. Where the FLC works
on a preset fixed frequency, the WFLC can adapt the frequency of the model as well as
its Fourier coefficients. The WFLC can, therefore, compensate for approximately periodic
disturbance of unknown frequency and amplitude. The WFLC does not filter away the
voluntary movement when used for estimating a tremor signal, and in [93], a bandpass
prefilter with passband 7-13 Hz was used before the WFLC to filter away voluntary mo-
tion. The bandpass filter has a small phase lag, so the estimated frequency from the WFLC
is sent to an FLC with no prefiltering to get a zero-phase tremor estimation.

The equations for the WFLC filter are as follows

yk =

n∑
r=0

ark sin(rω0kk) + brk cos(rω0kk) (5.9)

xk =

[
[sin(ω0kk) sin(2ω0kk) · · · sin(nω0kk)]T

[cos(ω0kk) cos(2ω0kk) · · · cos(nω0kk)]T

]
(5.10)

wk =

[
[a1k a2k · · · ank]T

[b1k b2k · · · bnk]T

]
(5.11)

yk = wTk xk (5.12)

εk = sk − yk = sk − wTk xk (5.13)
wk+1 = wk + 2µxkεk (5.14)

The fundamental angular frequency, ω0k , is updated using a modified LSM algorithm, with
its own adaptive gain, µ0
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ω0k+1
= ω0k + 2µ0εk

n∑
r=1

r [ark cos(rω0kk)− brk sin(rω0kk)] (5.15)

Input amplitude and phase are estimated by the adaptive weight vector wk, as in FLC,
while ω0k estimates the input frequency. If µ0 = 0, the WFLC reduces to the FLC.
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5.1.4 BMFLC
The band-limited multiple-FLC (BMFLC) [94, 96] is based on the concepts of the WFLC
algorithm. The WFLC algorithm adapts to a single frequency present in the tremor sig-
nal, but for tremor signals modulated by two or more frequencies close in the spectral
domain, the performance of the WFLC will degrade. In such cases, the frequency adaption
process of the WFLC will never stabilize, and accurate estimation will never be attained.
To overcome this weakness, the bandlimited multiple-FLC (BMFLC) can track multiple
frequency components in the incoming signal. Instead of having one variable frequency
w0k that adapts to the fundamental frequency of the tremor like with the WFLC, the BM-
FLC predefines a band of frequencies [ω1−ωn], and then divide the frequency band into n
finite divisions, with distance ∆w between them, as shown in Figure 5.4. In Figure 5.3 we
can see that n-FLCs are combined to form the BMFLC, this algorithm is now capable of
estimating a signal with multiple dominant frequencies. In [95], to compare the efficiency
of the WFLC and BMFLC, they used a modulating sinusoidal signal with two frequencies
(5.22), simulating a tremor signal. When the two frequencies in the signal where equal,
the WFLC slightly outperformed the BMFLC, but when the frequency gap increase, the
WFLC fails to adapt to the modulated signal. The BMFLC is not affected by the frequency
gap. When setting the value of ∆w to 0.1-0.5, estimation accuracy of 96-98% was obtained
with the BMFLC.
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5.1 Tremor estimators

yk =

n∑
r=1

ark sin(ωrk) + brk cos(ωrk) (5.16)

xk =

[
[sin(ω1k) sin(ω2k) · · · sin(ωnk)]T

[cos(ω1k) cos(ω2k) · · · cos(ωnk)]T

]
(5.17)

wk =

[
[a1k a2k · · · ank]T

[b1k b2k · · · bnk]T

]
(5.18)

yk = wTk xk (5.19)
εk = sk − yk (5.20)

wk+1 = wk + 2µxkεk (5.21)

sk = 3.5 sin(2πf1t) + 2.5 cos(2πf2t) (5.22)
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Kapittel 5. Tremor estimation

5.1.5 E-BMFLC
The Enhanced Band-limited Multiple Fourier Linear Combiner (E-BMFLC) filter [81, 86]
is an improvement on the BMWFLC. The following model represents the hand movement
of a patient with pathological hand tremor

mk = mk−v +mk−i (5.23)

In (5.23), mk is the signal of the patients hand motion; mk−v and mk−i are the voluntary
and involuntary components of the motion respectively. The main goal of the BMFLC was
to estimate the involuntary motionmk−i in real-time. The E-BMFLC have been developed
to address two two major drawbacks of the BMFLC filter, inaccurate error calculation and
infinite memory. The implementation of the E-BMFLC filter is divided into two phases
of enhancement; Phase 1) Harmonic Model Enrichment: To deal with the incorrect error
calculation, and Phase 2) Memory manipulation: Using a windowed memory instead of
the conventional infinite memory.
Instead of using the truncated model that only considers the frequency of the tremor
(mk−i), [ω1, ωn] seen in Fig 5.4, the complete frequency range of the hand motion (mk),

[ωmin, ωmax] (5.24)

is considered. The frequency window is divided into a number of divisions

n =
ωmax − ωmin

∆ω
(5.25)

and n is then the number of harmonics in for the Fourier combiner model of mk. The
following Fourier combiner is then used to model the complete hand motion mk, where
ω1 = ωmin and ωn = ωmax.

m̂k =

n∑
r=1

ark sin(ωrk) + brk cos(ωrk) (5.26)

Then xk and wk are defined

xk =

[
[sin(ω1k) sin(ω2k) · · · sin(ωnk)]T

[cos(ω1k) cos(ω2k) · · · cos(ωnk)]T

]
(5.27)

wk =

[
[a1k a2k · · · ank ]T

[b1k b2k · · · bnk ]T

]
(5.28)

Using (5.40) and (5.41) the linear combiner can be written as

m̂k = wTk xk (5.29)

The error between the signal of the complete motion of the hand mk and the estimated
signal m̂k is

εk = mk − m̂k (5.30)
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5.1 Tremor estimators

and the recursive LMS algorithm used to update the weights of wk

wk+1 = ρwk + 2µxkεk (5.31)

ρ = δ
√
α (5.32)

δ =
1

∆T
Tp (5.33)

In (5.31), ρ defines the pole of discrete dynamics of the memory windowing for the fil-
ter in the Z-domain, considered to enhance the performance of the filter, especially for
non-periodic signals [86]. Decreasing ρ increases the rate of forgetting past information.
In (5.33), ∆T is the sampling time (in seconds), Tp is the width of the considered me-
mory window (in seconds), and α is the minimum amplification gain considered within
the window.

After the estimated motion m̂k has been modeled, the estimate of the voluntary mo-
tion m̂k−v and involuntary motion m̂k−i can be extracted. To do this different band-limited
windows of frequency can be considered to extract various frequency ranges. Using this
technuiqe, the signal modeling and frequency truncation are decoupled, while in the for-
mulation of BMFLC filter these two steps are fused. Two frequency ranges will be con-
sidered, [ωa, ωb] and [ωc, ωd], for voluntary and involuntary motion respectively. In order
to extract m̂k−i and m̂k−v , the calculated wk and xk should be truncated considering the
frequency range of the voluntary and involuntary motion. The following definitions are
made for this purpose

Na =
ωa − ωmin

∆ω
, Nb =

ωb − ωmin
∆ω

(5.34)

Nc =
ωc − ωmin

∆ω
, Nd =

ωd − ωmin
∆ω

(5.35)

where ωmin is from (5.24), and ∆ω is the same as in (5.45). The estimates for m̂k−i and
m̂k−v can now be found with the following equations

m̂k−v = wTk−vxk−v (5.36)

xk−v =

[
[sin(ωNak) sin(ω(Na+1)k) · · · sin(ωNbk)]T

[cos(ωNak) cos(ω(Na+1)k) · · · cos(ωNbk)]T

]
(5.37)

wk−v =

[
[aNak a(Na+1)k · · · aNbk]T

[bNak b(Na+1)k · · · bNbk]T

]
(5.38)

m̂k−i = wTk−ixk−i (5.39)

xk−i =

[
[sin(ωNck) sin(ω(Nc+1)k) · · · sin(ωNdk)]T

[cos(ωNck) cos(ω(Nc+1)k) · · · cos(ωNdk)]T

]
(5.40)

wk−i =

[
[aNck a(Nc+1)k · · · aNdk]T

[bNck b(Nc+1)k · · · bNdk]T

]
(5.41)
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Figur 5.5: Complete frequency distribution of hand motion

5.2 BMWFLC
In this section, I will propose a new method for tracking multiple frequencies in a patho-
logical tremor signal. The amplitude is not relevant to us since the dual parallel vibration
absorber only needs the frequency to adapt, so we don’t care about the accuracy of the
amplitude estimation. The proposed filter is a combination of the E-BMFLC filter and the
WFLC filter. Like the band-limited multiple-FLC (BMFLC) filter that consists of multiple-
FLC, my idea is to extend this to a band-limited multiple-WFLC (BMWFLC) filter. In Fi-
gure 5.6 we can see the new filter architecture, we see that n-WFLC are combined to form
the BMWFLC. The novelty here is that each frequency in the band now can adjust to the
signal. To accomplish this we measure the magnitude of the Fourier coefficients of each
WFLC in the BMWFLC, the WFLC with the largest magnitude contains the dominant
frequency in the estimated signal. It is now possible to measure all the frequencies present
in the estimated signal, and their strength with respect to each other.

5.2.1 Core equations
Each n-WFLC in the BMWFLC has its own frequency and learning rate, enabling each
WFLC to adapt to the signal individually with its own speed. The learning rates are

µk =
[
µ1k µ2k · · · µnk

]
(5.42)

and the angular frequencies for the WFLC in the filter are

ωk =
[
ω1k ω2k · · · ωnk

]
(5.43)

where k is the sampling instance. When k = 0 we get the size frequency window, where
the frequencies have the distance ∆w between them

[ω10 , ωn0
] (5.44)

The frequency window is divided into a number of divisions

n =
ωn0
− ω10

∆ω
(5.45)

and n is then the number of harmonics in for the Fourier combiner model of yk.

yk =

n∑
r=1

ark sin(ωrkk) + brk cos(ωrkk) (5.46)

38



5.2 BMWFLC

yk will not be used as an output for this filter, since it will not be tuned to have an accurate
estimate of the amplitude, only the frequencies (5.44) are of interest. Then xk and wk are
defined

xk =

[
[sin(ω1kk) sin(ω2kk) · · · sin(ωnkk)]T

[cos(ω1kk) cos(ω2kk) · · · cos(ωnkk)]T

]
(5.47)

wk =

[
[a1k a2k · · · ank]T

[b1k b2k · · · bnk]T

]
(5.48)

Using (5.47) and (5.48) the linear combiner can be written as

yk = wTk xk (5.49)

and the error beween the signal of the complete motion of the hand and the estimated
signal yk is

εk = sk − yk (5.50)

The recursive LMS algorithm used to update the weights of wk

wk+1 = ρwk + 2µkxkεk (5.51)

ρ = δ
√
α (5.52)

δ =
1

∆T
Tp (5.53)

This is the memory manipulation from the E-BMFLC algorithm in section 5.1.5. It makes
the filter forget past information, making it adapt faster when sudden changes occur in the
signal sk, E.g., a sudden change of frequency. Decreasing ρ increases the rate of forgetting
past information. ∆T is the sampling time (in seconds), Tp is the width of the considered
memory window (in seconds), and α is the minimum amplification gain considered within
the window.

The fundamental angular frequencies µk, are updated using multiple modified LSM
algorithms, one for each WFLC, each with its own adaptive gain ωk

ωrk+1
= ωrk + 2εkµrk [ark cos(rωrkk)− brk sin(ωrkk)] , r = 1, 2, . . . , n (5.54)

Equation (5.54) is a special case of Equation (5.15) with one harmonic. Equation (5.54)
uses the LMS algorithm to descend the performance surface to minimize the MSE (see
section 2.3.3). If the learning rates µk, are too large all the frequencies will try to reach the
frequencies with the largest magnitude in the magnitude spectrum, the global minimum
on the performance surface. This is because the error εk looks at the error between the
input signal sk and the estimate of the entire signal yk, so each WFLC in the BMWFLC
wants to go for the dominant frequency in the signal. If the learning rates µk, is set small
enough, each WFLC will get stuck in its local minimum, this is what we want, enabling
each WFLC only converge towards the real frequency closest to it. When tracking multiple
frequencies, the learning rate needs to be small, resulting in slow convergence, if only the
frequency with the largest magnitude is being tracked, the learning rate can be set much
higher since only the global minimum is of interest, resulting in faster convergence.
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Figur 5.6: BMWFLC

5.2.2 Adaptive learning rate

One of the drawbacks with the FLC, WFLC and BMFLC algorithms is that the learning
rate parameters µ and µ0 needs fine tuning, and are sensitive to change in the amplitude
of the input signal [97]. The two parameters also need to be tuned separately. Our primary
goal is to dampen the tremor for people with PD and ET, but when the tremor is suppressed
the amplitude of the signal will be decreased, and the sensitivity of the estimation will
decrease. To solve this problem, we can use the amplitude of the input signal to adapt the
learning rate. I have come up with a simple but elegant solution to this problem. We will
use a queue data structure Q, which uses the first-in, first-out, or FIFO, policy. The queue
will have a fixed length L, a good value for its length is to set it equal to the sampling rate
of the signal, fs.

Algorithm 1: Max amplitude window
Input: The measured signal; yk
Input: Max length of queue; L
Output: The peak amplitude from the time slice; Apeak
Q.enqueue(abs(yk));
if (Q.length > L) then

Q.dequeue();
end
Apeak = maxQ

Algorithm 1 checks the L last samples from the tremor signal, and return the peak ampli-
tude. This value can now be used to adapt the learning rates. If the length L is set to 100
and our sample rate of the signal is 100 Hz, the window will contain the tremor values for
the past 1 second so that the learning rates can adapt relatively fast to any changes in the
amplitude of the tremor. The following equations adapt the learning rates.
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5.2 BMWFLC

µk =
κ

Apeak
(5.55)

The value for the scaling parameter κ can be found by tuning, I found that a good starting
value is 0.01. The equation to make µnk adaptive is

µrk = µkh+ µrkβe
−λt, r = 1, 2, . . . , n (5.56)

For the first term h scales the learning rate unk with respect to the value of µk. The second
term is adds exponential decay, making murk an exponential decaying learning rate. At
time t = 0, e0 = 1, and µrk = µkh + µrkβ. When lim

t→∞
the term becomes 0, and

µnk = µkh . What this does is to make the learning rate larger in the start and exponentially
decaying to the desired and stable µrk = µkh form. µrk should have a value that is µrk <<
µk for it to be stable [97], so for the scaling parameter h a good starting value is 0.00001.
The parameter β is the value we want scale up the learnngrate at the start, a good value
to start with is 50. λ (known as the decay constant) makes the learning rate decay faster
when it increases i size. A good starting value for this constant is 0.2. The reason to use a
exponential decaying learning rate is to make the estimation of the frequency go faster in
the start, but for such high values, the filter would become unstable over time, so it decays
to a stable value.

5.2.3 Magnitude spectrum - extracting frequencies
To find the frequencies in the input signal, we will look at the magnitudes of the Fou-
rier components in the BMFLC, the magnitude of each FLC; the FLC with the highest
magnitude should contain the dominant frequency in the estimated signal, which then is
the estimate of the dominant frequency for the real signal. This is based on the concept of
magnitude spectrum for a Fourier series, presented in 2.4.2.

Mrk =
√
a2rk + b2rk, r = 1, 2, . . . , n (5.57)

M =
[
M1k M2k · · · Mnk

]
(5.58)

The cool thing about this method is that we can use it to estimate multiple frequencies in
the signal. To accomplish this, we look for the magnitudes that are peaks in the magnitude
spectrum. By peak magnitude I mean that the magnitude of interest should be larger than
the magnitude to its immediate left and right in the magnitude spectrum, Mr−1 < Mr >
Mr+1, an example can be seen in Figure 5.8a, where the two red markers are peaks in
the spectrum. We want to be able to tell our algorithm how many peaks it should track
in the spectrum, each peak it tracks is an estimate of a frequency, so we define a variable
called ftt (frequencies to track). Instead of making all the FLC in the truncated Fourier
series into WFLC, we can say that the ftt number of FLC with the largest magnitude of
Fourier coefficients are allowed to become WFLC. When the learning rate is set to zero,
µrk = 0, it becomes an FLC, and its respective frequency ωrk lose its capability to adapt
to the signal. When the BWMFLC starts to adapt to the signal, all the magnitudes of the
FLC are tracked, and the fft number of FLC with the largest peak magnitudes in the
magnitude spectrum become WFLC, by setting µrk > 0. We define an array to store the
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Kapittel 5. Tremor estimation

peak magnitudes and their position in the spectrum. Mpeak1 is largest, Mpeak2 second
largest peaks and Posp1 and Posp2 are their position in the spectrum respectively. The
magnitude peaks can now be used to compare how much power the different dominant
frequencies have in respect to each other, this is not something I have implemented here,
so this should be looked further at in future iterations of the BMWFLC filter.

Mpeak =
[
[Mp1 , Posp1 ] [Mp2 , Posp2 ] · · · [Mpr , Pospr ]

]
(5.59)

Algorithm 2 shows how we can find the magnitude peaks, and return an array with all the
peaks, it should be sorted the same way as (5.59).

Algorithm 2: Find peak magnitudes
Input: Magnitude spectrum; M (5.58)
Output: Peak magnitudes; Mpeak (5.59)
for i = 0; i < M.length; i = i+ 1 do

if i == 0 then
if M [i] > M [i+ 1] then

Mpeak.append([M [i], i])
end

else if i < M.length then
if M [i] > M [i− 1] and M [i] > M [i+ 1] then

Mpeak.append([M [i], i])
end

else if i == M.length then
if M [i] > M [i− 1] then

Mpeak.append([M [i], i])
end

end
end
Mpeak.sort()

It is now easy to get the estimate for the frequencies; we use the positions from (5.59), and
the estimates will be the frequencies in (5.44) that corresponds to them. E.g if Posp1 = 8,
the estimate for the frequency with the most power in the input signal will be ω8k . In Figure
5.7 we see the frequency window of the BMWFLC, the two arrows with red arrowheads
represent the two dominant frequencies in the signal when ftt = 2, they can adapt to the
signal by setting the learning rates, µ4k > 0 and µ7k > 0.
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Algorithm 3: Adapt and return ωk, the estimated frequencies
Input: Peak magnitudes sorted; Mpeak (5.59)
Input: Number of frequencies to track; ftt
Input: Angular frequencies; ωk (5.43)
Input: Learning rates; µk (5.42)
Output: Estimated frequencies; ef
ef = []
for i = 0; i < ftt; i = i+ 1 do

positionOfPeak= Mpeak[i][1]
adaptLearningRate(µk[positionOfPeak]) //Equation (5.56)
adaptAngularFrequency(ωk[positionOfPeak]) //Equation (5.54)
ef.append(ωk[positionOfPeak])

end

Since the frequencies in ωk will move change over time, there should be a mechanism to
reset the frequencies to their original values ω0, if they no longer are present in the signal.
An easy way to do this is to make a threshold variable, η, and if any of the magnitudes
in Mk gets under this threshold, its respective frequency in ωk should reset to its original
value ω0.

ωrk =

{
ωr0 , if Mrk < η

ωrk , otherwise
r = 1, 2, . . . , n (5.60)
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Figur 5.7: BWMFLC frequency distribution with two dominant frequency, ω4 and ω7.

Example 5.2.1.
To get a better understanding of how finding frequencies in the signal using the magnitude
spectrum in the BMWFLC works, we will use the signal sk = 4︸︷︷︸

A1

sin(2π 4.2︸︷︷︸
f1

t) +

3︸︷︷︸
A2

cos(2π 5︸︷︷︸
f2

t) as input to our algorithm. We chose the band of [3Hz, 7Hz], with

∆f = 0.1. In Figure 5.8a, each stem plotted is the magnitude of the Fourier coefficients of
its respective FLC (WFLC for the peaks), after running the algorithm for 10 seconds. The
two dominant frequencies have red markers, and it’s now easy to see which frequencies
are dominant.
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Figur 5.8: (a) Magnitude of BMWFLC after 10 seconds running on simulated signal. (b) Heatmap
of magnitude spectrum from the BMWFLC
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5.2.4 Flowchart for BMWFLC algorithm
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Figur 5.9: Flowchart for BMWFLC algorithm
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Tremor data

6.1 Real dataset
The real dataset was downloaded from the website of Motus Bioengineering Inc., Benicia,
CA [28]. The data was recorded with a biaxial gyroscope developed by Motus Bioen-
gineering Inc., with a sampling rate of 100 Hz. The sensor responds to angular velocity
and is set up to measure flexion-extension or the pronation-supination axis of the wrist.
The recordings are of 1 DOF at a time, when both flexion-extension and the pronation-
supination have been recorded simultaneously the recordings come in two separate files.
This dataset has been used by several other researchers to test the performance of their
pathological tremor estimators [80, 81, 83, 84, 87].

In Table 6.1 the data we are going to use is listed, there are more data in the original set,
only recordings relevant for us have been chosen. All the patients in this dataset suffered
from PD. In the type column in the table, P/S and F/E stands for pronation-supination and
flexion-extension respectively. The + sign states which movement is positive in the recor-
ded data, so P/S+ means pronation-supination with supination positive. All recordings in
the same session where recorded simultaneously from the same patient.
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Session Recording Placement Placement Duration (sec) Type

1 1 P+/S RH 10 Rest tremor

2 2 P+/S RH 30 Rest tremor
3 P+/S LH 30 Rest tremor

3 4 P+/S RH 10 Rest tremor
5 F+/E RH 10 Rest tremor

4 6 P/S+ LH 10 Rest tremor
7 P+/S RH 10 Rest tremor

5 8 P+/S RH 30 Voluntary movement P/S
9 P+/S LH 30 Rest tremor

10 F+/E RH 30 Voluntary movement P/S
11 F/E+ LH 30 Rest tremor

6 12 F+/E RH 60 Postural tremor
13 F/E+ LH 60 Postural tremor

7 14 P+/S RH 30 Action tremor
15 P+/S LH 30 Action tremor

Tabell 6.1: Real dataset

6.2 Simulated data
To simulate the tremor signal we will use the model presented in [81, 86], Equation 5.23,
and add additional white noise, nk.

mk = mk−v +mk−i + nk (6.1)

6.2.1 Involuntary movement
In theory, a tremor signal can be completely reconstructed by a Fourier series. For simpli-
city, a pseudo-tremor form can be constructed using just two sinusoids [28]. The involunta-
ry movementmk−i is simulated with a modulating sinusoidal signal with two frequencies,
using the same form as Equation (5.22).

mk−i = A1 sin(2πf1t) +A2 cos(2πf2t) (6.2)

6.2.2 Voluntary movement
A tremor accompanied by voluntary movement is known as "actiontremor (section 2.1).
An example of an action tremor from recording 15 in was plotted Figure 9.47, where the
voluntary movement is the long slow-moving wave in the signal. The voluntary movement
can be simulated using a single sinusoid, with the frequency in the range of 0-3 Hz.

mk−v = A3 sin(2πf3t) (6.3)
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Figur 6.1: Recording number 1 from Table 6.1
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Figur 6.2: Simulated signal.mk−i = 128 sin(2π ·4.6·t)+153 cos(2π ·5.2·t)+nk, with σnk = 10

6.2.3 Noise
White noise is added to the signal to simulate noise from the gyroscope and the elect-
rical circuit; the noise, nk, is modeled using random samples from a normal (Gaussian)
distribution [98] with zero mean and standard deviation σnk .
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Time-Frequency analysis

To evaluate the frequency estimation of the BMWFLC on the real data set we will use two
time-frequency signal analysis tools; power spectral density (PSD) and spectrogram.

7.1 Power Spectral Density

PSD is used to obtain the distribution of power across frequencies. [99] PSD estimation,
using the Welch-Barlett method [100, 101], is the most common type of analysis used
for tremor signals [102], and this is the method of our choice. To make the plots the sci-
py.signal.welch module from the open-source software SciPy [103] is utilized. For most
tremor signals, duration of 5-10 s is recommended for the signal window, and overlap of
50% is often used in practice [102]; based on this a Hanning window of 10 s and overlap
of 50% is used for all the plots. Both linear and logarithmic power scales will be used; the
linear scale shows a clear picture of which frequencies have the most power in the tremor,
but information of the smaller peaks will be lost; the logarithmic scales shows information
about the higher harmonics in the signal which are suppressed by the linear scale. [104]
The linear scale is of most use to us since we want to find the frequencies with the most
power; the logarithmic scale gives us more detail of the frequencies with lower power,
making easier to see the harmonics of the high powered frequencies.

In Figure 7.1 we take the PSD of the signal shown in Figure 6.1. From Figure B.32a
it’s easy to see that there are two prominent peaks in the signal, at 4.6 Hz and 5.2 Hz, they
are the two natural frequencies of this tremor, and the frequencies we want to estimate.
From 7.1b we see that there are 2nd and 3d harmonics at 9.1 Hz and 14.3 Hz for the 4.6
Hz peak, and at 9.7 Hz and 15 Hz for the 5.2 Hz peak. In this particular tremor, the 2nd
and 3rd harmonics have very little power compared to the 1st harmonic.
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Kapittel 7. Time-Frequency analysis
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Figur 7.1: PSD with (a) linear and (b) logarithmic scaling of recording 1

7.2 Spectrogram
The spectrogram shows how the spectral density varies with time. Spectrograms are usual-
ly generated using short-time Fourier transform (STFT) [105]. To plot the spectrograms the
spectrogram function from the Signal Processing ToolboxTM[106] in MATLAB R©[107] is
used, which uses STFT. For the plots, a Hanning window with a length of 20% of the
sample data, and an overlap of 99% is used. In Figure 7.2 the spectrogram of recording 9
(Table 6.1) can be seen. From this figure, we can see that this tremor only has one natu-
ral frequency at approximately 5.3 Hz, and 2nd and 3rd harmonics at approximately 10.6
Hz and 15.8 Hz respectively. The two frequencies with the most power estimated by the
BMWFLC are also plotted in the figure black and red dots for most and second most power
respectively.
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Figur 7.2: Spectrogram of recording 9 with Hanning window with length 20% of the sample data,
and a overlap of 99%. Estimated frequencies by the BMWFLC are plotted with black and red mar-
kers for most and second most power respectively
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Kapittel 8
Test rig setup

IIn collaboration with Estenstad [1] , we built a 1DOF test rig that simulates pathological
hand tremor with flexion-extension movement.

The actuator used in the rig consisted of an I12T11 Compax3 Servo Drive [108] with
a linear motor, type SMH 60601 [109], connected to a linear positioner. .The measure-
ment setup consists of a microcontroller and two sensors, one for measuring the DVA,
and one for the tremor on from the wrist. The microcontroller used was the Arduino Uno
rev3 [110] microcontroller board based on the ATmega328P [111]. For the measuring of
the tremor and the DVA two LSM6DS3 [112], which is an accelerometer and gyroscope
sensor, was used. Accelerometers have traditionally been used for measuring tremor, but
in [28] they argue that the gyroscope is a better choice compared to the accelerometer,
because gyroscope sensors do not respond to changes in their orientation with respect to
gravity, which the accelerometer does. Based on this we also chose to use a gyroscope
to measure the tremor from our test rig; only activating the gyroscope in the LSM6DS3
sensor.
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Figur 8.1: Wiring diagram for the Arduino Uno and the two LSM6DS3 sensors

My main responsibilities for the rig was the measurement setup, and the serial com-
munication with the actuator to make it move. The controller software did not have the
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Kapittel 8. Test rig setup

functionality we needed, it was mostly for setting up the actuator, and the IO ports on the
driver. We could not send a analog signal in, like i sinusoid and make the actuator follow
it. The driver fortunately had the option to be controlled with serial communication from
a computer. A separate windows application was developed with WPF C# [113] to hand-
le the serial communication with the actuator, to send move commands and simulate the
tremor. A screenshot from the application can be seen in Figure 8.3.

(a)

(b)

Figur 8.2: (a) Test rig (b) Test rig with DVA attached

Figur 8.3: Application for controlling the actuator

The code for the application can be found at https://github.com/Bjarten/BMWFLC-filter.
More details of the mechanical deigns of this the test rig can be found in Estenstad [1].
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Kapittel 9
Results

Only the most interesting results from the real dataset are presented and discussed in sec-
tion 9.3. The the remaining results can be found in Apendix B. The code used to implement
ant test the filters can be found at https://github.com/Bjarten/BMWFLC-filter.

9.1 Simulated tremor data - Tuned filter

9.1.1 Initial filter settings

Here are the tuned filter parameters used for all the tests. Some tests will change some of
the parameters to test their effect on the estimates. I do not claim that these are the optimal
parameters for this filter, but as good as I have been able to tune them. The filter does need
to be re-tuned if the sampling rate,fs, is different than the one used here.

α = 0.67, Tp = 2, κ = 0.01, h = 0.0001, L = 200, β = 50, η = 0.4, fmin =
3Hz, fmax = 20Hz,∆ω = 0.1, ∆T = 0.01, λ = 0.2, fs = 100Hz

ftt = 2 for all signals besides simulated signal 6 where it is set to ftt = 6.

9.1.2 Simulated signal settings

Since ∆ω = 0.1, and the starting frequency is fmin = 3Hz, the starting frequencies in
the BMWFLC will be 3.0 Hz, 3.1 Hz, 3.2 Hz, ..., 19.9 Hz, 20 Hz. To make it as hard
as possible for the filter to estimate the frequencies, since this is a performance test, the
values in the simulated signals end with x.x5, making the lie in between the frequencies in
the filter. Only in simulated signal 2 does the frequencies end with x.x0 Hz, to see how it
performs in the best case scenario. To simulate the tremor signal we use equation (6.1).
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Kapittel 9. Results

Simulated signal 1 - Rest tremor

A1 = 128, A2 = 153, A3 = 0, f1 = 4.60, f2 = 5.20, f3 = 0, σnk = 10

Simulated signal 2 - Rest tremor

A1 = 128, A2 = 153, A3 = 0, f1 = 4.65, f2 = 5.25, f3 = 0, σnk = 10

Simulated signal 3 - Action tremor

A1 = 128, A2 = 153, A3 = 500, f1 = 4.65, f2 = 5.25, f3 = 0.6, σnk = 10

Simulated signal 4 - Varying amplitude

A1(t) =


300, for 0 ≤ t < 5

500, for 5 ≤ t < 20

20, for 20 ≤ t < 30

, A2(t) =


400, for 0 ≤ t < 10

1000, for 10 ≤ t < 20

10, for 20 ≤ t < 30

, A3 = 0

f1 = 4.65, f2 = 5.25, f3 = 0, σnk = 10

Simulated signal 5 - Varying frequency

f1(t) =


4.05, for 0 ≤ t < 5

4.55, for 5 ≤ t < 20

3.55, for 20 ≤ t < 30

, f2(t) =


5.05, for 0 ≤ t < 10

5.55, for 10 ≤ t < 20

5.05, for 20 ≤ t < 30

, f3 = 0

A1 = 300, A2 = 400, A3 = 0, σnk = 10

Simulated signal 6 - Multiple frequencies

mk =A1 sin(2πf1t) +A2 cos(2πf2t) +A3 sin(2πf3t)+

A4 cos(2πf4t) +A5 sin(2πf5t) +A6 cos(2πf6t) + nk
(9.1)

A1 = 100, A2 = 150, A3 = 200, A4 = 80, A5 = 310, A6 = 230,

f1 = 4.05, f2 = 4.55, f3 = 5.85, f4 = 8.55, f5 = 10.25, f6 = 18.55, σnk = 10
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9.1 Simulated tremor data - Tuned filter

9.1.3 Simulated signal 1 - Rest tremor
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Figur 9.1: Simulated signal 2: Simulation of rest tremor
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Figur 9.2: Estimated frequencies from simulated signal 1 using the BMWFLC filter
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Figur 9.3: (a) PSD with linear scaling. (b) Heatmap of magnitude spectrum from the BMWFLC
filter. (Simulated signal 1)
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Figur 9.4: Error between real frequency and estimated frequency. (Simulated signal 1)

This simulation is done to test the BMWFLC filter performance on a rest tremor with two
frequencies close in the frequency domain. Since this is a simulated signal we know what
frequencies the signal is modulated by, f1 = 4.60 and f2 = 5.20, and the amplitudes,
A1 = 128 and A2 = 153. This is a best-case scenario for the frequencies since they match
perfectly with the frequency division in the filter. In Figure 9.2 the black dotted and solid
lines are frequencies f1 and f2 respectively. In this plot, estimate 1 is the frequency with the
largest amplitude, and estimate 2 second largest. We see that estimate 1 correctly classifies
f2 to have the highest amplitude after about 0.5 seconds and then starts to converge toward
the frequency and stabilizes after 2.1 seconds. f1 is also classified correctly by estimate 2
as having the second largest amplitude at about 0.5 seconds. The frequency estimate does
a large jump at 1.9 seconds and settles down and is stable after 2.85 seconds. In Figure
9.3b we see how the magnitude spectra from the BMWFLC filter is adjusting with the
signal. The peaks are getting thinner as the time goes by, meaning that the confidence
in the estimated frequency is getting higher, the top of these two peaks are the estimated
frequencies returned by the filter. From Figure 9.4a we can see the error from the estimates,
and both have an error below 0.006 Hz when they stabilize, and in Figure 9.4b we observe
that both estimates are slowly converging towards 0, but estimate 1 is converging faster
than estimate 2. The reason for this difference is because the two WFLC that are estimating
the frequencies uses the LMS algorithms to minimize the MSE between the estimated and
real signal (5.54). So the WFLC that will minimize the error the most is the one that is
most similar to the original signal. If the learning rate is set to high, both estimates will
converge to f2, both wanting to minimize the error the most.
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9.1 Simulated tremor data - Tuned filter

9.1.4 Simulated signal 2 - Rest tremor
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Figur 9.5: Simulated signal 2: Simulation of rest tremor
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Figur 9.6: Estimated frequencies from simulated signal 2 using the BMWFLC filter
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Figur 9.7: (a) PSD with linear scaling. (b) Heatmap of magnitude spectrum from the BMWFLC
filter. (Simulated signal 2)
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Figur 9.8: Error between real frequency and estimated frequency. (Simulated signal 2)

This signal is the same as signal 1 except for the frequencies that are f1 = 4.65 and 5.25
Hz, making them a worst case scenario for the filter. If we look at estimation plots of
signal 1 (Figure 9.2) and signal 2 (Figure 9.6), we see that they look similar, except that
the estimations are oscillating around the real value in the signal, taking longer to settle
down. This is because the filter can’t decide which value is closer to the real value of the
signal. If we look at estimate 2 in Figure 9.6, it is trying to reach 4.65 Hz, but the two
closest frequencies in the filter are 4.6 and 4.7 Hz. So the two estimates start fightingeach
other, both wanting to be the most accurate. In Figure 9.9 we see how this look when we
plot the magnitude spectrum for the filter at 4 and 4.5 seconds. The red marker indicates
the peak magnitudes, and only their respective WFLC have µrk > 0, giving them the
ability to adapt to the signal. The estimation error for frequency 1 after 10 and 60 seconds
are 0.03 and 0.015 Hz respectively, and for frequency 2, 0.02 and 0.0065 Hz.

Estimate 1

Estimate 2

(a)
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Figur 9.9: Magnitude spectrum at (a) 4 seconds and (b) 4.5 seconds
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9.1 Simulated tremor data - Tuned filter

9.1.5 Simulated signal 3 - Action tremor
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Figur 9.10: Simulated signal 3: Simulation of action tremor
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Figur 9.11: Estimated frequencies from simulated signal 3 using the BMWFLC filter
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Figur 9.12: (a) PSD with linear scaling. (b) Heatmap of magnitude spectrum from the BMWFLC
filter. (Simulated signal 3)
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Figur 9.13: Error between real frequency and estimated frequency. (Simulated signal 3)

This signal is the same as signal 2, but with voluntary movement mk−v with A3 = 500
and f3 = 0.6 Hz. Comparing the estimation plots of simulated signal 2 (Figure 9.6) and
simulated signal 3 (Figure 9.11), we see that the estimation is a bit more scattered for
signal 3 before the 2-second mark, and after 2 seconds the estimates oscillating quite a bit
more around the true frequencies. From the error plots in Figure 9.13b and Figure 9.8b
we see that estimate 1 for signal 3 has a much slower convergence rate than for signal 2,
and after 60 seconds it is under 0.0035 Hz for signal 3 and for signal 2 its 0.035 Hz. The
reason for this is the adaptive learning rate which scale the learning rates µk and µrk to the
peak amplitude in the input signal, Equations (5.55) and (5.56). If the adaptive learning
rate were turned off, the filter would become unstable because of the high values in the
input signal sk caused by the voluntary motion. with constant learning rates are done in
section 9.2.2 and section 9.2.2. The filter does an excellent job of filtering out the voluntary
motion.
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9.1 Simulated tremor data - Tuned filter

9.1.6 Simulated signal 4 - Varying amplitude
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Figur 9.14: Simulated signal 4: Simulation of tremor with varying amplitude

Figur 9.15: Estimated frequencies from simulated signal 4 using the BMWFLC filter
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Figur 9.16: (a) PSD with linear scaling. (b) Heatmap of magnitude spectrum from the BMWFLC
filter. (Simulated signal 4)
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Figur 9.17: Error between real frequency and estimated frequency. (Simulated signal 4)

This is a test to see if the filter can correctly estimate which of the two frequencies have
the highest amplitude when the amplitude make sudden changes. After the 5 second mark,
the filter correctly switches the estimates at 8.65 seconds, 3.65 seconds after the amplitude
step. On the second step at the 10-second mark, the amplitudes correctly switch places at
10.17 seconds, 0.17 seconds after the step. The reason for this fast response is because
both the estimates had similar magnitudes in the magnitude spectrum since a switch just
took place and the filter hadn’t had much time to adapt to the new values. At the 20 second
mark, the filter has had time to adapted to the new values, the step is quite big, and the
new amplitudes lie close to each other. The estimates correctly switch at 25.25 seconds,
5.25 seconds after the step. There is also white noise added to the signal that may affect
the estimation when the amplitudes are so low.
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9.1 Simulated tremor data - Tuned filter

9.1.7 Simulated signal 5 - Varying frequency
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Figur 9.18: Simulated signal 5: Simulation of tremor with varying frequencies
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Figur 9.19: Estimated frequencies from simulated signal 5 using the BMWFLC filter
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Figur 9.20: (a) PSD with linear scaling. (b) Heatmap of magnitude spectrum from the BMWFLC
filter. (Simulated signal 5)
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Figur 9.21: Error between real frequency and estimated frequency. (Simulated signal 5)

From Figure 9.19 we see the first frequency step at 5 seconds is whenf1 goes from 4.05
Hz to 4.55 Hz. The estimate 2 correctly follows the real frequency at 7.4 seconds, taking
2.4 seconds to respond to the change. The next step is at 10 seconds when f2 goes from
5.05 Hz to 5.55 Hz, and the estimate follows at 13.06 seconds, 3.06 seconds after the step.
At this point, f1 is estimated to have the largest amplitude, which is wrong, but at 14.95
seconds this is corrected. The reason for the long response time for the second step is that
the filter had a longer time to adapt to f2 than f1, and has a stronger memory of this signal.
The next step is at 20 seconds where both frequencies change, f1 from 4.55 to 3.55 Hz
and f2 from 5.55 to 5.05 Hz. At 22.35 seconds, estimate 1 is still at the old frequency of
f2 and estimate 2 is estimating the new frequency of f2 after the step, the new frequency
of f1 is then found by estimate 2 at 23.84 seconds.

From these results we see that when the filter has had some time to adapt to a signal, it
takes longer time for it to change when there is a sudden change in frequency.
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9.1 Simulated tremor data - Tuned filter

9.1.8 Simulated signal 6 - Multiple frequencies
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Figur 9.22: Simulated signal 6: Simulation of tremor with 6 frequencies
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Figur 9.23: Estimated frequencies from simulated signal 6 using the BMWFLC filter
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Figur 9.24: (a) PSD with linear scaling. (b) Heatmap of magnitude spectrum from the BMWFLC
filter. (Simulated signal 6)
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Figur 9.25: Error between real frequency and estimated frequency. (Simulated signal 6)

For this test, a signal with six different frequencies and amplitudes is sent into the filter. The
filter handles this well as seen in Figure 9.23, after 2 seconds most of the frequencies and
amplitudes are correctly estimated. It has some problem deciding which one of f1 = 4.05
Hz, A1 = 80,and f4 = 8.55, A4 = 80, has the smallest amplitude, estimate 5 and 6. And
occasionally switches them, but this happens rarely. From the error plots in Figure 9.25, we
see that the frequencies with the largest amplitudes minimize the error fastest, this is the
same effect that was observed and discussed in section 9.1.3. These results show that the
filter has no problems detecting and estimating multiple frequencies in a signal, and their
amplitude with respect to each other. The filter not designed to estimate the amplitude of
the signal, but using the magnitude spectrum (Figure 9.24b) the power of each frequency
can be compared against each other. E.g. how much higher is the amplitude in estimate 1
compared to estimate 2. This is not implemented in the algorithm now, but shouldn’t be
hard to add if this feature is desired.
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9.2 Testing different filter settings

9.2 Testing different filter settings

9.2.1 Simulated signal 2 with µk = 0
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Figur 9.26: Estimated frequencies from simulated signal 2 using the BMWFLC filter with µk = 0
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Figur 9.27: (a) PSD with linear scaling. (b) Heatmap of magnitude spectrum from the BMWFLC
filter. (Simulated signal 2). With µk = 0
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Figur 9.28: Error between real frequency and estimated frequency. (Simulated signal 2)

By setting all the learning rates in µk (5.42) to 0, the BMWFLC loses its ability to adapt
the frequencies ωk (5.43) to the signal. From the error plots in Figure 9.28 we see that
the error stops at 0.05 Hz and doesn’t go below this. Just what we expected since the filter
can’t minimize the error for the frequencies when the learning rate is 0. In Figure 9.26 we
see that the estimates are oscillating around the true frequencies, both of the estimates are
an equal distance from the real frequency, so the filter can’t decide which is best. This was
not a problem when µrk > 0, which was the case in section 9.1.4.
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9.2 Testing different filter settings

9.2.2 Simulated signal 4 with µk and µk constant

Figur 9.29: Estimated frequencies from simulated signal 4 using the BMWFLC filter with µk and
µk constant
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Figur 9.30: (a) PSD with linear scaling. (b) Heatmap of magnitude spectrum from the BMWFLC
filter. (Simulated signal 4). With µk and µk constant
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Figur 9.31: Error between real frequency and estimated frequency. (Simulated signal 4)

The learning rates are set to µk = 0.001 and µk = 0.00000001, turning off the adaptive
learning rate (Adaptive learning rate in section 5.2.2). From Figure 9.29 we see that before
the first step in amplitude at the 5-second mark, the estimates behave similarly to what they
did in Figure 9.15 when the adaptive learning rate was on. After the first amplitude step
when A1 goes from 300 to 500, we see that both estimates start to converge towards f1.
The reason for this is that the error between εk (5.49) gets larger because of the increased
size of sk , which in return affects the LMS term in Equation (5.51) and (5.54), making the
estimated gradient descend the MSE performance surface faster. This knocks the estimate
2 out of its local minima, and it starts towards the global minima which are f1 where the
amplitude is largest. The same happens at the 10-second mark when f2 has the largest
amplitude, and both estimates start converging towards f1. The adaptive learning rate has
been implemented to keep the estimates stable no matter what amplitude in the input signal
is, and the effect when this is turned on can be seen in section 9.1.6, and the other test
scenarios, since this is the only test where it’s turned off. This is an important feature
for the filter, since pathological tremor can vary in amplitude, and voluntary motion can
add large amplitudes to the input signal. The filter will also adapt when the amplitude in
the input gets smaller; this is especially important since this filter is designed for tremor
suppression applications, making it sensitive even though the tremor is being suppressed.
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9.3 Real tremor data - Tuned filter

9.3 Real tremor data - Tuned filter

9.3.1 Recording 1 - Rest tremor
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Figur 9.32: Recording 1 from session 1. Orientation: P+/S. Placement: RH
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Figur 9.33: PSD with (a) linear and (b) logarithmic scaling. (Recording 1)
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Figur 9.34: (a) Spectrogram of signal with estimated frequencies and (b) Heatmap of the magnitude
spectrum from the BMWFLC filter. (Recording 1)
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Figur 9.35: Estimated frequencies from recording 1. f1 and f2 are also estimates in this figure

In Figure 9.35 f1 = 5.2 Hz and f2 = 4.6 Hz are the peaks from the PSD plots in Figure
9.33, these also estimate the frequencies, since this is a real signal, we cant know what the
actual frequency components are. We also see in Figure 9.33b that the peak at 5.2 Hz is
sharper than the one at 4.6 Hz, meaning its a better estimate. The one at 4.6 Hz is flatter
and is rising on the 4.5 Hz as well. This is reflected well in the estimates in Figure 9.35,
where estimate 1 is stable at 5.2 Hz and estimate 2 switches between 4.6 and 4.5 Hz. These
are an excellent result, and performance seems to be equal to the simulations of the signal
in section 9.1.3 and 9.1.3. It even seems to perform better as the jump in the frequency in
estimate 2 after 2 seconds that was present in both simulations are now gone. Error plots
will not be plotted for the real signals since we don’t know the real value of the frequencies
in the signal. Only for this recording will there be a plot like in Figure 9.35, since this was
a particularly stable tremor, for the rest, the accuracy of the estimation should be read out
of the spectrogram plot Figure 9.34a, and from the PSD plots 9.33.
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9.3 Real tremor data - Tuned filter

9.3.2 Recording 6 - Rest tremor
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Figur 9.36: Recording 6 from session 4. Orientation: P/S+. Placement: LH
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Figur 9.37: PSD with (a) linear and (b) logarithmic scaling. (Recording 6)
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Figur 9.38: (a) Spectrogram of signal with estimated frequencies and (b) Heatmap of the magnitude
spectrum from the BMWFLC filter. (Recording 6)
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Kapittel 9. Results

In this tremor, we can see that there is one fundamental frequency around 5 Hz and a
strong 2nd harmonic that drifts around 10 Hz. From the spectrogram in Figure 9.38a we
see that estimate two loses the 2nd harmonics at 7.3 seconds after the tremor does a sudden
frequency jump. If we look at the heat map of the magnitude spectrum in Figure 9.38b the
magnitudes split into two peaks after the frequency jump that took place around 7 seconds,
and both frequencies are estimated to be here. The magnitude spectrum will take some time
to adapt to the signal after the sudden jump. A fix to this problem could be to divide the
BMWFLC filter into sections the same way as the E-BMFLC filter presented is section
5.1.5, can be used to extract the voluntary, mk−v , and involuntary signal, mk−v , from the
total estimate of the signal mk. So instead of extracting the voluntary and involuntary mo-
tion, we could extract the signal containing fundamental frequency, which would lie in the
range 3-7 Hz for PD, and the signal containing the harmonics in the range 7-20 Hz. Now,
these two could run as separate BMWFLC filters without adding much computational cost.
This has not been tested as the idea came late in the process after inspecting the results
from the filter on the real data, this could be implemented in future work and should be an
elegant solution to the problem.

For now, we can try to get an estimate of the 2nd without losing it by setting ftt = 3
and see if it helps.
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Figur 9.39: Spectrogram of signal 6 with ftt = 3

This worked, now the 2nd frequency was tracked all the way, but there still lacks some
logic to deal with this properly, and should be looked further into in the future.
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9.3 Real tremor data - Tuned filter

9.3.3 Recording 12 - Postural tremor
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Figur 9.40: Recording 12 from session 6. Orientation: F+/E. Placement: RH
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Figur 9.41: PSD with (a) linear and (b) logarithmic scaling. (Recording 12)

0 10 20 30 40 50 60
Time (sec)

4

6

8

10

12

14

16

18

20

F
re

qu
en

cy
 (

H
z)

-10

-5

0

5

10

15

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

Estimate 1
Estimate 2

(a)

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0
Time (sec)

20.0

19.0

18.0

17.0

16.0

15.0

14.0

13.0

12.0

11.0

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

Fr
eq

ue
nc

y 
(H

z)

0.00

0.25

0.50

0.75

1.00

1.25

M
ag

ni
tu

de

(b)

Figur 9.42: (a) Spectrogram of signal with estimated frequencies and (b) Heatmap of the magnitude
spectrum from the BMWFLC filter. (Recording 12)
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Kapittel 9. Results

This is a recording of a postural tremor, and from the spectrogram 9.42b we see that it’s
highly labile.

Overall the estimation seems too do quite well, and we can clearly see the resemblance
between the spectrogram and the heatmap of the magnitude spectrum in Figure 9.42.
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9.3 Real tremor data - Tuned filter

9.3.4 Recording 15 - Action tremor
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Figur 9.43: Recording 15 from session 7. Orientation: P+/S. Placement: LH
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Figur 9.44: PSD with (a) linear and (b) logarithmic scaling. (Recording 15)

0 5 10 15 20 25 30
Time (sec)

4

6

8

10

12

14

16

18

20

F
re

qu
en

cy
 (

H
z)

-10

0

10

20

30

40

50

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

Estimate 1
Estimate 2

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
Time (sec)

20.0

19.0

18.0

17.0

16.0

15.0

14.0

13.0

12.0

11.0

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

Fr
eq

ue
nc

y 
(H

z)

0.00

0.15

0.30

0.45

0.60

0.75

M
ag

ni
tu

de

(b)

Figur 9.45: (a) Spectrogram of signal with estimated frequencies and (b) Heatmap of the magnitude
spectrum from the BMWFLC filter. (Recording 15)
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Kapittel 9. Results

From the spectrogram in Figure 9.45a we see that the tremor starts at about 8.7 Hz and
then slowly moves towards 8.1 Hz. Estimate 1 tracks the main frequency nicely as it is
descending. There seems to be multiple frequencies percent around the main one, and
estimates 2 tries its best too lock onto one of them, but they are rather unstable. The
voluntary motion is filtered out, but it ads some noise to the magnitude spectrum Figure
9.45b, as can be seen by vertical ripples going through the spectrum.

The overall performance of the filter on the simulated data was really good.
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9.4 Real-time test with DVA system

9.4 Real-time test with DVA system

0 5 10 15 20 25 30
Time (sec)

30

20

10

0

10

20

(d
eg

/s
ec

)

Figur 9.46: Recording from test rig 30 seconds
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Figur 9.47: Recording from test rig zoomed in
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Figur 9.48: (a) Linear PSD of simulated tremor from test rig. Plots of the arm with nothing, weight
and DVA attached; blue, green and red line repectivly. (b) Logarithmic plot of tremor with nothing
attached
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(c) Spectrogram of the arm with (a) nothing, (b)
weight and (c) DVA attached

Estenstad [1] made a test procedure to test a 1DOF DVA on the arm. We ran the arm at
different frequencies to test out DVAs with different spring constants and mass to measu-
ring their damping effect. For each test one recording was done with nothing attached to
the arm, only the mass and then the spring and mass which is the DVA, 27 test in total.
The best result achieved 93,25% damping with a DVA connected. The tremor presented
here had a dampening effect of 75,89% with the DVA connected. In Figure 9.48a we see
the different PSD plots for the tremor with nothing, only the mas, and the DVA attached.

These are the settings for the real time test α = 0.67, Tp = 10, κ = 0.01, h =
0.001, L = 100, β = 50, , fmin = 3Hz, fmax = 7Hz,∆ω = 0.3, ∆T =
0.01, λ = 0.2, fs = 100Hz
This was the best resolution I could get with the filter and still making it run in real time.
The filter spans from 3 to 7 Hz with with ∆ω = 0.3. As we can see from the spectro-
gram plot in Figure 9.49a, the estimate has no problem finding the real frequency in the
signal. Unfortunately the first harmonics lies outside our frequency window and was not
estimated. An solution to this problem can be to use a stronger microcontroller. The one we
use was a 8-bit controller, an upgrade to 16-bit or 32-bit should significantly increase the
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window size. Optimizing the code should also give better results. Unfortunately I didn’t
have time left to start on this process. The algorithm have shown great results in simula-
tions on the desktop computer, and it run smoothly on the microcontroller, although not
with the ideal resolution. Since a 8-bit controller is rather weak, i have no doubt that an
hardware upgrade will fix the problem.
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9.5 Summary

Summary of key findings from the results.

9.5.1 Rest tremor

In section 9.1.3 the filter is tested on a simulated rest tremor signal with two frequencies
close in the frequency domain. The estimate of the frequency with the largest and second
largest amplitude has a stable estimate after 2.1 and 2.85 seconds respectively, booth with
an error under 0.006 Hz, with the error slowly converging towards zero. The frequency that
had the largest and smallest amplitude was correctly estimated in under 0.5 seconds. This
was a best case scenario where the frequencies in the tremor matched perfectly with the
frequency division in the BMWFLC. In section 9.1.4 the same rest tremor signal was tested
again, this time the frequencies did not match the frequency division in the BMWFLC, but
with the worst case scenario. The estimates had about the same settling time, with an error
for the frequency with larges amplitude after 10 and 60 seconds being 0.02 and 0.0065 Hz
respectively, and for the one with the smallest 0.03 and 0.015 Hz.

In section 9.3.1 the filter is tested on the real tremor signal the two previous signals
where modeled after, a rest tremor with two frequencies close in the frequency domain.
The results where excellent, and the performance seems on par with the results from the
simulated signals. The next rest tremor signal does not contain two fundamental frequen-
cies, just one with a strong 2nd harmonic (9.3.2). The 1st harmonic is tracked without any
problems, but the 2nd harmonic loses its tracking when the frequency does a sudden jump.
To get an estimate of the 2nd harmonic throughout the signal, the number of frequencies
to track for the filter is adjusted from 2 to 3, this solves the problem somewhat. A more
elegant solution is suggested and can be implemented if this becomes a problem in the
future.

The results for the simulated rest tremor are really good, the filter adapted to the signal
fast and the error of the estimates where low. The results for the real data are also really
good, a minor tracking problem occurs when the frequency makes sudden changes, and a
solution to this is suggested.

9.5.2 Action tremor

in 9.1.5 the filter is tested on a simulated action tremor. The estimates behave similar as
they did for the rest tremor but error converge slower towards zero. After 60 seconds the
the error for estimate 1 for the action tremor was 0.035 Hz, and for the rest tremor 0.0065
Hz . This is because of the large amplitude on the inputs signal caused by the voluntary
movement, adapting the learning rate to keep the estimates stable. In section 9.2.2 a signal
with varying amplitude is tested with constant learning rate, the adaptive feature turned
off, the result is unstable estimates.

In section 9.3.4 the filter is tested on a real signal containing action tremor. From the
spectrogram we see that there is only one frequency that is stable, and multiple other
scattered around it. The stable frequency starts at 8.7 Hz and then slowly moves towards
8.1 Hz. Estimate 1 tracks the main frequency nicely as it is descending.
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The results on both the simulated and real action tremor are good, and the voluntary
movement is filter away nicely. The error rate converge slower because of the high amp-
litude in the signal, but should adapt to a faster rate again when the voluntary movement
stops.

9.5.3 Postural tremor
In section 9.3.3 we the filter on a recording of postural tremor. From the spectrogram we
see that it’s highly labile. Overall the estimation seems too do quite well, but it’s hard to
evaluate due to the nature of the tremor.

9.5.4 Stress tests
In section 9.1.8 a signal with six different frequencies and amplitudes is sent into the
filter. These results show that the filter has no problems detecting and estimating multiple
frequencies in a signal, and their amplitude with respect to each other.

In section 9.1.6 a simulated signal with two frequencies with varying amplitude is used
to see if the filter can correctly estimate which of the two frequencies have the highest
amplitude when the amplitude make sudden changes. All the amplitudes are correctly
estimated, but it takes different amounts of time deepening on how long the filter had to
adapt signal before a new amplitude step. If the filter has had a long time to adapt, it will
take longer time for it to adapt to a sudden change of amplitude.

In section 9.1.7 a simulated signal with two varying frequencies is used to see of the
filter adapts.From the results we see that when the filter has had some time to adapt to a
signal, it takes longer time for it to when there is a sudden change of frequency. Normal
tremor doesn’t contain sudden jumps in frequency like this, it will change slowly over
time, so if there are small burst of change it will be filtered out. If the signal changes all
the time like in the postural tremor, the filter doesn’t have time to adapt to the signal over
a longer period, since it’s constantly changing, and therefore the estimation can keep up.

9.5.5 Real-time test with DVA system
The algorithm ran in real-time, but not with the ideal resolution. The fundamental fre-
quency was tracked with no problems, but the 2nd harmonics was outside of the frequency
window and could not be tracked. The 8-bit microcontroller we used is rather weak, and
I have no doubt that an hardware upgrade will fix the problem. An upgrade to a 16-bit or
32-bit controller should significantly increase the window size and resolution. Optimizing
the code could also give better results.
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Kapittel 10
Discussion and conclusion

The presented problem forms the basis of this project, and this thesis is built around the
following problem:
How to reduce tremors in the upper limb with a mechanical solution in a non-embarrassing
way?

In cooperation with Estenstad [1] a design for a vibration absorber for reducing pat-
hological hand tremor was developed. The system is semi-active, and was chosen for its
potentially great tremor absorption, while still being small enough to be non-embarrassing.
The design consists of a dual vibration absorber that can tune into two frequencies in the
hand tremor. The main objective in this thesis has been the development of a filter that
can estimate multiple frequencies in pathological tremor for the purpose of tuning the dual
vibration absorber to the hand tremor in real time. The Band-limited Multiple Weighted
Fourier Linear Combiner (BMWFLC) was developed for this purpose, and additionally it
can estimate the amplitude of the frequencies with respect to each other.

Multiple tests with real and simulated tremor data carried out to validate its perfor-
mance. For a best case scenario where the frequencies in simulated rest tremor matched
perfectly with the frequency division in the BMWFLC, the estimate of the frequency with
the largest and second largest amplitude had a stable estimate after 2.1 and 2.85 seconds
respectively, booth with an error under 0.006 Hz with the error slowly converging towards
zero. For the worst case scenario when the frequencies did not match the frequency divi-
sion in the BMWFLC, the estimates had about the same settling time, with an error for
the estimates under 0.053 Hz, slowly converging toward zero. Which frequency that had
the largest and smallest amplitude was correctly estimated in under 0.5 seconds for both
worst and best case scenario. When the filter is tested on real data of rest tremor the results
are excellent, the performance seems on par with the results from the simulated signals,
though there are some problems for rest tremor signal with unstable 2nd harmonic, but its
a minor problem and solutions are suggest to fix it. The filter is also tested on real data of
postural tremor, which is highly labile. The overall the estimation seems too do quite well,
but it’s hard to evaluate due to the nature of the tremor.

The filter is also stress tested with simulated signals with varying amplitude, frequency
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and a signal containing six fundamental frequencies. The filter have good performance on
all the test. One important feature of the filter is that it can adapt to sudden changes in
amplitude of the input signal, keeping stable if it amplitude gets to high, and increasing
sensitivity when the amplitude is low. Especially the latter one is important since we are
designing a tremor suppressor, the estimator should be able to work well when the amp-
litude is lower due to damping. There will also be many sudden peaks in amplitude every
time the hand makes voluntary movements.

The algorithm was implemented on a 8-bit microcontroller, and tested on a 1DOF test
rig that simulate pathological hand tremor with flexion extension movement. The algo-
rithm ran in real-time, but not with the ideal resolution. The fundamental frequency was
tracked, but the 2nd harmonics was outside of the frequency window and could not be
tracked. The 8-bit microcontroller we used is rather weak, and a hardware upgrade should
fix the problem. A 16-bit or 32-bit microcontroller will significantly increase the window
size and resolution of the filter. Optimizing the code could also give better results.

The tremor estimator developed meets requirements for the semi-active dual vibration
absorber, it can estimate multiple frequencies in pathological tremor for and the algorithm
can run in real-time, and the work toward testing it with a semi-active dual parallel vi-
bration absorber can start. To my knowledge from the literature search, this is the only
frequency estimator for pathological tremor estimation that can estimate frequencies that
are close in the frequency domain and the first with the capability to estimate over two
frequencies simultaneously.
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Further work

The main future goal is to keep on working towards the semi-active dual vibration ab-
sorber. There is still some work left on the mechanical front before the prototype will be
finished Estenstad [1], in the mean time there is still a some work to be done to make the
estimates from the filter better. Here are some suggestion of things that can be done:

1. Implement the BMWLFC filter on a better microcontroller to see how much the per-
formance improves. A 16-bit or 32-bit microcontroller should significantly increase
the window size and resolution of the filter.

2. To improve tracking of harmonics; Divide the BMWFLC filter into sections the
same way as the E-BMFLC filter presented is section 5.1.5, can be used to extract the
voluntary, mk−v , and involuntary signal, mk−i, from the total estimate of the signal
mk. Instead of extracting the voluntary and involuntary motion, we could extract the
signal containing fundamental frequency, which would lie in the range 3-7 Hz for
PD, and the signal containing the harmonics in the range 7-20 Hz. Now, these two
could run as separate BMWFLC filters without adding much computational cost.

3. Create a new algorithm to extract the frequencies from the magnitude spectrum in
the BMWFLC filter then the one presented in section 5.2.3, and/or find new ways to
utilize the data in the magnitude spectrum.

4. Expand the algorithm to estimate frequency for 3DOF. If the dominant frequencies
in different axes are not the same, the valid dominant frequency in the axis with the
highest peak power is defined as the dominant frequency of all axes. [114]

5. Though the BMWFLC filter is mainly developed for frequency estimation, and not a
tremor estimator that estimates the input signal sk, the filter may get good a estimate
of yk if the filter is set up in the right way. I suggest that a comparison with E-
BMFLC filter [81, 86] can be done to evaluate the estimation performance.

6. Implement and test the algorithm with a prototype of the semi-active dual vibration
absorber.
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Tillegg A
Schematic for Arduino and
LSM6DS3
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Figur A.1: Connection between the two LSM6DS3 and the Arduino Uno
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Tillegg B
Real tremor data - Tuned filter
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B.1 Recording 2 - Rest tremor
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Figur B.1: Recording 2 from session 2. Orientation: P+/S. Placement: RH
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Figur B.2: PSD with (a) linear and (b) logarithmic scaling. (Recording 2)
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Figur B.3: (a) Spectrogram of signal with estimated frequencies and (b) Heatmap of the magnitude
spectrum from the BMWFLC filter. (Recording 2)
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B.2 Recording 3 - Rest tremor
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Figur B.4: Recording 3 from session 2. Orientation: P+/S. Placement: LH
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Figur B.5: PSD with (a) linear and (b) logarithmic scaling. (Recording 3)
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Figur B.6: (a) Spectrogram of signal with estimated frequencies and (b) Heatmap of the magnitude
spectrum from the BMWFLC filter. (Recording 3)
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B.3 Recording 4 - Rest tremor
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Figur B.7: Recording 4 from session 3. Orientation: P+/S. Placement: RH
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Figur B.8: PSD with (a) linear and (b) logarithmic scaling. (Recording 4)
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Figur B.9: (a) Spectrogram of signal with estimated frequencies and (b) Heatmap of the magnitude
spectrum from the BMWFLC filter. (Recording 4)
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B.4 Recording 5 - Rest tremor
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Figur B.10: Recording 5 from session 3. Orientation: F+/E. Placement: RH
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Figur B.11: PSD with (a) linear and (b) logarithmic scaling. (Recording 5)
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Figur B.12: (a) Spectrogram of signal with estimated frequencies and (b) Heatmap of the magnitude
spectrum from the BMWFLC filter. (Recording 5)

111



B.5 Recording 7 - Rest tremor
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Figur B.13: Recording 7 from session 4. Orientation: P+/S. Placement: RH
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Figur B.14: PSD with (a) linear and (b) logarithmic scaling. (Recording 7)
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Figur B.15: (a) Spectrogram of signal with estimated frequencies and (b) Heatmap of the magnitude
spectrum from the BMWFLC filter. (Recording 7)
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B.6 Recording 8 - Voluntary movement
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Figur B.16: Recording 8 from session 5. Orientation: P+/S. Placement: RH
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Figur B.17: PSD with (a) linear and (b) logarithmic scaling. (Recording 8)
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Figur B.18: (a) Spectrogram of signal with estimated frequencies and (b) Heatmap of the magnitude
spectrum from the BMWFLC filter. (Recording 8)
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B.7 Recording 9 - Rest tremor
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Figur B.19: Recording 9 from session 5. Orientation: P+/S. Placement: LH
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Figur B.20: PSD with (a) linear and (b) logarithmic scaling. (Recording 9)
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Figur B.21: (a) Spectrogram of signal with estimated frequencies and (b) Heatmap of the magnitude
spectrum from the BMWFLC filter. (Recording 9)
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B.8 Recording 10 - Voluntary movement
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Figur B.22: Recording 10 from session 5. Orientation: F+/E. Placement: RH
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Figur B.23: PSD with (a) linear and (b) logarithmic scaling. (Recording 10)
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Figur B.24: (a) Spectrogram of signal with estimated frequencies and (b) Heatmap of the magnitude
spectrum from the BMWFLC filter. (Recording 10)
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B.9 Recording 11 - Rest tremor
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Figur B.25: Recording 11 from session 5. Orientation: F/E+. Placement: LH
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Figur B.26: PSD with (a) linear and (b) logarithmic scaling. (Recording 11)
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Figur B.27: (a) Spectrogram of signal with estimated frequencies and (b) Heatmap of the magnitude
spectrum from the BMWFLC filter. (Recording 11)
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B.10 Recording 13 - Postural tremor
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Figur B.28: Recording 13 from session 6. Orientation: F/E+. Placement: LH
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Figur B.29: PSD with (a) linear and (b) logarithmic scaling. (Recording 13)
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Figur B.30: (a) Spectrogram of signal with estimated frequencies and (b) Heatmap of the magnitude
spectrum from the BMWFLC filter. (Recording 13)
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B.11 Recording 14 - Action tremor
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Figur B.31: Recording 14 from session 7. Orientation: P+/S. Placement: RH
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Figur B.32: PSD with (a) linear and (b) logarithmic scaling. (Recording 14)
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Figur B.33: (a) Spectrogram of signal with estimated frequencies and (b) Heatmap of the magnitude
spectrum from the BMWFLC filter. (Recording 14)
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