
Collision Avoidance for Multirotor
Inspection

Vetle Andre Bjelland

Master of Science in Cybernetics and Robotics

Supervisor: Tor Arne Johansen, ITK
Co-supervisor: Kristian Klausen, ITK

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology

NTNU Faculty of Information Technology
Norwegian University of and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

MSC THESIS DESCRIPTION SHEET

Name: Vetle André Bjelland
Department: Engineering Cybernetics
Thesis title: Collision avoidance for multirotor inspection

Thesis Description:

A	system	for	automatic	and	safe	inspection	of	tanks	and	other	infrastructure	with	Unmanned	Aerial	
Vehicles	(UAVs)	is	under	investigation	at	the	department.	Critical	to	the	system	is	methods	for	collision	
and	detection	of	obstacles,	such	as	wires,	pipes	and	walls.		
	
The	system	is	a	part	of	an	ongoing	commercialization	process	in	cooperation	with	NTNU	TTO,	and	the	
student	will	sign	a	“Standardavtale”	with	NTNU	TTO.		
	
This	thesis	aims	to	investigate	algorithms	for	obstacle	avoidance	and	proximity	keeping.		
	
The	following	items	should	be	considered:	
	

1. Conduct	a	literature	review	on	collision	avoidance	algorithms	for	2-	and	3D,	with	emphasis	on	
3D	methods	

2. Develop	a	simulation	tool	in	Matlab	or	Python	to	test	algorithms	
3. Consider	the	sensory	information	generated	by	multiple	on-board	Radar-sensors.		
4. Develop	and	test	the	most	promising	collision	avoidance	control	algorithms	investigated	in	1.	

Divide	in	two	categories;	Algorithms	requiring	full	environment	knowledge	and	those	with	only	
local	radar	sensors.		

5. Discuss	how	the	global	and	reactive	algorithms	can	be	combined	to	create	robust	systems.		
6. Develop	and	test	behavioral	algorithms	(in	connection	with	4.)	that	enables	easy	safe	pilot	

operations,	such	as	enforcing	a	fixed	distance	to	a	wall	to	be	traversed,	override	of	pilot	inputs	in	
case	of	imminent	collision,	etc.		

7. Demonstrate	two	main	scenarios;		
a. Adequate	stopping	in	front	of	detected	obstacle	even	when	pilot	pushes	forward	
b. When	moving	along	wall,	the	system	avoids	object	appearing	to	the	side	of	the	drone	

8. Conclude	findings	in	a	report.	Include	Matlab/Python/C-code	as	digital	appendices	together	with	
a	user-guide.		

9. 	
Start date: 2018-01-08
Due date: 2018-06-04

Thesis performed at: Department of Engineering Cybernetics, NTNU
Supervisor: Professor Thor Arne Johansen, Dept. of Eng. Cybernetics, NTNU
Co-Supervisor: Dr. Kristian Klausen, Dept. of Eng. Cybernetics, NTNU

Thank you for the music, Tim

ii

Abstract

During the last couple of years, the goal of using unmanned aerial vehicles (UAV)
for inspection purposes has become within reach. This thesis considers the differ-
ent algorithms for implementing a high level controller for an anti-collision system
for a multirotor inspection drone operating inside a shipping tank. The desired plat-
form for this thesis is a quadcopter UAV with six on-board radar sensor, providing
environmental knowledge. A literature review of existing collision avoidance algo-
rithms is performed to consider which ones that are suited for tank inspection. The
linearized dynamic quadcopter mathematical model is derived and simulated with low
level PID-control and high level collision avoidance in a self-developed MATLAB sim-
ulator. The methodology of the algorithms implemented is explained and divided into
two groups; those considering the environment to be known (global), and the ones
continuously sensing the environment from the on-board radar sensors (local). The
Null-Space Based (NSB) behavioral control algorithm is tested as a global approach.
A self-developed reactive logic algorithm and the Velocity Obstacle (VO) algorithm
are tested as local approaches for collision avoidance. The results yielded from the
different algorithms’ simulations show successful inspection with room for improve-
ment on the implemented collision avoidance. The remarks of the simulation results
are discussed and it is suggested to extend the self-developed reactive logic algorithm
for future work.

iii

iv

Sammendrag

I løpet av de siste årene har målet om å utføre inspeksjoner ved bruk av ubemannede
luftfartøy (UAV) blitt en realitet. Denne oppgaven tar for seg ulike algoritmer for
implementasjon av høynivå kontrollere for antikollisjonssystemer på en multirotor-
inspeksjonsdrone som opererer på innsiden av en skipstank. Den ønskede plattformen
for dronen i denne oppgaven er en quadcopter-drone med seks radarsensorer montert
på fartøyet for å registrere miljøet rundt seg. En litteraturstudie på eksisterende kol-
lisjonsunngåelsesalgoritmer er utført for å vurdere hvilke algoritmer som egner seg
for tankinspeksjon. Den lineariserte dynamiske modellen til quadcopteret er utledet,
og det er utført simuleringer med lavnivås PID-regulator og høynivås antikollisjon
på denne modellen i en egenkonstruert MATLAB-simulator. De implementerte al-
goritmenes metoder er forklart og delt i to kategorier; de som kjenner omgivelsene
(globale), og de som kontinuerlig registrerer miljøet rundt seg ved hjelp av radar sen-
sorene (lokale). Nullromsbasert-Oppførselskontrollalgoritmen (NSB) er testet som en
global fremgangsmåte. En selvutviklet reaktiv logikksalgoritme og Fartshindringsalgo-
ritmen (VO) er testet som lokale fremgangsmåter for kollisonsunngåelse. Resultatene
fra de ulike algoritmenes simuleringer viser at inspeksjonen blir utført korrekt, men at
forbedringer bør gjøres på anti-kollisjonen. Resultatene er diskutert og det blir foreslått
å lage en utbedret versjon av den selvutviklede reaktive logikksalgoritmen.

v

vi

Preface

This thesis is submitted in partial fulfillment of the requirements for the Master of Sci-
ence degree at the Department of Engineering Cybernetics at the Norwegian University
of Science and Technology (NTNU).

I want to thank my family and friends, who have supported me throughout these five
years of university. I want to thank my supervisor, Professor Tor Arne Johansen for
overall help and guidance for this thesis. A special thanks goes to my co-supervisor
Dr. Kristian Klausen for detailed insight, guidance and feedback.

The equipment used for this thesis is the MATLAB software running on a Windows
10 computer provided by the institute. The MATLAB simulator used for algorithmic
testing is based on the one used in the MEAM620 robotics-class held by the University
of Pennsylvania [1]. The dynamic quadcopter model and trajectory planner is provided
in the original simulator, whereas the collision avoidance algorithmic implementations
have been coded by the author.

Vetle Andre Bjelland
Trondheim, June 2018

vii

viii

Table of Contents

Thesis Description i

Abstract iii

Sammendrag v

Preface vii

Table of Contents xii

List of Tables xiii

List of Algorithms xv

List of Figures xviii

Abbreviations xix

1 Introduction 1
1.1 Background and Motivation . 1

1.1.1 Scenario . 2
1.1.2 Mission Idea . 3
1.1.3 Challenges . 4
1.1.4 Proposed Solution . 4

1.2 Previous Work . 5

ix

1.3 Contribution and Scope of This Thesis 5
1.4 Organization of This Thesis . 6
1.5 Note on Project Thesis . 6
1.6 Nomenclature and Notation . 6

2 Literature Review 9
2.1 Trajectory Generation . 9

2.1.1 Global Planners . 10
2.1.2 Local Planners . 10

2.2 Control Architectures . 10
2.2.1 The Deliberative Architecture 11
2.2.2 The Reactive Architecture 11
2.2.3 The Hybrid Architecture . 11

2.3 Collision Avoidance Approaches . 12
2.3.1 A* Algorithm . 12
2.3.2 Artificial Potential Fields . 12
2.3.3 Curvature - Velocity Method 13
2.3.4 Cushion Extended - Periphery Avoidance 13
2.3.5 D* Algorithm . 14
2.3.6 Dynamic Window Approach 14
2.3.7 Null-Space Behavioral Control 14
2.3.8 Rapidly Exploring Random Trees 15
2.3.9 Velocity Obstacle . 15
2.3.10 Virtual Force Field . 15

3 Model Setup for the Simulator 17
3.1 Second Order Mass-Spring Damper 18

3.1.1 Eigenvalues . 18
3.1.2 Error Dynamics . 19
3.1.3 Lyapunov Stability Analysis 19

3.2 Frames and Relations . 20
3.2.1 NEU Frame A . 20
3.2.2 Body frame B . 21
3.2.3 Relation between NED and Body Reference Frames 22

3.3 Full Dynamic Quadcopter Model . 22
3.3.1 Kinematics . 22
3.3.2 Kinetics . 23
3.3.3 Dominant Dynamics for the Quadcopter 24

3.4 Model Implementation and Control 25

x

3.4.1 Newton-Euler Equations of Motion 25
3.4.2 Nominal State Linearization 27
3.4.3 Position and Attitude Control 28

3.5 Collision Avoidance . 31
3.6 Simulator . 31

4 Theory and Methods 33
4.1 Sensors . 33
4.2 Radar . 34

4.2.1 Radar Data Processing . 34
4.2.2 Radar Sectors . 35

4.3 Low Level Control . 36
4.3.1 PID Implementation . 36
4.3.2 Reference Signal . 37

4.4 High Level Control for Global Maps: NSB 38
4.4.1 Competitive Approach . 39
4.4.2 Cooperative Approach . 39
4.4.3 Behavioural Control . 40
4.4.4 NSB Applied . 40
4.4.5 Reach Goal with Obstacle Avoidance 41
4.4.6 Task Activation . 43

4.5 High Level Control for Local Maps: Reactive Logic 44
4.5.1 Self-developed Reactive Logic 44
4.5.2 Extended Reactive Logic for Multiple Obstacles 45

4.6 High Level Control for Local Maps: VO 46
4.6.1 Assumptions . 46
4.6.2 Collision Cone . 46
4.6.3 Multiple Obstacles . 48
4.6.4 Imminent Collisions . 49
4.6.5 Avoidance Maneuver . 50

5 Simulation Results 51
5.1 Representation of the Results . 51
5.2 PID-control of a Step Trajectory . 52

5.2.1 Wall Avoidance . 54
5.3 Global Approach for Step Trajectory (NSB) 56

5.3.1 NSB with Appropriate Tuning 58
5.3.2 NSB with Angle Task Activation 59
5.3.3 NSB for Wall Following . 62

xi

5.4 Local Approaches . 64
5.4.1 Self-developed Reactive Logic 64
5.4.2 Velocity Obstacle . 64

6 Discussion 71
6.1 The NSB Algorithm for Autonomous Inspection 72
6.2 Self-designed Reactive Logic for Autonomous Inspection 72
6.3 The Velocity Obstacle Algorithm for Autonomous Inspection 73
6.4 Combined Approach for Optimality and Robustness 73

7 Conclusion and Future Work 75
7.1 Suggested Future Work . 76

Bibliography 77

A Appendices 81
A.1 Theorems . 81

A.1.1 Hurwitz . 81
A.1.2 Exponential Stability . 81

A.2 Minkowski Addition . 82
A.2.1 Minkowski Sum . 82
A.2.2 Minkowski Difference . 82

xii

List of Tables

1.1 Table of shipping tank dimensions 4

3.1 Table of the quadcopter model parameters 25

5.1 Table of object appearance in the simulation display 51

6.1 Table of simulation times . 71

xiii

xiv

List of Algorithms

1 Reactive algorithm for one obstacle 45
2 Reactive algorithm for multiple obstacles 45
3 Reactive algorithm with distance consideration 76

xv

xvi

List of Figures

1.1 Transparent shipping tank . 3

3.1 Illustration of the quadcopter orientation for both frames 21
3.2 Position and attitude control loops 31
3.3 Simulator architecture . 32

4.1 Radar sectors . 36
4.2 Responses with and without reference filter 38
4.3 The NSB task scheduler . 43
4.4 The NSB angle problem, adapted from [3] 43
4.5 Rotated vectors based on sectors . 44
4.6 Drone and obstacle illustrated as circles 47
4.7 Collision Cone illustration . 48
4.8 Velocity Obstacle with multiple obstacles illustration 49

5.1 Illustrative figure for the simulator display 52
5.2 Simulator display for the PID-control of a y-step 54
5.3 Override of pilot command for wall avoidance 55
5.4 The NSB algorithm for a step response without tuning and task activation 57
5.5 The NSB algorithm for a step response with increased λ1 = 80 58
5.6 The NSB algorithm for a step response with tuning 59
5.7 The NSB algorithm for a step response with tuning and task activation 60
5.8 NSB for a step response with tuning, task activation and extended

threshold . 61

xvii

5.9 NSB wall follow upper square . 62
5.10 NSB wall follow with takeoff and landing 63
5.11 Reactive algorithm . 65
5.12 The VO algorithm for one obstacle 66
5.13 The VO cones at different simulation times 67
5.14 The VO algorithm with 3 obstacles 68
5.15 The VO algorithm with 4 obstacles 69

xviii

Abbreviations

Symbol Definition
2D Two Dimensions
3D Three Dimensions
CEPA Cushion Extended-Periphery Avoidance
CLIK Closed Loop Inverse Kinematics
DWA Dynamic Window Approach
GES Global Exponential Stability
GPS Global Positioning System
IMU Inertial Measurement Unit
LIDAR Light Imaging Detection And Ranging
RADAR Radio Detection And Ranging
NED North East Down
NEu North East Up
NSB Null Space Based Behaviour
PID Proportional-Integral-Derivative
RRT Rapidly-Exploring of Random Trees
SAR Synthetic-Aperture Radar
SLAM Simultaneous Localization And Mapping
UAV Unmanned Aerial Vehicle
VFF Virtual Force Field
VO Velocity Obstacle

xix

xx

Chapter 1
Introduction

This chapter introduce the topic and structure of the thesis.

1.1 Background and Motivation
The ever increasing advancements in technology have made our society move towards
an autonomous state where robots are able to do the dull, dirty and dangerous jobs hu-
mans have done before. Clever ways of using remotely controlled or fully autonomous
vehicles have been a hot topic in the recent years. From pioneering in the military
industry, different private sectors have come up with new ways of using autonomous
drones for efficiency and risk reduction in their operations. Most people today have
either seen or played around with the increasingly popular and most common multiro-
tor platform, the quadcopter. Today, the quadcopter has become more than just a toy.
Countless opportunities for the multirotor drone has been discovered for both military
and private sectors. In order to optimize usage in a certain application, a dedicated sys-
tem designed for the drone’s purpose has to be constructed. One of the main challenges
on UAVs, in general, is how to control the vehicle through an environment containing
unknown obstacles in the vehicle’s desired path. It is a critical task to maintain prox-
imity of the planned path and stability in its attitude in order to avoid collisions that
can hinder the objective and/or cause material or personal damage [2].
When a UAV is deployed to inspect the inside of a tank with unknown content, the only
feedback information provided is usually a live video feed from a camera mounted to
the vehicle. Even for skilled pilots, avoiding collisions in such environments is a de-

1

Chapter 1. Introduction

manding and difficult task. Thus, the need for robust automatic collision avoidance is
critical and necessary to allow pilots to focus on higher-priority tasks such as inspect-
ing the tank area for dangers and damage. This thesis will focus on the design of such
a collision avoidance system, particularly in unknown environments where sensor data
is provided by radar sensors.

1.1.1 Scenario

In order to further understand the challenges of multirotor inspection, a scenario for
autonomous inspection is proposed. The main aspects to be considered are:

• UAV platform and dynamics

• Pilot input controls

• Obstacle avoidance and anti-collision for walls and valves

• Sensor data collection and processing

• Fail-safe methods and redundancy

• Obstacle avoidance and anti-collision

• Effects of the second order acceleration dynamics

The inside of a cubic shipping-tank is to be inspected autonomously by a multiro-
tor UAV. The operators bring the inspection drone inside of the tank and execute the
drone’s starting procedures. The inspection mission is done by taking off inside the
tank, fly to the top and follow the walls with a fixed distance. If abnormalities occur,
the drone should execute counter maneuvers to avoid collisions but still continue its
inspection mission. The tank to be inspected in this scenario is illustrated in figure 1.1.
The multirotor inspection drone has six radar sensors mounted around its body chas-
sis, resulting in a 360° sensor coverage for obstacle detection. Each sensor detects the
distance to objects by the reflecting radio wave pulses. These measurements from the
different sensors can be combined in order to understand the environment around the
drone. Based on the active sensors and the relative distances between the drone and the
obstacles, a modification of the drone’s behaviour is done in the situation of a potential
collision. Furthermore, by evaluating the provided sector possibilities, we can optimize
the inspection path by steering the drone towards the optimal trajectory.

2

1.1 Background and Motivation

20m

20m

20m

Figure 1.1: Transparent shipping tank

1.1.2 Mission Idea
Now that we have a given scenario - how can the inspection mission be realized?

• Which existing algorithms are suited for the scenario?

• What reactive logic needs to be designed?

• What are the challenges the drone can face during the inspection mission?

• How to receive and process the sensor data in an easy and efficient way?

3

Chapter 1. Introduction

The drone is to provide live video feed from the executed inspection path. The video
can later be reviewed by operators, such that they are not exposed to hazards. By
following a fixed distance from the container walls, the drone can get an overview of the
entire tank. This thesis will mainly focus on the implementation of collision avoidance
approaches, and this is demonstrated by simulated step- and square trajectories inside
the tank.

1.1.3 Challenges
The drone needs to keep a safe distance during the collision avoidance maneuvers, but
also keep proximity to its planned inspection path. This can be challenging in narrow
places where valves occur, where the gap between the valve and a wall is limited.
The challenge of avoiding collisions is a top priority, as the risk of harming operators
or material damage needs to be avoided. The operator commands hence have to be
overridden if a collision is implied.

1.1.4 Proposed Solution
For the problem described of multirotor inspection inside a shipping tank, a proposed
solution is to simulate the drone navigation in a simple environment. An empty ship-
ping tank of given dimensions is to be inspected, with the obstacles being the con-
tainer’s walls and valves located at unknown locations. The dimensions of the shipping
container in meters are given in table 1.1:

Container Dimensions
Length 20m
Width 20m
Height 20m

Table 1.1: Table of shipping tank dimensions

After bringing the drone into the desired inspection area and finishing its starting pro-
cedure, it takes off inside the shipping tank with an operator monitoring it. To ensure
the drone has a safe distance from the container walls, a fixed distance from the wall
is set. This safe distance needs to be kept at all times, and in the case of an obstacle,
the UAV might need to take a longer path around the obstacle in order to not violate
this constraint. By traversing alongside the walls, the inspection is finished when the
drone reaches its start position again. The operator can now safely pick up the drone

4

1.2 Previous Work

again and review the collected inspection video. The inspection is to be simulated in a
self-developed MATLAB simulator with the control structure designed by the author.

1.2 Previous Work

There exists a scope of papers and previous theses concerning collision avoidance.
Some are targeted for robots, others for UAVs, but most methods can be designed for
either one. Here is a selection of the most relevant, covering the algorithms that have
been investigated further in this thesis.

In [2], a collision avoidance algorithm with applications for remotely-piloted UAVs is
implemented. This is done to release the operators from any unnecessary workload and
to allow them to focus on more important tasks during operations. The local, model-
based stochastic algorithm uses the pilot’s input and on-board sensors to predict if a
collision will occur based on the UAV’s dynamics. If a collision is imminent, the pi-
lot’s input is modified to avoid collisions.

In [3], behavioral control for multi-agent use is investigated and the use of NSB as a
collision avoidance algorithm is implemented. The NSB algorithm is also used in [4]
for coordination of multi-robot systems.

In [5], a method for robot motion planning in dynamic environment by utilizing the
velocity space is investigated. The method used is the Velocity Obstacle algorithm,
which is also used for aerial vehicles in [6].

1.3 Contribution and Scope of This Thesis

The goal of this thesis is to investigate the potential of different methods for ensuring
collision-free inspection using a multirotor drone. This is mainly done by focusing
on the algorithms available, their functionality and implementation. Testing of the
different methods’ response and robustness on the multirotor platform is done in a
self-developed MATLAB simulator. The yielded results are discussed to illustrate the
potential of the collision avoidance algorithms implemented for autonomous multirotor
inspection. A conclusion of the findings and suggested future work on the topic of
collision avoidance for multirotor inspection is then provided.

5

Chapter 1. Introduction

1.4 Organization of This Thesis
• A literature review of different collision avoidance algorithms is conducted in

Chapter 2.

• Chapter 3 covers the model setup for the simulator used to test the most promis-
ing algorithms from chapter 2. A stability analysis of a simplified mass-spring-
damper system is done, the dynamic model of the multirotor platform and how
the dynamics are implemented to the MATLAB simulator is then presented.

• Chapter 4 covers a brief theoretical background on sensors as well as the method-
ology for the algorithms most suited from chapter 2.

• The yielded results from the different algorithms explained in chapter 4 are pre-
sented in chapter 5.

• Chapter 6 discusses the algorithms’ suitability for the inspection application
based on the results obtained in chapter 5.

• A conclusion of the results and suggested future work on the topic is presented
in Chapter 7.

1.5 Note on Project Thesis
This master thesis is a continuation of the author’s project thesis [7]. Some of the
project thesis parts are reused in this thesis. This mainly applies to the literature review,
some of the mathematical models as well as the NSB mythology, given in section 4.4.

1.6 Nomenclature and Notation
• All bold letters are column vectors a ∈ Rm×1

• All big bold letters are matricesA ∈ Rm×n

• The transpose of a vector a ∈ Rm×1 is denoted aT ∈ R1×m

• The norm of a vector is denoted as ||·|| where · is some vector

• The frame of a certain parameter a is noted in the parameter’s upper right, aA

• The frame of a certain vector a is noted in the vector’s upper left, Aa

6

1.6 Nomenclature and Notation

• A transformation vector AtB transforms from one frame to another, where A is
the start frame and B is the end frame

• A rotation matrix ARB transforms from one frame to another, where A is the
start frame and B is the end frame

• When rotations are about a certain point p, the rotation is denoted as ARBp , where
R is the desired rotation, A is the start frame and B is the end frame

• The identity matrix is denoted Im×m, where m is the proper dimension

• A function f(x) can be continuously differentiable of k-th degree. This is noted
as Ck, if k = 0, f(x) is said to be continuous

• The gradient ∇ of a 3D system f(x) is given as:

∇f(x) =
∂f(x)

∂x1
i+

∂f(x)

∂x2
j +

∂f(x)

∂x3
k

• The Jacobian J of a system f(x) is given as:

J(f(x)) =



∂f1(x)

∂x1

∂f1(x)

∂x2
. . .

∂f1(x)

∂xn
...

∂f2(x)

∂x1

∂f2(x)

∂x2
. . .

∂f2(x)

∂xn
∂fm(x)

∂x1

∂fm(x)

∂x2
. . .

∂fm(x)

∂xn



7

Chapter 1. Introduction

8

Chapter 2
Literature Review

In order to get an overview of which collision avoidance approaches that exist and
which ones that are best suited for autonomous inspection, a literature review is exe-
cuted. Using scientific papers and previous master theses, different collision avoidance
approaches are read up on and analyzed. This section quickly sums up the findings and
which properties the different techniques obtain.

2.1 Trajectory Generation

In order to understand collision avoidance, we have to explain and distinguish the terms
trajectory generation and collision-free path. Most inspection missions have an objec-
tive of moving from point A to point B while avoiding to crash into obstacles occurring
on that path. Such an objective can be achieved by planning a collision-free path. A
collision-free path is a path from the beginning till the end where the drone avoids
obstacles in the planned path such that no collisions occur. This can be done either
by planning the path on beforehand knowing the environment the drone is to fly in
(trajectory generation) or by ensuring that the drone has an anti-collision system that
changes the behaviour of the drone when obstacles are detected (collision avoidance).
A mixture of both planning and sensing is the most robust way of ensuring collision
avoidance. A collision-free path can be realized by path planning in global and local
maps. When static obstacles are known, this problem has many solutions.

9

Chapter 2. Literature Review

2.1.1 Global Planners

Global planners ensure convergence to the goal position, but assume a known envi-
ronment. Not applicable for dynamic or unknown environments. A global approach
generates a path from the beginning till the end by using the available information on
obstacles in the area of operation. The downside of this is that it often process much
information, which has an impact on the time it takes to generate the path. The pro-
cessing time may vary from less than a second to several minutes, and a global path
planning method might not be suited for a drone flying in a dynamic environment. A
local correction to the path can be obtained by dynamic obstacle avoidance algorithms.
These algorithms have a faster processing time that can handle the local dynamics the
global map doesn’t represent.

2.1.2 Local Planners

Local planners reduce computational cost by examining a shorter time window than
the global ones. They can address obstacles that are unknown using sensor informa-
tion. The main drawback is the lack of overall safety or convergence guarantee since
the optimization only occurs for short time windows and the closest obstacles. As a
consequence of this, the drone can be stuck in a local minimum. Reactive controllers,
which are a type of local planners, generate trajectories directly based on the informa-
tion of the environment provided by the sensors. The main drawback of the reactive
controllers is that the vehicle thrust constraints may be violated, and higher derivatives
may not be bounded, which can violate the drone’s low level controller requirements.

2.2 Control Architectures

For us humans, it is in our nature to deal with a constantly changing reality and how to
comprehend the different changes. We gather the information we get from our senses,
in order to make a decision on which way to go, when to drink water and so on. Just
as for humans, we need to implement a drone that can gather information from its
surroundings in order to execute its purpose in its current environment. A drone can
be programmed in infinitely many ways, but we commonly use three architectures of
control approaches, namely the Deliberative-, the Reactive- and the Hybrid architecture
[8].

10

2.2 Control Architectures

2.2.1 The Deliberative Architecture
This architecture can be described as a ”think, then act”-control. The drone uses all the
information provided by its different sensors and its initial knowledge in order to decide
what action to take next. The organization of the control structure is often a functional
decomposition of the decision making progress. This decomposition consists of a sen-
sory processing module, a modeling module, a planning module, a value judgment
module and an execution module [9]. The decomposition allows complex operations,
but also strong sequential dependencies between the decision-making modules. Plan-
ning is the typical reasoning done in the deliberative systems and is known for being a
computationally complex process. The sequential process of sense-plan-act has to be
done for each iteration, and a map representation of the drone’s environment is needed
in order to allow the drone to look ahead into the future and predict the values for the
various states. Hence, for a drone with computationally efficient hardware and up-to-
date accurate maps, the architecture allows the drone to choose an optimal course of
action for a given situation. However, a dynamic world is considered noisy and makes
this approach close to impossible, and there are no droneic implementations that are
purely deliberative.

2.2.2 The Reactive Architecture
By combining the impressions gathered from the sensory information only, the reactive
approach can be considered as a ”don’t think, react”-control. Inspired by a rule-based
method involving minimum computation and no internal information about the global
map, it is suited for real-time application drones such as the quadcopter. By embedding
the drone’s controller in a collection of reprogrammed, concurrent condition-action
rules, it is well suited for dynamic worlds, and the fast computing time makes it ideal
for rapidly changing environments. Limitations do however apply, such as the lack of
storage of information and knowledge about the world. This makes it incapable to learn
and improve over time [8]. Compared to the deliberative architecture, the reactive one
trades of the complexity of reasoning for fast reaction time.

2.2.3 The Hybrid Architecture
As the name suggests, the hybrid architecture is a mixture of the best aspects from the
deliberative- and the reactive architectures: the real-time response from reactivity and
the rationality and optimality of the deliberative. Hence, the hybrid controller consists
of two components. These two must interact in order to produce a coherent output.
This interaction is challenging as the reactive component deals with the drone’s im-

11

Chapter 2. Literature Review

mediate needs, such as avoiding obstacles, meaning that it uses direct external sensor
data on a short timescale. Whereas the deliberative component uses internal world
data representation and operates on these data on a longer timescale, such as global
path-planning. For the situation where the two components’ output doesn’t conflict, no
further coordination is required. However, the two components need to interact in order
to benefit from each other. Hence, the reactive system needs to override the deliberative
one if some unexpected challenge is detected. At the same time, the deliberative sys-
tem must inform the reactive one if more optimal paths towards the goal are detected.
The interaction between the systems is typically the greatest challenge of hybrid sys-
tems. An intermediate component needs to be constructed in order to combine the two
components, which reconciles the different representations and any conflicts between
their outputs. The hybrid architecture is commonly referred to as the Three-Layer Ar-
chitecture because of the layered structure consisting of the reactive- deliberative- and
interaction part [8].

2.3 Collision Avoidance Approaches

2.3.1 A* Algorithm

An algorithm that uses a heuristic approach to find the cheapest path from the beginning
till the end in a graph is the A* algorithm [10]. It is easy to implement and often used
in path planning. It always finds a solution if one exists and is considered very efficient.
An evaluation function consisting of the cost for traversing neighboring nodes in the
graph, and a heuristic estimate for the cheapest path form the current node to the end
is considered. The idea is to minimize this evaluation function in order to find the
collision-free path.

2.3.2 Artificial Potential Fields

The potential fields can be created for a highly efficient path planning with obstacle
avoidance but require that we know the environment on beforehand. For an inspection
drone, the environment may have uncertainties and the algorithm is not optimal for
inspection applications. The algorithm is however intuitive and easy to implement and
can be used as a benchmark for an optimal path. The algorithm, introduced in [11]
has the intuitive idea of obstacles creating artificial fields of forces that are set to act
repulsively on the drone, whereas the goal sets up a similar field with forces acting
attractively on the controllable drone. The combined forces, or the combined potential
field, determines which direction the drone is pushed towards and thereby the drone’s

12

2.3 Collision Avoidance Approaches

velocity. Knowledge about the obstacle(s) in the environment is necessary in order to
navigate. A slightly different version of the algorithm is the Virtual Force Field (VFF)
algorithm from [12]. Since APF is a purely global approach, this thesis does not focus
on the potential fields. A detailed description of the APF is done in the author’s project
thesis [7].

2.3.3 Curvature - Velocity Method
As a method for local obstacle avoidance, the Curvature-Velocity Method uses a set
of constraints for navigation. By using the velocity space, it runs an optimization con-
sidering the physical constraints from the transnational and rotational velocities from
the drone, as well as environmental constraints such as obstacles, provided by sensor
data. The velocity that satisfies these constraints is then maximized in the objective
function, which considers the elements of safety, speed, and goal-directness [13]. Af-
ter the optimization problem is solved, the yielded velocity is commanded to the drone.
For real-time performance, a piecewise constant function is used to approximate the
curvature distance to obstacles. The velocity space is divided into a discrete number of
regions from the approximation, each of which has a constant distance to impact. The
method then finds the point in each region that maximizes the objective function and
chooses the overall maximum point to command the drone.

2.3.4 Cushion Extended - Periphery Avoidance
CEPA is a reactive obstacle avoidance plugin described in [14]. A robust navigation
solution requires quick response to obstacles in dynamic, tight environments with non-
negligible disturbances - this is something CEPA provides. It addresses two main issues
related to safe operations:

1. Guide the drone around obstacles towards destinations chosen by the high-level
planner.

2. Apply additional control in emergency situations if the drone comes too close to
an obstacle.

CEPA analytically inflates the proposed path in polar coordinates. As a result, the path
can be verified for obstacles by a simple difference in the polar domain, which reduce
computational load and algorithm latency.

The plugin consists of a steering algorithm and an emergency avoidance. The drone
projects two cushions in its moving direction, where the outer cushion is seen as a

13

Chapter 2. Literature Review

comfort zone that can be intruded, whereas the inner activates the emergency avoidance
when intruded. A detailed explanation of the algorithm is done in the author’s project
thesis [7]. Even though CEPA is a good algorithm for collision avoidance for UAVs,
the method is not well suited for radar applications.

2.3.5 D* Algorithm
Having very much the same behavior as the A* algorithm, the D* algorithm differen-
tiate in the sense that the arc cost parameters can change during the problem-solving
process [15]. The algorithm keeps the calculated information of the path in order to be
able to re-plan the path when needed. Hence, it is a more dynamic version of the A*
algorithm, as it is able to re-calculate a new path much faster.

2.3.6 Dynamic Window Approach
Using the dynamic model of the intended drone, the dynamic window approach (DWA)
stands out from other methods as a model-based approach. The method reduces its ve-
locity space by removing those that are unreachable within a short amount of time and
the ones causing collisions. Hence, the reduced velocity space only consists of ve-
locities for safe navigation where the drone can stop safely. An objective function is
used to achieve this reduction and is formed by combining the drone’s transnational
speed and rotation rate, the progress towards the goal and the relative distance between
obstacles and the drone. The result of maximizing the objective function is balanced
velocity outputs considering both speed and safe avoidance maneuvers. Most drones
have physical constraints for velocity and acceleration, and DWA is well suited for
such constraints as it handles it naturally. Since the method is model-based though, a
fully dynamic model of the drone is needed for usage [16].
DWA only considers admissible velocities. For a velocity pair to be considered admis-
sible, the drone has to be able to stop before colliding with the closest obstacle along
the projected trajectory defined by the velocity pair.

2.3.7 Null-Space Behavioral Control
The algorithm, described in [17] is a behavioral algorithm that focuses on task schedul-
ing. Compared to other behavioral methods, the NSB algorithm provides a unified
framework with the two main behavioral approaches:

• Competitive approach

14

2.3 Collision Avoidance Approaches

• Cooperative approach

It utilizes the null-space of the task functions to provide a framework for task priority.
NSB always fulfills the highest priority task. The lower priority ones are fulfilled only
in a subspace where they do not conflict with the ones having higher priorities. This is
much better than competitive and cooperative and will be further explained in section
4.4.

2.3.8 Rapidly Exploring Random Trees
In [18], Rapidly-Exploring Random Trees (RRT) is presented as a randomized path
planning technique. It is a simple algorithm, that can take the dynamics of the drone
into account. Note that since it is a randomized method, it is not a complete method.
It works by generating a tree structure which grows from the initial node. After each
iteration, a connection is attempted to be drawn between the tree and the drawn sample
if the connection is feasible with regards to constraints and obstacles. The tree structure
will this way explore a widened area of the configuration space for each iteration. In
[18] it is stated that the RRT is biased towards places not yet visited. By increasing
the probability of sampling states of specific areas, one can also bias the RRT growing
towards these specific areas. This could be used to make the RRT focus the path more
towards the goal.

2.3.9 Velocity Obstacle
The Velocity Obstacle (VO) is a concept used for collision avoidance on a local scale.
A collision cone is constructed which consists of the collection of velocities that will
cause the drone to collide [19]. The objects are transformed into static obstacles with
a relative velocity to the drone. By mapping the obstacle into the drone’s configuration
space, the velocity obstacle is built by using feasible sets of velocities. In order to avoid
collisions, one can now see that the end of the drone’s velocity vector must be outside
of the velocity obstacle. A set of avoidance maneuvers is done by vector operations to
avoid collision with the obstacle and returns a trajectory correction. The dynamics of
the drone is not directly considered as the dynamic constraints are set to constant on
the velocity and turning angle, but still taken somewhat into account. The method is
described further in section 4.6.

2.3.10 Virtual Force Field
By using sensor readings, the virtual force field algorithm generates a map. The map
is represented as a 2D Cartesian histogram grid and contains probabilities of obstacles

15

Chapter 2. Literature Review

being located in different places of the area. The probability values’ magnitudes act as
the repulsive forces affecting the drone. One limitation of this algorithm mentioned in
[12] is that passage between close lying obstacles might not be granted. Oscillations
may also develop as the drone flies through narrow corridors if the travel direction
deviates from the corridor center. The algorithm can be described in two steps:

1. Calculate the position of the moving object from the distance and angle received
from the sensors. This is useful to calculate the gradient of the potential function.

2. Check whether the distance received from the sensor is less than the avoidance
distance. If it is less, calculate the gradient of the potential function. This acts as
the control input for the drone.

16

Chapter 3
Model Setup for the Simulator

The desired platform for an inspection drone, its environment, and the drone’s be-
haviour are to be simulated. It should consist of six radar sensors to ensure 360° cover-
age for obstacle detection and avoidance. A suitable platform for the application area
is a quadcopter. A quadcopter consists, as the name suggests of a symmetric cross-
shaped airframe carrying the payload in the cross’ center. Four thrust giving propellers
in each end ensure lift, as illustrated in figure 3.1. Because of its maneuverability, safe-
and low-cost experimentation in mapping, navigation, and control strategies in three
dimensions, the platform is the most popular in the research of aerial robotics [8].
The mission to be executed is to inspect a shipping tank for rust/corrosion or other dam-
ages to structures autonomously. The quadcopter offers a physical platform able of high
precision maneuvers in cramped environments. This enables responsive commands
where time response is an important factor. Because of its recent popularity, there are
countless options for software and hardware packages for quadcopter flight operations.
This chapter covers the stability analysis of a simplified mass-spring-damper system,
the full dynamics of a quadcopter and how the dynamics are implemented to the MAT-
LAB simulator.

17

Chapter 3. Model Setup for the Simulator

3.1 Second Order Mass-Spring Damper
As a simplified version of a quadcopter, we can illustrate the quadcopter as a point mass
with the classical mass-spring damper example. This allows an easier mathematical
model for stability and behavioral analysis of a simplified system.

mẍ+ cẋ+ kx = u (3.1)

Where x is the position of the point mass, u is the force affecting the point mass,
m is the mass constant, c is the damping constant and k is the spring constant. This
second order system can be derived into two first order systems by introducing new
state variables:

x1 = x (3.2)
x2 = ẋ (3.3)

Hence, we will have:

ẋ1 = x2 (3.4)

ẋ2 = − k
m
x1 −

c

m
x2 +

u

m
(3.5)

Which can be represented on a matrix form:

ẋ = Ax+ bu (3.6)

ẋ =

[
0 1

− k
m
− c

m

] [
x1

x2

]
+

[
0
1

m

]
u (3.7)

3.1.1 Eigenvalues
Eigenvalues allow to assess the dynamic behavior of the system in particular the stabil-
ity of its equilibrium without the need to solve the state differential equation [20]
The eigenvalues ofA are the n roots λi, i = 1, ..., n of the characteristic polynomial:

det(λiI −A) = 0 ⇐⇒ λi is an eigenvalue ofA

A does not necessarily have different unique eigenvalues. If an eigenvalue λi occurs ki
times, we say it has an algebraic multiplicity of ki. It is important that the eigenvalues
for our closed loop system have negative real values, as we want our system to be
stable.

18

3.1 Second Order Mass-Spring Damper

3.1.2 Error Dynamics

The mass-spring damper system described in (3.7) can be written out as

ẋ1 = x2 (3.8)

ẋ2 =
1

m

(
− kx1 − cx2 + u

)
(3.9)

By introducing the error variables x̃1 = x1 − xdes and x̃2 = x2 − ẋdes, where xdes
is the desired state of the point mass, the error dynamics can be described as:

˙̃x1 = ẋ1 − ẋdes = x2 − ẋdes = x̃2

˙̃x2 = ẋ2 − ẍdes =
1

m

(
− kx1 − cx2 + u

)
− ẍdes

(3.10)

Now, by using x1 = x̃1 + xdes and x2 = x̃2 + ẋdes, we can rewrite (3.10) as:

˙̃x1 = x̃2

˙̃x2 =
1

m

(
− k(x̃1 + xdes)− c(x̃2 + ẋdes) + u

)
− ẍdes

=
1

m

(
(−kx̃1 − cx̃2 + u)− ẍdes − cẋdes − kxdes

)
=

1

m

(
(−kx̃1 − cx̃2 + u) + d(t)

)
= f(x̃) + g(x̃)u

(3.11)

Here f(x̃) =
1

m

(
(−kx̃1− cx̃2) +d(t)

)
, where d(t) = − 1

m

(
ẍdes + cẋdes + kxdes

)
.

Where g(x̃) =
1

m
is constant and known since the mass m is known. We can now do a

stability analysis of the mass-spring-damper system, which is done in the next section.

3.1.3 Lyapunov Stability Analysis

A stability analysis of the simplified mass-spring-damper system is done by Lyapunov
Stability analysis. The unforced error dynamics (u = 0) can be written as:

˙̃x =

[
0 1

− k
m
− c

m

] [
x̃1

x̃2

]
+

[
0
d(t)

]
(3.12)

19

Chapter 3. Model Setup for the Simulator

The corresponding nominal system of (3.12) is:

˙̃x = Ax̃ =

[
0 1

− k
m
− c

m

] [
x̃1

x̃2

]
(3.13)

The corresponding eigenvalues ofA for the given values of m = 2.5, c = 6 and k = 3
yields λ1,2 = −1.2 ±

√
0.96. Both the eigenvalues fulfill the criteria of Re{λi} < 0

andA is Hurwitz by theorem A.1.1.

The ratio
λmin(Q)

λmax(P)
is to be maximized by settingQ = I2×2. The Lyapunov function

candidate V = x̃TP x̃ satisfies:

λmin(P)||x̃||22 ≤ V ≤ λmax(Q)||x̃||22
∂V

∂x̃
Ax̃ = −x̃TQx̃ ≤ λmin(Q)||x̃||22∣∣∣∣∣

∣∣∣∣∣∂V∂x̃
∣∣∣∣∣
∣∣∣∣∣ ≤ 2λmax(P)||x̃||22

(3.14)

Where P is found from the equation PA+ATP = −Q from theorem A.1.1. Based
on the satisfaction of (3.14), the nominal system has a Globally Exponentially Stable
(GES) origin since theorem A.1.2 is satisfied [21].

3.2 Frames and Relations
In order to model the quadrotor, a coordinate system and a free body diagram for the
quadcopter has to be set up. Geographic reference frames are used for the consistency
of reference. The reference frames used for our simulator and their relation is covered
in this section.

3.2.1 NEU Frame A
The North-East-Up (NEU) frame is denotedA and is a slightly modified version of the
well known North-East-Down (NED) frame. For flat earth navigation, it is assumed
inertial, such that Newton’s laws still apply. It is defined by the triad consisting of
a1, a2 and a3, where a3 points upwards, as illustrated in figure 3.1. As for the NED
frame, it is an earth-fixed coordinate system with a defined origin location relative to
the Earth’s reference ellipsoid [22]. The a1-vector in the north direction, the a2-vector

20

3.2 Frames and Relations

in the east direction, and the a3-vector in the opposite direction of the earth center
direction. The states in this frame, denoted Ax ∈ R6 are:

Ax = η =
[
xA yA zA φA θA ψA

]T
=
[
xA yA zA AΘT

]T
(3.15)

Where xA, yA, zA are the respective NEU frame positions of the drone, and AΘ =[
φA θA ψA

]T
are the Euler-angles as defined in the zyx-rotation sequence.

3.2.2 Body frame B
The body frame, B, attached to the quadcopter’s center of mass consists of the triad b1,
b2 and b3 as illustrated in figure 3.1. b1 coincides with the preferred forward direction
of the drone, b3 is perpendicular to the plane created by b1 and b2 with the rotors
pointing up. The body states are denoted as Bx ∈ R6.

Bx =
[
xB yB zB φB θB ψB

]T
=
[
xB yB zB BΘT

]T
(3.16)

And its time derivative as:

Bẋ = ν =
[
uB vB wB pB qB rB

]T
=
[
uB vB wB BΘ̇

T
]T

(3.17)

a a
a

b b

b

3

3

2

1

2

1

F

F

F

F

mg

1

2

3

4

r
M

MM

M
1

2
3

4

Figure 3.1: Illustration of the quadcopter orientation for both frames

21

Chapter 3. Model Setup for the Simulator

3.2.3 Relation between NED and Body Reference Frames

The drone’s yaw angle ψ plays a special role as we can choose it freely without af-
fecting the drone’s dynamics directly. For this reason, zxy-Euler angles are used to
describe the transform from the body frame B to the inertial frame A [8]. A yaw rota-
tion of ψ around the a3-axis is first preformed, followed by a roll rotation of φ around
the rotated a1-axis, and lastly a pitch rotation of θ around the rotated a2-axis. This
rotation matrix can be computed to be:

ARB =

cosψ cos θ − sinφ sinψ sin θ − cosφ sinψ cosψ sin θ + cos θ sinφ sinψ
cos θ sinψ + cosψ sinφ sin θ cosφ cosψ sinψ sin θ − cosψ cos θ sinφ

− cosφ sin θ sinφ cosφ cos θ

 (3.18)

We also define the angular transformation matrix

TΘ =


1

sinφ sin θ

cos θ

cosφ sin θ

cos θ
0 cos θ − sinφ

0
sinφ

cos θ

cosφ

cos θ

 ∀θ 6= π

2
+ kπ, k ∈ Z (3.19)

Describing the angular relation:

AΘ̇ = TΘ
BΘ̇ (3.20)

Where the angular rotation speed of an arbitrary frame F can be defined as:

FΘ̇ = Fω (3.21)

3.3 Full Dynamic Quadcopter Model

3.3.1 Kinematics

The kinematic velocities for the two frames can be related by the following equation:

η̇ = JΘν (3.22)

Where

JΘ =

[ARB 03×3
03×3 TΘ

]
(3.23)

This as defined in [22].

22

3.3 Full Dynamic Quadcopter Model

3.3.2 Kinetics
The kinetics of a rigid-body can be written as the external forces τ1 ∈ R3:

m(

u̇v̇
ẇ

+

pq
r

×
uv
w

) = τ1 (3.24)

And the external moments τ2 ∈ R3:

ICM

ṗq̇
ṙ

+

pq
r

× (ICM

pq
r

) = τ2 (3.25)

Where ICM is the moment of inertia about the drone’s center of mass and is defined
by:

ICM =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 (3.26)

By assuming the center of mass is located in the origin of the body fixed reference
frame B, we can rewrite equations (3.24)-(3.25) as:

M


u̇
v̇
ẇ
ṗ
q̇
ṙ

+C


u
v
w
p
q
r

 = Mν̇ +Cν = τRB (3.27)

Where:

M =

[
mI3×3 03×3
03×3 ICM

]
(3.28)

And:

C =

[
mS(BΘ̇) 03×3

03×3 −S(ICM
BΘ̇)

]
(3.29)

Given that S(λ) is a generated skew symmetric matrix defined by:

S(λ) :=

 0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

 (3.30)

23

Chapter 3. Model Setup for the Simulator

Where λ ∈ R3, S(λ)T = −S(λ) and λ×λ = S(λ)λ is satisfied for skew symmetry.
The gravitational forces working on the drone’s body can be described by:

Bg = −

(ARB)T

 0
0
mg


03×1

 (3.31)

Hence, the resulting dynamic model of the quadcopter now becomes:

η̇ = JΘν

Mν̇ +Cν + Bg = τSUM
(3.32)

Where τSUM consists of all external forces that affects the drone, except gravity.

3.3.3 Dominant Dynamics for the Quadcopter
Due to the symmetry of the quadcopter and its ability of generating thrust in all direc-
tions by manipulation the roll- and pitch angle, we want derive the equations repre-
sented in the A-frame. By rewriting (3.22) and (3.32), we can get:

Aṗ = Av

AΘ̇ =

φ̇θ̇
ψ̇

 = TΘ
Bω

(3.33)

Where Ap =
[
xA yA zA

]T ∈ R3 is the NEU position of the quadcopter. Hence,
we get the total dominant dynamics of:

Aṗ = Av

mAv̇ = mBg + ARBf

AΘ̇ = TΘ
Bω

IBω̇ = S(IBω)Bω +M

(3.34)

Here, Ap and Av are the quadcopter’s position and linear velocity in the inertial frame
A respectively. ARB is the rotation matrix from the inertial frame to the body-fixed
frame, Bω is the angular velocity of the quadcopter, represented in the body-fixed
frame. IB is the body-fixed inertia tensor matrix, f is the vertical thrust in the body-
aligned z-axis, and M is the applied torque about the quadcopter, generated by the
motors.

24

3.4 Model Implementation and Control

3.4 Model Implementation and Control
In this thesis, the simulations are done on the full dynamic model of a quadcopter. This
section explains the dynamics that is implemented in the simulator and the algorithms
are tested on. This model, position- and attitude control is solely based on the same as
in [23].

Symbol Explanation
Fi Force generated from rotor i
Mi Momentum generated from rotor i
Ar Drone NEU position
u Input vector
L Arm length from center of mass till rotor
m Mass of the quadcopter
g Gravity constant
Bω Angular velocities in the body-frame
Ωi Angular velocities of rotor i

Table 3.1: Table of the quadcopter model parameters

For a quadcopter with four propellers we have the general equations for forces and
moments:

Fi = kFΩ2
i (3.35)

Mi = kMΩ2
i (3.36)

Where each rotor of the drone has an angular speed Ωi and produces the vertical force
Fi and a moment Mi. The constants kF and kM can be found from a fixed rotor at
steady-state.

3.4.1 Newton-Euler Equations of Motion
We let Ar denote the drone’s center of gravity position in the inertial frame A. The
forces on the system in an undisturbed environment will then be the thrust forces from
each rotor Fi working in the b3-direction and the gravity mg working in the −a3-
direction. The equation governing the acceleration of the center of mass is

mAr̈ =

 0
0
−mg

+ ARB

 0
0

F1 + F2 + F3 + F4

 (3.37)

25

Chapter 3. Model Setup for the Simulator

The angular acceleration determined by the Euler equations is:

IBω̇ =

 L(F2 − F4)
L(F3 − F1)

M1 −M2 +M3 −M4

− Bω × IBω (3.38)

From equation (3.37) we have the input:

u1 = F1 + F2 + F3 + F4 (3.39)

Which is the total trust applied to the quadcopter, and equation (3.38) yields the input:

u2 =

 L(F2 − F4)
L(F3 − F1)

M1 −M2 +M3 −M4

 (3.40)

Which represents the moment about the x, y and z-axis respectively.
Using (3.35)-(3.36), we now introduce a relation parameter γ, which is the the relation
between the moment and force.

γ =
Mi

Fi
=
kM
kF

(3.41)

The body-frame Newton-Euler equation (3.38) can then be transformed to:

IBω̇ =

 0 L 0 −L
−L 0 L 0
γ −γ γ −γ



F1

F2

F3

F4

− Bω × IBω (3.42)

Where:

u2 =

 L(F2 − F4)
L(F3 − F1)

M1 −M2 +M3 −M4

 =

 0 L 0 −L
−L 0 L 0
γ −γ γ −γ



F1

F2

F3

F4

 (3.43)

Combined, the total input vector becomes:

u =

[
u1
u2

]
=


1 1 1 1
0 L 0 −L
−L 0 L 0
γ −γ γ −γ



F1

F2

F3

F4

 (3.44)

26

3.4 Model Implementation and Control

3.4.2 Nominal State Linearization

The controllers used in this thesis are derived by linearizing the equations of motion at
an operating point corresponding to the hover state where the roll and pitch angles are
small.

Ar = Ar0
Aṙ = 03×1

φA = θA = 0

ψA = ψA0

φ̇A = θ̇A = ψ̇A = 0

(3.45)

The propeller force in this state is given by:

Fi,0 =
mg

4
(3.46)

The nominal input values for hover is given by:

u1,0 = mg

u2,0 = 03×1
(3.47)

By linearizing equation (3.37) and (3.38), we get:

r̈A1 = g(∆θA cosψA0 + ∆φA sinψA0)

r̈A2 = g(∆θA sinφA0 −∆φA cosψA0)

r̈A3 =
u1
m
− g

(3.48)

and

Bω =
1

IB

 0 L 0 −L
−L 0 L 0
γ −γ γ −γ



F1

F2

F3

F4

 (3.49)

27

Chapter 3. Model Setup for the Simulator

Where ∆φA = φA − φA0 and ∆θA = θA − θA0 . By assuming symmetric rotorcraft
(Ixx = Iyy), we get the following angular accelerations:

ωB1 = ṗ =
u2,x
Ixx

=
L

Ixx
(F2 − F4)

ωB2 = q̇ =
u2,y
Iyy

=
L

Iyy
(F3 − F1)

ωB3 = ṙ =
u2,z
Izz

=
γ

Izz
(F1 − F2 + F3 − F4)

(3.50)

As each component of angular acceleration only depend on the appropriate component
of u2, we now see that the equations of motion are decoupled in terms of angular
acceleration.

3.4.3 Position and Attitude Control

In order to obtain hover or follow a desired trajectory zdes, control of the input u is
needed. By determining the error in the drone’s position, a position controller can be
derived from (3.48) to directly obtain u1 as well as a desired orientation. Note that
all parameters in this section is in the inertial NEU-frame as this is not noted in the
notation.

Attitude Control

The attitude input u2 can be described by:

u2 = I

kp,φ(φdes − φ) + kd,φ(pdes − p)
kp,θ(θdes− θ) + kd,θ(qdes − q)
kp,ψ(ψdes − ψ) + kd,ψ(rdes − r)

 (3.51)

This represents an attitude PD-controller. Note that since the controller is based on
linearized equations, the attitude has to operate close to the nominal hover state where
roll and pitch angles are small.

Position Control

For position control, we derive two different controllers. One for hover, and one for
trajectory following. For both methods, the position control will determine the desired
roll (φdes) and pitch (θdes) angles used to compute the desired u2 in equation (3.51).

28

3.4 Model Implementation and Control

The desired trajectory can be defined as:

zdes =

[
rT (t)
ψT (t)

]
(3.52)

Where rT is the desired position vector and ψT is the specified yaw angle we are trying
to track.

Position: Hover Control

For stationary position keeping at a desired position vector rT (t) = r0 and ψT =
ψ0. The desired acceleration commands r̈des,i are to be calculated from a new PD
controller. The position error is defined as e = (rT − r). We want to guarantee that
this error converges exponentially towards zero and require:

(r̈T − r̈des) + kd(ṙT − ṙdes) + kp(rT − rdes) = 0 (3.53)

For hover, r̈T,i = ṙT,i = 0. A relationship between desired acceleration and roll and
pitch angles can be derived form (3.48) and the given values for φ0 and θ0.

r̈1,des = g(θdes cosψT + φdes sinψT)

r̈2,des = g(θdes sinφT − φdes cosψT)

r̈3,des =
u1
m
− g

(3.54)

Hence, the controlled input u1 for hover becomes:

u1 = mg +mr̈3,des = mg −m(kd,3ṙ3 + kp,3(r3 − r3,0)) (3.55)

Where as the desired roll and pitch for the attitude controller becomes:

φdes =
1

g
(r̈1 sinψT − r̈2 cosψT)

θdes =
1

g
(r̈1 cosψT + r̈2 sinψT)

(3.56)

The desired roll- and pitch are both set to zero fro hover:

pdes = 0

qdes = 0
(3.57)

29

Chapter 3. Model Setup for the Simulator

The yaw angle ψT (t) is independent and prescribed by the trajectory generator, and the
yaw angle and angle rate become:

ψdes = ψT (t)

rdes = ψ̇T (t)
(3.58)

These equations provides the setpoints for the attitude control in (3.51) for hover, and
hence the whole control input u.

Position: Trajectory Control

Three-dimensional trajectories can be followed by using a trajectory controller assum-
ing modest accelerations such that the hover assumptions hold. The controller can be
derived with the same condition as in (3.53), but with r̈T,i and ṙT,i not necessarily
being zero, but obtained from the specification of the trajectory. For near-hover con-
ditions and linear dynamics with no saturation on the inputs, a controller based on the
condition (3.53) will guarantee to drive the error exponentially towards zero. However,
there might occur errors in the model or limitations to the inputs that hinders the drone
to follow its planned trajectory. Hence, a modification to the controller is proposed:
Consider rT the closest point on the desired trajectory to the current position r, and
the velocity and acceleration as ṙT and r̈T respectively. The unit tangent vector of the
trajectory, or the unit vector along ṙT is denoted as t̂. The unit normal to the trajectory,
n̂ is derived by taking the time derivative of the tangent vector, and the unit binormal
vector, b̂, is defined as the cross-product t̂× n̂. The position and velocity errors are
now redefined as follows:

epos =
(
(rT − r) · n̂

)
n̂+

(
(rT − r) · b̂

)
b̂ (3.59)

evel = ṙT − ṙ (3.60)

Note that we only consider the position error in the plane that is normal to the curve at
the closest point, hence ignoring the position error in the tangential direction. The com-
manded acceleration is calculated from the PD-feedback controller, which is redefined
now as:

(r̈T − r̈des) + kdevel + kdepos = 0 (3.61)

As for the hover controller, we now use equations (3.56)-(3.58) to compute the desired
roll-, pitch- and yaw angles and the angular rates in order to feed the values to the
attitude control.

30

3.5 Collision Avoidance

Trajectory
Planner

Position
Controller

Attitude
Controller

Motor
Controller

Rigid Body
Dynamics

z
des

r, r.

u

u

1

2

R

R, ω

des

Figure 3.2: Position and attitude control loops

3.5 Collision Avoidance
In addition to the low level PID-controller for position and attitude, we have a high
level controller for collision avoidance. Three methods are suggested for the high level
control implemented in the simulator:

• The Null-Space Based Behavioral control (NSB) algorithm as a global version

• A self-developed reactive logic as a local version

• The Velocity Obstacle algorithm as a local version

The strategies proposed above are tested for safe navigation around obstacles such as
walls and valves, and are all covered in chapter 4. To test our strategies, a simulator is
built in MATLAB. The next section explains the basics of the simulator and what the
simulation returns.

3.6 Simulator
The simulator created for this thesis is based on a simulator used in the subject MEAM620
at the university of Pennsylvania [1]. In order to simulate the desired autonomous in-
spection, a trajectory needs to be given to the simulator. Based on a set of given way-
points, the trajectory planner decides the drone’s trajectory, which is calculated by the
low level controller. The position controller runs at 20 Hz with a zero-order hold, while
the attitude controller runs at 100 Hz. This is done in order to consider the practical-
ities of implementing the controllers for a real drone. When obstacles are detected,

31

Chapter 3. Model Setup for the Simulator

the high level controller will make the drone deviate from its originally planned tra-
jectory in order to avoid collisions. The drone has a 360° coverage of radar sensors,
the simulator represents these as six sectors, covering 60° each with a range detection
radius of 5 meters. Walls, pipes etc. are all displayed in the visual representation of
the simulator in addition to the drone itself. The drone will either know the obstacles’
locations based on a global map or sense them from the on board sensors. The obstacle
information will be considered for the collision avoidance. An overall representation
of the simulator architecture is illustrated in figure 3.3.

Trajectory Planning

Local Path Planning
(Collision avoidance)

Sensors
(Radar)

Actuator driver
(Thrust)

Drone

Figure 3.3: Simulator architecture

32

Chapter 4
Theory and Methods

This chapter covers the theory of radar sensors and explains the methodology of the
different algorithms for collision avoidance. Available sensors are discussed and the
functionality and properties of the radar sensor is explained. The global Null-Space
Based Behavioral Control (NSB) algorithm is explained in detail, followed by the local
approaches; the self-developed reactive logic algorithm and the Velocity Obstacle (VO)
algorithm.

4.1 Sensors
In order to make our drone perceive its surrounding environment and current state, a
set of sensors is used. Commonly, a quadcopter consists of at least an Inertial Mea-
surement Unit (IMU) for attitude acquisition and a Global Positioning System (GPS)
for position measure [8]. Since this thesis focuses on obstacle avoidance, the sensors
considered are range sensors, determining distance and/or angle to obstacles. Note that
since the inspection is done inside a relatively small tank, the GPS will most likely
be unavailable and we need to use other perception methods. The GPS accuracy is
typically at 5 meters [24], which is far from good enough for collision avoidance and
proximity keeping in cluttered environments.
For inspection purposes, there exists a scope of different sensors that can be used. Dif-
ferent conditions of environment and visual constraints may influence the choice of
which sensors that are ideal. Some of the commonly used sensors in robotics for range
detection are LIDAR and cameras. These sensors have already been applied to a lot

33

Chapter 4. Theory and Methods

of drone applications worldwide. As described in [25], LIDAR is a good choice for
SLAM (Simultaneous Localization And Mapping) applications. Cameras are great for
capturing visual data, and can in the right light settings yield a large amount of data that
can be used for navigation and collision avoidance. This thesis, however, focuses on
the much less applied usage of radar as the sensor for collision detection. Even though
LIDAR is the most common choice in these types of applications, radar technology
has some properties which are unique and might just be better suited for our specific
application.
The main drawbacks of the LIDAR are the light emitted waves from the sensor will
reflect if there exist particles in the air and that the LIDAR scan returns a 2D plane.
The drawbacks of camera usage are the requirement of good lighting and clear view
at all times, the distance measured from the stereo vision is not perfectly accurate and
the data from the two cameras need to be mapped together, which requires sufficient
computational power [26]. The next section covers the radar sensor’s functionality and
why we have chosen it as a range detection sensor for our application.

4.2 Radar
As the name suggests, radar (Radio Detection And Ranging) works on the principle of
radio wave pulses being transmitted from the sensor and received back again. Traveling
at the speed of light, the distance to detected objects can be measured by the simple
equation:

dobj =
vltrw

2
(4.1)

Where dobj is the distance to the object, vl is the speed of light and trw is the radio wave
pulse’s round-trip time, hence the division of 2. Radio waves are not reflected from
particles in the air, so the distance measured will always be correct if no disturbances
or noise. This is an advantage for autonomous inspection of hazardous environments
with smoke etc. where humans are unavailable to operate. Because of its robustness
and the information this sensor provides, radar is the desired sensor choice. Also, by
the usage of SAR, we can create 3D images based on the radar data [27].

4.2.1 Radar Data Processing
A radar system generally consists of two main components: a signal processor for
target detection, and a data processor for information retrieval [27]. When a target is
detected, the signal will be transmitted to a data recording device, where characteristic
parameters of the target are recorded. These recordings need to be processed further

34

4.2 Radar

in the data processor to predict the obtained measurement data, such as target distance
and bearing angle.
The measurement data acquired from the radar sensors contains two types of errors.
Resulting from the interior noise of the measurement system, the random error is the
first error generated. This random error may vary from each measurement to another
and can be reduced to a certain degree by increasing the measurement frequency and
minimizing its variance by filtering. The second error results from antennas, servo
systems and other non-calibration factors in the data correction process, and is called
system error. It is complex, slowly varying and non-random, hence its viewed as an
unknown variable in a relatively long period of time. When the ratio of system errors to
random errors is greater or equal to 1, the system error must be corrected as the effect
of distributed track fusion and centralized measurement fusion deteriorates markedly
[27]. In the case of obviously abnormal values from the radar measurement data, an
outlier rejection process is done to remove these abnormalities.

4.2.2 Radar Sectors
The drone consists of a specified set of six radar sensors on board, each covering a 60°
sector around the drone as illustrated in figure 4.1. These sensors calculate the distance
from the sensor to a detected object within the radar sector by measuring the time it
takes for the radio pulse to reflect back. The sensor only returns a signal concluding
something is in the sector, but doesn’t know exactly where in this sector the obstacle
is. The output of the processed radar signal will be Boolean; true if there is something
in the sector, and false if not. In order to retrieve position of the sensed obstacle,
a combination of the different radar sector readings can construct an estimate of the
obstacle’s exact position.

Time to Collision

In order to achieve successful collision avoidance, it is important to have an estimate
the time to collision for the sensor’s field of view. Given that ρ is the length vector
between the drone and an obstacle, the time to collision is given by:

tc =
ρ

ρ̇
(4.2)

This as defined in [28]. The time to collision can be used as a threshold to determine
if an obstacle will cause a collision in a shorter time interval. Consider tsafe to be a
time the drone can operate in any state with the ability to correct itself if an obstacle
occurs. If tc ≤ tsafe, this implies that the integrity of the drone is threatened by the

35

Chapter 4. Theory and Methods

obstacle, and collision avoidance maneuvers needs to be executed. Hence, we do not
need to process any radar data where tc > tsafe.

[0, π/3)

[π/3, 2π/3)

[2/3π, π)

[180°, 240°)

[240°, 300°)

[5/3π, 2π)

sector 1
sector 2

se
ct

or
 3

sector 4 se
cto

r 6

sector 5

[60°, 120°)

[0°, 60°)

[300°, 360°)

[π/3, 2π/3)

[π, 4π/3)

[120°, 180°)

v
drone

Figure 4.1: Radar sectors

4.3 Low Level Control
For our drone, the classical PID-controller is used as a low level controller. It is used
to ensure stability of our simulated drone in its attitude and position.

4.3.1 PID Implementation
The PID is a closed loop control system trying to get the desired values by adjusting
the input. PID controllers are used for a large scope of applications and the essential
part is the adjustment of the tuning parameters for ultimate performance in different
conditions. The parameters are tuned to satisfy the following three objectives:

1. Stability and stability robustness

2. Transient response

3. Steady state accuracy

Mathematically, the input acquired from the PID controller can be expressed as:

u = Kpx̃+Ki

∫ t

0

x̃dτ +Kd
˙̃x (4.3)

36

4.3 Low Level Control

Where x̃ = xd − x represents the error between the drone’s desired position xd and
current position x,Kp the proportional gain,Ki the integral gain andKd the derivative
gain.

4.3.2 Reference Signal
The controller designed requires a smooth C3 trajectory. Given a sequence of waypoints
(corners of the cube/ walls), the trajectory can be generated by feeding the waypoints
through a reference model of sufficient order. This is resembled by a 4th order low pass
filter on the following form:

x(4) + 4ζω0x
(3) + (2 + 4ζ2)ω2

0ẍ+ 4ζω3
0ẋ+ ω4

0x = ω4
0xd (4.4)

Here, x ∈ R3 is the reference signal, xd ∈ R3 is the current waypoint and ζ, ω0 ∈ R
are the tuning parameters. Considering only the first dimension of x, a reference posi-
tion of xd3 = 20 will give the result in figure 4.2a. Because of the drone’s constraints,
this is an unsaturated and hence unfeasible result. The drone’s dynamics, such as the
maximum velocity and acceleration are violated and can be solved by introducing a
cascaded controller system by rearranging (4.4) with respective saturation constraints.

x(4) = u (4.5a)

τ1 = sat(k1(xd − x), vmax) (4.5b)

τ2 = sat(k2(τ1 − x(1)), amax) (4.5c)

τ3 = sat(k3(τ2 − x(2)), jmax) (4.5d)

u = k4(τ3 − x(3)) (4.5e)

Where vmax, amax and jmax are the maximum velocity, acceleration and jerk respec-
tively. By comparing (4.5) with (4.4), we can find the parameters k1, k2, k3, k4 to be.

k4 = 4ζω0 (4.6a)

k3 =
(2 + 4ζ2)ω2

0

k4
(4.6b)

k2 =
4ζω3

0

k4k3
(4.6c)

k1 =
ω4
0

k4k3k2
(4.6d)

37

Chapter 4. Theory and Methods

By setting the limited values for vmax, amax and jmax, we are now able to construct
a trajectory satisfying the drone’s physical constraints. This naturally yields a slower
response, but guarantees feasible, smooth C3 trajectories for the controller.

0 2 4 6 8 10 12

time [s]

-15

-10

-5

0

5

10

15

20

25
Regular Response

Position
Velocity
Acceleration

(a) Normal Response

0 2 4 6 8 10 12

time [s]

-5

0

5

10

15

20

25
Reference model step response

Position
Velocity
Acceleration

(b) Reference Filter

Figure 4.2: Responses with and without reference filter

4.4 High Level Control for Global Maps: NSB
For the high level control, the different methods focus on the information available. For
the case where information about the environment the drone operates in is provided,
there exist a scope of methods for solving the mission. In this thesis, we have focused
on the Null-Space Based behavioral control algorithm (NSB) as this is a clever global

38

4.4 High Level Control for Global Maps: NSB

method for optimal collision-free trajectories. The NSB algorithm is a behavioral-
based approach for control of autonomous robotic systems. The output of the single
elementary behaviors are combined to compose a complex behavior.

The idea is to decompose the overall problem into several sub problems (tasks, func-
tional modules, motor schemas, behaviors). The NSB algorithm is presented as a uni-
fied framework in [4], consisting of two main behavioral approaches.

4.4.1 Competitive Approach

Can be seen as a competition between behaviors. The strategy can be implemented in
many ways, the layered control system proposed in [29] is an example. Each behaviour
is connected to an asynchronous layer module represented in an augmented finite state
machine. Based on the sensor data, each layer provides the independently calculated
desired output, and is chosen by priorities of each layer module. The coordination
can be viewed as a competition among behaviours; only one behaviour wins and its
response only is sent to the drone for execution

4.4.2 Cooperative Approach

Is an alternative to the competitive one. A fusion of behaviours gives the ability to
concurrently use the collection of several behaviour outputs. A sum of all motion
commands is given to the actuating force, where each behavior can be weighted by
a supervisor. A common cooperative method for behavioural approach is the motor
schema control. A motor schema is a basic unit of behavior specification for the navi-
gation of a mobile robot. The schemas are multiple concurrent processes that operate
in conjunction with associated perceptual schemas and contribute independently to the
overall concerted action of the vehicle. The motivation behind the use of schemas for
this domain is drawn from neuroscientific, psychological, and robotic sources [30]. A
variant of the potential field algorithm is used to produce the appropriate velocity and
steering commands for the robot. Simulation results and actual mobile robot exper-
iments demonstrate the feasibility of this approach. The cooperative method’s main
difference from the competitive is the realization of a linear combination of the outputs
elaborated for each task. Hence, no task is completely achieved, but a compromised
solution is found.

39

Chapter 4. Theory and Methods

4.4.3 Behavioural Control
Behaviors are expressed through a function of the drone configuration that measures
the degree of fulfillment of a task. When in a static environment, such a task is achieved
when its output is constant at a value that minimizes the task function. If for instance
the task output is the velocity of the drone, then in order to reach the desired goal a
distance-from-goal task function can be considered. The velocity command will then
be generated to reduce the distance between the drone and the goal, and it will be zero
when the goal position is reached.

If avoidance of an obstacle also needs to be considered, then another velocity command
needs to be generated to increase the distance between the drone and the obstacle. This
velocity command is zero once the drone is out of reach from the obstacle. When the
obstacle is somewhere in the line of sight as the drone moves towards the goal, the two
behaviors come in conflict and the two velocity commands will counteract each other.
The drone can either approach the goal position or escape the obstacle.

This is where the feature of coordination comes in handy. Handling multiple elemen-
tary tasks of behavioral approach such that all tasks can be achieved simultaneously.
For competitive methods, only one task is selected at each time instant and the control
algorithm tries to solve this specific task. For the cooperative method, a supervisor
elaborates each elementary task as if it is alone and calculates an overall solution as a
weighted sum of all the motion commands resulting from the elementary tasks. The su-
pervisor can also dynamically change the relative importance of the tasks by changing
the vector of weight gains.

4.4.4 NSB Applied
The theory in this section is based on [17].
For a task variable σ ∈ Rm and a system configuration x ∈ Rn we have the following
relationship:

σ = f(x) (4.7)

And a corresponding differential relationship:

σ̇ =
∂f(x)

∂x
v = J(x)v (4.8)

Here, J ∈ Rm×n is the configuration-dependent task Jacobian matrix and v ∈ Rn is
the system velocity.

40

4.4 High Level Control for Global Maps: NSB

The term system configuration refers to the drone’s position or orientation. One widely
used method to generate motion references xd for the drone starting at desired values
of the task function σd is to act at the differential level by inverting the (locally linear)
mapping. A typical requirement is to pursue minimum-norm velocity, leading to the
least-square solution:

vd = J†σ̇d (4.9)

Where J† is defined as:
J† := JT

(
JJT

)−1
(4.10)

A reference position trajectory besides the velocity is now needed for the drone, which
can be obtained by time integration of vd. The discrete time integration will how-
ever result in a numerical drift of the drone’s reconstructed position. This drift can be
counteracted by a closed loop inverse kinematics (CLIK) version of the algorithm [17].

vd = J†
(
σ̇d + Λσ̃

)
(4.11)

Here, Λ is a suitable constant positive definite matrix of gains and σ̃ is the task error
defined as σ̃ = σd − σ.

The velocity for each single task i then becomes:

vi = J i
†(σ̇id + Λiσ̃i

)
(4.12)

The NSB control always fulfills the highest priority task, and the lower priority tasks
are fulfilled only in a subspace where they do not conflict with the higher priority ones.
This is an advantage compared to the competitive approach, where one single task can
be achieved at once, and to the cooperative approach, where the linear combination of
each task’s output results in a set of partly fulfilled tasks.

4.4.5 Reach Goal with Obstacle Avoidance
For our drone to reach the desired position, the mission is decomposed in two tasks
with the lowest number being the highest priority:

• Task 1: Obstacle avoidance

• Task 2: Reach goal

To ensure that the highest priority task of obstacle avoidance is fulfilled, it is of most
importance to ensure integrity of the drone. The task aims to keep a safe distance

41

Chapter 4. Theory and Methods

from an obstacle detected in the advancing direction of the drone. Hence, its output
is a velocity ensuring that the drone keeps a safe distance from the obstacle when
approaching. The task of obstacle avoidance (σ1) can be described as:

σ1 = ||x− xo|| ∈ R
σ1d = d

J1 = r̂T ∈ R1×2
(4.13)

Here, xo is the obstacle’s position, d is the distance to the goal and

r̂ =
x− xo

||x− xo||
(4.14)

is the unit vector aligned with the obstacle-to-drone direction. By equation (4.12), the
primary task velocity is:

v1 = J1
†λ1
(
d− ||x− xo||

)
(4.15)

For the NSB approach, the obstacle avoidance also elaborates to the null-space direc-
tion. This null-space contribution is expressed as:

N(J1) = I − J1
†J1 = I − r̂r̂T (4.16)

Where I is the identity matrix of the proper dimension. The obstacle avoidance task is
only active when required. For instance when the drone is closer than a set threshold
value to the obstacle and the output velocity of the lower priority tasks is in the direc-
tion of the obstacle.

The reach goal task (σ2) sets its output velocity proportional to the distance from the
goal xd, and hence, the task is described as:

σ2 = x ∈ R2

σ2d = xd ∈ R2

J2 = I ∈ R2×2

(4.17)

By equation (4.12), the secondary task velocity is:

v2 = Λ2

(
xd − x

)
(4.18)

A saturation can be set for the resulting velocity in order to ensure limitations in the
drone’s input signals. An illustration of the task scheduler is shown in figure 4.3.

42

4.4 High Level Control for Global Maps: NSB

Figure 4.3: The NSB task scheduler

4.4.6 Task Activation
As mentioned in [4], there are practical drawbacks to the obstacle avoidance task.
These drawbacks are discussed here and solved with task activation.

When the obstacle avoidance task has been active, it forces the drone to follow the
threshold-circle all the way around. This conflicts with the second task as the obstacle
avoidance task has the higher priority. This can be avoided by setting some rules for
task activation and apply these rules to the scheduler. The obstacle avoidance task
doesn’t need to be active unless a collision is about to happen. By checking if the
current velocity vector interfere with the obstacle, we can reschedule the tasks. By
calculating the angle between the velocity vector and the obstacle center, as shown in
figure 4.4, we can calculate do. The obstacle avoidance task is only active if:

d̂o < do and |θ| ∈ [0,
π

2
) (4.19)

θ

obst.pos -p

−

dnow

now
p p

now
xd

x

d o

d̂o

obstacle

obst.pos

Figure 4.4: The NSB angle problem, adapted from [3]

43

Chapter 4. Theory and Methods

4.5 High Level Control for Local Maps: Reactive Logic

Unlike for the global maps, local maps are continuously updated from the sensor read-
ings. We need to evaluate the drone’s states and how it will interact with the sensed
environment at each sensor scan. An intuitive logic for designing a high level controller
on such restricted information is to use a sense-act logic. This section describes a self-
developed reactive logic for collision avoidance based on the radar-readings described
in section 4.2.

4.5.1 Self-developed Reactive Logic

Consider the drone with radar sectors as illustrated in figure 4.1. The drone’s heading
will always face such that sector 1 and 6 will face towards the desired path. For an
obstacle in sector 1, a rotation of the velocity vector of 45° in the clockwise direction
will be a way of steering the drone away from the obstacle. The same way goes for an
obstacle in sector 6, but now we rotate the velocity vector counter-clockwise.
For sector 2 and 5, a rotation of 90° can be done in the same way as for sector 1 and
6, whereas sector 3 and 4 faces towards the back of the drone, and are only important
after the drone has surpassed the obstacles to keep track of the drone’s surroundings.
Hence, no velocity vector rotation is done for obstacles detected in sector 3 and 4. After
each radar reading, the velocity vector is multiplied by the rotation matrix R(sector).
The newly rotated vectors, based on which sector the obstacle is detected are displayed
in figure 4.5. The reactive logic described above can be composed as an algorithm,

se
cto

r 1

sector 2

s
e
c
to

r 4 se
ct
o
r
6

sector 5

v
drone

s
e
c
to

r
3

v
d
ro

n
e R
(1)

vd
ro

n
e
R
(6
)

v
drone

R(2)

v
drone

R(5)

Figure 4.5: Rotated vectors based on sectors

44

4.5 High Level Control for Local Maps: Reactive Logic

represented in algorithm 1. This algorithm only consider the delicate situation where

Algorithm 1 Reactive algorithm for one obstacle

1: function REACTIVE(vref , sensor scan)
2: for all sectors return sensor scan do
3: if sector then
4: vnew ← vref ·R(sector) . Rotates the velocity vector
5: end if
6: end for
7: return vnew . New velocity is returned
8: end function

only one obstacle is sensed. This is not always the reality, and in order to make a
more robust reactive logic, a new algorithm that considers multiple obstacles can be
developed.

4.5.2 Extended Reactive Logic for Multiple Obstacles

If algorithm 1 is used and multiple sectors sense obstacles, the algorithm only chooses
to rotate the velocity vector based on the highest numbered active sector. A sector being
active, is a sector where obstacles are detected. In order to get a contribution from
all active sectors, a modified algorithm is used. This algorithm considers how many
obstacles that are sensed and gives one supplement from each to the total resulting
velocity vector and is described in algorithm 2.

Algorithm 2 Reactive algorithm for multiple obstacles

1: function REACTIVE(vref , sensor scan)
2: for all sectors in sensor scan do
3: if sector then
4: vsector ← vref ·R(sector) . Rotates the velocity vector
5: end if
6: vmiddle ← vmiddle + vsector . Sum up all velocity contributions
7: α← α+ 1 . Obstacle counter
8: end for
9: vnew ←

vmiddle
α

. Divide by number of obstacles
10: return vnew . New velocity is returned
11: end function

45

Chapter 4. Theory and Methods

4.6 High Level Control for Local Maps: VO
The velocity obstacle algorithm demonstrated in this thesis is based on the one de-
scribed in [5]. This method considers both static and dynamic obstacles, whereas this
thesis only concerns the matter of static obstacles, sensed by the radars. The concept
of the velocity obstacle method is quite intuitive. It computes avoidance maneuvers
based on the current position and velocity of the drone and the obstacles. This is a
first-order method since it yields positions as a function of time without integrating the
velocities. It is chosen to be investigated for our application as it is a robust way of
ensuring collision avoidance and a well-explored method.

4.6.1 Assumptions
For simplicity, we assume the drone to be a circle and the obstacles to be cylindrical.
Thus, this analysis considers a planar problem with no rotations. Since the walls can
be represented as a series of cylindrical objects, this is not a severe limitation. We
also assume that all obstacles are static and that their position is measurable from the
sensors.
Consider now a planar problem with the drone represented as a circular object A with
the respective velocity vA, and a circular obstacle B that is placed in the nearby area
of the drone as illustrated in figure 4.6. In order to compute the Velocity Obstacle,
the obstacle B is mapped to the configuration space of the drone A. This is done by
reducing the circular drone A to a point Â and enlarging the radius of B by the radius
of A, resulting in a new configured obstacle B̂. Each object is now represented with a
position and velocity vector attached in the center.

4.6.2 Collision Cone
The collision cone is defined as the set of colliding relative velocities between Â and
B̂ and is denoted as:

CCA,B = {vA,B |λA,B ∩ B̂ 6= ∅} (4.20)

Where vA,B = vA − vB is the relative velocity of Â with respect to B̂, and λA,B is
the line of vA,B . Note that for static obstacles vB = 0 and hence, vA,B = vA. The
cone CCA,B represents the planar sector with apex in Â which restricted velocities are
in. The sector is bounded by the two tangents λf and λr from Â to B̂ as illustrated
in figure 4.7 with the cyan colored area representing the CC. Hence, if the velocities
within the tangent lines is chosen, collisions will occur. Since we now know which
velocities not to chose, a choice of a velocity vector outside CCA,B will guarantee a

46

4.6 High Level Control for Local Maps: VO

B

A

v

v

A

B= 0

Figure 4.6: Drone and obstacle illustrated as circles

collision free trajectory.
An equivalent condition on the absolute velocities ofA is established by simply adding
vB to each velocity in CCA,B . This is equivalent to translating CC by vB . The Veloc-
ity Obstacle hence becomes:

V O = CCA,B ⊕ vB (4.21)

Where ⊕ is the Minkowski vector sum operator (see appendix A.2). The velocity
obstacle in equation (4.21) partitions the absolute velocities of A into avoiding and
colliding velocities. By selecting a vA outside the VO will result in collision avoidance
with B, described mathematically by:

A ∩B = ∅ if vA /∈ V O (4.22)

47

Chapter 4. Theory and Methods

B

vA

Â

λ

λ

λ

A,B

f

r

1

1

1

1
^

Figure 4.7: Collision Cone illustration

Any velocity on the boundary of VO will result in A and B grazing. Note that for
our case of static obstacles, all obstacle velocities will be zero (vB = 0), and hence,
the relative velocity cone will always be the velocity obstacle and equation (4.21) is
reduced to:

V O = CCA,B (4.23)

The collision cone described considers only one obstacle with respect o the drone, and
the next section will explain how we easily can extend the cone for consideration of
more obstacles.

4.6.3 Multiple Obstacles
In order to avoid multiple obstacles, we simply consider the VO as the union of each
obstacle’s VO:

V O = ∪ni=1V Obi (4.24)

48

4.6 High Level Control for Local Maps: VO

Where n is the number of obstacles sensed. The avoidance velocities are now the vAs
outside the VO as shown in figure 4.8

B

vA

Â

λ

λ

λ

A,B

f

r

1

B2

1

1

1

^

^

Figure 4.8: Velocity Obstacle with multiple obstacles illustration

4.6.4 Imminent Collisions
In the case of a cluttered environment, one might prioritize the closer obstacles over the
ones with longer time to collision. Since our sensor has a certain sense range, this is
partly done by the sensing constraints, but can also be modified by classifying imminent
collisions. A collision is imminent if the collision happens some time t < Th, where
Th is a suitable time horizon [5]. A modified VO can be constructed by subtracting
V Oh from the current VO, where V Oh is defined as:

V Oh = {vA|vA ∈ V O, ||vA,B || ≤
dm
Th
} (4.25)

Where dm is the shortest relative distance between the drone and the obstacle. V Oh is
the set of velocities that would cause a collision occurring beyond the time horizon Th.

49

Chapter 4. Theory and Methods

4.6.5 Avoidance Maneuver
The avoidance maneuver consists of a one-step change in the velocity in order to avoid
a future collision within a given time horizon [5]. The set of reachable velocities is
constrained by the drone’s dynamics. Given a time interval ∆t, the velocities reachable
by the drone A at a given state are found by mapping the actuator constraints to the
acceleration constraints. A set of feasible accelerations at time t is defined as:

FA(t) = {ẍ|ẍ = f(x, ẋ,u),u ∈ U} (4.26)

Where x is the position vector of the drone, f(x, ẋ,u) is the dynamics of the drone, u
is the actuation efforts, and U is the admissible controls.
By using the feasible accelerations, we can now find the reachable velocities for the
time interval to come (t+ ∆t), this defined as:

RV (t+ ∆t) = {v|v = vA(t)⊕∆t · FA(t)} (4.27)

The velocities we are interested in in order to avoid collisions is the reachable avoid-
ance velocities (RAV), these can be found by the difference between the set of reach-
able velocities, and the velocity obstacle set:

RAV (t+ ∆t) = RV (t+ ∆t)	 V O(t) (4.28)

Where 	 is the Minkowski difference (see appendix A.2). We can now choose any
velocity in the RAV set in order to avoid collisions. In the case of multiple obstacles,
the RAV set consists of multiple disjoint closed subsets.

The algorithms described in this chapter are now to be implemented on the self-developed
MATLAB-simulator. The results obtained are presented in the next chapter.

50

Chapter 5
Simulation Results

By implementing the algorithms described in chapter 4, the yielded results obtained
from the different simulations executed in the MATLAB simulator are presented here.

5.1 Representation of the Results
The findings in this thesis are obtained from the created simulator described in chapter
3. We mainly look at the trajectories of the quadcopter operating within the inspection
area, which are generated in 3D. An example of the 3D illustration is shown figure 5.1.
Although 3D simulations are obtained, the drone’s change of behaviour mainly affects
the xy-plane. Hence, most of the illustrations are displayed from above as this presents
the findings in a better way. Table 5.1 explain the appearance of the simulated objects
and trajectories.

Object Explanation
Drone Cross-frame and 4 circular rotors

Container Black edges
Obstacles Cyan colored cylinders with magenta edges

Actual trajectory Red
Desired trajectory Blue

Table 5.1: Table of object appearance in the simulation display

51

Chapter 5. Simulation Results

In addition to the simulation trajectory display, two additional figures cover the recorded
position and velocities of the drone at the given time t for the respective simulation.
An example of the position and velocity plot is illustrated in figure 5.2b and 5.2c re-
spectively. The blue line illustrates the desired state, whereas the red line illustrates the
actual state. Note that the velocities are saturated at 3m/s as this is the set velocity
restriction for all directions in this thesis.

Drone

Obstacle

Trajectory
Container Lines

C
on

ta
in

e
r

Li
ne

s

Container Lines

Figure 5.1: Illustrative figure for the simulator display

5.2 PID-control of a Step Trajectory

For the tuning of PID-controller, step trajectories for each of the x,y and z direction
were tested. After the execution of several simulations of step trajectories, the tuning

52

5.2 PID-control of a Step Trajectory

constants for the position PD-controller obtained for critical damping became:

Kp =

Kpx

Kpy

Kpz

 =

15
15
30


Kd =

Kdx

Kdy

Kdz

 =

17
12
10

 (5.1)

Whereas the tuned attitude PD-controller yielded the constants:

Kpm =

3000
3000
3000


Kdm =

300
300
300

 (5.2)

Note that we do not tune the integration parameters as the integration part of the PID-
controller is done with MATLAB’s ode45 solver. A simulation with the tuning gains
from equations (5.1)-(5.2) yields the response illustrated in figure 5.2. Figure 5.2a
illustrate the drone’s trajectory from pstart =

[
2 2 18

]T
to pend =

[
2 18 18

]T
displayed in the xy-plane. The simulated time it takes to reach the end position is
tsim = 8.65s and by looking at figure 5.2b, we clearly see a critically damped response
for the y-position as well as a saturated y-velocity response, seen in figure 5.2c.

53

Chapter 5. Simulation Results

(a) The trajectory of a PID-controller of a y-step

0 1 2 3 4 5 6 7 8

time [s]

1

2

3

x
[m

]

0 1 2 3 4 5 6 7 8

time [s]

0

10

20

y
[m

]

0 1 2 3 4 5 6 7 8

time [s]

17.8

17.9

18

z
[m

]

(b) The positions of the PID-control of a y-step

0 1 2 3 4 5 6 7 8

time [s]

-1

0

1

xd
ot

 [m
/s

]

0 1 2 3 4 5 6 7 8

time [s]

0

2

4

yd
ot

 [m
/s

]

0 1 2 3 4 5 6 7 8

time [s]

-0.5

0

0.5

zd
ot

 [m
/s

]

(c) The velocities of the PID-control of a y-step

Figure 5.2: Simulator display for the PID-control of a y-step

5.2.1 Wall Avoidance

In order to assure that the quadcopter doesn’t fly into the container walls, a safety
constraint of dsafe = 2 meters is set. If a pilot pushes the drone towards a destination
beyond the walls or tries to violate the set safety constraint, the desired end position
pend is changed. The scenario is illustrated in figure 5.3 below with the active walls

54

5.2 PID-control of a Step Trajectory

colored in blue.

(a) Side view (b) Top view

0 1 2 3 4 5 6 7 8 9

time [s]

1

2

3

x
[m

]

0 1 2 3 4 5 6 7 8 9

time [s]

0

20

40

y
[m

]

0 1 2 3 4 5 6 7 8 9

time [s]

17.8

18

18.2

z
[m

]

(c) Position

0 1 2 3 4 5 6 7 8 9

time [s]

-1

0

1

xd
ot

 [m
/s

]

0 1 2 3 4 5 6 7 8 9

time [s]

-5

0

5

yd
ot

 [m
/s

]

0 1 2 3 4 5 6 7 8 9

time [s]

-0.5

0

0.5

zd
ot

 [m
/s

]

(d) Velocity

Figure 5.3: Override of pilot command for wall avoidance

The behaviour is as desired when the pilot pushes the drone towards the wall, and this
ensures that collisions with the container walls are avoided in a simulation time of
tsim = 9.20s. Note the change of desired y-position around t = 5.3s To make sure
the drone also considers other static obstacles that might occur in the inspection area,
high level control needs to be implemented. This is done both globally and locally in
the following sections.

55

Chapter 5. Simulation Results

5.3 Global Approach for Step Trajectory (NSB)

For the simplest case of obstacle avoidance, we simulate the same trajectory inside the
tank we want to inspect. There is an obstacle in the drone’s planned trajectory and the
NSB-algorithm described in section 4.4 is used to avoid the obstacle. The assumptions
of the simulated flight are as follows:

• The obstacle’s location is known (global algorithm)

• The drone’s initial states are set to be at a hovering state at pstart =
[
2 2 18

]T

• The drone’s final and desired position is set to be at pend =
[
2 18 18

]T

• An obstacle of radius Robst = 1 is centered at pobst =
[
1 10 z

]T

From the simulation results of the NSB-algorithm without task activation and the tun-
ing parameters set to λ1 = 6, Λ2 = 2 · I3×3, a simulation time of tsim = 9.00s and
the results illustrated in figure 5.4 are obtained:

56

5.3 Global Approach for Step Trajectory (NSB)

(a) Side view (b) Top view

0 1 2 3 4 5 6 7 8

time [s]

2

3

4

x
 [
m

]

0 1 2 3 4 5 6 7 8

time [s]

0

10

20

y
 [
m

]

0 1 2 3 4 5 6 7 8

time [s]

16

17

18

z
 [
m

]

(c) Position

0 1 2 3 4 5 6 7 8

time [s]

-5

0

5

x
d
o
t
[m

/s
]

0 1 2 3 4 5 6 7 8

time [s]

0

2

4

y
d
o
t
[m

/s
]

0 1 2 3 4 5 6 7 8

time [s]

-1

0

1

z
d
o
t
[m

/s
]

(d) Velocity

Figure 5.4: The NSB algorithm for a step response without tuning and task activation

Note the threshold of where the scheduler switches between tasks, illustrated as the ob-
stacle’s blue outer circle and set toRthresh = 2. We can clearly see that the quadcopter
dynamics interfere with the response of the collision avoidance. The deacceleration of
the already built up speed starts when the obstacle avoidance task is activated and the
wished behaviour of proximity within the threshold circle is not obtained. One also see
the lack of angle task activation, as the algorithm doesn’t release the obstacle avoid-
ance task once the obstacle has been avoided and the path towards the goal is collision
free. This as described in section 4.4.6. Hence, a tuning of the algorithm is needed for
optimal behaviour as well as the implementation of the angle task activation.

57

Chapter 5. Simulation Results

5.3.1 NSB with Appropriate Tuning
As discussed in section 4.4, we can tune the NSB behaviour by adjusting the lambdas.
An increase in λ1 will result in a greater contribution to the obstacle avoidance as well
as a greater Λ2 will result in a contribution increase to the reach goal task, and vice-
versa. First, by increasing λ1 drastically to 80, we see that the trajectory changes, as
illustrated in figure 5.5. This is expected as the focus of collision avoidance is now
overly focused, and this directly affects the velocity response. As we want to optimally
avoid the obstacle and proximity keeping within the threshold, this is not a desirable
result.

Figure 5.5: The NSB algorithm for a step response with increased λ1 = 80

By tuning the lambdas to λ1 = 6 and Λ2 = 0.2 · I3×3, we can see that we get a
much more desirable trajectory where the drone keeps its path within the threshold as
seen in figure 5.6. However, the drone gets stuck when traversed around the obstacle
and doesn’t release its obstacle avoidance task when its path towards the goal is clear.

58

5.3 Global Approach for Step Trajectory (NSB)

This ”lock” is due to the null-space contribution being zero. In order to avoid this
lock, we implement the angle task activation. The oscillations that occur when moving
around the obstacle is caused by the quadcopter’s dynamics as the algorithm switches
between the two tasks. Note that the radius of the obstacle and threshold is increased to
Robst = 2 and Rthresh = 3 respectively. This is done for more detailed illustrations.

Figure 5.6: The NSB algorithm for a step response with tuning

5.3.2 NSB with Angle Task Activation

After implementing the angle task activation described in section 4.4.6 with the same
tuning parameters as before, a collision-free step trajectory without ”lock” is obtained
with the simulation time of tsim = 36.65s.

59

Chapter 5. Simulation Results

Figure 5.7: The NSB algorithm for a step response with tuning and task activation

As illustrated in figure 5.7, the dynamic slowness of the drone threatens the drone’s
safety and might cause collision with the obstacle. Hence, an increased threshold is set
to Rthresh = 4 for safety reasons.

60

5.3 Global Approach for Step Trajectory (NSB)

(a) Top view

0 5 10 15 20 25 30 35

time [s]

2

4

6

x
 [
m

]

0 5 10 15 20 25 30 35

time [s]

0

10

20

y
 [
m

]

0 5 10 15 20 25 30 35

time [s]

16

17

18

z
 [
m

]

(b) Position

0 5 10 15 20 25 30 35

time [s]

-5

0

5

x
d
o
t
[m

/s
]

0 5 10 15 20 25 30 35

time [s]

-5

0

5

y
d
o
t
[m

/s
]

0 5 10 15 20 25 30 35

time [s]

-1

0

1

z
d
o
t
[m

/s
]

(c) Velocity

Figure 5.8: NSB for a step response with tuning, task activation and extended threshold

As illustrated in figure 5.8a, we now obtain a safe collision free trajectory within the
threshold. Note that the dynamics cause oscillations when the tasks are switching.
Another remark is that the simulation time is tsim = 37.35s, which is drastically
longer than for the original trajectory without obstacle consideration.

61

Chapter 5. Simulation Results

5.3.3 NSB for Wall Following

In order to follow the walls of the container, we plan a path consisting of multiple
step-like trajectories. The drone’s initial position is set to the top of the container
at pstart =

[
2 2 18

]T
and is to traverse four step trajectories with the container

corners as waypoints before it reaches its start position again. This as illustrated in
figure 5.9.
An extension for takeoff and landing can be done by staring the drone on the ground at
pstart =

[
2 2 0

]T
, fly upwards, execute the square-trajectory before it descends to

its start position again, as illustrated in figure 5.10.

(a) Side view (b) Top view

0 50 100 150 200

time [s]

0

10

20

x
 [
m

]

0 50 100 150 200

time [s]

0

10

20

y
 [
m

]

0 50 100 150 200

time [s]

17.9

18

18.1

z
 [
m

]

(c) Position

0 50 100 150 200

time [s]

-1

0

1

x
d
o
t
[m

/s
]

0 50 100 150 200

time [s]

-1

0

1

y
d
o
t
[m

/s
]

0 50 100 150 200

time [s]

-0.1

0

0.1

z
d
o
t
[m

/s
]

(d) Velocity

Figure 5.9: NSB wall follow upper square

62

5.3 Global Approach for Step Trajectory (NSB)

(a) Side view (b) Top view

0 50 100 150 200 250 300

time [s]

0

10

20

x
 [
m

]

0 50 100 150 200 250 300

time [s]

0

10

20

y
 [
m

]

0 50 100 150 200 250 300

time [s]

0

10

20

z
 [
m

]

(c) Position

0 50 100 150 200 250 300

time [s]

-1

0

1

x
d
o
t
[m

/s
]

0 50 100 150 200 250 300

time [s]

-1

0

1

y
d
o
t
[m

/s
]

0 50 100 150 200 250 300

time [s]

-1

0

1

z
d
o
t
[m

/s
]

(d) Velocity

Figure 5.10: NSB wall follow with takeoff and landing

We notice that both simulations for wall following successfully complete the inspection
mission. The obstacle is avoided with a safe distance and the desired inspection path is
followed. Note the simulation times of tsim = 220.05 for the upper square trajectory
and tsim = 319.20 for the extended trajectory with takeoff and landing. They are
much longer than the multiplicity of step trajectories they execute but also yield a less
oscillating collision avoidance.

63

Chapter 5. Simulation Results

5.4 Local Approaches

Up until now, the simulations executed have assumed the current environment to be
known. For local approaches, this assumption doesn’t hold and we need to obtain in-
formation about the environment from the sensor data as well as the drone’s initial
conditions. The local approaches described in chapter 4 are tested in this section. Sim-
ulations of the self-developed reactive logic are executed first and the Velocity Obstacle
simulations are done afterwards.

5.4.1 Self-developed Reactive Logic

The reactive logic described in section 4.5.1 is to be tested on our simulator. Firstly,
algorithm 1 is implemented for the step trajectory with an obstacle occurring in the mid-
dle of its originally planned path. As seen in figure 5.11a, the algorithm successfully
navigates the drone in a collision-free path with a simulation time of tsim = 10.50s.
For the consideration of two obstacles, algorithm 2 is implemented for collision avoid-
ance. However, the trajectory response is a bit modest as illustrated in figure 5.11b.
We see that the compromised velocity ensures that both obstacles are considered, but it
doesn’t prioritize the relative distances. This threatens the drone’s safety when avoiding
collisions. From figure 5.11c, we see that only sector 6 is considered and this pushes
the velocity vector 45° counter-clockwise. For figure 5.11d however, the compromised
velocity vector based on the sensed obstacles in sector 2 and 6 will actually be rotated
45° clockwise, which is directed towards the obstacle relative to the drone’s current
position. This is due to the summation of a 90° clockwise rotation from the active
sector 2, and a 45° counter-clockwise rotation from the active sector 6 and is a highly
undesirable behaviour that needs to be solved for a robust collision avoidance system.

5.4.2 Velocity Obstacle

Unlike the self-developed reactive algorithm, the velocity obstacle (VO) algorithm only
considers velocity vectors that guarantees collision-free navigation.

64

5.4 Local Approaches

(a) One obstacle (b) Two obstacles

(c) Sector activation for one obstacle (d) Two sectors activated

Figure 5.11: Reactive algorithm

One Obstacle for VO

The results obtained for one obstacle are illustrated in figure 5.12. The simulation
yields a simulation time of tsim = 9.10s and a decent safety margin determined by the
threshold.

65

Chapter 5. Simulation Results

(a) Top view

0 1 2 3 4 5 6 7 8 9

time [s]

10

12

14

x
[m

]

0 1 2 3 4 5 6 7 8 9

time [s]

0

10

20

y
[m

]

0 1 2 3 4 5 6 7 8 9

time [s]

17

17.5

18

z
[m

]

(b) Position

0 1 2 3 4 5 6 7 8 9

time [s]

-5

0

5

xd
ot

 [m
/s

]

0 1 2 3 4 5 6 7 8 9

time [s]

0

2

4

yd
ot

 [m
/s

]

0 1 2 3 4 5 6 7 8 9

time [s]

-2

0

2

zd
ot

 [m
/s

]

(c) Velocity

Figure 5.12: The VO algorithm for one obstacle

To further explain the results, the VO cone that is created when obstacles are sensed
is illustrated. As explained in section 4.6, the velocity obstacle algorithm creates a
cone of restricted velocities when obstacles are within the sensor range, this cone is
illustrated at different time steps in figure 5.13.

66

5.4 Local Approaches

(a) The VO cone at t = 1.25 (b) The VO cone at t = 2.30

Figure 5.13: The VO cones at different simulation times

The transparent blue cone illustrates the set of restricted velocities, whereas the blue
star illustrates the drone’s desired position for the next time step t + ∆t. A velocity
vector outside this cone is considered at each time step, and the vector that points the
most towards the drone’s desired position will be selected.

Multiple Obstacles for VO

In the case of multiple obstacles, the velocity obstacle algorithm still ensures collision
free trajectories, as illustrated in figure 5.14a. The simulation of collision avoidance
with three obstacles yields a simulation time of tsim = 9.95s. One interesting be-
haviour is the x-movement towards the end of the path. Instead of going directly to the
goal after the last obstacle is avoided, it slightly overshoots towards left. This clearly
is due to the drone’s dynamics as the x-velocity drastically changes at tsim = 4.60s,
illustrated in figure 5.14c.

67

Chapter 5. Simulation Results

(a) Top view

0 1 2 3 4 5 6 7 8 9

time [s]

0

2

4

x
[m

]

0 1 2 3 4 5 6 7 8 9

time [s]

0

10

20

y
[m

]

0 1 2 3 4 5 6 7 8 9

time [s]

16

17

18

z
[m

]

(b) Position

0 1 2 3 4 5 6 7 8 9

time [s]

-5

0

5

xd
ot

 [m
/s

]

0 1 2 3 4 5 6 7 8 9

time [s]

0

2

4

yd
ot

 [m
/s

]

0 1 2 3 4 5 6 7 8 9

time [s]

-5

0

5

zd
ot

 [m
/s

]

(c) Velocity

Figure 5.14: The VO algorithm with 3 obstacles

By intentionally pushing the drone further away from the desired trajectory by intro-
ducing yet another obstacle, we see that the drone’s safety margin gets threatened when
surpassing the third obstacle. The simulation of collision avoidance with four obstacles
yields a simulation time of tsim = 9.30s, which is faster than for the simulation with
three obstacles. The reason for the close encounter with the third obstacle, illustrated in
figure 5.15a, is due to the selected velocity towards the goal not being in the VO. This

68

5.4 Local Approaches

causes the drone to interfere with the obstacle’s threshold margin and is undesirable.

(a) Top view

0 1 2 3 4 5 6 7 8 9

time [s]

2

4

6

x
[m

]

0 1 2 3 4 5 6 7 8 9

time [s]

0

10

20

y
[m

]

0 1 2 3 4 5 6 7 8 9

time [s]

17

17.5

18

z
[m

]

(b) Position

0 1 2 3 4 5 6 7 8 9

time [s]

-5

0

5

xd
ot

 [m
/s

]

0 1 2 3 4 5 6 7 8 9

time [s]

0

2

4

yd
ot

 [m
/s

]

0 1 2 3 4 5 6 7 8 9

time [s]

-2

0

2

zd
ot

 [m
/s

]

(c) Velocity

Figure 5.15: The VO algorithm with 4 obstacles

This chapter has presented the simulations for the different algorithms of collision
avoidance. Different behaviours and simulation times have been noted for the further
investigation of the algorithms. Next chapter will discuss the findings of the executed
simulations.

69

Chapter 5. Simulation Results

70

Chapter 6
Discussion

The remarks noted from the obtained results in chapter 5 are discussed in this chap-
ter. Suggestions for optimality and robustness are mentioned. Table 6.1 tells each
approach’s configuration and simulation time.

Method Obstacles Time[s] Tuned Trajectory Comment
PID None 8.65 Yes Step Smooth Trajectory
PID Wall 9.20 Yes Step Pilot Override
NSB 1 9.00 No Step λ1 = 6, Λ2 = 2 · I3×3
NSB 1 7.25 No Step λ1 = 80, Λ2 = 2 · I3×3
NSB 1 36.65 Yes Step Task Activation, Rthresh = 2
NSB 1 37.35 Yes Step Task Activation, Rthresh = 3
NSB 1 220.05 Yes Square Successful Inspection
NSB 1 319.20 Yes Full Successful Inspection

Reactive 1 10.05 - Step Successful Inspection
Reactive 2 10.05 - Step Safety Threatened

VO 1 9.10 - Step Successful Inspection
VO 3 9.95 - Step Overshoot at the end
VO 4 9.30 - Step Safety Threatened

Table 6.1: Table of simulation times

71

Chapter 6. Discussion

6.1 The NSB Algorithm for Autonomous Inspection
The Null-Space Behavior Control Algorithm was investigated as a possible candidate
for collision avoidance. The algorithm provides a simple framework of task scheduling
according to priorities, in order to navigate around obstacles. One of the drawbacks of
this method, as discussed in section 4.4.6 is that once an obstacle is confronted, the task
scheduler will guide the drone all the way around the obstacle, even when the drone
has a collision-free path in an earlier stage about halfway around the obstacle. Hence,
the scheduler was modified with angle task activation to ensure direct flight towards
the goal once the obstacle is avoided. The task activation optimizes the travel time
and eliminates the corner case where the drone gets stuck if the null-space contribution
becomes zero.
It should be pointed out that the NSB algorithm is a global approach, which considers a
known environment at all times. A reactive implantation could be implemented for in-
spection purposes, based on sensor data provided by the drone’s sensors. However, this
would require updating of the global map continuously as the inspection is executed,
which would be computationally expensive. This also conflicts with the scheduling
structure, as the prioritized tasks might suddenly change their prioritization as new
obstacles are discovered. The simulation time of the tuned NSB approach is also con-
siderably long compared to the other methods. Then again, slower movements might
provide better video recordings than for fast maneuverable flights, as well as our main
priority is to avoid collisions, not to optimize inspection time.

6.2 Self-designed Reactive Logic for Autonomous In-
spection

A reactive logic was designed as a high level controller for navigation in unknown
environments. As the obtained results illustrate, the self-developed logic described in
algorithm 1 successfully guide the drone around the sensed obstacle. Based on the
simplistic sector feedback from the radar sensors, the rotations of the velocity vector
is an intuitive collision avoidance strategy. However, conflicts occur when multiple
sectors are active, and a proposed solution was suggested by an extended algorithm
that calculates a compromised rotation of the velocity vector. Algorithm 2 seems to
solve the main issue that algorithm 1 had but still doesn’t consider the relative distances
between the drone and the different obstacles. Due to the lack of distance consideration,
the drone’s safety margin can be threatened, and yet another extension needs to be
implemented to the algorithm. However, the simplistic sensor feedback only tells us if
the sector senses an obstacle but not how far away it is. We only know that an obstacle

72

6.3 The Velocity Obstacle Algorithm for Autonomous Inspection

is in the sector, but not if it is at the end of the sensor range, or right next to the drone.
Hence, the system needs to extract distance information from the radar sensors. A
fusion of the different radar sensor readings can be done for more accurate distance
measurements.

6.3 The Velocity Obstacle Algorithm for Autonomous
Inspection

Due to the lack of robustness for the self-developed logic, the Velocity Obstacle algo-
rithm was implemented for the simulator. Based on previous work on Velocity Obsta-
cles, it was expected to be a more robust solution for reactive collision avoidance. As
the results obtained illustrate, the VO algorithm ensures collision-free trajectories, but
the path executed is not optimal. Even though the tuned NSB with task activation and
extended threshold has a simulation time of tsim = 37.35s and the VO for one obstacle
only uses tsim = 9.10s, the path traversed is definitely longer. This has to do with the
NSB tuning of the collision avoidance task vs. the reach goal task.
A notable behaviour happens when the velocity obstacle cone is out of the drone’s
heading direction. When no obstacle occurs in front of the drone, it instantly tries to
move towards the initial reference position, which yields a fast turn towards the ob-
stacle’s threshold. As a consequence of this behaviour, the drone actually overshoots
when it reaches its desired x-position due to the acceleration dynamics. One way of
dealing with this problem might be to introduce a delay in which the normal veloci-
ties are affecting the drone again. Another way to overcome the acceleration dynamics
would be to saturate the velocity even more.

6.4 Combined Approach for Optimality and Robust-
ness

Now that we have seen the different behaviours of the global and local collision avoid-
ance approaches, how can we create an optimal and robust algorithm for multirotor
inspection? We want to obtain the accurate proximity keeping that the global method
applies, but the unknown environment restricts us for such accurate calculations with
the current data provided by the sensors. Can we create a compromised solution that
extracts the best of both approaches?
By processing the data collected from the radar sensors, a local map can be created
for each sample given by the sensors. Using this local map, a re-planned path can be

73

Chapter 6. Discussion

generated by using the NSB algorithm. This might be a suitable solution for optimal
trajectories and robustness of collision avoidance. However, it also requires the NSB
tasks to be rescheduled for every given sample. This frequent rescheduling demands
computational power from a computer larger than what a quadcopter usually carry. A
solution to the limited computational power might be to process the data elsewhere by
sending it to an external computing unit with sufficient computing power. Sufficient
bandwidth for the telemetry is then required in order to send all the gathered data. The
problem of the acceleration dynamics could be solved by using the nonlinear models
but the best solution would be to have the quadcopter to operate within the linearized
equilibrium points to avoid high complexity.

74

Chapter 7
Conclusion and Future Work

Based on the results obtained in chapter 5, a robust collision avoidance algorithm for
fully autonomous inspection using multirotor drones is partly developed. We clearly
see the advantages of the quadcopter platform for proximity keeping, but still have the
challenge of the acceleration dynamics interfering with the desired behaviour. Also, the
reactive methods need to gather much more information from the sensors than whats
considered in this thesis. The robustness and accuracy of the collision avoidance al-
gorithms could be significantly improved by processing the distance and bearing angle
yielded from the radar scans.
The NSB algorithm has proved to be a great way of achieving collision-free trajectories
when the global maps are provided, but we also see that we need to consider the cor-
ner case of the null-space contribution deviating towards zero, as well as an extended
threshold around obstacles because of the drone’s acceleration dynamics. The NSB
algorithm’s performance can be used to set a benchmark for the reactive algorithms’
maximum potential. For the self-developed reactive logic algorithm, it is shown that
we can design a simplistic high level controller for obstacle avoidance based solely
on rotating the velocity vector. Even though this result in collision-free trajectories
for some configurations, it is not a robust solution. This is mainly because we only
control the velocity directly based only on the active sectors. For future work on the
self-developed algorithm, an extension of algorithm 2 can be realized, given that the
relative distances between the drone and obstacles are obtained from the sensors. For
the Velocity Obstacle algorithm, we have seen that it yields robust collision avoidance.
It does however require that we know the dimensions of the obstacles, provided by the

75

Chapter 7. Conclusion and Future Work

sensor, and an extension of our self designed algorithm might be better suited for our
application.

7.1 Suggested Future Work
As the work on this thesis is time limited, the author has not considered every aspect
of the topic completely. A suggestion for future work on the topic is to consider more
complex information provided by the radar sensors. If SAR can be used for 3D imaging
of the sensor readings, a more robust collision avoidance could be designed based on
the environmental information. Even though VO is a much used algorithm for collision
avoidance, it is most commonly used for applications where several agents are moving
in the same environment and by adjusting all agents’ velocity vectors. Hence, a self-
developed algorithm will be more suited for the drone inspection application. It is
therefore suggested to develop an extended algorithm based on bearing angle, distance
and sectors provided from the radar sensors. Algorithm 3 is a proposed algorithm
considering distance.

Algorithm 3 Reactive algorithm with distance consideration

1: function REACTIVE(vref , sensor scan)
2: for all sectors in sensor scan do
3: if sector then
4: current distance← getDistance(sensor scan)
5: if current distance ≤ min distance then . Rotates
6: min distance← current distance . and scales
7: vsector ← 2 · vref ·R(sector) . the velocity vector
8: else
9: vsector ← vref ·R(sector) . Rotates the velocity vector

10: end if
11: end if
12: vmiddle ← vmiddle + vsector . Sum up all velocity contributions
13: α← α+ 1 . Obstacle counter
14: end for
15: vnew ←

vmiddle
α

. Divide by number of obstacles
16: return vnew . New velocity is returned
17: end function

76

Bibliography

[1] University of Pennsylvania. MEAM620: Robotics. 2018. URL: https://alliance.
seas.upenn.edu/˜meam620/wiki/ (visited on 01/19/2018).

[2] Daman Bareiss, Joseph R. Bourne, and Kam K. Leang. “On-board model-based
automatic collision avoidance: application in remotely-piloted unmanned aerial
vehicles”. In: Autonomous Robots 41.7 (2017), pp. 1539–1554. ISSN: 15737527.
DOI: 10.1007/s10514-017-9614-4.

[3] Kristian Klausen. “Cooperative Behavioural Control for Omni-Wheeled Robots”.
In: June (2013).

[4] Filippo Arrichiello. “Coordination control of multiple mobile robots”. In: Novem-
ber (2006), p. 141. URL: http://www.scuoladottoratoingegneria.
unicas.it/Tesi/Ciclo%20XIX/Tesi%20Arrichiello.pdf.

[5] P Fiorini and Z Shiller. “Motion planning in dynamic environments using ve-
locity obstacles”. In: Int. Journal of Robotics Research 17.7 (1998), pp. 760–
772.

[6] Javier Alonso-Mora et al. “Collision avoidance for aerial vehicles in multi-agent
scenarios”. In: Autonomous Robots 39.1 (2015), pp. 101–121. ISSN: 15737527.
DOI: 10.1007/s10514-015-9429-0.

[7] Vetle Andre Bjelland. “Investigation of Collision Avoidance Algorithms Tar-
geted for an Inspection Drone”. In: (2017).

77

https://alliance.seas.upenn.edu/~meam620/wiki/
https://alliance.seas.upenn.edu/~meam620/wiki/
https://doi.org/10.1007/s10514-017-9614-4
http://www.scuoladottoratoingegneria.unicas.it/Tesi/Ciclo%20XIX/Tesi%20Arrichiello.pdf
http://www.scuoladottoratoingegneria.unicas.it/Tesi/Ciclo%20XIX/Tesi%20Arrichiello.pdf
https://doi.org/10.1007/s10514-015-9429-0

[8] Bruno Siciliano and Oussama Khatib. Springer Handbook of Robotics. 2008.
ISBN: 978-3-540-23957-4. DOI: 10.1007/978-3-540-30301-5. arXiv:
arXiv:1011.1669v3. URL: http://www.mendeley.com/research/
force-tactile-sensors/.

[9] James S. Albus. “Outline for a theory of intelligence”. In: IEEE Transactions on
Systems, Man and Cybernetics 21.3 (1991), pp. 473–509. ISSN: 00189472. DOI:
10.1109/21.97471.

[10] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “Formal Basis for the
Heuristic Determination eijj ,” in: Systems Science and Cybernetics 2 (1968),
pp. 100–107.

[11] Oussama Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots. 1986. DOI: 10.1177/027836498600500106. arXiv: arXiv:
1011.1669v3. URL: http://journals.sagepub.com/doi/10.
1177/027836498600500106.

[12] Johann Borenstein and Yoram Koren. “The Vector Field Histogram: Fast Ob-
stacle Avoidance for Mobile Robots”. In: IEEE Transactions on Robotics and
Automation 7.3 (1991), pp. 278–288. ISSN: 1042296X. DOI: 10.1109/70.
88137.

[13] R. Simmons. “The curvature-velocity method for local obstacle avoidance”. In:
Proceedings of IEEE International Conference on Robotics and Automation
4.April (1996), pp. 3375–3382. ISSN: 0-89791-362-0. DOI: 10.1109/ROBOT.
1996.511023. URL: http://ieeexplore.ieee.org/document/
511023/.

[14] James Jackson, David Wheeler, and Tim McLain. “Cushioned extended-periphery
avoidance: A reactive obstacle avoidance plugin”. In: 2016 International Con-
ference on Unmanned Aircraft Systems, ICUAS 2016 (2016), pp. 399–405. DOI:
10.1109/ICUAS.2016.7502597.

[15] Anthony Stentz. “Optimal and Efficient Path Planning for Partially Known En-
vironments”. In: Intelligent Unmanned Ground Vehicles (1997), pp. 203–220.
ISSN: 03405354. DOI: 10 . 1007 / 978 - 1 - 4615 - 6325 - 9 _ 11. URL:
http://link.springer.com/10.1007/978-1-4615-6325-
9%7B%5C_%7D11.

[16] Cyrille Berger et al. “Evaluation of reactive obstacle avoidance algorithms for
a quadcopter”. In: 2016 14th International Conference on Control, Automation,
Robotics and Vision, ICARCV 2016 2016.November (2016), pp. 13–15. DOI:
10.1109/ICARCV.2016.7838803.

78

https://doi.org/10.1007/978-3-540-30301-5
http://arxiv.org/abs/arXiv:1011.1669v3
http://www.mendeley.com/research/force-tactile-sensors/
http://www.mendeley.com/research/force-tactile-sensors/
https://doi.org/10.1109/21.97471
https://doi.org/10.1177/027836498600500106
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3
http://journals.sagepub.com/doi/10.1177/027836498600500106
http://journals.sagepub.com/doi/10.1177/027836498600500106
https://doi.org/10.1109/70.88137
https://doi.org/10.1109/70.88137
https://doi.org/10.1109/ROBOT.1996.511023
https://doi.org/10.1109/ROBOT.1996.511023
http://ieeexplore.ieee.org/document/511023/
http://ieeexplore.ieee.org/document/511023/
https://doi.org/10.1109/ICUAS.2016.7502597
https://doi.org/10.1007/978-1-4615-6325-9_11
http://link.springer.com/10.1007/978-1-4615-6325-9%7B%5C_%7D11
http://link.springer.com/10.1007/978-1-4615-6325-9%7B%5C_%7D11
https://doi.org/10.1109/ICARCV.2016.7838803

[17] Gianluca Antonelli, Filippo Arrichiello, and Stefano Chiaverini. “The null-space-
based behavioral control for autonomous robotic systems”. In: Intelligent Ser-
vice Robotics 1.1 (2008), pp. 27–39. ISSN: 18612776. DOI: 10.1007/s11370-
007-0002-3.

[18] S M LaValle. “Rapidly-Exploring Random Trees: A New Tool for Path Plan-
ning”. In: In 129 (1998), pp. 98–11. ISSN: 1098-6596. DOI: 10.1.1.35.
1853. arXiv: arXiv:1011.1669v3. URL: http://scholar.google.
com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=
intitle:Rapidly-exploring+random+trees:+A+new+tool+
for+path+planning%7B%5C#%7D0.

[19] Paolo Fiorini and Zvi Shiller. “Motion planning in dynamic environments us-
ing the relative velocity paradigm”. In: 1993 IEEE International Conference on
Robotics and Automation 1 (1993), pp. 560–566. ISSN: 10504729. DOI: 10.
1109/ROBOT.1993.292038. URL: http://www.scopus.com/
inward/record.url?eid=2-s2.0-0027264303%7B%5C&%7DpartnerID=
tZOtx3y1.

[20] New Brunswick. “Advanced Control”. In: June (2013).

[21] Hassan K Khalil. “Nonlinear systems”. eng. In: (2015).

[22] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control.
2011. ISBN: 9781119991496. DOI: 10.1002/9781119994138.

[23] Vijay Kumar and Nathan Michael. “Opportunities and challenges with autonomous
micro aerial vehicles”. In: The International Journal of Robotics Research 31.11
(2012), pp. 1279–1291. ISSN: 0278-3649. DOI: 10.1177/0278364912455954.
URL: http://journals.sagepub.com/doi/10.1177/0278364912455954.

[24] MIT Open Courseware. Principles of the Global Positioning System. 2012. URL:
https://ocw.mit.edu/courses/earth-atmospheric-and-
planetary-sciences/12-540-principles-of-the-global-
positioning-system-spring-2012/ (visited on 04/13/2018).

[25] Brage Gerdsønn Eikanger. “The path to Autonomous Inspection using an Un-
manned Aerial Vehicle Brage Gerds{ø}nn Eikanger”. In: June (2017).

[26] Stefan Hrabar. “3D path planning and stereo-based obstacle avoidance for rotor-
craft UAVs”. In: 2008 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS (2008), pp. 807–814. ISSN: 978-1-4244-2057-5. DOI: 10.
1109/IROS.2008.4650775.

[27] You He. “Radar Data Processing with Applications (1)”. eng. In: (Aug. 2016).
URL: http://site.ebrary.com/id/11244272.

79

https://doi.org/10.1007/s11370-007-0002-3
https://doi.org/10.1007/s11370-007-0002-3
https://doi.org/10.1.1.35.1853
https://doi.org/10.1.1.35.1853
http://arxiv.org/abs/arXiv:1011.1669v3
http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:Rapidly-exploring+random+trees:+A+new+tool+for+path+planning%7B%5C#%7D0
http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:Rapidly-exploring+random+trees:+A+new+tool+for+path+planning%7B%5C#%7D0
http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:Rapidly-exploring+random+trees:+A+new+tool+for+path+planning%7B%5C#%7D0
http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:Rapidly-exploring+random+trees:+A+new+tool+for+path+planning%7B%5C#%7D0
https://doi.org/10.1109/ROBOT.1993.292038
https://doi.org/10.1109/ROBOT.1993.292038
http://www.scopus.com/inward/record.url?eid=2-s2.0-0027264303%7B%5C&%7DpartnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-0027264303%7B%5C&%7DpartnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-0027264303%7B%5C&%7DpartnerID=tZOtx3y1
https://doi.org/10.1002/9781119994138
https://doi.org/10.1177/0278364912455954
http://journals.sagepub.com/doi/10.1177/0278364912455954
https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-540-principles-of-the-global-positioning-system-spring-2012/
https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-540-principles-of-the-global-positioning-system-spring-2012/
https://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-540-principles-of-the-global-positioning-system-spring-2012/
https://doi.org/10.1109/IROS.2008.4650775
https://doi.org/10.1109/IROS.2008.4650775
http://site.ebrary.com/id/11244272

[28] Randal W. Beard and Timothy W. McLain. “Small unmanned aircraft theory and
practice”. In: (2012).

[29] Rodney A. Brooks. “A Robust Layered Control System For A Mobile Robot”.
In: IEEE Journal on Robotics and Automation 2.1 (1986), pp. 14–23. ISSN:
08824967. DOI: 10.1109/JRA.1986.1087032. arXiv: 1010.0034.

[30] R. C. Arkin. “Motor Schema – Based Mobile Robot Navigation”. In: The Inter-
national Journal of Robotics Research 8 (1989), pp. 92–112. ISSN: 0278-3649.
DOI: 10.1177/027836498900800406.

80

https://doi.org/10.1109/JRA.1986.1087032
http://arxiv.org/abs/1010.0034
https://doi.org/10.1177/027836498900800406

Appendix A
Appendices

A.1 Theorems

A.1.1 Hurwitz

A matrixA is Hurwitz; that is, Re{λi} < 0 for all eigenvalues ofA, if and only if for
any given positive definite symmetric matrixQ there exists a positive definite symmet-
ric matrix P that satisfies the Lyapunov equation PA +ATP = −Q. Moreover, if
A is Hurwitz, then P is the unique solution of PA+ATP = −Q. This as proved in
theorem 4.6 in [21]

A.1.2 Exponential Stability

Let x = 0 be an equilibrium point for ẋ = f(t, x) andD ⊂ Rn be a domain containing
x = 0. Let V : [0,∞)×D → R be a continuous differientable function such that:

k1||x||a ≤ V (t, x) ≤ k2||x||a

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −k3||x||a

(A.1)

∀t ≥ 0 and ∀x ∈ D, where k1, k2, k3 and a are positive constants. Then, x =
0 is exponentially stable. If the assumption holds globally, then x = 0 is globally
exponentially stable (GES). This as proved in theorem 4.10 in [21]

81

A.2 Minkowski Addition

A.2.1 Minkowski Sum
In geometry, the Minkowski sum of two sets of position vectors SA and SB in Eu-
clidean space is formed by adding each vector in SA to each vector in SB , for example,
the set

SA ⊕ SB = {a+ b | a ∈ SA, b ∈ SB} (A.2)

A.2.2 Minkowski Difference
In geometry, the Minkowski difference of two sets of position vectors SA and SB in
Euclidean space is formed by subtracting each vector in SB from each vector in SA,
for example, the set

SA 	 SB = {a− b | a ∈ SA, b ∈ SB} (A.3)

82

	Thesis Description
	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Algorithms
	List of Figures
	Abbreviations
	Introduction
	Background and Motivation
	Scenario
	Mission Idea
	Challenges
	Proposed Solution

	Previous Work
	Contribution and Scope of This Thesis
	Organization of This Thesis
	Note on Project Thesis
	Nomenclature and Notation

	Literature Review
	Trajectory Generation
	Global Planners
	Local Planners

	Control Architectures
	The Deliberative Architecture
	The Reactive Architecture
	The Hybrid Architecture

	Collision Avoidance Approaches
	A* Algorithm
	Artificial Potential Fields
	Curvature - Velocity Method
	Cushion Extended - Periphery Avoidance
	D* Algorithm
	Dynamic Window Approach
	Null-Space Behavioral Control
	Rapidly Exploring Random Trees
	Velocity Obstacle
	Virtual Force Field

	Model Setup for the Simulator
	Second Order Mass-Spring Damper
	Eigenvalues
	Error Dynamics
	Lyapunov Stability Analysis

	Frames and Relations
	NEU Frame A
	Body frame B
	Relation between NED and Body Reference Frames

	Full Dynamic Quadcopter Model
	Kinematics
	Kinetics
	Dominant Dynamics for the Quadcopter

	Model Implementation and Control
	Newton-Euler Equations of Motion
	Nominal State Linearization
	Position and Attitude Control

	Collision Avoidance
	Simulator

	Theory and Methods
	Sensors
	Radar
	Radar Data Processing
	Radar Sectors

	Low Level Control
	PID Implementation
	Reference Signal

	High Level Control for Global Maps: NSB
	Competitive Approach
	Cooperative Approach
	Behavioural Control
	NSB Applied
	Reach Goal with Obstacle Avoidance
	Task Activation

	High Level Control for Local Maps: Reactive Logic
	Self-developed Reactive Logic
	Extended Reactive Logic for Multiple Obstacles

	High Level Control for Local Maps: VO
	Assumptions
	Collision Cone
	Multiple Obstacles
	Imminent Collisions
	Avoidance Maneuver

	Simulation Results
	Representation of the Results
	PID-control of a Step Trajectory
	Wall Avoidance

	Global Approach for Step Trajectory (NSB)
	NSB with Appropriate Tuning
	NSB with Angle Task Activation
	NSB for Wall Following

	Local Approaches
	Self-developed Reactive Logic
	Velocity Obstacle

	Discussion
	The NSB Algorithm for Autonomous Inspection
	Self-designed Reactive Logic for Autonomous Inspection
	The Velocity Obstacle Algorithm for Autonomous Inspection
	Combined Approach for Optimality and Robustness

	Conclusion and Future Work
	Suggested Future Work

	Bibliography
	Appendices
	Theorems
	Hurwitz
	Exponential Stability

	Minkowski Addition
	Minkowski Sum
	Minkowski Difference

