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Abstract

Through the advances in computing power on smartphones in recent years, the potential
for running computationally heavy systems, with higher demands for fast processing has
become feasible to run on these devices. The field of machine learning is rapidly evolv-
ing and is continuing to influence more and more fields. How these methods work and
how to apply them in human activity recognition problems is assessed in this thesis. An
assessment of the current proximity classifier solution using ultrasound is done and used
as a benchmark for the other models. With the expressive power of neural networks, at-
tempts at combing ultrasound and inertia data for classification will be made. Different
approaches to classify the gesture of bringing the phone up to the ear will be presented,
analyzed, tested and discussed. These include using a sliding window approach with a
multilayer perceptron network and using a recurrent neural network on the sequences. Im-
portant characteristics used to compare different machine learning models is presented.
The process of recognizing gestures with inertial sensor data is explained and tested. Us-
ing just inertia data the neural network showed promising results and was used further in
combination with ultrasound. A heuristic method of known transition pattern between out-
put classes has been proposed and the reason for why it did not improve the performance
of the model has been discussed.

State of the art methods to optimize hyperparameters in neural networks is presented
and tools such as Hyperas is introduced to apply these methods on parameters such as
dropout rate, activation function, and size of a layer. The possibility of training models
with the Keras framework and deploying them to Android devices is introduced. The
performance of the models is evaluated running on an app, which is evaluated empirically
through experiments on different gesture scenarios. The final sensor fusion model was also
tested by multiple users, to check the user independent performance of the model. The
model’s ability to distinguish between the approach and retract motion was quantified.
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Sammendrag

På grunn av økt datakraft på smarttelefoner de siste årene, har potensialet for å kjøre tyngre
systemer på disse enhetene, med høyere krav til rask behandling blitt mulig. Forskning på
maskininlæring utvikler seg raskt og fortsetter å påvirke flere og flere fagfelt i større og
større grad. Hvordan disse metodene fungerer og hvordan man bruker dem i menneskelig
aktivitetsgjenkjenning, blir presentert i denne oppgaven. En vurdering av den nåværende
modellen som bruker ultralyd er gjort, og denne brukes som sammenligningsgrunnlag
for de andre modellene. Med nevrale nettverk vil forsøk på å kombinere ultralyd- og
bevegelesesdata for klassifisering bli gjort. Ulike tilnærminger til å klassifisere beveg-
elsen av å løfte telefonen opp til øret vil bli presentert, analysert, testet og diskutert. Disse
inkluderer bruk av et ”sliding widow” input for et nevral nett og bruk av ”recurrent neural
network” på sekvensene. Viktige egenskaper som brukes til å sammenligne ulike maskin-
læringsmodeller presenteres. Prosessen med å gjenkjenne bevegelser med akselerometer-
og gyroskopdata blir forklart og testet. Ved hjelp av bare bevegelsesdata viste det nevrale
nettverket lovende resultater, og ble brukt videre i kombinasjon med ultralyd. En heuristisk
metode som utnytter kjent overgangsmønster mellom klasser har blitt foreslått, og grunner
til hvorfor metoden ikke forbedret modellens ytelse er blitt diskutert.

Toppmoderne metoder for å optimalisere hyperparametere i nevrale nettverk presen-
teres og verktøy som Hyperas er introdusert for å anvende disse metodene på parametere
som ”dropout”-rate, aktiveringsfunksjon og størrelse på et lag i nettverket. Muligheten
til å trene modeller med Kerasn og distribuere dem til Android-enheter blir introdusert.
Modellene kjøres i en app, for å evalueres empirisk gjennom eksperimenter på forskjel-
lige gestscenarier. Den endelige sensorsammenkoblingsmodellen ble også testet av flere
brukere for å kontrollere modellens ytelse ved hos forskjellige brukere. Modellenes evne
til å skille mellom å løfte opp- og å legge ned telfonen ble og vurdert.
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Chapter 1
Introduction

1.1 Background
Elliptic Labs delivers 3D interaction and sensing products for mobile, wearables and IoT
devices powered by ultrasound. Many of these devices, in particular smartphones, have
inertial sensors such as accelerometers and gyros. The data from these sensors can be
used to complement Elliptic Labs ultrasound based sensing products. Elliptic Labs there-
fore wants to investigate if inertial sensors can be combined with their ultrasonic sensor
solutions to improve the performance of their virtual proximity sensor.

1.2 Motivation
Some gestures require the user the user to move the device, for example picking up the
phone when it is ringing. Other gestures require the phone to be kept somewhat still, for
example when taking a picture with the device. Ultrasound measurements measure the
distance using echo, and the velocity from Doppler shift in the frequency of the ultrasound
signal. The measurements are all relative measurements. The relative motion of the device
can lead to false positive classification using ultrasound. Adding information from inertia
sensors can enhance the confidence of the ultrasound measurements, stating that something
is moving towards or away from the device. The inertia sensor can give information about
if it is the device that is being moved or if it is something moving towards the device.

1.3 Problem Description
State of the art machine learning algorithms for fusing inertial sensor data and ultrasound
signals will be made. Robustness to variation in the motion when different users retract
and extend the device will be considered. The complexity and size of the model will be
accessed, as well as performance when running on a device. How inertia data performs on
it own and in combination with ultrasound will be considered.

1



Chapter 1. Introduction

Specific research questions that will be answered is:

• How to make a model that is robust to variation in the approach and retract motion
from user to user?

• Is it possible to separate the approach and retract motion using inertial sensors?

• What is a good model structure (size, layers, type of nodes) for this problem?

• Does the inertial sensor data improve the classification accuracy? How much?

The tasks for this project is:

• Create a suitable infrastructure for training, deploying and validating models. Use
existing Elliptic Labs tools/infrastructure and the Google Tensorflow framework.

• Make a basic demo app in Android that can be used to evaluate the performance.

• Select, train and evaluate different machine learning algorithms for classifying near/-
far events.

Elliptic Labs provides the following infrastructure to aid the development:

• A smartphone device and an app for data collection.

• A set of recordings containing both ultrasound signals, inertial measurements and
metadata about the recording.

• An interface to load the recordings into Keras.

1.4 Related Work
In Human Activity Recognition most of the NN algorithm focus on offline classification of
activities. Often several sensors are placed in different places on the body. The recordings
are then taken and processed afterward. There are different techniques for different types
of activities in HAR. Some focus on periodic activities such as walking, running, etc.
Others focus on static postures such as sitting, standing, etc. The last group of activities
is the sporadic ones. It is in this category the problem formulated belongs. Many of the
techniques involve convolutional neural networks, to be able to segment the recording in
different activities and is able to assess the whole sequence, using an offline algorithm.
In online prediction, only previous data can be considered as well as the need for fast
processing. Hammerla et al. (2016) proposes several methods, both for online and offline
classification in HAR problems. Bulling et al. (2014) contains a comprehensive walk-
through of different HAR problems using inertial sensors. This thesis will discuss several
of the problems and techniques mentioned there.
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Chapter 2
Machine Learning Theory

Machine learning is a sub-field of artificial intelligence, that utilizes data to make predic-
tions and finding structures. (Raschka, 2017) Machine learning is commonly divided into
two sub-groups, supervised learning and unsupervised learning. In supervised learning,
the data is labeled so that the input variables are linked with an output variable. The pur-
pose of supervised learning is to build a model that explains the relationship between the
input- and output variables. In unsupervised learning there exist only input variables. The
goal of unsupervised learning is to find hidden structures within the input data.

2.1 Supervised learning
When doing supervised learning it is normal to split the data into two sets, a training set,
and a test set. This is visualized in figure 2.1. The training set is used to build a model and
the test set is used to find out how well the model predicts unseen data.

The data can also be split into three categories, a training- and test set as before, as
well as a validation set to tune the model before testing, visualized in figure 2.2. A reason
for having a validation set is that it can be used to do hyperparameter tuning, without
overfitting to the test set. The model is trained with several different parameters and the
model with the highest accuracy on the validation set get selected. When training in this
way, the validation set effects the model, even though the model is not trained on the
validation set. This is due to the optimization towards good performance on the validation
set, through tuning of hyperparameters. The validation set is also used to estimate the
prediction error and the test set is used to asses the generalization error of the model.
(Hastie, 2009)

3



Chapter 2. Machine Learning Theory

Figure 2.1: Example figure of split between training and test data.

Figure 2.2: Example figure of split between training, validation and test data.
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2.1 Supervised learning

2.1.1 Loss function
The loss function is a function that is used to quantify how precise a machine learning
models is, by stating how far from the truth the predictions it makes is. The loss function is
a function of the parameters in the model,W and b. When the model is a regression model,
i.e. it produces predictions with continuous values, the loss function is often defined as the
squared difference between predicted values ŷ and the true value y,

J(W, b) = L(ŷ, y) = 1

2
(ŷ − y)2 (2.1)

With binary classification using logistic regression, the negative log-likelihood func-
tion is used,

J(W, b) = L(ŷ, y) = −(y log ŷ + (1− y) log(1− ŷ)) (2.2)

For multi-class classification, with softmax regression over k classes, the cross-entropy
loss is used,

J(W, b) = L(ŷ, y) = −
k∑
j=1

yj log ŷj (2.3)

Where yj is a k-dimensional vector of zeros, except a 1 at the position of the true class.
(Ng, 2013a)

2.1.2 Evaluation
The Bias-Variance Tradeoff

To evaluate how good the ML-model performs a sort of performance measure is needed.
Assume that the underlying form form of the model is Y = f(X) + ε, where ε is white
noise, i.e. E(ε) = 0 and V ar(ε) = σ2

ε . Having a model f̂(X) and using the squared-error
loss, evaluated at X = x0:

Err(x0) = E[(Y − f̂(x0))2|X = x0]

= σ2
ε + [Ef̂(x0)− f(x0)]2 + E[f̂(x0)− Ef̂(x0)]2

= σ2
ε +Bias2(f̂(x0)) + V ar(f̂(x0))

(2.4)

The σ2
ε is the variance in the target Y and cannot be avoided unless σ2

ε = 0. The bias
is how much the average estimate differs from the true mean. The variance is the squared
deviation of f̂(x0) from its mean. (Hastie, 2009) This is a way of evaluating regression
models. Evaluation with these metrics is often known as ”The Bias-Variance Tradeoff”.
If the bias of the model is high, it means that the model is underfitted. This means that
the model has not enough information from the training set, and thus it can not grasp the
underlying model between x and y. If the variance is too big, the model could be overfitted.
This means that the model is modeled too closely to the noise in the training set, and it will
underperform on the test set. Normally reducing one of them will result in an increase in
the other, that is the reason for calling it a tradeoff. (Le Calonnec, 2012)
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Chapter 2. Machine Learning Theory

Confusion Matrix

To evaluate classification a different approach must be used. A common way is to divide
the results into a confusion matrix, as seen in table 2.1.

Predicted Class
P’ N’

A
ct

ua
lC

la
ss P

True
Positive
(TP)

False
Negative
(FN)

N
False
Positive
(FP)

True
Negative
(TN)

Table 2.1: Confusion Matrix.

From the confusion matrix, the prediction error and accuracy can be calculated. The
error is the ratio of wrong classified samples.

ERR =
FP + FN

FP + FN + TP + TN
(2.5)

The accuracy is the ratio of correctly classified samples.

ACC =
TP + TN

FP + FN + TP + TN
= 1− ERR (2.6)

The precision is the rate of true positives among the positive predictions,

PRE =
TP

TP + FP
(2.7)

The recall is the rate of true positives among the positive samples,

REC =
TP

TP + FN
(2.8)

Often a combination of precision and recall is used, known as the F1-score,

F1 = 2
PRE ∗REC
PRE +REC

(2.9)

Multi-class Confusion Matrix

When the classification is for multiple classes, the confusion matrix and the matrix changes
a bit. Each prediction is matched up with the actual class of the sample, as seen in table
2.2.
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2.1 Supervised learning

Predicted Class
A B C

A Maa Mab Mac
A

ct
ua

lC
la

ss B Mba Mbb Mbc

C Mca Mcb Mcc

Table 2.2: Multi-class Confusion Matrix.

The average accuracy becomes,

ACC =

∑
iMii∑
i,jMij

(2.10)

The precision and recall can be defined in three ways; class independent, micro averaged
and macro averaged.

The individual precision for a class i is,

PREi =
TPi

TPi + FPi
=

Mii∑
jMji

(2.11)

and the recall is,

RECi =
TPi

TPi + FNi
=

Mii∑
jMij

(2.12)

when there is only one class per instance, the micro-averaged precision equals recall,
since

∑
FP =

∑
FN , and the equation becomes,

PREµ = RECµ =

∑
i TPi∑

i TPi + FPi
=

∑
iMii∑
i,jMij

(2.13)

which is identical to the average accuracy.
The macro average metrics is the sum of the individual class metrics, divided by the

number of classes. For the macro-average precision with n classes, the equation becomes,

PREmacro =

∑
i PREi
n

=

∑
i

TPi

TPi+FPi

n
(2.14)
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Chapter 2. Machine Learning Theory

and the recall,

RECmacro =

∑
iRECi
n

=

∑
i

TPi

TPi+FNi

n
(2.15)

K-fold Cross Validation

K-fold cross validation is a method where the data is split into k different folds, without
replacement. K − 1 folds are used to train the model and the last fold is to evaluate the
performance of the model. This is done k times and makes k models and k estimations of
the model performance. A visualization with white training folds and black test folds can
be seen in figure 2.3.

Figure 2.3: K-fold cross validation, visualized with k = 8 folds.

The case where K = N , i.e. the number of folds equals the number of samples, is
known as leave-one-out cross validation. This is only used when the dataset is very small.
(Hastie, 2009)

2.2 Neural Networks

The concept of a perceptron neural network is to have an input layer, hidden layers, and
an output layer. The hidden layers consist of one or more perceptrons.

2.2.1 Perceptron

A perceptron consists of weights, a bias, and an activation function.
The inputs to the perceptron are given as a vector x. Each component is multiplied

by its corresponding weight in the weight vector w, and summed up along with a constant

8



2.2 Neural Networks

Figure 2.4: A perceptron layer, with input x, weights w, bias b, and activation function f .

bias b, to a scalar value z,

z =

n∑
i=1

wixi + b = wTx+ b (2.16)

The equation 2.16 combined with equation 2.18 is visualized in figure 2.4.
To simplify the notation and calculation of z, it is common to add a 1 as the first

element in x and add the bias as the first element in w, often denoted as w0. This gives,

z =

n∑
i=0

wixi = wTx (2.17)

Figure 2.5: Perceptron layer with bias added to w.

The equation 2.17 combined with equation 2.18 is visualized in figure 2.5.
To produce the scalar output activation, a, of the perceptron an activation function f is

applied to the sum z,

a = f(z) = f(wTx) (2.18)

Each hidden layer consists of one or more perceptron, where the output a is fed as
input to the next layer. For each layer, all the activation outputs form an activation vector
A. A(0) = x is defined to simplify the notation.

The sum of inputs in a hidden layer h is the activation from layer h−1 multiplied with
the weight matrixW (h), which contain all the weights for each perceptron in layer h. This

9



Chapter 2. Machine Learning Theory

Figure 2.6: Multilayer Perceptron Neural Network.

forms a sum vector Z(h),
Z(h) = A(h−1)W (h) (2.19)

and the activation for the layer
A(h) = f(Z(h)) (2.20)

this propagation trough layers is known as forward propagation. Together these layers
form a Multilayer Perceptron neural network. The structure of MPL network and how the
layers are connected is visualized in figure 2.6.

2.2.2 Backpropagtion
Backpropagation is a method for updating the weights and biases in a neural network.

First, define the error gradient, also called the sensitivity. (Mizutani et al., 2000)

δ(h) = ∇z(h)L(ŷ, y) (2.21)

For the output layer (N + 1) using the chain rule, the equation becomes

δ(out) = ∇ŷL(ŷ, y) ◦ (f (out))
′
(z(out)) (2.22)

for the hidden layers h = N, ..., 1,

δ(h) = (Wh+1δ(h+1)) ◦ f
′
(z(h)) (2.23)

f
′
(z(h)) is the element wise derivation with regard to z(h). Ng (2013a) the gradients

for layer h becomes,

∇W (h)J(W, b) = δ(h)a(h)T (2.24)

∇b(h)J(W, b) = δ(h) (2.25)

10



2.2 Neural Networks

For the update of the parameters, a few different techniques can be used. With stochas-
tic gradient descent with a learning rate of α, the equation becomes,

W (h) =W (h) − α [∇W (h)J(W, b)] (2.26)

b(h) = b(h) − α [∇b(h)J(W, b)] (2.27)

The equations above are for backpropagation with a single training example. With
more data, the update rule takes the average gradient. This yields these equations for m
examples, known as batch gradient, (Ng, 2013b)

W (h) =W (h) − α

[
1

m

m∑
i=1

∇W (h)Ji(W, b)

]
(2.28)

b(h) = b(h) − α

[
1

m

m∑
i=1

∇b(h)Ji(W, b)

]
(2.29)

The different techniques to update the parameters is described in section 2.3.

2.2.3 Activation functions

An activation function is a function that is performed on the sum z in a perceptron. There
are several functions, the most common functions is listed in table 2.3

Function Formula

sigmoid f(x) =
1

1 + e−x

tanh f(x) =
ex − e−x

ex + e−x

ReLU f(x) = max(0, x)

Softmax fi(x) =
exi∑k
j=1 e

xj

Table 2.3: Activation functions.

When doing multiclass classification, the output layer typically uses a softmax activa-
tion function to determine the probability for each class. The softmax function considers
the layer as a whole and not just a single perceptron as the other activation functions.
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Chapter 2. Machine Learning Theory

2.2.4 Avoiding overfit

When the neural network has good performance on training data but does not generalize
to the test data, it could mean that the network has overfitted to the training data. There
exist several techniques to deal with these problems, among them is the dropout-layer for
neural networks and regularization in the loss function.

Dropout

In the training phase, the dropout layer works by randomly dropping nodes in the coherent
layer, with a probability p. How this effect the neural net can be seen in figure 2.7. In the
testing phase, all activations are used, but they are reduced by a factor of p. This is done
to accommodate for missing activations during the training phase. The activation of one
node during training and testing is visualized in figure 2.8. The purpose of a dropout layer
is to avoid over-fitting the model. (Srivastava et al., 2014)

Figure 2.7: From (Srivastava et al., 2014): ” Dropout Neural Net Model. Left: A standard neural
net with 2 hidden layers. Right: An example of a thinned net produced by applying dropout to the
network on the left. Crossed units have been dropped.”

Figure 2.8: From (Srivastava et al., 2014): ”Left: A unit at training time that is present with
probability p and is connected to units in the next layer with weights w. Right: At test time, the unit
is always present and the weights are multiplied by p. The output at test time is same as the expected
output at training time.”
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2.3 Gradient decent optimization algorithms

Regularization

The concept of regularization is to avoid big dominant weights. A regularization term can
be added to the loss function, often the L2-regularization term is used,

λ||w||2 = λ

m∑
i=1

w2
i (2.30)

The L2-regularization term is also known as L2 shrinkage or weight decay. The λ is
the regularization parameter.

2.3 Gradient decent optimization algorithms
The algorithm for updating weights after backpropagation is known as gradient descent.
There a several approaches to how much the gradient should influence the weights, as
well as how many samples that are needed before an update can be done. To simplify the
notation the parameters W and b will be denoted as θ.

2.3.1 Batch gradient decent
Batch gradient descent is a weighted update after all samples in the training set has been
accessed. The weight is known as the learning rate. Batch gradient descent is described in
equations 2.28 and 2.29.

2.3.2 Stochastic gradient decent
Stochastic gradient descent is similar to the batch gradient, but an update of the weights is
performed after every sample assessment. It is as described in 2.26 and 2.27.

2.3.3 Mini-batch gradient decent
When there is a lot of training examples, doing gradient descent on every single exam-
ple can be computationally heavy. To accommodate for this mini-batch gradient decent
divides the training data up into batches, and does backpropagation and updates the pa-
rameters based on the batch.

2.3.4 Momentum
The vanilla gradient descent algorithms have problems with slow convergence when the
learning rate is too small. (Ruder, 2017)

It also struggles when the gradient is shifting around local optimums. To improve on
this momentum is added, where a fraction of the previous update is kept in the new update.

vt = γvt−1 + α∇θJ(θ)
θ = θ − vt

(2.31)
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γ is the momentum term and is typically set around 0.9. The effect of momentum in a
2D optimization problem can be seen in figure 2.9.

(a) Without momentum (b) With momentum

Figure 2.9: Comparison of convergence to optimum, without momentum and with momentum.
Source: Orr (1999).

2.3.5 Nesterov accelerated gradient
Instead of updating the momentum with the current gradient, the Nesterov accelerated
gradient algorithm uses the gradient at the point where the current momentum would take
new weight parameter. This behavior can be considered as a look ahead correction of the
momentum.

vt = γvt−1 + α∇θJ(θ − γvt−1)

θ = θ − vt
(2.32)

2.3.6 Individual updates of parameters
When dealing with sparse data it can sometimes be hard to adjust the weights for infre-
quent classes. To accommodate this problem, some algorithms stores info from previous
updates, so that an infrequent class gets more leverage on the model. These techniques also
utilize some of the concepts mention earlier. These models include Adagrad, Adadelta,
RMSprop, Adam, AdaMax, and Nadam, but these algorithms are beyond the scope of this
thesis.

2.4 Other types of neural networks

2.4.1 CNN
Convolutional neural networks consist of weights which are used in a convolutional filter.
This can only be used on data where the order in which features are stacked is non-trivial.
This can be images, videos etc. The filters perform a convolution on a subset of the input
corresponding to the filter size. This is done until the every input region is filtered. An
example of how a convolutional neural network is applied to an image is seen in figure
2.10.
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2.4 Other types of neural networks

Figure 2.10: CNN example. S1 is the result after 4 different convolutional filters have been applied.
The feature maps are then downsampled, into C1. How the next convolution is applied to give 6
feature maps can be in numerous ways, depending on the implementation. After a poling layer
results to C2. C2 is then fed to a MLP network, which makes the prediction. Source: (CNNs).

Pooling

Pooling layers are used for down-sampling. This is done by selecting the max or mean
within a local subsection. A typical size is 2x2 pooling and a stride of the pooling-filter of
2. (Chollet, 2017)

2.4.2 RNN
The NN models discussed so far has considered each data sample independently, and the
order in which they appear has no influence on the result. However, for some data, the
order can be very important, such as time-series, text, videos et al.

The sequential data can be split into different categories, depending on the form of the
input and output.

The first one is many-to-one, where the input is a sequence, and the output is a class
label. An example is sentiment analysis on sentences.

The second is one-to-many, where the input is fixed in size and the output is a sequence,
an example is music generation.

The last is many-to-many. Here both the input and the output is sequences. This group
can be further divided into two sub-groups, synchronized- and delayed many-to-many.

In the synchronized many-to-many, the input until time t corresponds to the output
until time t. An example is speech recognition.

In the delayed version, however, the input and output do not necessarily follow the
same order. There might be a difference in length as well. An example of delayed many-
to-many sequential series is machine translation. (Raschka, 2017)

The difference between a standard NN and RNN is that in a RNN get information
from the input and the hidden layer at the previous step. In the simplest form of RNNs, the
information passed is the output of the layer. This is also called the state of the network.
(Chollet, 2017) The equation for a RNN-cell with activation function f becomes

h(t) = f
(
Whx ∗ x(t) +Whh ∗ h(t−1) + bh

)
(2.33)

where the Whx matrix is the same as in MLP and Whh is the weight matrix for the
state h. A visualization of three simple RNN-nodes is seen in figure 2.11. Before the first
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step, the state is not defined. This initial state is often set to the zero matrix. (Chollet,
2017)

Figure 2.11: Visualization of a simple RNN structure.

A problem for RNN is to link some input that happens early and link it to a later event.
This is known as the vanishing gradient problem. It is due to the nature of long-range
dependencies. When doing backpropagation through time, BPTT, with a gradient update
δw between two cells over a stretch of time t and T . δw will be multiplied with itself
T − t times. If δw is not 1, it will either become very small or very big. The former is
known as the vanishing gradient problem, and the latter is known as the exploding gradient
problem.(Bengio et al., 1994) The exploding gradient problem can be identified by infinite
weight values in some of the weights in Whh. The vanishing gradient problem, however,
is more difficult to address since it causes only a very small update. (Ng, 2018)

Long Short-Term Memory

To deal with the vanishing gradient the Long Short-Term Memory method was introduced
by Hochreiter and Schmidhuber (1997). A LSTM-cell is basically a memory cell. It takes
the output from the previous cell h(t−1), the cell-state from the previous cell c(t−1) and
the current input x(t). It uses different gates to determine how to update the cell-state and
determine the new output. The forget gate is used to determine if the previous cell state
shall be used,

ft = σ
(
Wxfx

(t) +Whfh
(t−1) + bf

)
(2.34)

this gate was not introduced in the original paper, but came later in Gers et al. (2002).
The input gate is used to update the cell state,

it = σ
(
Wxix

(t) +Whih
(t−1) + bi

)
(2.35)
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2.4 Other types of neural networks

and a proposed cell state is made,

c̃(t) = tanh
(
Wxcx

(t) +Whch
(t−1) + bc

)
(2.36)

the current cell state is computed as,

c(t) = (it � c̃(t)) + (ft � c(t−1)) (2.37)

where � is the element-wise product.
The output gate is used to update h,

ot = σ
(
Wxox

(t) +Whoh
(t−1) + bo

)
(2.38)

and the new output becomes,

h(t) = ot � tanh(c(t)) (2.39)

A visualization of three LSTM-nodes is seen in figure 2.12.
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Figure
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Gated Recurrent Unit

In 2014, Cho et al. (2014) introduced a simpler version of the LSTM. It only has two gates,
the update gate, and the reset gate.

ut = σ
(
Wxux

(t) +Wcuc
(t−1) + bu

)
(2.40)

rt = σ
(
Wxrx

(t) +Wcrc
(t−1) + br

)
(2.41)

The reset gate is used in the proposal for the new cell state,

c̃(t) = tanh
(
Wxcx

(t) + rt �Wccc
(t−1) + bc

)
(2.42)

The new cell is updated with the update gate,

c(t) = (ut � c̃(t)) + ((1− ut)� c(t−1)) (2.43)

The output from GRU is simply the cell state,

h(t) = c(t) (2.44)

A visualization of three GRU-nodes is seen in figure 2.13.
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Figure
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2.5 Hyperparameter tuning

2.5 Hyperparameter tuning
Machine learning models consist of two types of parameters which describes how the
structure of the model is. The first is normal parameters, where the parameter values
are learned from data. In the context of deep learning, the normal parameters are called
weights. All the parameters that are not updated from learning on data are called hyper-
parameters. This can be the number of layers in a neural network, the type of activation
function, learning parameters, dropout and regularization rate and so on.

When doing hyperparameter tuning it is important to split the data into three sets, a
training set, a validation set, and a test set. The training set is used to train the model, and
the validation set is used to tune the hyperparameters. The test set is used to check that the
model generalizes to unseen data as well.

Hyperparameters can be updated manually, given an experienced practitioner. There
are some methods that can be used to optimize hyperparameters. Grid-search tests all
combinations of the hyperparameters that shall be optimized. Since the computational
overhead of training NNs can be large, this brute force method is mostly used for models
that are not very computationally demanding. A method that is often used for NNs is
random search. The hyperparameters are chosen randomly within predefined boundaries
repeatedly. For each set of hyperparameters, the model is trained from scratch. The model
with the best performance on the validation set is chosen in the end. Another approach
is to use trees of Parzen estimators. (Bergstra et al., 2011) The field of hyperparameter
optimization is still in the early stages and is expected to grow in importance in the years
to come. (Chollet, 2017)
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Chapter 3
Experiment

3.1 Dataset
Elliptic Labs provided a dataset containing 828 recording files, which together provided 10
415 248 sample points. Each sample point contains data from several sensors: accelerom-
eter, gyroscope, infrared proximity, and ultrasound proximity data. The dataset contains
recordings from several different users. The recordings contain data where the phone is
either brought up to the ear in an ”answer call”-like fashion. Sequences with a motion to
this position are considered as a positive recording. Other recordings contain sequences
where the phone is kept at rest in the hand or on a table, considered as negative recording.
The dataset contains recordings from several environments, indoor in an office, in public
places such as a street or in a cafe, in vehicles such as cars, buses, trains, and aircraft. The
recordings of the IMU-data have a sampling-period of 2.49 ms, which gives a sampling
rate of roughly 402 Hz. The US data has a sampling rate of 10 Hz

In addition, Elliptic Labs provided an app to do more recordings. 52 new recordings
have been made, containing 381 225 samples. These recordings have been made so that
they address problematic scenarios detected during development.

The training data is the data provided by Elliptic Labs and the validation data is the
new recordings. To test how well the model generalizes, the model will be tested on the
device with an experiment, instead of using a test set. The app experiment is described in
section 3.4.

3.1.1 Using ultrasound for proximity
The ultrasound data comes from a proximity algorithm provided by Elliptic Labs. To check
how well the ultrasound proximity algorithm performs it is compared with the infrared
proximity data, where infrared proximity is considered as ground truth. When the IR
sensor gives negative output, the state is considered as Far. When the IR sensor gives
positive output, the state is considered to be Near. The results are evaluated with the
methods described in section 2.1.2.
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Ultrasound
Proximity

P’ N’

In
fr

ar
ed

Pr
ox

im
ity P TP =

53.43%
FN =
8.83%

N FP =
0.15%

TN =
37.57%

Table 3.1: Confusion Matrix for Ultrasound- and Infrared Proximity data.

Metric Result
Accuracy 0.910
Precision 0.997
Recall 0.858
F1 0.922

Table 3.2: Metrics for Ultrasound- and Infrared Proximity data.

The basis of figures for table 3.1 and table 3.2 is seen in appendix A, table A.1.
As seen in table 3.2, the ultrasound algorithm has very high precision and gives very

reliable positive classifications. However, the ultrasound algorithm has quite a few false
negatives. This gives a lower recall and is the main weakness of the classification.

In figure 3.1, it can often be seen that it has false negatives at the start of the IR positive
sequence.

It is worth noting that the data in table 3.1 and table 3.2 is the data that the US classifier
is tuned on.
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Example used in plots

The example sequence used in the plots is one of the 52 new sequences. The sequence is
seen in figure 3.1, figure 3.2, figure 4.1, figure 4.2, figure 4.3, figure 4.4, figure 4.5 and
figure 4.6. It is selected because it contains several transitions, as well as it shows that
the US classifier can be a bit slow, as well as it can have a too high threshold to produce
a Near-event. The US classifier does not detect the Near-event at the second and fourth
transition. At the third transition, the classifier reaches the Near 150ms after the IR sensor.
At first and the last transition the classifier is quite close to the IR sensor.

3.1.2 Altering the dataset to detect transitions between states
To be able to recognize the transition between the Far state and the Near state, a window of
200ms was added before and after the transition, which was labeled as transition states in
the dataset. They were called Far2Near and Near2Far. It is important to notice that most
of the transition is longer than 200 ms, so the performance for these two classes is not
expected to be as good as the two others. However, most of the behavior in the transition
is captured within the 200ms and it is with great certainty that there is a transition within
the window in most cases. The alternatives would be to either label all the transitions by
hand, or to use a segmentation algorithm to find the transitions.

The addition of leads to a quite unbalanced set, where the transition state has a lot
fewer samples than Far and Near. To make sure that the transition states does not get
neglected by the NNs, the training methods should consider this.

To accommodate for the imbalance in the set, a resampling technique could be used.
By letting the classes with small sets appear more often than it normally would, the classes
get more impact on the model. (Raschka, 2017) Another approach is to use a weighting of
the classes. During training, the loss function will weight each error according to the class
it belongs to. By giving a higher weight value to the small classes, these classes will have
a bigger impact on the loss function, which again will give a bigger impact on the model.
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3.2 Neural Network Framework

3.2.1 Keras
Keras is an API for high-level neural networks development. It runs on top of other deep
learning toolkits, such as TensorFlow, CNTK, and Theano. Keras is designed for fast
prototyping, with a user-friendly interface that is designed to have a minimum of actions
needed for common use cases. A wide range of network types is supported, including
CNNs, RNNs, and combinations of the two. Keras is able to run seamlessly on both CPU
and GPU. If the TensorFlow backend is chosen, it also supports TPU processing through
Google Cloud. (Chollet and others, 2015)

3.2.2 TensorFlow
TensorFlow is an open-source machine learning framework. It was developed in Googles
Google Brain project and was later released for public use. TensorFlow is available for
Python, C++, Java and Go. It also has bindings for several other languages. However, the
Python API is considered most mature. TensorFlow comes with a range of operations, such
as mathematical- and matrix operations, NN building blocks and control flow operations
for multi-device computation. (Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo et al., 2015)

3.3 Setup
The experiment is conducted by building models based on data collected by Elliptic Labs
and data collected afterward with the device and interface provided by Elliptic Labs. The
models are built with Keras, and the Keras-model is then ported to TensorFlow. Then it is
launched on an Android device to do the experiment.

3.3.1 Device
The device provided by EllipticLabs is a Google Pixel, running Android 8.0.0(Oreo).
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Figure 3.3: Reference axes on the Pixel device. Source: Google (2018).

3.3.2 Porting a model from Keras to Android
To be able to use a model that is trained in Keras, some actions need to be done. Android
does not support running Keras models directly, but Android support running TensorFlow
models. Since Keras runs TensorFlow in the backend, it is possible to get the TensorFlow
session and retrieve the model from that session. However, some considerations need to
be done before the model is runnable on an Android device.

First, the learning phase of the backend needs to be set to test. This is done with the
following code,

from keras import backend as K
K.set_learning_phase(0)

Then the loaded model need to be retrieved using the current Tensorflow session, con-
vert all variables in the model to constants and saved as a Protocol Buffer file.

sess = K.get_session()
constant_graph = graph_util.

↪→ convert_variables_to_constants(sess, sess.graph.
↪→ as_graph_def(), [output_node_name])

graph_io.write_graph(constant_graph, logdir,
↪→ graph_file_name, as_text=False)

The Protocol Buffer file can be run on Android through the TensorFlowInferenceInter-
face class. The input is given to the model with the feed() method, taking the name of the
input node, the input data and the structure of the data as arguments to the method. The
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model is run with the run() method, taking a list of output node names as argument. To
get the output, the fetch() method is run, taking the name of the node of interest and a list
to save the output in as arguments.

3.3.3 Tuning of hyperparameters
To tune the hyperparameters of the model, Hyperas was used. Hyperas is is a wrapper for
Hyperopt, which enables Keras models to be optimized with Hyperopt. Hyperopt is based
on Bergstra et al. (2013) and supports two search algorithms, random search, and tree of
Parzen estimators. The hyperparameters that were updated was the dropout-rate for each
dropout-layer and the activation of the dense layers. When using RNN, the number of
recurrent units was tuned as well.

3.3.4 Data generators
The neural networks were trained in mini-batches using Keras’ fit generator() method.
Two different types of generator structures were used, depending on the needs for the
network being trained. A generator is a function that yields data batches in an infinite loop.
The first yields a random sample with a label, with a probability pre-defined by some label
weight. The second generator yields samples in sequential order, as they appear in the
recording.

When doing hyperparameter optimization with the random data generator, the model
was trained with 10 epochs, each epoch ran for 5000 steps, where each step contains a
batch of 32 samples. When the sequential generator is used, the number of steps equals
the number of samples divided by the batch size.

3.4 Testing performance with app
To test how well the different neural networks perform, an app was made to be able to
evaluate the output in real-time. This was done by exporting the NN model to an Android
app, that took in accelerometer and gyroscope data, and fed it to the model. In the sensor
fusion cases, ultrasound data was added as well through an API provided by Elliptic Labs.
The app is based on the work in Valkov (2017) This is an app that takes in IMU data in
2000 ms batches and classifies the batch, by displaying the probabilities. The app that is
used for the experiments is modified to do a classification after each sensor update, and
update the color of the screen according to the classification every 100ms.

The app will be used to evaluate how well the app generalizes, instead of using a
separate test set. The reason behind this is that the app will show the real performance,
whereas with a test set it is harder to interpret in which cases the model succeed and which
cases it fails. The tests will contain several motion scenarios. The first is the motion of
bringing the phone to the ear, both to the right- and left ear. This should be classified as a
Near event, with coherent transition states. This motion is named Answer Call, and is the
motion that the model is trained to recognize.

The second is to pick the phone up from the table and rotate the phone so one is able
to look at it. This should be classified as a Far event. This motion is named Look Up. The
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reason for choosing to test this motion is that it is one of the other natural motions when
the device is ringing.

The last scenario is to pick up the phone and rotate it forming a figure 8 pattern. This
shall reveal if the model only uses the orientation of the phone to classify events. The
motion is named Figure 8.

Each experiment trial will receive a positive mark if they predictions from the model
are as described for the motion. If the predictions deviate from the description, the trial
will receive a negative mark.

The marks will be summed up for each motion, and a total of 10 trials per motion will
be performed.

3.5 Machine Learning Workflow
To be able to recognize changes over time, the dataset needs to be processed in such way
that samples at different time steps can be compared.

3.5.1 Sliding window

When using a sliding window approach, each sample is altered to contain previous values.
With a window of size T , the samples will contain the T − 1 previous values, as well as
the current value. So at timestep t, the input to the network will be the samples from time
t, till t− T + 1.

For example, if a window of 20 timesteps is used for a model that only takes IMU
data. Each timestep contains 3 gyroscope values, 3 accelerometer values. The input to the
model will contain 20 ∗ (3 + 3) = 120 values. If it is a sensor fusion model it would take
data from the US classifier as well, so the input would be 20 ∗ (3 + 3 + 1) = 140 values.

3.5.2 Generator choice

Before training can begin it is important to consider the demands of the model regarding
data generators. Some models require all the data to come in sequential order, and the
sequential generator has to be used. Other models only require the data to be sequential
within the time window given as input to the model.

3.5.3 Loss function

All of the models were trained by using the categorical cross entropy loss function.

3.5.4 Structure of the network

The size of the network, different activation functions, and different window sizes was
explored before arriving on a final structure. The size of the window is 20 timesteps. The
model has 3 dropout layers and 3 activation layers, in alternating order. The activation
layers contain 64 nodes, 32 nodes, and 16 nodes, in the order in which they appear. The
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output layer consists of a softmax layer, with a number of nodes that corresponds to the
number of classes.
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3.5 Machine Learning Workflow

Figure 3.4: Visualization of the model structure.
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Chapter 4
Results

The basis of figures for all tables in this section can be found in appendix A.

4.1 Using IMU data
The first models that were created used only inertial measurement data, i.e. accelerometer
and gyroscope data.

4.1.1 Training with only Far and Near states
The first model did not use the transition states described in section 3.1.2. The input for
the model was a sliding window with 20 timesteps, consisting of accelerometer and gyro-
scope data. For this model the three dropout layers where tuned with Hyperas. Dropout-
rates between 0 and 1 were randomly selected, with a uniform distribution. The resulting
dropout-rates can be seen in table 4.1. The activation function used in the dense layers
was the sigmoid function. The prediction of this model on the example sequence is seen
in figure 4.1.

Layer graph input Dropout 1 Dropout 2
Dropout rate: 0.33 0.1 0.46

Table 4.1: Results from the hyperparameter tuning with only far and near states.

The basis of figures for table 4.2 and table 4.3 is seen in appendix A, table A.2.
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4.1 Using IMU data

Classification
Near’ Far’

In
fr

ar
ed

Pr
ox

im
ity Near TP =

43.84%
FN =
5.05%

Far FP =
2.59%

TN =
48.52%

Table 4.2: Confusion Matrix for model on far and near state model.

Metric Result
Accuracy 0.92
Precision 0.94
Recall 0.90
F1 0.92

Table 4.3: Metrics for model on far and near state model.

Motion: Positive Negative
Transition 3 7
Look up 0 10
Figure 8 0 10

Table 4.4: Results from app experiment on far and near state model.
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4.1.2 Training with transition states
This model used the same input as the previous model, but the output was altered to in-
clude transition states as described in section 3.1.2. When training with transition states,
the performance metrics need to be altered in a suitable way for a multiclass classifica-
tion problem. Since there is a class imbalance, with many more far and near events than
transition events, the metrics should consider this as well.

Classification
Far Near Far2Near Near2Far

Far 41.73% 1.12% 1.81% 1.45%

A
ct

ua
lC

la
ss Near 6.29% 41.53% 0.39% 0.67%

Far2Near 0.36% 1.17% 0.90% 0.08%

Near2Far 0.35% 0.23% 0.06% 1.85%

Table 4.5: Confusion Matrix for model with transition states.

Dropout Layer graph input Dropout 1 Dropout 2
Dropout rate: 0.27 0.1 0.31
Activation Layer dense 1 dense 2 dense 3
Activation Function: ReLU ReLU Sigmoid

Table 4.6: Results from the hyperparameter tuning with transition states.

The basis of figures for table 4.5 and table 4.7 is seen in appendix A, table A.3.
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Metric Macro-avg. Far Near Far2Near Near2Far
Accuracy 0.86
Precision 0.64 0.86 0.94 0.29 0.46
Recall 0.71 0.91 0.85 0.36 0.74

Table 4.7: Metrics for model with transition states.

Motion: Positive Negative
Transition 9 1
Look up 10 0
Figure 8 6 4

Table 4.8: Results from app experiment on model with transition states.It is worth noting that the
model gives transition states in Look up and Figure 8 motions, but no false Near states.

4.1.3 Using Gated Recurrent Units
When using GRU in the network, the samples are sent in one timestep at the time in se-
quential order, and the GRU keeps the previous samples in its memory, where the number
of units decides how many timesteps that will be kept in memory. Because of this memory
behavior, the sequential generator needs to be used. (Hammerla et al., 2016) The generator
was run 325494 times per epoch, which is the number of samples divided by the batch size
of 32.

The hyperparameters that were tuned was the number of units in the GRU-layer, the
recurrent dropout between units in the GRU-layer, dropout layer rates and activation func-
tions in dense layers.

The basis of figures for table 4.9 and table 4.10 is seen in appendix A, table A.4.
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Classification
Far Near Far2Near Near2Far

Far 38.34% 7.77% 0.00% 0.00%

A
ct

ua
lC

la
ss Near 0.69% 48.19% 0.00% 0.00%

Far2Near 0.09% 2.43% 0.00% 0.00%

Near2Far 0.61% 1.88% 0.00% 0.00%

Table 4.9: Confusion Matrix for GRU model.

Metric Macro-avg. Far Near Far2Near Near2Far
Accuracy 0.86
Precision NaN 0.97 0.78 NaN NaN
Recall 0.46 0.83 0.99 0 0

Table 4.10: Metrics for GRU model.

GRU units: 137
Recurrent Dropout Rate: 0.22
Dropout Layer graph input Dropout 1 Dropout 2
Dropout rate: 0.02 0.85 0.61
Activation Layer dense 1 dense 2 dense 3
Activation Function: Sigmoid ReLU ReLU

Table 4.11: Results from the hyperparameter tuning of GRU model.
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4.2 Sensor Fusion

4.2 Sensor Fusion
To increase the performance of the models, the classification from the ultrasound was
added as an input to the model.

For the models described in this section, the sliding window input was used. They had
a window size of 20 timesteps. Each timestep had 3 gyroscope values, 3 accelerometer
values and 1 value from the US classifier as input. This gives a total of 140 values as
input.

4.2.1 Using known output pattern as heuristic
For the first few trials on making a sensor fusion model, it was observed that the model
predicted the transition states in a somewhat good manner, however, it did not follow
the expected cyclic structure in the output state. To try to improve this, a heuristic state
machine was applied to the output to make sure it followed the correct state. The pseudo
code to alter the output of the model can be seen in 4.1. Here state is used as the output
at each timestep.

Algorithm 4.1 Pseudo code for heuristic output state machine.

ŷ is the proposed new state from the model
state is the state currently held by the state machine
if ŷ = state then
state unchanged

else
if ŷ = Far2Near and state = Far then
state← Far2Near

else if ŷ = Near2Far and state = Near then
state← Near2Far

else if state = Far2Near then
state← Near

else if state = Near2Far then
state← Far

else
state unchanged

end if
end if

The code only allows the state to change to a transition state if the transition corre-
sponds to the current state. Also, the state that comes after the transition is set to the
corresponding state of the transition, when the transition is done.
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Original data

Classification
Far Near Far2Near Near2Far

Far 41.66% 0.91% 1.94% 1.60%

A
ct

ua
lC

la
ss Near 4.38% 43.49% 0.23% 0.79%

Far2Near 0.85% 0.35% 1.23% 0.08%

Near2Far 0.60% 0.16% 0.12% 1.62%

Table 4.12: Confusion Matrix for model without heuristic output correction.

Metric Macro-avg. Far Near Far2Near Near2Far
Accuracy 0.88
Precision 0.65 0.88 0.97 0.35 0.40
Recall 0.73 0.90 0.89 0.49 0.65

Table 4.13: Metrics for model without heuristic output correction.

The basis of figures for table 4.12 and table 4.13 is seen in appendix A, table A.5.
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Heuristic corrected data

Classification
Far Near Far2Near Near2Far

Far 38.96% 4.96% 1.71% 0.47

A
ct

ua
lC

la
ss Near 7.99% 39.99% 0.19% 0.71%

Far2Near 0.31% 1.06% 1.10% 0.04%

Near2Far 0.77% 0.25% 0.07% 1.40%

Table 4.14: Confusion Matrix for model with heuristic output correction.

Metric Macro-avg. Far Near Far2Near Near2Far
Accuracy 0.82
Precision 0.64 0.81 0.86 0.36 0.53
Recall 0.67 0.85 0.82 0.44 0.56

Table 4.15: Metrics for model without heuristic output correction.

The basis of figures for table 4.14 and table 4.15 is seen in appendix A, table A.6.
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Motion: Positive Negative
Transition 10 0
Look up 0 10
Figure 8 0 10

Table 4.16: Results from app experiment on model with heuristic state machine. For Look up and
Figure 8 motions the model seems to get stuck in the near position.

4.2.2 Sensor fusion model optimized with hyperparameters
Since the output correction did not give better results, it was put out of further use. A
model was trained with hyperparameter optimization to do sensor fusion.

Classification
Far Near Far2Near Near2Far

Far 44.52% 0.81% 0.68% 0.11%

A
ct

ua
lC

la
ss Near 1.77% 45.98% 0.23% 0.90%

Far2Near 0.72% 0.48% 1.29% 0.03%

Near2Far 1.24% 0.07% 0.00% 1.18%

Table 4.17: Confusion Matrix for sensor fusion model.

The basis of figures for table 4.17 and table 4.19 is seen in appendix A, table A.7.
This model was also tested on other persons. The persons was instructed to bring the

device to the ear as if they were going to have a call. Each person did the experiment 10
times. The criteria to get a positive score is the same as for the transition movement. The
results is seen in table 4.21.
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Dropout Layer graph input Dropout 1 Dropout 2
Dropout rate: 0.77 0.26 0.66
Activation Layer dense 1 dense 2 dense 3
Activation Function: Sigmoid Sigmoid Sigmoid

Table 4.18: Results from the hyperparameter tuning for sensor fusion model.

Metric Macro-avg. Far Near Far2Near Near2Far
Accuracy 0.93
Precision 0.75 0.92 0.97 0.59 0.53
Recall 0.72 0.97 0.94 0.51 0.47

Table 4.19: Metrics for sensor fusion model.

Motion: Positive Negative
Transition 10 0
Look up 10 0
Figure 8 6 4

Table 4.20: Results from app experiment on sensor fusion model.

Test Subject: Positive Negative
Person 1 10 0
Person 2 9 1
Person 3 10 0

Table 4.21: Results from app experiment on different test subjects. It is worth noting that the model
responded more slowly on Person 2.
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Comparing Far2Near and Near2Far

To be able to see if the transition states can be separated based on IMU data, the subset of
table 4.17 containing transition states will be evaluated.

Predicted Class
Far2Near Near2Far

A
ct

ua
lC

la
ss Far2Near 51.63% 1.18%

Near2Far 0.00% 47.19%

Table 4.22: Confusion Matrix for the transition states.

Metric Results with Near2Far as positive Results with Far2Near as positive
Accuracy 0.99 0.99
Precision 0.98 1.00
Recall 1.00 0.98
F1 0.99 0.99

Table 4.23: Metrics for transition state comparison.

Table 4.23 shows the metrics in two ways. One in which Near2Far is considered as
the positive label, and one in which Far2Near is considered the positive label. Since there
are not as many Near2Far predictions as Far2Near predictions, the set is not completely
balanced, and the metrics are altered a bit depending on the choice of positive label. The
basis of figures for table 4.22 and table 4.23 is seen in appendix A, table A.8.

4.3 Comparing Ultrasound and Sensor Fusion

4.3.1 Ultrasound performance on validation set
When applying the US classifier to the validation set, the resulting confusion matrix is
seen in table 4.24 and metrics is seen in table 4.25. This is calculated to have a measure of
the US classifiers performance on data it is not tuned on.

The basis of figures for table 4.24 and table 4.25 is seen in appendix A, table A.9.
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Predicted Class
Far Near

A
ct

ua
lC

la
ss Far 49.92% 5.22%

Far 1.20% 43.67%

Table 4.24: Confusion Matrix for the ultrasound classifier on the validation set.

Metric Result
Accuracy 0.94
Precision 0.97
Recall 0.89
F1 0.93

Table 4.25: Metrics for ultrasound on validation set.

4.3.2 Making comparable metrics
Since the sensor fusion model contains transition states, and the ultrasound classifier only
contains Far and Near states, the data in table 4.17 should be altered to make the metrics
comparable. The transition states is relabeled as Far for both the dataset and the prediction.
The metrics for the sensor fusion model becomes,

Metric Result
Accuracy 0.96
Precision 0.97
Recall 0.94
F1 0.96

Table 4.26: Metrics for sensor fusion, with transition states labeled as Far.

By comparing table 4.25 and table 4.26, it can be seen that the sensor fusion model has
equal precision and an improved recall and accuracy.
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Chapter 5
Discussion

In this chapter the results presented will be discussed. The overall strengths and weak-
nesses of the approaches will be evaluated, as well as how to improve on the topics dis-
cussed.

5.1 Orientation of the device

The major contributor in all of the models is the orientation of the phone. Most of the
cases start with the phone in laying position, i.e. the gravitation is along the z-axis. When
the phone is brought up to the ear the gravity is decomposed to all of the axes.

Results from the app experiment show that the transition states are present in look mo-
tion and in the Figure 8 motion. However, since there is no gravitational component along
the x-axis in the look motion, the IMU only and sensor fusion model avoids misclassify-
ing the look motion as a Near event. With the Figure 8 motion, the device is occasionally
oriented in the same way as when holding the phone to the ear, leading to false Near
classifications.

5.2 Usage of RNN

The RNN models trained yielded not so good results. The predictions had a tendency to
flicker, as seen in figure 4.3. Also, the model never gave predictions of the transition state.
This is seen in table 4.9. According to Hammerla et al. (2016): ”Movement data which
was collected adhering to a fixed protocol will be less suitable to train RNNs, as long-term
context brings little to no benefit over localized pattern matching during training and infer-
ence (and may even lead to overfitting).”. This could explain why the RNN underperform
versus the sliding-window approach.

53



Chapter 5. Discussion

5.3 Combining IMU and US data
When combining IMU and US data the models often took one out of two approaches. The
first was to still rely on the orientation of the phone and only be somewhat aided by the US
classifier. This behavior can be seen for the model in section 4.2.2. The other approach
was to just rely on the US classifier to detect Near states. This behavior can be seen for
the model in section 4.2.1.

The US classifier gives a binary output that corresponds to the state it believes the
device is in. By either giving a floating prediction output with the confidence for each
class or using the US properties used by the US classifier directly, the NNs could define
its own threshold, rather than relying on the threshold within the US classifier.

5.4 State machine to get cyclic output
The state machine proposed in section 4.2.1 did not improve the performance of the model.
It relied heavily on correct and precise classification on the transition states, and even
though it improved some corner cases where Near events were classified as Far, it did not
justify long stretches of errors due to missed transitions.

5.5 User independent evaluation
The sensor fusion model from section 4.2.2 showed good performance when tested on
different users, seen in table 4.21. Observations from the experiment supported the theory
that the models rely on the orientation of the device for classification.

5.6 Labeling of transition states and assessment of ground
truth

The labeling of the transition states was done by setting a window of 200ms before each
change from Far to Near and after each change from Near to Far. However, most transitions
do not have a duration of exactly 200 ms. The IR sensor also does not change value at
exactly the same time, depending on many different factors. It can be seen on the sequence
plots that the IR sensor sometimes has a delay before recognizing a Near state. Often the
IR sensor detects a Near state before the end of the motion, probably because the device
is moved along the jaw, before reaching the ear. This behavior makes gives false positives
in the evaluation of the predicted transition states, when they indeed are correct.

Usage of offline HAR algorithms could be used to get a better segmentation of the
transition states.

5.7 Categorical cross-entropy as loss functions
With categorical cross-entropy as loss function, each misclassified sample is considered on
its own and the time aspect of the sequences is neglected. Methods to evaluate performance
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5.8 Separation of transition states

of classification with respect to time is presented in Ward et al. (2011) and Ward et al.
(2006). Here the activity recognition problem is considered a segmentation problem. This
type of performance metric could be more suitable for a problem where the timing does
not necessarily need to be exact, but the events should be classified reliably.

5.8 Separation of transition states
Most of the models that were made rarely misclassified the transition states for one an-
other. Some of them had overfitted to transitions only to the right ear and when brought to
the left ear the model would either mistake the transitions for one another or not recognize
any transition at all. Several models show good performance on the transition states for
motions to both ears, probably utilizing the gyroscope measurement present in the trans-
lations, in combination with a rapid change in the accelerometer data.
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Chapter 6
Conclusion

This thesis has presented an infrastructure to train, deploy and validate models. Through
the Hyperas interface, the model structure can be optimized for the problem at hand. Mul-
tiple approaches on how to input the data to the neural networks have been tested, and the
sliding window approach was the one who yielded best results.

The results showed that the sensor fusion model was able to distinguish the approach
and retract motion with an accuracy of 0.99. The accuracy of the model overall was
raised from 0.94 when just using ultrasound for classification, to 0.96 when combining
ultrasound with inertia data. This increase in accuracy was due to better recall, that went
from 0.89 to 0.94 while leaving the precision unchanged.

Observations of model performance when running on an Android app revealed that the
model relied heavily on the orientation of the device when doing classification. All of the
models performance has been evaluated when running on the device, where different mo-
tions have been tested repeatedly. The sensor fusion model was tested on several persons
and had little variance in output between the test subjects.
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Appendix A
Basis of Figures

Ultrasound
Proximity

P’ N’

In
fr

ar
ed

Pr
ox

im
ity P TP =

5 565 728
FN =
919 878

N FP =
16 299

TN =
3 913 343

Table A.1: Basis of figures for table 3.1.
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Classification
Near’ Far’

In
fr

ar
ed

Pr
ox

im
ity Near TP =

145 399
FN =
16 740

Far FP =
8 589

TN =
160 968

Table A.2: Basis of figures for table 4.2.

Classification
Far Near Far2Near Near2Far

Far 138417 3725 5999 4799

A
ct

ua
lC

la
ss Near 20861 137753 1289 2236

Far2Near 1185 3895 3000 269

Near2Far 1150 762 211 6145

Table A.3: Basis of figures for table 4.5.
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Classification
Far Near Far2Near Near2Far

Far 161841 32188 0 0

A
ct

ua
lC

la
ss Near 2306 171055 0 0

Far2Near 557 9131 0 0

Near2Far 2722 6883 0 0

Table A.4: Basis of figures for table 4.9.
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Classification
Far Near Far2Near Near2Far

Far 138197 3032 6419 5292

A
ct

ua
lC

la
ss Near 14523 144249 749 2618

Far2Near 2825 1152 4100 272

Near2Far 1978 527 389 5374

Table A.5: Basis of figures for table 4.12.
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Classification
Far Near Far2Near Near2Far

Far 129241 16465 5678 1556

A
ct

ua
lC

la
ss Near 26512 132645 623 2359

Far2Near 1030 3522 3661 136

Near2Far 2546 835 242 4645

Table A.6: Basis of figures for table 4.14.
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Classification
Far Near Far2Near Near2Far

Far 147668 2673 2239 360

A
ct

ua
lC

la
ss Near 5870 152509 777 2983

Far2Near 2384 1595 4272 98

Near2Far 4123 240 0 3905

Table A.7: Basis of figures for table 4.17

Predicted Class
Far2Near Near2Far

A
ct

ua
lC

la
ss Far2Near 4272 98

Near2Far 0 3905

Table A.8: Basis of figures for table 4.22.
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Predicted Class
Far Near

A
ct

ua
lC

la
ss Far 165592 17303

Far 3965 144836

Table A.9: Basis of figures for table 4.24.
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