
Advanced Camera Detection and
Measurement System in the Czochralski
Process

Endre Arnesen Gjølstad

Master of Science in Cybernetics and Robotics

Supervisor: Morten Hovd, ITK
Co-supervisor: John Atle Bones, SINTEF

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology

”I have approximate knowledge of many things.”
-Demon Cat

Adventure Time, season 1 episode 18

Sammendrag

I denne oppgaven presenteres Czochralski-prosessen, samt det teknologiske oppsettet
som brukes i prosessen. De tre problemene denne oppgaven tar sikte på å løse, presenteres:
implementering av automatisk gjenkjenning av kalde krystaller, automatisk gjenkjenning
av strukturtap i body fasen og automatisk temperaturdetektering i neck-stabiliseringsfasen.
Etter introduksjonen presenteres den relevante teorien. Denne avhandlingen refererer til
den automatiske kalde krystall-deteksjonalgoritmen som er utviklet i et tidligere prosjekt.
Dette arbeidet presenteres i et eget kapittel. Deretter beskrives hvert av de tre hovedprob-
lemene og løsninger foreslås, testes og diskuteres for hver av dem separat. På slutten
av denne oppgaven er et kapittel med konklusjoner av de foreslåtte problemløsningene.
Avhandlingen resulterte i at problemer ble avdekket i den implementerte automatiske kalde
krystalldeteksjonen som må analyseres videre og avstemmes for en tilfredsstillende ytelse
på fabrikken. For strukturtapgjenkjenning ble flere tilnærminger foreslått. De fleste tilnær-
mingene kan forkastes, men gjennomsnittsverdi tilnærmingen og maskininnlæringsmeto-
den virker som gode metoder for en robust gjenkjenning av strukturtapfenomenet. I tilfel-
let av automatisk temperatur deteksjon i neck stabiliseringsfasen, var det problemer med
at kameraet ikke hadde en høy nok oppløsning for å få presise resultater. Hvis et nytt kam-
era er anskaffet, foreslår denne avhandlingen to separate metoder som kan være gunstige
for automatisk å oppdage ønsket temperatur i denne fasen. En maskininnlæringsmetode
og en dynamisk programmeringsmetode hvor problemet blir delt inn i mindre separate
problemer.

i

ii

Summary

In this thesis the Czochralski process is introduced as well as the technological setup
used in the process. The three problems this thesis aim to solve are presented: imple-
mentation of automatic cold ingot detection, automatic detection of structure loss in the
body phase and automatic temperature detection in the neck stabilization phase. After the
introduction, the relevant theory is presented. This thesis references the automatic cold in-
got detection algorithm developed in a previous project heavily, so this work is presented
in a separate chapter. Then each of the three main problems are described and solutions
are proposed, tested and discussed for each of them separately. At the end of this thesis
is a chapter with conclusions of the proposed problem solutions. The thesis resulted in
problems being uncovered in the implemented automatic cold ingot detection which needs
to be further analyzed and tuned for a satisfactory performance in the factory. For the
structure loss detection, several approaches were proposed. Most of the approaches can
be discarded, but the mean value approach and the machine learning approach both seem
viable for a robust detection of the structure loss phenomenon. In the case of automatic
temperature detection in the neck stabilization phase, there were problems with the camera
not having a high enough resolution to get precise results. If a new camera is acquired this
thesis proposes two separate methods which can be viable for automatically detecting the
desired temperature in this phase, a machine learning approach and a dynamic program-
ming approach, where the problem is divided into smaller parts.

i

ii

Preface

Industrial background

Monocrystalline silicon

Monocrystalline silicon is a specific type of silicon crystal in which the atoms are all ar-
ranged in a repeating pattern throughout the entire crystal mass. These monocrystalline
silicon crystals are desired in the electronic and renewable energy market since they act
as highly efficient semiconductors due to their atom arrangement. NorSun AS is Nor-
way’s largest producer of monocrystaline silicon and their factory in Årdal encompasses
the entire process from growing crystals to cutting them into thin slices known as wafers.
The wafers are sold to companies producing solar cells throughout the world. Due to new
technology increasing energy output and policies resolving to increase the use of renew-
able energy in the modern world, the demand for monocrystalline silicon is enormous and
constantly growing. The current demand is higher than NorSun AS can supply. To meet
the increased demand, NorSun AS is always looking to increase their productivity and has
hired a team from Sintef to research how to improve the efficiency of the factory.

Present operation

The monocrystalline crystals are grown in a process called the Czochralski process. In
this process a single crystal of silicon, commonly called an ingot, is produced by dipping
a silicon seed into a furnace containing pure melted silicon. NorSun’s factory in Årdal
has 70 of these furnaces which are called pullers. The pullers are highly automated by
control systems which are governing the temperature of the melt, the speed at which the
ingot is pulled and limiting the diameter growth of the crystal. But the Czochralski process
is a very complex process where many small factors and variations can have an effect on
the succes rate of growing the monocrystalline silicon ingot. Defects and unwanted states
often occur. Today these defects and unwanted states are mainly detected by a visual
inspection performed by factory operators at an interval of 30 minutes. These inspections
are often as simple as looking into the furnace at the crystal and seeing that there are no
defects. When something goes wrong there is no guarantee that the unwanted state or
defect will be seen in time to recover the crystal to a desired state. This often results in
whole crystals being discarded. In Chap. 1 the pulling process and the technical setup
will be further explored.

Previous work

The previous work was done in a project the fall of 2017. This project aimed to design
a computer vision algorithm to detect a phenomenon where the ingots become cold and
lose their cylindrical forms. Ultimately a cold ingot can become cold enough to lose its

iii

monocrystalline structure due to thermal stress and thus has to be discarded. The following
paragraph is the summary of the previous project:

In this project the Czochralski process and the technological setup used to optimize the
process was introduced. The problem of detecting cold ingots was presented and broken
into four sub-objectives: forming hypotheses, analyzing available tools, designing the
algorithms and verifying their performance. Some computer vision theory was introduced
and the software framework used was analyzed for potential functionality that is useful for
the task. After the theory was introduced two main hypotheses to detect the cold ingot was
proposed. Both methods were then described, implemented and tested separately. In the
end their results were discussed and compared to each other. The project resulted in an
algorithm which was able to detect the cold ingot in all three data sets which it was tested
upon.

The previous work is very relevant for the work done in this thesis and will be refer-
enced often. This work will be introduced in greater detail in Chap. 3.

Problem Description
The aim of this thesis is to research how some unwanted states and phenomena can be
automatically detected by a computer vision approach, thus contributing to an Advanced
camera detection and measurement system for the Czochralski process. More specifically,
the problems this thesis seek to solve are:

• Implementing an automatic cold ingot detection algorithm from the previous work
done by the author in the factory and verify its robustness and performance in a live
environment.

• Conceptualizing, designing and comparing several approaches for detecting struc-
ture loss in an ingot in the body phase.

• Conceptualizing, designing and comparing several approaches for automatically de-
tecting a desired and stable temperature during the neck stabilization phase.

The problems to be explored in this thesis are further introduced in Sec. 1.4.

Facilities, data access, tools and support

Tools
Some tools used for this thesis are a requirement to interface easily with the factory setup,
while some tools are optional and used simply for predefined functionality.

The requirement for this thesis is that any detection algorithm needs to run on the
Scorpion Vision framework which is a third party licensed software created by Tordivel
AS. The other tools used for this thesis are mainly the software libraries listed below.

• Scipy

iv

• Matplotlib

• Numpy

• TensorFlow

• Keras

These software libraries contains different functionality which is useful for optimiz-
ing script run time, heavy mathematical algorithms or simply ease of use functionality to
decrease implementation time. The libraries are introduced in Sec. 2.3.

Test setup

The test setup consist of remotely connecting to a computer which runs the same computer
vision software, Scorpion Vision, as the live factory setup. Any new implementations or
tests of new algorithms are implemented and analyzed on the test setup.

Data access

The data which is analyzed on the test setup are sets of images captured on the live setup.
The image sets used for testing is captured at a rate of one picture every 20 seconds. The
image sets are acquired through requesting images of specific phenomena to someone
with access to Sintef’s puller in the factory. Then a recorded run containing the specific
phenomena has to be identified before extracting the captured image set.

For real time logging in the factory a third party system called APIS is used which is
hosted by a company called Prediktor AS. To receive any logged data from the factory, a
request has to be made to either Co-Supervisor John Atle Bones or process engineers at
the factory.

The real time logging in the factory and the data received from logging the same ingot
on the test setup may vary. This is because the factory setup evaluates five images every
second compared to the rate of one image every 20 seconds in the captured data sets which
are evaluated on the test setup.

Support

The work done in this thesis is done for a Sintef research team whom are hired by NorSun
AS to help modernizing the silicon crystal growth process in their factory. The researchers
have their own crystal puller setup at the factory with their own control systems, computer
vision software and hardware. Most of my work has been focused on designing proof of
concept computer vision algorithms to automate the detection of unwanted states in the
crystal growth process. For the design of algorithms I have been working on the test setup
at NTNU with image sets collected from the factory.

For the most part this work has been done quite independently with only general guide-
lines on which phenomena to detect, from my co-supervisor John Atle Bones who is a part
of the Sintef research team. He has also helped me understand the characteristics of the
Czochralski process and given tips on possible ways of approaching some of the detection
problems.

v

For gathering data, discussing trends seen in the algorithm output and planning how
the factory operators should handle new alarms as a result of my detection algorithms I
have been in contact with process engineer Jeroen Van Delft and discipline leader Helge
Hovland in the NorSun AS factory.

vi

Table of Contents

Sammendrag i

Summary i

Preface iii

Table of Contents ix

List of Tables xi

List of Figures xv

Abbreviations xvi

1 Introduction 1
1.1 Background . 1
1.2 The Czochralski puller . 3
1.3 Technological setup of the furnace . 3
1.4 Problem description . 5

1.4.1 Testing and verification of automatic cold ingot detection 6
1.4.2 Automatic detection of structure loss in the body phase 6
1.4.3 Automatic temperature detection in the neck stabilization phase . 7

1.5 Limitations . 7
1.6 Thesis organization . 7

2 Theory and tools 9
2.1 Computer vision . 9

2.1.1 Edge detection . 10
2.1.2 Machine learning and neural networks 11

2.2 Frequency analysis . 12
2.2.1 Fourier transform . 13
2.2.2 Continuous wavelet transform 13

vii

2.3 Tools and software libraries . 13
2.3.1 Scorpion vision framework . 13
2.3.2 LineFinder2 . 14
2.3.3 FindWhiteBand toolbox . 14
2.3.4 SciPy . 15
2.3.5 Matplotlib . 16
2.3.6 Numpy . 16
2.3.7 TensorFlow . 16
2.3.8 Keras . 16

3 Previous work: Cold Ingot Detection 17

4 Test of Cold Ingot Detection in a live environment 21
4.1 System implementation . 21
4.2 Preparations for implementation . 23
4.3 First test period . 24
4.4 Tuning . 28
4.5 Late detection of cold ingots . 28
4.6 Discussion . 29

5 Detection of structure loss in body phase 31
5.1 Problem specification . 31
5.2 The peak approach . 33
5.3 Derivative peak detection . 38

5.3.1 Results . 39
5.3.2 Discussion . 43

5.4 Frequency analysis peak detection . 44
5.4.1 Results . 44
5.4.2 Discussion . 46

5.5 Smoothed Z-score peak detection . 46
5.5.1 Results . 46
5.5.2 Discussion . 47

5.6 The mean value approach . 47
5.6.1 Results . 48
5.6.2 Discussion . 50

5.7 Machine learning approach . 52
5.7.1 Method . 52
5.7.2 Results . 54
5.7.3 Discussion . 55

6 Automatic neck temperature detection concept 57
6.1 Problem specification . 57
6.2 Method . 58
6.3 Results . 62

6.3.1 Separate detection approach . 62
6.3.2 Machine learning approach . 65

viii

7 Conclusions and recommendations for further work 67
7.1 Test of Cold Ingot Detection in the live environment 67

7.1.1 Conclusion . 67
7.1.2 Recommendation for further work 67

7.2 Detection of structure loss in the body phase 68
7.2.1 Conclusion . 68
7.2.2 Recommendation for further work 68

7.3 Automatic neck temperature detection concept 68
7.3.1 Conclusion . 68
7.3.2 Recommendation for further work 69

Bibliography 69

Appendix 73

ix

x

List of Tables

5.1 Numeric values of node passes from the graph in Fig. 5.8 rounded to two
decimal places. 38

5.2 Results of the derivative filter for positive peaks taken from Fig. 5.9. . . . 39
5.3 Results of the derivative filter for negative peaks taken from Fig. 5.10. . . 41
5.4 Difference in peak and dip value on node passes compared to non-node

passes. 41
5.5 Zero crossings by numerical values in data set 2. 42
5.6 The frame where the nodes actually pass or hit the edge detector in data set 2 42
5.7 The difference between dips and consecutive peaks for data set 2. (*) For

this range there is supposed to be 2 nodes passing, one at frame 19 and one
between frame 23 and 24. 43

xi

xii

List of Figures

1.1 Main phases of the Czochralski process. Bones (2012) 2
1.2 A visualization of a Czochralski puller. Kakimoto (2013) 4
1.3 The NorSun factory’s Czochralski pulling area. NorSun (2018) 5
1.4 Visualization of the control system on the pullers. Lee et al. (2005) 6

2.1 A simplistic illustration of over- and underfitting in machine learning.
Liew (2016) . 13

2.2 Full view of Scorpion with image slides to the left and toolbox overview
on the right. 14

2.3 Edge detectors placed by the FindWhiteBand toolbox. 15
2.4 The entire FindWhiteBand toolbox. 15

3.1 Side-by-side comparison of an ingot in the desired state and a cold ingot. . 18
3.2 A view of the three edge detectors placed on the meniscus. 18

4.1 System data flow chart. 22
4.2 An example view of the data visualization capabilities of APIS. 23
4.3 Standard deviation over three hours of sample data on an ingot forced cold

by manual temperature adjustment. 24
4.4 Spike in ingot squareness in the middle of the body phase. The step re-

sponse in SPMain HeaterTMP is a manual temperature adjustment. . . . 25
4.5 ingot squareness for the very cold ingot with alarm threshold set to 4.0 on

the 12th of April 2018. 26
4.6 Examples of the meniscus edge detector finding wrong edges at the end of

the body phase. 26
4.7 The center meniscus edge detector not able to find an edge indicated by no

red arrow. 27
4.8 The standard deviation spiking over a 30 image dataset when edges are not

found. 27
4.9 APIS graph which shows the time period where ingot squareness indicates

the ingot becoming cold. 28

xiii

5.1 The nodes on a growing ingot. 32
5.2 An ingot experiencing structural loss. 32
5.3 Eight consecutive frames of rotation of an ingot with all nodes intact. . . . 34
5.4 A zoomed in view of the left side node from Fig. 5.3g. 35
5.5 Illustration of geometrical changes in the meniscus as the node passes di-

rectly in front of the camera. 36
5.6 An ingot observed over 1 hour and 20 minutes. 36
5.7 An example of the standard deviation of the meniscus angle being evaluated. 37
5.8 Numbered peaks and nodes to indicate when a node passes the evaluated

edge detector. 38
5.9 The result of a derivative filter attempting to find the positive peaks. . . . 39
5.10 The result of a derivative filter attempting to find the dips (negative peaks). 40
5.11 A dataset on a different ingot in the body phase. 42
5.12 Recurring standard deviation phenomena at a specific frequency over a

period of 1 hour. 44
5.13 The short time fourier transform response trying to detect frequency char-

acteristics for the data set. 45
5.14 Peak detection from the continuous wavelet transform indicated by orange

crosses on the same data set. Expected peak width set to 1− 3 frames . . 45
5.15 Peak detection from the continuous wavelet transform indicated by orange

crosses. Expected peak width set to 1− 8 frames. 45
5.16 Initial Z-score with Lag = 5, Threshold = 3.5 and Influence = 0.5. . 47
5.17 Better Z-score with Lag = 2, Threshold = 1 and Influence = 0.7 . . . 48
5.18 A simulated graph of an ingot in the time frame where it loses structure. . 49
5.19 A simulated graph of another ingot in the time frame where it loses structure. 49
5.20 A simulated graph of an ingot in a healthy state with all four nodes intact. 50
5.21 Real time and simulated standard deviation value comparison on an ingot

experiencing structure loss the 30th of April 2018. 51
5.22 Real time and simulated standard deviation value comparison on an ingot

experiencing structure loss the 11th of May 2018. 51
5.23 The position of the rectangle and the cropped image showing no node

within the ROI. 52
5.24 The position of the rectangle and the cropped image showing a node within

the ROI. 53
5.25 A plot of training and validation scores and loss for a training session over

50 epochs. 54
5.26 Image from an ingot cropped slightly lower than the other ingot crops in

the data set. 55

6.1 Visualization of a neck with a thin gray line in its meniscus indicating that
the melt is too hot. 58

6.2 View of a meniscus with a split node with and without zoom. 59
6.3 Image of a too thick meniscus in the neck phase. 59
6.4 Image of a meniscus without a clear edge to the surrounding melt. 60
6.5 Image of a meniscus in a desired state one minute before starting the crown

phase succesfully. 61

xiv

6.6 Image of an example ROI for a machine learning approach. 62
6.7 The LineFinder2 edge detector finding the edge of the meniscus 63
6.8 The LineFinder2 tool failing after being placed 1px further down on the

image from Fig. 6.7b. 63
6.9 The RadialArcFinder tool failing to find enough edge points to fit a circle.

The detected edge points are indicated by small red dots along the yellow
tracelines. 64

xv

Abbreviations

Symbol = definition
Cz = Czochralski as in the Czochralski process
ROI = Region of interest
SDev = Standard Deviation
OPC = Open Platform Communications
PLC = Programmable Logic Controller
GUI = Graphical User Interface
px = Pixel
FIFO = First In First Out

xvi

Chapter 1
Introduction

The renewable energy market is rapidly expanding with new technology increasing energy
output and policies resolving to increase the use of renewable energy throughout the mod-
ern world. Due to this rapid market expansion, many companies are working hard to earn
their share of the market and the competition is fierce. To stay on top of this competition,
the efficiency of the renewable energy sources need to be high quality while the production
of the sources need to be as cheap as possible. The growth of ingots is done through the
Czochralski process. It is a complex process with many factors affecting the end result
and thus there is continuously work being done on new ways to optimize the efficiency
of this process. Researchers from Sintef have been hired to automate larger parts of the
process. An important step in the automation of the Czochralski process is utilizing a
camera and computer vision algorithms to detect states and perform measurements in real
time during the process. The thesis work will be divided in three parts. Part one is focused
on implementing and testing a previously designed algorithm in the factory. Part two and
three are focused on designing new proof-of-concept algorithms for detection of two other
phenomena.

1.1 Background
The Czochralski process is a process in which a cylindrical single crystal of silicon is
produced by dipping a silicon seed into a furnace containing pure melted silicon. The
seed is pulled slowly upwards while being rotated. The melted silicon will attach to the
seed so the pulled silicon cools down. As the silicon cools down it will solidify, resulting
in a monocrystalline silicon ingot. There are several phases the crystal advances through
within the furnace to get the desired properties such as length and diameter while retaining
its monocrystalline structure. The phases are visualized in Fig. 1.1. The size of the ingot is
grown in the body phase of the process and a succesful body phase is therefore important
for the commercial result of the process. When the Czochralski process is finished, the
monocrystalline silicon ingot is extracted and cut into thin slices known as wafers which
are further treated. The wafers are typically used either in solar cells or as a foundation

1

Chapter 1. Introduction

Figure 1.1: Main phases of the Czochralski process. Bones (2012)

upon which microelectronic components are deposited.

Stacking as seen in Fig. 1.1a is the process where the raw silicon is placed in a cru-
cible which is placed inside the furnace. How the silicon is stacked has an influence on
how succesful the growth process will be and is under constant research for improvement.
The next step is Melting as seen in Fig. 1.1b. In the melting phase, the crucible containing
the stacked silicon is placed in the furnace and the raw silicon is melted to a liquid silicon
melt. Once all the silicon has melted and becomes a liquid, the melt is often volatile due
to cyclical fluctuations and difference in temperature. The stabilization phase from Fig.
1.1c is a process of bringing the melt to a stable temperature which reduces its volatility.
When the melt is stable an operator will manually adjust the crucible position and start the
dipping phase seen in Fig. 1.1d. This is where the silicon seed is lowered into the melt to
attach the liquid silicon to the seed. After the dipping the growth of a neck is performed in

2

1.2 The Czochralski puller

the neck phase shown in Fig. 1.1e. The Neck serves as a connection between the pulling
mechanism and the ingot which can be easily cut and handled when the ingot is extracted
from the puller. When the seed is dipped into the melt the silicon will immediately expe-
rience dislocations. Growing the neck helps distance the crystal growth from these initial
dislocations. When the neck is grown to a satisying length, another temperature stabiliza-
tion is performed which is important to ensure good initial conditions for the rest of the
crystal growth. When the neck temperature stabilization is completed the crown phase
begins. In this phase the pull speed is adjusted to allow to formation of the crown as seen
in Fig. 1.1f. The structural form of the crystal is formed in the crown which will extend
to the rest of the crystal. If the crown has a good structure the shoulder seen in Fig. 1.1g
will let the ingot grow outwards to the desired diameter. Once the ingot has the desired
diameter the body phase seen in Fig. 1.1h can be started. This phase adjusts the pull speed
and temperature continuously to keep the desired diameter while growing the length of
the ingot. When the ingot growth is completed the pull speed increases to close the ingot.
This is accomplished by reducing the diameter by increasing the pull speed which gives
the ingot a cone form at the bottom. This phase is called the tail phase and is shown in fig
Fig. 1.1i.

1.2 The Czochralski puller
The Czochralski puller is a big furnace as seen in Fig. 1.2. It is specifically created to
melt silicon and pull crystal ingots. It consists of a pulling mechanism at the top, space for
the crucible which contains the silicon melt, heaters at both sides of the crucible. A lift to
adjust the crucible height position as well as heat shielded windows to allow observation
of the process, either by visual inspection or by cameras. It is also well insulated to avoid
heat radiation. The factory in Årdal as seen in Fig. 1.3 has 70 of these pullers operating in
a large hall.

1.3 Technological setup of the furnace
To consistently produce ingots with desired properties and quality there are automated
control systems installed on the furnaces in the factory, implemented as seen in Figure
1.4. These furnaces are equipped with sensors, cameras and control systems. They are
commonly referred to as pullers.

The pullers are conventionally automated by three controllers

• Automatic diameter controller (ADC),

• Automatic temperature controller (ATC),

• Automatic growth rate controller (AGC).

During the body phase the melt level decreases as the crystal grows in size. This dynamic
results in less heat transferred to the melt due to a decrease in surface area in contact with
the heaters. The ATC follows an empirically determined setpoint trajectory during this
phase to remedy heat loss in the melt. Due to small variations in pullers the set point

3

Chapter 1. Introduction

Figure 1.2: A visualization of a Czochralski puller. Kakimoto (2013)

4

1.4 Problem description

Figure 1.3: The NorSun factory’s Czochralski pulling area. NorSun (2018)

will not necessarily result in an optimal temperature for every puller. To minimize the
potential error in temperature the AGC will add a temperature offset to the setpoint when
the pulling rate output by the ADC differs from its setpoint. The setpoint trajectory of
the ATC is tuned to maximize the speed of pulling without losing the monocrystalline
structure or the desired diameter.Lee et al. (2005) The ADC uses a camera mounted on
the puller to measure the current diameter of the ingot. The software used to calculate the
measurement on the pullers is called Scorpion. It is a computer vision framework with
source code access for continued addition or modification of functionality.

1.4 Problem description
NorSun AS is Norway’s largest producer of monocrystalline silicon and the demand for
their silicon is bigger than what they can supply. Because of the huge demand, NorSun AS
are looking to maximize their factory efficiency. An important step in increasing factory
efficiency is automating control and measurement operations.

The most critical variable for successful ingot growth is the temperature of the silicon
melt and the temperature of the growing silicon ingot. The desired temperature changes
slightly depending on individual varying factors within each furnace. It is also difficult
to measure the precise temperature of the melt due to the circulation of liquid silicon,
which results in cyclical temperature fluctuations. Instead of directly measuring the heat,

5

Chapter 1. Introduction

Figure 1.4: Visualization of the control system on the pullers. Lee et al. (2005)

the desired and undesired states of the ingot is detectable through geometrical changes of
the ingot. By automatic detection of the phenomena through computer vision techniques,
quick discovery of unwanted states with a high level of precision is achievable compared
to the sporadic observations done by factory operators. The thesis work is divided in three
parts.

1.4.1 Testing and verification of automatic cold ingot detection

In the previous work, two approaches of detecting cold ingots in the body phase were
proposed. From test results on several data sets, one of the approaches looks promising.
A part of this thesis will aim to continue the previous work with the cold ingot detection.
The continued work will be to implement the promising cold ingot detection algorithm in
the live factory environment. This requires the algorithm to be modified to be practical in
the live environment and its results need to be thoroughly examined to verify a high level
of robustness and precision.

1.4.2 Automatic detection of structure loss in the body phase

Another problem is to develop an algorithm for detection of a different defect called struc-
ture loss in the body phase. This defect is a dislocation of the ingot and it renders the
entire ingot unusable. It is a result of several factors such as temperature or entrapment of
oxygen molecules at the edge of an ingot. This phenomenon should be detected as quickly
as possible to minimize the time spent growing ingots with defects.

6

1.5 Limitations

1.4.3 Automatic temperature detection in the neck stabilization phase

The third problem of this thesis is the detection of a desired state in an earlier stage of
the Czochralski process, the neck phase. This phase is very temperature sensitive and the
geometry of the silicon changes with cyclical temperature fluctuations in the melt. During
such temperature cycles the ingot will enter several unwanted states unless the silicon melt
is stabilized at the correct temperature. To ensure good initial conditions for crystal growth,
the geometry of the solidified silicon should stay in the desired state for the duration of a
full cyclical temperature fluctuation.

Automating detection of these phenomena will result in more precise and consistent
error handling as well as reducing the workload of the factory operators. Faster detec-
tion of unwanted states allow in some cases the recovery of an otherwise unusable ingot,
resulting in a net efficiency increase of the factory.

1.5 Limitations

The differing update frequency of the images between the live setup and the test setup
proved to be a problem during the thesis work. Any time series data evaluation will differ
between the test setup and the live setup, and some specific characteristics may occur in
between the test data samples and thus be invisible on the test setup. To receive the data
from the live setup I had to request specific data of specific phenomena, and some times I
was not informed when the algorithm in the live setup had weird behaviour.

During the work with implementing an algorithm on the live setup in the factory a great
challenge was that updating the software in the factory required coordination between me,
the Sintef research team and personell on-site in the factory. Any variable that should be
accesible for the real time logging system in the factory has to be created by Prediktor AS
in their logging system, and connected through the main hardware of the puller setup.

An bug on the algorithm running in the factory was discovered and it took over one
month before it was reported to the author. Communication has not always been smooth
during the thesis work. Who should be contacted when different occurrences happen
should have been planned in greater detail before the live factory testing began.

1.6 Thesis organization

The thesis is structured in a way such as to introduce all the required theory and tools
used throughout the entire work, on all three separate problems. Some basic knowledge
of techniques such as standard deviation and derivation is expected from the reader. Since
the previous work project is very relevant for this thesis it will be introduced in a separate
chapter as well. The three problems being handled in this thesis will have their own chapter
which thoroughly explains the problem, the approach to solve the problem, the results of
the approach and separate discussion sections. The end of this thesis will have a chapter
dedicated to a conclusion of the three separate problems as well as recommendations for
further work. All the code written for this thesis will be available in the appendix and
referenced throughout the thesis so it can be reviewed if deemed necessary by the reader.

7

Chapter 1. Introduction

There will also be some images showing settings from GUI tools in Scorpion Vision to
ensure the reader will be capable of recreating the setup used in this thesis.

Some sections are almost identical to those of the previous work as many of the same
theoretical concepts and some of the same theory has to be introduced. The reused sec-
tions, with small variations, are Sec. 1.0, Sec. 1.1, Sec. 1.3, partly Sec. 2.1.0, Sec. 2.1.1
and Sec. 2.3.1. The images within these sections are also taken from the previous work.

8

Chapter 2
Theory and tools

This chaper aims to inform the reader of the theory required to understand this thesis as
well as a list of the tools used in the research.

2.1 Computer vision

A human looking around the world is able to perceive colour, light intensity and geo-
metrical properties like depth, width and height almost instantaneously. We are able to
understand what we are looking at through previous experiences with different scenary
over many years. Programming a computer to understand imagery the same way is more
difficult. With only one image the concept of depth will be gone from an image, and even
if you use two images of the same scene the computer either needs some knowledge of
the scene or perfect knowledge of the camera taking the images. Inherently computer vi-
sion is an inverse problem where we seek to recover some unknowns given insufficient
information to fully specify the solution. Szeliski (2010)

Digitization of an image is done by dividing the image into a unit called a pixel or
px for short. Digital cameras are always described with how many pixels they can have
for each picture. A higher amount of pixels results in a better resolution. Depending on
the image format every px is described by 8 or more bits. For a colour image with three
channels, Red, Green and Blue (RGB) the image will usually be 24 or 32 bits. 8 bits for
each colour channel and it can contain 8 bits for an alpha channel which describes the
translucency of the image. This means that each of these channels can have a decimal
value between 0− 255 describing the intensity of the respective channel. Since the maths
in computer vision algorithms is heavy the image is often reduced to grayscale which is
a reduction to 8 bits per pixel which solely represents the light intensity of a pixel in a
range from black to white, or respectively 0 − 255 light intensity. Since an image has
both a width and a height the pixels are organized in a two dimensional array usually with
a pixel corresponding to the same physical point of the image. This is usually denoted
mathematically as:

9

Chapter 2. Theory and tools

I(x, y) ∈ [0, 255]. (2.1)

Where the intensity I in position (x, y) contains a value between 0−255 for a grayscale
image. All images analyzed in this thesis will be in grayscale.

Even after converting to grayscale some computer vision algortihms can require so
much processing power that they can only run within a Region of Interest (ROI). An ROI
is just the region of the image which is of interest. This can be either a subset of the image
or refer to the entire image. The ROI can either be dynamically determined by utilizing
other computer vision techniques, or placed by design over an area. When the ROI is
found, the algorithm can run within the boundraries of the region either by constraints or
by simply cropping out that part of the image.

The success of computer vision is highly dependent on the scenario in which it is ap-
plied. Even though a lot of algorithms are highly general and work well in most scenarios,
they require tuning of parameters to get a high probability of success. For some images and
techniques, pre-processing of the image like grayscale conversion or contrast equalization
is required to achieve a high success rate for most computer vision algorithms. Szeliski
(2010)

2.1.1 Edge detection

Arguably the most iconic computer vision technique is edge detection. Within an image
the interesting sections are often objects or geometrical properties linked to these objects
such as position, length, width, depth or rotation. To be able to separate objects and decide
their properties they have to be separated from the background. An edge detection can
also be applied to a ROI if there’s a specific area you want to find an edge within. There
are many techniques for finding edges but this section will focus on how the Canny edge
detector works due to its state-of-the-art status in popular open source software libraries
such as OpenCV.

The first step of the Canny edge detector is to smooth the image within the ROI where
the edge detector will be active. This is done to reduce noise, unwanted details and tex-
tures. A Gaussian filter of size (2k+1)(2k+1) is convolved with the ROI. k is the variable
which represents the size of the kernel. A larger filter will have a lower sensitivity to noise,
but might result in the localization of the edges being less accurate. Canny (1986)

The filter values are given by:

Hij =
1

πσ2
exp

(
− (i− (k + 1))2 + (j − (k + 1))2

2σ2

)
, 1 ≤ i, j ≤ (2k + 1) (2.2)

The filter is then applied by iterating the gaussian filter through the ROI and convolved
with the image at every step. The next part of the process is the actual edge detection.
For this there are several operators which can be used and Canny uses the Sobel Operator.
This operator returns the value of the first derivate of the intensity function from Eq. 2.1
in both horizontal and vertical direction.

10

2.1 Computer vision

Gx =

12
1

 (
[
1 0 −1

]
∗A), and Gy =

 1
0
−1

 (
[
1 2 1

]
∗A). (2.3)

where A is the intensity in the 3x3 pixel area around the desired pixel in the smoothed
image.

Once the two directional gradients are found the true edge gradient value and direction
can be determined by trigonometry:

G =
√
G2

x +G2
y and θ = atan2(Gy, Gx). (2.4)

After the gradient is calculated the algorithm might find several directions from the
evaluated pixel which give a positive edge response. This can cause the result to return un-
wanted edges. Non maximum suppression is then applied to reduce the result noise. This
technique finds the local maxima gradient intensity while setting the other gradient values
to zero. This ensures that only the strongest edge from the evaluated pixel is returned.

At this point edges in the picture are found and well represented but there might still
be edges found due to noise or simply unwanted edges. Canny handles this problem by a
step called hysteresis thresholding. It is a double threshold approach with an upper and a
lower limit. Any pixel with gradient intensity above the upper limit is called a strong edge
and is kept. Any pixel with a gradient intensity value between the upper and lower limit
is called a weak edge and all its 8 neighbouring pixels are evaluated for a strong edge. If
a strong edge is found within its neighbouring pixels the evaluated pixel will be relabeled
as a strong edge and kept. If no strong edge is found in the closest neighbourhood of
the evaluated pixel then the evaluated pixel will be discarded. All pixels with a gradient
intensity value below the lower limit will be discarded as non-edges.

The upper and lower limit of the hysteresis threshold is application specific and is set
by design based on a trial and error method to find the desired edge. Canny (1986)

Once all steps are completed the algorithm returns a binarized image with intensity
255 for the detected edges and 0 for the rest of the image. The result is then a black image
with white lines describing the detected edges. The position and geometry of the edges
can then be extracted and further analysed.

2.1.2 Machine learning and neural networks
As machine learning and neural networks are two enormous fields of study and not used
very heavily in this thesis, this theory part will only scratch the utmost surface of the field.

Machine learning is a class of algorithms that allow a computer program to learn how
to solve problems on its own.
A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E. Mitchell (1997)

Machine learning is based upon a statistical approach where patterns of data are classi-
fied through statistical dependence. Neural networks is a subset of machine learning which
tries to mimic the human brain by modeling the data using graphs of Artificial Neurons.

11

Chapter 2. Theory and tools

These neurons are a mathematical model which tries to mimic how a neuron in the brain
works.

The goal of neural networks is to find an unknown unlinear function f with known
input x which results in a known output y. Goodfellow et al. (2016) The way this is done
in practice is that a neural network model is created by stringing together layers of neurons
with differing activation signals and sizes. The model is then trained upon a training set
which is manually classified. For computer vision problems the classification could be
images of tomatoes in one class, and images of apples in the other class. After the model
has been trained, it can be validated on an image set of tomatoes and apples the model has
not seen before and try to classify the images.

There are different kinds of neural networks, the Artificial Neural Network (ANN) is
known as a feed-forward neural network which is a directed graph from input to output.
Another type of neural network is the Recurrent Neural Network (RNN) which is a cyclical
graph where some nodes output serve as input to themselves.

Typical problems that are solved by neural networks are classification problems or
binary classification problems. Binary classification problems are a subset of classification
problems where the goal is to decide if a specific phenomena either is, or is not present
in the data. The regular classification is more complex and tries to classify several types
of phenomena from the data. Machine learning with neural networks is the current state
of the art technology in a wide range of industries such as ad targeting, finance trends,
computer vision, search engine results and speech recognition, among many other fields.

Overfitting and underfitting

When training a neural network model and comparing their test and validations scores it
is important to note how well the model is doing on both. There are two concepts, called
overfitting and underfitting. Overfitting happens when the neural network finds too many
complex relationships in the data such as sampling noise which can exist in the training
data but not necessarily in the validation data. This is spotted by the model scores on
the validation data reaching a peak value and then starts to drop down. It means that the
connections the model is able to find between the data and the result is not the connection
it is supposed to find. Srivastava et al. (2014)

Underfitting on the other hand is a situation where the validation scores are higher than
the scores on the training data which means that the model is not able to correctly model
the true patterns of the images correctly as a result of either an incomplete data set or a
weak neural network model for the specified problem.

The problems of overfitting and underfitting are illustrated in Fig. 2.1.

2.2 Frequency analysis
Frequency analysis aims to break down a complex signal into its components at various
frequencies. Tao et al. (2007) Through various techniques such as Fourier transforms or
wavelet transform a continuous-time function is transformed to the frequency domain to
look at what happens at specific frequencies instead of looking at when something happens
in the time domain.

12

2.3 Tools and software libraries

Figure 2.1: A simplistic illustration of over- and underfitting in machine learning. Liew (2016)

2.2.1 Fourier transform
The Fourier transform decomposes a time function into the frequency components. Using
the Fourier transform can allow a look into the frequency components responsible for the
periodic changes in a time series signal. The Fourier transform uses the fact that any
arbitrary set of data can be represented by a possibly infinite series of sines and cosines.
A disadvantage of a Fourier expansion is that it only has frequency resolution but no time
resolution. Valens (1999)

2.2.2 Continuous wavelet transform
A wavelet is a wave that oscillates with an amplitude that begins at zero, increases and then
decreases back to zero again. Wavelets are the solution to the Fourier transforms shortcom-
ing in that it allows a relationship between frequency resolution and their respective time
resolution. The wavelet transform results in a collection of time-frequency representations
of the signal with different resolutions, or levels of detail. Valens (1999)

2.3 Tools and software libraries
Many computer vision algorithms and mathematical analysis tools are already imple-
mented in various libraries and frameworks. Using these tools reduces the time to be
efficient if chosen and used properly when necessary. This section will introduce the
frameworks and software libraries used throughout this thesis.

2.3.1 Scorpion vision framework
Most of work in this thesis will be conducted in an environment which already has a
computer vision setup with a camera and a PC with software to analyze the images. This
software is a third-party machine vision solution developed by Tordivel and the software is
called Scorpion. Scorpion is a computer vision software framework with a graphical user
interface GUI. The framework has functionality such as an integrated picture slideshow
functionality, script implementation without needing to compile the code, and ready-to-use

13

Chapter 2. Theory and tools

Figure 2.2: Full view of Scorpion with image slides to the left and toolbox overview on the right.

implementations of a wide variety of computer vision algorithms. This allows updating
scripts and variable values in real time which can be a very powerful tool while designing
algorithms. In the current version of Scorpion the programming language integrated with
the framework is Python 2.7.

Since this setup is already in use in the factory there are many toolboxes and scripts
implemented and ready to use for different types and phases of the Czochralski process.
The following subsections will introduce the most important tools and toolboxes used in
this thesis.

2.3.2 LineFinder2

The LineFinder2 tool is an edge detector which uses first or second order derivatives to
detect light intensity variations, much in the same way the Canny edge detector does,
along tracelines within an ROI. The tool has a lot of threshold settings and it returns the
position, angle and several more properties of the detected edge.

2.3.3 FindWhiteBand toolbox

The FindWhiteBand toolbox is a set of tools and scripts that place small edge detectors on
the meniscus all the way around the ingot as seen in Fig. 2.3. The position of these edges
are used for calculating the diameter of the ingot and it is used in the ADC feedback loop.

The entire toolbox is shown in Fig. 2.4 and it contains several modules. The guards
at the beginning are logic controllers to ensure the toolbox only runs in the correct phases
of the process. The FindWhiteBandParameters is a tool containing the initial condition
data for the toolbox. IncomingRef, CenterRef, SearchData and SearchRef are positional
tools ensuring that the FindWhiteBand toolbox is centered relative to the center of the

14

2.3 Tools and software libraries

Figure 2.3: Edge detectors placed by the FindWhiteBand toolbox.

Figure 2.4: The entire FindWhiteBand toolbox.

ingot and updates its coordinate reference system accordingly. The BlobData and Check-
Intensity tools are tools to set up a blob which is an ROI with constant or approximately
constant properties, such as light intensity. The blob is set up to find the highest threshold
area within the search area shown by a blue dotted line in Fig. 2.3. It then returns the
threshold used to isolate the highest intensity area. This threshold is dynamically applied
to the FindPoint tool which is a LineFinder2 algorithm. This ensures that even if the light
intensity conditions of the meniscus changes, the LineFinder2 algorithm will always find
the meniscus edge if it is possible. The script called Run handles all the internal logical
of the toolbox, combining all the tools and dynamically updating their values to place the
edge detectors at their correct positions and return the position of the found edges.

2.3.4 SciPy

SciPy is a collection of open-source software for mathematics, science and engineering.
This thesis uses functionality from three of the open-source libraries contained in the SciPy

15

Chapter 2. Theory and tools

package. NumPy, MatplotLib and the SciPy library. Jones et al. (2001–)
SciPy is a fundemental library for scientific computing.

2.3.5 Matplotlib
Matplotlib is a 2D plotting library for Python that simulates the functionality of plotting
in MATLAB for Python projects. It produces publication quality figures and interactive
environments across platforms. Hunter (2007)

2.3.6 Numpy
NumPy is a fundamental package for scientific computing with Python. It has functionality
to handle N dimensional array objects, basic linear algebra and basic fourier transforms.
It is also developed with a C/C++/Fortran base which makes data handling several mag-
nitudes faster than regular Python which makes it very useful for optimization. Canny
(1986)

2.3.7 TensorFlow
TensorFlow which is a machine learning library widely used for speech recognition, com-
puter vision, robotics, information retrieval, natural language processing, geographic in-
formation extraction and computational drug discovery. It was developed at Google and
released as open-source. Abadi et al. (2015)

2.3.8 Keras
Keras is neural network API which is an abstraction of lower level machine learning li-
braries. For this thesis Keras is running on top of TensorFlow. Keras’ API is an abstraction
which focuses on user friendlisness for the developer which improves the speed of which
an application can be developed and debugged. Chollet et al. (2015)

16

Chapter 3
Previous work: Cold Ingot
Detection

The algorithm which was tested to be the most promising one for detecting a cold ingot in
the body phase is called the meniscus angle method and it uses geometrical changes in the
meniscus between the silicon melt and the ingot as an indicator of coldness. The method
is based upon the following hypothesis which was based upon the geometrical changes
visible in Figure 3.1. The code for this algorithm is shown in the Appendix.

Hypothesis:

• The angle of a line segment along the meniscus will vary more often and more
intensely when the ingot is cold compared to when it is in the desired state.

• The intensity of angle fluctuations in line segments along the meniscus sampled over
several frames should increase enough to be measured when the ingot becomes cold.

Implementation of the algorithm was done by adding three edge detectors as shown in
Figure 3.2. The detectors all return a line segment of the detected edge and their respective
angle. The angle for all three edge detectors are stored for N = 30 frames. For each
detector the standard deviation of the angle over N frames is calculated and then averaged
over all three gathered data sets for redundancy. After the array of 30 frames is initially
filled up the rest of the updates to the array is done as a first in first out (FIFO) queue. This
results in the algorithm continuously updating its standard deviation for every new frame
which is evaluated after the initial 30 frames.

The result from the algorithm is a floating point value which describes how fast the
geometrical form of the meniscus changes. A higher value represents a colder ingot while
a lower value represents an ingot in the desired state. This was run over three independent
data sets and all three tests succeeded.

The algorithm was developed and implemented on a test setup on the Scorpion soft-
ware introduced in Sec. 2.3.1 which allows the user to run computer vision algorithms

17

Chapter 3. Previous work: Cold Ingot Detection

(a) View of the ingot in the desired state. (b) View of the ingot when it becomes cold.

Figure 3.1: Side-by-side comparison of an ingot in the desired state and a cold ingot.

Figure 3.2: A view of the three edge detectors placed on the meniscus.

18

on a slideshow of images from the process. The images used for designing and testing of
the algorithm are taken every 20 seconds. In the live setup a new photo is taken as fast
as the Scorpion software can process it, currently five times per second. This means that
information is lost between testing on the live setup and the simulation setup.

19

Chapter 3. Previous work: Cold Ingot Detection

20

Chapter 4
Test of Cold Ingot Detection in a
live environment

In the fall project a proof of concept algorithm was designed and tested in a test envi-
ronment. This chapter will focus on ensuring proper functionality and robustness of the
detection algorithm. To accomplish this behaviour the algorithm has to be tested in the
live environment in the factory.

This chapter describes the changes made to interface the algorithm with the live setup
in the factory, the implementation of the algorithm, tuning the algorithm and provides a
discussion of the results obtained and possibilities for improvement.

4.1 System implementation

In preparation of implementing the algorithm in the live setup in the factory, a general
understanding of the system implementation should be acquired.

The overview of the data flow in the system is shown in Figure 4.1. The components
in the figure are described below.

The camera is the actual camera mounted on the furnace. It is a Sony XCG-U100E
with a pixel resolution of 1600 x 1200px and is specifically designed for machine vision
applications. Sony (2016)

The Camera PC is the computer where the images are run through the Scorpion Vision
software. This is where all the computer vision algorithms run and measurements are
extracted from the image. Most of this thesis work is done within this component, but
some care has to be taken to be able to communicate with the rest of the system.

WinCC is a scalable process-visualization system for visualizing, monitoring and op-
erating processes in a plant. The software is widely used in the industry and it is created by
Siemens.Siemens (2016) For this setup it is the main link ensuring smooth communication
between all the components.

21

Chapter 4. Test of Cold Ingot Detection in a live environment

Figure 4.1: System data flow chart.

The Programmable Logic Controller PLC performs the conversion from a digital con-
trol signal to an analog signal suitable for sending to an actuator. This is the component
which can actuate the furnace or the connected alarm system from measurements done by
the Camera PC component.

APIS is a real-time software platform for industrial applications. It streamlines infor-
mation sharing, logging and visualization from many components in the plant. It is a soft-
ware designed by Prediktor and it is used in over 600 plants throughout Norway.Prediktor
(2018) APIS is the main tool used by the Sintef researchers involved in this project and the
process engineers at the plant to monitor the pullers. It keeps track of all digital variables
and measurements from the furnace which can be dynamically put into the same graph for
analyzis as shown in Fig. 4.2.

The ethernet connection is using a standard TCP/IP protocol which is connected by
cable, while OPC is an industry standard protocol for communication between compo-
nents. Profinet is a communications protocol developed by Profibus & Profinet Inter-
national which specializes in delivering data under tight time contraints. The Profinet
protocol is used as a link between WinCC and the PLC. Profinet runs on top of ethernet
and allows open and fast communication based on TCP/IP in parallel connections over the
same cable.

The full data flow of an image then becomes clear. A photo is taken by the camera
module. It is sent through ethernet to the camera PC which runs the image through Scor-
pion to analyze the picture. Scorpion keeps its own local logic about which states to run
depending on what it sees from the camera frames and thus the output depends on its inter-
nal logic. The output from Scorpion are return values from algorithms which are written
through the OPC link to WinCC. WinCC then sends this value to the equivalent variable in
APIS for logging and easy visualization and also to the PLC over Profinet if there should
be a physical response, for example a light going on. So for a value found by a computer
vision algorithm to become available for the rest of the system, it has to be written to an
OPC variable which is then further treated by WinCC. This allows the PLC to use and

22

4.2 Preparations for implementation

Figure 4.2: An example view of the data visualization capabilities of APIS.

APIS to log the value.

4.2 Preparations for implementation
To implement the algorithm some changes from the Project version from 2017 is made.
Both the old and the new improved code can be viewed in the Appendix. In the previous
project the standard deviation was calculated in Python’s standard library. To optimize
the calculation, Numpy’s functionality for calculating standard deviation was used as its
operations are several magnitudes faster than the Python standard library. The original
central meniscus edge detector was placed statically over the meniscus, which is not ideal
since the exact placement may vary between ingots. The positioning is changed to place
the edge detectors according to a position dynamically found by the FindWhiteBand tool in
Scorpion to avoid changing position on the meniscus between ingots. The two other edge
detectors now use the center detector position as reference and place themselves relative
to it. Since Scorpion allows code to run without needing to compile, a functionality that
would handle a size decrease in the arrays used to calculate the standard deviation of the
angle along a line segment. This functionality is implemented to allow a decrease in array
size in the middle of the run without introducing any errors. This functionality ensures
that the already saved line angle array is purged until an array of the new set size is filled.
To interface with the other systems a function to write the resulting value over the OPC
protocol also had to be enabled. The OPC write function is a heavy function which requires
7 − 10ms to run each time it is called. A counter was implemented to ensure the OPC
write function would only be called every X frames. This ensures that the extra 7− 10ms
overhead of the write happens on a slower interval than images being evaluated. This will
result in the result being written to the OPC link will be delayed, but the interval can be
tuned as needed by changing the amount of frame, X, to iterate over between every write.
The cold ingot detection algorithm writes to an OPC variable named ingot squareness that
takes integer type values. Since the algorithmic results of standard deviation are floating

23

Chapter 4. Test of Cold Ingot Detection in a live environment

Figure 4.3: Standard deviation over three hours of sample data on an ingot forced cold by manual
temperature adjustment.

points, a conversion is performed by multiplying the value by 1000 to preserve 3 decimal
places precision.

4.3 First test period

For the first month the only test of the algorithm was a forced test performed on March the
2nd. An operator lowered the temperature manually to make the ingot cold. The standard
deviation of the meniscus angle clearly became larger as the ingot became colder as seen
in Fig. 4.3.

This ingot was forced cold manually until the ingot squareness hit 3.0 which is the
alarm threshold. The corresponding alarm activated and the temperature was adjusted
back up again manually which let the ingot grow back into a cylindrical shape. The graph
in Fig. 4.3 never actually hits 3.0. This is because the graph is sampled from a simulation
of the data on the test setup. The data set only contains samples in 20 second intervals
instead of 5 per second which is the update frequency in the live setup, which made the
ingot squareness value reach 3.2 and thus triggered the alarm.

As the algorithm kept running throughout March and April there were reported some
problems with sudden spikes in the ingot squareness variable at random points during the
body phase, and whenever the ingot was close to finishing the body phase. The operators
in the factory would try to adjust the temperature but after several occurences they started
discarding the alarm. The threshold value for ingot squareness to activate an alarm was
raised from 3.0 to 4.0 by a Sintef researcher on the request of process engineers from
the factory without consulting the author. This was intended to avoid operators manually
discarding the alarm every time it reported a false positive. An example of a spike is seen
in Fig. 4.4. A temperature adjustment was performed by an operator as a response to the

24

4.3 First test period

Figure 4.4: Spike in ingot squareness in the middle of the body phase. The step response in SPMain
HeaterTMP is a manual temperature adjustment.

alarm activation due to the spike, seen in the step response in SPMain HeaterTMP. This
adjustment is detrimental for the process as it throws off the reference temperature for the
control system and may introduce undesirable situations later in the process.

The 12th of April an ingot became cold without being forced manually. At this point
the alarm threshold for ingot squareness was still set to 4.0 and it was at this point the
author was made aware that the random value spikes was a problem in the live setup.
Since the threshold was set to 4.0 the ingot became very cold. The ingot lost its structure
due to the thermal stress and had to be discarded. The period when the ingot became cold
is simulated with data from the factory on the test setup with 20 second intervals between
every image and is shown in Fig. 4.5.

This incident resulted in a temporary fix where the alarm threshold for ingot squareness
was reduced to 3.0 again and a timer was implemented which only allowed one alarm ev-
ery 20 minutes to activate while the root of the thresholding problem would be worked
on.

Analyzing the image data set around the time of the spikes shows that there are two
main problems. When the meniscus edge detectors fails to find an edge they write 0.0 to
their respective array instead of returning nothing. This causes a huge spike in standard
deviation since the line segment angle usually fluctuates around 90◦ and every standard
deviation evaluation is done on a horizon of 30 frames. This means that a 90◦ change
compared the the regular 1 − 3◦ makes a big difference. The other error was that at the
end of the body phase the meniscus shrinks and the edge detectors finds the edge above
the meniscus as seen in Fig. 4.6b or the next edge below the meniscus as seen in Fig.
4.6a. Finding a different edge results in the line segment angle having a slightly different
angle than the meniscus angle thus introducing inconsistencies in the standard deviation
measurement.

25

Chapter 4. Test of Cold Ingot Detection in a live environment

Figure 4.5: ingot squareness for the very cold ingot with alarm threshold set to 4.0 on the 12th of
April 2018.

(a) The right meniscus edge detector finding the
wrong edge below the meniscus indicated by red
arrow.

(b) The right and left meniscus edge detector find-
ing the wrong edge above the meniscus indicated
by red arrows.

Figure 4.6: Examples of the meniscus edge detector finding wrong edges at the end of the body
phase.

26

4.3 First test period

Figure 4.7: The center meniscus edge detector not able to find an edge indicated by no red arrow.

Figure 4.8: The standard deviation spiking over a 30 image dataset when edges are not found.

27

Chapter 4. Test of Cold Ingot Detection in a live environment

Figure 4.9: APIS graph which shows the time period where ingot squareness indicates the ingot
becoming cold.

4.4 Tuning

After identifying the problems with the current algorithm, some changes were made. The
script that calculates the standard deviation has added checks to see whetever a meniscus
edge detector has a succesful status. Initially while filling the data set the script only
allows measurements when all three edge detectors find the edge. The script then checks
the status of the currently measured edge before replacing a value in the standard deviation
array. This results in a new value being appended only for the edges which have a succesful
edge detected.

The solution to finding wrong edges in the end of the body phased was solved by using
an intensity check found in the FindWhiteBand toolbox which looks at the same region. It
checks the intensity within a blob and uses the intensity to dynamically update the limits
the edge detector should operate within.

4.5 Late detection of cold ingots

The 24th of May a report from the a process engineer at the factory stated that several
times operators had seen the ingot becoming cold without the alarm going off in time. It
was often characterized by the ingot squareness value decreasing before increasing again
as seen in Fig. 4.9. The image set from the relevant time period was sent for analysis.

Visually the ingot seen in Fig. 4.9 is as cold as other ingots which have resulted in
the ingot squareness increasing above the threshold at 3.0. When the ingot squareness
decreases before the spike the ingot looks very elliptical without any signs of having a
jagged geometry which indicates a cold ingot. This means that the decrease in value
before the spike is most likely just a coincidence and can not necessarily be used to help
identify cold ingots. There seems to be two plausible explanations. Either the meniscus
line detectors seen in Fig. 3.2 are placed in such a way that the geometry of the cold ingot
cancel out the measurements. For example the left edge always reporting a low change

28

4.6 Discussion

of standard deviation in its angle at the same time as the right edge is reporting a big
change, thus cancelling eachother out. This seems unlikely as over the 30 image frames
used to calculate the standard deviation the cold ingot geometry should affect all three
edge detectors. This is very difficult to analyze on the test setup due to the 20 seconds
between images.

Another possible explanation is that the standard deviation increases more slowly if
the ingot becomes cold at a slower rate. If the ingot becomes colder at a slower rate the
outliers from the mean in the standard deviation may decrease as the mean increases. If
the changes are happening slowly enough the mean angle of the data set can catch up with
the outliers thus the reported standard deviation might be lower than expected.

The problem might also stem for a specific sampling phenomenon depending on a
correlation between the rotations per minute of the ingot in the puller and the sample size
and frequency of the algorithm. This has to be analyzed in the factory environment with
real time data.

4.6 Discussion
There has been some problems with the cold ingot detection after the implementation.
Firstly the bug which made the ingot squareness value spike at random intervals through
the process. This bug has been fixed on the test setup but due to the author receiving infor-
mation about the problem over a month after the implementation and with co-supervisor
John Atle on leave it has been difficult to find a time to implement the new algorithm. By
the 4th of June when this is written the algorithm is yet to be implemented and receiving
any data from the implementation in time of the thesis deadline will be impossible.

After the initial bug reports there seems to have been discovered a problem where the
ingot becomes cold without the ingot squareness exceeding the threshold at 3.0. This
seems to be a result of an ingot becoming cold more slowly than tests done in the previous
work when the algorithm was developed. This problem needs to be analyzed on the live
setup with a full data set of images without the 20 second interval to properly decide if the
edge detectors should change their placement or if the threshold for the cold ingot alarm
should be lowered. Through correspondence with process engineer Jeroen Van Delft it has
been decided that for the next iteration of the algorithm some more functionality should
be added. Specifically this functionality should facilitate an OPC write for the individual
edge detectors to analyze their behaviour when the phenomenon of undetected cold ingots
occur.

29

Chapter 4. Test of Cold Ingot Detection in a live environment

30

Chapter 5
Detection of structure loss in body
phase

Structure loss is an issue that limits the potential yield of crystals grown by the Czochralski
process in the photovoltaic industry. This issue occurs by generation and propagation of
crystal dislocations during the pulling process. Lanterne et al. (2016) While the Cz crystal
is growing, four nodes will form symmetrically at the edge of the crystal as seen in Fig.
5.1. These nodes contain the homogenous form of the crystal which allows the crystal to
be grown to a specified size. When the crystal becomes dislocated it can be seen by the
loss of one or more of the four nodes which are growing along the edge of the crystal. This
phenomenon is knows a structure loss and is often a result of thermal stress due to cooling
of the ingot, or the crystallization of silicon around a particle which grows as a bump on
the edge of the ingot. Lanterne et al. (2016)

State of the art detection of structure loss is visual inspection by operators looking
into the furnace on their rounds every 30 minutes. The visual cues to decide if an ingot
is experiencing structural loss is by looking for the four nodes on the rotating ingot. The
nodes are shown in Fig. 5.1. When an ingot is experiencing structural loss, the affected
node will stop growing along the ingot and the bump which is usually seen in the meniscus
will disappear.

As Fig. 5.2 illustrates, the ingot will continue growing without the nodes present. This
means that for an early detection of structure loss the observer should look as closely as
possible to the liquid silicon.

5.1 Problem specification
On the surface the problem is simple. If an operator sees that a node or more is missing,
then a computer should be able to do the same as fast, or faster. The ingot has four nodes
symmetrically positioned to eachother on the edges of the cylindrical ingot. As the ingot
rotates at most two of the nodes will be visible at any given time. When the node is in

31

Chapter 5. Detection of structure loss in body phase

(a) View of the four nodes marked in red in the
crown phase.

(b) View of two nodes marked in red in the body
phase. The ingot hides the other two nodes.

Figure 5.1: The nodes on a growing ingot.

(a) A dislocated ingot.
(b) The same ingot with arrows showing where
the nodes stopped growing.

Figure 5.2: An ingot experiencing structural loss.

32

5.2 The peak approach

the center front of the ingot then only one node wil be clearly visible. If a node can be
automatically detected then the number of frames, or time between each detected node can
be used to identify structure loss in the ingot. So the main focus of this approach will be
to detect the nodes.

For a computer vision based detection approach either a light intensity change or ge-
ometrical identity when the node passes, or should pass if it’s non existing, in the camera
view has to be discovered.

In the images from Fig: 5.3 it is clear for the human eye that the nodes are intact
because the nodes are clearly visible along the edge of the ingot all the way down to the
meniscus. This is due to the clear break of light from one side of a node to another side of
the node as illustrated in Fig. 5.4. But there are some problems with this way of detecting
the existence of a node through the light breaking property. Firstly the break of light is a
lot clearer some distance above the meniscus as illustrated in Fig. 5.2. Using this property
to detect structure loss would result in a slow detection. Another factor is that the lines
of shadows forming around the node are not consistent throughout the body phase of one
ingot, nor is it consequent between separate ingots. To reduce the time for detection the
algorithm should look closer to the meniscus, but as shown in Fig. 5.4 the difference in
light intensity around the node a small distance above the meniscus is very small.

Another approach is to use the change in geometry when a node passes a point during
the rotational movement. Fig. 5.5b shows that when a node passes in the center of the
image, a dip slightly down into the meniscus can be observed. This also makes the bottom
edge of the meniscus bulge as seen in Fig. 5.5a. So it might be possible to deduce if a
node exists by looking at the geometrical changes in the meniscus.

There is already implemented measurements for the geometrical changes in the menis-
cus by the meniscus angle approach as discussed in Chap. 3. As this measurement relies
on the changes of angle in a line segment along the meniscus edge this measurement might
also be useful for detecting when a node passes the same measurement point. The changes
in the meniscus are most prominent in the center of the image so the center edge detector
measurement can be used. An example is shown in figure

From the previous work described in Chap. 3 two hypotheses are deduced from the
knowledge of how the meniscus angle method works.

Hypothesis one, the peak detection approach: The peaks in the resulting graph
as seen in Fig. 5.6 from cold ingot detection in one of the three edge detectors should
represent a node passing the edge detector. If the nodes can be consistently detected then
figuring out when one or more of them is missing should be trivial.

Hypothesis two, the mean value approach: The mean value of the resulting graph
from the cold ingot detection as seen in Fig. 5.6 should be lower for an ingot without
nodes than an ingot with all nodes intact.

5.2 The peak approach
As the peak approach uses the result from the cold ingot detection algorithm it is important
to recognize that the cold ingot detection uses a data set of 30 images to calculate the
standard deviation which was deemed appropriate in the previous work on that algorithm.
After the first batch of 30 images have been evaluated it discards the oldest image and

33

Chapter 5. Detection of structure loss in body phase

(a) Frame 1 (b) Frame 2

(c) Frame 3 (d) Frame 4

(e) Frame 5 (f) Frame 6

(g) Frame 7 (h) Frame 8

Figure 5.3: Eight consecutive frames of rotation of an ingot with all nodes intact.

34

5.2 The peak approach

Figure 5.4: A zoomed in view of the left side node from Fig. 5.3g.

35

Chapter 5. Detection of structure loss in body phase

(a) View of a node passing in the center of the
image.

(b) Zoomed in view of a node passing in the center
of the image

Figure 5.5: Illustration of geometrical changes in the meniscus as the node passes directly in front
of the camera.

Figure 5.6: An ingot observed over 1 hour and 20 minutes.

36

5.2 The peak approach

(a) Graph of the meniscus angle standard devia-
tion over 30 frames measured in the center edge
detector.

(b) The ingot detection setup where the center yel-
low marked edge detector is the one being evalu-
ated.

Figure 5.7: An example of the standard deviation of the meniscus angle being evaluated.

inserts the newest evaluation to keep the set at 30 observations in a first in first out (FIFO)
order. So for this approach the cold ingot data from 30 images at a random point during an
ingots body phase is extracted and used for further analysis. The extracted data graphed
shown in Fig. 5.7a and it is observed in real time while looking at the images being
evaluated one after another. A trend is observed where local maxima in the graph comes
1-2 frames after the node has passed the detector and also a dip in the graph is observed
right before a new node passes. This is illustrated in Fig. 5.8.

The peaks noted in Fig. 5.8 are the local maxima after a node has passed while the dip
refers to the local minima at the last frame before the node passes. The peak will usually
occur 1-2 frames after the node has passed the detector. This is because the measurement
being graphed is the standard deviation of the angle in the edge detector over 30 frames.
The node passing will sometimes affect the angle of the meniscus edge for more than one
frame which increases the standard deviation and thus becomes a local maxima after two
frames have been evaluated instead of only one. Other times the node passing wil only
affect the meniscus line angle for one frame and thus the standard deviation will peak the
frame after the node has passed. The dips on the other hand have been chosen based on the
last frame before the node passes. This produces the phenomena as seen in dip 3 in Fig.
5.8. The node passes the frame after the local minima in the dip. This is the same problem
as for peaks. Sometimes two frames will affect the meniscus angle and sometimes only
one frame will. In the case of dip 3 the last position of the node is close enough to affect
the angle of the edge without having passed the measurement point. Wheter to chose the
frame before or after the node passes or the closest peak is decided by the approach taken
to identify the node.

Observing table Tab. 5.1 we can see that there are about 11 frames between every peak
and dip. This correlation is true also for the passing of nodes. Another observation is that
the lowest peak value in the span of 30 images is lower than the highest dip value. This
is because the values are so small that small changes in the meniscus or ingot can raise or
lower the entire mean value of an entire 30 image dataset, especially if the ingot becomes

37

Chapter 5. Detection of structure loss in body phase

Figure 5.8: Numbered peaks and nodes to indicate when a node passes the evaluated edge detector.

Type Number Frame number SDev Value
Peak 1 4 1.35
Peak 2 15 1.20
Peak 3 26 1.19
Dip 1 2 1.24
Dip 2 13 1.09
Dip 3 24 1.03

Table 5.1: Numeric values of node passes from the graph in Fig. 5.8 rounded to two decimal places.

slightly cold.

5.3 Derivative peak detection

Since the peaks and dips are clearly correlated with the nodes passing the edge detector
where the standard deviation is being calculated, we can try to use a derivative filter to find
the nodes. One of the main problems is that there are several smaller peaks and dips which
will be reported as false positives with a sensitive derivation filter. What we are looking
for is either the dips or the first peak after a dip. A test setup where the standard deviation
data is designed for easy testing without integrating the functionality to Scorpion Vision.
The derivative approach uses numpy’s gradient function to get the derivative of the data set
as seen in the Appendix. The data set is the same as graphed in Fig. 5.7a so the detected
peaks should be on the same frames as in Table. 5.1.

38

5.3 Derivative peak detection

Figure 5.9: The result of a derivative filter attempting to find the positive peaks.

5.3.1 Results

Type Number Frame number SDev Value
Peak 1 4 1.35
Peak 2 9 1.36
Peak 3 15 1.20
Peak 4 19 1.19
Peak 5 26 1.19
Peak 6 28 1.18

Table 5.2: Results of the derivative filter for positive peaks taken from Fig. 5.9.

39

Chapter 5. Detection of structure loss in body phase

Figure 5.10: The result of a derivative filter attempting to find the dips (negative peaks).

The derivative filter is able to pick up all the peaks from the time series data and
correctly place them. As predicted, several peaks which are found do not correlate to a
node passing the edge detection as seen when Table. 5.2 is compared with Table. 5.1.
This is due to small variations in the ingot and the meniscus when the node is not passing
the edge detector which creates small fluctuations and thus unwanted peaks are found. The
same phenomenon is seen when graphing the dips for the same data shown in Fig. 5.10

So just as the peaks were well detected, every dip is also detected from this data set.
There is a clear difference in standard deviation value between the dips and the peaks
where the nodes pass the edge detector compared to where they do not as discussed earlier
in this chapter. It is also known that the dip occurs before the node passes the edge detector.
So one possible solution is to check the difference in value between the previous dip and
the current peak whenever one is discovered. Then set a threshold to accept the peak

40

5.3 Derivative peak detection

Type Number Frame number SDev value
Dip 1 2 1.24
Dip 2 5 1.33
Dip 3 12 1.10
Dip 4 17 1.19
Dip 5 23 0.98
Dip 6 27 1.17

Table 5.3: Results of the derivative filter for negative peaks taken from Fig. 5.10.

as a node passing the edge detector. For this to be a viable solution there needs to be a
guarantee that all the non-node peaks and dips have a smaller difference then when there
is no node passing. From Tab. 5.1 it is known that a node passes between frame 2 and 4,
frame 13 and 15 and between frame 24 and 26. So now the difference between peaks and
dips where the node passes compared to where there is no node will be compared. For the
difference the values and frames where the derivative filter is able to find the peaks and the
dips have to be used, so working with values from Tables. 5.2 and 5.3 we get:

Between frames Node Difference
2-4 Yes 0.11
12-15 Yes 0.10
23-26 Yes 0.21
17-19 No 0.00
5-9 No 0.03
27-28 No 0.01

Table 5.4: Difference in peak and dip value on node passes compared to non-node passes.

There seems to be a clear correlation in difference value between a dip and a peak
when a node passes versus when a node is not passing. This data set only contains 30
pictures which corresponds to 10 minutes of a run. A full body phase can take up to 10
hours so more data needs to be analyzed.

Some nodes will not land exactly on the edge detector and thus need 2 frames to affect
the standard deviation, while other times it will land perfectly on the edge detector and thus
affect the standard deviation more in one frame. To combat the issue of node placement
while measuring, their passes will be either described by the frame they are on top of the
edge detector, or a range of frames from before it hits to edge detector to after.

For this data set the zero crossings and the differences between dip and closest peak
have been calculated the same way as done for Table. 5.4. The derivative filter returns
results as in Table. 5.5.

The first thing to notice is that the data set has peaks and dips at a higher interval than
the previous dataset. This frequency is dependent on the rotations per minute and the ingot
diameter which can change between runs and throughout a run on the live environment.

41

Chapter 5. Detection of structure loss in body phase

Figure 5.11: A dataset on a different ingot in the body phase.

Type Number Frame SDev Value
Peak 1 0 1.36
Dip 1 3 1.30
Peak 2 5 1.45
Dip 2 7 1.37
Peak 3 10 1.43
Dip 3 11 1.42
Peak 4 14 1.52
Dip 4 18 1.30
Peak 5 24 1.33
Dip 6 26 1.24

Table 5.5: Zero crossings by numerical values in data set 2.

Frame Node
0-1 Yes
5 Yes
9-10 Yes
14-15 Yes
19 Yes
23-24 Yes
28 Yes

Table 5.6: The frame where the nodes actually pass or hit the edge detector in data set 2

42

5.3 Derivative peak detection

Since the data set only contains an image every 20 seconds the frequency of nodes depends
a lot on these factors. The second thing to notice is that this data set begins with a peak and
ends with a dip. The approach is to look at the difference between a dip and the consecutive
peak. Thus the first peak has to be discarded and the last dip has to be discarded. Thus the
differences between relevant dips and their consecutive peaks are as shown in Table. 5.7.

Frame Node Difference
3-5 Yes 0.15
7-10 Yes 0.06
11-14 No 0.09
18-24 Yes(*) 0.02

Table 5.7: The difference between dips and consecutive peaks for data set 2. (*) For this range there
is supposed to be 2 nodes passing, one at frame 19 and one between frame 23 and 24.

5.3.2 Discussion

As Table. 5.7 shows that the derivative filter approach has flaws. To avoid overlooking any
nodes at the beginning or the end of a data set it needs to begin with a dip and end with a
peak. This can be remedied by continuously updating the data set frame by frame instead
of 30 by 30 frames. This might introduce another problem as the gradient might have
problems handling the edges as seen in Fig. 5.11 it finds a false peak at frame 0, which is
supposed to be at frame 1. The differences between a dip and a consecutive node is at the
minimum 0.06 in the range where a node is found for data set 2. In data set 1 the highest
difference between a dip and a consecutive node is 0.03 which has a low margin of error
if a constant threshold is to be set. This can be handled by setting an adaptive threshold
but it is difficult to decide what factors should decide this threshold. There is also a big
question of how big difference a 5 frames per second update frequency in the live setup
would change the dynamic of the derivative filter compared to the 20 seconds per frame
update on the test set up. The derivative approach might work better on a smaller data set
than that which is extracted from 30 images. It is difficult to set this horizon statically and
do any tests on a smaller set since in a smaller set the differences resulting from the low
update frequency on the test setup will have a bigger effect than the general trend seen
by a larger data set. This approach is able to show a general trend but it is not robust
enough to consistently detect nodes throughout a run. With a reduction of the window in
which to look for local maxima and minima the algorithm might perform better, but the
window size and analysis of performance should be done on the live setup to guarantee
satisfactory performance. If there is a guaranteed amount of frames between nodes in the
live setup then the window in which local maxima and minima are detected to guarantee
only one node passing and then look for a global maxima within that window. The size of
this maxima could be used to separate existing nodes from melt fluctuations.

43

Chapter 5. Detection of structure loss in body phase

Figure 5.12: Recurring standard deviation phenomena at a specific frequency over a period of 1
hour.

5.4 Frequency analysis peak detection

The standard deviation seems to oscillate with small peaks indicating nodes throughout a
run. The peaks appear at a quite constant interval as shown in Fig. 5.12. In this section
the fourier transform and the wavelet transform will be used to detect the peaks or find
an underlying characteristic that can be used for node detection. Both the continuous
wavelet transform and fourier transform will be performed using their built-in functions
in the SciPy library. The short time fourier transform is used as an attempt to quantify the
change of the nonstationary signal’s frequency over time.

5.4.1 Results

The fourier transform and the wavelet transform are both run on the same set of data which
is seen in Fig. 5.12

The Fourier transform response is seen in Fig. 5.13. The response shows the peaks
by a brighter colour over the evaluated frames which are shown on the x axis. The Y axis
shows difference in characteristics over the frequencies evaluated within the window.

From Fig. 5.13 it seems that every new frame on frequency 0.1 contains the most of
the data sets characteristics. It is unable to pick up any information happening at specific
frequencies thus making the approach unviable for the sake of detecting peaks in the data
set.

The continuous wavelet transform is able to use the frequency response to detect most
of the peaks in the signal as shown in Fig. 5.14.

The wavelet transform seem to have the same problem as the derivative filter approach.
many of the peaks are detected, but there are also peaks lacking. A width parameter for the
peak detection with continuous wavelet transform can be changed to the size of expected
peaks. Tuning this value gives slightly different results as seen in Fig. 5.15. But for both
graphs there are important peaks missing, such as at frame 16, 68 and 85. Plus several
detected peaks are not correctly detected.

44

5.4 Frequency analysis peak detection

Figure 5.13: The short time fourier transform response trying to detect frequency characteristics for
the data set.

Figure 5.14: Peak detection from the continuous wavelet transform indicated by orange crosses on
the same data set. Expected peak width set to 1− 3 frames

Figure 5.15: Peak detection from the continuous wavelet transform indicated by orange crosses.
Expected peak width set to 1− 8 frames.

45

Chapter 5. Detection of structure loss in body phase

5.4.2 Discussion
From the two proposed techniques the continuous wavelet transform seems to be the most
promising one. Although the wavelet transform performed quite well on the data set, it
seems to have similar problems as the derivative approach where not all peaks are properly
detected and some peaks are not detected at all. By tweaking the wavelet transform around
the desired result from the graph its performance can be increased. The problem with this
approach is that during a crystal growth phase of an ingot, the standard deviation of the
meniscus angle may wary a lot due to physical variations. This makes the data set too
volatile to make tuning the wavelet transform specifically for the dataset a viable method
of detection.

5.5 Smoothed Z-score peak detection
Z-score, or the standard score is a statistical technique to find out how many standard
deviations a value is from a mean. In the case of structure loss this can be applied to the
graph of the mean standard deviation of the line segment angle to look for any big value
changes.

The Z-Score formula is as follows:

z =
x− µ
σ

(5.1)

where z is the z-score, x is the evaluated data point, µ is the mean of the data set and
σ is the standard deviation.

A problem is that within a set of 30 evaluated images, the dips in one spot might have a
similar value to a peak in another spot as discussed in Sec. 5.3. Thus the Z-score approach
needs some extra features. The algorithm, which is shown in the Appendix, takes three
inputs. Lag, Threshold and Influence. Lag is the moving window for smoothing the data.
Threshold is the amount of standard deviations before signalling a peak while influence is
the factor of which new data should be used to recalculate a new threshold from the initial
input. Tweaking of these factors might make the Z-score approach feasible for finding the
peaks of the graph result from the cold ingot detection.

5.5.1 Results
The algorithm used for the Z-score implementation is a Python implementation of pseudo
code found on Stackoverflow. Brakel (2016)

For the first example the initial conditions are Lag = 5, Threshold = 3.5 and
Influence = 0.5. The light blue line is the moving mean, the green is the adaptive
threshold calculated by initial threshold combined with the influence of new data and the
dark blue line is the actual data set. The red lines indicate positive signalling or negative
signalling if a data point is found above or under the threshold.

Fig. 5.16 shows that the threshold is way too large to detect most of the peaks and dips
as well as the moving mean changing too slowly to pick up the dynamics of the system.
This indicates a too big threshold and influence ratio and the lag needs to be turned down
as well. After tuning the three input variables the best result on this data set is achieved by

46

5.6 The mean value approach

Figure 5.16: Initial Z-score with Lag = 5, Threshold = 3.5 and Influence = 0.5.

setting Lag = 2, Threshold = 1, Influence = 0.7 which results in the graph shown in
Fig. 5.17.

5.5.2 Discussion
When the Z-score is run with well chosen input values for the data set it is evaluating, it
returns a good result where almost all the dips and peaks are found. Notably in the set
graphed in Fig. 5.17 is the absence of any peak at the 24 frame mark as well as the 44
frame mark. The dip between frame 35 and 38 is also missing. The good performance is
a result of spending time specifically tuning the input to get as many of the dips and peaks
registered as possible for this specific data set. With a different data set the variations
will differ and the chosen initial conditions will not necessarily give the best performance.
Hence this method of finding peaks may not be consistent enough to detect peaks in a
given data set.

5.6 The mean value approach
The mean value approach is based off the second hypothesis which theorizes a detection
by looking at how the mean value of the standard deviation will decrease as the nodes dis-
appear. The edge detectors on the meniscus evaluate how their line segment angles change.
As the nodes disappear the ingot and thus the meniscus will become a pure ellipse and the
angle of a line segment along the meniscus should barely change, if at all. The method of
evaluating the viability of the mean value approach does not require any new algorithm to
be designed since it relies on the same geometry as the ingot squareness variable which

47

Chapter 5. Detection of structure loss in body phase

Figure 5.17: Better Z-score with Lag = 2, Threshold = 1 and Influence = 0.7

is already implemented. This approach will simply be an analysis and comparison of the
time series graph of the ingot squareness value when an ingot is experiencing structure
loss and when it is healthy.

5.6.1 Results
To see if the mean value approach has any merits, the mean standard deviation of the line
segment angles along the meniscus are analyzed to look for trends in data sets where there
is structure loss in the ingot. Two such sets are shown in Fig. 5.18 and Fig. 5.19.

There are two big factors which affect the standard deviation graph when the ingot
loses structure. The mean value seems to fall to around 1.0 and the small peaks indicating
node passes are also noticeably smaller. The value reduction of the mean standard devi-
ation is quite large and might in itself make for a good detection of ingots experiencing
structural loss. To find a potential threshold between wanted state and structure loss, an
ingot with all four nodes intact needs to be analyzed. This is to ensure that an ingot with
all four nodes intact never reaches a mean standard deviation of close to 1.0. If only one
ingot with all four nodes intact reach a mean standard deviation of 1.0 then there is no
certainty it will not happen with other ingots and the method will not be robust enough.
The graph in Fig. 5.20 shows that a healthy ingot with all four nodes intact can have a
mean standard deviation as low as almost 1.1. This means that the margin of error is very
small.

Since there is a difference in dynamics between the live setup and the test setup in
regards to number of frames being evaluated per second there might be a difference in
how much a structure loss wil affect the standard deviation. So some data from the live
factory setup is gathered to see if the difference is more easily spotted. As seen in Fig.

48

5.6 The mean value approach

Figure 5.18: A simulated graph of an ingot in the time frame where it loses structure.

Figure 5.19: A simulated graph of another ingot in the time frame where it loses structure.

49

Chapter 5. Detection of structure loss in body phase

Figure 5.20: A simulated graph of an ingot in a healthy state with all four nodes intact.

5.21 and Fig. 5.22 the APIS plots from the live setup show a much more drastic change in
value when the ingot loses structure. The ingot squareness variable goes as low as 0.6 at
some points.

5.6.2 Discussion

Due to the differences in frequency of updates between the live setup and the test setup,
every effect changing the mean standard deviation value will have a larger impact on the
live setup than on the test setup since more frames will report the bigger changes thus
affecting the standard deviation more heavily. This might be enough of a difference to set
a constant threshold to separate a healthy ingot with four nodes intact to an ingot which
is experiencing structural loss. For this to become a reality, the APIS charts for a large
amount of ingots have to be checked for their minimum ingot squareness value while
being healthy compared to the maximum ingot squareness value of an ingot experiencing
structural loss.

Even if a constant threshold is not achievable, an approach involving the slope might
be possible. By looking at the negative slope of the curve and make a connection between
how long or fast the curve is declining and connect that to the loss of structure in an ingot.
This approach however needs to make sure that the decline in ingot squareness is not a
result of an operator manually increasing the temperature on a slightly cold ingot. As
seen in Fig. 4.9 the characteristics of a cold ingot with manually increased temperature
results in a similar descent of the ingot squareness variable as structural loss. This can be
compensated for since the PLC can record when the temperature was adjusted and start a
timer to block any alarm indicating a structure loss for a period of time.

50

5.6 The mean value approach

(a) APIS graph of the ingot squareness variable
decreasing upon a structure loss

(b) A simulated graph of the same ingot in the
time frame between to 14:00 on the test setup

Figure 5.21: Real time and simulated standard deviation value comparison on an ingot experiencing
structure loss the 30th of April 2018.

(a) APIS graph of the ingot squareness variable
decreasing upon a structure loss

(b) A simulated graph of the same ingot in the
time frame between to 14:00 on the test setup

Figure 5.22: Real time and simulated standard deviation value comparison on an ingot experiencing
structure loss the 11th of May 2018.

51

Chapter 5. Detection of structure loss in body phase

(a) No node passing within the rectangle indicat-
ing the ROI (b) The cropped image within the ROI

Figure 5.23: The position of the rectangle and the cropped image showing no node within the ROI.

5.7 Machine learning approach

This approach is not exactly hypothesized in the chapter introduction but during the work
on the other methods it seems like a natural way of detecting something so easy to see
with the human eye and so elusive for other methods. If a machine learning approach can
be trained to detect images with nodes, then an already trained machine learning model
can run on the puller checking every new frame for a node within a cropped area. If it
is consistently able to detect nodes, then the logic to look for a missing node should be
trivial. In this regard the machine learning approach is quite similar to the peak detection
approaches. Both the code for the training script and the prediction script by loading the
model can be found in the Appendix.

For fast detection, the only area which needs to be evaluated is a ROI of the meniscus
where either a node passes or does not pass. Thus a small portion of the image can be
cropped to speed up the training process of the model. The interesting area and their
respective crops with and without nodes are shown in Fig. 5.23 and Fig. 5.24 The cropped
images for this approach have a size of 64x64px but potentially their size could be even
smaller.

As seen in Fig. 5.24b the geomtrical changes that should be detected are miniscule.

5.7.1 Method

An artifical neural network is designed by using the Keras and TensorFlow libraries de-
scribed in Sec. 2.3.8 and Sec. 2.3.7. The neural network is a simple network with a low
amount of neurons to avoid finding complex correlations that are not relevant for the de-
tection of a node. It has 32 neurons in the first layer, 16 neurons in the second layer then
it becomes fully connected in the third layer with a sigmoid activation to return a value
between 0 and 1. This result translates to the model classifying the images as with node,
or without a node. The model is compiled with an optimizer from the Keras library called

52

5.7 Machine learning approach

(a) A node passing within the rectangle indicating
the ROI.

(b) The cropped image of the ROI containing a
node.

Figure 5.24: The position of the rectangle and the cropped image showing a node within the ROI.

nadam and it runs a binary crossentropy loss function that should be minimized. There are
dropouts introduced at every layer of the model to avoid overfitting as discussed in Sec.
2.1.2.

Images from several hours from three different ingots are cropped and then manually
classified into node or no node images. There is an abudance of images showing no nodes
so many of these no node images are removed to ensure the model is not underfitted for
node detection. The cropping of the images is done by a script to ensure correctly sized
regions are cropped from a large data set of images. When image sets from different ingots
are cropped, their position might be slightly different compared to each other. For this
approach the position of the crop has been manually placed which may introduce problems
later. Ideally the crop should always be performed in the same position by dynamically
finding the ROI to crop from, as for example the center meniscus edge detector discussed
in Chap. 4.

The training set contains two classes of images, nodes and no nodes. In total there
are 140 images in the training set and 32 images in the validation set. The training set
contains 44 images with nodes and 96 without nodes. The model then validates itself on
a validation set which also contains the same two classes of images. The validation set
contains 16 images of each class. The images in the validation set should be images the
model has not seen while training. This means that a high validation score corresponds to
detection of the phenomena in images in has not seen before.

This method was quickly designed for conceptualizing the approach so the method is
highly based upon trial-and-failure. The training of the data set is done over 50 training
cycles, or epochs. The amount of epochs to train depend on the individual data set. Some
data sets converge faster than others depending on their characteristics.

53

Chapter 5. Detection of structure loss in body phase

Figure 5.25: A plot of training and validation scores and loss for a training session over 50 epochs.

5.7.2 Results
The model training in Fig. 5.25 shows a long period of time between epoch 0 and epoch
10, where the validation accuracy stays at 0.5 even if the training accuracy went up to
almost 0.75. This might be due to the training data containing 96 images of no nodes and
only 32 images of nodes. Thus the first 10 epochs the model was only able to learn how to
detect an ingot with no node present and therefore only the images with no nodes from the
validation set were classified correctly. During the 50 epoch training period the training
accuracy seems to grow steadily until about epoch 35 where it only has small fluctuations
and also has a relatively even value with the validation accuracy. They are both fluctuating
around 0.88 and 0.93 in accuracy at this point. This means that the model can explain
which class an image belongs to with about 90 percent accuracy at this point, which is
proven by the accuracy value of the validation set fluctuating around the same point.

Since there are 32 validation images and 96 training images it means that the fluc-
tuations of accuracy score differs from the fluctuations of the validity score. One image
misclassified in the validation corresponds to a 0.3125 decrease in accuracy. One misclas-
sified image in the training corresponds to a training accuracy decrease by 0.0714.

The loss graph seen in Fig. 5.25 is a scalar value that should be minimized for best
performance. The loss function is a result of binary crossentropy and helps indicate the
learning progress of the model. In this case the loss seems to continue decreasing all the
way to the 50th epoch, potentially indicating that several more epochs of training may
increase the performance.

So the performance is pretty good with a very quickly designed neural network, a

54

5.7 Machine learning approach

Figure 5.26: Image from an ingot cropped slightly lower than the other ingot crops in the data set.

small data set and non-fixed positions of cropping the ingot. Some of the inaccuracy in
the training set may come from a subset of figures that were cropped at a slightly different
height than the other ingots as shown in Fig. 5.26. There are 18 images from the badly
cropped ingot data set in the training set. 12 are without nodes and 6 are with nodes. In
the validation set there are no images from this ingot.

These images might be a problem for the training set accuracy as it has problems
understanding the black line at the bottom of the image. There are not many images from
this data set to train on so the model might misunderstand the difference as more important
than it really is.

The results in validation and training accuracy may change every time the model has
been run. A model was achieved where the training accuracy was 93% and the validation
accuracy was 96% on the same data which is plotted in Fig. 5.25. This model is used to
predict nodes or no nodes on a data set from a completely unseen ingot from the model
perspective. No images from this ingot was used in either training or validation.

The prediction data set contains 79 images from a single ingot. 8 images are with
nodes, 71 are without nodes. Out of the 79 images the model correctly predicts 72 of
them. All 71 images without a node are classified as images with no nodes and only one
out of the 8 images with a node is classified as a node image.

5.7.3 Discussion
The machine learning approach showed promise while validating data sets on the same
ingot as it was trained on but failed once it tried to classify images from a new ingot.
This is not necessarily an indicator of a bad approach to node detection and detection
for structure loss as it might seem. The data set used for training has problems which
creates a lot of uncertain factors for this method. The training set is very small for the
model to achieve a robust understanding of the problem with only 140 images from three
different ingots. Every ingot has specific traits such as rings along the edge of the ingot
with different depths and widths. Some ingots have more pronounced nodes while some
have more vague nodes. With a larger data set from more ingots, the model should be able

55

Chapter 5. Detection of structure loss in body phase

to to train itself to handle these differences. A huge factor is that the ROI for cropping is
placed manually in the script that handles the cropping. If the images being predicted are
placed in a different position than the images from the training set, it can create miniscule
differences such as the gray region below the meniscus can be larger or have a slightly
different angle. These differences are enough for the model to make errors when trying
to classify the prediction images. The validation test with unseen images from the same
ingots as the training set should indicate that a model trained on a varied data set, with
the ROI placed in the exact same position relative to every ingot, should produce a highly
efficient classification model for node detection.

56

Chapter 6
Automatic neck temperature
detection concept

This chapter will cover an approach for automatically detecting the correct temperature
in the neck phase. This phase is very time consuming as the process is very temperature
sensitive at this point. This sensitivity combined with temperature fluctuations in the melt
makes the task of stabilizing the temperature correctly both difficult and time consuming.
This temperature stabilization may take from two hours ranging up to twelve hours de-
pending on the experience of the operator as well as the initial conditions in the puller.
This approach does not necessarily directly measure the tmeperature but in stead focuses
on measuring the states of the neck as a result of the temperature fluctuations.

6.1 Problem specification
The detection problem is complex and there are several conditions that has to be met
to ensure the temperature is correct. These conditions are loosely based upon operator
experience and thus they are hard to specify in quantified terms. To explain the conditions,
a visualization of the desired state and the possible unwanted states is shown in Figs. 6.1
- 6.5.

The unwanted states are: A gray ring in the meniscus seen in Fig. 6.1 which indicates
a too hot melt temperature. Split nodes on the edge of the meniscus as seen in Fig. 6.2.
A thicker meniscus than desired as seen in Fig. 6.3 which indicates a too hot melt tem-
perature. A meniscus with unclear edges seemingly blending into the surrounding melt
visualized in Fig. 6.4.

The desired state is a meniscus without any of the unwanted phenomena and with all
four nodes intact around the meniscus. An image form a desired state is shown in Fig. 6.5.

Due to the fluctuations of the melt it is not enough to simply be at the desired state for a
few image frames before starting the next phase. The neck might be in a good state during
a part of the cyclic temperature fluctuations and in a bad state for the rest. To go to the

57

Chapter 6. Automatic neck temperature detection concept

Figure 6.1: Visualization of a neck with a thin gray line in its meniscus indicating that the melt is
too hot.

next phase the neck has to be stable in the desired state for a whole cycle of fluctuations.
Currently the rule of thumb for the factory operators is a 20 minute period without any
changes into unwanted states. This 20 minute period might be longer than necessary, but
it is a good guarantee for desired initial conditions in the melt for future growth.

6.2 Method
Before deciding on a specific method to solve the detection problem another question
needs to be determined first. If the detection algorithm should simply give a result which
indicates a good state or not a good state, or give an indicator as to what is wrong if it
returns an unwanted state. In this case the second option could return an indicator if the
temperature should be adjusted up or down. This would help guide the factory operator in
the process of stabilizing the melt temperature. If the detection algorithm simply returns a
binary result it would help the operators by letting them do other work while waiting for
the result after a temperature adjustment.

For a binary result the algorithm would only need to detect the desired state and any-
thing else would be considered an unwanted state and indicate an alarm. For the other
approach a detection for every unwanted state would have to be implemented and give
results depending on which unwanted state is detected.

58

6.2 Method

(a) Visualization of split nodes in the meniscus.
(b) A zoomed in view on the split nodes in the
meniscus.

Figure 6.2: View of a meniscus with a split node with and without zoom.

Figure 6.3: Image of a too thick meniscus in the neck phase.

59

Chapter 6. Automatic neck temperature detection concept

Figure 6.4: Image of a meniscus without a clear edge to the surrounding melt.

Both approaches, either binary result or classified results, need to look at a lot of the
same phenomena so many of the same computer vision techniques can be used to detect
them.

This chapter will focus on the classified results as this would give an added efficiency
for the factory operators compared to the binary result.

A classifiying algorithm needs to detect all the unwanted phenomena from Figs. 6.1
- 6.4. So handling each of these states as a separate detection problem and then returning
a binary flag to a logic controller which decides what course of action should be recom-
mended to the operator. One way of doing this would be to place edge detectors around
the meniscus and look for their shape change in much the same way as the structure loss
detection from Chap. 5. The structure loss detection approach could be used to find the
nodes from Fig. 6.5 and the split nodes from Fig. 6.2. Another edge detector could be
placed on the inside of the meniscus which in combination with the outer edge detectors
could check the thickness of the meniscus for the problem illustrated in Fig. 6.3. If the
outer edge detectors fail it would be a sign of an unclear edge as shown in Fig. 6.4. The
gray ring in the meniscus, as shown in Fig. 6.1, could be detected by either trying to place
an edge detector inside the meniscus to attach to the gray ring when found, or check for
light intensity changes within the meniscus.

Another approach would be to train a machine learning model with a manually classi-
fied data set from experienced operators. The machine learning model would need to be
trained on a large data set on all the different types of states. The area it needs to train and

60

6.2 Method

Figure 6.5: Image of a meniscus in a desired state one minute before starting the crown phase
succesfully.

61

Chapter 6. Automatic neck temperature detection concept

Figure 6.6: Image of an example ROI for a machine learning approach.

predict on is pretty small as illustrated in Fig. 6.6.

6.3 Results

6.3.1 Separate detection approach

Early in the development of the separate detection approach some problems occured. The
Scorpion Vision tools used to detect the edges of the meniscus would sometimes fail or
return badly placed edge positions. Most likely this is because the camera has a resolution
of 1600x1200px and the area of interest is within an approximate 60x60px area. Within
this ROI the scale is so small that the light intensity changes become pixelated and the
edge detectors need pixel perfect position to find the edge and ensure consistent results
between frames. The pulling mechanism holding the seed also sometimes orbit, which
means it will not necessarily stay in the exact same position between images. This requires
functionality to dynamically find the center of where the neck hits the meniscus with pixel
perfect accuracy to use as reference for placing the edge detector as seen in Figs. 6.7 and
6.8.

Creating a robust detection algorithm for all the separate states shown in Figs. 6.1 -
6.5 will require a very sophisticated algorithm for dynamically placing the center of the

62

6.3 Results

(a) The LineFinder2 tool detecting the edge of the
meniscus.

(b) A zoomed in view of the LineFinder2 tool de-
tecting the edge of the meniscus.

Figure 6.7: The LineFinder2 edge detector finding the edge of the meniscus

Figure 6.8: The LineFinder2 tool failing after being placed 1px further down on the image from
Fig. 6.7b.

63

Chapter 6. Automatic neck temperature detection concept

Figure 6.9: The RadialArcFinder tool failing to find enough edge points to fit a circle. The detected
edge points are indicated by small red dots along the yellow tracelines.

image with pixel precision. An attempt was made by using the RadialArcFinder tool from
Scorpion Vision as shown in Fig. 6.9.

The RadialArcFinder tool attempts to find edges in intensity along tracelines between
the inner circle and the outer circle. These edges are used to fit a circle which should
indicate the circle of the meniscus. If enough of the edges fail the tool can not return a
circle with a satisfactory precision, and therefore fails. The RadialArcFinder could have
been used to identify the center of the meniscus and used for placing the edge detector, but
due to the low resolution the edge detector has trouble finding the exact edge with high
enough precision.

Discussion

With a higher resolution camera the separate detection approach might be feasible. Cur-
rently it requires a level of precision the computer vision algorithms are not able to sup-
port within the current resolution. If a camera with a higher resolution was implemented
it would still be a challenge, since detecting nodes at this step is similar and has the same
level of difficulty as detecting nodes for the structure loss algorithm discussed in Chap.

64

6.3 Results

5. And this is just one out of five states it aims to detect. This detection will require a lot
of work to guarantee a high enough level of robustness to be implemented for use in the
factory environment.

6.3.2 Machine learning approach
Another approach to this problem is to use machine learning instead of creating a detec-
tion algorithm for every single state that can occur during the neck phase. This approach
requires an experienced operator or someone with training in detecting the states by vi-
sual inspection to manually classify a large data set of images from different states. These
images then have to be cropped to the size of the ROI. Once the manual classification
is done some research on how the machine learning model should be designed has to be
done. This approach might work on the current resolution, but with a higher resolution
the robustness of a machine learning based detection will definitely increase. If the im-
age gets a higher resolution the machine learning model will be able to detect the small
changes such as split nodes or change of size in the nodes more robustly. Combining this
approach with a classification of the data resulting in a success of the full ingot growth
might even let the algorithm itself find new variations in the image which gives the ideal
initial conditions for the crown phase. Classifying different states in images like this is
one of the main uses of machine learning in state-of-the-art computer vision applications.
This should be an indicator that this method might be the way to go to achieve the best
result of this detection.

This approach was never attempted due to time-to-deadline issues, so there is no data
on this approach. This section is purely discussion based upon speculation with root in the
theory presented in Chap. 2.

65

Chapter 6. Automatic neck temperature detection concept

66

Chapter 7
Conclusions and recommendations
for further work

7.1 Test of Cold Ingot Detection in the live environment

7.1.1 Conclusion

The detection of cold ingots is not able to give an early enough detection in its current
state. There seems to be a disrepancy in the increase of ingot squareness depending on
how quickly the ingot becomes cold. If the change happens quickly ingot squareness
increases to above the alarm threshold and clearly indicates a cold ingot. If the ingot
becomes cold over a longer period of time the ingot squareness doesn’t increase to a high
enough value to activate the alarm. This might be remedied by tuning the threshold by
look at graphs from APIS ensuring the max value of a non-cold ingot never exceeds the
value chosen for the threshold. In the specific case where an ingot became cold without an
alarm being activated, the temperature was adjusted while ingot squareness had a value of
circa 2.3. Using this as a baseline for a new threshold might ensure a satisfactory detection
as long as it doesn’t introduce any false positives.

7.1.2 Recommendation for further work

The future work for the test of cold ingot detection in the live environment requires access
to the real time data in the factory, preferrably with possibilities of looking at every frame
which is evaluated as well. Reducing the alarm threshold to around 2.35 might be enough
to solve the problem. To ensure that this approach is good enough, tests have to be run
and healthy ingots have to be analyzed to make sure their worst case ingot squareness
value never exceeds the suggested threshold. If this does not work then maybe another
approach can be used in conjuction with the meniscus angle method which is currently
used to guarantee a robust detection of cold ingots.

67

Chapter 7. Conclusions and recommendations for further work

7.2 Detection of structure loss in the body phase

7.2.1 Conclusion
Structure loss is a difficult phenomenon to detect due to the meniscus changes being so
miniscule that it is hard to discern the actually nodes from noise. If a method is not able
to consistently detect the nodes without any false positives or positive negatives then the
entire approach is not robust enough in a production setting. Out of the methods mentioned
in Chap. 5 the mean value approach and the machine learning approach seem like the only
two methods to be able to solve this problem. The mean value approach is the easiest and
least time consuming method to implement and it is also easy to test as long as the real
time data from APIS is used for the analyzis. The machine learning method on the other
hand is very unfinished and needs a lot more data, tweaking of the model and testing to be
considered robust enough to work in a live environment. It also requires a better setup for
creating the test data to ensure there are no discrepancies in the ROI placement between
ingots.

7.2.2 Recommendation for further work
Since many of the attempts at detecting structure loss in the body phase are dependent on
time series data, which is widely different in the test setup compared to the live factory
environment, the person conducting the further work needs access to real time data and
images from the factory. The recommended approaches are the mean value approach and
the machine learning approach. The mean value approach should take a lot less time
to implement and thus should be tried before starting work with the machine learning
approach.

7.3 Automatic neck temperature detection concept

7.3.1 Conclusion
The detection of automatic neck temperature only focuses on a small portion of the image
where there is a wide variety of problems and unwanted states that may arrive. This portion
of the image is so small that picking up on the details with the current camera and classic
comptuer vision techniques proves to be very difficult. If a camera with better resolution
is installed, two main approaches for solving this detection problem are recommended.
One of them is creating separate detection for each of the individual unwanted states,
sending them all to a central logical controller which uses this information to decide if the
temperature is too low, too high or at an appropriate level. These separate detections will
vary in complexity but for example the detection of the nodes will be quite similar to the
structure loss detection algorithm, only on a smaller scale. Creating separate detections
for all the unwanted states in this phase might be very time consuming. Another approach
is to design a machine learning algorithm and train it on a huge data set of manually
classified images by experienced operators of these phenomena. It can either be a binary
classification where the meniscus is either reported as a desired state or unwanted state,
or a more complex classification where temperature adjustment recommendations can be

68

returned depending on the resulting state. Both approaches will require a great deal of
analysis and time to guarantee a satisfactory performance.

7.3.2 Recommendation for further work
For further work on the automatic neck temperature detection concept there has to be
done research on which approach is most likely to yield the best response. Since both of
the approaches are technically difficult and time consuming, their pros and cons should
be carefully analyzed and discussed before picking a method. A camera with a higher
resolution, either from applying an optical zoom or a camera with higher resolution, should
be acquired to guarantee feasibility to the research done on this detection.

69

70

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M.,
Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available from tensorflow.org.
URL https://www.tensorflow.org/

Bones, J., 2012. Model-based control of the czochralski process.

Brakel, J., 2016. Smoothed z-score algorithm. http:
//stackoverflow.com/questions/22583391/
peak-signal-detection-in-realtime-timeseries-data, [Online;
accessed 20.05.2018].

Canny, J., 1986. A computational approach to edge detection. IEEE Transactions On Pat-
tern Analysis And Machine Intelligence PAMI-8 (6).

Catalbas, M., Cegovnik, T., Sodnik, J., Gulten, A., 2017. Driver fatigue detection based on
saccadic eye movements. 10th International Conference on Electrical and Electronics
Engineering (ELECO), 913–917.

Chollet, F., et al., 2015. Keras. https://keras.io, [Online; accessed 12.05.2018].

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press, http://
www.deeplearningbook.org.

Hunter, J. D., 2007. Matplotlib: A 2d graphics environment.

Jones, E., Oliphant, T., Peterson, P., et al., 2001–. SciPy: Open source scientific tools for
Python. SciPy Home, [Online; accessed 02.05.2018].

Kakimoto, K., 2013. Development of crystal growth technique of silicon by the czochralski
method.

71

https://www.tensorflow.org/
http://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data
http://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data
http://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data
https://keras.io
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.scipy.org/

Lanterne, A., Gaspar, G., Hu, Y., Øvrelid, E., Sabatino, M., 2016. Investigation of different
cases of dislocation generation during industrial cz silicon pulling. Physica Status Solidi
C (10-12), 827–832.

Lee, D., Park, J., Lee, K., Lee, M., 2005. Mpc based feedforward trajectory for pulling
speed tracking control in the commercial czochralski crystallization process. Interna-
tional Journal of Control, Automation, and Systems 3 (2), 252–257.

Liew, L., 2016. Curve fitting. https://algotrading101.com/blog/1543426/
what-is-curve-fitting-overfitting-in-trading-optimization,
[Online; accessed 29.05.2018].

Mitchell, T., 1997. Machine Learning. McGraw-Hill.

NorSun, 2018. Norsun pulling hall. https://norsuncorp.no/, [Online; accessed
04.06.2018].

Prediktor, 2018. Prediktor webpage. About APIS link, [Online; Accessed: 25.04.2018].

Siemens, 2016. SIMATIC WinCC reference. WinCC Information Link, [Online; Ac-
cessed: 25.04.2018].

Sony, 2016. XCG-U100E brochure. Brochure Link, [Online; Accessed: 28.04.2018].

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salkhutdinov, R., 2014. Dropout:
A simple way to prevent neural networks from overfitting (15), 1929–1958.

Szeliski, R., 2010. Computer Vision: Algorithms and Applications. Springer.

Tao, Q., I, V., Yuesheng, X., 2007. Wavelet Analysis and Applications. BIRKHÄUSER.

Valens, C., 1999. A Really Friendly Guide to Wavelets. BIRKHÄUSER.

72

https://algotrading101.com/blog/1543426/what-is-curve-fitting-overfitting-in-trading-optimization
https://algotrading101.com/blog/1543426/what-is-curve-fitting-overfitting-in-trading-optimization
https://norsuncorp.no/
https://mall.industry.siemens.com/mall/en/ww/catalog/products/10042373?activeTab=order®ionUrl=WW
https://mall.industry.siemens.com/mall/en/ww/catalog/products/10042373?activeTab=order®ionUrl=WW
http://www.rmaelectronics.com/content/Sony-Cameras/GigE%20Cameras%20Final%20Brochure.pdf

Appendix

Meniscus angle method from previous project in 2017

OLD METHOD USED IN PREVIOUS WORK
MENISCUS ANGLE METHOD
##Calculate standard deviation of angle on 3 lines along the meniscus

Horizon = 15 frames
N = 15

#Fetch values from edge detectors, and fetch horizon iterator
itr = GetIntValue(’IngotShape.Counter’)
meniscus1_angle = GetValue(’MeniscusLineFinder1.Line[1]_Angle’)
meniscus2_angle = GetValue(’MeniscusLineFinder2.Line[1]_Angle’)
meniscus3_angle = GetValue(’MeniscusLineFinder3.Line[1]_Angle’)

angleList1 = GetResultValue(’IngotShape.AngleList1’)
angleList2 = GetResultValue(’IngotShape.AngleList2’)
angleList3 = GetResultValue(’IngotShape.AngleList3’)

#Gather first 15 sets before starting calculation
if itr < 15:
angleList1.append(meniscus1_angle)
angleList2.append(meniscus2_angle)
angleList3.append(meniscus3_angle)

SetResultValue(’IngotShape.AngleList1’, angleList1)
SetResultValue(’IngotShape.AngleList2’, angleList2)
SetResultValue(’IngotShape.AngleList3’, angleList3)
itr += 1
SetIntValue(’IngotShape.Counter’, itr)

#After 15 points check std.deviation
else:

#Get means
mean1 = np.sum(angleList1)/N
mean2 = np.sum(angleList2)/N
mean3 = np.sum(angleList3)/N
s1 = 0
s2 = 0
s3 = 0
for i in range(0, N):

s1 += np.power(np.absolute(angleList1[i]-mean1), 2)
s2 += np.power(np.absolute(angleList2[i]-mean2), 2)
s3 += np.power(np.absolute(angleList3[i]-mean3), 2)

Calc std.dev of each vector

73

sdev1 = np.sqrt(s1/N)
sdev2 = np.sqrt(s2/N)
sdev3 = np.sqrt(s3/N)
mean = (sdev1+sdev2+sdev3)/3
SetValue(’TOOLBOX.MeanSDev’, mean)

Remove oldest frame from history and append new for next iteration
del angleList1[0]
del angleList2[0]
del angleList3[0]
angleList1.append(meniscus1_angle)
angleList2.append(meniscus2_angle)
angleList3.append(meniscus3_angle)
SetResultValue(’IngotShape.AngleList1’, angleList1)
SetResultValue(’IngotShape.AngleList2’, angleList2)
SetResultValue(’IngotShape.AngleList3’, angleList3)

New meniscus angle method

#IngotShape detector for cold ingots by Meniscus Angle

#Horizon, #frames
N = 30

#Fetch values from edge detectors, and fetch horizon iterator
WriteCounter = GetIntValue(’StandardDeviation.WriteCounter’)
itr = GetIntValue(’StandardDeviation.Counter’)
meniscus1_angle = GetValue(’MeniscusLineFinder1.Line[1]_Angle’)
meniscus2_angle = GetValue(’MeniscusLineFinder2.Line[1]_Angle’)
meniscus3_angle = GetValue(’MeniscusLineFinder3.Line[1]_Angle’)

angleList1 = GetResultValue(’StandardDeviation.AngleList1’)
angleList2 = GetResultValue(’StandardDeviation.AngleList2’)
angleList3 = GetResultValue(’StandardDeviation.AngleList3’)

#Used to export data for testing in external program.
#SDArray = GetResultValue(’StandardDeviation.SDevList1’)

#Fetch status of MeniscusLineFinders, 1 = success, 3 = fail
status1 = GetIntValue(’MeniscusLineFinder1.Status’)
status2 = GetIntValue(’MeniscusLineFinder2.Status’)
status3 = GetIntValue(’MeniscusLineFinder3.Status’)

#If N is reduced during a run the program will adjust
if itr > N:

del angleList1[0]
del angleList2[0]
del angleList3[0]
itr -= 1
SetIntValue(’StandardDeviation.Counter’, itr)

#Gather first N sets before starting calculation
#Don’t append unless all three tools are able to fetch values: statusX ==

1

74

#This ensures three vectors with same length as the basis
if itr < N and status1 == 1 and status2 == 1 and status3 == 1:

angleList1.append(meniscus1_angle)
angleList2.append(meniscus2_angle)
angleList3.append(meniscus3_angle)
SetResultValue(’StandardDeviation.AngleList1’, angleList1)
SetResultValue(’StandardDeviation.AngleList2’, angleList2)
SetResultValue(’StandardDeviation.AngleList3’, angleList3)
itr += 1
SetIntValue(’StandardDeviation.Counter’, itr)

#After N points, check std.dev
elif itr == N:

sdev1 = np.std(angleList1)
sdev2 = np.std(angleList2)
sdev3 = np.std(angleList3)
mean = (sdev1+sdev2+sdev3)/3
SetValue(’TOOLBOX.MeanSDev’, mean)
These values can be written to OPC to look at cold ingot detection-
problems.
SetValue(’TOOLBOX.SDev1’, sdev1)
SetValue(’TOOLBOX.SDev2’, sdev2)
SetValue(’TOOLBOX.SDev3’, sdev3)

Used to extract standard deviation results to external scripts-
for analysis.
#if len(SDArray) >= 30:
del SDArray[0]
#SDArray.append(sdev1)
#SetResultValue(’StandardDeviation.SDevList1’, SDArray)

#Remove oldest frame from history and append new for next itr
#Only allow update of value if the tool doesn’t fail.
if status1 == 1:

del angleList1[0]
angleList1.append(meniscus1_angle)
SetResultValue(’StandardDeviation.AngleList1’, angleList1)

if status2 == 1:
del angleList2[0]
angleList2.append(meniscus2_angle)
SetResultValue(’StandardDeviation.AngleList2’, angleList2)

if status3 == 1:
del angleList3[0]
angleList3.append(meniscus3_angle)
SetResultValue(’StandardDeviation.AngleList3’, angleList3)

#Try-Except block to catch failure in OPC link.
try:

Only count towards write when list is populated and mean calculated
Upper limit on mean is safety in case some error making linefinders

fail
if itr == N and mean != 0 and mean < 10:

4 updates to OPC between full reset of data in populated list.
WriteCounter accept value must be tuned depending on N and desired

write cycle

75

if WriteCounter >= N/2:
WriteCounter = 0
#Convert to int with 3 decimal precision
mean_out_int = int(mean*1000)
print ’SEND SDEV TO OPC’
opc.WriteItem(’Ingot_Squareness’, mean_out_int)

Iterate up writecounter
else:
WriteCounter += 1

#Always update WriteCounter
SetIntValue(’StandardDeviation.WriteCounter’, WriteCounter)

#if itr != N or mean has unreasonable value, don not write to OPC.
else:

pass
except:

#If error in OPC link - should something happen? Reset all variables and
restart??

pass

Derivative script for structure loss detection test

import matplotlib.pyplot as plt
import numpy as np
import random

Contains sdev values from cold ingot detection.
y = np.array([])

ymin = np.amin(y)
ymax = np.amax(y)
Set up plots
fig, ax = plt.subplots(3, 1)# figsize=(8,6))

Initialize empty signal array with correct length
siglist = np.zeros(len(y))

Find positive zero-crossings of the slope.
def crossings_nonzero_pos(data):

pos = data > 0
Binary AND between the entire set of data > 0
return (pos[:-1] & ˜pos[1:]).nonzero()[0]

Find negative zero-crossings of the slope.
def crossings_nonzero_neg(data):

pos = data < 0
return (pos[:-1] & ˜pos[1:]).nonzero()[0]

Set signal high on correct index on detected cross
def signal_crossing_pos(data, siglist, slope):

for i in range(0, len(data)):
siglist[data[i]] = 1

76

return siglist

Derivative
slope = np.gradient(y)
Find all zero crossings where sign of slope is changed
zero_crossings = np.where(np.diff(np.sign(slope)))[0]

Pick all signs going from positive to negative from set of all zero
crossing

zero_cross_pos = crossings_nonzero_pos(slope)
Pick all signs going from neg to pos of all zero crossing
zero_cross_neg = crossings_nonzero_neg(slope)

For every peak there has to be a dip so we can do:
for i in range(1, len(zero_crossings), 2):

if i < len(zero_crossings)-1 and i != 0:
temp_a = y[zero_crossings[i]]
temp_b = y[zero_crossings[i+1]]
print("First frame: ", zero_crossings[i], "Second frame: ",

zero_crossings[i+1])
print("Diff: ", np.abs(temp_a - temp_b))

Translate result to a plottable signal array
sig_result = signal_crossing_pos(zero_cross_pos, siglist, slope)

Plotting
ax[0].plot(y, color=’blue’)
ax[0].set_title("Standard deviation")
ax[0].set_ylabel("Standard Deviation", color=’blue’)
ax[0].set_xlim([0, len(y)])
ax[0].set_ylim([ymin-0.2, ymax+0.2])
ax[0].grid()
ax[1].plot(slope, color=’green’)
ax[1].set_title("Slope of standard deviation")
ax[1].set_ylabel("Slope", color=’green’)
ax[1].set_xlim([0, len(y)])
ax[1].set_ylim([-0.25, 0.25])
ax[1].grid()
ax[2].plot(sig_result, color = ’red’)
ax[2].set_title("Signal")
ax[2].set_ylabel("Signal peaks", color=’red’)
ax[2].set_xlim([0, len(y)])
ax[2].set_ylim([0, 1.5])
ax[2].grid()
plt.show()

Fourier transform script

Fourier transform
import scipy
from scipy import signal
import matplotlib.pyplot as plt

77

import numpy as np

Contains sdev values from cold ingot detection.
y = np.array([])

Size of data
N = len(y)-1

Arbitrary value to spread the resulting plot
T = 1/30
Size of window
batch = 30

Generate an X axis
x = np.linspace(0.0, N*T, N)
Create window to transform within
wind = signal.get_window(’blackman’, batch)

#Short time fourier transform
f, t, Zxx = signal.stft(y, window = wind, nperseg=batch)

#Plot setup
plt.title(’STFT Magnitude’)
plt.ylabel(’Frequency [HZ]’)
plt.xlabel(’Time [sec]’)

plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=2)
plt.show()

Wavelet transform script

Wavelet transform
import scipy
from scipy import signal
import matplotlib.pyplot as plt
import numpy as np

Contains sdev values from cold ingot detection.
y = np.array([])

Wavelet transform
peakidx = signal.find_peaks_cwt(y, np.arange(1,5), noise_perc = 0.1)

plt.subplot(211)
plt.plot(y)
plt.plot(peakidx, y[peakidx], ’x’)
plt.show()

Smoothed Z-score algorithm

78

Implementation of algorithm from http://stackoverflow.com/a/22640362
/6029703

import numpy as np
import pylab

def thresholding_algo(y, lag, threshold, influence):
signals = np.zeros(len(y))
filteredY = np.array(y)
avgFilter = [0]*len(y)
stdFilter = [0]*len(y)
avgFilter[lag - 1] = np.mean(y[0:lag])
stdFilter[lag - 1] = np.std(y[0:lag])
for i in range(lag, len(y) - 1):

if abs(y[i] - avgFilter[i-1]) > threshold * stdFilter [i-1]:
if y[i] > avgFilter[i-1]:

signals[i] = 1
else:

signals[i] = -1

filteredY[i] = influence * y[i] + (1 - influence) *
filteredY[i-1]

avgFilter[i] = np.mean(filteredY[(i-lag):i])
stdFilter[i] = np.std(filteredY[(i-lag):i])

else:
signals[i] = 0
filteredY[i] = y[i]
avgFilter[i] = np.mean(filteredY[(i-lag):i])
stdFilter[i] = np.std(filteredY[(i-lag):i])

return dict(signals = np.asarray(signals),
avgFilter = np.asarray(avgFilter),
stdFilter = np.asarray(stdFilter))

Data
y = np.array([data..])

Settings: lag = 30, threshold = 5, influence = 0
lag = 2
threshold = 1
influence = 0.7

Run algo with settings from above
result = thresholding_algo(y, lag=lag, threshold=threshold, influence=

influence)

f, ax = pylab.subplots(3, sharex = True)

ax[0].plot(np.arange(1, len(y)+1), y)
ax[0].set_title(’Data set’)
ax[1].plot(np.arange(1, len(y)+1), y)
ax[1].plot(np.arange(1, len(y)+1),

result["avgFilter"], color="cyan", lw=2)
ax[1].plot(np.arange(1, len(y)+1),

result["avgFilter"] + threshold * result["stdFilter"],
color="green", lw=2)

ax[1].plot(np.arange(1, len(y)+1),

79

result["avgFilter"] - threshold * result["stdFilter"],
color="green", lw=2)

ax[1].set_title(’Data set with smoothed Z-score’)
ax[2].step(np.arange(1, len(y)+1), result["signals"], color="red", lw=

2)

pylab.show()

Machine learning training script

from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Activation, Dropout, Dense, Flatten
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from keras.utils import plot_model
from keras import optimizers
import matplotlib.pyplot as plt

#dims
img_width = 64
img_height = 64
#Training consts
batch_size = 32
epochs = 50
train_samples = 140
valid_samples = 32

#Black & white
input_shape = (img_width, img_height, 3)

#Directories of image sets
train_dir = ’data/train’
valid_dir = ’data/validation’

#Feedforward model, add layers in sequential order
model = Sequential()

#Layer 0, 32 inputs, 0.5 dropout
model.add(Dense(32, input_shape=input_shape))
model.add(Activation(’relu’))
model.add(Dropout(0.5))

#Layer 1, 16 inputs, 0.5 dropout
model.add(Dense(16, activation=’relu’))
model.add(Dropout(0.5))
model.add(Flatten())

#Layer 2, fully connected sigmoid 0-1 result
model.add(Dense(1, activation=’sigmoid’))

#Compiler
model.compile(optimizer=’nadam’, loss=’binary_crossentropy’, metrics=[

’accuracy’])

80

#Generate training data from images
if True:

train_datagen = ImageDataGenerator(
rescale = 1./255,
)

test_datagen = ImageDataGenerator(
rescale = 1./255,
)

train_gen = train_datagen.flow_from_directory(
train_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = ’binary’
)

valid_gen = test_datagen.flow_from_directory(
valid_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = ’binary’
)

#Train the model on the new data for a few epochs
history = model.fit_generator(

train_gen,
steps_per_epoch = train_samples // batch_size,
epochs = epochs,
verbose = 1,
validation_data = valid_gen,
validation_steps = valid_samples // batch_size
)

#Save training model to file
model.save_weights(’model_weights.h5’)
model.save(’model.h5’)

#Evaluate score of model
score = model.evaluate_generator(valid_gen)
print("Score: ", score)
print("%s: %.2f%%" % (model.metrics_names[1], score[1]*100))

#Plot training history
plt.figure(1)

#Summarize history for accuracy
plt.subplot(211)
plt.plot(history.history[’acc’])
plt.plot(history.history[’val_acc’])
plt.title(’model accuracy’)
plt.ylabel(’accuracy’)
plt.xlabel(’epoch’)
plt.legend([’train’, ’validation’], loc=’upper left’)

#Summarize history for loss

81

plt.subplot(212)
plt.plot(history.history[’loss’])
plt.plot(history.history[’val_loss’])
plt.title(’model loss’)
plt.ylabel(’loss’)
plt.xlabel(’epoch’)
plt.legend([’train’, ’validation’], loc=’upper left’)
plt.show()

Machine learning prediction from model script

from keras.models import load_model
from keras.preprocessing import image
from keras.preprocessing.image import ImageDataGenerator
import numpy as np
import matplotlib.pyplot as plt

#Fetch best scoring model
model = load_model(’C:\\Users\\endreag\\AnacondaProjects\\rename_files

\\model_96.h5’)

#Fetch directory of images to predict
pred_dir = ’data/prediction’
#Constants
img_width = 64
img_height = 64
batch_size = 1
pred_samples = 79

#Generate data from images in directory
pred_datagen = ImageDataGenerator(

rescale = 1./255,
)

#Generate prediction from the model on the data
pred_gen = pred_datagen.flow_from_directory(

pred_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = ’binary’,
shuffle = False
)

#Get the class indices from generator
ground_truth = pred_gen.classes

#Get the filenames from the generator
fnames = pred_gen.filenames

#Get the label to class mapping from the generator
label2index = pred_gen.class_indices

#Getting the mapping from class index to class label
idx2label = dict((v,k) for k,v in label2index.items())

82

#Find probabilities
pred_prob = model.predict_generator(pred_gen, verbose=1, workers = 1)

#Fetch predicted classification
pred_class = np.reshape(np.where(pred_prob > 0.5, 1, 0), (-1))
print("Pred class: ", pred_class)

#Find all wrongly classified images.
errors = np.where(pred_class != ground_truth)[0]
print("Num of errors: ", len(errors))
print(errors)
#Find all correctly classified images:
correct = np.where(pred_class == ground_truth)[0]
print("Num correct: ", len(correct))

Shows the image indicated as an error with predicted class and
actual class as label

for i in range(len(errors)):
error_class = pred_class[errors[i]]
#print("Pred class: ", pred_class)
pred_label = idx2label[error_class]
#print("Pred label: ", pred_label)
print("Filename: ", fnames[errors[i]])

title = ’Original label: {}, Prediction: {}’.format(
fnames[errors[i]].split(’/’)[0],
pred_label
)

original = image.load_img(’{}/{}’.format(pred_dir,fnames[errors[i]
]))

plt.figure(figsize=[7,7])
plt.axis(’off’)
plt.title(title)
plt.imshow(original)
plt.show()

Utility tool for renaming image files as a single iterated
number

import os
import sys

def renameAllFilesInFolder(folderpath):
#Name of the first image in the set = i
i = 1
for filename in os.listdir(folderpath):

oldFile = os.path.join(folderpath, filename)
if os.path.exists(oldFile):

#Path magic for filename and file extension concatenation
newFile = os.path.join(folderpath, str(i)+".png")
os.rename(oldFile, newFile)

83

else:
print("Couldn’t find files in path.")
return

#Iterate i to avoid overwriting.
i += 1

def main():
#Avoid running if path not included in call
if(len(sys.argv) <= 1 or len(sys.argv) > 2):

exit
else:

pathStr = str(sys.argv)
print("Looking to rename files in path: ", sys.argv[1])
renameAllFilesInFolder(str(sys.argv[1]))

main()

84

	Sammendrag
	Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	The Czochralski puller
	Technological setup of the furnace
	Problem description
	Testing and verification of automatic cold ingot detection
	Automatic detection of structure loss in the body phase
	Automatic temperature detection in the neck stabilization phase

	Limitations
	Thesis organization

	Theory and tools
	Computer vision
	Edge detection
	Machine learning and neural networks

	Frequency analysis
	Fourier transform
	Continuous wavelet transform

	Tools and software libraries
	Scorpion vision framework
	LineFinder2
	FindWhiteBand toolbox
	SciPy
	Matplotlib
	Numpy
	TensorFlow
	Keras

	Previous work: Cold Ingot Detection
	Test of Cold Ingot Detection in a live environment
	System implementation
	Preparations for implementation
	First test period
	Tuning
	Late detection of cold ingots
	Discussion

	Detection of structure loss in body phase
	Problem specification
	The peak approach
	Derivative peak detection
	Results
	Discussion

	Frequency analysis peak detection
	Results
	Discussion

	Smoothed Z-score peak detection
	Results
	Discussion

	The mean value approach
	Results
	Discussion

	Machine learning approach
	Method
	Results
	Discussion

	Automatic neck temperature detection concept
	Problem specification
	Method
	Results
	Separate detection approach
	Machine learning approach

	Conclusions and recommendations for further work
	Test of Cold Ingot Detection in the live environment
	Conclusion
	Recommendation for further work

	Detection of structure loss in the body phase
	Conclusion
	Recommendation for further work

	Automatic neck temperature detection concept
	Conclusion
	Recommendation for further work

	Bibliography
	Appendix

