
A Machine Learning Approach for
Determining Reference Wells in the
Norwegian Continental Shelf

Minh Hoan Bui Pham

Master of Science in Industrial Cybernetics

Supervisor: Ole Morten Aamo, ITK

Department of Engineering Cybernetics

Submission date: July 2018

Norwegian University of Science and Technology

Problem Description

Before drilling a new well, engineers carefully select relevant reference wells that
serve as a source of information for efficiently planning the new well. The selec-
tion process entails browsing through a large database and is at present a time-
consuming, highly manual task. The objective of this master thesis work is to
develop an expert system that automatically extracts the relevant reference wells
from the database, given the new well’s geological profile. The candidate will look
into methods for unsupervised machine learning and clustering analysis to achieve
this. In particular, the following tasks will be addressed

• Summarize relevant methods from the machine learning literature.

• Extract well data from the database available at the Norwegian Petroleum
Directorate (NPD), as well as from the collaborative firm. .

• Select data fields that are relevant for the problem and that will be used in
the clustering analysis. Motivate the choice.

• Specify the algorithm to use, and define in detail its input data (can be all
of the data selected in point 3, or a justified subset of it).

• Implement the system using appropriate tools.

• Write report.

Supervisor: Professor Ole Morten Aamo

i

Preface

This thesis will be submitted to the Department of Engineering Cybernetics at
NTNU, in collaboration with an oil firm in the industry, to fulfill the requirements
of a Master of Science in Industrial Cybernetics. What motivates me, is the thought
of encouraging the development of in-house solutions for small scale problems that
can increase the efficiency in an oil firm. The case that is presented in this thesis
came to attention during my summer internship at the collaborative firm. While
working, I got caught up in how engineers still has a lot of manual work when it
comes to accessing information. I found this interesting and presented it as one of
four cases in a feasibility study that was submitted fall of 2017. Luckily, both me
and the collaborative firm wished to pursue the case presented in this thesis.

The thesis purposes a machine learning solution to the problem of selecting good
and relevant reference wells for when a new well is to be drilled. An expert system
that automatically extracts suitable wells is scripted with tools that are regularly
available for the petroleum engineer. To be applicable to a wide audience, an official
database at the Norwegian Petroleum Directorate has been used as a main source
for well data, while confidential information extracted from Final Drilling programs
of the collaborative firm are made anonymous. Python is used as the main scripting
language, together with Scikit-learn, a free software library for machine learning,
and PyCharm as the IDE, both compatible with Python.

This semester has been quite interesting and challenging, but at the same time
rewarding, as I have been able to work with Python over a longer period. I have
learned how important it is to gain knowledge and experience to better understand
the task one is solving. This, combined with familiarization of the selected scripting
language will help creating good scripts. I therefore look forward to gain more
knowledge and experience as an engineer to better solve such tasks.

I would like to thank the collaborative firm and my team there for taking on
the thesis on such short notice, specially Kjell Eivind Stormo and Terje Mykle-
bust, your feedback has been valuable. Big thanks to my supervisor Professor Ole
Morten Aamo and my fellow peers at the NTNU office for being vital discussion
partners throughout the whole process.

July 2018, Trondheim

Minh Hoan Bui Pham

iii

iv

Abstract

An unsupervised learning solution for selecting relevant reference wells for a new
well that is to be drilled in the Norwegian Continental Shelf (NCS), shall be made
with readily available software tools such as Python and the machine learning
library Scikit-Learn. The developed expert system shall select the most relevant
wells based on a simple feature of the well; its geological profile. Clustering analysis,
such as the k-means algorithm and Voronoi partition, will serve to increase the
convergence towards the solution, proposed by the system, by pinpointing which
clusters of wells are most relevant in the total database of wells. The final solution
by the system is then achieved by studying these selected clusters with simple
statistics and by exploiting the greedy property of the nearest neighbor rule.

The foundation of the expert system is based on a small test set consisting of
16 wells from two different fields. Eight from the Ivar Aasen field and eight from
the Valhall field. Simple and clear assumptions are made on this test set in order
to program a scalable prototype of the expert system. The prototype is tested
on a large available database of well data taken from the Norwegian Petroleum
Directorate (NPD), together with a well, Well X, from a collaborative firm where
the selected reference wells are already known. The results gained from both cases
were good. When running the test set, the system was able to distinguish between
the Ivar Aasen field and the Valhall field. When running Well X through the
system, it was able to select the eight original wells that were actually picked in
the real operation.

Though further work is necessary to achieve an optimal system, the proposed
final solution in this thesis leaves a good first impression, and should motivate the
average engineer in the industry to develop small scale solutions to optimize daily
work processes.

v

Sammendrag

En ikke-ledet læring løsning for å velge relevante referansebrønner for en ny brønn
som skal bores på norsk kontinentalsokkel (NCS), skal utvikles med Python og
maskinlæringsbiblioteket Scikit-Learn, to lett tilgjengelige programvarer.
Det utviklede ekspertsystemet velger ut de mest relevante referansebrønnene basert
på én enkel egenskap av brønnen; dens geologiske profil. Klyngeanalyse, som
k-means og Voronoi-partisjon, vil bidra til rask konvergering mot løsningen som
ekspertsystemet foreslår, ved å påpeke hvilke klynger som er mest hensiktsmessig
å analysere videre på av den totale databasen av brønner. Den endelige løsningen
som foreslås av systemet oppnås ved å studere disse klyngene med enkle statistiske
metoder, og ved å utnytte den grådige egenskapen til nærmeste nabo-regelen.

Grunnlaget for ekspertsystemet er basert på et lite testsett bestående av 16
brønner fra to forskjellige felt. Åtte brønner fra Ivar Aasen-feltet og åtte fra Valhall-
feltet. Enkle og klare antagelser er testet på dette testsettet i den hensikt å kunne
programmere en skalerbar prototype av ekspertsystemet. Det endelige ekspertsys-
temet testes på en stor tilgjengelig database som består av brønndata hentet fra
Oljedirektoratets nettsider og en brønn, Brønn X, hentet fra samarbeidsselskapet
hvor de valgte referansebrønnene for Brønn X allerede er kjent. Begge tilfellene ga
gode resultater. Når ekspertsystemet kjørte testsettet klarte systemet å skille mel-
lom Ivar Aasen-feltet og Valhall-feltet. Når Brønn X ble kjørt, var systemet i stand
til å velge de åtte brønnene som faktisk ble plukket i den virkelige operasjonen.

Selv om ytterligere arbeid er nødvendig for å oppnå et optimalt system, gir den
foreslåtte løsningen i denne oppgaven et godt førsteinntrykk. Dette bør motivere
ingeniøren i bransjen til å utvikle små og effektive løsninger som kan bidra til å
optimalisere hverdagslige arbeidsprosesser.

vii

Contents

List of Figures . xi
List of Abbreviations . xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Previous Work . 2
1.3 Problem Formulation . 2

1.3.1 Approach and limitations . 3
1.4 Available Software . 4

1.4.1 Python . 4
1.4.2 Scikit-Learn . 4
1.4.3 PyCharm . 5

1.5 Notation . 6
1.6 Structure of Rapport . 7

2 Background Material 9
2.1 Introduction . 9
2.2 What is Machine Learning? . 9

2.2.1 Supervised learning . 10
2.2.2 Unsupervised learning . 10
2.2.3 Semisupervised learning . 11
2.2.4 Reinforcement learning . 11

2.3 The Feature Space . 11
2.3.1 Metric for distance . 12

2.4 The Nearest Neighbor rule . 12
2.5 Voronoi Partition . 13
2.6 Unsupervised Learning methods . 15

2.6.1 Clustering . 15
2.7 Multidimensional Scaling . 17

2.7.1 The MDS Space . 17
2.7.2 The Stress function . 20
2.7.3 Minimizing Stress . 21
2.7.4 Principles of Majorization . 22

2.8 Standardization . 23

ix

3 The Expert System 25
3.1 Introduction . 25
3.2 Main.py . 25

3.2.1 Setting up Python . 25
3.2.2 Pre-processing of input data 27
3.2.3 Defining the class: Well . 29

3.3 Storing data for Computation . 30
3.4 Preparing Data for k-means . 31

3.4.1 Running k-means . 32
3.5 Retrieving the Cluster of Interest . 33
3.6 Evaluating wells in the target cluster 34

3.6.1 Standardizing . 34
3.7 Weighting . 36
3.8 Selecting most relevant wells . 37

4 Testing the Expert System 39
4.1 Introduction . 39
4.2 Test set . 40

4.2.1 Analysis . 43
4.2.2 Remarks . 43

4.3 Complete database with known outcome 44
4.3.1 Analysis . 44

5 Discussion 49
5.1 Representative Data . 49

5.1.1 The Curse of Dimensionality 50
5.2 k-means . 51
5.3 Multidimensional Scaling . 51

6 Summary and Conclusion 53
6.1 Further Work . 54

Bibliography 55

A Python Source Code 59
A.1 main.py . 59
A.2 bin_matrix.py . 64
A.3 raw_input.py . 65
A.4 target_cluster.py . 66
A.5 standard_dev.py . 67
A.6 scaling.py . 69
A.7 prompt_weights.py . 71
A.8 mod_kNN.py . 73

List of Figures

1.1 Rough sketch of the expert system. 3
1.2 Approach in Python with user involvement. 5

2.1 A learner is trained on a set of labeled objects. The final model can
be used for classification. 10

2.2 Mapping of the training set to feature space. Orange objects are
labeled as class A. Black objects are labeled as class B. 13

2.3 Voronoi partition of a two class problem with k = 1. Unlabeled
objects that falls within the grey region is classified as class A. Class
B in white regions. Note how the boundaries lie in the half-way
between any points that share a Voronoi cell boundary. 14

2.4 Example: The proximities are mapped into MDS space as dis-
tances, trying its best to preserve the original given data. Further,
one can see how reflection,(a)-(b), rotation, (b)-(c), or translation
does not affect the fact that the distances are still intact. 19

2.5 Two iterations of the iterative majorization method. We see that
the first iteration finds an auxiliary function g(x, x0), that lies over
the original function f(x) and touches it at the supporting point
z = x0. The minimum of g(x, x0) is found at x∗ = x1, where f(x1)
can never be larger than g(x1, x0), fulfilling the sandwich inequality
2.19. The second iteration has the same procedure as the first, and
the algortihm will run till convergence. 23

3.1 Rough sketch of the hierarchy of different scripts that make up the
expert system. 26

3.2 The well data extracted in EXCEL format. 28
3.3 Input and output of bin_matrix.py 30

3.4 Input and output of raw_input.py 31

3.5 Input and output of target_cluster.py 33
3.6 Input and output of the standardization module. 35
3.7 Input and output of prompt_weights.py 36
3.8 Enabling weighting of formation layers through user interface. 36
3.9 Input and output of mod_kNN.py . 37

xi

xii LIST OF FIGURES

4.1 MDS is clearly a strong visualization tool, given that the Stress-1
value is reasonable. Here, the Stress-1 value is σ1 = 0.00897. The
dimensional reduction technique enables the engineer to look at the
data in an intuitive way to gather information. 42

5.1 MDS for the complete available database gives a bad representation
of the high-dimensional data. 52

List of Abbreviations

AI Artificial Intelligence

FM Formation

GP Group

HCA Hierarchical Cluster Analysis

IDE Integrated Development Environment

MDS Multidimensional Scaling

ML Machine Learning

NCS Norwegian Continental Shelf

NPDID Norwegian Petroleum Directorate Identity Document

NPD Norwegian Petroleum Directorate

PCA Principal Component Analysis

TVD True vertical depth

xiii

Chapter 1

Introduction

1.1 Motivation

Machine learning (ML) methods have been present in the petroleum industry for a
long time but only in a different form. As ML bases heavily on the field statistics
and pattern recognition, different technique involving forecasting, modeling, opti-
mization, or estimation are fundamental for machine learning solutions. Recently,
the industry of petroleum here on the Norwegian Continental Shelf (NCS) have
shown a significantly increased interest in the field of machine learning. The larger
oil firms are stating that digitization is correct path to go, painting a bigger pic-
ture that seeks to incorporate ML, artificial intelligence (AI), and automation to
develop unmanned facilities and automated drilling solutions, but also, that small
and efficient solutions must make their way into the daily work processes of an oil
firm to ensure optimal results [5] [4].

An example of such a process is the selection of relevant wells when a new well
is to be drilled by a firm. When planning to drill a new well, a hand full of reference
wells must be selected to eliminate as much uncertainty as possible. The reference
wells serves as a source of information for efficient planning of the different phases
throughout the operation of the new well, this includes everything from casing
and completion design to choosing the correct mud weight for the whole drilling
process. A drilling engineer can use anything from a few hours to a day, or a couple
of days at worst, to select good reference wells for a new well that is to be drilled.
The selection process entails browsing through a large database and is at present a
time-consuming, complex, and highly manual task. Instead of having an engineer
starting arbitrary somewhere in his or hers search for reference wells, if we can
implement the best practice of selecting reference wells into a system and pinpoint
where the engineer should start, then surely, we should have a software that could
serve as a strong helping tool for an engineer.

The main motivation for this thesis is to encourage in-house development of
small scale problems with tools that are readily available for any engineer in the
industry. If in-house solutions can be made free, reliable, and usable, there is

1

2 1.2. PREVIOUS WORK

no telling how much value that would add, both economically and in increased
expertise in employees, in the long run. The thesis will use Python in order to
implement a machine learning solution for determining reference wells in the NCS.

1.2 Previous Work

Well planning in general involves an abundant of softwares that serves to aid an
engineer in finding good referential information. However, a bulk of these softwares
are mostly used further down the process chain while the goal of determining which
wells one should start extracting information from, would be one of the primary
tasks in well planning.

The AGR software, iQx, is an award-winning cloud-based data platform that
can be used for well planning [11]. The software combines well data from over
80,000 wells from several available databases worldwide and enables the user to
search for information and knowledge regarding any well that the software can
reach. iQx is convenient as it has done a great amount of work for us; it has
gathered all the scattered well data into a single database. But how good is it if it
does not include the well we wish to drill?

iQx features four different search types; adjacent wells, within radius, well name,
and field. What is usually known in the early phase of planning a well is where in
the world we have to drill. By knowing so, one can plug in the GPS coordinates
and search for adjacent wells, or wells within a certain radius, from that location
and work from there. This is often how iQx is used today to find potential reference
wells [9].

1.3 Problem Formulation

Does this mean that a close lying well is always a relevant? What if the new well
that is to be drilled has complicated layers, where lessons learned from wells drilled
in Brasil could serve as a relevant source to drill these layers? This thesis will
look into the possibility of developing an expert system that can select relevant
reference wells from a database of wells, based solely on the geological profile of
a new well that is to be drilled. The solution proposed by the expert system is a
listing of the most relevant wells for the new well. The final expert system could
serve as a module for softwares such as the iQx, meaning that if the system were to
be implemented into iQx we would gain a fifth search type: searching by geological
profile. We state two hypotheses that the expert system should put to test:

Hypothesis 1: The expert system should be able to identify that different fields
exists on the NCS.

Hypothesis 2: The expert system should be able to select relevant reference wells.

1.3. PROBLEM FORMULATION 3

1.3.1 Approach and limitations
The thesis will look into methods for unsupervised machine learning and clustering
analysis to achieve its purpose. In particular, the following tasks will be addressed

• Summarize relevant methods from the machine learning literature.

• Extract well data from the database available at the Norwegian Petroleum
Directorate (NPD), as well as from the collaborative firm.

• Select data fields that are relevant for the problem and that will be used in
the clustering analysis. Motivate the choice.

• Specify the algorithm to use, and define in detail its input data (can be all
of the data selected in point 3, or a justified subset of it).

• Implement the system using appropriate tools.

• Write report.

Figure 1.1: Rough sketch of the expert system.

To save a lot of manual work, an official database at the Norwegian Petroleum
Directorate has been chosen as main source for well data over the database that
is available at the collaborative firm. A large portion of the thesis’s work is done
in Python, therefore, manually extracting well data from rapports available at the
collaborative firm, would have not resulted in the expert system that is presented.

4 1.4. AVAILABLE SOFTWARE

The expert system is mainly developed with a smaller set of wells, referred to as
the test set. The goal here, is to achieve a prototype of the system that is scalable,
leaving us only to retrieve the external database at NPD and implement it into
our prototype. Developing the expert system first with a smaller test set will make
error detection easier and also computational time shorter 1. This means, that the
assumptions and methods that were chosen for the test set will lay the foundation
for the whole expert system. Also, to begin with there is a naive assumption in
our approach; we select relevant reference wells based solely on a well’s geological
profile. This is not always the case in actual selection. Other factors such as
the availability of data or important incidents and lessons learned from other wells
would also play a role in the selection of a well. Though, it is important to remember
that the solution of our expert system is not carved in stone, rather, it should serve
as guidance or indication on where the engineer can start looking for information.

To ensure that the prototype of the system is relevant for an engineer in his or
hers daily work, the approach will include user feedback such that best practice is
implemented. In any product development, involving the user of the product will
increase its utility. This two-way interaction is though subject to the availability
in having such meetings between the candidate and the collaborative firm.

1.4 Available Software

The thesis will be using free and available softwares that are readily available for
any engineer.

1.4.1 Python

Python is a free, open-source, high-level programming language 2 that is used in
thousands of real-world business applications around the world, including anything
from large and critical systems to small scale problem solvers. Its syntax focuses
on readability and is on of many features that increases its popularity. Google and
YouTube are for instance users of Python [25].

1.4.2 Scikit-Learn

By being open-sourced, Python supports the use of modules and packages de-
veloped by other users. Scitkit-learn is also open-sourced, and it has a strong and
widely used libraries of machine learning modules that are compatible with Python.
Scikit-learn will in this thesis be the main source of imported ML methods [27].

1In this thesis we refer to computational time to be the actual time we need to wait for an
algorithm or function to complete. In data science, the mathematical analysis of computational
time of algorithms are important but it is beyond the scope of this thesis.

2High-level programming language is more intuitive than low-level language.

1.4. AVAILABLE SOFTWARE 5

1.4.3 PyCharm
Instead of programming directly in the cmd window of an operating system, or in
any other text editor 3, an integrated development environment (IDE) will create
an environment of the language one is using in order to increase efficiency in writing
scripts. By enabling features such as marking errors, debugging, compilation, and
easy access to modules and packages, PyCharm makes it easier to write good scripts
efficiently [22] 4.

Figure 1.2: Approach in Python with user involvement.

3Notepad is a text editor.
4A PyCharm license has to be purchased to unlock the full version.

6 1.5. NOTATION

1.5 Notation

Some notation is seemed necessary to define before continuing. Due to scripting
in Python, we will be using that a vector is a row vector by default. A vector,
or a matrix, can have the dimensions of m rows × n columns which defines the
configuration in IRn vector space. Vectors and matrices are written as bold lower
and upper case letters, respectively. A scalar can either be a lower or upper case
letter.

In machine learning, and often pattern recognition as well, we often use the
terms samples and features. While in object oriented programming we often refer
samples as objects and features as attributes. A sample could have different features
describing it; like height, eye color, and hair color can be features (attributes) that
describes a human being (the object or sample). Features can be put into a feature
vector x of dimensions 1 × n where n is the number of features describing the
object. We will use the term attribute when referring explicitly to some code,
while the term features is used when discussing theory. Objects and samples are
used interchangeably. Definitions are stated by using a colon and an equality sign;
a:=b, which means that a, by definition, equals b.

Example 1.5.1

X =
{
x1, x2, ..., xi

}T (1.1)

where X := the set of i objects, while xi := the set of features describing the object,
called the feature vector.

When presenting the approach used to develop the expert system in Chapter
3, we will often refer to the source code given in Appendix A. Though the thesis
is written independent of Appendix A, as excerpts of the original source code will
be introduced for the most essential sections, some sections will be referenced to
the appendix in case they are of interest to study. It should be mentioned that
excerpts in this form will have different line numbering than the source code given
in Appendix A:

Excerpt 1

1 Something from the source code
2 is written to better understand
3 the selected approach

Anything that is directly related to the source code (i.e commands, variables, func-
tions etc.) will appear in the thesis as a covered gray word or sentence with the
line reference next to it. The latter is optional and based on importancy. Scripts,
which are files, will have have the same appearance only with bold letters.

Example 1.5.2 The variable example in example.py , line 1. Is defined as the
ndarray example variable.

1.6. STRUCTURE OF RAPPORT 7

1.6 Structure of Rapport
We have just covered the motivation for approaching the problem presented in this
thesis, as well as the necessary tools and notation needed to proceed.

Chapter 2 will cover the necessary background material to understand the dif-
ferent methods that are implemented with Python. We will be focusing on what
the algorithms solves and how they are trained, and not on the statistical analysis
that considers distributions and probabilities. The background material will define
and introduce the different directions within machine learning, further topics in-
cludes the nearest neighbor rule, clustering analysis, and a dimensionality reduction
technique called multidimensional scaling (MDS).

The approach used to develop the expert system is explained in detail in Chapter
3. We will work stepwise through the different scripts that make up the system;
from initialization of Python to the final function that produces the output of the
system. We will also assess how our input data is processed throughout the whole
system, and justify why certain choices and approach has been used.

Chapter 4 presents the results obtained when running the expert system. First,
we will look at what the test set produces. The test set, has played an important
part of the thesis as a large portion of the final expert system is based on the
results gained from this set. The final part of the chapter, will include a whole
database of 1662 wells drilled in the NCS. We will also be using a well drilled by
the collaborative firm to see if the expert system can retrieve relevant wells that
actually were selected in the real operation.

Towards the end, in Chapter 5, we will be discussing our approach of solving
our problem, i.e. if certain parts and results were as we assumed.

Finally, the thesis comes to a conclusion regarding the final expert system and
future work in Chapter 6.

8 1.6. STRUCTURE OF RAPPORT

Chapter 2

Background Material

2.1 Introduction

This chapter elaborates on the background material that is fundamental to under-
standing the approach of solving our problem with emphasis on different machine
learning methods that are applied. The main algorithms used in this thesis comes
from unsupervised learning and manifold learning methods.

2.2 What is Machine Learning?

Machine learning has its origin from the field of statistical analysis and pattern
recognition. Although it is often used interchangeably with the field of AI there
exists a clear line where we differentiate between the two of them. Machine learn-
ing focuses on the theory that computers can learn without being explicitly pro-
grammed to perform and complete specific tasks [12]. AI on the other hand, is
the broader concept of machines being able to fulfill tasks in a way we humans
consider as smart [38]. In machine learning, we give the computer access to data
and construct algorithms in such way that it gives the computer the ability to in-
dependently adapt when exposed to new data, i.e. the ability to learn from these
data.

Machine learning can be divided into four main categories:

• Supervised learning,

• unsupervised learning,

• reinforcement learning,

• and semisupervised learning

which all differs in how the they work with the data that is given.

9

10 2.2. WHAT IS MACHINE LEARNING?

2.2.1 Supervised learning

Supervised learning bases its learning from data where we already know the out-
come of. The data is provided by some knowledgeable external supervisor (us hu-
mans) where the relationship between the input and the output is known. When
this is true, we say that the output is labelled. The main goal in supervised learn-
ing models is to accurately predict an output measurement for a given input that
is unlabeled, i.e. the relationship between input and output is unknown, leaving
us only to predict what the output could be. An example would be a house (the
input) of a certain size, location, number of rooms (the features) that is sold on
the market for a certain prize (the output). Accurate prediction is achievable by
building a prediction model, also called a learner. The learner is trained by using
a training set of data where both inputs and outputs are known, typically with a
rule of thumb of 80% of the complete data set. The remaining 20% is used to test
the accuracy of the learner. A good learner is one that can predict the correct out-
put for an unlabeled sample with great accuracy [33]. Supervised learning is often
divided into two main prediction methods; classificiation and regression. Classifi-
cation is the task of qualitative labeling of unlabeled input data, like determining
if a house is a villa, studio, or three-room apartment. While regression focuses
quantitative labeling, i.e. predicting a numerical value for the input like prize, in
the house example given above.

Figure 2.1: A learner is trained on a set of labeled objects. The final model can
be used for classification.

2.2.2 Unsupervised learning

With unsupervised learning, we approach a problem with no information about
what the output should look like for a given input. We say that our input is given
to us unlabeled. Because of this, there is no way of evaluating the accuracy of
the produced output like in supervised learning. One is simply left to address a
large set of unknown input data and try to identify patterns and structures in
it. An important method within unsupervised learning is clustering analysis. In
clustering analysis we try to identify groups (clusters) consisting of data samples
with similar features, while samples in different clusters have features that are
dissimilar [2]. Unsupervised learning can be a goal in itself by discovering these

2.3. THE FEATURE SPACE 11

patterns and structures, or it can be used as a means towards an end where again a
knowledgeable external supervisor can label the discovered structures, this is called
semisupervised learning [32]. Note how the training set in unsupervised learning is
the unlabeled data set itself.

Figure 2.1 can easily relate to an unsupervised learning method. Imagine that
all objects have the same color, i.e. they are unlabeled. Regardless of this, cluster-
ing will be able to separate them into two clusters that defines a region of which
objects belong to that cluster. This will be elaborated on thoroughly in Section
2.6.

2.2.3 Semisupervised learning

Semisupervised learning is working with data that is both labeled and unlabeled;
a good mix of unsupervised and supervised methods. The most common scenario
though, is having a majority of unlabeled data and some that are labeled. An
example from daily use is Google Photos where unsupervised learning (clustering)
is initially performed to identify that certain people exists in certain pictures. Then,
the only thing remaining is labeling these people with a name (classification), which
is the supervised part of the solution [32].

2.2.4 Reinforcement learning

Reinforcement learning is a method that follows a learning-by-doing paradigm.
Rather than relying on known knowledge, experience, or specific programmed in-
structions, the computer, also called an agent, must freely explore the data that is
in the current environment without any knowledge about it. It uses a reward and
punishment system for solving a task, where the main objective is to gather as much
reward as possible [31]. With the combination of both exploring new data, and the
exploitation of already explored data, reinforcement learning can eventually con-
verge to an optimized solution or decision for a given task. The learning-by-doing
paradigm, together with its ability to connect rewards to certain actions, enables
reinforcement learning to discover solutions one did not think even existed. Expert
systems that surpasses chess or Go players are based on this type of learning [26].

2.3 The Feature Space

In ML literature, we often work with data in the feature space. The feature space is
an Euclidean space that uses Cartesian coordinates. It is defined as a n-dimensional
configuration IRn that holds a finite number of objects xi called the feature vectors.
Since the feature vectors defines the configuration IRn, the vectors themselves are
of dimensions 1×n. We define the feature space to be a set of n directed axes that
are perpendicular to each other and intersect in an origin O. An object xi lying
in IRn can be expressed uniquely by the n-tuple of points (xi1, xi2, ..., xin), where
xia is the point i’s projection onto dimension a. This expression is called Cartesian

12 2.4. THE NEAREST NEIGHBOR RULE

coordinates. The Euclidean space with Cartesian coordinates enables us to to do
calculations in it [34] [33].

2.3.1 Metric for distance
The selected metric for distance mentioned in this thesis will be the Euclidean
distance. The distance between two objects q and p of dimension 1×n is expressed
as:

d(q,p) = ||q − p|| =

√√√√ n∑
i=1

(qi − pi)2 (2.1)

The Euclidean distance between objects is, in statistics, often called a dissimi-
larity measure 1. The general term proximities is often used to denote both similar-
ity and dissimilarity measurements [33]. In this thesis, we will think of proximities
as dissimilarity measures unless it is explicitly stated otherwise.

2.4 The Nearest Neighbor rule
A simple, yet quite important decision rule that is widely used in machine learning is
the nearest neighbor (NN) rule. The NN rule has the greedy property 2 of selecting
whichever object that is closest to the object of interest, and is fundamental to
algorithms such as the k-Nearest-Neighbor (k-NN) in supervised learning, or the
k-means clustering algorithm in unsupervised learning. We will now take a look
at how the k-NN algorithm classifies an object to better understand the nearest
neighbor rule.

Algorithm 1 Pseudocode for the k-NN algorithm
1: Map the training set X of i objects xi, with y class labels, and the unknown

object x to the feature space.
2: Select the number of neighbors, k.
3: Compute distances from x to all objects in training set X, d(xi,x).
4: Find the k shortest distances.
5: Assign x to the class that is of majority of the k nearest neighbors.
6: end

1Dissimilarity measures are measurements that have small values for similar objects, greater
values for dissimilar objects. Similarity measures, is the opposite; they have large values for
similar objects and zero or negative values for dissimilar objects

2Greedy algorithms are often associated with computer sicence and for solving optimization
problems. They have the property of always selecting the choice that looks best at the moment
[37].

2.5. VORONOI PARTITION 13

We begin by retrieving a labeled training set X =
{
x1,x2, ...,xi

}
T of i objects

as input. The possible labeling is that objects are either of class A or of class B,
meaning that y = {A,B}. For simplicity, let us define the feature vector xi to be
of dimensions 1× 2, i.e. there are two features describing the object. This means
that the feature space is a configuration in IR2. We select the number of neighbors
to search for to be k = 1.

The learning part of the k-NN algorithm is not complex. It is simply storing
the training set that consists of labeled feature vectors in the IR2 configured feature
space, as illustrated in Figure 2.2. The trained learner Ŷ for the k-NN algorithm
can be expressed as:

Ŷ (x) =
1

k

∑
xi∈Nk(x)

yi, (2.2)

(2.3)

where Nk(x) is defined as the neighborhood of x that have the k closest objects xi
that exists in the training set. Ŷ (x) produces an estimate that assigns x to either
class A or class B. The estimate is based on the majority vote of classes, yi3, of the
k closest objects xi, i.e. the k nearest neighbors.

Figure 2.2: Mapping of the training set to feature space. Orange objects are
labeled as class A. Black objects are labeled as class B.

2.5 Voronoi Partition
The Ŷ (x) learner solves the k-NN algorithm by separating the feature space up in
regions of classification. Since k = 1 the estimate is reduced to simply assigning

3Here, i = 1, 2 as it is either class A or B.

14 2.5. VORONOI PARTITION

x to the class yi of the closest object xi in the training set. This simplifies the
computation of the classification regions and correspond to a method called Voronoi
partition [33]. In a Voronoi partition of the training set, each object xi has its own
Voronoi cell surrounding it, defining an area for which an unlabeled object x is
classified as the class of that object xi, if it places within this cell, see Figure 2.3.

The Voronoi partition makes classification of an unlabeled object simple. For
k = 1, the boundaries of the Voronoi cells, in feature space, must lie in the half-way
between any two objects of the training set since it only requires one neighbor to
classify x, and that neighbor must be closest one. Meaning that for any unlabeled
object x that lands on the boundary of two different Voronoi cells, we can imme-
diately say that it has two equally nearest neighbors, and the classification of x
becomes arbitrary. The same goes for, an unlabeled object that lands on a vertex
combining k Voronoi cells; it has k equally nearest neighbors, and the classification
is again arbitrary. So for solving the k-NN for increasing values of k, the partition-
ing of the feature space is done by increasing a training object’s Voronoi cell till it
includes k neighbors. This is done for all objects xi in the training set. The final
result is a Voronoi partition that defines the regions of classification 4 [16].

Figure 2.3: Voronoi partition of a two class problem with k = 1. Unlabeled
objects that falls within the grey region is classified as class A. Class B in white
regions. Note how the boundaries lie in the half-way between any points that share
a Voronoi cell boundary.

We will later in the thesis see how we do not explicitly use the k-NN algorithm
as an classification or regression method but rather, we exploit the nearest neighbor
rule to select the most relevant reference wells based on Euclidean distance.

4[10] is a good graphical example of Voronoi partitioning.

2.6. UNSUPERVISED LEARNING METHODS 15

2.6 Unsupervised Learning methods
Two important methods within unsupervised learning are clustering analysis such
as the k-Mean and Hierarchical Cluster Analysis (HCA) algorithms, and visualiza-
tion and dimensionality reduction methods such as Principal Components Analysis
(PCA) and Multidimensional Scaling (MDS). The goal of unsupervised learning is
to gather any information about the unlabeled input data that can help in un-
derstanding the data that is analyzed. This is done by discovering patterns and
structures that lie in the given data [32]. The k-Means and MDS will be two
important methods that is used in this thesis.

2.6.1 Clustering
Cluster analysis focuses on data segmentation and discovering patterns. Given a
set of unlabeled data X =

{
x1,x2, ...,xi

}
as input. We wish to cluster the data

set into groups such that:

• objects within the same cluster are similar to each other

• objects from different clusters are dissimilar to each other [2]

The k-Means clustering algorithm is one of the most popular clustering algo-
rithms due to its simplicity and fast computational time. The algorithm takes
the data set (also, training set) X =

{
x1,x2, ...,xi

}
as input in addition to the

parameter k that decides how many clusters we should group the data into. We
recall, that the feature vector xi can have n features describing the object but
again, let us keep using n = 2 as it is easy to understand how the algorithm works
by visualizing how an object x =

[
x1, x2

]
is placed in IR2 .

Algorithm 2 Pseudocode for the k-Means algorithm
1: Map the training set X into feature space
2: Randomly initialize k cluster centroids µ1,,µk
3: Cluster assignment: for each object xi, find the nearest cluster centroid µk

and assign the index of this cluster to c(i)
4: Move centroid: for each cluster, update the cluster centroid position µk to

be the mean of all objects that were assigned to cluster k in the previous step
5: Repeat line 3-4 until convergence
6: end

16 2.6. UNSUPERVISED LEARNING METHODS

k-Means in feature space

The initialization of the k-Means algorithm is similar to the k-NN; the training set
X is mapped into the feature space. In order to produce an output that is clustered
into groups, the algorithm initializes k cluster centroids µ1,,µk arbitrary in the
feature space. The cluster centroids have same dimensions as the feature vectors.
The first step of the k-Means algorithm starts by assigning every object xi to a
cluster k by selecting the closest cluster centroid µk, this can be expressed by

c(i) = arg min
k

||xi − µk|| (2.4)

where c(i) := index of cluster centroid k that is closest to xi. This is called the
cluster assignment step. When all i objects are assigned to a cluster, the algorithm
goes forth by updating the position of the k cluster centroids µ1,,µk. This is
done by calculating the mean of all observations of n objects lying in cluster k:

µk =
1

n

n∑
xi∈ck

xi, (2.5)

where n is the number of objects that were assigned to cluster k in the previous step.
Equation (2.5) is often called the moving centroid step. The cluster assignment and
moving centroid step is run till convergence, that is, until the k cluster centroids
does no longer move [2]. This is recognized as a minimization of the Within-Cluster
Sum of Squares (WCSS), which can be expressed as

W (c) =

k∑
j=1

nj
∑
c(i)=k

||xi − µk|| (2.6)

It is the sum of squared distances to the closest centroid for all observations in
the training set. Minimizing the WCSS ensures that by convergence, within each
cluster k, the average distance from all observations n to the cluster centroid µk,
is minimized [33] [29].

By now, it should be noticeable that the k-Means uses the nearest neighbor rule
in the assignment step; greedily, assigns an object to the nearest cluster centroid.
Also, when the µk positions of all cluster centroids have converged we have a
Voronoi partitioning of the feature space, where each cluster is its own Voronoi cells
where the cluster boundaries lies in the half-way between any cluster centroids that
shares a Voronoi cell boundary. The k-means imported from Scikit-learn is solved
with Lloyd’s algorithm, which seeks a Voronoi Partition of the feature space.

2.7. MULTIDIMENSIONAL SCALING 17

2.7 Multidimensional Scaling
The main source for this section is from [33]. Multidimensional Scaling (MDS) is
a dimensionality reduction method within manifold learning 5 that attempts to
preserve the proximities between objects as best possible. For a large data set with
many features, reducing dimensionality will not only a save computational time
but if also the dimensions can be reduced to an intuitive space like IR2 or IR3, it
can serve as a strong visualization technique to analyze the hidden structures in
the data set [32]. MDS takes a symmetric matrix D of proximities among pairs of
objects as input,

D =

0 p12 p13 . . . p1j
p21 0 p23 . . . p2j
p31 p32 0 . . . p3j
...

...
...

. . .
...

pi1 pi2 pi3 . . . 0

 , (2.7)

where pij is distance between the paired objects (i, j) in the data set. The output
produced is a representation of these measurements as distances between points in
a low-dimensional space, called the MDS space. Note that the input matrix D is
symmetric in the sense that pij = pji and pij = 0 for i = j, this type of matrix is
often called a distance matrix [34].

2.7.1 The MDS Space
The output in MDS space is a configuration X that maps how the proximities are
related to each other. In the case where proximities are dissimilarity measurements,
the output mapping will have objects that are more similar to each other, lying
more closely. While objects that are not similar, will be further away from each
other. This means that it is possible to determine clusters and patterns intuitively
if the output were to be in IR2 or IR3 space.

The mapping onto the MDS space can be expressed by

f : pij → dij(X), (2.8)

meaning, there exists a representation function f that transforms pij onto the MDS
space X. We say that f will specify the MDS model, meaning, that the MDS model
is simply a proposition that given proximities, after some transformation f(pij),
are equal to the distances among points of X

f(pij) = dij(X), (2.9)

where dij(X) denotes the Euclidean distance between the pair of objects (i, j) in
the MDS space X. We are free to select any representation function we seem fit.

5Manifold learning is an unsupervised learning method and is often associated with dimen-
sionality reduction. More known methods are for instance the Principal Component Analysis
(PCA) which reduces dimensionality by finding which feature describes most of the input data,
and selects these to train or explain the data [32].

18 2.7. MULTIDIMENSIONAL SCALING

In practice, one should not try to strictly satisfy f , instead, one can restrict f to
some class of functions6.

We will not go deeper into the theory of representation functions but to have
an understanding of equality (2.9) we can imaging selecting the simplest choice of
f ; f(pij) = pij . This is often referred to as absolute MDS. With absolute MDS we
can write (2.9) as

pij = dij(X) (2.10)

Equality (2.10) catches the essence of MDS; representing high-dimensional input
data as it is in low-dimensional space, thereby retaining all information in the
original data.

In practice, data for a given problem can often be quite complex and of high
dimensionality. If that is the case, choosing absolute MDS as the model could be
a very poor choice as a lot of information may be lost with the dimensionality
reduction. In fact, there is no guarantee that there actually exists a representation
function f that fulfills equality (2.9) but instead, only one that approximates it.

f(pij) ≈ dij(X) (2.11)

This approximation implies that there must exist some sort of error, a value that
determines the goodness of fit of the representation function f to the distances in
X, dij(X). In the literature of MDS this value is known as the Stress value. Figure
2.4 shows an example of MDS.

6A function f could be linear, quadratic, exponential or some other class.

2.7. MULTIDIMENSIONAL SCALING 19

Table 2.1: Example: An input matrix of distances between ten cities in Europe.

1 2 3 4 5 6 7 8 9 10
1 0
2 569 0
3 667 1212 0
4 530 1043 201 0
5 141 617 596 431 0
6 140 446 768 608 177 0
7 357 325 923 740 340 218 0
8 396 423 882 690 337 272 114 0
9 569 787 714 516 436 519 472 364 0
10 190 648 714 622 320 302 514 573 755 0

Figure 2.4: Example: The proximities are mapped into MDS space as dis-
tances, trying its best to preserve the original given data. Further, one can see how
reflection,(a)-(b), rotation, (b)-(c), or translation does not affect the fact that the
distances are still intact.

20 2.7. MULTIDIMENSIONAL SCALING

2.7.2 The Stress function

Whether the output produced by the MDS is a reliable representation of the original
data or not, is determined by the Stress value. The value of Stress expresses the
degree of correspondence between the distances among points produced in the
output, dij(X), and the proximities given by the symmetric input matrix D, after
some transformation f(pij). The optimal result for MDS is to have a Stress value
of zero, i.e. the proximities in the original data is unchanged through the reduction
from high to low dimensionality. This also means that Stress measures a badness
of fit rather than a goodness of fit, where higher values of Stress indicates bad fit
and poor results.

A squared error of representation is written as

e2ij =
[
f
(
pij
)
− dij(X)

]2 (2.12)

where dij(X) is the Euclidean distance between any two points i and j in MDS
space. f(pij) is the transformation of the dissimilarity between object i and j in
the input distance matrix D. By summing 2.12 over i and j we get the total error
of an MDS representation called Raw Stress,

σr = σr(X) =

n∑
(i=1)

n∑
(j=i+1)

[
f(pij)− dij(X)

]2 (2.13)

σr = σr(X) =
∑
(i<j)

[
f(pij)− dij(X)

]2 (2.14)

σr(X) =
∑
(i<j)

wij
[
f(pij)− dij(X)

]2 (2.15)

The notation i < j in (2.14) simply says that it is sufficient to sum over only the
half of the data as the original given input D is symmetric. wij is a fixed weighting
parameter that is 1 if a proximity pij exists, 0 otherwise (data is missing). Other
values for wij is also possible as long as wij ≥ 0.

Raw Stress can also be written as a function

σr(X) =
∑
(i<j)

wij
[
f(pij)− dij(X)

]2 (2.16a)

=
∑
(i<j)

wijf(pij)
2 +

∑
(i<j)

wijdij(X)2 − 2
∑
(i<j)

wijf(pij)dij(X) (2.16b)

= η2δ + η2(X)− 2p(X) (2.16c)

where η2δ is a constant as its only dependant on the fixed weights wij and the
proximities pij . η(X)2 is the weighted sum of squared distances, while the final
part −2p(X), is the weighted sum of the distances. The objective of MDS is to
minimize function (2.16).

2.7. MULTIDIMENSIONAL SCALING 21

Kruskal’s Stress

Raw Stress is itself not that informative; a low value does not necessarily indicate
a bad fit. An example would be if your input matrix consisted of distances that
described lengths between objects. Lets say that these objects are different cities
located somewhere in the world. There are many different units of measurements
that can describe the lengths between different cities. If we were to change, lets
say from kilometers to meters, the MDS would give the same results but the Raw
Stress value would not be the same. It would have been 1000 times as large. To
avoid these type of scale dependencies, a normalized version of the Stress value can
be expressed as

σ2
1 = σ1(X)2 =

σr(X)∑
d2ij(X)

=

∑[
f(pij)− dij(X)

]2∑
d2ij(X)

, (2.17)

since σ2
1 is often very small, we use σ1 to better discriminate between values. We

then write

Stress− 1 = σ1(X) =

√√√√∑[
f(pij)− dij(X)

]2∑
d2ij(X)

(2.18)

Note that we use σ1 and σ1(X) interchangeably. The notation σ1(X) is to show
that the Stress value is for the given MDS configuration X. This also means, that
an optimal configuration X in IRn, must exist to be able to minimize (2.18).

2.7.3 Minimizing Stress
What solves the MDS is an iterative approach that minimizes the Stress function.
Scaling by Majorizing a Complicated Function, or better known as the SMACOF
algorithm is used to minimize Stress. It usually starts with some initial configura-
tion X in a predefined IRn space of the input proximities, either at random or by
selection. This configuration is then improved by moving around its points in small
steps, iteratively, to minimize Stress and therefore converge to equality (2.10). The
specific iterative optimization technique is called majorization. We will not be go-
ing into detail of the minimization of Stress but rather, we shall remember that
Stress can be expressed as a function and look at the main principles that ensures
minimization of a given function f .

22 2.7. MULTIDIMENSIONAL SCALING

2.7.4 Principles of Majorization
The main idea of majorization is that we, iteratively, replace the original compli-
cated function f by an auxiliary function g(x, z), where the z in g(x, z) is some
fixed reference value. To say that g(x, z) is a majorizing function of f , the following
must hold

• The auxiliary function g(x, z) has to be simpler to minimize than f .

• The original function f is always smaller than, or at most, equal to the
auxiliary function g(x, z). That is, f(x) ≤ g(x, z).

• The auxiliary function touches the surface at a so-called supporting point z,
which is at x = z: f(z) = g(z, z).

Let the minimum of an auxiliary function g(x, z) be at the point x = x∗. For the
last two requirements above, we have the inequalities

f(x∗) ≤ g(x∗, z) ≤ g(z, z) = f(z) (2.19)

also known as the sandwich inequality [34]. Inequality (2.19) has an attractive
aspect of that it will ensure a monotone7 convergence towards the solution, mean-
ing that for each iteration the algorithm will be one step closer to minimizing
the objective function f(x). This feature, together with the ability to work with
high-dimensional data, makes it more powerful than traditional techniques such as
gradient descent [30]. Figure 2.5 shows two iteration of majorizing a function.

Algorithm 3 Pseudocode for iterative majorization (IM)

1: Set z = z0, where z0 is the starting value.
2: For iteration u, find update xu for which g(xu, z) ≤ g(z, z)
3: If f(z)− f(xu) < ε, then stop. Here ε is a small positive constant.
4: Set z = xu and go to point 2.

7In calculus, a monotonic function is a function that is either entirely non-increasing, or entirely
non-decreasing [15].

2.8. STANDARDIZATION 23

Figure 2.5: Two iterations of the iterative majorization method. We see that the
first iteration finds an auxiliary function g(x, x0), that lies over the original function
f(x) and touches it at the supporting point z = x0. The minimum of g(x, x0) is
found at x∗ = x1, where f(x1) can never be larger than g(x1, x0), fulfilling the
sandwich inequality 2.19. The second iteration has the same procedure as the first,
and the algortihm will run till convergence.

2.8 Standardization
Standardization, also known as normalization, allows features that have different
scales have one and the same scale; the Z-score. The Z-score of a sample x of a
population N can be obtained by

z =
x− x̄
σ

(2.20)

σ =

√√√√√ N∑
i=1

(xi − x̄)2

N − 1
(2.21)

where z := the Z-score of sample x. x̄ is the mean value of the population and
σ is the standard deviation of the population of N samples. The common scale
makes the distribution of the N samples have zero mean and unit variance. This
scaling method is often used in pre-processing of data to achieve good trade off
between small subtle values and dominating large values with high variance [35].

24 2.8. STANDARDIZATION

Chapter 3

The Expert System

3.1 Introduction
An expert system that extracts the most suitable reference wells for a new well that
is to be drilled was scripted in Python. The system is made up by a total of eight
scripts; a main script where the core of the system is written, together with seven
functions that is necessary to provide the solution. A hierarchy of the scripted
expert system is illustrated in Figure 3.3. This chapter will in detail go through
the methodology that is used in order to achieve the expert system that proposes
a solution. Step by step, we will work ourselves through the different scripts that
make up the system. The complete source code can be found in Appendix A but
the chapter can be read independently.

3.2 Main.py

main.py describes the core of the expert system without going into such detail
on the different algorithms and functions that are used. From here, well data is
retrieved and pre-processed to the forms that are required of the different func-
tions and algorithms that are used. The complete source code can be found in in
Appendix A.1.

3.2.1 Setting up Python
The complete system is mainly based on unsupervised learning methods which
focuses on clustering analysis, such as the k-means algorithm but theory within the
nearest neighbor method has also contributed to solve the problem. Scitkit-learn is
a strong and widely used library for machine learning packages for Python, and it
is in this thesis the main source of imported ML methods [27]. When working with
arrays, matrices, and numerical procedures in Python the recommended packages
are NumPy, SciPy, and Pandas to easier deal with mathematical calculations [18]
[28] [20]. We have mainly used NumPy and Pandas.

25

26 3.2. MAIN.PY

Figure 3.1: Rough sketch of the hierarchy of different scripts that make up the
expert system.

3.2. MAIN.PY 27

For plotting, matplotlib is imported as it has a strong resemblance to MATLAB,
a software that is often used at universities for educational purposes or in the
industry [13] [14]. Table 3.1 summarizes all modules that the expert system has
imported.

Table 3.1: Imported modules

General modules: Description

os To easy change directories (folders)
when retrieving well data.

numpy Treats data structures in Python as
arrays and matrices. Simplifies linear algebra.

pandas Easy-to-use data structures.
Able to read EXCEL.

Other modules:
k_means Performs k-means clustering; Lloyd’s algorithm.

parwise_distances Calculates the Euclidean distance
between vectors.

manifold Performs multidimensional scaling.
matplotlib.pyplot For plotting in Python.

Axes3D For 3D plotting in Python.
Scripted modules:

bin_matrix Stores well data in suitable manner.

raw_input Creates the input needed to perform
k-means clustering.

target_cluster Extracts the target cluster.

standard_dev Calculates standard deviations and
mean values.

scaling Standardizes the well data.

prompt_weights Enables an engineer’s ability to weight
formation layers.

mod_kNN Uses nearest neighbor method to rank
the most relevant wells.

3.2.2 Pre-processing of input data

As we recall, we have assumed that in the earliest phase of planning to drill a new
well the information about the well’s geological profile must exists. The geological
profile of the well is taken as input and the expert system should be able to produce
an output that selects the most relevant reference wells. In order to do so, there
must also exist a database of available wells to select from. This was illustrated in
Figure 1.1 in Chapter 1. The Norwegian Petroleum Directorate (NPD) is used as
the available database of wells due to easy access to well data in EXCEL, XML, or
CSV format for over 1000 wells that have been drilled on the Norwegian Continental

28 3.2. MAIN.PY

Shelf [8]. Figure 3.2 shows the general form of the original data that we import in
the EXCEL format.

Figure 3.2: The well data extracted in EXCEL format.

From EXCEL format, we can use Pandas to extract the rows and columns
that we find necessary. The chosen columns of interest have been 0, 1, 2, 3, and
5 which corresponds to the name of the well, top of formation in TVD, bottom
of formation in TVD, name of the lithostratigraphic unit, and the NPDID for
the lithostratigraphic unit, respectively, as these columns give information about a
well’s geological profile. The selection of these attributes (features) is often referred
to as feature engineering and is a vital part of any process that seeks to train a
suitable ML model [32] 1. Note, later in this chapter, how the name of the well
is not necessarily directly involved to solve the problem of the expert system but
rather, the information is available and can easily be written to an object which
again makes it easy to pinpoint which exact well is a relevant well. We should also
mention that the TVD of the bottom of a formation is also a feature that is not
directly involved in solving the problem, we will come to that in a bit.

The input well, as well as the available database from NPD, can be retrieved by
calling the pd.read_excel() function. We select all rows of the EXCEL sheet to
include the whole database of wells, and also we want to make sure that the input
well is always the first well that is imported, this places the well at index 0 which
results in easy tracking. The function returns the class DataFrame which can be
inspected in the PyCharm. DataFrame has a formation that is relatable to how we
visualize EXCEL [21] [1]. The sections that involves retrieving and arranging the
input well data is found in Appendix A.1, line 62-126.

Finding an existing database that is large enough, and one that also has an
easy importable format, has already saved us a lot of time. In Chapter 4, we look
into how the system selects reference wells for a well that has been drilled by the
collaborative firm. Half a day’s work was spent searching through its Final Drilling
Program to gather well data regarding its geological profile. Luckily, we were able
to find a well that is relevant with the available database from NPD.

1Suitable, in the sense that selecting casing design as a feature for a well will not contribute to
describe the well’s geological profile. Selecting correct features that solves the problem at hand
is therefore important.

3.2. MAIN.PY 29

3.2.3 Defining the class: Well
Python is well suited for object oriented programming. Object oriented program-
ming enables us to combine data and functionality and wrap it inside an object
[19]. In Python, this can be done by defining a class Well that lets you treat
every well that is taken as input as a single object where data and functionality
can be stored [24]. This makes retrieving (or writing) information from (or to)
any object (well) quite easy, which we will see when we produce the output of the
expert system.

The well data retrieved in the pre-processing stage is directly written to the
class Well . Defining the class can be found at the start of main.py (Appendix
A.1, line 29-46).

Excerpt 2

1 class Well:
2 def __init__(self,name=None,index=None,top=None,bottom=None,
3 fm=None,fm_names=None,thickness=None,thickness_sum=None,
4 fm_rel=None,thickness_rel=None,depth_rel=None):
5 self.name = name
6 self.index = index
7 self.top = top
8 self.bottom = bottom
9 self.fm = fm

10 self.depth = self.bottom[-1]
11 self.fm_names = fm_names
12 self.thickness = thickness
13 def __repr__(self):
14 return ’{}’.format(self.name)

The defined attributes of class Well , in the same order as Excerpt 2, are:

• String, Name of well

• Integer, Index of the well

• Integer, Top of formation, TVD

• Integer, Bottom of formation, TVD

• Integer, Unique NPDID of formation

• Integer, Total depth, TVD

• String, Name of formation layers

• Integer, Thickness of formation layers

where any attribute can be reached by the command self.attribute , where
self is the object.

30 3.3. STORING DATA FOR COMPUTATION

3.3 Storing data for Computation
In the process of selecting relevant wells based on geological profiles one is forced
to look at an object’s attributes and have some sort of justification of the choices
made. One approach would be to call any object and retrieve the attribute we
wish to look at whenever it is needed. Since we are going to look at every well in
the database anyway, we created the bin_matrix.py script as a solution on how
we want to store well data in a convenient manner. The function takes all objects
as input and creates three m × n matrices; X_formation , X_thickness , and
X_depth , where m is the number of wells that exists in the available database
while n is the total number of unique formations. For our case, we have 1663 wells
and 212 different categories of geological groups and formations, resulting in three
1663× 212 matrices.

Figure 3.3: Input and output of bin_matrix.py .

Excerpt 3

1 import numpy as np
2

3 def bin_matrix(Objects):
4 dim = (len(Objects), 212)
5 X_formation = np.zeros(dim)
6 X_thickness = np.zeros(dim)
7 X_depth = np.zeros(dim)
8 temp = []
9 for i in range(len(Objects)):

10 for j in range(len(Objects[i].top)):
11 X_formation[i][Objects[i].fm[j]] = 1
12 layer = Objects[i].bottom[j] - Objects[i].top[j]
13 X_thickness[i][Objects[i].fm[j]] = layer
14 temp.append(layer)
15 X_depth[i][Objects[i].fm[j]] = Objects[i].top[j]
16 Objects[i].thickness = temp
17 temp = []
18 return X_formation, X_thickness, X_depth, Objects

By having these exact dimensions we have an easy way of tracing every object that
exists in the database and at the same time, storing any information regarding this
object. We can at all time know that the first retrieved object from the available
database will be at the first row. So, for any object retrieved as the ith object will

3.4. PREPARING DATA FOR K-MEANS 31

be at row i, equivalently, the information regarding any layer j will be stored at
the jth column (Excerpt 3, line 10 and 11). Pay attention to how we can easily
update an object’s attribute by writing to its defined class attribute (Excerpt 3,
line 17).

For X_thickness and X_depth we have stored the thickness of a formation
and the top of a formation, respectively. The thickness is calculated based on the
TVD of top and bottom of the formation while the top of formation is retrieved
directly. Note how we have used certain features to define a new feature; thickness,
this is in literature often called feature extraction. For X_formation we have used
a binary approach; 0/1 for NO/YES. This means, that if a formation layer j exists
in a given object i, we add a 1 in the ith row and jth column. Otherwise, we add
0. This is because we are only interested if other wells in the database have the
same geological layers as our input well.

3.4 Preparing Data for k-means

Figure 3.4: Input and output of raw_input.py .

Any function is defined to take a certain input, do something, and create an
output. The same goes for the k-means algorithm that is imported from Scikit-
learn. From [29], "The input to the k-means algorithm must be a array-like or
sparse matrix X, with the shape of n_samples and n_features, also defined as
the observations we wish to cluster". raw_input.py shall take the output of

bin_matrix.py , namely X_thickness and X_depth , to create the neces-

sary input that the k-means algorithm demands. raw_input.py is called by
raw_input = cluster(X_thickness,X_depth, d) (Appendix A.1, line 156).

Excerpt 4

1 def cluster(thickness,depth,fm):
2 raw_input = []
3 for i in range(len(thickness)):
4 temp = []
5 temp2 = []
6 for j in fm[0]:
7 temp.append(thickness[i,j])
8 temp2.append(depth[i,j])
9 temp.extend(temp2)

10 raw_input.append(temp)
11 return raw_input

32 3.4. PREPARING DATA FOR K-MEANS

d is a list of lists, which is basically the pythonic way of writing matrices [23]. It
holds the geological profile of every single well, i.e. each list (well) in d has the list
of the unique NPDID of the formations layers that make up the well’s geological
profile.

Our main objective is to select good reference wells, to our input well. Our
approach has been to only use information of the formation layers existing in the
input well. Since we always know that index 0 will be our input well at all times,
its geological profile is assessed in Excerpt 4, line 6. The function then extracts all
information from every other well in the database in these exact layers, ignoring any
other layer that the input well does not have. This means, that wells that are later
selected as the most relevant can (and often will) have formations layers that the
input well does not have. This approach is based on the assumption when ignoring
the existence of faults and folds, the deposition and consolidation of formations
layers creates a certain pattern in their geological profile. That is, for the same
depositional environment one will have the pattern that a certain layer lies on top
of another layer, like how Nordland is often on top of Hordaland, and Hordaland
on top of Rogaland and so on. By assuming so, regardless if there could exist other
formations in a selected well or not, the complete geological profile of the input
well will have a match somewhere in the geological profile of the selected well.

The output, raw_input , is a matrix of dimensions m× 2n that is ready for k-
means. m is still the number of wells in the database. n is the number of layers our
input well has. We have 2n since we want to look at both thickness and the TVD
of top of each formation when applying k-means. This means that raw_input is
a set of m objects, where each row m is a feature vector x of dimensions 1 × 2n
and thereby suitable as input for k-means.

3.4.1 Running k-means

Given that k_means is already imported from Scikit-learn [29], the clustering
analysis is simply performed by the command kmeans_raw

= kMeans(raw_input,n_clusters=num_clusters, return_n_iter=True) .
num_clusters is the number of clusters one wish to have, and in our thesis this
is set to fulfill Hypothesis 1, "The expert system should be able to identify that
different fieldsexists on the NCS". The algorithm will by default be run 10 times
with different cluster centroids initializations in feature space, the set parameter
return_n_iter=True will return the number of iterations the k-means ran on its
best run. As long as the number of iterations are less than the maximum number
of iterations that is set to 300 (by default), the k-means will have converged.

A simple algorithm as the k-means is also served with disadvantages, therefore
care should be taken when analyzing results gained from the k-means algorithm.
For instance, the k-means will cluster data even if it is fed an uniform distribution
of data. Making sure of that the data one is analyzing is clustarable, is therefore
important [7]. Also, the selection of the predefined k clusters can be quite complex.
Usually, one wish to select a k that minimizes the WCSS and use this to evaluate if
the resulting clustering is valid or not [6]. Other disadvantages involves sensitivity

3.5. RETRIEVING THE CLUSTER OF INTEREST 33

to scaled data or getting stuck at a local minimum 2. These problems will be
discussed later in Chapter 5.

3.5 Retrieving the Cluster of Interest

As we recall from Chapter 2, the results gained from a clustering analysis is such
that objects that lie in the same cluster are similar while objects in different clusters
are dissimilar. The main objective of the function written in target_cluster.py
is to take the results gained by k-means as input and retrieve the cluster of wells
which our input well lies in. We call this the target cluster. The output of the k-
means returns the coordinates of all k cluster centroids in feature space, in addition
to the cluster membership of every object, i.e. which cluster an object has been
assigned to. target_cluster.py assesses the latter to produce an ordered list of
lists clusters . Each list in clusters refers to a cluster indexed by the k-means
algorithm; list i will refer to cluster i, and will consist of the indices of wells that
have been assigned to this cluster. By knowing the indices, we can easily retrieve
the wells lying within any cluster by calling the defined objects.

Figure 3.5: Input and output of target_cluster.py .

Excerpt 5

1 def target_cluster(kmeans,num_clusters):
2 clusters = []
3 clust_target = kmeans[1][0]
4 for i in range(num_clusters):
5 cluster = []
6 for j in range(len(kmeans[1])):
7 if kmeans[1][j] == i :
8 cluster.append(j)
9 else:

10 pass
11 clusters.append(cluster)
12 return clusters, clust_target

2A local minimum is a solution but not the best solution

34 3.6. EVALUATING WELLS IN THE TARGET CLUSTER

3.6 Evaluating wells in the target cluster

Now that we have the target cluster, we can assume that the wells lying within
this cluster must be the most relevant wells for our input well. main.py extracts
the wells that lies within the target cluster so that further evaluation of these wells
can be done (Appendix A.1, line 168-182):

Excerpt 6

1 if input_well == True:
2 depths = []
3 pool = []
4 for i in clusters[clust_target]:
5 depths.append(Objects[i].depth)
6 pool.append(Objects[i])
7 spekter = range(depths[0] - 500, depths[0] + 500)
8 j = 0
9 while j < len(depths):

10 if depths[j] not in spekter:
11 depths.pop(j)
12 throw = pool.pop(j)
13 j += 1
14 else:
15 j += 1

Wells are gathered in the list of objects pool (Excerpt 6, line 1-6). The while
loop does a removal of wells that we seem as irrelevant for the input well. The
loop defines a range of ± 500 meters of the total depth of the input well, in TVD.
If a well’s total depth is not within this range, we deem it irrelevant and remove
it. This is based on that the target depth, the depth, in TVD, of which the drilling
operation shall reach, should be relevant.

3.6.1 Standardizing

The output we wish to produce for the expert system is a listed ordering of the
most relevant wells for the input well. The remaining task is therefore to do an
evaluation on which of these wells is more relevant than the other. This is done
by evaluating the nearest neighbor of the input well. As presented in Chapter 2,
the nearest neighbor method has the greedy property of selecting whichever object
that is nearest to the object of interest. For our case, this would be to locate the
nearest wells that are most similar to the input well within the target cluster.

We recall that the output gained at raw_input.py is a m× 2n matrix. The
first n columns, from now on referred to as the left half, carries the information of
thickness of each n formations layers existing in the input well. The last n columns,
the right half, carries the information of TVD of top of the formation for each of
the n layers. m is still the number of wells in the database.

3.6. EVALUATING WELLS IN THE TARGET CLUSTER 35

Figure 3.6: Input and output of the standardization module.

By knowing so, we can say that the left half is unordered; as thickness of formation
layers is random. The right half is not though. The right half is ordered due to
the use of TVD. For each column we move to the right in the right half of the
matrix, the number lying within the next column will have increased. Now, if we
were to have a nearest neighbor approach on this matrix, which is basically just
calculating the Euclidean distances between each row vector m, we may have the
problem that the right half could be dominating the left half due to their values
being higher. To avoid this, we have standardized the data to have zero mean and
unit variance. Standardization enables us to put different features on the same
scale, by enhancing small subtle values and dampening high dominating values.
The thought, is that every feature of the input well will have a certain standard
score. By evaluating an arbitrary object’s standard score in relation the the input
well’s standard score, for every feature, we should be able to locate the nearest
neighbors.

standard_dev.py calculates the mean and the standard deviation for each
feature of the wells lying in pool . Since the feature vector x is of dimen-
sions 1 × 2n, we have that the arrays containing the means and standard devi-
ations, SD_thickness , SD_depth , mean_thickness , and mean_depth , have

the same dimensions. These values are then used in scaling.py to standard-
ize the selected data. This is done by scripting the equation for standardization
presented in Chapter 2, Equation (2.20). The produced output of scaling.py ,
input_matrix , is the standardized well data from wells in the target cluster. The
dimensions of input_matrix is m× 2n, here m is no longer the whole database
but it is reduced to be the m wells in the target cluster.

36 3.7. WEIGHTING

3.7 Weighting
Before applying the nearest neighbor method, a function that enables an engineer
to weight the importance of certain formation layers was made. The user interface
provides an option where the engineer can choose to continue the analysis with or
without weighting the different formation layers in input_matrix . See Figure
3.8. The weighting is triggered by a binary 0/1 for NO/YES in the call made to
prompt_weights.py script (Appendix A.1, line 199).

Figure 3.7: Input and output of prompt_weights.py .

Figure 3.8: Enabling weighting of formation layers through user interface.

The function has two weighting arrays; W a 1× 2 array, and w a 1×n array, n
is still the number of layers existing in the input well. W , weights how we should
prioritize thickness in formation layers in relation to the offset in TVD of top of
formations. w, weights how we should prioritize the different formation layers in
relation to each other. This means, thatW will initially focus on how the weighting
should be between the left half and the right half of the input_matrix . Then, w
weights which formation layer that may have to be prioritized due its complexity
or any other factor that the engineer bases his or her weighting on. This can
also be seen in their dimensions. Therefore, the applied method of weighting in
prompt_weights.py is that the first column inW weights up w and generates the
weighting for the left half, then the second column in W weights up w, generating
the weighting for the right half. The result is the total weighting array weights

of dimensions 1× 2n which is used to weight each row in input_matrix .

3.8. SELECTING MOST RELEVANT WELLS 37

Example 3.7.1 For W =
[
1, 2
]
and w =

[
1, 1, 1, 1

]
the prompt_weights.py

will produce weights =
[
1, 1, 1, 1, 2, 2, 2, 2

]
, where the number of formation layers

n = 4.

The weighting part of the expert system is applied mainly to ensure a degree
of freedom to the engineer that is using the system. This is important, as any
solution that comes out of a ML system should not be a definite solution to the
task at hand but rather, the solution serves as helpful information that engineer
can use in further decision making.

3.8 Selecting most relevant wells
When running the expert system, the weighting part is often selected as default.
Meaning that it is basically skipped and has no influence on the data we assess.
Therefore the next function after standardization is one that shall find the nearest
neighbors of the input well by taking input_matrix as input. The nearest neigh-
bor algorithm is not explicitly used in the sense that is neither used as a classifier
nor regression but rather, the written function mod_kNN.py is based on the greedy
property of the nearest neighbor rule (Chapter 2.4) and uses Euclidean distance
to arrange the ordering of the most relevant wells. Objects with shorter distances
will be more relevant than objects with longer distances as the distance will be a
measure of deviation. The distances is labeled as the Nearest Neighbor Value and
is written to the the object’s attribute (Excerpt 7, line 6):

Figure 3.9: Input and output of mod_kNN.py .

Excerpt 7

1 from sklearn.metrics.pairwise import pairwise_distances
2 def kNN(input_matrix,pool):
3 neighbor = pairwise_distances(input_matrix, input_matrix)
4 # Write to object’s attribute
5 for i in range(len(pool)):
6 pool[i].nn = neighbor[i,0]
7 return pool

38 3.8. SELECTING MOST RELEVANT WELLS

Now, we can simply sort the objects in pool after the Nearest Neighbor Value
and print them to console. This is the final output of the expert system, and it
shows an ordered selection of the most relevant wells for a new well that is to be
drilled (Appendix A.1, line 205-207 and line 229-232).

Excerpt 8

1 def sort_func(Well):
2 return Well.nn
3 pool_final = sorted(pool, key=sort_func)
4 ...
5 print(’Target well: ’, pool_final[0].name)
6 print(’Well name’, ’Nearest Neighbor Value’)
7 for i in range(1,len(pool_final)):
8 print(pool_final[i].name, pool_final[i].nn)

Chapter 4

Testing the Expert System

4.1 Introduction
This chapter will present and analyze the results obtained by the expert system
that is developed. We divide the chapter into two sections; the first section will look
into the results obtained with the test set consisting of 16 wells drawn from two
different fields on the NCS. We recall, that the expert system is developed based on
the assumptions and decisions made on a smaller test set and then made scalable,
so that the system simply needs to retrieve a larger available database of well data.
The second section, will therefore present the results obtained when including the
whole database that is available at the NPD. We will also be including a well that
was drilled by the collaborative party in order to get a measure of credibility of the
system. In addition, a few assumption will be made later in the chapter in hope
for improvements, we therefore summarize the assumptions that already have been
made:

Assumption 1: We should be able to find relevant wells based solely on a well’s
geological profile.

This is the naive approach that is fundamental for solving the problem formulated
in the thesis.

Assumption 2: Faults and folds does not exist, meaning, that the way formations
are layered exhibits a certain pattern.

Which we used to justify why we only consider the formations layers in that exists
in the input well.

39

40 4.2. TEST SET

4.2 Test set
The test set consists of eight wells from the Ivar Aasen field and eight wells from
the Valhall field, 16 wells in total. The wells are listed in Table 4.1.

Table 4.1: The test set consists of the following wells:

Ivar Aasen Valhall
16/1-1 2/8-4
16/1-7 2/8-6
16/1-9 2/8-8

16/1-11 A 2/8-9
16/1-11 2/8-10

16/1-16 A 2/8-11
16/1-16 2/11-1
16/1-19 S 2/11-4

We have selected well 2/8-4 to be the new well that is to be drilled. For the k-
means in main.py, line 155 , we set the numbers of clusters num_clusters =
2 to test Hypothesis 1, in other words, we want to be able to distinguish the
Ivar Aasen field from the Valhall field. The weighting array W =

[
W1,W2

]
in

prompt_weights.py shows how we wish to prioritize thickness in formation,
W1, in relation to the offset in depth of formation tops, W2. The values that
are set for W are stated in the tables to come. Due to no experience within the
field, we select the weighting array w to be default; an 1 × n array of ones which
weights the different formations layers equally. This gives the following configura-
tion; Input_file = 2/8-4.xls 1, n_clusters = 2 , and W =

[
W1,W2

]
.

The expert system will identify and extract the cluster of wells that the input
well 2/8-4 lies within, namely the target cluster. A modified Nearest Neighbor
search is then used within the target cluster to list the final solution of the most
relevant wells of the input well. The ordering of most relevant wells are then printed
based on the Nearest Neighbor Value. Note that there are only six relevant wells
that are listed in the presented tables. Well 2/11-1 has been excluded due to the
depth assessment in main.py ; if the total TVD of the well is not within ±500

meters, it seen as not relevant (Appendix A.1, line 168).
Table 4.2, 4.3, and 4.4 shows the final results when running the test set through

the expert system.

1We use .xls to denote that well 2/8-4 is taken from the Excel file Input.xls. See Appendix ??.

4.2. TEST SET 41

Table 4.2: Selected reference wells for well 2/8-4.
W :

[
1, 1

]
Reference Well Name Nearest Neighbor Value

1 2/11-4 5.85
2 2/8-9 6.70
3 2/8-10 7.00
4 2/8-6 7.59
5 2/8-11 7.72
6 2/8-8 8.32

Table 4.3: Selected reference wells for well 2/8-4.
W :

[
2, 1

]
Reference Well Name Nearest Neighbor Value

1 2/8-6 10.76
2 2/8-10 11.38
3 2/11-4 11.48
4 2/8-11 11.72
5 2/8-9 11.94
6 2/8-8 12.29

Table 4.4: Selected reference wells for well 2/8-4.
W :

[
1, 2

]
Reference Well Name Nearest Neighbor Value

1 2/11-4 6.29
2 2/8-9 9.07
3 2/8-10 10.75
4 2/8-11 12.69
5 2/8-6 13.12
6 2/8-8 13.97

42 4.2. TEST SET

Figure 4.1: MDS is clearly a strong visualization tool, given that the Stress-1
value is reasonable. Here, the Stress-1 value is σ1 = 0.00897. The dimensional
reduction technique enables the engineer to look at the data in an intuitive way to
gather information.

4.2. TEST SET 43

4.2.1 Analysis
MDS is used to visualize the high dimensional data that is taken as input in a
low dimensional space. It is run separately of the k-means algorithm with the
sole purpose of trying to visualize what the k-means is solving. IR3 is the selected
dimension of the MDS space but we have included plots both in IR2 and IR3 in
Figure 4.1 to get a good view of the results when running the script with the test
set. From Figure 4.1, we can clearly see that the objects in IR2 are separated in
two clusters, Valhall in the bottom left corner and Ivar Aasen in the top right
corner. When we include the plot in IR3 space, more information is revealed. The
outlier that is present in the Ivar Aasen cluster (on the right) is much more clear
now that the dimension is increased. The MDS technique returns a Stress-1 value
of σ1 = 0.00897, which indicates that the low dimensional representation has less
than one percent badness-of-fit after being reduced from high to low dimensional
space. Making it a good representation of our original data.

4.2.2 Remarks
The purpose of using a test set is to develop an expert system that is scalable. A
smaller set of objects will save computational and increases the efficiency towards
creating a final system. At the same time, it enables us to better analyze the results
gained at each step throughout the script, making it easier to work with errors and
deviations to form improvements for the expert system.

44 4.3. COMPLETE DATABASE WITH KNOWN OUTCOME

4.3 Complete database with known outcome
At this stage, the test set has enabled the expert system to reach a certain level
of credibility. We now run the system on the database of wells that is available at
the NPD’s official website. Also, a well that has been drilled by the collaborative
firm, referred to as Well X, is included and we select it to be the new well that
is to be drilled, making a total of 1663 wells in the available database. The final
results retrieved by the expert system can then be compared to the Final Drilling
Program of Well X to assess the quality of the system.

The weighting array is set toW =
[
1, 1
]
throughout the thesis if not stated oth-

erwise. This means, that thickness in formation and the offset in depth of formation
tops are equally weighted. The weighting array w is again default. The number of
clusters is chosen to test Hypothesis 1 and is set to n_clusters = 120, which is
the number of fields that exists in the available database from NPD [8]. The con-
figuration is summarized as; Input_file = Well X.xls , n_clusters = 120 ,

and W =
[
1, 1
]
.

Table 4.5 shows the results after the initial run when using the database from
NPD. Starred wells (* or **) 2, are wells that in reality were picked to be reference
wells for input well.

Table 4.5: Selected reference wells for Well X.

Reference Well Name Nearest Neighbor Value
1 Well A* 5.29
2 Well B* 7.11
3 Well C** 7.21
4 Well D** 7.84
5 Well E 8.41
6 Well F 11.94

The system is able to select four out of a total of eight wells that were originally
selected as reference wells for Well X.

4.3.1 Analysis
As an initial run, being able to retrieve four out of eight reference wells and also
ranking them as the most relevant wells, is an acceptable result. However, we
seek to have a system that can be more accurate. To achieve this, we make a few
assumptions in hope for an improvement of the expert system.

Assumption 3: The layers that are categorized as No Formal Name and Undif-
ferentiated, are more disruptive than helpful in the search of good reference wells.

2* and ** is to distinguish importancy. In the final Drilling Program of Well X, the ** wells
are highlighted as important sources for certain choices that were made to plan for its operation.
As the expert system only bases its choice on geological profiles, it can not distinguish which of
the starred wells are more relevant than the other beyond this knowledge.

4.3. COMPLETE DATABASE WITH KNOWN OUTCOME 45

There exists layers that are categorized as No Formal Name 3 and Undifferenti-
ated 4 in the database of NPD. These are layers that has not yet, or can not, be
assigned to a formation or group category. By knowing so, it would only add more
uncertainty if the expert system were to examine a certain Undifferentiated layer
in one well with an Undifferentiated layer in another, as there is a good chance that
their properties are different. The same goes for No Formal Name layers. With
this assumption we allow ourselves to exclude these layers of uncertainty until a
better definition of the layers is achieved, in hope for a better result. The layers
are removed by the while loop in main.py (Appendix A.1, Line 131). The
following table presents the results in the adjusted run:

Table 4.6: Selected reference wells for Well X.
Removed uncertain layers.

Reference Well Name Nearest Neighbor Value
1 Well A* 5.44
2 Well G* 5.55
3 Well B* 6.00
4 Well C** 6.01
5 Well D** 7.37
6 Well F 7.77
7 Well H* 10.23

We observe that the cluster has two new members, Well G* and Well H*, while
Well E was not picked, allowing the system to be a bit step closer of selecting all
eight wells that were originally picked.

Now, for the remaining two reference wells that the system is not able to retrieve,
it would make sense to make another naive assumption; that the remaining two
wells that were originally selected lie somewhere close to the target cluster where
the input well lies in. We formulate the assumption as:

Assumption 4: All relevant wells for the input well must lie somewhere close in
the neighborhood of clusters.

What we wish to assume, is that, if there exists some sort of a neighborhood N(ci)
of i clusters c, where all wells within this neighborhood N(ci) have relevancy to
the input well, while all other wells that lie outside N(ci) have no relevancy. Then
surely, Assumption 4 must be a reasonable guess.

3No formal name is used for units that have not yet received a formal name, as for example
shaly intervals in the Hordaland Group in the North Sea. Exceptionally, informal names have been
used to assign reservoir intervals, for example Intra Balder Formation sandstone, Intra Draupne
Formation sandstone and Intra Heather Formation sandstone. [8]

4Undifferentiated has been used for group-intervals that based on the data available could not
be subdivided into formations. This is often the case far from the type area or in condensed
sections. [8]

46 4.3. COMPLETE DATABASE WITH KNOWN OUTCOME

A short script is written to find the cluster that is closest to the target cluster
in order to see if the remaining two wells are present as assumed. This is done by
using the nearest neighbor rule; we locate the closest cluster centroid and extract
the wells lying in this cluster, see main.py (Appendix A.1, Line 235). The wells
in Table 4.7 has arbitrary ranking and we can observe that the system is capable
of finding the two remaining wells in the closest neighbor cluster.

Table 4.7: Wells lying in the cluster closest to the target cluster.

Well
Well I
Well J
Well K
Well L
Well M*
Well N*

To assess the consistency of the system, we did 30 runs to see how often it
would be able to select the eight originally picked reference wells. Table 4.8 shows
how many times the reference wells were found in the targeted cluster and in the
cluster closest to it. Table 4.9 present the same wells with their average nearest
neighbor value through 30 runs. The returned return_n_iter parameter did
never exceed the maximum set number of iterations of 300, this means that the k-
means converged in all runs. The run time of the expert system is heavily dependant
on the time an engineer uses on the weighting function but if we ignore that, the
expert system is able to propose a solution within 20 seconds on average.

4.3. COMPLETE DATABASE WITH KNOWN OUTCOME 47

Table 4.8: The precision of the expert system’s ability to select the originally
picked reference wells through 30 runs.

Well In target cluster In nearest cluster Not found
Well A* 30/30 0/30 0
Well B* 30/30 0/30 0
Well C** 30/30 0/30 0
Well D** 29/30 0/30 1
Well G* 30/30 0/30 0
Well H* 24/30 5/30 1
Well M* 0/30 26/30 4
Well N* 0/30 26/30 4

Table 4.9: The average nearest neighbor value for the selected

Well Average nearest neighbor value
Well A* 5.14
Well G* 5.71
Well B* 6.00
Well C** 6.05
Well D** 7.40
Well H* 10.02
Well M* only in neighbor cluster
Well N* only in neighbor cluster

48 4.3. COMPLETE DATABASE WITH KNOWN OUTCOME

Chapter 5

Discussion

This chapter shares our thoughts on some of the essential decisions that were made
during the thesis that led to the final result. First, we will try to justify our selection
of features that solves the problem of selecting relevant wells, here we will focus on
the subject dimensionality. Further, the k-means algorithm and multidimensional
scaling method is put on the spot; how is it actually used in our case and how
reliable are the results? We will also look at how the gained results corresponds to
the hypotheses presented in Chapter 1. We summarize the hypotheses as

Hypothesis 1: The expert system should be able to identify that different fields
exists on the NCS.

Hypothesis 2: The expert system should be able to select relevant reference wells.

5.1 Representative Data
Feature engineering is an important part of training any ML project successfully
and involves the selection of well suited features that can be used to train a model.
For an unsupervised learning which focuses on cluster analysis, it would mean that
the selected features must be clusterable. But how do we know that the data
we are working with can be clustered at all? Hypothesis 1 is made on the idea
that the profile of a well can be uniquely described by the pattern of which the
different formations layers forms the profile. If one were to drill a hole at a certain
area, study its core sample and define the geological profile of the core. If we then
drill a hole simply a meter away from that hole, this core sample will be, at some
point along its profile, different from the first one. Surely then, geological profiles of
wells can be put into certain categories. What these categories are, is yet unknown,
hence, we formed Hypothesis 1 to test if we could categorize them into fields.

From the start of the thesis we had a naive approach by assuming that if we
could find wells that are a good match of the input well’s geological profile then
surely, these wells must be relevant reference wells. But at that point, what was a
good match? Was it simply that the formations of the input well should exist in

49

50 5.1. REPRESENTATIVE DATA

the other wells, or was it necessary to include more features to determine a good
match? Through user involvement and exploring how the engineers work with this
sort of problem, it was narrowed down to that thickness of formation and where
the top of the formation places in TVD, plays an important role. This led to the
feature vector x of dimension 1×2n where n is the number of formations layers that
exists in the input well. 2n is the required dimension to evaluate both thickness
and the offset in TVD of top of formations as describing a well’s geological profile
must involve the formation layers it consists of. An afterthought is to include the
"layer" of sea water that lies on top of the geological profile as an feature, since
this is also important when planning to drill a well.

5.1.1 The Curse of Dimensionality

The process of defining the feature vector x is based on the curse of dimensionality.
At an early stage of the thesis, the k-Means was run with all formations as features,
i.e. the feature vector x of dimension 1×2n where n was the total number of forma-
tions layers that exists in the available database, which is 211 different formations.
Though, this selection of feature vector will have a lot of zeros in it, as a layer may
not exist in a given well, it will still force the feature space to be a configuration
in IR422. With increasing dimensions the distribution of samples in feature space
becomes more sparse, i.e. the term closeness between two samples becomes less
intuitive 1. If the dimension were to go to infinity, the Euclidean distance between
the nearest and the furthest point in feature space would converge to be the same
[36]. This high dimensional problem is widely known as the curse of dimension-
ality. Different techniques to avoid this problem involves dimensionality reduction
methods or simply an increase of the number of training samples. But the latter
is not always easy, in fact, the number of samples needed to reach the desired dis-
tribution in feature space grows exponential with the number of dimensions [32]
[3].

In k-means, by studying the obtained Within-Cluster Sum of Squares (Chapter
2, Section 2.6) for both feature vectors with the same number of clusters, we clearly
see that with increased dimensionality we have a more sparse distribution of our
objects in feature space. With n being all formations layers in a database, the
returned WCSS value was 36, 861, 868, 939. While for n restricted only to the for-
mations in the input well, the WCSS returned 1, 805, 904, 145 2. The first thoughts
on the WCSS values are that they are out of this world; the numbers are incredibly
high. But then again, how intuitively can we interpret data in high dimensionality
space? We can not. It is even hard to state that if the WCSS are good or not.
But what we do know, is that the WCSS is a minimization of the configuration in
feature space and that the k-means we ran with the selected feature vector were
able to solve our problem, while the intitial feature vector were quite inconsistent
in the returned target cluster. Therefore, by focusing on the problem at hand;

1Less, is an understatement. Pay attention to the WCSS values in the next paragraph.
2The WCSS values will always differ slightly but the k-means converges around the same value.

The returned number of iterations that gave the best result is an indication of that the k-means
has in fact converged.

5.2. K-MEANS 51

finding relevant wells for the input well, the selection of the feature vector x to be
of the size 1 × 2n, where n is the number of formations layers that exists in the
input well, is justified by the fact that we are reducing a configuration IR422 to
IR2n.

5.2 k-means
By choosing a feature vector x where the dimension is restricted only to the forma-
tions existing in the input well, what does this say about the output of k-Means?
Since the features we use is only related to the input well, the clusters we gain must
exhibit the following properties

• objects within the same cluster are similar to the input well

• objects from different clusters are dissimilar to the input well

How other objects relate to each other, which the initial feature vector of size IR422

would have ensured, is not apparent in our results. The approach in this thesis is
clearly to use clustering as a means to an end and not to produce a solution in the
algorithm itself. We wish to pinpoint where to look for relevant wells in the large
database of available well data, and then do further analysis from there. Although
this approach does not go well with Hypothesis 1, important knowledge was gained
by testing that hypothesis. We do believe though, that if our expert system were
to be in an optimal state, and we run the system where all wells available get their
turn to be the input well, good clusters may occur and both Hypothesis 1 and 2
would be fulfilled. But this also requires that a solution of what the most relevant
wells for a well is, exists.

A choice of not standardizing the input data of k-means was made. It is based
on that longer distances tend to be more accurate than shorter distances, which
results in that patterns are more visible with longer distances in the feature space
[17] 3. By inspecting the different scales of thickness in formation and the TVD of
top of formation, we reasoned that they are indeed different but not to the degree
that we think one will totally dominate the other. A few test runs were executed
with standardized input for k-means and the returned target cluster did often
have arbitrary wells for every run. The approach was inconsistent and therefore
neglected.

5.3 Multidimensional Scaling
We recall, that MDS produces a mapping that shows how proximities are related to
each other. Since the selection of our feature vector only regards to the formations
within the input well, the mapping in MDS space would have a different meaning.
Like we pointed out for the k-means, the proximities in MDS space shows how they
are related to the input well. Objects lying close to the input well, is more similar

3The source is for MDS but both MDS and k-means uses Euclidean distance to converge.

52 5.3. MULTIDIMENSIONAL SCALING

than objects lying far from the input well, how other objects relate to each other
is obscured.

Results from the MDS method shows that the curse of dimensionality is in fact
a problem. MDS has an m × m distance matrix as input, which means that we
will be increasing dimensionality of the MDS space when the number of objects
are increased. In Chapter 4, the test set of 16 wells showed good results when
using MDS. The Stress-1 value was σ1 = 0.00897 which indicates a low badness of
fit, and the representation in MDS space has two clear clusters for Ivar Aasen and
Valhall wells, this means that the MDS works as a visualization technique in this
case. When running MDS on the available database of 1663 wells, the returned
Stress-1 value was σ1 = 0.370 which is quite high as the desired value should be
towards zero. The representation in IR3 is given in Figure 5.1 and does not work
in our favor of visually interpreting high-dimensional data.

Stress values for high-dimensional data is hard to interpret and the solution
of decreasing this high Stress-1 value is to increase the number of dimensions to
reduce to [17]. As the MDS is mainly used as a visualization technique, increasing
the MDS representation to any space above IR3 would not make sense as it is hard
to intuitively visualize data above this dimension. MDS is therefore discarded when
we include the available database.

Figure 5.1: MDS for the complete available database gives a bad representation
of the high-dimensional data.

Chapter 6

Summary and Conclusion

This thesis has looked into a machine learning approach for determining relevant
reference wells for a new well that is to be drilled in the NCS. On the naive assump-
tion that the problem could be solved based solely on a well’s geological profile,
an expert system using unsupervised learning methods, such as the k-means and
the nearest neighbor rule, was developed. The programming language Python, and
the machine learning library Scikit-Learn, are the essential tools that were used
throughout the development, and the selection of these is based on the desire to
motivate for in-house development within an oil firm, as they are programs that
are readily available and easy to learn.

The following hypotheses were made to test the expert system:

Hypothesis 1: The expert system should be able to identify that different fields
exists on the NCS.

Hypothesis 2: The expert system should be able to select relevant reference wells.

The expert system was developed based on results and assumptions made on a
smaller test set of 16 wells, eight wells from the Ivar Aasen field and eight from
the Valhall field. The test set showed good results when achieving to separate two
clusters that represented each field, therefore Hypothesis 1 and 2 is fulfilled.

A database at the NPD and a well drilled by the collaborative firm, Well X,
was made available for the expert system in order to test a real scenario. The
Final Drilling Program of Well X was used as a solution for which wells that were
originally picked for Well X in the real operation. The expert system showed good
results by selecting all eight wells that were originally picked, where six of these
ranked in the top 7 most relevant wells. All eight were chosen if we looked at
the top 13 most relevant wells. The expert system is in this case, able to fulfill
Hypothesis 2 but not Hypothesis 1. On average, the complete system spends 20
seconds purposing a solution.

53

54 6.1. FURTHER WORK

6.1 Further Work
As only a single well from the collaborative firm has been put to test, we suggest
that a large number of labeled data should be run through the expert system to
test its credibility. This requires that information regarding wells drilled by the
collaborative firm (or any other firm), and the reference wells selected for these,
are made available, and that time and effort is put in to extract and pre-process
well data for the implementation in our expert system. This action can improve
the expert system further.

More testing needs to be done on the weighting function, prompt_weights.py .
In this thesis, the weighting function is just a simple proposal that serves to enable
input from the engineer that is working with the problem. This means, that not
enough testing has been done on the function as the candidate is not the suited
engineer to weight formations up against each other. If an optimal weighting func-
tion can be achieved one can start looking in to implementing a learning model
in the function itself. If there is a good weighting function that the engineer is
actively using, methods within reinforcement learning can be implemented to learn
and understand the best weightings in different scenarios. Such a learner would
only become smarter with time and with frequent use.

More user involvement must be enabled to ensure that the best practice is
implemented to the system. The amount of user involvement in this thesis has
unfortunately been sub-optimal. Availability and the fact that the thesis has been
a maturity project, where the quality of the questions asked became better and
better towards the end, are the main reasons for this.

It would be interesting to try principal component analysis (PCA) on the data.
What differs in PCA and MDS is that PCA looks for features, or rather, some
transformation of these features called principal components, that explains the most
variance in our data base. Based on this, PCA can select the necessary principal
components to represent a sufficient amount of the data in a lower vector space.
We do admit that too much time and focus were put into MDS. Actually, the initial
approach in the feasibility study sketched that MDS should be performed to reduce
dimensionality to IR2 or IR3 configuration, then k-means would be performed in
the MDS space, given that the Stress-1 value was acceptable. This approach was
neglected.

We summarize the work of interest as bullet points:

• Test the expert system for more cases of which we know the outcome of, in
order to measure its credibility.

• Put the weighting function to test and determine if a better solution is needed.

• Share work with community and enable more user involvement to ensure that
best practice is implemented.

• Try PCA to see if the dimensionality of the selected feature vector can be
reduced.

Bibliography

[1] class pandas.DataFrame. https://pandas.pydata.org/pandas-docs/
stable/generated/pandas.DataFrame.html. Accessed: 2018-06-12.

[2] Coursera - Machine Learning by Standford University. Adjunct Professor An-
drew Ng. https://www.coursera.org/learn/machine-learning/home.
Accessed: 2017-09-05.

[3] Curse of Dimensionality - Georgia Tech. https://www.youtube.com/
watch?v=OyPcbeiwps8. Accessed: 2018-06-16.

[4] Digitalisering forandrer livene våre. https://www.aftenposten.no/brandstudio/
feature/v/equinor/digitalisering/. Accessed: 2018-03-18.

[5] Digitalisering skal gi bedre offshore-operasjoner. https://sysla.no/offshore/
digitalisering-skal-gi-bedre-offshore-operasjoner/. Accessed:
2018-03-18.

[6] Disadvantages of the k-means clustering. https://www.inovex.de/blog/
disadvantages-of-k-means-clustering/. Accessed: 2018-06-16.

[7] Drawbacks of k-means. https://stats.stackexchange.com/questions/
133656/how-to-understand-the-drawbacks-of-k-means. Accessed:
2018-06-16.

[8] Factpages, Norwegian Petroleum Directorate. http://factpages.npd.no/
factpages/. Accessed: 2018-06-01.

[9] Features - iQx. https://www.agr.com/our-capabilities/software/
iqx/features. Accessed: 2018-06-16.

[10] Graphical example of Vornoi partition. https://upload.wikimedia.org/
wikipedia/commons/d/d9/Voronoi_growth_euclidean.gif. Accessed:
2018-06-13.

[11] iQx - Intelligent Well Data Management. https://www.agr.com/our-
capabilities/software/iqx. Accessed: 2018-06-16.

[12] Machine Learning - What it is and why it matters. https://www.sas.
com/en_us/insights/analytics/machine-learning.html#. Accessed:
2017-09-03.

[13] MATLAB; Math. Graphics. Programming. https://se.mathworks.com/
products/matlab.html. Accessed: 2018-01-15.

55

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
https://www.coursera.org/learn/machine-learning/home
https://www.youtube.com/watch?v=OyPcbeiwps8
https://www.youtube.com/watch?v=OyPcbeiwps8
https://www.aftenposten.no/brandstudio/feature/v/equinor/digitalisering/
https://www.aftenposten.no/brandstudio/feature/v/equinor/digitalisering/
https://sysla.no/offshore/digitalisering-skal-gi-bedre-offshore-operasjoner/
https://sysla.no/offshore/digitalisering-skal-gi-bedre-offshore-operasjoner/
https://www.inovex.de/blog/disadvantages-of-k-means-clustering/
https://www.inovex.de/blog/disadvantages-of-k-means-clustering/
https://stats.stackexchange.com/questions/133656/how-to-understand-the-drawbacks-of-k-means
https://stats.stackexchange.com/questions/133656/how-to-understand-the-drawbacks-of-k-means
http://factpages.npd.no/factpages/
http://factpages.npd.no/factpages/
https://www.agr.com/our-capabilities/software/iqx/features
https://www.agr.com/our-capabilities/software/iqx/features
https://upload.wikimedia.org/wikipedia/commons/d/d9/Voronoi_growth_euclidean.gif
https://upload.wikimedia.org/wikipedia/commons/d/d9/Voronoi_growth_euclidean.gif
https://www.agr.com/our-capabilities/software/iqx
https://www.agr.com/our-capabilities/software/iqx
https://www.sas.com/en_us/insights/analytics/machine-learning.html##
https://www.sas.com/en_us/insights/analytics/machine-learning.html##
https://se.mathworks.com/products/matlab.html
https://se.mathworks.com/products/matlab.html

56 BIBLIOGRAPHY

[14] Matplotlib: Python plotting. https://matplotlib.org/index.html. Ac-
cessed: 2018-01-15.

[15] Monotonic Function. http://mathworld.wolfram.com/MonotonicFunction.
html. Accessed: 2018-06-13.

[16] Msc in Data Science: Nearest Neighbors Algorithms in Euclidean and Metric
Spaces. https://www.youtube.com/watch?v=rho8QqiHOe4. Accessed:
2018-06-13.

[17] Multidimensional Scaling. http://www.analytictech.com/borgatti/
mds.htm. Accessed: 2018-06-16.

[18] NumPy. http://www.numpy.org/. Accessed: 2018-01-15.
[19] Object Oriented Programming. https://python.swaroopch.com/oop.

html. Accessed: 2018-06-16.
[20] Pandas Data Analysis Library. https://pandas.pydata.org/. Accessed:

2018-01-15.
[21] pandas.readexcel. https://pandas.pydata.org/pandas-docs/stable/

generated/pandas.read_excel.html. Accessed: 2018-06-12.
[22] PyCharm. https://www.jetbrains.com/pycharm/. Accessed: 2018-06-16.
[23] Python - Lists. https://www.tutorialspoint.com/python/python_

lists.htm. Accessed: 2018-06-16.
[24] Python classes. https://docs.python.org/3/tutorial/classes.html.

Accessed: 2018-06-12.
[25] Quotes about Python. https://www.python.org/about/quotes/. Ac-

cessed: 2018-06-16.
[26] Reinforcement Learning. https://www.technologyreview.com/s/603501/

10-breakthrough-technologies-2017-reinforcement-learning/. Ac-
cessed: 2017-09-05.

[27] Scikit-learn. http://scikit-learn.org/stable/. Accessed: 2018-01-15.
[28] SciPy. https://www.scipy.org/. Accessed: 2018-01-15.
[29] sklearn.cluster.kmeans. http://scikit- learn.org/stable/modules/

generated/sklearn.cluster.k_means.html. Accessed: 2018-06-12.
[30] SMACOF Algorithm. http : / / scikit - learn . org / stable / modules /

generated/sklearn.manifold.smacof.html. Accessed: 2018-06-13.
[31] Richard S. Sutton and Andre G. Barto. Reinforcement Learning: An Intro-

duction. Bradford Book, 1998.
[32] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn TensorFlow.

O’Reilly, 2017.
[33] Hastie, Tibshirani & Friedman. The Elements of Statistical Learning, Second

Edition. Springer, 2009.
[34] Ingwer Borg & Patrick J.F. Groenen.Modern Multidimensional Scaling. Springer,

2005.

https://matplotlib.org/index.html
http://mathworld.wolfram.com/MonotonicFunction.html
http://mathworld.wolfram.com/MonotonicFunction.html
https://www.youtube.com/watch?v=rho8QqiHOe4
http://www.analytictech.com/borgatti/mds.htm
http://www.analytictech.com/borgatti/mds.htm
http://www.numpy.org/
https://python.swaroopch.com/oop.html
https://python.swaroopch.com/oop.html
https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_excel.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_excel.html
https://www.jetbrains.com/pycharm/
https://www.tutorialspoint.com/python/python_lists.htm
https://www.tutorialspoint.com/python/python_lists.htm
https://docs.python.org/3/tutorial/classes.html
https://www.python.org/about/quotes/
https://www.technologyreview.com/s/603501/10-breakthrough-technologies-2017-reinforcement-learning/
https://www.technologyreview.com/s/603501/10-breakthrough-technologies-2017-reinforcement-learning/
http://scikit-learn.org/stable/
https://www.scipy.org/
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.k_means.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.k_means.html
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.smacof.html
http://scikit-learn.org/stable/modules/generated/sklearn.manifold.smacof.html

BIBLIOGRAPHY 57

[35] Ismail Bin Mohamad and Dauda Usman. Standardization and Its Effects on
K-Means Clustering Algorithm. Maxwell Scientific Organization, 2013.

[36] Michael Steinbach, Levent Ertöz, and Vipin Kumar. The Challenges of Clus-
tering High Dimensional Data. Springer, 2004.

[37] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. Massachusetts Institute of Technology, 2009.

[38] What is the difference between artificial intelligence and machine learning?
https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-
the-difference-between-artificial-intelligence-and-machine-
learning/#60b859c62742. Accessed: 2017-09-03.

https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/##60b859c62742
https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/##60b859c62742
https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/##60b859c62742

58 BIBLIOGRAPHY

Appendix A

Python Source Code

A.1 main.py

1 ######## The Expert System ########
2 # Sha l l s e l e c t r e l e van t we l l s f o r a new we l l that i s to be d r i l l e d .
3 #
4 # In to ta l , the expert system i s expres sed by the f o l l ow i n g s c r i p t s :
5 # − main . py
6 # − bin_matrix . py
7 # − format ion . py
8 # − mod_kNN. py
9 # − prompt_weights . py

10 # − raw_input . py
11 # − r e l evancy . py
12 # − s c a l i n g . py
13 # − standard_dev . py
14 # − t a r g e t_c lu s t e r . py
15 ###################################
16

17 ## General import
18 import os
19 import pandas as pd
20 import matp lo t l i b . pyplot as p l t
21 from mpl_toolk i ts . mplot3d import Axes3D
22

23 ## Import from Sc i k i t−l e a rn
24 from sk l e a rn . c l u s t e r import k_means as kMeans
25 from sk l e a rn import mani fo ld
26 from sk l e a rn . met r i c s . pa i rw i s e import pa i rw i s e_d i s tance s
27

28 ## Def ine c l a s s Well to make ob j e c t s
29 c l a s s Well :
30 de f __init__(s e l f , name=None , index=None , top=None , bottom=None , fm=None ,
31 fm_names=None , t h i c kne s s=None , thickness_sum=None ,
32 fm_rel=None , th i ckne s s_re l=None , depth_rel=None) :
33 s e l f . name = name # Name o f we l l
34 s e l f . index = index # Index o f we l l
35 s e l f . top = top # Top o f fm , TVD
36 s e l f . bottom = bottom # Bottom of fm , TVD

59

60 A.1. MAIN.PY

37 s e l f . fm = fm # Unique number o f fm
38 s e l f . depth = s e l f . bottom [−1] # Total depth , TVD
39 s e l f . fm_names = fm_names # Name o f fm
40 s e l f . t h i c kne s s = th i ckne s s # Thickness o f fm
41 #s e l f . fm_rel = fm_rel # Integer ,
42 #s e l f . t h i ckne s s_re l = th i ckne s s_re l # Integer ,
43 #s e l f . depth_rel = depth_rel # Integer ,
44

45 de f __repr__(s e l f) :
46 r e turn ’ {} ’ . format (s e l f . name)
47

48 ## Empty l i s t s
49 a = [] # Top o f fms , TVD
50 b = [] # Bottom of fms , TVD
51 c = [] # Name o f fms
52 d = [] # Unique number o f fms
53 a_temp = []
54 b_temp = []
55 c_temp = []
56 d_temp = []
57 r e f = [] # Name o f we l l s
58 input_wel l = False
59

60 ######## Part 1 : Pre−pro c e s s i ng o f input data
61 ## Retr i eve input we l l
62 os . chd i r (’C:\\ Users \MinhHoan\OneDrive NTNU\Pros j ek t og master \
63 Masteroppgaven\Python\ Input ’)
64

65 i f os . l i s t d i r () == [] :
66 pass
67 e l s e :
68 input_wel l = True
69 i npu t_ f i l e = pd . read_excel (’ Input . x l s ’ , u s e c o l s = [0 , 1 , 2 , 5 , 3] ,
70 names=[0 , 1 , 2 , 3 , 4] , sk ip_foote r =8363)
71

72 f o r i in range (l en (i npu t_ f i l e)) :
73 i f i+1 not in range (l en (i npu t_ f i l e)) :
74 a_temp . append (i npu t_ f i l e [1] [i])
75 b_temp . append (i npu t_ f i l e [2] [i])
76 c_temp . append (i npu t_ f i l e [3] [i])
77 d_temp . append (i npu t_ f i l e [4] [i])
78 a . append (a_temp)
79 b . append (b_temp)
80 c . append (c_temp)
81 d . append (d_temp)
82 a_temp = []
83 b_temp = []
84 c_temp = []
85 d_temp = []
86 r e f . append (i npu t_ f i l e [0] [i])
87 e l i f i npu t_ f i l e [1] [i] <= inpu t_ f i l e [1] [i + 1] :
88 a_temp . append (i npu t_ f i l e [1] [i])
89 b_temp . append (i npu t_ f i l e [2] [i])
90 c_temp . append (i npu t_ f i l e [3] [i])
91 d_temp . append (i npu t_ f i l e [4] [i])
92

93 target_depth = b [0] [−1] # Total depth , TVD

A.1. MAIN.PY 61

94

95 ## Retr i eve the database that i s a v a i l a b l e from NPD
96 os . chd i r (’C:\\ Users \MinhHoan\OneDrive NTNU\Pros j ek t og master \
97 Masteroppgaven ’)
98

99 Data = pd . read_excel (’ Datasett . x l s ’ , u s e c o l s = [0 , 1 , 2 , 5 , 3] ,
100 names= [0 , 1 , 2 , 3 , 4])
101 f o r i in range (l en (Data)) :
102 i f i+1 not in range (l en (Data)) :
103 a . append (a_temp)
104 b . append (b_temp)
105 c . append (c_temp)
106 d . append (d_temp)
107 r e f . append (Data [0] [i])
108 e l i f Data [1] [i] <= Data [1] [i +1] :
109 a_temp . append (Data [1] [i])
110 b_temp . append (Data [2] [i])
111 c_temp . append (Data [3] [i])
112 d_temp . append (Data [4] [i])
113 e l s e :
114 a_temp . append (Data [1] [i])
115 b_temp . append (Data [2] [i])
116 c_temp . append (Data [3] [i])
117 d_temp . append (Data [4] [i])
118 a . append (a_temp)
119 b . append (b_temp)
120 c . append (c_temp)
121 d . append (d_temp)
122 a_temp = []
123 b_temp = []
124 c_temp = []
125 d_temp = []
126 r e f . append (Data [0] [i])
127

128 ## Removing l a y e r s that are c a t e go r i z ed as No formal name or
129 # Und i f f e r en t i a t ed
130 i = 0
131 whi le i < l en (d [0]) :
132 i f d [0] [i] == 111 or i == 182 :
133 a [0] . pop (i)
134 b [0] . pop (i)
135 c [0] . pop (i)
136 d [0] . pop (i)
137 i += 1
138 e l s e :
139 i += 1
140

141 ## Generate ob j e c t s based on the de f ined c l a s s , Well
142 Objects = []
143 f o r i in range (l en (a)) :
144 Objects . append (Well (top=a [i] , bottom=b [i] , name=r e f [i] , fm=d [i] ,
145 index=i , fm_names=c [i]))
146

147 ######## PART 2 : MACHINE LEARNING METHODS − KMEANS
148

149 ## Make input data ready f o r k−means and mult id imens iona l s c a l i n g
150 from bin_matrix import bin_matrix

62 A.1. MAIN.PY

151 X_formation , X_thickness , X_depth , Objects = bin_matrix (Objects)
152

153 ## Cal l f unc t i on c l u s t e r to prepare input data f o r k−means
154 from raw_input import c l u s t e r
155 num_clusters = 120
156 raw_input = c l u s t e r (X_thickness , X_depth , d)
157

158 ## k−means
159 kmeans_raw = kMeans (raw_input , n_c lus te r s=num_clusters , return_n_iter=True)
160

161 ## Cal l f unc t i on ta r g e t_c lu s t e r to f i nd c l u s t e r o f which the input we l l
162 # l i e s in , the t a r g e t c l u s t e r
163 from ta rg e t_c lu s t e r import t a r g e t_c lu s t e r
164 c l u s t e r s , c l u s t_ta rge t = ta rg e t_c lu s t e r (kmeans_raw , num_clusters)
165

166 ## Lets examine the t o t a l TVD of a l l w e l l s in the t a r g e t c l u s t e r .
167 # We remove we l l s that are much deeper than the input we l l
168 i f input_wel l == True :
169 depths = []
170 pool = []
171 f o r i in c l u s t e r s [c l u s t_ta rge t] :
172 depths . append (Objects [i] . depth)
173 pool . append (Objects [i])
174 spekte r = range (depths [0] − 500 , depths [0] + 500)
175 j = 0
176 whi le j < l en (depths) :
177 i f depths [j] not in spekte r :
178 depths . pop (j)
179 throw = pool . pop (j)
180 j += 1
181 e l s e :
182 j += 1
183

184 ######## PART 3 : MACHINE LEARNING METHODS − NEAREST NEIGHBOR
185 ## Cal l f unc t i on SD to get standard dev ia tons o f fm l a y e r s
186 from standard_dev import SD
187 SD_thickness , SD_depth , mean_thickness , mean_depth = SD(X_thickness ,
188 X_depth , pool)
189

190 ## Cal l f unc t i on s c a l i n g to get zero mean and uni t var i ance over the
191 # d i s t r i b u t i o n o f each fm l ay e r
192 from s c a l i n g import s c a l i n g
193 input_matrix = s c a l i n g (pool , X_thickness , X_depth , SD_thickness ,
194 SD_depth , mean_thickness , mean_depth)
195

196 ## Cal l f unc t i on prompt_weights to
197 # enable eng inee r ’ s a b i l i t y to weight fm l a y e r s
198 from prompt_weights import prompt_weights
199 input_matrix = prompt_weights (pool , input_matrix)
200

201 ## Find the nea r e s t ne ighbors o f input we l l and rank them
202 # accord ing to t h e i r d i s t an c e s
203 from mod_kNN import kNN
204 pool = kNN(input_matrix , pool)
205 de f sort_func (Well) :
206 r e turn Well . nn
207 poo l_f ina l = so r t ed (pool , key=sort_func)

A.1. MAIN.PY 63

208

209 ## Use MDS to v i s u a l i z e data
210 dmatrix = pa i rw i s e_d i s tance s (raw_input)
211 mds = manifo ld . smacof (d i s s i m i l a r i t i e s=dmatrix , n_components=3,
212 metr ic=True , max_iter=3000 , random_state=1,
213 eps=1e−9, normal ize=True)
214 # Plot − 3D space
215 f i g = p l t . f i g u r e ()
216 ax = Axes3D(f i g)
217 ax . s c a t t e r (mds [0] [: , 0] , mds [0] [: , 1] , mds [0] [: , 2])
218 ax . s e t_x labe l (’DIM1 ’)
219 ax . s e t_y labe l (’DIM2 ’)
220 ax . s e t_z l abe l (’DIM3 ’)
221 p l t . show ()
222 # Plot − 2D space
223 p l t . s c a t t e r (mds [0] [: , 0] , mds [0] [: , 1])
224 p l t . x l ab e l (’DIM1 ’)
225 p l t . y l ab e l (’DIM2 ’)
226 p l t . show ()
227

228 ## Print outpust o f expert system
229 pr in t (’ Target we l l : ’ , poo l_ f ina l [0] . name)
230 pr in t (’Well name ’ , ’ Nearest Neighbor Value ’)
231 f o r i in range (1 , l en (poo l_ f ina l)) :
232 pr in t (poo l_ f ina l [i] . name , poo l_ f ina l [i] . nn)
233

234 ## Find nea r e s t c l u s t e r by l o c a t i n g c en t r o i d s
235 cent ro id_d i s tance s = pa i rw i s e_d i s tance s (kmeans_raw [0] , kmeans_raw [0])
236 j = 10000000
237 count = 0
238 f o r i in range (l en (cent ro id_d i s tance s [c l u s t_ta rge t])) :
239 i f c en t ro id_d i s tance s [c lus t_target , i] < j and \
240 cent ro id_d i s tance s [c lus t_target , i] > 0 :
241 j = cent ro id_d i s tance s [c lus t_target , i]
242 count = i
243 e l s e :
244 cont inue
245

246 pr in t (’ Nearest c en t r o id has the f o l l ow i n g we l l s : ’)
247 pr in t (’Well name ’)
248 f o r x in c l u s t e r s [count] :
249 pr in t (Objects [x] . name)
250 pr in t (’ S t r e s s −1: ’ , mds [1])

64 A.2. BIN_MATRIX.PY

A.2 bin_matrix.py

1 ######## Function bin_matrix ########
2 # A func t i on that takes a l l o b j e c t s as input to c r e a t e three
3 # m x n matr i ce s X_formation , X_thickness , X_depth
4 # m = number o f we l l s in data s e t
5 # n = number o f fo rmat ions e x i s t i n g in NPD database , which i s 212
6 # Each we l l (ob j e c t) has a c e r t a i n s e t o f fm l a y e r s that make up
7 # the t o t a l g e o l o g i c a l p r o f i l e . These l a y e r s have unique IDs de f ined
8 # by NPD. X_formation , X_thickness , and X_depth s t o r e s in fo rmat ion
9 # about i f the fm e x i s t s in object , t h i c kne s s o f fm , and depth (TVD)

10 # of top o f fm r e s p e c t i v e l y .
11 # Example ; I f we l l i has the l ay e r Nordland with unique ID 113 .
12 # X_formation ge t s a binary 1 in the i t h row and 113 th column .
13 # 0 i s g iven i f the fm does not e x i s t . For X_thickness and X_depth ,
14 # ins t ead o f b inary 0/1 , we s t o r e the in fo rmat ion d i r e c t l y in to the
15 # i th row and 113 th column . The purpose , i s to have a p lace where
16 # informat ion i s e a s i l y s to r ed and t r a c e ab l e s i n c e we always have
17 # that the row index r e f e r to a wel l , whi l e the column index r e f e r s
18 # to a given fm l ay e r .
19

20 # Parameters
21 # −−−−−−−−−−−−−−−−
22 # Objects : l i s t
23 # The number o f ob j e c t s (we l l s) that i s a v a i l a b l e in the cur rent
24 # database .
25

26 import numpy as np
27

28 de f bin_matrix (Objects) :
29 dim = (l en (Objects) , 212)
30 X_formation = np . z e r o s (dim)
31 X_thickness = np . z e r o s (dim)
32 X_depth = np . z e r o s (dim)
33 temp = []
34 f o r i in range (l en (Objects)) :
35 f o r j in range (l en (Objects [i] . top)) :
36 X_formation [i] [Objects [i] . fm [j]] = 1
37 l a y e r = Objects [i] . bottom [j] − Objects [i] . top [j]
38 X_thickness [i] [Objects [i] . fm [j]] = l ay e r
39 temp . append (l ay e r)
40 X_depth [i] [Objects [i] . fm [j]] = Objects [i] . top [j]
41 Objects [i] . t h i c kne s s = temp
42 temp = []
43 r e turn X_formation , X_thickness , X_depth , Objects

A.3. RAW_INPUT.PY 65

A.3 raw_input.py

1 ######## Function c l u s t e r ########
2 # Sha l l prepare the nece s sa ry input that i s needed to
3 # perform k−means on the data that was o r i g i n a l l y taken
4 # as input . X_thickness , X_depth , and d i s taken as input .
5 # The func t i on uses d to l o c a t e the fm l a y e r s that e x i s t s
6 # in the input we l l . I t then ex t r a c t s a l l in fo rmat ion from
7 # every we l l in the database in these exact l aye r s , i gno r i ng
8 # any other fm l a y e r s that a we l l may have .
9 # The output , raw_input i s a m x 2n matrix that i s ready f o r

10 # k−means . m i s the number o f we l l s in the database . n i s the
11 # number o f l a y e r s our input we l l has . We have 2n s i n c e we want
12 # to look at both fm th i ckne s s and depth o f top o f fm .
13

14 # Parameters
15 # −−−−−−−−−−−−−−−−
16 # th i ckne s s : ndarray
17 # A m x i matrix . m i s the number o f we l l s in the database .
18 # i the number o f fm l a y e r s that e x i s t s in the database .
19 # I t c a r r i e s the in fo rmat ion o f th i c kne s s o f each fm l ay e r f o r
20 # every we l l .
21 #
22 # depth : ndarray
23 # A m x i matrix . m i s the number o f we l l s in the database .
24 # i the number o f fm l a y e r s that e x i s t s in the database .
25 # I t c a r r i e s the in fo rmat ion o f TVD top o f fm o f each l ay e r
26 # fo r every we l l .
27 #
28 # fm : l i s t
29 # The l i s t s ho lds the g e o l o g i c a l p r o f i l e o f each we l l in the
30 # database , that i s , what fm l a y e r s a we l l c o n s i s t s o f .
31

32 de f c l u s t e r (th i cknes s , depth , fm) :
33 raw_input = []
34 f o r i in range (l en (th i c kne s s)) :
35 temp = []
36 temp2 = []
37 f o r j in fm [0] :
38 temp . append (th i c kne s s [i , j])
39 temp2 . append (depth [i , j])
40 temp . extend (temp2)
41 raw_input . append (temp)
42 r e turn raw_input

66 A.4. TARGET_CLUSTER.PY

A.4 target_cluster.py

1 ######## Function ta r g e t_c lu s t e r ########
2 # Function that takes the r e s u l t s gained in k−means as input .
3 # The output produced i s the in fo rmat ion o f which c l u s t e r
4 # every we l l in the database i s in . The func t i on a l s o r e tu rn s
5 # the ta r g e t c l u s t e r , which i s the c l u s t e r where our input we l l
6 # l i e s in . The expert system i s s c r i p t e t so that kmeans [1] [0]
7 # w i l l always be the input we l l .
8

9 # Parameters
10 # −−−−−−−−−−−−−−−−
11 # kmeans : tup l e
12 # I t i s the r e s u l t gained from performing k−means . Has the
13 # informat ion o f the coo rd ina t e s o f a l l c en t r o i d s
14 # and which c l u s t e r each we l l be longs to .
15 #
16 # num_clusters : int , opt iona l , d e f au l t : None
17

18

19 de f t a r g e t_c lu s t e r (kmeans , num_clusters) :
20 c l u s t e r s = []
21 c lu s t_ta rge t = kmeans [1] [0]
22 f o r i in range (num_clusters) :
23 c l u s t e r = []
24 f o r j in range (l en (kmeans [1])) :
25 i f kmeans [1] [j] == i :
26 c l u s t e r . append (j)
27 e l s e :
28 pass
29 c l u s t e r s . append (c l u s t e r)
30 r e turn c l u s t e r s , c l u s t_ta rge t

A.5. STANDARD_DEV.PY 67

A.5 standard_dev.py

1 ######## Function SD ########
2 ## Cal cu l a t e s the standard dev i a t i on in th i c kne s s and TVD of
3 # top o f fm f o r each l ay e r . We only eva luate fm l a y e r s that the
4 # targ e t we l l has in i t s g e o l o g i c a l p r o f i l e .
5 # Example : When look ing at a layer , say , Nordland . I t w i l l take
6 # the in fo rmat ion f o r th i c kne s s in that layer , f o r a l l w e l l s .
7 # Calcu la te the mean th i c kne s s o f Nordland . Then , c a l c u l a t e the
8 # standard dev i a t i on in Nordland . This i s done f o r a l l l a y e r s
9 # that e x i s t s in the input we l l . The same i s done with TVD of

10 # top fm . The standard dev i a t i on s are l a t e r used to s tandard i z e
11 # the data (s c a l e) .
12

13 # Parameters
14 # −−−−−−−−−−−−−−−−
15 # th i ckne s s : ndarray
16 # A m x i matrix . m i s the number o f we l l s in the database .
17 # i the number o f fm l a y e r s that e x i s t s in the database .
18 # I t c a r r i e s the in fo rmat ion o f th i c kne s s o f each fm l ay e r f o r
19 # every we l l .
20 #
21 # depth : ndarray
22 # A m x i matrix . m i s the number o f we l l s in the database .
23 # i the number o f fm l a y e r s that e x i s t s in the database .
24 # I t c a r r i e s the in fo rmat ion o f TVD top o f fm o f each l ay e r
25 # fo r every we l l .
26 #
27 # pool : l i s t
28 # The pool o f we l l s . I t i s the we l l s l y i n g with in the t a r g e t c l u s t e r
29 # as ob j e c t s .
30

31

32 import numpy as np
33

34 de f SD(th i cknes s , depth , pool) :
35 n = len (pool)
36 count = 0
37 mean_thickness = []
38 mean_depth = []
39 SD_thickness = []
40 SD_depth = []
41 # Calcu la te mean va lue s
42 f o r i in pool [0] . fm :
43 temp_thickness = []
44 temp_depth = []
45 f o r j in range (l en (pool)) :
46 temp_thickness . append (th i ckne s s [pool [j] . index , i])
47 temp_depth . append (depth [pool [j] . index , i])
48 mean_thickness . append (sum(temp_thickness)/ n)
49 mean_depth . append (sum(temp_depth) / n)
50 # Calcu la te standard dev i a t i on s
51 f o r i in pool [0] . fm :
52 denominator_thickness = []
53 denominator_depth = []
54 f o r j in range (l en (pool)) :
55 denominator_thickness . append ((th i c kne s s [pool [j] . index , i]−

68 A.5. STANDARD_DEV.PY

56 mean_thickness [count])∗∗2)
57 denominator_depth . append ((depth [pool [j] . index , i]−
58 mean_depth [count])∗∗2)
59 count +=1
60 SD_thickness . append (np . s q r t (sum(denominator_thickness) / (n−1)))
61 SD_depth . append (np . s q r t (sum(denominator_depth) / (n−1)))
62 r e turn SD_thickness , SD_depth , mean_thickness , mean_depth

A.6. SCALING.PY 69

A.6 scaling.py

1 ######## Function s c a l i n g ########
2 # Sha l l s t andard i z e the we l l data o f the we l l s with in
3 # the ta r g e t c l u s t e r . By having zero mean and uni t var iance , the
4 # the sub t l e valued th i ckne s s in fm are enhances whi l e at the same
5 # time , the dominating va lue s o f depth o f top fm are dampened .
6 # This makes i t e a s i e r to a s s e s s the t rue dev i a t i on when we look f o r
7 # re l evan t we l l s . I t takes the standard dev i a t i on o f each layer , one
8 # fo r th i c kne s s and one f o r depth o f top fm as input .
9 # I t produces a input_matrix that has same length as pool .

10 # The input_matrix i s used in kNN to rank the we l l s l y i n g in the
11 # targ e t c l u s t e r a f t e r l e a s t to most dev i a t i on .
12

13 # Parameters
14 # −−−−−−−−−−−−−−−−
15 # pool : l i s t
16 # The pool o f we l l s . I t i s the we l l s l y i n g with in the t a r g e t c l u s t e r
17 # as ob j e c t s .
18 #
19 # th i ckne s s : ndarray
20 # A m x i matrix . m i s the number o f we l l s in the database .
21 # i the number o f fm l a y e r s that e x i s t s in the database .
22 # I t c a r r i e s the in fo rmat ion o f th i c kne s s o f each fm l ay e r f o r
23 # every we l l .
24 #
25 # depth : ndarray
26 # A m x i matrix . m i s the number o f we l l s in the database .
27 # i the number o f fm l a y e r s that e x i s t s in the database .
28 # I t c a r r i e s the in fo rmat ion o f TVD top o f fm o f each l ay e r
29 # fo r every we l l .
30 #
31 # SD_thickness : l i s t
32 # A l i s t that ho lds the standard dev i a t i on o f th i c kne s s f o r each l ay e r
33 # that e x i s t s in the input we l l .
34 #
35 # SD_depth : l i s t
36 # A l i s t that ho lds the standard dev i a t i on o f TVD top o f fm f o r each
37 # laye r that e x i s t s in the input we l l .
38 #
39 # mean_thickness : l i s t
40 # A l i s t that ho lds the mean o f th i c kne s s f o r each l ay e r
41 # that e x i s t s in the input we l l .
42 #
43 # mean_depth : l i s t
44 # A l i s t that ho lds the mean o f TVD top o f fm f o r each l ay e r
45 # that e x i s t s in the input we l l .
46

47 from sk l e a rn . met r i c s . pa i rw i s e import pa i rw i s e_d i s tance s
48 import numpy as np
49

50 de f s c a l i n g (pool , th i cknes s , depth , SD_thickness , SD_depth ,
51 mean_thickness , mean_depth) :
52 input_matrix = []
53 f o r i in range (l en (pool)) :
54 row_temp = []
55 row_temp2 = []

70 A.6. SCALING.PY

56 count = 0
57 f o r j in pool [0] . fm :
58 s ca l e_th i ckne s s = (th i ckne s s [pool [i] . index , j] −
59 mean_thickness [count]) / SD_thickness [count]
60 scale_depth = (depth [pool [i] . index , j] − mean_depth [count]) \
61 / SD_depth [count]
62 row_temp . append (s ca l e_th i ckne s s)
63 row_temp2 . append (scale_depth)
64 count += 1
65 row_temp . extend (row_temp2)
66 input_matrix . append (row_temp)
67 input_matrix = np . asar ray (input_matrix)
68 r e turn input_matrix

A.7. PROMPT_WEIGHTS.PY 71

A.7 prompt_weights.py

1 ######## Function prompt_weights ########
2 # A func t i on that enab l e s an eng inee r to weight c e r t a i n fm l a y e r s over
3 # the othe r s . Weighting i s t r i g g e r e d by binary 0/1 f o r NO/YES.
4 # We have two weight ing ar rays : W and w.
5 # W weights how we should p r i o r i t i z e th i c kne s s in fm l a y e r s
6 # in r e l a t i o n to the o f f s e t in top o f fm .
7 # w weights how we should p r i o r i t i z e the d i f f e r e n t fm l a y e r s
8 # in r e l a t i o n to each other . For example , i f the re e x i s t s more
9 # compl icated fm l a y e r s (d r i l l i n g wise) we should weight i t

10 # higher than othe r s to p ena l i z e any dev i a t i on .
11

12 # Parameters
13 # −−−−−−−−−−−−−−−−
14 # input_matrix : ndarray
15 # A i x 2n matrix . Where i i s the number o f we l l s that l i e s with in
16 # the ta r g e t c l u s t e r . n i s the number o f fm l a y e r s that the input
17 # we l l c o n s i s t s o f .
18 #
19 # pool : l i s t
20 # The pool o f we l l s . I t i s the we l l s l y i n g with in the t a r g e t c l u s t e r
21 # as ob j e c t s .
22

23 import numpy as np
24

25 de f prompt_weights (pool , input_matrix) :
26 pr in t (’Your t a r g e t we l l has the f o l l ow i n g l a y e r s : ’)
27 f o r i in pool [0] . fm_names :
28 pr in t (i)
29 pr in t (’ There are a t o t a l o f ’ , l en (pool [0] . fm_names) , ’ l a y e r s . ’)
30 pr in t (’Weighting : Layers that are weighted with high va lue s w i l l ’
31 ’ be p r i o r i t i z e d . Layers are weighted in r e l a t i o n to each ’
32 ’ o ther . ’)
33 prompt = in t (input (’ I f you wish to weight l a y e r s p l e a s e s e l e c t : 1 . ’
34 ’ I f not , choose d e f au l t by s e l e c t i n g : 0 . ’
35 ’Type your s e l e c t i o n : ’))
36 weights_thickness = []
37 weights_depth = []
38 i f prompt == 1 :
39 # Ass ign ing weights to l a y e r s by prompt
40 weight ing = l i s t (input (’Weight l a y e r s by same orde r ing as ’
41 ’ g iven above . No spac ing . ’))
42 # Check that weight ing dimensions are c o r r e c t
43 whi le True :
44 i f l en (pool [0] . fm_names) == len (weight ing) :
45 W = np . ones (2 , dtype=in t)
46 w = np . asar ray ([i n t (i) f o r i in weight ing])
47 f o r i in range (l en (w)) :
48 weights_thickness . append (w[i]∗W[0])
49 weights_depth . append (w[i]∗W[1])
50 weights_thickness . extend (weights_depth)
51 weights = weights_thickness
52 f o r i in range (l en (pool)) :
53 f o r j in range (l en (input_matrix [0])) :
54 input_matrix [i , j] = weights [j] ∗ input_matrix [i , j]
55 break

72 A.7. PROMPT_WEIGHTS.PY

56 e l s e :
57 weight ing = l i s t (input (’Number o f weights do not match . ’
58 ’No spac ing . Try again : ’))
59 e l s e :
60 W = np . array ([1 , 1])
61 w = np . ones (l en (input_matrix [0]) , dtype=in t)
62 f o r i in range (i n t (l en (w) / 2)) :
63 weights_thickness . append (w[i] ∗ W[0])
64 weights_depth . append (w[i] ∗ W[1])
65 weights_thickness . extend (weights_depth)
66 weights = weights_thickness
67 f o r i in range (l en (pool)) :
68 f o r j in range (l en (input_matrix [0])) :
69 input_matrix [i , j] = weights [j] ∗ input_matrix [i , j]
70 r e turn input_matrix

A.8. MOD_KNN.PY 73

A.8 mod_kNN.py

1 ######## Function kNN ########
2 ## A modi f i ed nea r e s t ne ighbor that s h a l l f i nd the d i s t an c e s
3 # from input we l l to every other we l l l y i n g in the t a r g e t c l u s t e r .
4 # The nea r e s t ne ighbor a lgor i thm i s not e x p l i c i t l y used but rather ,
5 # the wr i t t en func t i on i s based on the same methodology f o r the
6 # purpose o f o rde r ing the most r e l e van t we l l s .
7

8 # Parameters
9 # −−−−−−−−−−−−−−−−

10 # input_matrix : ndarray
11 # A i x 2n matrix . Where i i s the number o f we l l s that l i e s with in
12 # the ta r g e t c l u s t e r . n i s the number o f fm l a y e r s that the input
13 # we l l c o n s i s t s o f .
14 #
15 # pool : l i s t
16 # The pool o f we l l s . I t i s the we l l s l y i n g with in the t a r g e t c l u s t e r
17 # as ob j e c t s .
18

19

20 from sk l e a rn . met r i c s . pa i rw i s e import pa i rw i s e_d i s tance s
21 de f kNN(input_matrix , pool) :
22 neighbor = pa i rw i s e_d i s tance s (input_matrix , input_matrix)
23 # Write to ob j e c t ’ s a t t r i b u t e
24 f o r i in range (l en (pool)) :
25 pool [i] . nn = neighbor [i , 0]
26 r e turn pool

	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Previous Work
	Problem Formulation
	Approach and limitations

	Available Software
	Python
	Scikit-Learn
	PyCharm

	Notation
	Structure of Rapport

	Background Material
	Introduction
	What is Machine Learning?
	Supervised learning
	Unsupervised learning
	Semisupervised learning
	Reinforcement learning

	The Feature Space
	Metric for distance

	The Nearest Neighbor rule
	Voronoi Partition
	Unsupervised Learning methods
	Clustering

	Multidimensional Scaling
	The MDS Space
	The Stress function
	Minimizing Stress
	Principles of Majorization

	Standardization

	The Expert System
	Introduction
	Main.py
	Setting up Python
	Pre-processing of input data
	Defining the class: Well

	Storing data for Computation
	Preparing Data for k-means
	Running k-means

	Retrieving the Cluster of Interest
	Evaluating wells in the target cluster
	Standardizing

	Weighting
	Selecting most relevant wells

	Testing the Expert System
	Introduction
	Test set
	Analysis
	Remarks

	Complete database with known outcome
	Analysis

	Discussion
	Representative Data
	The Curse of Dimensionality

	k-means
	Multidimensional Scaling

	Summary and Conclusion
	Further Work

	Bibliography
	Python Source Code
	main.py
	bin_matrix.py
	raw_input.py
	target_cluster.py
	standard_dev.py
	scaling.py
	prompt_weights.py
	mod_kNN.py

