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Preface

This master thesis is written as a compulsory part of my MSc degree at the department of
Engineering Cybernetics at NTNU, spring of 2016. The thesis work has been carried out

under the supervision of Professor Sigurd Skogestad at the department of Chemical Engineering.
Professor Morten Hovd at the department of Engineering Cybernetics has been co-supervisor. The
external supervisor from Statoil ASA, has been Mr. Eirik Heggelund.

The initial motivation behind this thesis was to investigate use of model predictive control on
the Statoil/Linde developed mixed fluid cascade natural gas liquefaction process by utilizing the
internal Statoil MPC software - SEPTIC. Data from the process has been retrieved from a simulator
developed in D-Spice. In addition, the thesis work considers MATLAB computations and OPC
communication.

This experience have truly been a Bayesian stairway: the planned progress and aspects have
changed somewhat during the course of this thesis as new information has surfaced and required
focus. This feature, I believe, is a necessity when considering problemswhich comprises unexplored
territories - which essentially applies for all problems. Originally, the work was planned to consider
model predictive control to a larger extent, but due to challenges in obtaining a satisfactory model
from system identification, the focus shifted towards the latter. Additionally, the author have the
impression from research literature that the process of system identification is considered trivial.
Certainly, as this thesis emphasize, this is not the case, and for complex control structures the degree
of difficulty considering system identification substantially increases. Furthermore, an interesting
investigation has been to compare system identification routines provided inMATLAB and SEPTIC.

To complete this thesis has been a long journey, and even though the thesis has its complete form,
the reader will only be able to read what the author have chosen to materialize. Not mentioned
further is the well of frustrations, long hours, and, certainly, new experiences and joys of learning.
The fact that the thesis eventually is a result of post-rationalization which don’t display dead-ends
or digressions is a part of the purpose.

The thesis is primarily written for people with knowledge on control engineering - at least to some
degree. Additionally, knowledge on system identification is an advantage, but not required.
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Abstract

Although it principally resembles a refrigerator, production of LNG is a complex and energy de-
manding process. At Hammerfest LNG the Statoil/Linde developed mixed fluid cascade process
liquefy natural gas from gaseous to liquid at temperatures at 110 K. From an operational perspective,
the process is sensitive to disturbances and demonstrate multivariable phenomena such as interac-
tions. Further, sea water temperature ultimately renders operation of cooling cycle compressors
at their constraints. In addition, some control loops suffer from poor closed-loop control. These
features outline the motivation behind this study towards more advanced process control.

The MFC process is vast and comprises a complex control structure although primarily based on
single loop controllers. Thus, a necessity to render this project feasible, an initial task was to
define the MPC extent in terms of MVs and CVs. By considering findings from previous work on
optimization and analysis of the MFC process, the MPC extent was defined to comprise pressure
control of the subcooling cycle.

Towards the development of an MPC, a large amount of labour have been invested in the model
identification work. Some initial results were unsatisfactory, and required a thorough investigation
as to why identified models consistently scored too low on validation data. The reason behind
was found in a feature of the control structure. A split range and selector controller rendered the
initial system infeasible for proper identification. Thus, the suggestion MPC extent was altered.
New identification experiments returned satisfactory results. Even though, a range of analyses and
comparisons were performed to ensure the proposed model’s suitability.

Two MPC configurations were developed utilizing two different control systems. Simulations were
run for setpoint manipulations of different CVs and disturbances. In terms of constraint handling,
both MPC configurations demonstrated superior performance compared to the isolated regulatory
layer. Although, there were some aspects regarding time spent to move CVs that need to be
investigated further. The isolated regulatory layer outperforms the MPC applications in terms if
this aspect for most of the simulations. The direct MPC application is almost consistently slower
compared to the supervisory MPC. In terms of setpoint changes for CVs, the supervisory MPC
shows promising tight control for accurate priorities.

Since the results are based on simulator data, one would indeed expect some differences between
simulator data and plant operational data. However, the D-Spice simulator utilized in this work is not
expected to possess the accuracy required to demonstrate such results. Optimization is nevertheless
a difficult task for this system, and it certainly requires more rigorous modelling. Additionally, the
complexity of the control system is not straightforward to handle. This may cause additional issues.
In total, these factors rule out the feasibility to provide an unambiguous conclusion. Although, the
work carried out in this thesis would hopefully be useful as a starting basis for further development.
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Sammendrag

Selv om prosessen i prinsippet ligner et kjøleskap, er produksjon av flytende naturgass en kompleks
og energikrevende prosess. På Hammerfest LNG benyttes den Statoil/Linde-utviklede blandet-
væske-kaskadeprosessen(MFC) for å omgjøre naturgass i gassform til flytende ved temperaturer
ved 110 K. Fra et driftsperspektiv er prosessen følsom for forstyrrelser og viser multivariable
fenomener i form av interaksjoner. I tillegg er sjøvannstemperatur en variabel som ved høye
temperaturer gjør at kjølesykelkompressorene drives mot sine begrensninger. I tillegg eksisterer det
flere reguleringsløyfer som ikke fungerer tilfredsstillende med tilbakekobling. Disse elementene
utgjør motivasjonen bak denne studien mot mer avansert prosesskontroll.

MFC-prosessen er kompleks og stor i utbredelse, og styres av en tilsvarende kompleks reguler-
ingsstruktur først og fremst basert på enkeltsløyferegulering. For å gjøre dette prosjektet gjennom-
førbart var en initiell oppgave å definere omfanget av den modellprediktive regulatoren i form av
kontrollerte og regulerte variable. Ved hjelp av tidligere dokumentert forskningsarbeid på opti-
malisering og analyse av MFC-prosessen ble MPC-regulatoren i utstrekning definert til å omfatte
trykkontroll av underkjølingsyklusen.

Under utviklingen av MPC-regulatoren, har en større mengde arbeid blitt lagt ned i å identifisere
modeller av systemet. De initielle resultatene var utilfredsstillende, og krevde en grundig under-
søkelse på hvorfor de identifiserte modellene konsekvent returnerte lav skår på validering av data.
Bakgrunnen til dette ble funnet i en varierende funksjon i reguleringsstrukturen. En "split range"-
regulator i samspill med en velger gjorde identifikasjon av gode modeller umulig. For å hanskes
med dette ble omfanget av MPC-regulatoren utvidet. Nye identifikasjonseksperimenter gav deretter
tilfredsstillende resultater. Likevel ble en rekke analyser og sammenligninger utført for å sikre den
foreslåtte modellens egnethet.

To MPC-konfigurasjoner ble utviklet for to forskjellige reguleringsstrukturer. For verifikasjon ble
simuleringer hvor manipulasjoner av ulike CV-er og forstyrrelser gjennomført. Når det gjelder
håndtering av beskrankninger, viste begge MPC konfigurasjoner overlegen ytelse i forhold til
enkeltsløyfereguleringen. Aspekter vedrørende tidsbruk for å flytte regulerte variable var noe
utilfredsstillende, ogde tte bør utredes videre. Basert på dette, isolert sett gir enkeltsløyfereguler-
ing bedre ytelse sammenlignet med begge MPC-applikasjonene. Den direkte MPC-applikasjonen
er nesten konsekvent tregere i forhold til den indirekte MPC-applikasjonen. I form av settpunk-
tsendringer for regulerte variable, viser den indirekte MPC-applikasjonen lovende regulering og
hensyntar prioriteringer.

Siden resultatene er basert på en numerisk simulator, må man forvente noen forskjeller mellom
simulatordata og driftsdata. D-Spice-simulatoren benyttet i dette arbeidet forventes ikke å ha den
nøyaktighet som kreves for å demonstrere slike resultater. Optimalisering er uansett en vanskelig
oppgave for dette systemet, og det krever mer grundig modellering. I tillegg er kompleksiteten
i reguleringsstrukturen en faktor som kan føre til ytterligere utfordringer. Totalt sett utelukker
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disse faktorene muligheten for å nå en entydig konklusjon. Likevel bør noe av arbeidet i denne
avhandlingen forhåpentligvis være nyttig som et utgangspunkt for videre utvikling.
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Chapter 1

Introduction

In this section, a brief description of the Snøhvit natural gas field and Hammerfest LNG2is
presented. Additionally, the background and motivation for this project is presented. Further,

challenges and potential areas of improvement are briefly mentioned. Furthermore, scope of the
thesis and work previously carried out is presented. In closing, an outline of the report is given and
some relevant research literature is listed.

1.1 Hammerfest LNG and some background material

Natural gas(NG) is a mixture of fluids containing primarily hydro carbon gases. It is the cleanest
fossil fuel with the lowest carbon dioxide emissions, and it is colorless and odorless in its pure form.
Natural gas is an important fuel source as well as amajor feedstock for fertilizers and petrochemicals.

Liquefaction of natural gas is an established mean to lower transport costs over great distances. By
liquefying natural gas the gas is compressed to 1/600th of its normal volume in gaseous form, which
increase transport efficiency significantly. The liquefaction process is a cryogenic process, which
indicate operating temperatures below 123 K(Venkatarathnam [86]), and the LNG product is about
113 K in its final form at atmospheric pressure. From figure 1.1, which depicts transport costs of
natural gas in pipelines and LNG, it is demonstrated that transport above 5000 kilometres favours
LNG with respect to cost(Schwimmbeck [63]).

2The author use the designation Hammerfest LNG throughout this report. Though other interchangeable desig-
nations have been used in various literature; Melkøya LNG and Snøhvit LNG, they all indicate the same. LNG is an
abbreviation for Liqufied Natural Gas.

For readers interested in a less technical perspective on Hammerfest LNG and Snøhvit, the author recommends
reading the Norwegian book "Snøhvit: Historien om olje og gass i Barentshavet" by the writer Alf R. Jacobsen.
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Risk Exposure for Capital Intensive Projects

Project overall Cost and Complexity

 Pipeline based Gas Trade involve only Pipeline and Compressor-Stations

 LNG based Gas Trade usually involve a whole investment Chain (i) Gas Treatment; (ii) 
Liquefaction; (iii) LNG Vessels, and (iv) Import Terminal

LNG projects are far more Capital Intensive and Complex to Develop

External Influence in Project Agreements

 Pipeline based Gas Trade over Long Distances usually involve Transit Countries

 LNG based Gas Trade include only the Gas Producer/Exporter Countries and the Gas 
Consumer/Import Countries, no “Third Party” is involved

Transit Countries introduce Geopolitical Interests & Geopolitical Risks

Exposure to Supply & Demand Volatility due to lower Production or Economic Depression

 Pipeline based Gas Trade does usually not have the Possibility of short term re-routes in 
case of unpredicted decline/disruptions on the Supply or Demand side

 LNG based Gas Trade has “Destination Flexibility” and LNG Vessels can be re-routed if the 
Market can not absorb the contracted Volumes

Supply/Demand decrease can severely impact the Economics of Pipeline Projects.

Figure 1.1Comparison of transport cost of LNGandNG in terms of volume and pipeline dimensions.
From Schwimmbeck [63].

The Snøhvit natural gas field was discovered by Statoil exploration in late 1984, and by mid 2002
the project development plan for Hammerfest LNG was approved in the Norwegian parliament.
Official start up date of the plant was 21th of August 2007(Statoil [78]). Hammerfest LNG is a
Statoil operated LNG processing plant owned by Statoil(37%), Petoro(30%), Total(18%), GDF
SUEZ(12%), and RWE Dea Norge(2.8%)(Norwegian Petroleum Directorate [54]).

(a) Geographical location. (b) Hammerfest LNG.

Figure 1.2 Location of the Snøhvit field(a) and overview of the LNG plant(b). From Statoil [77]
and Teknisk Ukeblad [83], respectively.

Location of the plant is outside the city of Hammerfest in the northernmost part of Norway. It is

2



Hammerfest LNG and some background material

the first development in the Barents sea area and the first installation on the Norwegian continental
shelf without surface installations offshore. Because of this, Hammerfest LNG is considered a
milestone in the Norwegian oil history. By comparison, the plant is one of the worlds most efficient
LNG producing plants, primarily due to design and location(Schmidt et al. [62]). The arctic climate
plays a major role and to a high degree, it affects several operating constraints which influence both
efficiency and plant throughput.

Some 140 kilometers north-west for the plant, the subsea templates are located on top of wells which
provides natural gas from three fields, Snøhvit, Askeladd and Albatross. Snøhvit and Albatross
started production in 2007, while Askeladd was set for production in 2015(Statoil [78]). The
sea depth varies from 250 to 350 meters at the production templates, while the reservoir depth is
about 2000 meters. In addition to producing wells, there exists a CO2 reinjection well for carbon
storage(Statoil [75]).

The LNG plant is dimensioned for production with basis in a feed gas rate of 2.08 · 107Sm3 every
day(Statoil [74]. Today the plant has an annual export of 4.3 MTPA LNG, 3.1-5.7 million barrels
of condensate and 150 000 - 250 000 tonnes of liquid petroleum gas(LPG). At ordinary operation
the plant power consumption is 230 MW and the energy demand to run the entire plant is covered
by a fuel consumption of less than 6% of the feed flow(Skjerven and Vist [66]).

Thewell output is amixture of natural gas, carbon dioxide, condensate and natural gas liquids(NGL),
and is led through a multi phase flow pipe back to the plant where each substance is separated and
individually processed. During the processing, CO2 is removed and sent to the injection well.
Additionally, mercury, nitrogen and alkanes are separated from the feed gas prior to liquefaction.
After separation, the ambient temperature natural gas is led through two fractionation columns, an
expansion turbine and a series of cascade heat exchangers. These operations essentially make up
the liquefaction system. The end LNG product is a purified, liquefied natural gas at temperatures
about 113 K and pressures at 0.2-4 Bar gage pressure(Barg). Some key LNG product specifications
are found in table 1.1. After processing, three main products; LNG, LPG and condensate is stored
and later shipped to the market(Norwegian Petroleum Directorate [54]).
Table 1.1 Selection of some vital LNG product specifications. Several additional elements are
expected to comprise the LNG product, but methane is obviously the crucial one. Thus, methane is
the only component subject for a minimal constrained LNG composition value. From Statoil [74].

LNG composition specifications
Component Min. value Max. value
Methane 84.55 mol% 100 mol%
Nitrogen N/A 1.1 mol%
Oxygen N/A 0.008 mol%
Carbon dioxide N/A 0.008 mol%
Mercury N/A 10 ng/Sm3
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1.2 Motivation

This thesis is a continuation the work carried out in Volden [88], where a preliminary study of the
liquefaction system at Hamemrfest LNG was conudcted. The overall goal has been to develop an
MPC controller to gain more robust and less energy consuming operation of the subcooling system.
Today the process is SISO controlled with extensive use of regular feedback, cascade, selective and
split range controlled loops without any advanced control implemented on top.

The LNG plant has been operational for almost 10 years, and even though studies have been con-
ducted, optimization based control is utilized only to a small degree at the plant. Upon initialization
of production, a study of advanced process control for the liquefaction system was conducted. How-
ever, this study rendered the system immature at that time. This project will focus on development
of advanced process control at the plant, and to narrow the scope of the project, it has been decided
to further investigate the subcooling cycle in the liquefaction system. Instead of utilizing real plant
data for the MPC development, a simulator plant model developed in D-Spice3 have been used.

To develop and utilize an MPC application is not unknown in Statoil. Since the end of the 1990’s,
the company have developed an in-house software for model identification and MPC applica-
tions(SEPTIC)Skofteland et al. [67]. This software have been used extensively in conventional
downstream operations in Statoil. According to Strand [79], by 2011 there were approximately
80 SEPTIC applications running within Statoil and 80% av these were either installed on Kårstø,
Mongstad or Kalundborg, which all are established refineries and gas processing plants. This
emphasize the unrealized potential at other plant locations, e.g. Hammerfest LNG.

The general understanding of MPC compared to simpler control strategies is unambiguous, and the
superior performance forMIMOprocesses is proven in numerous research and industry applications.
The process performance, controller disturbance rejection and process energy consumption are
variables that in general are improved by using an MPC application. See for example Morari and
Lee [52] and Qin and Badgwell [58]. These properties have helped the MPC gain popularity over
the last decades. The advantages of MPC have expanded its area of usefulnesses. From initially
being used in chemical processes, the range of MPC applications is increasing over a vast range of
industries.

For several available software systems there have been reported a payback time of reasonable short
time, i.e., 3 months as stated in Bassett and vanWijck [5] or 2-4 months as stated in Strand and Sagli
[80]. The global competition is rapidly increasing in terms of pricing and quality along with higher
cost of energy. Hence, the industry is forced to search for optimal solutions and thus reduce cost
to stay competitive(Glandt et al. [24]). Optimization in the economical sense is now increasingly
being conducted solely in steady-state processes by a separate overlying controller. This is referred
to as the real time optimization(RTO). This enables optimizing energy consumption towards stable
operation(Downs and Skogestad [14]).

3Information on D-Spice are found in Fantoft [16] and Fantoft [15].
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In addition, by utilizing the in-house MPC software and on site simulator models, one can expect
to minimize support costs. The software enables to build a network of MPC applications which are
interdependent. This expands the control hierarchy as we know it today, where we in general place
the MPC in the supervisory layer.

To build the D-Spice simulator which is primarily used for operator training and system testing,
Statoil have divided the simulator model into 10 sections, where one computer runs one section.
By using ten computers and thus dividing workload, the simulator manages to run at desired speeds
above real time. Communication is done by using OPC and TCP/IP protocols(Skjerven and Vist
[66]).

1.3 Objectives

At Hammerfest LNG large volumes of natural gas are processed continuously. Liquefying natural
gas from ambient temperatures about 286 K to about 113 K requires significant amounts of energy.
In addition, the system is sensitive to disturbances from of varying feedstock impurity and rates,
external and internal temperatures, and system interactions. To better handle disturbances and
simultaneously operate the subcooling system more energy efficient, development and testing of an
MPC application has been suggested. An MPC would additionally require less interaction from
operators, thus enabling operators to devote time to other tasks. It is this author’s impression that
operations and maintenance have been granted significant attention during the plants lifetime up
until now, while research, development and modifications have gained little attention. This project
aims to concentrate on the latter while focusing on the subcooling cycle.

The objective of this work is to develop an application such that performance and product speci-
fications are kept within their respective limits while minimizing energy consumption. To obtain
a feasible MPC configuration, several aspects must undergo investigation. These conditions make
out the ruling research objectives for this project work:

• Define scope and extent of MPC application
• Identify model and disturbances
• Identify operational conditions and constraints
• Identify and investigation on optimal selection of availablemeasurements, controlled variables
and manipulated variables

• Optimization problem formulation for the MPC application
• Simulations of MPC connected to dynamical simulator
• (Suggestion of MPC applications in other parts of liquefaction system)

During the work on this thesis, some of the above mentioned aspects have been thoroughly investi-
gated. Based on the author’s academical interest and by supervisor suggestion, the facet of obtaining
a process model have been a major part of this work. This is reflected by the thesis content.
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1.3.1 Limitations

Limitations pertain to this work, and by limitations we do not consider aspects beyond the scope.
Limitations refer to e.g. uncertainties in results and so forth. This section aims to inform the reader
in this respect.

The obtained results in terms of computations and simulations is based solely on numerical solvers
and thus choice of solver plays a significant role. Additionally, the simulator model is developed by
Statoil and runs in D-Spice which relies on numerical solvers and thermodynamic tables as well.
In reality the results may deviate due to obvious differences between the numerical domain and the
true operation.

In addition, simulator behaviour compared to true plant behaviour is affected by differing time delays
between the two domains. The time delay in a running simulator is affected by certain factors, while
the factors affecting plant time delays are incomparable. Hence, there will be differences in running
parameters which ultimately will lead to somewhat deviating behaviour between the two domains,
due to the different effective time delays.

Towards the end of this work, a discrepancy in the D-Spice model was detected. This involve the
part of the MFC process which interacts with the fractionation system. Sections 2.1 and 7.1 provide
a description of said interaction. As mentioned in above section 1.2, the D-Spice model is divided in
sub-models for the intention to run sections of the modelled LNG plant individually and distribute
computational load. However, when running the MFC section individually, interaction with the
fractionation system becomes faulty as perturbing theMFC sub-model leads to operation that slowly
drifts from equilibrium. This ultimately forces a model restart, but takes considerable time. To
avoid said feature the solution is to run the entire plant model, but this increase computational
load significantly and the simulator is not able to run above speeds twice real time. However, this
solution was not considered further and all results in the theses are obtained while running the MFC
section individually.

Further, the simulator model may, on a detailed level, deviate from the plant configuration. Mod-
ifications to the control system, altering of measurements, and parameter adjustments may occur
without the author’s knowledge. Thus, any results from this study may not be directly applicable to
the control configuration of the plant.

1.4 Scope and outline of the report

As specified more in detail in section 1.3, the aim for this report is to investigate and formulate an
MPC problem, and test the application. Intention of the work carried out in the thesis is to provide a
controller which render the operation of subcooling cycle more energy efficient and accurate while
simultaneously keeping within operational limits and ensuring robust performance. By increasing
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energy efficiency, the plant throughput increases for the same amount of fuel, and thus energy costs
are minimized.

Chapter 2 provides a superficial description of Hammerfest LNG plant including its major systems.
More in detail, the mixed fluid cascade process and the subcooling cycle is presented. This
includes presenting main components and process objectives. The basic thermodynamics and MPC
preliminaries are covered in Volden [88], and will not be considered in this thesis. Further, the
control system and its structure is briefly described including degrees of freedom and constraints.

Based the work of obtaining a decent process model, some general theory on system identification
is provided in chapter 3. This includes a particular focus on subspace identification. Since the
identification experiments are executed in open-loop configurations, this chapter discusses features
of closed-loop identification as well.

In chapter 4, the author describe a potential pitfall when considering system identification and
verification of experiment data. This chapter is based on a first-hand experience. Further, the
continuation work of obtaining a satisfactory model is presented. A number of different approaches
are tested and results are presented.

Chapter 5 presents several measures for model validation and analysis. Based on validation results,
several candidate models are further analysed based on different aspects such as model order,
signal-to-noise ratio and statistical measures.

In chapter 6, a description of the MPC software, and some important features are introduced.
Additionally, this includes classical system identification results obtained using the internal MPC
software for system identification.

Chapter 7, provides an outline of the MPC development. Further, some arguments behind the
defined MPC extent is specified. Additionally, results from simulations including the MPC are
depicted.

In chapter 8 the author summarizes the results from the work and discusses different aspects around
the obtained results. Chapter 9 list main conclusions and provides suggestions for further work.

1.5 Earlier work

This section provides an overview of the literature utilized in this work. Additionally, chapters and
sections based on the preliminary project(Volden [88]) is listed.
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Table 1.2 Sections in this thesis based on previous project

Section in thesis Based on section in Volden [88] To which degree in %
Chapter 1 Chapter 1 60
Chapter 2 Chapter 3, 4.2, 4.3, 4.4 75
Appendix D Chapter 5.2 95

The project leading up to this thesis was carried out in Volden [88]. The project considered
theoretical preliminaries regarding thermodynamics of heat transfer, compression and expansion,
and model predictive control. In addition, an introduction to the D-Spice simulator and OPC
communication was provided. Furthermore, a complete description of the MFC process was
given, and an analysis of present control structure and comprising control loops was carried out.
Additionally, some initial work on system identification was executed. The conclusion rendered the
system identification results not satisfactory, thus a large part of this work considers further system
identification in order to analyse and obtain satisfactory models for MPC development.

In terms of research literature utilized in the thesis work, a challenge has been to retrieve literature
including MPC development for LNG production. In Jensen [39] the author provides information
on refrigeration cycles and operational analyses. In addition, the author has investigated the MFC
process in terms of optimal operation and degrees of freedom for operation. However, little research
on control in that sense is provided. Heldt [28] provides a somewhat similar basis for his work.
Thorough analyses on several LNG processes are given including the MFC process. Still, the
perspective is from an operational point of view, and additionally the MFC process considered
is somewhat unsimilar to the one studied in this work. In Sturm et al. [81], the authors present
an MPC development by Shell for the C3-MR LNG process. However, this paper contain very
limited information and does not provide any guidelines which may have been useful for this thesis.
Regarding analyses for optimal operation and selection of self-optimizing variables for an LNG
process in addition to Jensen [39], the papers Michelsen et al. [51] and Michelsen et al. [50] have
been useful, but to a limited degree since they consider a different LNG process.
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Chapter 2

Process description and current control
system

This chapter aims to describe the natural gas liquefaction process at Hammerfest LNG. Initially,
an overall plant description including major systems at Hammerfest LNG are briefly described.
Further, the subcooling cycle and its control system is described more in detail. In addition, a
degrees of freedom analysis of the subcooling cycle is included. For other sections of the MFC
process, the reader is advised to consult chapter 3 in Volden [88]. Unless otherwise specified, this
chapter is based on Volden [88] and Statoil [72, 73, 74, 76].

2.1 Process description of Hammerfest LNG

To state the obvious and what the reader will gradually comprehend reading this thesis and this
chapter, particularly: liquefaction of natural gas is a complex and energy demanding process. At
the Hammerfest plant production of LNG is realized through a wide scope of processes, including
utility and support systems. Figure 2.1 depicts how the LNG plant and interfacing systems are
related, and includes both upstream and downstream facilities to the battery limit at the loading
docks.

Between the subsea equipment and the onshore plant, a pipeline is installed for landing the producing
stream from the wells. The pipeline contain a multiphase flow composed of an aqueous phase
consisting of water and monoethylene glycol(MEG), a condensate phase(oil) and a gaseous phase.
The pipeline stream is cooled along the pipeline, and due to decrease in temperature, gas will
condense along the pipeline prior to landing. After landing onshore, the pipeline flow is led to the
slug catcher(see figure 2.1).

The slug catcher, which principally is a buffer volume between the pipeline and plant, smooths
variations in flow and pressure, and provides a simple separation between water, gas and condensate.
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2. Process description and current control system

Figure 2.1 Plant system overview at Hammerfest LNG

Additionally, condensate slugs are separated. Upon leaving the slug catcher, the gas is sent to the
inlet facilities where it is pressurized, and a second separation to further remove condensate takes
place. Additionally, sand and similar particles are removed, and subsequently, the gas is then sent
to gas conditioning. Gas condition comprises three separate processes; CO2 removal, dehydration
and mercury removal. These operations prevent corrosion, freezing, hydration and blocking of the
producing stream downstream. An activated amine wash unit is used to remove CO2, while the
water is separated in an absorber station. The CO2 from the wash unit is then re-compressed and
re-injected subsea to maintain the reservoir producing pressure. To prevent hydration and slugging
upstream of the slug catcher, MEG is added to the producing fluid at the subsea templates prior to
entering the landing pipeline.

The condensate treatment system receives streams from several parts of the plant. Downstream of
the slug catcher and inlet facilities, the condensate enters a separator, where gas and the water-MEG
mixtures are removed. Subsequently, light components are removed from the condensate in a
distillation column and transferred to gas processing downstream. The aqueous phase from the slug
catcher and condensate separator is sent to MEG recycling, where particles, salt and most of the
water is removed. Recycled MEG is stored and eventually pumped offshore to be re-injected into
the well stream subsea.

From gas conditioning, the gas is sent to the first sub-process of liquefaction; precooling and heavy
hydrocarbon fractionation. This section comprises the first part of the Statoil/Linde developed
mixed fluid cascade liquefaction process(MFC). Initially, the ambient temperature gas enters the
precooler, which comprises the first cooling cycle in the cascade. Here the gas is cooled before
being led to fractionation, where heavier natural gas liquids(NGL), such as propane and butane
(C3 and C4) are separated and condensed to liquefied petroleum gas(LPG). Additionally, these
components are utilized for refrigerant make-up for the three cooling cycles in the MFC process;
precooling, liquefaction and subcooling. Refrigerant make-up is a necessity to compensate for the
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The mixed fluid cascade process for liquefaction of natural gas

losses through in the cooling cycles, and to render cooling refrigerant composition adjustments
feasible. After fractionation and LPG production, the LPG is temporarily stored in a cryogenic tank
from where it is loaded onto tankers. In the same way, condensate is stored in a tank at atmospheric
pressure from where it is loaded onto shuttle tankers.

Upon leaving the heavy hydrocarbon fractionation column(HHC) the natural gas is led to the lique-
faction and subcoolong cycles. Since the LNG contains above specification of nitrogen subsequent
of liquefaction and subcooling, the feed gas is led to a splitting column for nitrogen removal. After
liquefaction and nitrogen removal, the product LNG has a proper composition and temperature of
about 110 K at slightly above atmospheric pressure, and the purified LNG is then pumped to storage
tanks. The gas formed during loading onto shuttle tankers which comprises displacement, flash
and boil-off gas, is returned to the onshore tanks, from where it is re-compressed jointly with the
boil-off gas from the land LNG tanks.

As stated in section 1.2, the liquefaction system is the core process of the plant and accounts for a
major influence on the plants efficiency and energy consumption. Volden [88] lists several design
aspects in terms of efficiency and bounds on capacity. Additionally, a more complete description of
the system in entirety, and additional information on relevant thermodynamics are found in Volden
[88] and references therein. Thus, only an introduction to the MFC process is given here.

2.2 The mixed fluid cascade process for liquefaction of natural
gas

The main tasks of the MFC process is to liquefy and subcool the feed gas, in addition to remove
heavy hydrocarbon and nitrogen fractions prior to storage. Composition adjustments of the LNG
are performed in the HHC and nitrogen removal columns. The refrigeration duty for precooling,
liquefaction and subcooling of the feed gas is provided by three cascaded mixed refrigerant cycles.
An electrical driven refrigerant compressor is dedicated to each cycle. Refrigeration duty is also
supplied to other consumer systems in the plant. Principally, onemight say that each refrigerant cycle
resembles a refrigerator; the cycle comprises compression, condensing, expansion and evaporation.
A principal refrigeration cycle with corresponding phase diagram is depicted in figure 2.2.
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Figure 2.1:A simple refrigeration or heat pump cycle with a corresponding typical
pressure-enthalpy diagram indicating both sub-cooling and super-heating

2.1.1 Fundamentals

The basic refrigeration (or heating) cycle has four states (denoted 1,2,3,4 in Figure
2.1) and operates in the following manner:

The working fluid is evaporated and possibly super-heated (3→ 4) by heat ex-
change with the cold source (e.g. air inside the refrigerator). Energy is added
in a compressor (e.g. as electricity) to increase the pressure of the working fluid
(4 → 1). The high pressure vapour is de-super-heated, condensed and possibly
sub-cooled (1→ 2) by heat exchange with the hot source (e.g. air in the room).
The liquid is then expanded through an expansion device (choke valve) (2→ 3) to
give a low temperature two-phase mixture at the evaporator inlet.

The efficiency of a vapour compression cycle is often reported in terms of “coef-
ficient of performance” (COP). The COP for for a heating and cooling process is
given by
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=
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respectively.

The vapour compression cycle for heating or cooling has some similarities with
cyclic processes for generating mechanical work from heat, e.g. steam turbine cy-
cles. These work generating cycles were studied extensively during the 1800 and
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Figure 2.2 Principal refrigeration cycle and phase diagram. From Jensen [39].

As depicted in above figure, the refrigeration cycle has four states(1-4). The energy input is
the compressor work(Ws) that increases the pressure and temperature of the vapour entering the
compressor(4 → 1). After compression the high pressure vapour is saturated, condensed and
further subcooled(1→ 2) in a condenser. The gas is then liquid. To decrease pressure, the liquid is
expanded through a choke valve to a resulting two-phased low temperature vapour(2→ 3). Further,
heat is added in the evaporator(3 → 4), thus making the liquid gaseous and additionally, super
heating takes place before leaving the evaporator and entering the compressor suction side.

The gas is led through three cascaded cooling cycles in the MFC process. The three cooling cycles
are labeled precooling refrigerant cycle(PRC), liquefaction refrigerant cycle(LRC) and subcooling
refrigerant cycle(SRC). This includes their respective mixed refrigerants; precooling mixed refrig-
erant(PMR), liquefaction mixed refrigerant(LMR) and subcooling mixed refrigerant(SMR). Upon
leaving the gas conditioning sections, the feed gas enters the MFC process at high pressure and
ambient temperature.

Figure 2.3 provides a principal outline of the mixed fluid cascade process.
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2.2.1 Subcooling refrigeration cycle

The subcooling refrigeration circuit(SRC) utilizes a subcooling mixed refrigerant(SMR) for cooling
duty. In reading this section, figure 2.5 depicts the subcooling cycle in a somewhat detailed fashion.
Additionally, to understand the process principle figures 2.4 and 2.6 may be useful.

Upon leaving the liquefier the feed gas has a temperature of about 197 K, and subsequently enters
the subcooler, which is a coil-wound heat exchanger(CWHE). When leaving the subcooler, the gas
temperature is lowered to the neighborhood of 113 K, while the pressure is kept relatively constant
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from leaving the gas conditioning sections and until the LNG is pumped to storage.

8.2. Degrees of freedom 131
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Figure 2.4 Principal sketch of the subcooling cycle. Modified from Jensen [39].

Liquid SMR is stored in the subcooling cycle tank at low pressure and temperature. The tank is
pressure controlled via a bypass opening to the shellside of the subcooler. In the case of low pressure
it is controlled by directing hot gas downstream of the compressor aftercooler into the tank. In the
case of high pressure, gas from the tank can be directed to flaring.

The liquid SMR from the tank is led to the shell-side top of the subcooler. As the liquid SMR
flows down the subcooler shell-side, it evaporates due to heat exchange. At the shell-side bottom
gaseous SMR exits at a higher temperature, and then enters the subcooling cycle compressor. The
low pressure SMR gas from the subcooler enters the subcooling cycle compressor 1st stage. From
1st stage compressed gas is led to an intercooler before entering the 2nd compressor stage. Leaving
the compressor, the gas temperature and pressure is substantially increased. Subsequently leaving
the compressor, the compressed gas is cooled in a aftercooler against seawater.

The SMR is then distributed to the precooling cycle condenser. As the gas flows through the
condenser it is partially condensed. It leaves the bottom of the condenser as two-phase at a low
temperature, and is led to the liquefaction cycle. As the SMR passes through liquefier it is fully
condensed. The liquid SMR then leaves the liquefier at a lower temperature.

The liquid SMR enters the bottom of the subcooler. As the SMR moves up through the subcooler
it is subcooled against the liquid SMR falling and vapoursing over the tubes on the shellside. The
subcooled liquid SMR leaves at the top of the exchanger with a lowered temperature and high
pressure.

After leaving the subcooler, the SMR stream is de-pressurized. This is achieved in two ways; if
the plant load is low the liquid stream is flashed over an expansion valve. At higher load rates, the
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process stream is directed through an expansion turbine. The discharge of the turbine is pressure
controlled in order to avoid flashing and thus prevent damage to the turbine by vapour generation.
The final pressure let down after the turbine is done via a expansion valve. By converting the
kinetic energy of the turbine, the subcooling stream pressure reduction runs an electrical generator.
Subsequently, the SMR stream is then led back to the SRC tank.
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Figure 2.5 Subcooling section overview in system 25

In light of this information, the subcooling cycle does not properly resemble the refrigerator as
depicted in figure 2.2. Thus, a more precise conceptual depiction is the figure 2.4. To further
illustrate the use of subcooling refrigerant for cooling and heating purposes, in addition to a
corresponding phase diagram, the figure 2.6 provides a more accurate description.
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The basic refrigeration (or heating)cycle has four states (denoted 1,2,3,4 in Figure
2.1) and operates in the following manner:

The working fluid is evaporatedand possibly super-heated (3→ 4) by heat ex-
change with the cold source (e.g. air inside the refrigerator). Energy is added
in a compressor (e.g. as electricity) to increase the pressure of the working fluid
(4 → 1). The high pressure vapour is de-super-heated, condensed and possibly
sub-cooled (1→ 2) by heat exchange with the hot source (e.g. air in the room).
The liquid is then expanded through an expansion device (choke valve) (2→ 3) to
give a low temperature two-phase mixture at the evaporator inlet.

The efficiency of a vapour compression cycle is often reported in terms of “coef-
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Figure 2.6 Principal refrigeration cycle and phase diagram. Modified from Jensen [39].

2.3 Operation and degrees of freedom for the subcooling cycle

In Volden [88], the author performed an analysis on the current control structure of theMFC system.
Additionally, an investigation on potential and actual degrees of freedom was executed.

2.3.1 Constraints

Below lists provide some information on relevant constraints for the MFC process. The lists are
essentially taken from Volden [88].

Potential active constraints

• When considering optimal operation, in general, two objectives for optimality are considered;
maximize profit or minimize cost. For the LNG system this translates to maximizing through-
put or to minimize compressor work. Either objective implies that the product conditions,
i.e., the LNG product pressure and temperature must be controlled fast and tight, and that
seawater cooling is maximized, reducing degrees of freedom by 7. The production rate can
be controlled much slower(to a certain degree) as the LNG is not directly delivered but stored
in tanks.

• For the objective of maximizing profit, the subcooling compressor load become an active
constraint and we loose a degree of freedom. This could potentially be the case for the
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precooling and liquefaction compressor if the load is distributed evenly and plant throughput
is further increased. To minimize the cost, we consider the feed as given, but in reality this is
a manipulated variable.

• To allow for optimal operation, maintaining the inlet pressure to the compressors at the lower
bound is necessary. This implies keeping the inlet pressure at its bound, and the constraints
thus become active. This potentially reduces degrees of freedom by 3 for the objectives of
both minimizing work and maximizing throughput.

Operational constraints

• For some LNG processes one need to ensure that no liquid enters the compressors. This
is usually solved by applying a some degree of superheating of the vapour exiting heat
exchangers. For the MFC process studied here, this is not an operational constraint as
any liquid exiting the heat exchangers are vaporized using a knockout drum. However, this
feature is not regarded for optimal operation since the knockout drum employs the compressor
discharge for vaporizing liquid.

• The temperature of LNG is vital and cannot under any circumstances increase above the upper
temperature limit.

• The operating pressure must stay within bounds. In particular for the compressors.
• Compressor surge and stonewall.
• Fraction of LNG after subcooling must be 100% and within product specification.
• Levels in separators and tanks, and valves are hard constraints.
• Compressor capacities and heat exchanger duties.
• Feed rates and production limits.

As mentioned in section 1.5, there exist a lot of research on model predictive control in various
applications. Additionally, cooling or heating applications e.g. as in heat exchanger networks
are also known research topics. However, finding literature on model predictive control for LNG
production returned few hits, and the only similar application is superficially described in Sturm
et al. [81]. Figure 2.7 depicts the constraints applicable for the C3-MR LNG process, and thus
define a feasible operating window. Although there are some dissimilarities between the MFC and
C3-MR processes, they do share a number of constraints.
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Figure 2.7 Operational window for C3-MR LNG process. From Sturm et al. [81].

2.3.2 Degrees of freedom

In chapter 4 of Volden [88] functional descriptions and degrees of freedom analyses are given.
Figure 2.8 depicts actual degrees of freedom for the MFC system. Since only the subcooling cycle
is investigated in this work, the degrees of freedom related to other parts of the system are not
considered here.

Figure 2.8 depicts the found degrees of freedom on the control system. This provides a more
detailed perspective in terms of control and how the degrees of freedom are related. The table 2.1
provide additional information on the degrees of freedom for control.
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each cycle we get the following actual and potential degrees of freedom:

PRC

SRC

LRC

©1

©3

©2

©4

©6
©5

©8
©10

©9

©11

©12

©13

©14

©15
©16

©17 18a,b

7a,b

Figure 2.8 Recap of actual degrees of freedom for the MFC process. From Volden [88].

Related to figure 2.8, the table 2.1 which is derived from table 4.3 in Volden [88], lists relevant
degrees of freedom for the subcooling cycle. The numbering correspond to figure 2.8. The table
list primary and secondary variables. This definition is related to when the variables become
constraints, and a further explanation on this matter is provided in section 4.4 in Volden [88].

The primary plant throughput is set by adjusting the subcooling refrigerant flow through the sub-
cooler. This variable set the plant load as it indirectly set the LNG production rate by manipulating
the LNG temperature. Large volumes of LNG flow through the system and the production temper-
ature specification have small tolerances. Thus, this is an obviously vital variable to control within
tight bounds.

Additionally, accurate pressure in the subcooling refrigerant tank is important to maintain as fluctu-
ation in the tank pressure may affect the flow of refrigerant downstream the tank. Low tank pressure
requires non-optimal compressor operation since hot gas is diverted downstream the compressor
and into the tank to increase pressure. If tank pressure becomes too high, the pressure is reduced
by flaring which obviously is not optimal.
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2. Process description and current control system

Table 2.1 Degrees of freedom and their control purposes in current control structure for the sub-
cooling cycle. The table is based on table 4.3 in Volden [88], but is altered to some extent.

Degrees of freedom and their primary and secondary control variables for the subcooling cycle
7a: Bypass valve for SMR

upstream tank Primary variable: SMR pressure upstream expansion turbine.

Secondary variable: N/A.
7b: Choke valve for SMR

upstream tank Primary variable: SMR pressure upstream expansion turbine.

Secondary variables: Low pressure downstream expansion
turbine.

10: Aftercooling of SMR Primary variable: N/A. Active constraint.
12: Choke valve for SMR

cycle
Primary variable: SMR flow entering subcooler. This is

identified as the primary throughput manipulator.
Secondary variable: Low temperature on SMR upstream the

compressor.
16: Intermediate cooling of

SMR in compressor Primary variable: N/A. Active constraint.

18a: Bypass valve for LNG
after subcooling Primary variable: LNG flow upstream the expansion turbine.

Secondary variable: Bottom level in nitrogen removal column.
18b: Choke valve for LNG

after subcooling Primary variable: Flow of LNG set by temperature controller.

Secondary variables: Low pressure downstream expansion
turbine.

It is assumed that for any operational condition, all sea water coolers are at full operation, i.e., they
become active constraints as indicated in above table. This is elaborated in chapter 4.3 in Volden
[88].

2.3.3 Control structure

When discussing control structures, large plants separate control application in a hierarchical fashion
based primarily on different operating time domains. This depicted in figure 2.9 and elaborated in
more detail in Skogestad [68] and Skogestad and Postlethwaite [69]. Due to the thesis scope, only
the regulatory layer and the supervisory layer will be further considered.

The general purpose of the regulatory control layer is to locally stabilize the process, i.e., stabilize
unstable modes and prevent drifting of operating states. This is maintained using single-input-
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single-output(SISO) control loops. In the theory provided in Skogestad and Postlethwaite [69], it is
outlined how to choose appropriate control variables for stabilization and disturbance rejection, to
render a supervisory control layer that can handle disturbances by determining the regulatory layer
setpoint. This requires somewhat tight control in the regulatory layer, and for the subcooling cycle
especially, tight compressor control is a vital task.

The principle of the supervisory control layer is to maintain the controlled variables at optimal
setpoints using the setpoints for the regulatory control layer as the manipulated variables. In order
to achieve this, Skogestad and Postlethwaite [69] proposes two control strategies; decentralized and
multivariable control. The decentralized approach is preferred for non-interacting processes and in
cases where the active constraints remain constant, while the multivariable approach is preferred
for interacting processes and in cases where the active constraints changes.

In the MFC system, the control structure is different compared to illustrations in Skogestad and
Postlethwaite [69], as the control layer primarily consist of a regulatory layer and scheduling
layer(see figure 2.9b). This emphasize some of the motivation behind this thesis which is to close
the gap between scheduling and regulatory control. The work of defining the MPC application for
the subcooling cycle is further considered in sections 7.1 and 7.2.

Some additional motivations for this thesis scope are mentioned in Volden [88]. These are among
others; disturbances influencing plant throughput and several open-loop control configurations.
These are features which were emphasized in discussions with two operators. An additional
motivation behind the choice of multivariable control opposed to decentralized control is the degree
of process interactions, which is depicted in section 5.5. In addition, advanced process control and
optimisation at the plant has not been a priority since start-up. Recently, the focus has shifted from
ordinary operations towards more optimal operation and increasing throughput, which stem from
gained experience and the conviction that today’s operation at best is sub-optimal. Additionally,
as mentioned in section 1.2, SEPTIC have since launch proved its advantages for downstream
operations.

For additional information on the control structure features, consult Volden [88].
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Chapter 3

System identification theory

In this chapter, some background material on system identification is covered prior to the continua-
tion of model identification initialized in Volden [88]. Predominantly, due to thesis scope, subspace
identification theory is treated, while little attention is devoted to other methods. Definitions and
preliminaries regarding subspace identification are found in appendices C.4 through C.7. Further-
more, some general principles and models are considered. An introduction and further reading on
other identification schemes are mentioned in Volden [88] and references therein.

Although this chapter focus on subspace identification, no attempt will be made to cover this
eventually vast topic. For more complete literature on the subject, numerous sources exist. A
selection of papers may be Favoreel et al. [18], Overschee and Moor [55], and Ruscio [60]. More
in-depth knowledge are found in the books Overschee and Moor [56] and Katayama [41]. For a
more surveyable perspective, the papers Ljung [46] and Qin [57], and to a certain degree, Viberg
[87], are prominent.

The term identification for control introduced in the papers of Gevers [21] and Hjalmarson [30]
considers identification of experimental models for control synthesis, tuning and updating. Amodel
which represent the true process in the vicinity of the closed-loop bandwidth is vital for feedback
control. Hof and Schrama [33] emphasizes that robust control in the closed-loop bandwidth
neighbourhood relies on an accurate model. Outside the bandwidth vicinity, the closed-loop
sensitivity function decreases, and thus emphasizes a forgiving effect which make the feedback loop
more insensitive to modelling errors far from the closed-loop bandwidth.

In Jacobsen et al. [37], the authors stress the importance of high frequency behaviour accuracy in
an identified model, and that steady-state characteristics are of less importance. In addition, the
potential pitfalls of fitting individual transfer functions are emphasized. Some of the problems
faced in both Jacobsen et al. [37] and Jacobsen and Skogestad [38] are avoided by acquiring a
multiple-input multiple-output(MIMO) model directly from subspace identification, and this is one
of the arguments of choosing subspace identification. In closing of this chapter, some additional
advantages and disadvantages regarding subspace identification are included.
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3. System identification theory

3.1 Subspace identification

From the identification we consider a general continuous state-space model depending on the
parameter vector θ:

x(t + 1) = A(θ)x(t) + B(θ)u(t) + v(t) (3.1.1)
y(t) = C(θ)x(t) + ē(t) (3.1.2)

where v(t) and ē(t) are white noise sequences. Choosing a proper model structure, i.e., the
dimension of the state vector(x) and the way in which the parametrization vector(θ) enterers the
model, is essential. A general and obvious rule of thumb is to tailor the model to its purpose. There
are indeed a range of different elements which influence this choice. Söderström and Stoica [70]
lists four:

• Flexibility
• Parsimony
• Algorithm complexity
• Properties of the criterion function

Algorithm complexity and properties of the criterion function are more in-depth subjects which are
beyond the scope of this work. Hence, only the first two topics are further explained in this thesis.
Consult e.g. Söderström and Stoica [70] for a complete explanation on all four topics.

Flexibility describes the model’s ability to describe the system dynamics which can be expected
in an operational context. Flexibility relates to the number of free parameters in the model, and
the way the parameters enter the model itself. Parsimony relates to the model representing only
the deterministic part of the system. When considering the a parsimony, it pertains to choosing
the lowest number of free parameters to obtain an adequate model(Box et al. [6]). An essential
consideration on this subject is avoidmodelling the stochastic properties i.e., noise properties, which
would unnecessary increase the model order and lead to undesired model behaviour. This is also
referred to as overfitting.

When considering the model flexibility, there are two main approaches; examining plots e.g.
evaluating fit of model against true data, and statistical tests and residual analyses. This is considered
more in detail in section 4.4 and chapter 5. Certainly, one would never expect a perfect fit, and since
the process investigated in this work is nonlinear, developing a linear model will lead to deviations.

Subspace identification algorithms are built on four important concepts, as briefly described here:

• Observability: The extended observability matrix4 plays a critical role in subspace identi-
fication. Essentially, it advocate determination of the system order n since it has the rank
of an observable minimal realizable state-space system. Additionally, its definition allows

4The extended observability matrix is defined in appendix C.5
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estimation of A and C matrices. Further, it determines the capability to generate the initial
state vector x0 by output and input data(Tangirala [82]).

• State estimator: Generally, all system identification problems are principally defined by
the fact that states are unknown variables. Therefore, any least squares formulation would
result in an nonlinear least-squares problem. By knowing the state-space matrices a priori
allows use of the Kalman filter for optimal estimation of states, but this is not the case in
any real application. Subspace identification methods deploy a numerical Kalman filter to
obtain states without the knowledge of system matrices. This is followed by a least-squares
algorithm on the state-space model to estimate the matrices.

• Realization theory: This is concerned with building state-space systems which combine
deterministic and stochastic partial systems. In general, this is either achieved from empirical
or mechanistic descriptions.

Empirical realizations from data have been subject for major research starting decades ago.
The work of deterministic realizations is initialized in the paper of Ho and Kalman [31]. In
terms of stochastic data processes, the works of Faurre [17] and Akaike [2] are mentioned.
Ho and Kalman [31] formulated deterministic state-space models from Hankel matrices of
impulse responses. On the other hand, stochastic realization construct state-space models for
random process data. More recently, Katayama [41] developed a realization that constructs
state-spacemodels of stochastic data in presence of exogenous effects. Subspace identification
essentially extend these concepts to developingmodels from input-output data which combine
deterministic and stochastic data.

Numerical implementation of these methods is made efficiently by using QR and SVD
factorizations5. Although subspace realization is based on linear algebra, the mathematical
methods utilized are complex and will not be covered in this work. For further details on the
N4SID subspace algorithm utilized in this work, see appendix C and references therein.

• Projections: Subspace identification essentially employ orthogonal and oblique projections
of output data onto appropriate spaces6. Hence, knowledge of projections is necessary for
understanding these methods. However, estimates obtained from subspace identification can
be shown as solutions to the minimization of multi-step prediction-error criteria(Tangirala
[82]).

3.2 Experimental input design

In general, input design is formulated as an optimization problem with the objective of minimizing
a cost function subject to constraints. Additionally, a large class of input design problems try to

5QR, LU and SCD factorizations are defined in appendices C.2 and C.4
6Orthogonal and oblique projections are defined in appendix C.6.
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maximize the Fisher’s information7 to obtain efficient estimates, some of which are mentioned in
Tangirala [82].

In general, from a mathematical perspective persistance of excitation(PE)8 provides desirable inputs
for identification, although there are no general solution which meet the needs for different systems.
Certainly, an input signal tailored for an linear time invariant(LTI) system is not the best for linear
time-varying or nonlinear systems. The papers of Braun et al. [7] and [13] illustrates this well.
Nevertheless, persistent excitation is mathematically necessary for input design but not necessarily
sufficient. It does not take into account the identification signal cost on the system. The cost
could be defined in terms of input amplitudes which cause wear and tear on the actuator, rate of
change of inputs, bias and variance considerations(Tangirala [82]). An input that meets the practical
requirements of a process operation is said to be plant friendly(Rivera et al. [59]). Some primary
considerations apart from persistent excitation are:

• The asymptotic properties of the estimate only depend on the input spectrum, and not on the
actual waveform.

• The inputmust have limited amplitude: umin < ut < umax to consider physical constraints(e.g.,
actuators), and to ensure operation of the systemwithin the linear domain. This ismore critical
for processes under severe noise influence, which is not the case within the MFC simulator
regime.

• The parameter estimate covariance matrix is typically inversely proportional to the input
power(variance). This emphasizes the advantage of perturbing with as much power as
possible into the input. However, in light of the above aspect this is a conflicting factor, which
in this work is neglected. Since main dynamics and gains are within tolerable limits, the
investigated models are thus fit for purpose. Additionally, the models display varying, but
satisfactory uncertainties. This is later depicted in chapter 5 and appendix E.1.

• For multivariable systems the different input signals must be uncorrelated with each other to
allow the identification method to separate how the input signals affects the system response.

A property that impose a balance between the amplitude and the variance requirements is the crest
factor, Cr :

C2
r =

maxt u2(t)
limN→∞

1
N

∑N
t=1 u2(t)

(3.2.1)

The smaller the crest factor is, the larger the total energy into the system is. As a small crest factor
means a high amount of energy delivered into the system it also means an enhanced signal-to-noise
ratio. This is obviously preferable in general. A good signal waveform has a small crest factor,
which translates to a minimum amplitude in the numerator for a maximum variance contained in
the denominator. The theoretical lower bound of Cr is 1, which is achieved for binary symmetric
signals. To achieve this, the input signal should deliver as much input power into the system as

7
8Persistance of excitation is defined in C.1.

26



Experimental input design

possible(Ljung [44]). As earlier stated, attention was devoted to designing an input signal within
the physical constraints while simultaneously keeping the process behaviour in the linear regime.
Thus, the power of the excitation signal was not increased for the benefit of a lowered crest factor.

3.2.1 Inputs generally suited for identification

Below, the author summarizes four input signals suited for identification. Since PRBS excitation
is chosen for this project, the author place particular emphasis said input signal. Unless otherwise
noted, the list is based on Söderström and Stoica [70] and Ljung [44].

• White noise: It contains all frequencies uniformly. Theoretically a preferable input signal.
Decouples the impulse response parameter estimation problem. Provides uniform fit at all
frequencies. However, possesses a high crest factor.

• Random binary: Signal generated by starting with a Gaussian sequence and then passing it
through a filter depending on the input spectrum requirements. The sign of the filtered signal
is the RBS. No proper control over the spectrum. The “sign” operation distorts the spectrum
of the input sequence. The RBS has a low crest factor.

• Pseudo-random binary: Not strictly a random signal. It is a deterministic signal with the
properties of a random signal. Generated using a Linear Feedback Shift Register(LFSR) of
n bits, a maximum length PRBS is M = 2n − 1 sequences long. A PRBS possesses white
noise-like properties, although this requires a full length sequence. For an n coefficient PRBS
the white noise spectrum is derived using the Wiener-Khinchin theorem relations for periodic
signals:

Pxx = ( fn =
n
M

) =
1
M

M−1∑
l=0

σuu[l]e− j2π fnl =




U2

M2 , n = 0

U2

M

(
1 +

1
M

)
, n =

1
M
, . . . ,

M − 1
M

(3.2.2)

As M becomes large the spectrum is uniform at all frequencies, which essentially realize
white noise spectral characteristics.

The frequency content is easily altered, and pertain to generating a band-limited content
PRBS. This is a simple operation based on a full-length PRBS, followed by an extension
of the constant fractions of the original sequence, while keeping the overall length fixed.
Accordingly, the full-length PRBS is re-sampled P times faster than the frequency at which
it is generated. This is feasible since the PRBS generation depends on two frequencies, one
for the shift register and one for the internal clock. The clock frequency defines a minimum
number of sampling intervals after which the sequence is allowed to shift. The resulting
signal has the same properties as passing the PRBS through a simple moving average filter of
order P(Tangirala [82]).
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Mathematically, a disadvantage is that only maximum length PRBS possess the desired
properties. For a given amplitude range, PRBS packs the maximum variance or energy,
hence it has the lowest a crest factor. It is suited for linear systems only; since it switches
between two states, it cannot detect nonlinearities.

• Sum of sines or chirp signals: A combination of sinusoids of different frequencies, which
are generally known beforehand.

uk =

M∑
i=1

a j sin(ωi k + φi), 0 ≤ ω1 < ω2 < · · · < ωM ≤ π (3.2.3)

These signals provide good estimates of the transfer function at the respective frequencies.
Both amplitudes and phases are design parameters, but the phase additionally have a influence
on the amplitude, and hence the crest factor. A useful guideline is to keep the sines as much as
“out of phase” as possible to keep the crest factor low. Since the spectrum is not continuous,
the estimates at other frequencies are not available.

3.2.2 Preliminaries for experiment design

As Volden [88] states, some preliminary tests have to be conducted in order to arrive at the optimal
input design, unless this information is known a priori. A short summary list from Volden [88]
including aspects from Tangirala [82] follows:

• Perform a preliminary step test on the system, to render information on gain, time constant,
delay, and inverse response. These tests are depicted in appendix B.2.

• To check for nonlinearities and range of linearisation, steps in both directions are required.
• Identify effective time constant of the process, t.
• Compute effective bandwidht: ΩBW = 1/t.
• Set upper bound on maximum frequency to 10 − 20 times ΩBW .
• Design the input sequence accordingly.

Ljung [44] states some additional general guidelines:

• Choose excitation frequencies and input energy in neighbourhood where a model is intended,
and where the disturbance is insignificant.

• Under open-loop conditions and for linear systems, apply binary, periodic inputs, and tailor
the input energy.

• The error in a transfer function estimate is inversely proportional to the sample size and SNR.

Additionally, rate of sampling is alsomentioned. This aspect will not be granted any further attention
given the environment the experiments are executed within; the simulator and OPC interface, which
allows for easy manipulation and adjustment of sampling. Although, keeping this aspect in mind
for the MPC development is advantageous. This is further considered in chapter 7.
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After obtaining the experiment data, some checks are considered, and if needed, performed. This
could be some pre-filtering, detection and elimination of outliers, in addition to identifying drifts,
offsets and trend in the investigated data.

Linear models satisfy superposition and homogeneity principles, and for nonlinear processes, linear
models relate deviation variables, i.e., deviations from a nominal operating point which typically is
chosen as the steady-state condition. Hence, it is important to construct deviation variables from
the data as an initial step for identification. However, steady-state values or the nominal point may
not be available, and in these situations it is a common practice to replace it with a sample mean
of the available data. An important aspect when obtaining multiple data sets is the necessity to
run the experiments with a consistent estimated nominal point. This is especially emphasized for
nonlinear systems where varying nominal values may cause discrepancies between the data sets.
However, when considering models which include gain scheduling this may be a method to identify
appropriate gains for the model. Although, not suited for identification as merging different data
sets may result in inconsistent deviation variables.

3.2.3 Model structure comparison

Although the model structure is defined for this work, the author summarizes some features of
several general model structures, and advantages and disadvantages for each structure are included.
Note that this comparison should be seen in the context of MATLAB and its system identification
toolbox([47]).

Table 3.1 General comparison of model structures

Model
structure Advantages Disadvantages

ARX
models

Simple input-output relation. Linear
regression. Preferable when the model order is

high.

Disturbances are part of the
system dynamics. Limited
freedom to describe the

disturbance.

ARMAX
models

Flexible disturbance model. Useful when there
are dominating disturbances entering early in

the process.

Disturbances are part of the
system dynamics. Not a

linear regression.
Output
Error
models

System dynamics and the disturbance are
described separately.

Not a linear regression. No
disturbance model.
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Box-
Jenkins
models

System dynamics and the disturbance are
described separately. Useful to identify

processes where the disturbance enters late in
the process.

Not a linear regression.

Low order
transfer
function
models

Ideal for identifying physical systems. Provides
estimation of process delays. The identified
coefficients has a physical interpretation, i.e.,

preferable for simple mechanistic and
nonparametric modelling.

No disturbance model.
Maximum model order is 3.
Limited freedom in choice of

zeros.

State-space
models

Represents the relationship between input,
output and noise as a system of first order
differential equations. Easy to incorporate
insight into physical features of the system if

based on white or grey box approaches.

Prone to overfitting. Some
statistical tools provide
guidance, but may not be
consistent. See section

5.4.1.1 and appendix E.2.
Example in appendix C.2

emphasizes this affirmatively.

3.3 Why not a rigorous modelling approach?

For complex chemical processes rigorous modelling is in general a complex and time consuming
process. In addition, the cooling cycle studied in this project include phase transitions and flashing
which further increase the complexity significantly. By using equations of state, one is principally
able to accurately predict properties of hydrocarbon fluids over a wide range of conditions. Two
equations of state which are proven successful in applied thermodynamics are Peng-Robinson(PR)
and Soave-Redlich-Kwong(SRK)(Ghosh [22]). These equations are utilized in the works of e.g.,
Heldt [28] and Jensen [39], but not considered in this work.

In Volden [88], arguments for both mechanistic and empirical modelling were presented, and a
summary is here included: In Foss et al. [20], the authors compare model development costs of
mechanistic and empirical models, and find that empirical models are about 10% of the cost of an
empirical model. This is supported by Hauge et al. [27], where 200 days are spent on developing
a mechanistic model for a paper machine while a substantially shorter time is spent on initially
obtaining an empirical model. Due to the most present constraint - time - a mechanistic modelling
approach is not considered further, and focus is rather shifted towards system identification and the
MPC development. For the sake of completing the argument, empirical and mechanistic modelling
are considered briefly.

A mechanistic model holds unique extrapolating properties and comprises a reasonable number
of parameters which is comprehensive to model behaviour. This makes model adjustment and
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re-tuning manageable. In addition, non-manipulatable disturbances makes empirical modelling of
their output influence difficult. A long-term advantage is that the mechanistic modelling increases
process knowledge which will always be useful in later relations.

For empirical models, an additional advantage besides the time and cost spent on development are
no requirement of considerable process knowledge. Some disadvantages for empirical modelling is
the increased model complexity and increased risk of overfitting the model. Overfitting occur when
the developed model comprises excess parameters from what is identifiable, and the identification
focus too much on local features rather than global features. This may arise if stochastic data is
treated as deterministic data, e.g., noise is treated is deterministic features and order of model is
increased to capture noise properties. Although, no general rules apply for prevention of overfitting,
but some heuristics are usually beneficial to utilise(Söderström and Stoica [70] and Ljung [44]).

3.4 Some notes on closed-loop subspace identification

Since this thesis essentially consider open-loop identification experiments, some notes on closed-
loop identification is included in this section. The purpose is to enlighten the reader of the advantages
and limitations that pertain to closed-loop experiments.

Some dynamical systems operating in closed-loop may be unstable, poorly damped or prone to
unknown disturbancesmaking identification in closed-loop the only option(Hof [32] and Söderström
and Stoica [70]). This may come of plant instability, requirements of production control at all time,
economic, or safety reasons. It could additionally contain inherent feedback mechanisms. Still, one
must be able to identify the open-loop system from the closed-loop data. When discussing closed-
loop identification, Söderström and Stoica [70] states two factors which consider the suitability
for an identified model: identifiability and accuracy. Identifiability describes a system whose
corresponding parameter estimates are consistent, while accuracy pertain to the ability of obtaining
an exact model from closed-loop experiments.

The majority of subspace algorithms are developed for open-loop identification, i.e., the algorithm
expects uncorrelated inputs and noise in the control loop investigated. Ordinary subspace algorithms
does not handle closed-loop data well due to the use of an extended future horizon that introduces
correlation between inputs and past noise9. Later developments account for this by utilising e.g.
some pre-estimation for separation of the two terms, or using the parity space rather than the
observability subspace(Qin [57]). For the ordinary case, closing the loop would certainly lead
to correlation between inputs and noise, thus providing biased estimates. This is due to the use
of instrumental variables which assume no correlation between said data to filter noise in the
investigated data.

The basic closed-loop data problem is the loss of information caused by feedback which make

9This is the case for the N4SID subspace algorithm as demonstrated in appendices C.5 and C.7.
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the closed-loop system less sensitive to changes in the open-loop system. Performing closed-loop
identification, depending on method, may complicate the search for the real process model as the
controller and model are identified as a combined model. Limited or no knowledge of the controller
would pose additional modelling uncertainties. Furthermore, varying controller parameters play a
significant role in closed-loop identification as demonstrated in Bakke et al. [3].

Since the process input is determined by the control law, the user has no direct control over input
excitation. Consequently, the user defined perturbations must be set indirectly utilizing setpoint
changes. Given no external excitation to the closed-loop system provides data which renders
separation of the process model and the inverse of the controller infeasible. Obviously, without
setpoint changes or external perturbations, the system cannot be identified from regulatory data.
This is because the input excitation is derived entirely from that of the output, and in this context
the input is said to be endogenous to the output. This emphasize the necessity of some additional
excitation in the input uncorrelated with the output.

Ljung [44] state some general notes on closed-loop identification and its limitations:

• A too simple controller may lead to inconclusive closed-loop experiments, even if the input
in itself is persistently exciting.

• For open-loop data, output error models will give consistent estimates of the transfer function,
even if the additive noise is not white. This is not true for closed-loop data.

• The subspace method will typically not give consistent estimates when applied to closed-loop
data. As pointed out in Qin [57], this issue is resolved in more recent subspace algorithms.

Methods which may provide consistent estimates for open-loop data may fail when applied for
closed-loop identification. This includes e.g. impulse responses, spectral and especially correlation
analyses since feedback conditions produce biased estimates, but also subspace methods may yield
erroneous estimates.

Additionally, when closing the loop less comprehensible responses due to controller action may be
introduced. Just consider a simple example of level control in a tank by manipulation of flow. If
we assume a tank of uniform diameter, one would expect a pure integrator with gains dependent
on the valve (inlet or outlet) position. Assuming a stable controller, and performing a closed-loop
experiment with a step in controller reference would reveal a stable model when considering the
reference as input and the tank level as output. An inexperienced eye may be tempted to model
this system as the tank model, which obviously lead to an erroneous model due to inclusion of the
controller. On the other hand, if e.g., bounds on the input and outputs are critical, conducting the
experiment in closed-loop is favourable due to the inherent control over the variables in question.

There exist several methods of closed-loop identification methods:

• Direct identification
• Indirect identification
• Joint input-output identification
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Direct identification is the most simple and straightforward method. This method simply ignore the
existence of feedback, and the data is treated similar as for an open-loop experiment. Although the
direct method is easy to apply, some limitations persist in terms of identifiability(Söderström and
Stoica [70] and Ljung [44]):

• Identifiability is not guaranteed if input is determined through a noise-free linear low-order
feedback.

• Using a high-order noise-free linear feedback may enable identifiability. This is dependent
on order of the unknown system.

• Some easy-to-implement schemes to obtain identifiability is; inclusion of external varying
setpoint or to utilise a controller with internal setting shifts during the experiment.

Indirect identification describes a two-step approach where it is assumed the external setpoint is
measurable and the feedback law is known. The first step is to identify the entire closed-loop system.
Then the known feedback term is excluded from the model to obtain the open-loop model. This
method is limited to include linear and known controllers for obvious reasons stated earlier in this
section(Söderström and Stoica [70]). A known controller model render the indirect method useful,
and its advantage, even for unstable open-loop processes, are accurate estimates without estimating
any noise model. However, since a majority of controllers incorporate nonlinearities, potential
pitfalls arise. An inaccurate controller model will propagate and cause erroneous estimates of the
process model(Ljung [44]).

Joint input-output identification considers the known input and output signals as outputs from a
multivariable system driven by white noise. It treats the data as mutlivariable series with dimensions
according to the input and output signal dimensions, and the system is identified using the original
parameters as unknowns. Themethod relies on computing the inverse of a possibly close-to-singular
transfer function, which limit its scope(Bakke et al. [3]).

Apart from influencing the identifiability, feedback may additionally influence the accuracy. From
an open-loop perspective, closing the loop may considerably lower the variations in process mea-
surement signals. Inherently, the controller tries to keep the process within bounds, and by doing
so opposes variability and excitation in vital signals. This leads to less information being present
which ultimately results in a model of lower accuracy. However, this is not the case when in the
majority of applications, some constraint on the input or output variations are indeed present. An
example which favour closed-loop identification for a minimum variance controller under output
variance constraints is depicted in Söderström and Stoica [70].

3.5 Advantages of subspace identification methods

Originally, system identification considered computation and development of polynomial models,
but due to risk of facing ill-conditioned problems, especially for MIMO systems, subspace identi-
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fication has become the preferred method during the last decades. This is mainly due to numerical
robustness and the algorithms non-iterative nature. The challenges of facing ill-conditioned models
in MIMO identification prior to subspace methods are discussed in Jacobsen and Skogestad [38]
and Jacobsen et al. [37]. For higher order MIMO systems, finding the appropriate parametrization
increases in difficulty and is by far trivial, which further favours subspace methods. The numerical
robustness in subspace methods is mainly due to the use of singular value decomposition and QR
factorisation10. The above advantages applies when the user has no preference on structure for
the particular system or a specific basis for the states. Tangirala [82] name these descriptions
unstructured state-space models contrary to structured definitions.

The mathematical features ensures convergence to a global minima of the criterion function while
remaining insensitive to initial estimates. This emphasize that there is no practical difference
between zero and nonzero initial states. Prediction error methods are iterative, may perform
unsatisfactory for problems with slow or lack of convergence and may even become numerically
unstable. Additionally, the risk of honing onto a localminima is present. In classical approaches, an a
priori parametrization, and knowledge of the order and observability indices are required(Overschee
and Moor [55]). Parametrisation for prediction error methods rely on canonical forms which may
be sensitive to even small perturbations, leading to ill-conditioned problems.

A major drawback when considering use of classical input-output approaches for multivariable
systems is that the delays and orders that have to be determined grow substantially with the dimen-
sionality of the system. Subspace methods, on the other hand, are equipped with an automated
method for order determination in principle. Although, it is emphasized that automatic order
determination may be inconsistent for non-ideal cases as demonstrated in appendix C.2.

3.6 Some disadvantages on subspace identification

As with practically anything, there are some disadvantages by utilizing subspace identification
compared to other methods. Some important negative features are listed here:

• The need of a large set of input/output data: The statistical properties of the geometrical
methods used in subspace identification require a large amount of input/output data samples.
This could limit application in some areas, e.g. where data are sparse, such as economic
modelling, and generally for dynamical systems which suffers from pathological sampling11.
One example is the Hall-Héroult process for primary aluminium production where manual
measurements have a low and pathological sampling frequency12.

10See appendices C.2 and C.4 for some basic definitions and further reading.
11A term defined in Chen and Francis [12] which indicates that insufficient sampling ruin controllability and

observability properties of a system.
12The works of Hestetun [29] and Kolås [42] provide more information on the Hall-Héroult process and challenges

related to low measurement frequency.
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• Theoretically complexity: The algorithms utilize geometrical projections in the high dimen-
sional row or column spaces of matrices. This increases the threshold for a mathematical
understanding, however, they can be interpreted in other well known frameworks.

• Applications for recursive on-line identification: The basic algorithms were developed to
identify the system parameters from off-line data, i.e., identification from a given complete
sequence of input/output data. However, for practical reasons, some industrial applications
favour a recursive algorithm to identify in the real-time from on-line data. This is a more
recent field of development which the initial subspace algorithms not were suited for. Though,
recent works have shown promising results, see e.g., Bako et al. [4] and Mercere et al. [49].

• Utilization of a priori knowledge: Prior knowledge can not be easily incorporated into
subspace methods. These methods have a pure black-box approach to the identification
problem, however there exists often some a priori information which could be exploited to
increase the quality and the robustness of the identification. This could for instance be an
educated guess on system order, which for some cases may be estimated without much effort
by some superficial modelling. Although, this approach has obvious limitations.

• Identifiability issues: Since a dynamic system may be described by an infinite number of
state-space models, subspace methods does not provide an unique estimation. Thus, we run
into identifiability issues, i.e., the problem of estimating a unique model, which is impossible
for any state-space realization, including subspace methods. Subspace identification methods
also suffer from the identifiability issue since they do not explicitly impose identifiable
structures on the state-space models. We can only identify state-space models in some basis,
over which we may have little or no control. Formally, we say that subspace algorithms
identify state-space models uniquely only up to a nonsingular transformation, or that they
construct a realization of the system.

• Utilizing algorithm parameters: Besides a priori knowledge, one may obtain better results
by utilizing the subspace algorithm parameters. As stated earlier in this work, and in Ljung
[45], parameter adjustments essentially relies on heuristics as no research have provided
unambiguous results on how to exploit these parameters. Sima et al. [65] offer some general,
non-rigid guidance, but no global solution13. Additionally, statistical tools are used to provide
advices, but this does not exempt the user to employ practical knowledge in the identification
process. This is demonstrated in section 4.3.

13This is demonstrated in section 4.2.1
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Chapter 4

Practical system identification

This chapter is a continuation of chapter 6 in Volden [88], and the main part of this work has been
to improve and attain a satisfactory model for the system. Some initial results from Volden [88]
are included as the basis for the progressing work on model identification. Further, an important
experience regarding the system identification process is included. In closing, some results from a
new iteration on system identification are included.

4.1 Previous work from autumn project

Based on theworks of Braun et al. [7], Deflorian and Zaglauer [13], Hauge et al. [27], Ljung [44], and
the information in Foss et al. [20], Volden [88] performed several approaches to obtain an empirical
model of the chosen 2x3MIMO system. Based on the conclusions in Favoreel et al. [18], Overschee
andMoor [56] and Ruscio [60] regarding the comparison of prediction error methods14and subspace
algorithms, an initial model based on two subspace algorithms were obtained as the basis. The two
subspace algorithms utilized in this work, N4SID and DSR, are further described in Overschee and
Moor [55] and Ruscio [60, 61], respectively.

14A review of closed-loop identification using prediction error methods are conducted in Forssell and Ljung [19].
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Figure 4.1 Comparison plot of the two state-space models against the validation data. From Volden
[88].

The identification results achieved for the initial model were not satisfactory. An indication on this
were obtained in figures 6.6 and 6.7 in Volden [88] together with the results in figure 4.1. Figures
6.6 and 6.7 in Volden [88] illustrates the data sets used for model identification and validation.
By observing the identification and validation data sets in Volden [88], it is inevitable to observe
the resemblance between the two data sets. Thus, we would expect a high fit for the validation
set essentially, compared to a more random validation set. Still, the goodness of fit value was not
acceptable.

From the comparison figure 4.1, we observe both derived models failing to capture faster dynamics.
Only the main dynamics are somewhat similar. One reason behind this could be the low order of
both derived models. A higher order may render a model which holds faster dynamics and thus
render a better model fit against validation data. Another prominent feature is the method utilized
for identification and validation; the AMPRBS procedure, which is, as shown in Deflorian and Za-
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Previous work from autumn project

glauer [13], primarily tailored for nonlinear identification. Below table list the initial identification
results based in the NRMSE value.

Table 4.1 Validation results of returned state-space models from subspace identification. From
Volden [88].

Validation of state-space model
Model order NRMSE fit
N4SID:3 DSR:2 N4SID DSR
Y1: Compressor suction pressure 47 51
Y2: Expansion pressure 21 34
Y3: Compressor discharge pressure 21 32

To develop a linear model from an experiment suited for nonlinear models is in general not advan-
tageous. Thus, to obtain a linear model, an identification procedure tailored for linear systems is
preferred. In the continuation of themodel development work, only system identification procedures
suited for linear system were considered, in accordance with the aspects covered in sections 3.1 and
3.2.

In Volden [88], several identification experiments were carried out, both for open-loop and closed-
loop configurations. Three types of excitation signals were utilized, PRBS, AMPRBS and ramping
step tests. For open-loop tests, the ramping step test and AMPRBS experiments were conducted,
and for closed-loop an initial step test was carried out in addition to several PRBS experiments.
The additional work performed in relation to system identification in Volden [88] is not covered in
this report, and the reader is advised to consult said reference. Although, a table listing the best
identification results based on closed-loop identification data from Volden [88] is included below.

Table 4.2 Identification and validation set results no. 7. Note that the fit criteria is higher for the
validation set for almost all variables. This is not what one would normally expect, although it does
not render the results invalid. The reason may be close to identical identification and validation data
sets.

Identification set 1 Validation set 1 Model
order Output Fit against

Id set
Fit against
validation set

PRBS test no.3
PC1669

PRBS test no.7
PC1669 N4:16 Y1 N4:74.2% N4:67.8%

DSR:69.4% DSR:76.2%

Id set 2 Val set 2 Y2 N4:66.3% N4:68.1%

DSR:24
DSR:52.8% DSR:53.2%

PRBS test no.1
PC1282

PRBS test no.4
PC1282

Y3 N4:67.2% N4:67.4%
DSR:54.2% DSR:53%

As the results indicate, achieving an sufficiently accuratemodel using the old identification data were
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not easy, even with a particularly high model order. In addition, observations from the validation
data revealed somewhat different results achieved by the subspace algorithms. The N4SID algorithm
returned a higher fit almost consistently compared to the DSR algorithm(see appendix D in Volden
[88]). Based on the results in appendix D in [88] and table 4.2, which favours the N4SID algorithm,
only the N4SID algorithm is further used for subspace identification in this thesis. Although,
some contrary results are found in Ruscio [61] and Hauge et al. [27], but to investigate the reason
behind this is beyond the thesis scope. One reason may be the user-friendly differences; N4SID is
well documented, at least to some extent, and there exist numerous applications in research and
industry, while the DSR algorithm is less documented and there exist little information on parameter
adjustment for the DSR case.

4.2 Options to improve model accuracy

As the results in table 4.2, and in appendices C and D in Volden [88] indicate, attaining a satisfactory
model has not been straightforward. To improve the model, attempts to increase the identification
accuracy were performed. As stated in Ljung [45]; although subspace identification have been
researched thoroughly for the last decades, the different algorithms and adjustments of algorithm
parameters are essentially based on heuristics. There exist, generally speaking, sparse information
on how to utilise features within subspace algorithms in order to improve model accuracy. Some of
these features were investigated in this work.

4.2.1 Altering subspace algorithm and prediction horizon

One option to improve identification results is to alter the subspace algorithm scheme within
the N4SID environment, which includes various weighting schemes used for the singular value
decomposition(SVD). In this work, two options were investigated:

• The multivariable output error state-space(MOESP) scheme described in Veerhagen [85].
• The canonical variate analysis(CVA) scheme described in Larimore [43].

Different trials revealed that the results obtained by using the CVA scheme were almost consistently
surpassing the results obtained using the MOESP scheme. Thus, CVA was the preferred scheme for
the contiuation of model development. This is depicted in figure 4.2.
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Figure 4.2 Comparison of three subspace algorithms on a simulator obtained data set. CVA yields
the best result. MOESP provides the lowest result. Although, the author emphsizes that this result is
not valid in general and valid only in this context.

In addition, altering of the forward and backward-prediction horizons were performed due to the
fact that the experimental data from the simulator is considered almost free of noise15. By not
considering the noise, and thus neglecting modelling of noise properties, we consider the model as
an output error model. This is elaborated below, and translates to choice of horizon for the subspace
algorithm.

We have the discrete state-space representation when considering noise as

x(t + 1) = Ax(t) + Bu(t) + w(t) (4.2.1)
y(t) = Cx(t) + Du(t) + v(t) (4.2.2)

When considering the input-output dynamics, we alter the state-space representation to

x(t + 1) = Ax(t) + Bu(t) (4.2.3)
y(t) = Cx(t) + Du(t) + v(t) (4.2.4)

Since we neglect modelling of noise and thus system orders corresponding to the noise model, we
expect a lower order model. Because the input and the output sequences, u and y, are given, the
challenge is to find the state vector x. From the general system given by the impulse response, we

15The simulator is considered almost free of any process noise or measurement noise. On the other hand, due to
its domain i.e., numerical solvers and thermodynamic tables, some numerical noise is indeed present, though, this is
considered of minor significance in this work.
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have

y(t) =
∞∑

j=0

[
hu( j)u(t − 1) + he( j)e(t − 1)

]
(4.2.5)

where u is the input and e is the innovations. Defining the true k-step ahead predictors by deleting
the input to y(t) from e( j), u( j): j = t..., t − k + 1:

ŷ(t |t − k) =
∞∑

j=k

[
hu( j)u(t − j) + he( j)e(t − j)

]
(4.2.6)

Remembering that the noise model is not included in the state-space model, the terms including
e( j − 1) are neglected(Ljung [44]).

The true predictor relies on infinite data, and is thus not practical. An approximation of the true
predictor includes finite data for both s2 past inputs and s1 past outputs, and takes the form

ŷ(t + k − 1|t − 1) = α1y(t − 1) + .... + αs1y(t − s1)

+βu(t − 1) + .... + βs2u(t − s2)
(4.2.7)

When considering identification of an output-error model the past innovation terms is neglected
as mentioned, which implies that the above predictor only considers past inputs, i.e., s1 = 0.
Even though, utilizing this method did not increase the NRMSE fit significantly as seen in figure 4.3,
although the MVAF fitwas improved. Additionally, the horizon of past inputs and outputs were chosen
in accordance with Akiake’s criterion which provided almost identical results. More information on
this criterion is found in e.g. Ljung [44] and Akaike [1]. Though, it is emphasized that the criterion
is purely statistically based, and does not consider practical aspects in the identification routine.

In Sima et al. [65], the authors state that a large number of step-ahead predictors, s is favourable
e.g., s = 2n, where n is estimated system order. A large s usually produces a more accurate result.
A typical lower bound is s = n. In terms of using past inputs and outputs, a general approach is
s = p = q, where p denotes past inputs and q denotes past outputs. Although the output-error model
approach did not increase fit, the method yield practically identical results as the best performing
algorithm horizon, which in this case was the Akiake’s criterion. This is depicted in figure 4.3.

Another option to obtain better quality models may be to combine the subspace method with the
prediction errormethod(PEM)(Ljung [44]). This is further supported inViberg [87]. One procedure
is to use the subspace identified model as an initial estimate for the prediction error method. This
procedure requires a suitable parametrization for the initial model.

We have the general PEM estimate of θN as

θ̂N = arg min VN (θ, Z N ) (4.2.8)
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where for the multivariable case

VN (θ, Z N ) = h(QN (θ, Z N )) , and QN (θ, Z N ) =
1
N

N∑
t=1

ε (t, θ)εT (t, θ) (4.2.9)

and the prediction error, ε , for a specific model is ε (t, θ) = y(t) − ŷ(t |θ). The method of merg-
ing subspace identification and PEM to obtain superior results were carried out briefly, but the
improvements were insignificant. In addition, the procedure is not particularly user-friendly and
time consuming. This is mainly due to the resulting problem which now becomes a nonlinear
optimization problem. Thus, the conclusion was to keep the results from the subspace identification
as these were considered above satisfactory.

Figure 4.3 depicts 11 horizons tested for the subspace algorithm and how well the different horizons
score in terms of two fitness values. These results stem from a test where pre-defined matrix
contained different horizons. This matrix was defined as:

A =



a11 . . . a1n
...

...
...

am1 . . . amn



, A ∈ Zmxn (4.2.10)

where m = 150 and n = 3. To test a wide range of horizons, the step ahead predictors, past inputs
and past outputs were altered such that

ai j = {0 ≤ a ≤ 150} , i ∈ Zm ∧ j ∈ Zn (4.2.11)

While running the algorithm with various horizons, remaining parameters were kept at a fixed
value. The horizon based on Akiake’s criterion gave the best result. Additionally, as mentioned
above, considering the system as an output-error model gave almost identical results, i.e., setting
past inputs to 0. As a matter of fact, the MVAF value for the output-error case and for the case of
horizon = [75, 141, 100] yield better results compared to the Akiake case. Still, the NRMSE value
were identical for these cases, and this criterion is regarded of higher importance in this work. Too
large step-ahead predictors yield low score, as the biggest one depicted is 125. Past inputs and past
outputs vary more, thus these results are somewhat inconclusive and does not give an unambiguous
indication on preferred neighbourhood of values to use.

Another interesting finding is comparing the recommendation from Sima et al. [65] which states
to set all three values identical. From the plot, this approach yield low results, and altering the
identical numerical values render insignificant improvements. Still, the best result from the Akiake
criterion is close to similar for all three values: [27, 24, 24]. This emphasizes the non-triviality of
choosing the best horizon.
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Figure 4.3 Performance of 11 best subspace horizons from a selection of 150 candidates. Selection
is based on a combination of the best NRMSE and MVAF values.

To further emphasize the non-trivial part of choosing the algorithm horizon considered in this
section, additional plots are included in appendix E.5. These figures depict results based on a
slightly altered algorithm horizon.

An additional option to investigate diverse subspace parameters was briefly considered. Apart from
comparing different algorithms and algorithm horizons, focusing on a particular frequency region
and discarding dynamics outside that region was regarded in order to obtain a satisfactory model.
This approach may be advantageous if e.g., if control bandwidth is limited by actuator dynamics
which emphasize to discard higher-frequency dynamics. The motivation behind this approach are
demonstrated in Jacobsen et al. [37] and Jacobsen and Skogestad [38]. The resulting comparison
plot is depicted in figure 4.4.
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Figure 4.4 Altering subspace algorithm focus

As the figure indicate, focusing on a smaller range of frequency for the model identification did
not improve the fitness criteria. This may be explained by the ideal process data utilized in the
identification procedure. For example, including actuator dynamics is not carried out in the simulator
development. No further investigation behind these results was carried out. The frequency interval
tested were defined by the preliminary tests outlined in section 3.2.2.

4.2.2 SISO modelling approach

Since MIMO models are inherently more complex to identify, an alternative is to utilize the
superposition principle which holds for linear systems(Seborg et al. [64]). This approach allows for
development utilizing SISO principles, i.e., perturbing input-output wise, while holding the other
channel inputs constant. For the 2x3 system investigated in this thesis, the resulting system based
on SISO models comprises thus 6 SISO models. The idea of working with subsets of inputs and
outputs is also described as a potentially easier way to handle difficult modelling procedures in
Ljung [44].

Some potential advantages for this particular approach is:

• Testing input channels individually is a simple measure to reveal if all measured inputs have
a significant influence on the outputs. This helps reveal if system simplifications may be
realized without facing non-modelled discrepancies.

• Generally speaking, the fit increases when adding more inputs, and contrary, the fit decreases
when more outputs are included. This is due to the fact that any identification which include
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several outputs is more difficult than modelling systems where one simply must account for
a single output.

• IfMIMOmodelling fall short, SISOmodelling allows for identification of troublesomeoutputs
in the process. This could contribute to achieving a satisfying model, since one is able to take
additional measures for the particular output regarding modelling effort. However, models for
control purposes will generally produce better results if constructed for all outputs together.
In addition, knowledge of all previous output channels provides a better basis compared to
just knowing the past outputs in a channel.

An additional motivation to this approach is the practice of system identification in Statoil. System
identification by a SISO approach is included in SEPTIC, and it is the preferred method to obtain
empirical models for suitable applications16. It is the author’s impression that empirical modelling
is an extensive used approach in SEPTIC applications, and this is further supported in Strand and
Sagli [80].

When considering the system based on number of inputs and outputs we have the models:

Y1
U1
= Gp11(s)

Y2
U1
= Gp21(s)

Y3
U1
= Gp31(s)

Y1
U2
= Gp12(s)

Y2
U2
= Gp22(s)

Y3
U2
= Gp32(s)

(4.2.12)

The above transfer functions describes the change in Yj fromUi, where j ∈ [1, 2, 3] and i ∈ [1, 2]. In
addition, from the superposition principle, we have that a change in manipulated variables render
an additive effect on each controlled variable:

Yj (s) = Gpj1(s)Ui (s) + Gpj2(s)Ui+1(s) (4.2.13)
(4.2.14)

and for the total system we get

Y (s) = Gp(s)U (s)︸                  ︷︷                  ︸
⇓

Y (s) =



Y1(s)
Y2(s)
Y3(s)



U (s) =


U1(s)
U2(s)


Gp(s) =



Gp11(s) Gp12(s)
Gp21(s) Gp22(s)
Gp31(s) Gp32(s)



(4.2.15)

The six individual SISO models were estimated using simple step tests. To determine the order
of each model, a Hankel singular value inspection was performed on each input-output relation
initially. The resulting SISO models were either second or third order models. To achieve best
fit, several model features were adjusted; model order, inclusion of zeros and imaginary poles.

16An impression based on discussions with control engineering researchers in Statoil.
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Options to improve model accuracy

Figures 4.5 and 4.6 illustrates the best model fits for each of the six models. As demonstrated in
equation 4.2.15, the six models were then combined to a deterministic MIMO state-space model
wich resulted in a 15th order system. However, the MIMO model built on SISO models did not
increase fit significantly compared to the MIMO identified models. This does, however, not support
a conclusion towards the SISO approach being inadequate, but rather raise awareness on faulty
identification and/or validation data due to the poor validation results. This issue is considered
further in the next section.
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Figure 4.5 Comparison of several candidate models compared to identification data from input
U1. A SISO model represent all channel pairings possible, resulting in 3 models for one input to
three outputs. The figure legends provide estimation algorithm, model order, n, and if poles only
comprises real values, in addition to the goodness of fit value. Same annotations are used for figure
4.6.
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Figure 4.6 Comparison of several candidate models compared to identification data from input U2.

4.3 Practical issues on system identification: some author-based
experiences

Given the data obtained in Volden [88] and in initially in this work, an exhaustive number of both
open-loop and closed-loop system identification procedures were performed to develop an accurate
linear model. Results from these experiments are found in appendices C and D in Volden [88].
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Since the system is indeed nonlinear, model discrepancies were expected, but only to a certain degree
since perturbations were kept reasonable small. Still, to obtain satisfactory results were difficult,
and as it turned out, there was a reason behind. This chapter describes a valuable experience for
the author when considering system identification experiments and results; the importance of visual
checks of experiment data, and the understatement that even the best algorithm and experiment
design cannot replace manual observations.

4.3.1 System identification data discrepancies from Volden [88]

For a full overview over the numerous datasets and success of model validation, the reader should
consult appendices C and D in the latest revision of Volden [88]. A short summary which includes
some initial work on the continuation of Volden [88] will, however, follow:

• Out of 24 candidate data sets, 14 were selected for the work of achieving a model fit for
purpose. Selection were based on suitability and perturbations.

• N4SID gave almost consistently better results than DSR, and thus, N4SIDwas the only algorithm
considered in the further work. Selection were primarily based on fitness results.

• Even though, based primarily on observed behaviour against identification and validation
data sets in addition to NRMSE values, the results achieved were poor. Algorithm adjustments
mentioned in Juricek et al. [40], Söderström and Stoica [70], Tangirala [82], Viberg [87] and
Ljung [44, 45] were tested without significant and unambiguous improvements.

• As further described in 4.2.2, a SISO modelling approach were performed.
• Based on the derived models from the data sets in Volden [88], 12 candidate models were
compared.

The comparison of the derived models is found in figure 4.7. Although, 12 models were originally
derived, in this comparison, the two best state-space models based on closed-loop data and three
state-space models based on open-loop data are compared in figures 4.7 and 4.8. The selection
of best models were based on plot information and two numerical criteria, namely NRMSE and
MVAF. The criteria are further described in section 5.3.

For the sake of clarity, the SRC compressor suction pressure - Y1, and SRC upstream expander
pressure - Y2, and SRC compressor discharge pressure - Y3, correspond to PT1669, PT1282 and
PT1544, respectively. The two manipulated variables PIC1669 and PIC1282 correspond to the SRC
compressor speed and energy consumption, and SRC expander bypass and discharge, respectively.
Further details are included in table 4.3 in Volden [88].
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Figure 4.7 Open-loop data comparison of process data and identified models. Model 5 and 9 are
closed-loop data identified models, whereas models 10-12 are open-loop data identified models.
All models considered here stem from Volden [88].
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Figure 4.8 Closed-loop data comparison of process data and identified models. All models from
Volden [88].

The plots depict a segment of the data to increase detail visibility. By observation, it is easy to see
where the models are deviating from the process. Additionally, closed-loop data models perform
superior of open-loop data models against closed-loop verification data, whereas the opposite for
open-loop verification data. This is expected due to the nature of identification experiments for the
different open-loop data identified and closed-loop data identified models. For both inputs excited,
Y1 for all models are somewhat accurate. This is partly the case for Y2 and Y3. For the open-loop
data set, Y2 and Y3 are inaccurate for one of the inputs. Looking at the closed-loop data set reveals
the same pattern for Y2 and Y3. Further examination reveals that the model inaccuracies are related
to a specific input, the expander pressure controller PIC1282.

Figure 4.9 depicts the open-loop data set. Notice that Y1 are almost unaffected by PIC1282, and
respond reasonably for PIC1669manipulations. This indicate a weakly coupled system for PIC1282
→ Y1. ForY2 andY3, the responses to PIC1669manipulation are reasonable, although the responses
does not resemble an ordinary open-loop setup. This is due to an external compensation of the
pressure, which causes the state to "move back" to its former operating point, and is not considered a
modelling issue. For the sake of brevity, this section will not investigate this further, but see section
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7.1 for an explanation. Additionally, the closed-loop data models performed superior compared
to the open-loop data models against closed-loop validation data. For open-loop validation, the
open-loop data models were most accurate. This was as expected due to the differing framework
which the models were identified within.

On manipulating PIC1282 in figure 4.9, some discrepancies for Y2 and Y3 are clearly observed. On
the first step up, the response is reasonable, but on the same step down, the response is quite different
and almost non-existing. The next steps up and down additionally reveals different gain in different
directions for the process, which clearly indicate nonlinearities and different gains.
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Figure 4.9 Open-loop data set for the 2x3 system
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4.3.2 Altering the identification procedure to improve modelling results

The nonlinear phenomena mentioned in previous section was investigated, and as it turns out, the
feature is due to a selector switching controller signals within the control structure. Because of this,
all system identification experiments were rendered faulty, and accordingly, all identified models
were considered invalid.

The figures 4.10 and 4.11 are intended to illustrate this altering of the control structure. A closed-
loop experiment is executed where the setpoint of PIC1282 is manipulated. In these figures, a new
manipulated variable - PIC1281 - and a new controlled variable - PT 1281 - are introduced. These
variables constitute the extended system to the initially investigated 2x3 MIMO system, which now
becomes a 3x4 system.

The aforementioned selector switches between either PIC1282 or PIC1281 outputs, and consistently
chose the smallest input. In addition, PIC1282 is a split range controller17, where 0→ 50% output
controls a primary valve 0→ 100%, and 50→ 100% output controls a secondary valve 0→ 100%.
To render this feasible, the controller output is multiplied by 2. This feature is illustrated in
figure 4.10 and thoroughly described in figure 4.11, which depict a closed-loop experiment where
PIC1282 setpoint is manipulated. Additional plots and information on these features are mentioned
in appendix E.3.

Note that by observing the top left subplot in figure 4.10, the closed-loop response does not reveal
the mentioned features. One might believe, just by observing the subplot, that the closed-loop
experiment is valid because of the seemingly sensible response, which is not the case. This was a
misleading and contributing factor to the faulty initial identification experiments.

17See e.g. Volden [88] and references therein for a brief introduction to split range control.
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Figure 4.10 Closed-loop experiment for the new 3x4 MIMO system which depicts selector control.

An additional feature is the predictive response of the PC1281 controller. As observed in bottom
subplot of figure 4.10, the pressure PT1281 does not violate its operational setpoint below 39%
prior to controller action. This is not the case for a conventional PI controller, where one indeed
would expect some violation of setpoint prior to controller action. To achieve this, there are several
controller configurations available. In this case, the controller is operating in velocity form, which
imply that the controller respond to changes in the value of the controlled variable, rather than its
actual value at a given point in time. For a discrete PI controller on position form the control law is:

uk = ū0 + Kp


ek +

∆t
τI

k∑
j=1

e j


, (4.3.1)

where ū0 is the controller bias(steady-state) output and∆t is the sampling interval. For a PI controller
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on velocity form, the control law is:

∆uk = uk − uk−1 = Kp

[
(ek − ek−1) +

∆t
τI

e j

]
, (4.3.2)

From the integral term in equation 4.3.2, it is clear that the velocity form incorporates anti-windup
inherently18. This feature is observed in both figures 4.10 and 4.11.
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Figure 4.11 Controller outputs: Explanation of the selector switching control.

As mentioned, these findings result in a new perspective on the control system and renders all
system identification experiments invalid. To familiarise the reader, a simplified sketch of the
control system including the relevant control loops are depicted figure 4.12.

18Additional information on velocity form control is found in e.g. Seborg et al. [64].
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Figure 4.12 3x4 MIMO control structure of the subcooling cycle

Dealing with a selector configuration complicate the modelling process. A selector is obviously a
nonlinear feature, and it additionally alters the model when switching between candidate variables.
One option for handling a selector is to utilise multiple models which correspond to selector settings,
i.e., one model for each selector candidate output and alter between these models depending on
state of the selector. A second option which coincides with aforementioned scheme is to use
mixed integer linear programming(MILP) in the work of defining a suitable optimization problem
formulation for the MPC. A third option is to alter the control system and thus circumvent the use
of selector.

In this project, the option of altering the control system is chosen. The reason behind this is to
keep within the project scope as including MILP in the problem formulation is cumbersome and
challenging. However, it is not unusual to alter the control system when implementing MPC, since
certain control features are advantageous to include in the MPC. To omit the selector, the PIC1281
controller is not considered, i.e., set to manual and set to 100% output. Hence, the selector will
consistently choose the smaller controller input from PIC1282. This renders a 2x4 MIMO system,
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4. Practical system identification

where the last controlled variable is the pressure downstream of the expansion turbine. This pressure
provides a lower constraint on pressure downstream the turbine to avoid flashing of the liquid. Liquid
entering a two-phase state may cause cavitation and thus harm the turbine. To account for the lost
degree of freedom by setting PIC1281 to manual operation, the downstream turbine pressure is
incorporated in the model with its constraints included in the optimization problem.

4.4 Performing new system identification experiments

Based on the new information, an additional iteration of subspace identification experiments were
conducted. The experiments were conducted in open-loop configuration in accordance with Statoil
standards, but also due to its user-friendliness. Both simultaneously excitation and channel-wise
excitation experiments were executed. As mentioned in section 4.3.2, the selector control were
omitted by setting controllers to manual and increase output signal to 100%, keeping the selector
state steady. In accordance with section 3.2.2, some preliminary step tests were performed to ensure
integrity of the system in focus for the identification procedures. A selection of the various system
identification experiments are included in appendix B.

Several 2x4 candidate models were derived and validated based on the new system identification
data, and the results were unambiguously improved compared to the old models. In addition to
MIMO models, a similar principle described in section 4.2.2 were utilised to provide a MIMO
model based on SISO identification data. The resulting SISO data developed MIMO model has a
relatively high order of 20 compared to the MIMO models which vary in order from 7 to 19.

A comparison between the old and new models is depicted in figure 4.13. Since the old models
were 2x3, the 4th output from the new 2x4 system is neglected for the sake of comparison in this
case. Two old models and two new models were compared, and an error plot for the three particular
outputs is included along with the numerical fitness values:

Table 4.3 Numerical fitness values for two old and two new models.

Fit Y1 Fit Y2 Fit Y3 Mean
fit

MVAF
Y1

MVAF
Y2

MVAF
Y3

Mean
MVAF

Model 1 91.9 82.5 84 86.1 99.4 96.9 97.5 97.9
Model 2 90.3 80.5 84.3 85 99.1 96.2 97.5 97.6
Old model 1 71.6 -16.9 5 19.9 92.3 -40.8 7.5 19.7
Old model 2 78.7 -27.2 3.3 18.3 95.5 -64.3 4.9 12.1
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(a) Error plots for 3 CV’s in old and new models
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Figure 4.13 Error plots for comparison of old data models and new data models

Both graphically and numerically, the new models were far better compared with the old models.
This obviously support the findings in section 4.3.2, which were expected. Based on these results,
the work of assesing and analysing suitable models for the MPC application were initialized.

A comparison of the SISO developed MIMO model compared to the directly identified subspace
MIMO models was additionally performed. Since the system investigated is 2x4, a fourth CV is
added. Since the system was expanded with an additional CV, two additional SISO models for the
fourth ouput were derived. Thus, we have the MIMO model acquired by the SISO data models as:
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4. Practical system identification

Y (s) = Gp(s)U (s)︸                  ︷︷                  ︸
⇓

Y (s) =



Y1(s)
Y2(s)
Y3(s)
Y4(s)



U (s) =


U1(s)
U2(s)


Gp(s) =



Gp11(s) Gp12(s)
Gp21(s) Gp22(s)
Gp31(s) Gp32(s)
Gp41(s) Gp42(s)



(4.4.1)

For the sake of clarity, Y1, Y2, and Y3, are defined the same way as in section 4.3.1. The new CV, Y4,
is the downstream expander pressure - PT1281.

All channels were individually investigated, and several SISO modelling procedures were carried
out. The best SISO models for each channel were chosen based on visual comparison and a
numerical fitness value. The resulting MIMO system based on SISO models performs satisfactory
on validation data. The figures 4.14a and 4.14b depicts the SISO models simulated against a
validation data set.
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Figure 4.14 Error plots for the different SISO data individual candidate models

From several candidate MIMO data models, only the most accurate model were chosen for com-
parison against the SISO data model. The fitness values are listed below. Figure 4.15 depict an
error plot. As observed, both numerically and graphically, the validation differences were small,
and both models perform satisfactory.
Table 4.4 Fitness values for validation of MIMO data model and SISO data model comparsion

Fit Y1 Fit Y2 Fit Y3 Fit Y4 Mean fit
MIMO data model 91.5 82.2 83.6 75.8 83.3
SISO data model 91.7 84.5 84.8 74.3 83.8

MVAF Y1 MVAF Y2 MVAF Y3 MVAF Y4 Mean MVAF
MIMO data model 99.3 96.9 97.3 94.1 96.9
SISO data model 99.3 97.6 97.7 93.4 97
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Figure 4.15 Error plot comparison of SISO data and MIMO data candidate models.
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Chapter 5

Results from system identification
experiments and model analysis

To evaluate and conclude on the best models, several measures were investigated. Based on the
aspects mentioned in chapters 4.2.1, comparisons of different candidate models were performed.
This chapter aims to provide a thorough graphical analysis by utilizing three measures; the NRMSE
and MVAF fitness criteria, and error plots comparing model responses against process simulator data.
In addition, model uncertainties and residual analyses provide a wide base for model assesment.
The simulator data utilized are retrieved from PRBS experiments similar of those in appendix B.1.
Thus, excitation is carried out using input channel excitation individually and combined. Based on
the approach mentioned in section 4.2.1, systems of an increasing order were compared. In closing,
the degree of interaction is investigated.

The first part of this chapter aims to provide a thorough graphical analysis by utilizing three
measures; the NRMSE and MVAF fitness criteria, and error plots comparing against simulator data.
Although, the model discrepancies can be due to noise or model errors, and only the combined effect
is observable. further, it is worth noting that the numerical results based on error plots are tailored
for each individual comparison. Hence, no general features of the various results are applicable.

5.1 Numerical fitness measures

To investigate the feasibility of the models, numerous tests against the selected data sets from
the system identification procedures were performed. Numerous MIMO models from the MIMO
identification and the MIMO model from SISO identification were simulated against the controller
outputs from the selected data sets and compared to the simulator output for the actual data set. In
addition to a graphical comparison, the normalized root mean squared error(NRMSE) from Ljung
[44] and the mean variance-accounted-for(MVAF) from Sotomayor et al. [71] were investigated to
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indicate the best models:

N RMSE = 100 ×
(
1 −

||y − ŷ | |

| |y − mean(y) | |

)
(5.1.1)

MV AF = 100 ×
(
1 −

variance(yi − ŷi)
variance(yi)

)
(5.1.2)

where y is validation data and ŷ is model output. The NRMSE criterion provides numerical
information on the differences between measured and predicted output from the identified model,
both at steady-state and dynamically. The MVAF criterion emphasizes the dynamical differences
essentially, and is a more important measure than steady-state deviations, which is demonstrated in
Jacobsen et al. [37] and Jacobsen and Skogestad [38].

5.2 Combined data sets

In this section, the simulator data sets are retrieved from combined input channel excitation
sequences. Figure 5.1 depict an error plot for comparison. Models of incrementing order,
n = [5, . . . 30], were simulated with the simulator data input signals.
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Figure 5.1 Combined input channel excitation data set. Uses AIC chosen horizon. Black bars mark
the best results. Combined error values of 5 indicate open-loop unstable models.

For the same models as in above figure, numerical fitness values were calculated. This is depicted
in figure 5.2. The results coincide somewhat with the error plot. Thus, models around order
≈ 15 → 18 return high scores on both fitness values and combined errors. Additionally, the error
plot indicate a high score for the model order 29. This does not coincide with the fitness values.
Hence, this particular model order is not considered further.
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Figure 5.2 Combined input channel excitation data set. Uses AIC chosen horizon. Best results are
green and magenta colour marked. Fitness values below 65 indicate open-loop unstable systems as
correspondingly illustrated in figure 5.1.

5.3 Individual channel data sets

In addition to data sets which combine input channel excitation, data sets for individual input channel
excitation were utilized in the work of obtaining a good model. Figure 5.3 depict the error plot of
the comparison in a similar fashion as figure 5.1.
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Figure 5.3 Individual channel excitation data sets. Uses AIC chosen horizon. Values of 40 indicate
open-loop unstable models.

Accordingly, the numerical fitness values were calculated, and the result is depicted in figure 5.4.
For closer comparison, the three best models based on the fitness values are illustrated in figure 5.5.
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Figure 5.4 Individual channel excitation data sets. Uses AIC chosen horizon. Open-loop unstable
systems are removed from the plot.
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Figure 5.5 Best results from figure 5.4. Uses AIC chosen horizon.

Compared to the fitness results in section 5.2 where the best models were located in the vicinity of

68
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each other, this is not the case here. As depicted in figure 5.5, the best fitness results favour a low
order model and two higher order models. However, for the error plot, the results are similar to the
results in section 5.2. Thus, models in the order of 15→ 18 are accentuated for the continuing work
of model validation. Certainly, these results signify that it may be advantageous to further asses the
candidate models using different measures to ensure that the best possible model is chosen.

5.4 Further analysis of model development and suitability

To evaluate and conclude on the best model, additional measures apart from the criteria considered
in sections 5.2 and 5.3 were investigated. Based on various approaches, comparisons of different
candidate models were performed. These measures utilizes statistically anchored approaches for
validation. All comparisons are based on the three candidate models chosen from sections 5.2 and
5.3.

5.4.1 Model uncertainty

In the work of developing the model, an important issue is to evaluate the modelling uncertainties.
Model variability is estimated from random disturbances in the output, and describes the alteration
of model parameters when estimation is repeated using a different data set and the samemodel struc-
ture. Large uncertainties in model parameters may originate from high model orders, inadequate
excitation, or poor signal-to-noise ratio in the data.

Uncertainty in the model is labelled model covariance, and this information is stored in the covari-
ance matrix which originate from the estimated parameters stored with the model. The covariance
matrix is used to provide all uncertainties in the model output. Computing the covariance matrix
is based on the assumption that the model structure provides an accurate description of the process
dynamics, and one method to determine whether the estimated model uncertainty values are reliable
is to perform a residual analysis. This is further discussed in section 5.4.2.1.
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Figure 5.6 Uncertainty plot for MIMO data model and SISO data model. Confidence interval is 3σ.

Besides performing a residual analysis for model uncertainty, a useful method may be to utilize
the standard deviations present. In this regard, a useful procedure is to check whether the current
model contains too many parameters by comparing the estimates with the corresponding estimated
standard deviations. Although, this check is less difficult to interpret if the corresponding parameter
reflects a physical structure e.g. such as time delays. If the estimated standard deviations are all
large, the information matrix is close to singular. This is an indication of too large model orders.

The model uncertainties depicted in figure 5.6 converges fast and its steady-state uncertainty is well
within acceptable limits. Although, for the MPC application it is emphasized that the dynamical
part of the model is most important. However, to obtain a small confidence interval is not trivial and
varies dependent on a number of factors. Some additional, and more uncertain results are depicted
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in appendix E.1.

5.4.1.1 Choosing appropriate order of the dynamical system

Prior to subspace model development, there is one vital parameter to consider: the system order.
For the algorithms considered in this work, this parameter is the only input required from the
user apart from data sets. Additionally, both the N4SID and DSR algorithm provide some general
guidelines in terms of choosing a proper system order. This can be observed in figure 5.7. To make
these guidlines general, the criteria behind the proposed order is purely statistical. As shown in the
example in appendix C.2, this may yield erroneous or inconclusive system order estimates. Thus,
the author have chosen a more time consuming manual approach to estimate the system order.

When considering subspace identification methods, the input-output matrix equation below is the
basis, and all subspace methods initially starts here:

Yf = Γi Xi + Hd
i U f + H s

i M f + N f (5.4.1)

wherewe recognise the extended observability and state sequencematrices as Γi and Xi, respectively.
Further, Hd

i is the deterministic lower block triangular Toeplitz matrix, and H s
i is the stochastic

lower block triangular Toeplitz matrix. U f and Yf are the future input and output block Hankel
matrices, respectively. M f and N f are the future block Hankel matrices formed with process noise
and measurement noise, respectively. The input-output matrix equation states that the block Hankel
matrix containing the future outputs Yf is linearly related to the future input block Hankel matrix
U f and the future state sequence Xi.

The first step of any subspace method is to perform a weighted projection of the row space of the
Hankel matrices. In the second step, the system matrices are computed. There are basically two
classes of subspace algorithms in this respect; algorithms that use the extended observability matrix
Γi to obtain the state-space matrices, and those using the estimated state sequence X̂i.

To estimate the system order, the matrix input-output equation is used to obtain the extended
observability matrix and state sequence, Γi and Xi. An estimate of the term Γi Xi is found utilizing
projection, and there are basically two projections utilized in the reviewed algorithms; orthogonal
and oblique projections. Further, the term Γi Xi is a rank deficient term of the system order. This
mean that knowledge of the term Γi Xi enables Γi, Xi and system order n to be extracted by simply
utilising SVD.We have that Γi X̃i = Oi where X̃i is denoted the forward Kalman filter state sequence,
and Oi is defined:

Oi , Yf /Uf Wp (5.4.2)

where Wp is the past outputs and inputs, andYf are the future outputs. Finding the order is, however,
dependent on chosen algorithm, and it certainly differs. One may believe that what seemingly is a
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5. Results from system identification experiments and model analysis

straight forward algebraic computation renders identical results, this is not the case as the author
will elaborate further.

The computed Hankel singular values reflect the joint controllability and observability of the states
of a realization(Skogestad and Postlethwaite [69]). For visualisation, note that logarithmic plots
are preferred in order to distinguish magnitude differences between the Hankel singular values.
This is depicted in figure 5.7, where two subspace algorithms; DSR and MOESP, have computed the
Hankel singular values for a data set from the MFC process simulator. The observed differences
are partly due to altering weighting schemes and, as mentioned, different projections utilised in the
algorithms. However, when the matrix Oi is obtained, the method to estimate the system order is
identical for all reviewed algorithms:
Definition 5.1. The order of the identified state-space system is equal to the number of nonzero
singular values in the equation

W1OiW2 =
[
U1 U2

] 

S1 0
0 0





VT
1

VT
2


(5.4.3)

where W1 ∈ R
li×li and W2 ∈ R

j× j are the pre-defined weights which are dependent on algorithm.

In this section, additional details on subspacemethods are not considered. However, somedefinitions
related to the first step in subspace identification are included in appendix C.5.

Based on mentioned factors for choosing a proper model structure, the manual approach outlined in
section 4.2.1 was employed. To ascertain the best model, the different order models were compared
using an independent data set.

Essentially, the choice of model order is based on singular value decomposition of the Hankel
matrix, but there are other methods which could provide additional information. This involves tests
for pole-zero cancellations(see section 5.4.1.2) and singularities in the Fisher information matrix.
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Figure 5.7 Computation of Hankel singular values for based on simulator data. Two algorithms are
utilised for the sake of comparison; MOESP and DSR. Additionally, recommended system order is
depicted using the criterion for estimating model order utilized in the DSR algorithm.

A simple, yet proven effective practice when considering the Hankel singular values is stated in
Juricek et al. [40]: The order is selected ad hoc by the user, usually looking for a "knee" in the plot
of singular values, or by noting where the singular values fall below a specified critical value.

The choice of parameters depends heavily on the chosen model structure. For an empirical model
where the number of inputs m and outputs l are known, and the system order n is set, the number of
free parameters for an canonical parametrisation requires n(2l + m) + ml parameters(Viberg [87]).
For example: considering the 2x4 system investigated in this work and assuming a model order
n = 10 yield 108 free parameters.

5.4.1.2 Potential of reduced model

Reduced order models can simplify analysis and control design compared to higher-order models.
Additionally, simpler models are easier to understand, physically interpret and manipulate. Higher-
order models obtained by data from complex systems may include states that does not contribute
to the dynamics of interest for the control application. Hence, it may be useful to reduce model
order while preserving model characteristics that are important for the control application. Thus,
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5. Results from system identification experiments and model analysis

verification to ensure that the reduced model preserves important features is necessary, and for
control design, it is useful to verify that the reduced closed-loop system is stable. Additionally, it is
useful to verify that the reduced open-loop transfer function adequately matches the original models
where the open-loop gain is close to 1 in the gain crossover region(Ljung [44]).

The pole-zero cancellation test is simply to observe at which order the cancellations appear, which
indicate a too-large model structure. However, there is a risk of choosing a too high model order,
even for a very large number of data. This is mainly due to inconsistency between the various tests.

Figure 5.8 depicts an input-output defined pole-zero map of a candidate MIMO data model obtained
using MATLAB.
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Figure 5.8 Pole zero map of candidate 15 order state-space model
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Figure 5.9 3 candidate pairs of poles and zeros for model reduction. Plot b provides a closer look
which render model reduction based on pole-zero location infeasible.

If the pole-zero plot indicates pole-zero cancellations in the dynamics, this suggests that lower order
models can be used. In particular, for certain model structures it may be straightforward to indicate
an increase in model order to obtain a good fit. However, if pole-zero cancellations are indicated,
the extra poles are just introduced to describe the noise. The solution is then to investigate different
model structures of similar order as the number of non-cancelled poles. However, when considering
pole-zero cancellations precaution must be taken: this approach is purely theoretical and prone to
numerical errors.

Observing above results reveal that model reduction is not possible. This was further confirmed
using the minreal MATLAB function which returned a reduced order model of identical order
as the original system. In addition, some practical issues limit the use of pole-zero cancellations.
This is demonstrated in appendix C.8. Further information on a number of approaches to model
reduction are covered in Skogestad and Postlethwaite [69].

5.4.1.3 Signal-to-noise ratio

In general, the signal-to-noise ratio plays a significant role in estimation. Even with persistent
excitation, the stochastic effects in measurements may effect the model quality. The measured
signal-to-noise ratio(SNR) is the quantification of relative contributions of deterministic excitation
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and random variations, given by the ratio between variance of signal and variance of noise:

SN R =
σ2
y

σ2
N

(5.4.4)

where the signal and noise variance is denoted by σ2
y and σ2

N , respectively. If a significant portion
of the variations in the measurement is due to noise, then the contribution of the input weakens
and hence the ability to precisely estimate the model as well. In Ljung [44], the estimate of the
open-loop transfer function covariance is defined as

Cov Ĝ0 =
n
N
Φv (ω)
|S0 |2Φu(ω)

(5.4.5)

where Φv (ω) and Φu(ω) is the power spectrums of the noise and excitation signals, respectively.
|S0 |

2 is the squared absolute sensitivity function value. The estimated covariance is inversely
proportional to the signal-to-noise ratio. That is, from above equation we have that the estimated
covariance is proportional to the input power and inversely proportional to the noise variance. This
feature directly indicates how well the open-loop transfer function may be estimated in the presence
of noise.

An alternative viewpoint is that the SNR represents the ratio of effects due to known variables
versus the uncertainties. Thus, a lower SNR, renders a more ambiguous estimate of the input-output
model. An illustrating example is included in appendix C.3. However, in the case of utilizing
simulator data, the noise is insignificant and we get a theoretically very large SNR. This allows
for small perturbations, which is favorable when considering a linear model, when conducting the
identification procedure. For further reading on SNR, see e.g., Ljung [44] and Tangirala [82].

5.4.2 Selection of model

Amodels’ ability to reproduce input-output data in terms of simulations has been key in the previous
sections for evaluation. In this section, the goal is to employ statistical tools to further investigate
aspects which may assist in the search for the best possible model. In total, three MIMO models
undergo various analyses in the subsequent sections.

5.4.2.1 Residual analyses

The prediction errors evaluated for the parameter estimates θ̂ are residuals, which describe the
differences between the one-step-predicted output from the model and the measured output from
the validation data set. Additionally, residuals represent the validation data not explained by the
model. Thus, the residuals contain important information about the quality of the estimated model.
In addition, the autocorrelation of the residuals indicates whether or not the error model is accurate.
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The residual analysis consists of two tests: the whiteness test and the independence test. According
to the whiteness test criteria, a good model places the residual autocorrelation function inside the
confidence interval of the corresponding estimates, indicating that the residuals are uncorrelated.
Furthermore, according to Ljung [44], the cross correlation between residuals and input of a suitable
model does not go significantly outside its confidence region. Simply put, if the residuals don’t move
significantly outside the confidence region, the basic properties of the system has been captured by
the estimated model.

For the independence test criteria, a good model has residuals uncorrelated with past inputs.
Evidence of correlation indicates that the model does not describe how part of the output relates
to the corresponding input. For example, a peak outside the confidence interval would indicate
improper modelling for the part investigated.

The prediction error, technically termed as residual, serves as the key quantity of interest in assess-
ing the goodness of the model.

ε(t) = yt − ŷt (5.4.6)

where yt and ŷt represents the simulator data and empirical model response, respectively. The part
of the data which the developed model can not reproduce are the residuals. It is useful to study
the correlation between residuals and past inputs to determine if the residuals depend on the input
used. As defined on previous page, this is the independence test, and it is performed to ensure that
the model behaves satisfactory for a range of different inputs. We have the correlation between
residuals and past inputs:

R̂N
εu(τ) =

1
N

N∑
t=1

ε(t)u(t − τ) (5.4.7)

Returning a low covariance is, in general, favourable as it may indicate a consistent model behaviour
independent of input. If there are traces of past inputs in the residuals, then there is a part of y(t)
that originates from the past input and that has not been properly picked up by the model.

A step further is to evaluate correlation between the residuals, which is defined on the previous page
as the whiteness test:

R̂N
ε (τ) =

1
N

N∑
t=1

ε(t)ε(t − τ) (5.4.8)

A relatively large residual correlation indicate that ε(t) could have been predicted from past data.
This means that y(t) could have been better predicted, which is a sign of model deficiency. Further,
the residual correlation R̂N

ε (τ) reveal if the residuals can be regarded as white. A large number of
additional test which will not be covered in this work are listed in Ljung [44] and Tangirala [82].
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5.4.2.2 Model integrity based on residuals

An accurate model should not produce residuals that offer further scope for predictions, while
avoiding overfitting. Accordingly, Tangirala [82] lists some important test to determine the integrity
of the model. Further, Ljung [44] states a useful rule of thumb: A slowly varying cross correlation
function outside the confidence region is an indication of too few poles, while sharper peaks indicate
too few zeros or wrong delays.

Verifying correlation between deterministic residuals and model inputs:

The autocorrelation function of ε and the cross-correlation between ε and the inputs are computed.
The 99% confidence intervals for these values are additionally computed based on the assumption
that ε is white and independent of the inputs. This assumption render computation of the autocor-
relation function and the cross-correlation between ε and the inputs, feasible only for open-loop
configurations. The correlation functions are computed and displayed up to lag 25. The 99%
confidence region indicate that the insignificant correlations are within the shaded region around
the X-axis.

Correlation between the residuals and lagged(time shifted) inputs are computed for the models. This
is also known as the cross-correlation function, and cross correlation indicate if the investigated
models leave behind any unidentified input effects. Three candidate models were investigated, and
the cross correlations are depicted in figure 5.10. A considerable correlation between ε(t) and u(t)
at positive lags imply that input effects on the process response is unexplained. Hence, model 3 does
not perform well in this respect as seen from the figure. Based on the cross correlation plots in this
subsection, the observed correlation past lag 0 indicate which model that describes the deterministic
part best. In this case, model 3 performs clearly worst. It is, however, somewhat difficult to distinct
models 1 and 2. Hence, to better distinguish models 1 and 2 appendix E.6 includes individual
residual correlation plots for all three models.
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Figure 5.10 Correlation between residuals and lagged inputs for 3 candidate models.

Verify predictability in stochastic resdiduals:

This test assesses the models in terms of stochastic properties, and how well they demonstrate
random effects, and for this purpose a plot of the auto-correlation function of the residuals is used.
Essentially, it is the correlation between two arbitrary samples separated by a lag l. Predictability is
indicated as non-zero correlation at a non-zero lag l. Missing considerable correlation at any non-
zero lag indicates no space for predictability within the residuals. By definition, the auto-correlation
function is unity at lag zero, i.e., any sample is best correlated with itself. This is observed in figure
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5.11. Additionally, considering correlation at any non-zero lags yields no clear conclusion of best
performing model when considering model 1 and model 2. Although, comparing all outputs may
indicate that model 1 has least scope for predictability within the residuals, and thus is the preferred
model. Furthermore, model 3 proceed being the worst model evaluated.
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Figure 5.11 Auto-correlation of residuals for 3 candidate models.

Further, individual plots autocorrelation of residuals for the three models considered here are
additionally provided in appendix E.6.

Test for cross validation:

A good model yields adequate predictions on any independent data. In this case, linearity is though
necessary due to the models being linear themselves. In this context, a model’s ability to provide
satisfactory predictions are investigated. The one-step ahead predictions of the output at a given
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instant, k are based on knowledge of the observations until previous instant(k − 1). Figures 5.12
through 5.15 depicts scatter plots and zoomed plots for the three candidate models.

Further investigation is performed using infinite-step ahead predictions. These predictions are
based on observations provided at infinite time in the past. This means that the infinite-step ahead
predictions does not rely on information about the observations, but only on the input. For scatter
plots and zoomed plots in a similar fashion as in figures 5.12 through 5.15 for the infinite step-ahead
predictions, the reader is referred to appendix E.7.
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Figure 5.12 Scatter plot comparing one step-ahead predictions against process data for outputs Y1
and Y2 on three models. Scatter plots comprises roughly 1050 samples. Red scatter represents
model 1, blue scatter represents model 2 and green scatter represents model 3. Black lines indicate
simulator data values.
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(b) Y4 output scatter plot

Figure 5.13 Scatter plot comparing one step-ahead predictions against process data for outputs Y3
and Y4 on three models. Scatter plots comprises roughly 1050 samples. Red scatter represents
model 1, blue scatter represents model 2 and green scatter represents model 3. Black lines indicate
simulator data values.
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It is somewhat difficult to distinct the model performances purely based on the one step-ahead scatter
plot. Hence, a more detail-focused plot of the one step-ahead prediction outputs are considered.
These plots include two ranges of samples for each output: 1001→ 1600 and 1001→ 1100.
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Figure 5.14 Comparing one step-ahead predictions against process data for three models. Samples
1001 to 1600 plotted to the left and 1501 to 1600 zoomed plots to the right. Red represents model
1, blue represents model 2 and green represents model 3. This figure depicts output Y1. Remaining
outputs are depicted on next page. Black lines indicate simulator data values.
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(d) Y3 zommed output plot
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Figure 5.15 Comparing one step-ahead predictions against process data for three models. Samples
1001 to 1600 plotted to the left and 1501 to 1600 zoomed plots to the right. Red represents model
1, blue represents model 2 and green represents model 3. This figure depicts outputs Y2, Y3 and Y4.
Black lines indicate simulator data values.
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As observed in the scatter and output plots, the one step-ahead predictions provide generally
satisfactory results for all 3 models.

5.4.3 Final thoughts on methods of model validation

Based on the results derived in this section, some indications on model validity and suitability
are provided. Still, as these are purely theoretical and statistical anchored approaches, the most
important aspect is to consider application of the model. For example, the model may be required
for controller design or state estimation. A typical validation is then to investigate if the problem
that motivated the modelling can be solved using the obtained model. Simply put; if model-
based control performs satisfactory within a given reference frame, the model is valid. However,
to validate all candidate models may be impossible, costly or dangerous regarding the intended
use. Thus, alternative measures are taken to verify model behaviour. An important feature for
mechanistic models is the feasibility check for physical parameters(Tangirala [82]). Since this deals
with empirical models, no focus on this aspect is overlooked.

Further, the model application often determines bounds on deviations, uncertainty and complexity.
Although some deviations will always be expected independent of application, for certain systems
bounds on deviations are tight. This could for instance be safety critical systems or systems based
on state estimation with few measurements available. To analyse this, two key questions are useful:

• Similarity between model and validation data, and is it sufficient?
• Does model serve intended use properly?

Another question is how well the model describes the true system. To answer this question may
be non-trivial. For multivariable systems, it is notably more difficult as for monovariable systems.
For large multivariable systems, difficulty increases substantially as this may require a rigorous
approach. Thus, this point is neglected in this work, although process knowledge to any extent will
always be preferable.

Additionally for empiricalmodels, input-output properties are of interest. To validate the consistency
of empirical model input-output behaviour, and for linearmodels, Bode diagrams are useful. Figures
5.16 and 5.17 depicts the Bode plot including peaks and confidence intervals for models 1 and 3,
respectively. However, a thorough and in-depth study of the Bode plots will not be carried out here.
The complexity of the models simply render a full interpretation difficult.
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Figure 5.16 Bode plot of model 1 including peaks and confidence region.
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Figure 5.17 Bode plot of model 3 including peaks and confidence region.

Observed from the Bode plots, the models compared have some similar features while other features
remain individual. Comparing gains for the U1 input reveal somewhat similar frequency behaviour
for both models, and certainly, for both models peaks are located in close vicinity. Considering
gains for theU2 reveal bigger differences; peaks on distinctive frequencies and less similar frequency
behaviour.

Comparison of phase behaviour for the U1 input is somewhat futile. Due to different scaling,
phase comparison of outputs Y2 and Y3 become practically impossible. This applies for both inputs
considering model 3. Additionally, comparing outputs Y1 and Y4 reveals significant differences, and
output phases for model 3 are significantly bigger compared to model 1. Moreover, the confidence
intervals are more prominent for model 3 which emphasize the uncertainties, and favours model 1
which has less prominent confidence intervals.
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5.5 Assesing degree of interaction

It is earlier in this thesis emphasized that one challenge to achieve satisfactory control is the
inherent multivariable features in the MFC process. To deal with multivariable systems essentially
comprises two strategies which are outlined in Skogestad and Postlethwaite [69]: decentralized and
multivariable control. Decentralized control is preferred for non-interacting processes and in cases
where the active constraints remain constant. Multivariable control is thus preferred for interacting
processes and in cases where the active constraints changes(Skogestad [68]).

To further emphasize the motivation behind the choice of utilizing an MPC, which indeed is a
multivariable controller, this part assesses the interactions in the 2x4 system. The analyses are
based on model 1 from the previous sections.

The relative gain array(RGA) measure for interactions was introduced in Bristol [8], and will be
utilized in this work. However, in said reference the RGA was defined for square systems, i.e.,
for plants with a equal number of inputs and outputs. Thus for non-square plants, some additional
research led to a general case of RGA, namely the NRGA, in which RGA is a special case of NRGA.
This feature was demonstrated in Chang and Yu [11]. From a more recent perspective the RGA is
given a thorough presentation in Skogestad and Postlethwaite [69]. Additional interaction measures
are briefly mentioned in this thesis, but no attempt will be made to cover these topics entirely in
this work. Interested readers may consult the thorough review of various methods for input-output
selection and pairing given in van de Wal and de Jager [84].

The reader should note that the main motivation behind this section is to demonstrate interactions
which emphasize the use of a multivariable controller. Input-output pairings and other features
avaliable through RGA analyses are only superficialy considered. Thus, no conclusions apart from
the degree of interaction will be derived here. Although, additional ideas which may be of further
interest are introduced.

5.5.1 RGA of non-square plants

When considering control of a non-square system, there are several approaches available for control;
non-square controller, conventional SISO control with decoupling, square down of system based
on NRGA analysis or to utilize an advanced controller e.g., MPC. Considering a non-square system
with more outputs than inputs(m > n), it is obvious that to control all CVs to their setpoints perfectly
is an impossibility. In general, with n inputs, for the ideal case n outputs are possible to keep under
perfect control.

When considering the system as a transfer matrix(G), the NRGA is defined as

ΛN = G ⊗ (G†)T (5.5.1)
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5. Results from system identification experiments and model analysis

where ⊗ is the Hadamard or Schur product, and † is the Moore-Penrose pseudoinverse. For the
case of frequency dependent NRGA, we have(Halvarsson [26]):

ΛN = G( jω) ⊗ (G( jω)†)T (5.5.2)

Within the RGA matrix each relative gain is defined as:

λN
i j =

[
∂yi
∂u j

]

ol[
∂yi
∂u j

]

cl

= gi jg
†

ji (5.5.3)

where subscripts ol and cl represent open-loop and closed-loop gains, respectively.

Combining above definitions, the steady-state NRGA matrix is derived for current system be-
low(Chang and Yu [11]):

ΛN =



λN
11 λ12 . . . λN

1n
...

...

λN
m1 . . . λN

mn



=



0.2036 0.0012
0.2778 0.1456
0.509 0.0038

0.0096 0.8494



(5.5.4)

where column sum vector is

CS =


i=1∑
n

λN
i1,

i=1∑
n

λN
i2, . . . ,

i=1∑
n

λN
in



T

= [1.0 1.0]T

(5.5.5)

and the row sum vector is

RS =



j=1∑
n

λN
1 j,

j=1∑
n

λN
2 j, . . . ,

j=1∑
n

λN
m j



T

= [0.2048 0.4234 0.5129 0.8590]T

(5.5.6)

From Chang and Yu [11] some properties of the NRGA matrix are

• Sum of each column is is always 1. This property is consistent with RGA properties.

• Sum of each row, 0 ≤ rs(i) ≤ 1, ∀ i. A row sum less than unity indicate imperfect control.

• NRGA is invariant under input scaling, but variant under output scaling. Input scaling
pertain to post-multiplying with a diagonal scaling matrix, and output scaling represents
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pre-multiplying with a diagonal scaling matrix. This property hold only for cases m > n. For
the opposite case, the opposite is true.

Based on steady-state values, the NRGA analysis indicate that Y1 is difficult to control using a
conventional feedback application, e.g., PI control. Considering that two degrees of freedom are
available for control, outputs Y1 and Y2 should be removed based on the NRGA steady-state analysis.
However, this approach is not recommended for operation. Knowing thatY1 is perhaps the most vital
CV to control, a solution based purely on NRGA indications may not be feasible. This important
consideration is not included in the NRGA analysis, and emphasizes that process knowledge is
superior to any tools such as NRGA analyses which provide a pure numerical approach.

In addition, the dynamical NRGA(equation 5.5.2) is computed for frequencies in the span

ω = [1 × 10−5 rad/s, . . . , 1 × 102 rad/s] (5.5.7)

This is depicted in figures 5.18a and 5.18b. Unlike the steady-state NRGA, the dynamical NRGA
indicate altering interactions which clearly are frequency dependent. In general, the main goal is
to derive input-output pairings close to identity in the bandwidth region, although this feature is
not considered in this work. However, by observing the dynamical NRGA figures, we observe an
altering interaction around ω = 2 rad/s. Additional information on the dynamical (N)RGA is found
in Skogestad and Postlethwaite [69].
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Figure 5.18 Dynamical NRGA for 2x4 system.

5.5.2 RGA for a square plant subsection

As earlier mentioned, an alternative approach is to concentrate on a square part of the system,
i.e., select an equal number of outputs corresponding to available inputs. This is not uncommon
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5. Results from system identification experiments and model analysis

in chemical plants(Chang and Yu [11]). To choose an appropriate square part of the plant, the
NRGA analysis was performed for the square case, thus making it an RGA analysis for all possible
configurations of the 2x4 system.

In addition to the NRGA approach for both non-square and square plants, the performance relative
gain array(PRGA) has been investigated for the square plant cases. As earlier mentioned, the RGA
indicate two-way interactions which may lead to destabilization. In the case of a triangular plant,
the RGA does not indicate the presence of couplings through off-diagonal elements. Thus, one-way
interactions are not indicated by the RGA, and what may seem straightforward using RGA may be
difficult or even erroneous based on the PRGA. The diagonal elements of the PRGA is equal to the
RGA diagonal elements. The off-diagonal PRGA elements are different from off-diagonal RGA
elements, and additionally output scaling dependent. Large PRGA elements indicate slow process
interactions and may imply that satisfactory control is difficult to obtain subjected to individual
loop control. However, small PRGA elements indicate that interactions actually may improve
performance. This is observed from equation 10.94 in Skogestad and Postlethwaite [69]. Figures
depicting the dynamical PRGA are included in appendix E.8, and the findings are unambiguously
indicating that satisfactory decentralized control is difficult to obtain. This, of course, favours the
use of MPC. Additionally, the dynamical singular values computed are found in appendix E.8.
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Figure 5.19 Comparing possible input-outputs pairings based on down-squaring of the non-square
plant.
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Figure 5.20 Comparing possible input-outputs pairings based on down-squaring of the non-square
plant.

5.5.3 Additional measures for interactions

SVD may be utilized to handle non-square systems. However, this method relies on input scaling,
and thus, uncontrolled variables may change dependent on scaling. This is demonstrated in Chang
andYu [11]. Gramian based interactionmeasures, such as theHankel Interaction IndexArray(HIIA)
are considered in the works of Halvarsson [26] and Wittenmark and Salgado [89]. This interaction
measure is however, scaling dependent as well. Wittenmark and Salgado [89] demonstrates that
the HIIA outperforms RGA when dealing with systems that have interactions with non-monotonic
frequency behaviour. However, the HIIA may not give reliable pairing suggestions when the state
space realization has a nonzero direct matrix D. The reason is that the D matrix is not used
when computing the Gramians(Halvarsson [26]). Additionally, another measure for interactions
is Gershgorin bands. Although, no analysis by utilizing said measure is carried out here, an
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introduction is found in Skogestad and Postlethwaite [69]. Due to the fact that deriving the condition
number relies on SVD analysis, and thus is scaling dependent, no effort has been made to make
use of the condition number. Scaling is essentially based on heuristics which makes it a potential
pitfall that, if performed incorrect, may provide erroneous results(Halvarsson [26]). An example
which demonstrate that one cannot generally conclude that a plant with a large condition number is
sensitive to uncertainty is provided in Skogestad and Postlethwaite [69].

However, an introduction to condition numbers are presented in appendix C.2. Based on the
definition, it is possible to estimate condition numbers for the investigated system by observing
the dynamical singular values. For the similar square systems depicted in figures 5.20 and 5.19,
the dynamical singular values were computed for the span in 5.5.7. By observing the largest and
smallest singular values, one is able to make an educated guess on the condition number size.
Figures E.20 and E.21 in appendix E depict the dynamical singular values for the chosen model.

Additional measures which may be of interest for control analyses are:

• Ability to control outputs independently. The controllability matrix:

Co =
[
B AB A2B . . . An−1B

]
(5.5.8)

has full rank if the system is controllable. For example, for the 16 order MIMO model
rank (Co) = 16. Which indicate a controllable system.

• Further investigation of poles and zeros, and related directions.

• Compute a disturbance model Gd ( jω) to obtain the lower bandwidth(ωd) for control.

Pole and zero directions and obtaining a disturbance model have not been investigated further in
this work. Consult e.g. Skogestad and Postlethwaite [69] for additional information.

92



Chapter 6

Comparison of modelling results

This section provides some graphical results on comparison of the various candidate models. At
first, two MATLAB derived MIMO models are compared with the identified SISO models from
SEPTIC. Additionally, SISO models derived in MATLAB and SEPTIC are compared. In closing,
3 MATLAB developed models and the SEPTIC developed models are compared against simulator
data from various step perturbations.

6.1 Obtaining models in SEPTIC

Strand and Sagli [80] authors emphasize the use of linear step response models in a majority of the
existing MPC applications in 2003. The software has been developed since initialization and new
measures for obtaining models were included. This includes a scheme for automatic closed-loop
identification based on the work of Zhu and Butoyi [91]. This resulted in a commercial software
package(Zhu [90]) which was included in the SEPTIC application. Although the software in Zhu
[90] was earlier employed, as far as the author knows, step response models has been, and still is
the preferred practice, and identification is no longer based on external software.

In addition to step response models, identification of ARX and FIR models are included. This is a
necessity to identify models where no means of manipulation allow for step responses. This could
for instance be variables manipulated by a controller, where the only option for excitation is to
manipulate either the setpoint or controller output directly. For example, the feed gas temperature is
a potential disturbance investigated in this work and may render an inaccurate model. Manipulating
this temperature in steps does not resemble true variations. Themore realistic case could for instance
be a periodic signal which simulate the feed gas temperature as a function of plant surrounding air
temperatures. Including this aspect in the identification exclude the use of step response models.
Thus, FIR and ARX models are more appropriate.

By a mathematical point of view, simple step responses does not perturb the system sufficient to
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capture essential dynamics, and for nonlinear and multivariable systems this is to a greater extent
emphasized. In general, a system of a high order requires a higher degree of excitation signals to
highlight all states. From a practical point of view the discussion ismany-facetted, and the arguments
found in Strand and Sagli [80] more or less defines today’s practice within the company. These
observations indicate a gap between industry and academia in the field of system identification,
which in this work, the author will make no attempt close. Having said that, a comparison of
models identified from different mathematical and practical principles have been conducted.

One idea behind the step response approach is to keep things simple. By assuming a unit step input,
i at time instant t, we have the step response for output, j

y j (t) =
t∑

k=0
g ji (t − k) (6.1.1)

By using the simplification

t∑
k=0

g ji (t − k) =
N∑

k=0
g ji (k) (6.1.2)

we get

y ji =

t∑
k=0

g ji (k) (6.1.3)

By sampling the response over a sufficiently large horizon until steady-state(t → N), we have

g ji (N ) ≈ g ji (N + t) (6.1.4)

Based on the control structure of 2 manipulated variables and 4 controlled variables, the resulting
step response matrix for the total system become

G(t) =



g11(t) g12(t)
g21(t) g22(t)
g31(t) g32(t)
g41(t) g42(t)



(6.1.5)

A response to an arbitrary input for an arbitrary output is thus given by

y(t) =
t∑

k=0
G(t − k)u(k) (6.1.6)

Since this approach coincides with the approach described in section 4.2.2, the possibility of MIMO
or MISO identification is not possible. Thus, SEPTIC allows only for pure SISO identification.
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6.1.1 Comparing SEPTIC and MATLAB obtained models

An additional aspect consecutive of obtaining the models was to investigate the differences between
the models. This is not a straightforward matter as SEPTIC and MATLAB have different schemes
to store the models. Independent of model obtained; ARX, FIR or step response model, SEPTIC
stores the model information in a text file format. This information is universal and is translated
to a unit step response. Thus, all models develop in SEPTIC constitute a step response, and as
mentioned, all models are SISO. MATLAB stores models inherently in a defined format. The
model dimension is user-defined, and there exist a range of models available. To coincide with the
SEPTIC models the MATLAB model was unit step perturbed for each channel, and the basis for
comparison were the individual step responses.

As for user-defined parameters, SEPTIC models are influenced by sample time. This parameter
determines the number of samples to use for model description. The model length, i.e., time to
reach steady-state following the step response is automatically computed. Based on discussions on
the SEPTIC setup with a control engineering researcher at Statoil, the sample interval was defined
to 10 seconds. Thus, a model which contains 10 samples takes 100 seconds to reach steady-state
consecutive a unit step perturbation. As observed in figures 6.1 and 6.2, the time constants for
the MFC variables investigated are not slow nor fast, but somewhat in-between. This renders a
relatively fast application to handle the fast responses well. To ensure feasible solutions within
the given sample instant, parameters regarding computational efficiency were considered. This is
further described in section 7.3.

To realize this model comparison, interpolation of the SEPTIC models and in some cases extrapo-
lation of the MATLAB models were necessary. All SEPTIC models were linearly interpolated to
match the sample time of 1 seconds for the MATLAB model. For each output channel compared,
the slowest model set the range of time for comparison. Thus, if a MATLAB model reach steady-
state prior to the SEPTIC model, the MATLAB model response is extrapolated. For the other way
around, the length of the SEPTIC model sets the boundary length of comparison and the MATLAB
response is shortened accordingly. A comparison of unit step responses for the SEPTIC models was
performed against a MATLAB MIMO model, and a MATLAB SISO model are found in figures
6.1 and 6.2.
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(c) PIC1669→ Y3
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(h) PIC1282→ Y4

Figure 6.1 Step response comparison of SEPTIC and MATLAB MIMO data model
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(c) PIC1669→ Y3

0 100 200 300 400 500
-1

0

1

2

3

4
#10-3

Septic mdl raw

0 100 200 300 400 500
-2

-1

0

1

2

3

4
#10-3

Matlab mdl raw

0 50 100 150 200 250 300 350 400 450
-2

-1

0

1

2

3

4
#10-3 PT1281 ot PC1669 ot: Comparison of Matlab and Septic models

Septic mdl resampled
Matlab mdl ekspol

(d) PIC1669→ Y4
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(e) PIC1282→ Y1
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(g) PIC1282→ Y3
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(h) PIC1282→ Y4

Figure 6.2 Step response comparison of SEPTIC and MATLAB SISO data model

From the figures 6.1 and 6.2, the shortest open-loop response time is ≈ 10 seconds, and the longest
open-loop response time is ≈ 350 seconds. Additionally, there are differences both between the
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SEPTIC model and MATLAB models, but also between the individual MATLAB models. This
applies for both steady-state and dynamical differences to varying degrees, but graphically most
distinctive is the PIC1282→ Y1 channel. Though, as the numerical differences are very small, i.e.,
5 · 10−4 for the biggest steady-state error, this may indicate numerical noise or properties that are of
no model interest. Thus, no additional attention is devoted to decrease this particular error. Both
the SISO data developed model and the MIMO data model developed in MATLAB demonstrated
satisfactory behaviour as observed in the comparison figures.

It is emphasized that the initial dynamics are of most interest. This part of the response represents
the faster dynamics, and as demonstrated in Jacobsen et al. [37] and Jacobsen and Skogestad [38],
capturing the faster dynamics is essential in modelling. Additionally, the MPC and its iterative
scheme render responses predicted beyond the next iteration somewhat insignificant.

Even though the modelling in SEPTIC is less laborious compared to the MATLAB approach, it
does not exclude modelling on faulty input data. Thus, an example of faulty SEPTIC modelling is
included in appendix E.4.

6.2 Comparison of various identifiedmodels and simulator data

As a final check for the candidate models, a comparison was conducted simultaneously while
running the simulator and perturbing by steps manually. The result is observed in figures 6.4
through 6.12. Perturbations in the form of steps in various amplitudes were utilized, and the largest
steps were of amplitude 10. Both directions were perturbed. In the comparison, four models are
compared to simulator data; a MIMO model derived from a combined excitation data set, a MIMO
model derived from two individual channel excitation data sets, a MIMO model derived from SISO
identification and a SEPTIC derived step response model.
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Figure 6.3 PIC1282 unit step up - simulator and model CV responses
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Figure 6.4 PIC1669 unit step up responses - simulator and model CV responses
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Figure 6.5 PIC1282 step of 5 up - simulator and model CV responses
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Figure 6.6 PIC1669 step of 5 up - simulator and model CV responses
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Figure 6.7 PIC1282 unit step down - simulator and model CV responses
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Figure 6.8 PIC1669 step of 1 down responses - simulator and model CV responses
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Figure 6.9 PIC1282 step of 5 down - simulator and model CV responses
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Figure 6.10 PIC1669 step of 5 down - simulator and model CV responses
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Figure 6.11 PIC1282 step of 10 down - simulator and model CV responses
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Figure 6.12 PIC1669 step of 10 up - simulator and model CV responses
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—————

As observed, there are some features which the identified models deviate from the simulator. As
earlier emphasized, the most important aspect for comparison is the initial dynamics. Thus, steady-
state deviations are of little interest due to the re-iterative scheme the MPC offers. However, in total
the different models demonstrate satisfactory behaviour, and there are small differences between the
models tested. Step response from controller PIC1282 to CV PT1669 depicts the biggest dynamical
differences graphically. However, due to the small numerical values, these model deviations are not
considered important, and considering the results in section 6.1.1 this was expected.
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Chapter 7

Testing and simulations of two SEPTIC
MPC applications

This chapter considers development of two MPC applications using Statoil’s internal software
SEPTIC. Since the author has not managed to find research on this particular problem, this work has
been somewhat groundbreaking. The applications consider an identical process, and the difference
is how the MPC is implemented in the control structure. Furthermore, an outline of the MPC extent
and control problem is provided. Additionally, some notes on parameters regarding computational
efficiency and controller tuning are provided. In closing, some simulation results are included.

7.1 Defining MPC extent

The initial extent of the MPC application was defined in Volden [88]. According to findings in
chapter 4, the MPC applications were designed to comprise a 2x4 MIMO system including the
initial MVs and adding an extra CV in the downstream expander pressure.

By analysing the regulatory layer and its corresponding variables for control, the control problem
considered in this work was focused on pressure control through the subcooling cycle. The choice is
based on some essential findings regarding selection of controlled variables for refrigeration cycles
in Jensen [39]. Another prominent feature supporting this choice of MPC extent is the assumption
of opposing CVs. This is further explained below figure 7.1.
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Figure 7.1 Principal sketch of the subcooling cycle with accompanying 4 CVs. Numbering of CVs
correspond to Y1, Y2, Y3 and Y4 used throughout this work.

The current control structure maintain accurate pressure control in the subcooling refrigerant cycle.
All 4 CVs, i.e., P1 → P4, depicted in figure 7.1 are controlled by their own SISO controller. This
essentially translates to all CVs having identical priorities. Thus, each CV’s respective controller
does not consider that its actions certainly influence the other CVs to a greater or lesser degree.
Considering the subcooling cycle as a closed system, which in reality is not entirely true, it is
however obvious that this pressure control scheme renders the system stiff and difficult to control in
terms of pressure.

The subcooling cycle principally is considered as a closed system, but as shown in system responses
throughout this work and mentioned in section 4.3.1, this is not the case. There are two system
interactions outside the MFC systems which render the subcooling system open. One of these
systems is the refrigerant make up system briefly mentioned in chapter 2 and further discussed
in Volden [88]. Although this system provide additional flow in the subcooling cycle, it is not
considered in this work. As the main task of the make-up system is to ensure correct refrigerant
mixture, one may assume little interaction from this system in nominal operations. During a leakage
this assumption would obviously fail, but this is beyond the scope of this work.

The major interaction stem from the fractionation system, where SMR is extracted upstream and
added downstream the compressor. From the principal overview of the plant in figure 2.1, this
interaction is identified between the MFC and the fractionation system. In nominal operations,
this interaction is continuous and influence the subcooling cycle. Although, in terms of flow, the
quantities supplied to the fractionation system is well below 10% of the total flow in the subcooling
cycle, which makes the assumption of a closed cycle somewhat feasible. Additionally, as observed
in the simulator data, the changes are dynamical and the cycle attain stationary behaviour within
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reasonable time. As stated in section 1.3.1, interaction with the fractionation system was not
completely correct since it failed to attain steady-state consecutive of perturbations. This feature
is valid for running the individual MFC section of the simulator. However, the interaction was
considered of minor significance and since it was discovered late in the development, time to
investigate and resolve the error was not sufficient. Nevertheless, the author in cooperation with a
Statoil employee verified a solution which involve to run the entire plant model. The consequence
is significantly more computational load, and a simulator model incapable of running at speeds
appreciable above real time. This certainly demonstrates the advantage of sharing simulator load
over a network of computers as illustrated in Skjerven and Vist [66].

The initially launched MPC application considered 2 MVs and 4 CVs. After some initial runs, the
application was expanded to include potential disturbances. Volden [88] lists initially considered
disturbances. A new iteration on identifying potential disturbances considered the ability for
measurement of the investigated disturbance variables. Thus, a revised summary of disturbances is
presented in table 7.1.

Table 7.1 Considered variables for MPC applications

Considered MPC variables for the subcooling cycle applications
MV’s CV’s DV’s

Compressor speed Compressor suction pressure Sea water temperature
Pressure/flow control

of expansion
Expansion turbine upstream

pressure
Feed gas inlet flow from gas

conditioning
Compressor discharge

pressure
Feed gas inlet temperature from gas

conditioning
Expansion turbine

downstream pressure LMR flow in liquefier cycle

SMR inlet pressure on
subcooler(downstream liquefier)

SMR tank gas pressure
SMR flow in subcooling cycle
LNG temperature downstream

subcooler
Feed gas pressure upstream

liquefier

Considering that some of the potential disturbances originate far upstream of the subcooling cycle,
it was investigated how much impact each disturbance made on the CVs. A thorough analysis of
36 potential disturbance models was carried out. The conclusion was to discard four disturbances
that simply had insignificant impacts for the subcooling cycle variables. These disturbances were
essentially rejected upstream by regulatory layers of the precooling and liquefaction cycles. Hence,
five disturbances were considered for further development.
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Table 7.2 Actual variables for MPC applications

MPC variables for subcooling cycle applications
MV’s CV’s DV’s

Compressor speed Compressor suction pressure Sea water temperature
Pressure/flow control

of expansion
Expansion turbine upstream

pressure SMR tank gas pressure

Compressor discharge
pressure

Feed gas pressure upstream
liquefier

Expansion turbine
downstream pressure

LNG temperature downstream
subcooler

SMR inlet pressure on
subcooler(downstream liquefier)

Appendix E.10 depicts a unit step response for a disturbance selected from table 7.2 on the Cvs
considered in this work.

7.2 MPC configurations

Figure 7.2 depicts two control structures includingMPC for a process plant. These control structures
are outlined more in detail in Skogestad [68], but a brief presentation is given here. As observed in
the figure, one control structure implements MPC and regulatory control in the same control layer
as depicted in figure 2.9a. This configuration is well known, and the MPC manipulates setpoints to
the regulatory layer controllers based on regulatory layer feedback. This is considered a common
way of implementing MPC. Alternatively the MPC may be used to manipulate inputs directly, like
indicated to the right in figure 7.2. To render a pure MPC approach as depicted in figure 7.2
feasible, an obvious requirement is the time scale. For fast systems, the sample time of the MPC
application is particularly vital. However, for any application considered, the sampling interval
defines upper bounds on the computational time. An advantage with this approach is the simplicity
in which control is provided by a single application. Considering the supervisory MPC structure
renders state of the regulatory layer vital. For example, altering parameters in the regulatory layer
controllers affect closed-loop responses. This may degrade performance and overall operation if
not regarded in the MPC application. Thus, this is a potential pitfall for the said control structure.

In the work of developing the MPC applications, the two control structures outlined above were the
basis for development. Hence, one application was developed to provide setpoints to the regulatory
layer, while the second application directly manipulate the process. Thus, the regulatory layer is
removed.

For development of the supervisory MPC, the open-loop models identified were unsuitable due to
the exclusion of controller models. Thus, a closed-loop identification was carried out to include
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the regulatory layer for the supervisory MPC application. This identification was performed solely
in SEPTIC, since the N4SID algorithm is not primarily tailored for closed-loop identification. The
identified closed-loop models and some additional information on the identification for the 4 CVs
are included in appendix E.9.

64 6.1 Controller objective and formulation

Figure 6.1: Two different suggestions for a typical control structure hierarchy for a plant. The
role of MPC is indicated in both cases.

Fig. 6.2 is an extension2 to Fig. 5.1 from Sec. 5, where the block diagram for an on-line
estimator was illustrated. The controller block is now included in the diagram as well, and the
interconnection between the controller and the other blocks (primarily the process itself and the
process model) is shown. Just like for the estimator, the success of the controller is strongly
dependent on the quality of the process model. This is in agreement with what was mentioned
in the introduction to this thesis (Sec. 1), where it was stated that the ability of the controller to
properly predict changes in the process is crucial in the context of safe and stable operation. [5]

The MPC is an optimal controller in the sense that the suggested controller action is the
result (solution) of an optimization problem. In addition to being a mathematically optimal
approach towards controlling a process, the strengths of MPC include effective treatment of
constraints and easy application to MIMO (multiple inputs, multiple outputs) systems. Intricate
and complex interconnections of the variables are, generally speaking, no problem for the MPC
as long as this is properly accounted for in the process model.

The mathematical formulation of an MPC problem is given in Eqs. 6.3 - 6.8. The vector of
model outputs (CVs) at time tk is denoted by zk, which is related to the states of the system
through a measurement function (g) like indicated in Eq. 6.1. The vector of inputs at time tk is

2This figure is printed with the permission of S. O. Hauger, Cybernetica AS.

Figure 7.2 Two control structures including MPC. From Gjertsen [23].

7.3 Tuning and computational efficiency of MPC applications

To gain satisfactory process performance in closed-loop, several options pertain to the MPC ap-
plication. There are different opinions on what parameters which primarily serves as tuning
parameters. The author distinguishes between variables which primary purpose serve to increase
efficiency/reduce computational load and tuning parameters. It should be noted that this distinction
not necessarily is the common comprehension across industry and academia, but rather a personal
perception.

In the general MPC formulation there exist several parameters for adjusting the closed-loop per-
formance, and some general information on variables for increasing efficiency and tuning of MPC
are found in e.g., Imsland [35], Camacho and Bordons [10] and Maciejowski [48]. This work will
primarily consider the SEPTIC application specifically and its variables. However, in terms of
parameters to reduce computational load/increase efficiency, SEPTIC resembles the general appli-
cation, i.e., the parameters are well known and discussed in numerous papers and books. Although,
some aspects of the variables for increasing efficiency are included as they are vital for optimizing
the application.
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7.3.1 Increasing computational efficiency

Reducing the degrees of freedom for the optimization problem reduces computational time. Cagien-
ard et al. [9] present the number of degrees of freedom as the product of number of inputs times
samples in the prediction horizon. Hovd [34] states that the solution time may grow cubic with the
number of degrees of freedom for a QP problem. This emphasizes the importance of investigating
the aspects of reducing computational load. There exist several approaches, and for the SEPTIC
application four parameters are available; sample time, prediction horizon, control horizon and
input blocking.

Sample time of the application is important as the controlled variables have different open-loop
dynamics. Accordingly the desired closed-loop responses differ depending on the problem investi-
gated, and consequently the upper bound on controller sampling is given by the shortest closed-loop
response time. The sample time is essential, both regarding control and computational efficiency.
Qualitatively, a decrease of the sampling time improves rejection of unknown disturbances espe-
cially, but for control purposes this is generally preferable. However, a sample time reduction
increases the computational effort substantially. Thus, the optimal choice is a balance of perfor-
mance and computational effort(Camacho and Bordons [10]).

For slow chemical processes, which initiated the use of MPC(Maciejowski [48]), the sampling time
is slow compared to systems such as automotive, electrical and aerospace systems. However, in
certain chemical processes, the sampling time vary substantially dependent on open-loop dynamics.
The MFC process variables investigated in this work have a varying response time; the most time
critical being the compressor pressure control, and the less time critical upstream expander pressure.
A rule of thumb is to set the sample time in the range 10% to 30% of the smallest desired closed-loop
response time(Maciejowski [48]). In applications where problem solving time exceeds the sampling
interval, the explicit MPC option is recommended(Imsland [35]). However, for this application, the
explicit MPC scheme is unnecessary since the MPC computational time not exceeds the bounds.

The prediction horizon is the number of future sampling intervals the controller must evaluate by
prediction when optimizing itsMVs at the sampling interval instants. The prediction horizon should
ensure internal controller stability and that constraint violations are anticipated early enough to allow
corrective action. A general rule of thumb is to set the prediction horizon approximately equal to the
ratio between desired closed-loop response time and sample time. If the open-loop dynamics are
unstable, the rule of thumb is to set the prediction horizon equal to themaximum sample intervals for
a step response to become approximately infinite(Seborg et al. [64]). As increasing the prediction
horizon allocates more degrees of freedom for the MPC to reach a solution, more computer power
is required. An alternative to increasing the prediction horizon, is to enlarge the terminal region in
order to more easily obtain feasible solutions. More on the terminal region is found in e.g. Hovd
[34].

The control horizon is the number of MV moves to be optimized at sampling instant k. The control
horizon is generally between 1 and the prediction horizon. Seborg et al. [64] provides two general
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rules of thumb:

5 ≤ M ≤ 20 or (7.3.1)
N/3 < M < N/2 (7.3.2)

where M and N is the control horizon and prediction horizon, respectively. Grüne [25] found an
optimal control horizon: M = N/2 + 1, although this case considers a nonlinear MPC. At each
sample instant, the optimized MV move at the beginning of the horizon is used and the others
are discarded. This describes the receding horizon principle utilized in predictive control and
estimation. A small control horizon means fewer variables to compute in the optimization problem
solved at each control interval, which promotes faster computations. Though, a short control horizon
may provide too few degrees of freedom to obtain satisfactory control.

Input blocking is a unique tuning parameter for each of the MVs. This technique reduces the
number of optimization points and divides the optimal input sequence into time intervals with
constant value. Furthermore, the input blocking is defined as a row vector covering the control
horizon. Commonly, blocking intervals are of increasing length. Furthermore, the input blocking
is defined as a row vector covering the control horizon. The first blocking element specifies the
length of the first constant input interval. The last constant input interval, beginning directly after
the last specified constant input interval, has a length equal to the remaining control horizon. An
important aspect when considering input blocking and control horizon is to allow enough time to
arrive at steady-state between the last control input block and the end of current control horizon.

In this thesis, the blocking is chosen to consist of seven and eight elements and is derived from the
CV with the longest settling time, that is, compressor downstream and upstream expander pressure
responses. This is in accordance with the rule of thumb from Seborg et al. [64]. Moreover, the
blocking elements should be selected such that the initial prediction of optimal input sequence
resembles the applied input. Hence, the input blocking is selected to be

MV 1 input blocking = [1 2 3 5 8 12 17 22] (7.3.3)
MV 2 input blocking = [2 4 6 9 14 20] (7.3.4)

The optimization problem is further simplified by evaluating specified points. The application
automatically evaluate the optimization at the end of each input interval. In addition, a number
of equally distributed evaluation points is specified by the developer, and are commonly within
the range of 5-20. Furthermore, during dead-time or inverse responses, it is desirable to avoid
evaluation of the MPC optimization problem. The MPC controller action to counteract these events
could result in instability. The variable EvalDT defines the number of samples to ignore initially
on the prediction horizon for each of the CVs(Strand and Sagli [80]).

On the other hand, utilizing input blocking may result in stability issues and loss of constraint satis-
faction guarantees. This may additionally have unfortunate effects on the closed-loop performance.
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The reason behind is the impossibility of shifting input when blocked, and the issue of obtaining an
input that satisfies the constraints for all future time. There are alternative blocking schemes treated
in Cagienard et al. [9], but these are not included in SEPTIC. Although, one point from Cagienard
et al. [9] is worth mentioning: input blocking tends to provide better results for stable systems
compared to alternative blocking schemes. Since the models utilized in this work are stable, input
blocking is accordingly the preferred scheme.

7.3.2 Tuning of MPC application

In appendix D, the optimization problem formulation in SEPTIC is given. To customise an MPC
application for the problem considered, tuning is an intuitive way of doing so. Tuning of the SEPTIC
application resembles to a certain degree LQR control, and the author will utilize analogies from
LQR control to describe SEPTIC tuning. Thus, it is expected that the reader has knowledge on
LQR control or is able to consult literature on said subject.

Tuning of the MPC application The SEPTIC scalar problem formulation in equation D.0.2, three
scalar variables pertain to controller tuning. In the vector formulation D.0.1a these variables are
referred to as weight matrices(equations D.0.1f, D.0.1g and D.0.1h). For simplicity, we consider
the tuning parameters for the scalar formulation, and they are defined

qy,i =
(

Ful f
Span

)2
, qu,i =

(
Ful f
Span

)2
, pi =

(
MovePnlty

Span

)2
(7.3.5)

where Span is a scaling parameter unique for all variables considered for control in the MPC
application. The parameter defines the range of variation for the respective variable. Hence, for
CVs where small moves are desired and expected, the Span parameter is a low value. Ful f is
the parameter which states cost of deviation from setpoint and ideal value for the CVs and MVs,
respectively. This resembles the Q matrix in LQR control, and increasing this cost lead to a tighter
control for the variable in question. The cost of MV action is defined by the MovePnlty parameter
which resembles the R matrix from LQR control. This parameter alter the degree of MV freedom,
and is for instance useful to reduce MV wear and tear on valves or pumps. Essentially, Span and to
a small degree MovePnlty were the parameters utilized in MPC tuning in this work. As seen from
above definitions(7.3.5), the Span parameter alone influences all tuning variables. This certainly
limits the confusion opposed to when tuning is performed using several variables.

To render focus on defined variables, SEPTIC includes a hierarchy of control priorities. In this
work, the hierarchy is utilized to differentiate desired operating states for the variables in question.
For example, the compressor suction pressure priority is considered vital and thus have a higher
priority compared to upstream expander pressure setpoint. More on the general priority hierarchy
feature is found in appendix D. However, for this application a ranking of CV priorities are found
in table 7.3. In addition, the table list actual priority values implemented.

112



Tuning and computational efficiency of MPC applications

Table 7.3 Suggestion for SEPTIC priorities

CV Suggested CV
priorities

Implemented SEPTIC
priorities

Y1 low limit 1 1
Y4 low limit 2 1
Y1 high limit 3 1
Y1 setpoint 4 2
Y3 high limit 5 2
Y3 low limit 6 3
Y4 high limit 7 5
Y2 high limit 8 8
Y2 low limit 9 8
Y2 setpoint 10 10
Y4 setpoint 11 20
Y3 setpoint 12 20

The difference in suggested priorities and implemented SEPTIC priorities are basically to better
differentiate, but also equalize the considered aspects. Onemay believe that identical priorities given
to several variables may cause a conflict, but this is not the case here. If the application encounter
variables of identical priority, it solves the potential conflict by considering the applicable weight
matrices and slack variables for the given variable.

For the Y3 and Y4 setpoints, the low priority emphasizes that no consideration shall be given these
variables. This allows more freedom for the controller to focus on the more important priorities,
and is a suggestion to make the pressure control less stiff as discussed in section 7.1.
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7.4 MPC Simulations

This section includes the simulation results from testing of both MPC applications. For simplicity,
the configurations are labelled supervisory and direct MPC. The supervisory application translates
to the supervisory layer MPC, while the direct application translates to the isolated MPC without
a regulatory layer. Both MPC applications were implemented with disturbance models, i.e., feed-
forward configurations. For comparison reasons, the identical tests were carried out for the original
control structure which involves the regulatory layer. Two main tests were executed: altering
setpoints for CVs and rejection of the 5 disturbances defined in section 7.1. In addition, test on two
variables to demonstrate the priorities were performed.

7.4.1 Changing setpoint of CVs

The figures obtained from simulations depict 6 subplots. For the case of supervisory MPC the top
subplots depict setpoints for the regulatory controllers. However, for the cases of direct MPC or
regulatory layer configurations, the top subplots illustrate controller outputs. Thus, setpoints are
naturally excluded in said cases. The subsequent figures depict three tests; one test to display the
MPC priority functionality, one test for manipulating the Y1 setpoint, and a test for manipulating
the Y2 setpoint. In addition, appendices E.11 and E.12 provides more information on the priority
functionality and disturbance rejection, respectively.
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Interpreting the MPC priority functionality
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PC 1282 OTFigure 7.3 Y4 setpoint manipulation for SEPTIC supervisory application. The priority is set to 1.
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Figure 7.4 Y4 setpoint manipulation for SEPTIC direct application. The priority is set to 1.
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is set to 10.
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Figure 7.6 Y4 setpoint manipulation for SEPTIC direct application. The priority for Y4 setpoint is
set to 10.

Independent on priority setting, control of the CVs are accomplished. Y4 reaches the desired
setpoints for both priorities. Some expected differences is depicted, such as slightly less control of
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Y1 when the priority for Y4 is set to 1. Appendix E.11 illustrates this functionality further.

CV1 - PT1669 setpoint manipulation
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Figure 7.7 Y1 setpoint manipulation from regulatory layer
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Figure 7.8 Y1 setpoint manipulation for SEPTIC supervisory application. Priority is set to 2.
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Figure 7.9 Y1 setpoint manipulation for SEPTIC direct application. Priority is set to 2.

Altering the the setpoints for Y1 reveals a more robust control by the MPC applications. The direct
application is, however, substantially slower compared to the supervisory application. In addition,
one main advantage of MPC control is depicted in the lower left subplots for Y4: handling of CV
constraints. For the regulatory layer we clearly observe the Y4 pressure moving below 7 bar. For the
MPC cases, this is not the case, where the Y4 pressure does not move below 7 bar. This is due to a
CV constraint which does not allow the pressure to move below 7 bar.
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CV2 - PT1282 setpoint manipulation
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Figure 7.10 Y2 setpoint manipulation from regulatory layer
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PC 1282 OTFigure 7.11 Y2 setpoint manipulation for SEPTIC supervisory application. Priority is set to 10.
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Figure 7.12 Y2 setpoint manipulation for SEPTIC direct application. Priority is set to 1.

Similar features are recognized from setpoint simulations for Y2. From the regulatory control
we observe constraint violations for Y4. In addition, the pressure Y1 is slightly tighter controlled at
setpoint for the supervisoryMPC. For the direct MPC, the priority ofY2 is set to 1, and thus, setpoint
violations for Y1 are allowed. However, no constraint violation occur for the MPC applications.
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7.4.2 Rejection of disturbances

SMR vessel pressure
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Figure 7.13 Rejection of SMR vessel pressure disturbance from regulatory layer. SMR vessel
pressure is manipulated as depicted in bottom subplot.
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Figure 7.14 Rejection of SMR vessel pressure disturbance from SEPTIC supervisory application.
SMR vessel pressure is manipulated as depicted in bottom subplot.
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Figure 7.15 Rejection of SMR vessel pressure disturbance from SEPTIC direct application. SMR
vessel pressure is manipulated as depicted in bottom subplot.

Considering pressure disturbance, we observe constraint violation for the regulatory case, while
this is not the case for the MPC applications. The direct MPC application is a bit aggressive at the
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consequence of less strict control for Y1. To investigate this is not considered here, but the aspects
discussed in 7.3 is certainly relevant for resolving this.

LNG temperature upstream subcooling cycle
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Figure 7.16 Rejection of LNG temperature disturbance entering subcooling cycle from regulatory
layer. LNG temperature is manipulated as depicted in bottom subplot.
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Figure 7.17 Rejection of LNG temperature disturbance entering subcooling cycle from SEPTIC
supervisory application. LNG temperature is manipulated as depicted in bottom subplot.
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Figure 7.18 Rejection of LNG temperature disturbance entering subcooling cycle from SEPTIC
direct application. LNG temperature is manipulated as depicted in bottom subplot.

The upstream LNG temperature disturbance depict somewhat inconclusive results. For the Y1,
regulatory control performs best. However, this includes a slight constraint violation for which the
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MPC applications, certainly is not the case.

LNG temperature downstream subcooling cycle
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Figure 7.19 Rejection of LNG temperature disturbance downstream subcooling cycle from regula-
tory layer. LNG temperature is manipulated as depicted in bottom subplot.
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Figure 7.20 Rejection of LNG temperature disturbance downstream subcooling cycle from SEPTIC
supervisory application. LNG temperature is manipulated as depicted in bottom subplot.
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Figure 7.21 Rejection of LNG temperature disturbance downstream subcooling cycle from SEPTIC
direct application. LNG temperature is manipulated as depicted in bottom subplot.

Considering varying LNG temperature downstream the subcooling cycle provides somewhat similar
results as for the previous disturbance case. The control if Y1 is equally proper for the regulatory

126



MPC Simulations

control and the supervisory MPC case. The direct MPC case provides slightly less tight control
of said variable. Considering constraint violations, regulatory does not perform satisfactory as
expected. Constraints are well handled for both MPC applications.
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Chapter 8

Discussions, conclusions and suggestions for
further work

8.1 Discussions and conclusions

The MFC process is a result of the Statoil/Linde alliance, and the control system was primarily
designed by Linde. Upon production initialization in 2007, a study to illuminate potential sections
suitable for more advanced process control was carried out. The MFC process section was investi-
gated during this study. However, the conclusion rendered the MFC process immature for advanced
process control. This was the foundation for the work carried out in this thesis.

The overall goal was to do another iteration on investigating possibilities for use of advanced process
control of the MFC process at Hammerfest LNG. The control system for the MFC process is based
on pure SISO control, and lacks supervisory and optimization layers. Further, the system is prone to
disturbances and some loops are difficult to handle in closed-loop configuration. Additionally, during
times when the sea water temperature peaks, the subcooling compressor reaches its operational limit
and become a bottleneck for plant throughput.

From the work carried out in Volden [88], the basis was to obtain a satisfactory linear black box
model for a chosen extent of the system, namely the subcooling cycle. However, to obtain said
model was not a trivial task, and a laborious approach to diagnose why was executed. The answer
was found in the control structure, where the extensive use of nonlinear control features render
identification difficult. In particular, the use of selector and split range controllers complicated the
identification process. Considering these findings imposed an altering of the original modelling
extent, and the resulting system was defined to a 2x4 MIMO system.

Two methods for identification was essentially utilized. Subspace identification using the N4SID
algorithm constitute the major part of this work. Additionally, classical system identification
procedures such as step response, FIR and ARX modelling were utilized. To ensure validity of
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the experiment data different identification experiments were performed . This includes both SISO
and MIMO modelling. Considering the findings on control system, and making the necessary
adjustments for identification provided significantly improved models. Based on the best initial
model validation results, a selection of candidate models was considered further. A part of the work
regarding subspace identification discusses the declared misconception that subspace identification
is trivial.

A great deal of labour were used to analyse and verify the candidate models acquired. This
part represents a major contribution to this thesis. A range of different measures to investigate
the candidate models; numerical fitness criteria, graphical comparisons against simulator data,
assessment of model uncertainties and residual analyses. In addition, the potential model reduction
by using pole-zero cancellations was briefly investigated. To outline one of the main motivations
behind this project and, in general advanced control, an assessment to emphasize the degree of
interactions was carried out by using RGA and related analyses. These findings state that satisfactory
decentralized control principally is difficult to obtain due to interactions. Based on these analyses
a model for MPC implementation was chosen. Lastly, a verification based on simulator tests was
carried out, and the results indicated satisfactory model behaviour.

The last part of this work considered MPC development and configuration. Two MPC applica-
tions for different control structures were developed. This is the supervisory and the direct MPC
configurations in accordance with figure 7.2. Performance of both applications was tested through
simulations of setpoint changes and manipulated disturbances. In terms of constraint handling, both
MPC configurations demonstrated superior performance compared to the isolated regulatory layer.
Although, there were some aspects regarding time spent to move CVs that need to be investigated
further. The isolated regulatory layer outperforms the MPC applications in terms if this aspect for
most of the simulations. The direct MPC application is almost consistently slower compared to the
supervisory MPC. In terms of setpoint changes for CVs, the supervisory MPC shows promising
tight control for accurate priorities. Although, for some cases the tightest control pertain to the
isolated regulatory layer. A potential solution to this may be investigation and re-tuning of the
regulatory layer for the supervisory MPC application. Due to the time constraint on this project,
this is not considered further in this thesis. It is, however, a task suggested for further work.

In general, it is a laborious task to demonstrate if this system including MPC is or has the potential
to reduce energy costs with the suggested applications and considerations on the control structure.
Since the results are based on simulator data, one would indeed expect some differences between
simulator data and plant operational data. However, the D-Spice simulator utilized in this work is not
expected to possess the accuracy required to demonstrate such results. Optimization is nevertheless
a difficult task for this system, and it certainly requires more rigorous modelling. Additionally, the
complexity of the control system is not straightforward to handle. This may cause additional issues.
In total, these factors rule out the feasibility to provide an unambiguous conclusion. Although, the
work carried out in this thesis would hopefully be useful as a starting basis for further development.
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8.2 Suggestions for further work

Undoubtedly, there are still issues to be solved before considering advanced process control for the
MFC process feasible. By no means does the author acknowledge this development finished, and
the following topics state suggestions for further work to continue on this thesis:

• There is a potential for improved performance for the supervisory MPC application by in-
vestigating and implementing a more aggressive tuning of the regulatory layer controllers.
However, this is not a trivial task which require a substantially amount of labour.

• An MPC application based on this work may be utilized for the liquefaction system as the
subcooling and liquefaction sections are similar. This ideally does not require much labour
as the foundation for the application is laid out in this work.

• When considering the modelling aspect, gain scheduling may be useful as the figures 6.4
through 6.12 indicate. Simulator data reveal that responses from PC1282 perturbations
especially are suited for gain scheduling. Ultimately, this may initialize a hierarchical control
structure comprising several layers of MPC and RTO on top. This control structure is not
uncommon for the downstream applications mentioned in Strand and Sagli [80], and thus
well known to Statoil engineers.

• It should be noted that the depicted MPC performance is based on an initial application. No
time has been devoted to consider tuning beyond the performance achieved in section 7.4.
Thus, by no mean is the application considered complete, but hopefully findings in this thesis
will be useful for further utilization.

For the specific applications considered in this work, there are two additional aspects which may be
of interest for further development:

• Include disturbance model for PV1282B bypass valve.

• Extend MPC application to include plan throughput manipulator and LNG temp as an addi-
tional CV.
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Appendix A

A generalized system identification
procedure

There exist numerous examples of a system identification procedures, some more superficial than
others. The author list the following example, taken fromHauge et al. [27], which provides thorough
information on the various sequences in this somewhat iterative scheme of research. Some aspects
of this particular procedure may be excess for certain cases, while other cases may require additional
routines to achieve satisfactory results. However, the illustration captures all essential aspects.
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A. A generalized system identification procedure

re-scaling is also carried out). Other motives for re-

optimizing may be to try other initial parameter val-

ues, or other parameter bounds.
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Fig. 2. Procedure for model fitting and validation.

T.A. Hauge et al. / Journal of Process Control 15 (2005) 201–213 205

Figure A.1 A comprehensive system identification procedure. From Hauge et al. [27].
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Appendix B

System identification data from open-loop
experiments

In this appendix, a selection of data sets from the system identification experiments is depicted.
All experiments is performed in open-loop configuration. Three approaches for identification are
utilized; single channel perturbation and multiple channels perturbation using PRBS excitation, and
step test perturbations channel by channel for a simple feasibility check of process behaviour, as in
accordance with section 3.2.2.

B.1 Perturbations using PRBS

The subsequent data sets depicted are a selection of data sets used in the model identification
process.
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B. System identification data from open-loop experiments
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Figure B.1 PC1282 channel PRBS excitation
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Perturbations using PRBS
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B. System identification data from open-loop experiments
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Figure B.3 PC1282 and PC1669 channels simultaneously PRBS excitation

B.2 Step test perturbations

In accordance with Tangirala [82], a feasibility check of the experiment data was performed. As
demonstrated in section 4.3.1, the value of this test cannot be overstated. Steps of two different
amplitudes and for both directions were imposed on the process as recommended in Tangirala [82].
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Step test perturbations
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Figure B.4 Initial step test PC1282
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B. System identification data from open-loop experiments
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Appendix C

Selection of mathematical preliminaries and
useful examples

C.1 Persistence of Excitation

In Ioannou and Sun [36], the authors define persistence of excitation:
Definition C.1. A piecewise continuous signal vector u: R+ → Rn is persistent exciting in Rn with
a level of excitation α0 > 0 if there exists constants α1,T0 > 0 such that:

α1I ≥
1
T0

∫ t+T0

t
u(τ)uT (τ)dτ ≥ α0I,∀t ≥ 0 (C.1.1)

This definition gives a lower bound on richness of the input signal u, and in general, examples of a
rich signal may be a PRBS signal, sum of various periodic signals or white noise. In addition, the
matrix u(τ)uT is singular for each τ, and the above definition requires that u makes the integral of
the matrix u(τ)uT uniformly positive definite over any time interval [t, t + T0]. For further reading
on the subject, the reader may consult Ioannou and Sun [36], Ljung [44], Söderström and Stoica
[70], and Tangirala [82] and references therein.

Various identification procedures may require a specific input for excitation. Nonparametric proce-
dures such as frequency analyses require input signals which must be a sinusoid, step or impulse.
For transient analyses and correlation analyses, different input signals pertain. For different pro-
cedures the input requirement is in general persistently exciting. Identification of an nth-order
model generally requires that the input signal is PE of order 2n, but this will vary depending chosen
procedure(Söderström and Stoica [70]).
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C. Selection of mathematical preliminaries and useful examples

C.2 Singular Value Decomposition(SVD) and condition num-
ber(cN)

In order to determine the order of the state-space system, inspection of the Hankel matrix’s singular
values are the standard approach. An approach for attaining the singular values is to utilise singular
value decomposition(SVD). A definition on SVD from Nocedal and Wright [53] states:
Definition C.2. Any complex l × m matrix A may be factorized using SVD

A = UΣV H (C.2.1)

where U and V are orthogonal matrices of dimensions l × l and m × m, respectively, and may be
unitary19 , and the l × m matrix Σ contains a diagonal matrix σ1 of real, non-negative singular
values, σi, i = 1, 2, ..., n, arranged in a descending order.

Unitary matrices U and V form orthonormal bases for the column(output) space and the row(input)
space of matrix A. The above decomposition is not unique, but for any case, the singular values σi

are indeed unique.

The condition number which is defined as:

cN (A) = | |A| | | |A−1 | |

can be defined based on SVD, where we get

cN (A) =
σ1
σn

and σn denotes the smallest singular value. It is then easy to se that a rank deficient matrix will
have at least one singular value equal zero, thus producing a condition number cN → ∞. This
is an indication of an ill-conditioned plant, and one should expect some difficulties in regards of
achieving an unambiguous control scheme(Skogestad and Postlethwaite [69]). Singular values are
discussed in section 5.5.3, and the dynamical singular values for the best MIMO model developed
in this work are depicted in figures E.20 and E.21.

Figure C.1 illustrates how severe noise influences the inspection of singular values in the Hankel
matrices. A 4th order stable system is perturbed using a PRBS approach in open-loop. The system is
multivariable, and consists of two inputs and two outputs. The simulation is run in an approximately
noise free configuration, and subsequent under severe noise influence. As observed, noise render the
choice of system order inconsistent. Although this is an extreme case, it illustrates the uncertainty
related to the choice of model order which seldom is unambiguous when inspecting the Hankel
singular values, at least for non-trivial systems. Appendix C.3 discusses the significance of SNR in
relation to model fitting further.

19A complex matrix M is unitary if MH = M−1 or for real matrices M MT = I. Nevertheless, for both the absolute
eigenvalues and its singular values are equal to 1.
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Singular Value Decomposition(SVD) and condition number(cN)
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Figure C.1 4thorder system identification under severe noise, and how it influences the Hankel matrix
singular value computation. As observed, noise impact the choice of system order which, compared
to the unambiguous noise-free case, includes the noise. This inclusion will lead to overfitting as the
noise is treated as a deterministic part.
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C. Selection of mathematical preliminaries and useful examples

C.3 Example to illustrate the SNR significance related to curve
fitting

This example demonstrates the importance of sufficient signal-to-noise ratio. We investigate a
simple nonlinear model on the form

yi = b1u2
i + b0

where the true values of b1 and b0 are 4. The model may resemble some physical relation, e.g.,
friction or turbulent flow of an incompressible fluid. A measurement of the output, ym, is available

ymeas = yi + vi

where a measurement uncertainty, vi, present. Two different measurement uncertainties are in-
cluded, where the signal-to-noise ratios are (1): 10, and (2): 3, respectively. To estimate the model
parameters, a least squares computation is utilized. An algorithm computes the model estimates,
b̂i1 and b̂i0, and the estimation error. Estimation error is defined as b̃i j = bi j − b̂i j , where i =
{1, 2} and j = {0, 1}. The two returned estimates for both cases then become

ˆb11 = 3.99 ˆb10 = 3.76
ˆb21 = 4.06 ˆb20 = 3.7

As observed, the estimates remain somewhat similar despite of the SNR difference, though, the
case 1 estimates are more accurate. This is not the case for the estimation error, where the error
returned increases with lower SNR. This is expected, and the estimation is observed in figure C.2.

Table C.1 Estimation results and errors

i = 1 i = 2 Error
b̃i1 0.123 0.186 1.51
b̃i0 0.078 0.117 1.5

Theoretically, the error value is given by the square of the fraction of the two SNR:
√

10
3 = 1.826.

This indicates that a lower SNR ultimately will lead to a lower reliability of the resulting estimate.
Figure C.2 illustrates both cases investigated in this example.

C.4 QR and LU factorisation

As emphasized in chapter 3, matrix factorization is essential in subspace algorithms. Different
algorithms use different factorizations, and this feature is vital to achieve themathematical robustness
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QR and LU factorisation
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Figure C.2 Estimation plots and error plots of the curve fitting example. Case of SNR=10 are the
top plots, while the case of SNR=3 are the bottom plots.

and fast computations which makes subspace identification superior to prediction error methods
in many ways. The following subsections defines two factorizations utilized in various subspace
algorithms.

C.4.1 QR

For a rectangular matrix A ∈ Rm×n, a useful factorisation is the QR factorisation(Nocedal and
Wright [53])

AP = QR = Q


R
0


=

[
Q1 Q2

] 

R
0


= Q1R (C.4.1)
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C. Selection of mathematical preliminaries and useful examples

where

P is an n × n permutation matrix and thus orthogonal;
Q is m × m orthogonal;
Q1 is the first n columns of Q while Q2 contains the last m − n columns;
R is m × n upper triangular.

C.4.2 LU

For a square matrix, the LU factorisation of a matrix A ∈ Rn×n is defined as

PA = LU (C.4.2)

where

P is an n × n permutation matrix(obtained by rearranging the rows of the n × n identity matrix);
L is unit lower triangular(lower triangular with diagonal elements equal to 1) and;
U is upper triangular.

C.5 Some notational details regarding subspace identification

In the following, a few definitions related to subspace identification are given. Some common
variables pertain for all definitions: m is number of process inputs, l is the number of process
outputs, i denotes number of block rows, and j denotes number of columns.

We have the past inputs and outputs Hankel matrix:



Up

U f


=



u0 . . . u1 . . . u j−1

u1 . . . u2 . . . u j
...

. . .
...

. . .
...

ui−1 . . . ui . . . ui+ j−2

ui . . . ui+1 . . . ui+ j−1

ui+1 . . . ui+2 . . . ui+ j
...

. . .
...

. . .
...

ui+h−1 . . . ui+h . . . ui+h+ j−2



(C.5.1)
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Some notational details regarding subspace identification

and the modified past inputs and outputs Hankel matrix:



U+p
U−f


=



u0 . . . u1 . . . u j−1

u1 . . . u2 . . . u j
...

. . .
...

. . .
...

ui−1 . . . ui . . . ui+ j−2

ui . . . ui+1 . . . ui+ j−1

ui+1 . . . ui+2 . . . ui+ j
...

. . .
...

. . .
...

ui+h−1 . . . ui+h . . . ui+h+ j−2



(C.5.2)

Notice that the entries of Hankel matrices can be the vectors uk ∈ R
m, hence they are called block

Hankel matrices with the dimensions Up ∈ R
im× j,U f ∈ R

hm× j,U+p ∈ R
(i+1)m× j,U−f ∈ R

(h−1)m× j .
The parameters i and h allow for the different number of block rows for past Up and U f future.
This is different to some sources, where both parameters are assumed equal. The values of the
coefficients i and h are usually selected slightly larger then the upper bound of expected system
order and the coefficient j is approximately equal to the number of measured data at disposal
( j � i, j � h)(Tangirala [82]). Matrices U+p and U−f are created from Up and U f by moving the
first block row fromU f to the end ofUp. This variation is later used to retrieve the system matrices.
For the outputs yk and the noise ek similar Hankel matrices Yp,Y f and Ep, E f can be constructed.

We have the combined past input and output data matrix, Wp:

Wp =



Up

Yp


=



u0 . . . uq . . . u j−1
...

. . .
...

. . .
...

ui−1 . . . ui+q−1 . . . ui+ j−2

y0 . . . yq . . . y j−1
...

. . .
...

. . .
...

yi−1 . . . yi+q−1 . . . yi+ j−2



(C.5.3)

The extended observability matrix, , Γi:

Γi ,



C
C A
C A2

...

C Ai−1



∈ Rli×n (C.5.4)
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The lower block triangular deterministic Teoplitz matrix Hd
i is defined as:

Hd
i ,



D 0 0 . . . 0
CB D 0 . . . 0

C AB CB D . . . 0
. . . . . . . . . . . . . . .

C Ai−2B C Ai−3B C Ai−4B . . . D



∈ Rli×mi (C.5.5)

The lower block triangular stochastic Teoplitz matrix H s
i is defined as:

H s
i ,



F 0 . . . 0
CE F . . . 0
. . . . . . . . . . . .

C Ai−2E C Ai−3E . . . F



∈ Rli×li (C.5.6)

C.6 Orthogonal and oblique projection

In Tangirala [82], the author defines orthogonal and oblique projection.
Definition C.3. The orthogonal projection of the row space of a matrix onto the row space of B is
given by

A/B , ABT
(
BBT

)†
B (C.6.1)

Definition C.4. The oblique projection of the row space of A ∈ Rr×l along the row space of B ∈ Rs×l

onto the row space of C ∈ Rp×l is given by

A/BC , A
[
CT BT

] *.
,



CCT CBT

BCT BBT



†

+/
-

(C.6.2)

where † denotes the Moore-Penrose pseudoinverse of a matrix.

C.7 Outline of the N4SID subspace algorithm

The subspace identification algorithm mainly used in this work is the N4SID algorithm developed
by Overschee and Moor [55]. It utilises SVD of an oblique projection of the future output onto
past data and future input spaces to estimate the states before it estimates the state-space matrices,
which identify the state-space model. The algorithm is a combined deterministic and stochastic
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Outline of the N4SID subspace algorithm

identification procedure, whichmeans that all data treated in the algorithm is divided into a stochastic
and deterministic part, i.e., for the state sequence we have

X d
i ,

[
xd

i xd
i+1 . . . xd

i+ j−2 xd
i+ j−1

]
∈ Rn× j

X s
i ,

[
xs

i xs
i+1 . . . xs

i+ j−2 xs
i+ j−1

]
∈ Rn× j

where X d
i and X s

i denotes the deterministic and stochastic parts, respectively.
Assumption C.1. Without further details, which can be found in Overschee and Moor [56], we
state the initial assumptions under which the subspace identification is feasible:

• The deterministic input uk is uncorrelated with the process noise wk and the measurement
noise vk . This essentially imply that the algorithm expects open-loop data.

• The input is persistently exciting of order 2i, where i equals the number of block rows used in
the block Hankel matrices.

• The number of measurements goes to infinity j → ∞.

• The process noise wk and the measurement noise vk are not identically zero.

The number of block rows used in the block Hankel matrices, i, define an upper bound on estimation
of system order and influences the computational time significantly. Overschee andMoor [56] states
that the computational time is proportional with the quadrate of i. The maximum order that can be
estimated is equal to i × l, where l is number of outputs. Typically the parameter is set to:

i = 2 ×
Maximum order

Number of outputs
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C. Selection of mathematical preliminaries and useful examples

Algorithm 1 Combined deterministic and stochastic subspace identification
1: Arrange I/O data into Hankel matrices Up,U f ,Yp,Yf with their respective modifications;

U+p ,U
−
f ,Y

+
p ,Y

−
f

2: Compute oblique projections:
Oh = Yf /Uf Wp

Oh+1 = Y−f /U−
f
W+p

3: Compute SVD of oblique projection with weights W1 and W2:

W1OhW2 = USVT

4: Determine the system order by inspecting the singular values of S and partition the SVD
accordingly to obtain U1 and S1:

Oh = USVT =
[
U1 U2

] [
S1 0
0 S2

] [
VT

1
VT

2

]

5: Determine Γh and Γh, where:
Γh = W−1

1 U1S1/2
1

Γh =



γ1,1 . . . γ1,h−1
...

. . .
...

γi,1 . . . γi,h−1


6: Determine the state sequences:

X̂i = Γ
†

hOh

X̂i+1 = Γh
†Oh+1

7: Estimate the matrices A, B, C and D by using linear equations:
[
X̂i+1
Yi

]
=

[
A B
C D

] [
X̂i

Ui

]
+ ε

8: Estimate the stochastic parameters Re and K from the covariance estimate of the residuals:
[
Σ11 Σ12
Σ21 Σ22

]
=

1
j − (n + m)

εεT

where
Re = Σ22

K = Σ12Σ
−1
22

As earlier mentioned(see sections 4.3.1 and 5.4.1.1), the weights W1 and W2 are different depending
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Faulty pole-zero cancellation

on the chosen subspace algorithm. As this project considers the N4SID algorithm, the weights are
set to:

W1 = Ili and W2 = I j

C.8 Faulty pole-zero cancellation

This example demonstrates a pitfall when considering pole-zero cancellation for model reduction.
We start with a simple transfer function:

G(s) =
1

s2 + 2s − 3

The system G(s) has a RHP pole at 1, and consequently, it is open-loop unstable. Utilizing the idea
behind pole-zero cancellation for model reduction, we try to cancel the RHP pole by adding a RHP
zero at the same position. Thus, we get the modified system:

G̃(s) = (s − 1)G(s) ⇒ G̃(s) =
s − 1

s2 + 2s − 3

By closing the feedback loop and perturbing the closed-loop system by a unit step at t = 0 we get
the following response:
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Figure C.3 Poles(X) and added RHP zero(O) over the unstable pole for cancellation.

Observing the figure emphasizes the unreliability of this method. Adding a zero will never, at least
for practical cases, cancel the unstable pole entirely. Thus, a part of the root locus will be trapped
in the right-half plane. This renders an unstable closed-loop response.

The conclusion is that pole-zero cancellation is theoretically feasible, but impractical. Even a perfect
pole-zero cancellation will not be practically implementable because of internal stability issues and
numerical round-off inaccuracies.
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Appendix D

Introduction to SEPTIC model predictive
control

This appendix provides an outline to the optimization problem formualtion for the MPC application
developed in SEPTIC. Thus, the reader in search for general information on MPC is advised to
consult Volden [88] and references therein.

For development of MPC applications, STATOIL’s in-house MPC tool, SEPTIC (Statoil Estima-
tion and Prediction Tool for Identification and Control) is used. SEPTIC was first introduced in
1997(Skofteland et al. [67]), and has since then been implemented on numerous installations(Strand
and Sagli [80]). Most of these applications have been implemented using linear and experimental
SISO models, as these have proved sufficiently accurate for the respective processes. Additional
incentives to utilize linear models is; simpler understanding and troubleshooting, easy to build and
maintain, and reduced process sensitivity to perturbations. There is however, possible to use first
principles nonlinear models, either as models programmed in SEPTIC, or through an interface
against an external simulator. Either way, SEPTIC treats the model as a black-box model. In
addition, features from more conventional control such as anti wind-up, gain scheduling and logic
operations are included in SEPTIC.

The quadratic optimization problem is formulated on the form

min
∆u

yT
devQy ydev + uT

devQuudev + ∆u
TP∆u (D.0.1a)
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D. Introduction to SEPTIC model predictive control

subjected to

¯
u < u < ū, (D.0.1b)

¯
∆u < ∆u < ∆̄u, (D.0.1c)

¯
y < y < ȳ (D.0.1d)
y = M (y, u, d, v) (D.0.1e)

where

¯
u and ū is the low and high bounds, respectively.

and the diagonal weight matrices which penalizes setpoint deviations, ideal-value deviations and
input usage become

Qy � 0, (D.0.1f)
Qu � 0, (D.0.1g)
P � 0, (D.0.1h)

The bounds are imposed on both the manipulated variables, the rate of change for the manipulated
variables and the controlled variables(equations D.0.1b, D.0.1c and D.0.1d, respectively). Equa-
tion D.0.1e correspond to the equality constraint, i.e., the dynamical model. The model realizes
prediction of CV responses from past and future CV and MV values, in addition to past DV values.
The prediction horizon and the control horizon are implicitly stated as the dimension of the vectors
ydev and udev. Thus, in element formulation, the objective function becomes

N∑
t=1

qi (y(t + i) − yd (t + i))2 + ri (u(t + i) − ud (t + i))2 + pi∆u(t + i)2 (D.0.2)

where ∆u(t + i) is defined as ∆ut+1 = ut+1 − ut , and N is the prediction horizon.

SEPTIC introduces a priority level hierarchy for optimizing targets, which leads to solving several
steady-state quadratic optimization problems. The reason behind this is the fact that a typical
application does not have the required number degrees of freedom to satisfy all control specifications.
The variables in the priority level hierarchy are given their priority depending on the severity of a
constraint violation. The priority level hierarchy in decreasing order is given in table D.1.

By the table, the highest priority fall to the MV’s rate of change. This priority is always respected.
At each of the following stages, a quadratic steady-state optimization problem is solved with respect
to the remaining priorities. The solution at each stage respects the results from the previous stages
and yields the smallest possible deviation from the original specifications. Should there be more
CV’s to control than there are MV’s, the number of degrees of freedom will become negative and
the MPC controller will successively drop the least important priority levels until a solution can be
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Table D.1 SEPTIC priority rating

SEPTIC priority rating
Priority Constraint

1 MV rate of change
2 MV upper and lower bounds
3 CV hard constraints
4 CV setpoint, CV upper and lower constraints,

and MV ideal values with priority level 1
5 CV setpoint, CV upper and lower constraints,

and MV ideal values with priority level n
6 CV setpoint, CV upper and lower constraints,

and MV ideal values with priority level99

obtained. Omitting such a hierarchy when considering hard CV constraints may lead to infeasible
problems.

The ability for optimal constraint handling is an important feature of theMPC controller. In SEPTIC,
the constraints can be defined as either soft or hard. Hard constraints pertain to MV’s and physical
relations, e.g valve openings or pump capacities. Hard constraints are not allowed to be broken,
while soft constraints are allowed to be broken occasionally, but only if necessary. By softening the
constraints, one may use slack variables which may look like this:

¯
y − ε < y < ȳ + ε, ε ∈ Rny ≥ 0

To minimize the constraint violation, the slack variables are included with a tuning parameter in
the objective function which returns a higher cost upon constraint violation. In SEPTIC, hard
constraints on CV’s are principally omitted. Soft CV constraints may render a difficult problem in
terms of realisation of all requirements for the different combinations.
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Appendix E

Additional plots

This appendix depicts some additional plots. Although not included in the report, they may be of
some interest for the reader.

E.1 Model uncertainty plots

In addition to figure 5.6, additional plots of three candidate MIMO data models compared to the
SISO data model were compared in terms of model uncertainty. In these plots, the confidence
interval is 5σ. Perturbation is a unit step.
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Figure E.1 MIMO data model 1 and SISO data model uncertainties
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Model uncertainty plots
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Figure E.2 MIMO data model 2 and SISO data model uncertainties
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Figure E.3 MIMO data model 3 and SISO data model uncertainties

E.2 Inspection of Hankel singular values

Figure E.4 depicts an additional inspection of the Hankel singular values for an identification data
set. The data set is similar to the one used in figure 5.7., but not identical.
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Additional plots on the selector functionality and velocity form controller
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Figure E.4 Hankel singular value inspection of data and recommendation of system order

Comparing the figure E.4 and figure 5.7 reveals a weakness of the statistical criterion used for
system order estimation. In section 5.4.1.1 the estimated system order is 6, while observed from
figure E.4, the value has increased to 10. This emphasizes that additional measures to obtain model
order may be advantageous. An iterative approach used in this work is described in section 4.3.1.

E.3 Additional plots on the selector functionality and velocity
form controller

To further describe the selector behaviour and the velocity form controller PIC1281, some additional
plots are included. All figures depict a closed-loop sequence of setpoint changes and corresponding
responses. Further, the top subplot for both figures E.5 and E.6 depicts the setpoint changing
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E. Additional plots

sequence. In addition, the split range configuration of PIC1282 mentioned in section 4.3.2 is
demonstrated.

In the middle subplot of the first figure we observe that the selector compares the PIC1282 and
PIC1281 controller outputs, and consistently selects the lowest value. The MV in this case is the
valve PV1282A. The bottom subplot depicts the PT1281 CV and its setpoint.
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Figure E.5 Closed-loop response to setpoint change depicting input shift to PV1282A from a
controller output selector
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Figure E.6 Closed-loop response to setpoint change. Input shift to PV1282A from selector and
input to PV1282B bypass from split-range controller PIC1282.

For the middle subplot in figure E.6, some additional variables are added to include a second MV,
PV1282B. This is a bypass valve for PV1282A. PIC1282 is a split range controller where the
control output u : 0 → 50% applies 0 → 100% for PV1282A, whereas u : 50 → 100% applies
for 0→ 100% PV1282B. Thus, PV1282B serves as a bypass only when PV1282A is fully open at
its limit. To render this configuration feasible, the PIC1282 output is doubled prior to utilization.
PV1282B is solely controlled by PIC1282. The bottom plot depicts the four normalized CV’s
response for the setpoint sequence.
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E. Additional plots

E.4 Faulty SEPTIC modelling

Figure E.7 depict a faulty case of modelling in SEPTIC. Two SEPTIC developed SISO models are
compared with a multivariable MATLAB model. The reason behind the faulty modelling is faulty
data for the SEPTC case. For modelling purposes the SEPTIC application directly relies on data
retrieved from the simulator. This implies the faulty data were provided by the simulator which
later was confirmed(see section 6.1.1).
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Figure E.7 Two faulty SEPTIC SISO models comparisons.

E.5 Additional error and fitness plots

Figures E.8 and E.9 depicts models developed from increasing order and fixed subspace algorithm
horizon. The algorithm horizon utilized in this case is not based on Akiake’s criterion directly, but
chosen in the neighbourhood for the sake of comparison. Moreover, the only part of the horizon
altered is the number of step-ahead predictors. Thus, the horizon is set to [15 24 24] as opposed to

168



Additional error and fitness plots

the AIC chosen horizon which was [27 24 24].
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Figure E.8 Combined excitation and fixed horizon comparison for specific algorithm horizon. A
error value of 5 indicates a diverging open-loop system response. Thus, the system is open-loop
unstable and produces errors→ ∞.
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Figure E.9 Combined excitation and fixed horizon comparison for specific algorithm horizon. As
in figure E.8, the open-loop unstable systems have low or negative NRMSE and MVAF values.
Hence, they are removed from the plot.

E.6 Comparing 3 models based on residuals

This section depicts three individual residual analyses for the three candidate models depicted in
section 5.4.2.2. To be consistent, model 1 in 5.4.2.2 correspond to model 1 in this section, and so
on. Although, a small difference pertain: in the top plots, the autocorrelation function is depicted
for lags [0→ 25], and not [−25→ 25] as in section 5.4.2.2. The cross correlation plots is depicted
for lags [−25→ 25]. These figures may provide a simpler understanding of the differences depicted
in figures 5.10 and 5.11.
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Figure E.10 Correlation of residuals and cross correlation between lagged inputs and residuals of
outputs Y1 and Y2 for model 1.

171



E. Additional plots

-25 -20 -15 -10 -5 0 5 10 15 20 25

Lag

-0.04

-0.02

0

0.02

0.04
Cross corr. function between input u1 and residuals from output y3

-25 -20 -15 -10 -5 0 5 10 15 20 25

Lag

-0.04

-0.02

0

0.02

0.04
Cross corr. function between input u2 and residuals from output y3

(a) Cross correlation between lagged inputs U1 and U2,
and residuals for Y3 for model 1.

-25 -20 -15 -10 -5 0 5 10 15 20 25

Lag

-0.05

0

0.05
Cross corr. function between input u1 and residuals from output y4

-25 -20 -15 -10 -5 0 5 10 15 20 25

Lag

-0.05

0

0.05
Cross corr. function between input u2 and residuals from output y4

(b) Cross correlation between lagged inputs U1 and U2,
and residuals for Y4 for model 1.

Figure E.11 Cross correlation between inputs and residuals of outputs Y3 and Y4 for model 1.
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and Y2 for model 2.
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(b) Correlation between residuals and lagged inputs for Y3
and Y4 for model 2.

Figure E.12 Correlation between lagged inputs and residuals of outputs Y1 and Y2 for model 2.
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Figure E.13 Cross correlation between lagged inputs and residuals of outputs Y1, Y2, Y3 and Y4 for
model 2.
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(a) Correlation between residuals and lagged inputs for Y1
and Y2 for model 3.
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(b) Correlation between residuals and lagged inputs for Y3
and Y4 for model 3.

-25 -20 -15 -10 -5 0 5 10 15 20 25

Lag

-0.1

-0.05

0

0.05

0.1

0.15
Cross corr. function between input u1 and residuals from output y1

-25 -20 -15 -10 -5 0 5 10 15 20 25

Lag

-0.3

-0.2

-0.1

0

0.1
Cross corr. function between input u2 and residuals from output y1
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Figure E.14 Correlation between residuals and lagged inputs for outputs Y1, Y2, Y3 and Y4. Cross
correlation between lagged inputs and output residuals for outputs Y1 and Y2 of model 3.
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Comparing 3 models based on residuals

-25 -20 -15 -10 -5 0 5 10 15 20 25

Lag

-0.1

-0.05

0

0.05

0.1
Cross corr. function between input u1 and residuals from output y3

-25 -20 -15 -10 -5 0 5 10 15 20 25

Lag

-0.04

-0.02

0

0.02

0.04
Cross corr. function between input u2 and residuals from output y3

(a) Cross correlation between lagged inputs U1 and U2,
and residuals for Y3 for model 3.

-25 -20 -15 -10 -5 0 5 10 15 20 25

Lag

-0.05

0

0.05
Cross corr. function between input u1 and residuals from output y4

-25 -20 -15 -10 -5 0 5 10 15 20 25

Lag

-0.05

0

0.05

0.1

0.15
Cross corr. function between input u2 and residuals from output y4

(b) Cross correlation between lagged inputs U1 and U2,
and residuals for Y4 for model 3.

Figure E.15 Cross correlation between lagged inputs and output residuals of model 3. Outputs Y3
and Y4.
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E. Additional plots

E.7 Cross validation of infinite step-ahead predictions
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Figure E.16 Comparing infinite step-ahead predictions against process data for threemodels. Scatter
plots on the left and zommed plots to the right. Red scatter representsmodel 1, blue scatter represents
model 2 and green scatter represents model 3. Outputs Y1 and Y2 depicted. Black lines indicate
simulator data values.
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Cross validation of infinite step-ahead predictions
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1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100

Samples

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

O
ut

pu
t

Y4

(d) Y4 zommed output plot

Figure E.17 Comparing infinite step-ahead predictions against process data for threemodels. Scatter
plots on the left and zommed plots to the right. Red scatter representsmodel 1, blue scatter represents
model 2 and green scatter represents model 3. Outputs Y3 and Y4 depicted. Black lines indicate
simulator data values.
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E. Additional plots

E.8 Dynamical PRGA and singular value plots

Dynamical PRGA of the different square plant subsections are computed in this section. The
main motivation is to illuminate one-way interactions not which are not indicated by the (N)RGA
computations. For considering decentralized control, this is an important aspect.

10-5 10-4 10-3 10-2 10-1 100 101 102
10-3

10-2

10-1

100

101
PRGA elements of square subsystem. Rows: 1  2

.
12

.
21

.
11

 = .
22

(a) PRGA rows 1 & 2 from NRGA matrix
10-5 10-4 10-3 10-2 10-1 100 101 102

10-3

10-2

10-1

100

101
PRGA elements of square subsystem. Rows: 1  3

.12

.21

.11 = .22

(b) PRGA rows 1 & 3 from NRGA matrix

10-5 10-4 10-3 10-2 10-1 100 101 102
10-3

10-2

10-1

100

101

102
PRGA elements of square subsystem. Rows: 1  4

.12

.21

.11 = .22

(c) PRGA rows 1 & 4 from NRGA matrix
10-5 10-4 10-3 10-2 10-1 100 101 102

10-2

10-1

100

101

102
PRGA elements of square subsystem. Rows: 2  3

.12

.21

.11 = .22

(d) PRGA rows 2 & 3 from NRGA matrix

Figure E.18 Comparing possible 2x2 pairings based on PRGA input-output pairings based on
down-squaring of the non-square plant.
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Dynamical PRGA and singular value plots

10-5 10-4 10-3 10-2 10-1 100 101 102
10-2

10-1

100

101
PRGA elements of square subsystem. Rows: 2  4

.12

.21

.11 = .22

(a) PRGA rows 2 & 4 from NRGA matrix
10-5 10-4 10-3 10-2 10-1 100 101 102

10-2

10-1

100

101
PRGA elements of square subsystem. Rows: 3  4

.12

.21

.11 = .22

(b) PRGA rows 4 & 3 from NRGA matrix

Figure E.19 Comparing possible 2x2 pairings based on PRGA input-output pairings based on
down-squaring of the non-square plant.

Dynamical singular values. Skogestad and Postlethwaite [69] state that it is impossible with
independent control of outputs when

¯
σ(G( jω)) < 1. As observed from the singular value figures,

they indicate small values which satisfy above statement. However, considering the condition
number indicate the opposite.
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Figure E.20 Dynamical singular values for input-output pairings based on down-squaring of the
non-square plant.
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Figure E.21 Dynamical singular values for input-output pairings based on down-squaring of the
non-square plant.
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SEPTIC identified closed-loop models

E.9 SEPTIC identified closed-loop models

Asmentioned in section 7.2, closed-loopmodelswere identified for the supervisoryMPCapllication.
Identificationwas carried out in SEPTIC and figures E.22 and E.23 depict the closed-loop responses.
For simplicity, the identification experiments were executed using step perturbations in the controller
references. An alternative to this approach of obtaining closed-loop models is to manually extend
the open-loop model by adding the controller term and feedback. This resembles a twist of the
better known indirect closed-loop identification discussed in section 3.4. Obviously, this method
requires a known controller term. The alternative method was not utilized in this work, but it some
general information
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0 5 10 15 20 25 30 35

Sample time [10 seconds]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
PT1282 ot PC1669 ot: Septic model

Septic closed-loop model raw
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(d) Closed-loop model of PC1669→ Y4

Figure E.22 SEPTIC identified closed-loop models for controller PC1669.
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(c) Closed-loop model of PC1282→ Y3
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(d) Closed-loop model of PC1282→ Y4

Figure E.23 SEPTIC identified closed-loop models for controller PC1282.

Although these are closed-loop models from the system investigated, they are depicted as step
responses. As earlier mentioned, independent of which model structure one chose to develop,
SEPTIC translates all models to unit step response models.

E.10 Step responses for a selected disturbance

The figures included in this appendix display how a change in the LNG temperature prior to entering
the subcooling cycle affects the four CVS considered in this work. The figures depict a unit step
response although the disturbance models are identified either by ARX or FIR models.
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Step responses for a selected disturbance

This disturbance correspond to the entry labelled LNG temperature downstream subcooler in table
7.2. For the reader it may seem peculiar to consider a disturbance downstream of the subcooler
cycle. However, this disturbance affects the flow of LNG which directly affects flow of SMR which
certainly influences the four CVs considered. The disturbance may originate from adjustments in
the nitrogen removal column or issues with the LNG expander turbine. For further reading on this
part of the MFC process, the reader may consult shapter 3 in Volden [88]. Although not depicted
in this thesis, there exist 16 additional models for the total 5 disturbances on 4 Cvs considered in
this work.
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(c) LNG temperature disturbance on Y3
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(d) LNG temperature disturbance on Y4

Figure E.24 Selected disturbance step response models. Depicted disturbance is LNG temperature
subsequent of liquefaction prior to entering subcooler.
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E. Additional plots

E.11 Additional figures depicting SEPTIC priority

This appendix includes two supervisory MPC simulations. The intention is to provide additional
plots to emphasize the significance of priorities. The simulations include a sequence of changing
setpoints for a choosen CV. The difference is the setpoint priority for said variable, which is altered
from 10→ 1. This is indicated in the subsequent figures.
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PC 1282 OTFigure E.25 Setpoint altering for Y2 with priority 1.
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Additional disturbance simulation figures
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PC 1282 OTFigure E.26 Setpoint altering for Y2 with priority 10.

Giving the variable a higher priority allows more freedom to alter the regulatory layer setpoints,
which depicted in the figures. The consequence is less consideration for variables, and this is clearly
observed in the PT1669 subplot. In figure E.26 the PT1669 values are kept close to the setpoint
which is 2.38 bar. However, altering the priority to 1 for PT1281 as figure E.25 depicts, PT1669 is
not controlled tight. Thus, the MPC controller focus to a greater extent on manipulating PT1281 to
its setpoint.

E.12 Additional disturbance simulation figures

The two remaining disturbances which are not depicted in section 7.4 are included in this appendix.
The disturbances are simulated for regulatory layer control, SEPTIC supervisory application and
SEPTIC direct application, respectively.
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E. Additional plots

Sea water temperature disturbance
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Figure E.27Rejection of varying seawater temperature from regulatory layer. Seawater temperature
is manipulated in steps as depicted in bottom subplot.
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Additional disturbance simulation figures
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Figure E.28 Rejection of varying sea water temperature from SEPTIC supervisory application. Sea
water temperature is manipulated in steps as depicted in bottom subplot.
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Figure E.29 Rejection of varying sea water temperature from SEPTIC direct application. Sea water
temperature is manipulated in steps as depicted in bottom subplot.
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Additional disturbance simulation figures

Upstream liquefaction cycle feed gas pressure disturbance
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Figure E.30 Rejection of varying feed gas pressure upstream liquefaction from regulatory layer.
Upstream feed gas pressure is manipulated as depicted in bottom subplot.
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Figure E.31 Rejection of varying feed gas pressure upstream liquefaction from SEPTIC supervisory
application. Upstream feed gas pressure is manipulated as depicted in bottom subplot.

190



Additional disturbance simulation figures
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Figure E.32 Rejection of varying feed gas pressure upstream liquefaction from SEPTIC direct
application. Upstream feed gas pressure is manipulated as depicted in bottom subplot.
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