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Abstract

The number of devices connected to the internet is rapidly increasing and the demand for
higher bandwidth is likely to increase in the future. In this thesis we will look at methods
for channel allocation and signal strength adjustments for Wi-Fi routers, and how this will
influence the interference and signal quality of Wi-Fi networks. We look at continuous
and discrete optimization methods for signal strengths and channel allocation respectively.
In addition, we utilize graph coloring algorithms as a method of assigning a channel to a
Wi-Fi router.

From this we present some schemes for channel allocation and signal strength adjust-
ments. Two graph coloring algorithms are presented, three schemes alternating between
graph coloring and signal strength optimization are presented and two discrete optimiza-
tion algorithms for the channel allocations are presented.

We perform tests where we first compare the two graph coloring algorithms, next we
compare the schemes alternating between graph coloring and signal strength optimization,
and in the end we compare the schemes where both optimization of the channel allocation
and the signal strengths are implemented. Our results shows that utilizing optimization for
both the channel allocation and the signal strengths leads to higher signal quality and less
interference on Wi-Fi networks compared to the status quo.
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Sammendrag

Antall enheter tilkoblet internet er raskt økende og etterspørselen etter mer båndbredde vil
sannsynligvis øke fremover. I denne oppgaven vil vi se på metoder for valg av kanaler
og justering av signalstyrke for Wi-Fi rutere, og hvordan dette vil påvirke interferens og
signalkvalitet på Wi-Fi nettverk. Vi undersøker kontinuerlige og diskrete optimeringsme-
toder for henholdsvis signalstyrke og valg av kanal. I tillegg vil vi bruke algoritmer for
graffargelegging som en metode for å velge kanal for Wi-Fi rutere.

Utifra dette vil vi presentere metoder for kanalvalg og justering av signalstyrke. To
algoritmer for fargelegging av grafer vil bli presentert, tre algoritmer som alternerer mel-
lom fargelegging av grafer og optimering av signalstyrker vil bli presentert og to diskrete
optimeringsalgoritmer for kanalvalg vil bli presentert.

Vi vil utføre tester hvor vi først sammenligner de to algoritmene for graffargelegging,
deretter sammenligner vi algoritmene som alternerer mellom fargelegging av grafer og
optimering av signalstyrker før vi til slutt sammenligner algoritmene hvor både optimering
av kanalvalg og singalstyrker er implementert. Våre resultater viser at bruk av optimering
for både kanalvalg og signalstyrker fører til bedre signalkvalitet og mindre interferens på
Wi-Fi nettverk, sammenlignet med i dag.
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Chapter 1
Introduction

1.1 Channel Selection Wi-Fi Routers

The number of devices connected to the internet and data traffic are rapidly increasing,
and reports are showing that the number will continue to grow, thus the demand for more
bandwidth is likely to increase in the future [17]. An increasing amount of devices con-
nected to the internet and an increase in data traffic pose increasing problems regarding
traffic flow and bit rates over the internet. The Wi-Fi bands operates on the 2.4 GHz band
and the 5 GHz band (see appendix A for more information). As there are limited available
channels on the frequency bands, the interference between devices connected to the inter-
net will increase with an increasing amount of devices [31, 25]. This thesis will focus on
the interference problems regarding interference on the 2.4 GHz band, where the goal is
to allocate channels in order to minimize interference.

Today Wi-Fi routers are primitive in their choice of channel when connecting to the in-
ternet where they simply choose the channel with least interference. However, the 2.4 GHz
band has limited non-overlapping channels. In fact, there are only three non-overlapping
channels, namely channel 1, 6 and 11 [21]. In this thesis, it will be assumed that all devices
can only connect to either one of the non-overlapping channels on the 2.4 GHz band. Due
to the limitations of non-overlapping channels on the 2.4 GHz band, it is beneficial to have
an algorithm that decides, as good as possible, which channel each Wi-Fi router should be
assigned to in order to minimize the interference between the routers as much as possible.
One benefit is for example to have an algorithm that knows something about the position
of the different routers, and thus the distance between them. This benefit is illustrated in
figure 1.1.

1.2 Transmit Power Wi-Fi Routers

In addition to channel allocation for Wi-Fi routers, it is possible to adjust the signal strength
of Wi-Fi routers to minimize interference. This is done by adjusting the transmit power
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Figure 1.1: An example of a topology with four routers. The colors indicate the three non-
overlapping channels on the 2.4 GHz band. The numbers indicate the order of which the routers
are assigned a channel. To the left an optimal solution is shown, where information about the topol-
ogy is assumed known. To the right a sub-optimal solution is shown, where the routers to be assigned
a channel are chosen in random order. This is a sub-optimal solution since the distance between the
two routers having the same channel is shorter than the longest possible distance between two routers
having the same channel, as seen to the left.

of the transmitting antenna in the Wi-Fi router [15]. By adjusting the power of the Wi-Fi
routers the interference between networks on the same channel will change.

Wi-Fi routers acquire higher bit rates with higher transmit power. On the other hand,
there is more interference between the networks on the same channel when the transmit
powers of the Wi-Fi routers in all networks are high. This means that even though a high
transmit power gives a higher bit rate, the interference due to the high transmitting powers
might slow down the bit rates of the networks. Some networks have a short distance
between the Wi-Fi router and their most critical client (the client obtaining the poorest
signal from its access point), while other networks have a longer distance between them.
The networks with a long distance between the Wi-Fi router and most critical client needs a
higher transmit power to obtain the same bit rate as networks with a short distance between
the Wi-Fi router and most critical client.

Today all Wi-Fi routers use the highest allowed transmit power in their signals. Since
networks have different distances between the Wi-Fi router and most critical client, it
would be beneficial if networks with a short distance sends signals with a lower transmit
power than networks with a long distance. In order to acquire higher bit rates for the
networks with longer distances, it might be useful to have an optimization scheme that
assign values for the transmit powers between the networks on the same channel instead
of all networks using the highest transmit power allowed.

1.3 Mathematical Modeling
The problem of minimizing interference between networks consists of two parts. Allocate
channels to the networks in such a manner that the interference between the networks
are minimized and adjust the transmitted powers of the networks in such a way that the

2



1.3 Mathematical Modeling

interference is minimized.
The quality of a Wi-Fi network is measured by the signal to noise and interference

ratio (SNI). Let c : {1, 2, · · · , n} → {1, 6, 11} be the function assigning the channel to
the different networks. The SNI for a network j is then given by

SNIj =
Pj · hjj

Nj +
∑
i,i6=j

c(j)=c(i)

Pi · hji
, (1.1)

where SNI is a vector containing the SNI values for all the networks that are evaluated.
The parameter denoted as hji is the path loss between network j and i, j 6= i, whereas the
distance between the Access Point (AP) of node j and its most critical client is denoted as
hjj . The transmitted power from APj is Pj and Nj is thermal noise (seen as independent
of j in this thesis) [25].

The useful signal is the expression in the numerator in equation (1.1), while the noise
and interference is the expression in the denominator. The summation in equation (1.1) is
only performed for networks on the same channel. This is because the three channels out-
putted by c are not overlapping, and thus networks on different channels are not interfering
with each other.

The path loss is related to distance as hji/hii =
(
Dji/Dii

)−α
where Dji is the dis-

tance between node j and i and Dii = hii. The constant α is called the propagation
constant [25]. The value of the propagation constant is usually somewhere between 2 and
4 [16]. See appendix A for more info about the transmit power in Wi-Fi routers and SNI.

The goal of the optimization is to maximize the smallest SNI value defined in equation
(1.1), and thus improving the throughput for the networks experiencing low SNI values. In
other words, maximizing the transmitted power and channel of the networks with lowest
SNI value. Given the different networks, one of the channels c (j) ∈ {1, 6, 11} is assigned
to a network j and a signal strength Pj is chosen such that

min
j

{
SNIj (P )

}
(1.2)

is maximal.
Improving the lowest SNI values as much as possible is a difficult problem to solve.

The SNI value is globally dependent of the channel and transmitting power of each net-
work and all networks needs to be taken into account at the same time. Since the channel
allocation of the networks is a discrete problem and the transmitting power assignment is
a continuous problem, the problem of improving the lowest SNI values is a mixed integer
problem. The suggested algorithm alternates between discrete optimization of channel al-
location and continuous optimization of transmitted power. Mixed integer problems are
in general more difficult to solve than purely discrete optimization problems or purely
continuous optimization problems. Furthermore, solving the maximization problem in
expression (1.2) is difficult when all networks are taken into account at the same time.

This problem can be simplified by approximating the interference between each pair of
networks and minimizing the pairwise interference between networks on the same chan-
nel. The resulting problem can be solved by using graph coloring algorithms since there
are good heuristic algorithms to color a graph. Each network can be considered as a vertex

3
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in the graph and the edges in the graph can be considered as the signal to noise and inter-
ference value between two networks. Details about the edges and how they are created is
given in chapter 4.1. Each of the non-overlapping channels may be assigned a correspond-
ing color, and thus the problem of assigning channels to devices on the non-overlapping
channels can be seen as a 3-coloring problem. Note that for the coloring algorithms, the
values for the transmitted power of each network are fixed.

In the end, the mixed-integer problem this thesis tries to solve alternates between a
graph coloring problem where the transmitted powers are fixed and a continuous opti-
mization of the transmitted powers where the channel allocation, or coloring, is fixed.

1.4 Structure of the Thesis
In this theses, we start by presenting some theory and algorithms regarding optimization
and computational complexity theory in chapter 2, while we introduce some concepts in
graph theory together with some NP-complete problems in chapter 3. Further we will
introduce two graph coloring algorithms, LCCS and DSATUR, and some description of
these two algorithms in chapter 4. In addition, the implementation of DSATUR is pre-
sented. Then we present the optimization model related to the SNI values and the proposed
optimization schemes related to this model in chapter 5, while the implementation of the
optimization schemes and coloring algorithms will be presented in chapter 6. Our results
and the discussion of these are presented in chapter 7. These results shows that using con-
tinuous and discrete optimization schemes improves the lowest calculated SNI values and
thus improve the quality of the Wi-Fi networks. In the end, in chapter 8, our conclusions
are presented and future work is discussed. Our thoughts on possible future work would
be to apply optimization algorithms in resource allocation schemes and conduct tests on
real Wi-Fi networks. We provide some extra information regarding Wi-Fi and DSATUR
in the appendix.
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Chapter 2
Optimization

Mathematical optimization consists of the minimization or maximization of a function
f : X → R, for some setX , subject to constraints on the arguments. There exist three dif-
ferent classes of optimization, depending on the type of variables that are to be optimized.
If the variables are continuous, one speaks of a continuous optimization problem. On the
other hand, if the variables are discrete, one speaks of a discrete optimization problem.
Should some of the variables to be optimized be continuous and some be discrete, the type
of problem is known as a mixed-integer problem [28, Chapter 1].

2.1 Continuous Optimization
In continuous unconstrained optimization the domain X of the problem is equal to Rn.
The task in continuous optimization is to find x∗ ∈ Rn such that f (x∗) ≥ f (x) for all
x ∈ Rn. In other words, the goal is to find a point x∗ solving max

x
f (x).

Unconstrained optimization does not pose any restriction on the values of x, and the
maximum point lie anywhere in Rn [28, Chapter 2]. On the other hand, in constrained op-
timization, the admissible argument of f is bounded within a subset of Rn. The constraint
functions ci : Rn → R describe the constraints that are posed on x, and the problem can
have both equality constraints and inequality constraints. An element x is an element in
the domain X if and only if ci (x) = 0, i ∈ E, and ci (x) ≥ 0, i ∈ I , where ci, i ∈ E
describe equality constraints and ci, i ∈ I describe inequality constraints. The resulting
problem can be written as

max
x

f (x) subject to

{
ci (x) = 0, i ∈ E,
ci (x) ≥ 0, i ∈ I.

(2.1)

Many optimization algorithms for a nonlinear objective function might not find a
global solution, the point giving the objective function the greatest value among all ad-
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Chapter 2. Optimization

missible points. Instead they might only find a local solution, a point where the objective
function is greater than at all other points nearby [28, Chapter 12].

Definition 2.1.1. A point x∗ is a global maximum of an objective function f if f (x∗) ≥
f (x) for all x ∈ X .

Definition 2.1.2. A point x∗ is a local maximum of an objective function f if there is a
neighborhood N of x∗ such that f (x∗) ≥ f (x) for all x ∈ N ∩X .

The problem with local maxima is that an optimization algorithm might output such a
point as the solution of the problem, even though there exists better solutions for x.

If f is twice continuously differentiable then certain properties of f are useful in order
to determine local maxima in f . Before the properties are presented, some definitions are
needed.

Definition 2.1.3. If f ∈ C1 (Rn), the gradient of f denoted by∇f : Rn → Rn is defined
by

∇f (x) =


∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xn

(x)

 . (2.2)

Definition 2.1.4. If f ∈ C2 (Rn), the Hessian of f , denoted by ∇2f = Hf : Rn →
Rn×n, is defined by

Hf (x) =


∂2f
∂x2

1
(x) · · · ∂2f

∂x1∂xn
(x)

...
...

∂2f
∂xn∂x1

(x) · · · ∂2f
∂x2

n
(x)

 . (2.3)

Assume x∗ is a local maximum of f then∇f (x∗) = 0 and∇2f (x∗) is negative semi-
definite, and both the gradient of f and the Hessian can be used to find local maxima. In
addition, the Hessian can be used to determine whether a problem is concave or convex
based on whether the Hessian is negative semi-definite or not. The curvature of the objec-
tive function is interesting, in order to determine if there exists any local maxima for the
function. If the objective function is concave, and the inequality constraints are concave
then the objective function does not have any local maxima.

Theorem 2.1. Assume f ∈ C2 (Rn). Then f is concave if and only if Hf is negative
semi-definite for all x.

Proof. See [28, Chapter 2].

2.1.1 Quadratic Programming
The goal in quadratic programming is to optimize a quadratic function with linear or
quadratic constraints. In case of only linear constraints, the problem is formulated as

max
x

f (x) =
1

2
xᵀQx+ cᵀx+ r subject to

{
A1x = b1,

A2x ≥ b2,
(2.4)
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where the first constraint is the equality constraint, while the second is the inequality con-
straint. Q is a symmetric n×nmatrix, c ∈ Rn, while r is a scalar. A1 andA2 are matrices,
b1 and b2 are vectors and x is a vector in Rn [28, Chapter 13].

Instead of linear constraints, the problem might have quadratic constraints. In these
kind of problems both the objective function and the constraint function are quadratic.
The problem is formulated as

max
x

f (x) =
1

2
xᵀQx+ cᵀx+ r subject to

{
Ax = b,
1
2x

ᵀHix+ kᵀi x+ di ≥ 0, i ∈ I
(2.5)

where the first constraint is the equality constraint, while the second are the inequality
constraints. The objective function and the equality constraint are similar to the ones in
(2.4). The matricesHi are symmetric n×nmatrices containing the non-linear elements in
the constraint function, ki ∈ Rn are vectors containing the linear elements in the constraint
function, while di are scalars [28, 27].

There are various algorithms for solving quadratic programs, such as interior point,
active set, gradient projection, conjugate gradient etc. These algorithms search for an op-
timal point in the objective function from an initial point. One method that will be used in
this thesis is the interior point method, which solves optimization problems with inequal-
ity constraints using interior points. Interior point methods can be applied to quadratic
programs as well as linear programs. Once a local maximum is reached the algorithm
terminates [28, Chapter 14 and 16]. If the objective function and constraint function are
concave functions the problem is easy to solve as there exists a global maximum. If either
the objective function or the constraint function is not concave, then the problem is diffi-
cult to solve as there might not exist maxima, or there exist several local maxima. In such
case a solution is found, but not necessarily the most optimal one. The objective function
and the constraint function are concave if and only if Q and Hi are negative semi-definite
matrices, as these are the Hessian matrices of the objective function and the constraint
function respectively.

2.2 Discrete Optimization - Heuristics
In discrete optimization at least one of the variables to be optimized is discrete. Dis-
crete optimization occurs in combinatorial optimization, which can be related to problems
within graph theory. Discrete problems have a finite number of admissible solutions and it
is always possible to find the most optimal solution by for example a brute force algorithm.
Often there are so many solutions to the problem that it is not possible to find the optimal
solution within feasible time, as will be explained in section 2.3.

Discrete optimization problems are in general harder to solve than continuous opti-
mization problems, but there are heuristic methods that are often able to solve these prob-
lems reasonably well. The heuristic methods do not necessarily lead to optimal solutions,
but might be able to find local maxima [12].
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Chapter 2. Optimization

2.3 Computational Complexity Theory
Computational complexity theory focuses on classifying computational problems accord-
ing to their difficulty, and relate the different complexity classes to each other.

Definition 2.3.1. The complexity class P consist of problems that are solvable in polyno-
mial time for a Turing machine. In other words, problems that can be solved in O(nk)
operations, where k ∈ N and n is the size of the input to the problem [10, 32].

Definition 2.3.2. The complexity class NP consist of problems that can be solved in poly-
nomial time by a non-determenistic Turing machine, or equivalently, problems that are
verifiable in polynomial time [10, 32].

A problem P1 can be reduced to a problem P2 if there exist a function f that compute
its output in polynomial time such that for p ∈ P1 then f (p) ∈ P2. Conversely, if
f (p) ∈ P2 then p ∈ P1.

Definition 2.3.3. A problem is NP-complete if it is in NP and any other NP problem can
be reduced to that problem in polynomial time. In other words:
A problem p is NP-complete if

1. p ∈ NP, and

2. All problems p′ ∈ NP is reducible to p in polynomial time [10, Chapter 34].

Examples of NP-complete problems are the boolean satisfiability problem (SAT) and
the 3-satisfiability problem (3-SAT). SAT is the problem of determining if it is possible to
set the variables to true or false in such a way that the value of the whole formula is true.
The SAT problem was the first known NP-complete problem and this is proven in [9, 23].

3-SAT is the problem of determining if a boolean formula written in 3-conjunctive
normal form (3-CNF) is satisfiable. SAT can be reduced from the 3-SAT problem [9, 19].

Definition 2.3.4. If a problem p satisfies property 2 in definition 2.3.3, but p is not neces-
sarily in NP, then p is said to be NP-hard [10].

2.4 Heuristic algorithms
Since discrete optimization problems are difficult to solve, it is difficult to create algo-
rithms that find the optimal solution. Despite the difficulty of solving discrete optimiza-
tion problems, there exists heuristic algorithms that are able to find local maxima. Two
examples are local search and simulated annealing.

2.4.1 Local Search
The local search algorithm finds an optimal solution within the subset T ∈ S, where S is
the whole solution space. The algorithm starts at a candidate solution x0, and then search
for a new optimal solution in a neighborhood of x0 named N (x0). The elements in the
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2.4 Heuristic algorithms

neighborhood X are evaluated by the objective function f . A new solution is chosen if
there exist elements in X where f (X) > f (x0). The neighborhood of the new solution
is defined, and the elements in the new neighborhood are evaluated by f . This process is
repeated until a local maximum is reached [34]. The algorithm is described in algorithm
1.

Algorithm 1 Local search

1: procedure LOCAL SEARCH(x0)
2: Define neighborhood of x0 named N (x)
3: fopt = f (x0)
4: for all x′ ∈ N (x) do
5: Calculate f

(
x′
)

6: if f
(
x′
)
> fopt then

7: xopt ← x′

8: fopt ← f
(
x′
)

9: Define N
(
x′
)

of x′

10: N (x)← N
(
x′
)

11: end if
12: end for
13: return xopt
14: end procedure

The neighborhood N (x) consists of points surrounding the point x. If, for instance,
x is a vector consisting of integer values, N (x) can be vectors where one index of x is
changed.

An example is the neighborhood for an algorithm that tries to solve maximum satis-
fiability problem (MAX-SAT). The optimization problem of MAX-SAT determines the
maximum number of clauses of a boolean formula that can be made true. Such an algo-
rithm starts by assigning a random value to each variable in the formula, and x consists of
each variable in the formula at the current state. The neighborhood N (x) consists of all
variables differing only in one value from x.

It is possible to expand the neighborhood of the local search algorithm so that it is
iteratively checking for a new solution within the neighborhood of each element in X ∈
N (x0) where f (X) < f (x0). The depth of how many neighborhoods from the candidate
solution to be checked can be infinite [34]. The algorithm is described in algorithm 2 and
is an extension of algorithm 1.

9



Chapter 2. Optimization

Algorithm 2 Basic idea of extended local search

1: procedure EXTENDED LOCAL SEARCH(x0)
2: Define neighborhood of x0 named N (x)
3: S = N (x)
4: fopt = f (x0)
5: while S 6= ∅ do
6: Choose x′ ∈ S
7: S ← S \

{
x′
}

8: if f
(
x′
)
> fopt then

9: xopt ← x′

10: fopt ← f
(
x′
)

11: Define N
(
x′
)

of x′

12: S ← N
(
x′
)

13: else
14: Define N

(
x′
)

of x′

15: S ←
{
S,N

(
x′
)}

16: end if
17: end while
18: return xopt
19: end procedure

In extended local search methods, the stack of neighborhood points to check is ex-
panded if f

(
x′
)
< fopt. The expansion stops at a certain depth away from the optimal

solution. Let τ1 be the neighborhood of xopt. Then let τ2 be the neighborhood of points in
τ1 that are worse than xopt, τ3 is the neighborhood of points in τ2 not better than xopt and
so on. The expansion stops at some neighborhood τn for some number n > 1. Since some
points might be an element in more than one neighborhood, it is useful to keep track of
which points that have already been checked by the scheme so that it is not checked more
than once. Such a list is similar to a tabu list used in tabu search [12]. Another method to
stop extended local search schemes is to stop the scheme when a better solution has not
been found after a given number of function evaluations.

One of the problems with local search is that the solution might get stuck in a local
maximum. The neighborhood can be expanded in order to escape such maxima. One
way to expand the neighborhood is to add random elements to the neighborhood, i.e.
elements not related to the initial candidate solution, and test whether this new element in
the neighborhood gets a better value than the current solution. The problem with such an
increase of the neighborhood is that it can be time consuming to compute all the elements
in the expanded neighborhood and it is also very memory consuming [13].

2.4.2 Simulated Annealing
Simulated annealing is another heuristic algorithm that searches for the optimal solution
in the solution space. Where the local search algorithm has the problem that it might get
stuck in local maxima, simulated annealing is able to escape such local maxima with a
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certain probability. The algorithm might choose to move the solution towards a worse
solution than the current one, but only with a certain probability. This probability depends
on the difference between the objective function evaluated at the current solution x and the
possibly next solution y, and a "temperature" T . Choose an element 0 ≤ ε ≤ 1. If

ε ≤ exp

(
f (y)− f (x)

T

)
, (2.6)

then y is chosen as a new current solution. The temperature decreases with each iteration
until a freezing temperature is reached. This concept is based on models in thermody-
namics, where a system moves from the current solution (state) to a candidate solution
(state). The simulated annealing algorithm is described in algorithm 3. As with local
search, simulated annealing starts with an initial solution x0.

Algorithm 3 Simulated annealing

1: procedure SIMULATED ANNEALING(x0, T )
2: Define N (x0)
3: while T > Tfreeze do
4: Choose a random element x ∈ N (x0)
5: Calculate f (x)
6: if f (x) > f (x0) then
7: x0 ← x
8: Update N (x0)
9: if f (x) > fopt then

10: xopt ← x
11: fopt ← f (x)
12: end if
13: else
14: Choose a random number ε ∈ [0, 1] from a uniform distribution
15: if 2.6 satisfied, where f (x) = x0 and f (y) = x then
16: x0 ← x
17: Update N (x0)
18: end if
19: end if
20: Update T
21: end while
22: return xopt
23: end procedure

The probability that the solution will move towards a potentially worse solution de-
creases as the temperature T decreases and the algorithm will approach to a local maxi-
mum in the last neighborhood [12, Chapter 1].
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2.5 Mixed-Integer Problem
A mixed-integer problem is a problem that combines continuous and discrete optimiza-
tion. Essentially there are some discrete variables and some continuous variables in the
optimization problem. Such problems are in general challenging to solve as they combine
the difficulty of discrete optimization and the difficulty of complex continuous functions.
In a mixed-integer problem the optimization problem is not differentiable over the whole
domain since at least one of the variables in the problem is discrete. In addition, a discrete
problem might be difficult to solve when the complexity of the problem is high, as dis-
cussed in section 2.2 and section 2.3. Thus, a mixed-integer problem is more complex to
solve than a pure continuous optimization problem or a pure discrete optimization problem
[22, Chapter 1].

The optimization problem in this thesis is an example of a mixed-integer problem as
it has one set of discrete variables and one set of continuous variables to be optimized.
The optimization of the channel selection for the Wi-Fi routers is a discrete problem as
the available channels are integers, and there are a finite number of possible channel con-
figurations for a number of networks. This optimization problem can be solved using the
heuristic methods explained in chapter 2.4. On the other hand, the optimization of the
transmit power of the Wi-Fi routers is a quadratic continuous optimization problem. This
problem can be solved using techniques for quadratic programming explained in chapter
2.1.1.
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Chapter 3
Graph Theory and NP-Complete
Problems

The optimization problem in this thesis utilizes graph coloring algorithms in order to color
the graphs related to the optimization problem. Hence, some concepts in graph theory are
necessary to explain.

3.1 Graph Theory
Definition 3.1.1. An undirected graph is a pairG = (V,E),where V andE are finite sets.
The sets V andE are called the vertex set and the edge set ofG respectively. The elements
of V are called vertices or nodes, the elements of E are called edges and are unordered
pairs of vertices [10, Appendix B].

In this thesis, an undirected graph will be referred to as a graph.

Definition 3.1.2. Let G = (V,E) be a graph.

• If V = ∅, then G is the empty graph.

• u, v ∈ V , u 6= v are adjacent if there exist an edge {u, v}.

• The degree of a vertex is the number of adjacent vertices to the vertex.

• The number of edges in G is denoted ‖G‖ or|E|.

Definition 3.1.3. A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and
E′ ⊆ E.

Definition 3.1.4. A path in a graph G = (V,E) from vertex u ∈ V to vertex v ∈ V is
a sequence of distinct vertices (v1, v2, . . . , vn) where u = v1, v = vn and (vi, vi+1) ∈
E, 1 ≤ i ≤ n− 1. The length of a path is the number of edges in the path.
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Definition 3.1.5. A graph G is disconnected if there exist vertices u and v in G such that
no path in G has those vertices as endpoints.

1

2 3

4

5

Figure 3.1: A graph with a subgraph consisting of vertices {4, 5}. Vertices {4, 5} are disconnected
from vertices {1, 2, 3}.

Definition 3.1.6. The density of a graph is defined as

D =
2|E|

|V |
(
|V | − 1

) , |V | > 1, (3.1)

where |E| is the number of edges and |V | is the number of vertices in the graph.

Definition 3.1.7. Let G = (V,E) be a graph. The coloring of the vertices in G is the
function c : V → {1, 2, . . . , k} ⊆ N such that c(u) 6= c(v) for any {u, v} ∈ E, u, v ∈ V .
The chromatic number of G is the smallest number of colors needed to color the vertices
of G and is denoted by χ(G). The graph is called k-colorable if and only if the number of
colors needed to color the graph is k, k ∈ N.

3.2 NP-complete Problems Related to Graph Theory
Definition 2.3.3 shows that in order to prove that a problem is NP-complete, it is sufficient
to show that the problem is in NP and that some known NP-complete problem can be re-
duced to the new problem in polynomial time. Thus, if a known NP-complete problem
can be reduced to a new NP problem, the new problem is itself an NP-complete problem.
Stephen Cook and Leonid Levin worked on NP-complete problems and both proved in-
dependently of each other that the Boolean Satisfiability Problem is NP-complete [9, 23].
Richard Karp later proved that 21 other problems also are NP-complete [19].

3.2.1 3-coloring
The graph coloring problem is to compute the chromatic number of a graph. The k-
colorable decision problem is the decision problem of determining whether a graph G is
k-colorable. When k = 3 the problem is called the 3-coloring problem.

Theorem 3.1. The 3-coloring problem is NP-complete.

Proof. See [19].
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1

2 3

Figure 3.2: An example of a 3-colorable graph.

3.2.2 Clique
Definition 3.2.1. A clique in a graph G = (V,E) is a subset V ′ ⊆ V such that all pairs
of vertices in V ′ are connected by an edge in E. The size of a clique is

∣∣V ′∣∣ [10].

The decision problem of finding a clique, is the decision problem of determining
whether there exists a clique of size at least k, k ∈ N, in the graph. The clique prob-
lem is proven to be NP-complete for cliques of size k ≥ 4 [19].

1

2 3

4

5

6

Figure 3.3: An example of a clique of size four in a graph. Vertices {1, 2, 3, 4} are all vertices in
the clique, bold edges are edges in the clique.

Theorem 3.2. If there exist a clique of size k ≥ 4 in a graph G, then G is not 3-colorable.

Proof. AssumeG = (V,E) is a graph with a clique of size k ≥ 4 and that it is 3-colorable.
Let V ′ = {v1, v2, . . . , vk} ⊆ V be the set of vertices in the clique. Choose three aribtrary
vertices vr, vs, vt ∈ V ′. Since these vertices are all elements in V ′, they are all adjacent.
Thus c (vr) 6= c (vs), c (vr) 6= c (vt) and c (vs) 6= c (vt). Then choose an arbitrary vertex
vl ∈ V ′. This leads to c (vl) = c (vr), c (vl) = c (vs) or c (vl) = c (vt), but since vl is
adjacent to {vr, vs, vt}, it cannot be colored with either of those colors, which contradicts
the assumption that the graph is 3-colorable. Thus the graph can not be 3-colorable.
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Chapter 4
Coloring Algorithms

We will discuss two algortihms in this chapter, the algorithm named Least Congested
Channel Selection (LCCS) which is used in several of today’s Wi-Fi routers for channel
selection, and the algorithm named DSATUR which is a greedy coloring algorithm. There
are no standard algorithm for channel selection in today’s Wi-Fi routers. We choose to
focus on one algorithm, namely LCCS, since it is easy to implement as a graph coloring
algorithm.

Note that the coloring algorithms does not solve the whole optimization problem, only
an approximation of the discrete part of the problem. Furthermore, the transmitted powers
are assumed to be fixed for the coloring algorithms.

4.1 Interference Between Wi-Fi Networks
As mentioned in the introduction, the quality of a Wi-Fi network is measured by the SNI
values, and the SNI values are calculated by equation (1.1). For the graph coloring algo-
rithms, it is interesting to know which networks that potentially interfere the most with
each other, and make sure these networks get different channels.

In order to calculate the possible signal-to-interference between each pairs of networks,
some assumptions are made. It is assumed that there are only two networks interfering with
each other and the thermal noise is equal to zero. With these assumptions, equation (1.1)
simplifies to Pjhjj/Pihji, for networks 1 ≤ i ≤ n and 1 ≤ j ≤ n, i 6= j. Taking the
logarithm of this fraction gives

log

(
Pj · hjj
Pi · hji

)
= log

(
Pj · hjj

)
− log

(
Pi · hji

)
. (4.1)

The possible signal to interference values between the different networks are given by the
matrix

Λj,i = min
(

log
(
Pj · hjj

)
− log

(
Pi · hji

)
, log (Pi · hii)− log

(
Pj · hij

))
, (4.2)
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where Λ is a symmetric n × n matrix and is called the interference matrix. The diagonal
elements will be equal to zero as there is no interference between a network and itself
[25]. The edges in a graph illustrating the networks are created from the values calculated
in equation (4.2).

Note that equation (4.1) is used only to calculate the signal-to-interference values in
Λ. The SNI value for each network is calculated by equation (1.1).

4.2 LCCS
LCCS is a method created by Cisco Technology Inc. in order for a communication device
to choose the least congested channel [3]. The technology helps a device to choose the
least congested channel by determining which channel has the fewest associated wireless
client devices and lowest data traffic flow. It is possible to convert this channel selection
algorithm into a graph coloring algorithm where the vertices to be colored are chosen in a
random order. This coloring method is shown in algorithm 4. The interference matrix Λ,
calculated by equation (4.2), is taken as an input for LCCS.

Algorithm 4 LCCS

1: procedure LCCS(Λ)
2: Define number of available colors
3: while Uncolored vertices do
4: Choose a random uncolored vertex v ∈ V
5: Create a vector Λv , the interference between node v and all the other nodes
6: Sort Λv
7: Choose the color with lowest interference to v based on the values in Λv
8: end while
9: return Coloring of the vertices in the graph

10: end procedure

This algorithm is a naive algorithm where vertices to be colored is chosen in a random
order, and the running time of the LCCS coloring algorithm is O(n2 log n) where n is the
number of vertices in a graph to be colored. This is concluded from the sorting inside the
while-loop in algorithm 4.

4.3 DSATUR
DSATUR is a heuristic and greedy algorithm that colors the vertices of a graph. The name
is based on the fact that the algorithm uses the degree of saturation for each vertex in order
to determine which vertex is the next to be colored. The algorithm was first described in
1979 [8] and it is one of the most analyzed graph coloring algorithms. In the first step it
uses the number of edges (degree) for each vertex to decide which vertex to color first.
The next vertex to be colored is determined by the degree of saturation for each vertex.
The degree of saturation is defined as the number of distinctly colored vertices a vertex
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is adjacent to. A description of the algorithm is shown in algorithm 5. The coloring
produced by DSATUR corresponds to coloring a clique, and the size of this clique gives a
lower bound for the coloring. DSATUR colors a graph using k colors with running time
O(m log n) where m is number of edges in the graph and n is the number of vertices in
the graph [33].

Algorithm 5 DSATUR

1: procedure DSATUR
2: Sort vertices in V in decending order by their degree
3: Color a vertex with maximal degree with color 1
4: Update degree of saturation for the vertices adjacent to the colored vertex
5: while Uncolored vertices do
6: Find v ∈ V with highest saturation degree
7: if More than one v with highest saturation degree then
8: Choose a vertex with maximum degree among those with highest satura-

tion degree
9: end if

10: Color v with the lowest color class that is not used to color any vertices adja-
cent to v

11: if No existing color class possible then
12: Create a new color class and color v with this color
13: end if
14: Update degree of saturation
15: end while
16: return Coloring of the vertices in the graph
17: end procedure

In some cases, there will be devices connected to the internet that has a static channel,
i.e. the channel is fixed and cannot be changed. In a graph coloring perspective, this will
lead to vertices having a fixed color that cannot be changed. This constraint give a new
complexity to the DSATUR algorithm. In such cases, simple modifications can be made
to the DSATUR algorithm in order to take into account the vertices with fixed coloring.
More information about modified DSATUR is found in appendix B.

4.4 Implementation of DSATUR
In the implementation of DSATUR, the algorithm runs inside a for-loop where the density
of the graph to be colored increases through each iteration. The iterations continues until
DSATUR cannot find a 3-colorable solution of the graph. A 3-coloring solution is impor-
tant because of the practical aspect to be used in Wi-Fi routers on the 2.4 GHz band. The
implementation of DSATUR is described in algorithm 6.

In algorithm 6 the edge set E of a graph is created by using the interference matrix Λ
and an index i. Note that the values in the interference matrix are SNI values, which means
that a low value in Λ means high interference between the two networks. The interference
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between all the vertices in V are sorted in increasing order in a vector Λsorted. An edge
{u, v} ∈ E is created if the interference value between node u and v in Λ is smaller than
or equal to the interference in the i’th position in Λsorted. The index i increases by one
through each iteration in algorithm 6 until it reaches an upper limit, and the upper limit
is set to be the minimum value of 2.522 · |V | and |V ||V−1|2 . The first value is a result
given in [4] which says that almost all graphs with 2.522 · |V | edges are not 3-colorable,
the later value is the number of edges between all the vertices in |V |. In other words, the
algorithm will produce graphs with the same vertex set, but with an increasing density.
The implementation of DSATUR will eventually get c (G) > 3 for all G where |V | > 3.
This is due to the fact that there will eventually be created a graph with χ (G) > 3.

Algorithm 6 Implementation of DSATUR

1: Create an interference matrix Λ with the interference between the vertices in V
2: Create a sorted list Λsorted with the various interferences in Λ
3: Assign a start value, istart, for the index i from Λsorted

4: Find minimum of 2.522 · |V | and |V ||V−1|2 , and round the answer to the closest integer
iend

5: for i from istart to iend do
6: Find the interference Λu,v at the i’th position in Λsorted

7: Create edges between the vertices with interference less than or equal to Λu,v
8: Run DSATUR to obtain a coloring for the graph G
9: if c(G) = 3 then

10: Save the graph, the coloring of the graph and i
11: else if c (G) > 3 then
12: Break
13: end if
14: end for
15: return The coloring of the densest graph that was 3-colorable, and the highest inter-

ference between two vertices of the same color.

To save computation time in algorithm 6, DSATUR can be executed only when the
newest edge to be added to the graph is between two nodes with the same coloring, and
thus the coloring of the graph becomes improper. If the newest edge is between two nodes
with different colorings, the for-loop in algorithm 6 might continue without DSATUR
being executed.

If there would be two vertices u and v with the same fixed color and they have an
interference Λu,v between each other, then the program in algorithm 6 would assign an
edge {u, v} when Λu,v ≤ Λsorted (i). This will lead to an improper coloring of the graph,
because c(u) = c(v). Since the DSATUR algorithm has no control over what vertices that
has a fixed color in a real-life scenario (i.e. which Wi-Fi routers that has a fixed channel),
the edges between such vertices are removed and ignored.
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Chapter 5
Integrated Algorithms

In this chapter, three optimization schemes for optimizing signal strength are proposed.
The schemes named One Color and All Colors utilizes optimization schemes for quadratic
programming, while the scheme named Power Reduction is using a very simple iterative
optimization technique. These schemes alternate between coloring the graph and optimize
the signal strengths.

When the signal strength are being adjusted, the coloring of the nodes in the graph are
fixed. In other words, the signal strength are optimized for a fixed coloring obtained by
the graph coloring algorithms in chapter 4.

5.1 Optimization of Transmitted Power
The goal of the optimization is to maximize the smallest SNI value defined in equation
(1.1), in other words maximizing the transmitted power of the networks/nodes with lowest
SNI value. The mathematical model is shown in expression (1.2). This non-smooth un-
constrained optimization problem can be rewritten to a smooth constrained optimization
problem by introducing an auxiliary variable t [28, Chapter 12]. The objective function is
then f = t, and is constrained by all the j SNI values, i.e. t ≤ SNIj (P ) for all j. From
equation (1.1) the constraint function for this optimization problem is thus

gj (P, t) = Pjhjj − t

Nj +
∑
i,i6=j

c(j)=c(i)

Pihji

 ≥ 0. (5.1)

The optimization problem for optimizing the SNI values is thus on the form

max
P,t

t subject to gj (P, t) ≥ 0. (5.2)
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From equation (5.1) and (5.2) it is possible to rewrite the optimization problem to a
linear optimization problem with quadratic constraint. The objective function is written as

max
P,t

dᵀx, (5.3)

where x ∈ Rn+1 is a vector where the first element represent t and elements 2, 3, · · · , n+1
represents Pj for node 1 ≤ j ≤ n. From the structure of the objective function, d ∈ Rn+1

is equal to
[
1, 0, · · · , 0

]ᵀ
.

The constraint function is written as

gj (P, t) =
1

2
xᵀHjx+ kᵀj x ≥ 0, (5.4)

where x is the same as for the objective function, Hj ∈ Rn+1×n+1, 1 ≤ j ≤ n are
the Hessian matrices of the function gj in equation (5.1) for the j nodes. The non-zero
elements in the Hj matrices will be the nodes having the same coloring as node j since
the summation in equation (5.1) is only for nodes having the same color. kj ∈ Rn+1 are
vectors containing the linear elements in equation (5.1). These vectors will thus be of the
form

[
−Nj , 0, · · · , 0, hjj , 0, · · · , 0

]ᵀ
, where the non-zero element hjj is the j’th element

in kj .
Problems with this kind of structure can be solved in MATLAB by using the built-

in function FMINCON [27, 26]. FMINCON is used to solve optimization problems in the
schemes that are used in the work of this thesis. These schemes are described below in
section 5.2. Since FMINCON finds a minimum of the function, the optimization problem
in expression (5.2) needs to be reformulated as a minimization problem for the implemen-
tation. This is done by writing

min
P,t
−t subject to − gj (P, t) ≤ 0, (5.5)

and using equation (5.5) for the implementation of the optimization schemes.
The convexity of the problem decides if the optimization problem in 5.5 has local

maxima. If the objective function and the constraint function both are concave, then the
optimization problem has a global maximum. The objective function is linear, which
means that it is both concave and convex. The constraint function is nonlinear, which
means it is necessary to check if the matrices Hj are negative semi-definite in order to
determine if the constraint function is concave.

The matrices Hj are of the form

Hj =

[
0 ĥ

ĥᵀ 0

]
,

where ĥ = −
[
hj,1 hj,2 · · · hj,j−1 0 hj,j+1 · · · hj,n

]
.

Now let P be a vector of the form
[
P1 · · ·Pn

]ᵀ
, and let x be a vector x =

[
t P

]ᵀ
.

Then
xᵀHjx = 2tĥP,

which means that Hj are indefinite matrices since t and P can be both can be positive or
negative or one is positive while the other is negative. Thus, xᵀHjx can be both greater
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than 0 or smaller than 0. Due to this, the constraint function is not concave and the method
might converge to a local maximum.

5.2 Optimization Schemes
The optimization of the transmit powers for each network depends on the channel of each
network. Thus the optimization schemes alternate between coloring the graph G and op-
timize the powers P using the current coloring of G in each iteration. Due to the inde-
pendence in interference between the nodes having different coloring, two optimization
schemes, One Color and All Colors, are proposed. In addition, one simple scheme where
the power of the best network is reduced, Power Reduction, is proposed.

5.2.1 Optimization Scheme - One Color
Due to the independence in interference between the different colors, the optimization of
the powers of the nodes can be performed independently for each color in the graph. Thus
the optimization algorithm FMINCON is performed for each color in the graph.

The first scheme proposed, One Color, optimize the powers P for the nodes with the
coloring having the lowest calculated SNI value. In iteration one, before any optimization
of the powers, the two closest interfering nodes with the same color decide the first color to
be optimized. This is done by searching for the lowest value in the interference matrix from
equation (4.2). From iteration two, the lowest calculated SNI value is the one deciding the
next color in the graph to be optimized. The process repeats as long as the new lowest
calculated SNI value is higher than the previous one. The scheme is described in algorithm
7.

Algorithm 7 One Color

1: while lowest SNI value greater than previous lowest SNI value do
2: Color the graph
3: if First iteration then
4: The color i to be optimized is chosen by the corresponding color of the two

nodes with lowest values in the interference matrix Λ with the same color
5: else
6: The color i to be optimized is chosen by the corresponding color of the node

with the lowest calculated SNI value
7: end if
8: Optimize the powers P for the nodes with color i using FMINCON
9: end while

5.2.2 Optimization Scheme - All colors
In the second proposed optimization scheme, All Colors, the power for all of the colors
in the graph are optimized independently at the same time. In other words, the power of
all the nodes in the graph are optimized. As for the first optimization scheme, FMINCON
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is used for the optimization of the power for each color. The scheme continues as long
as the new coloring of the graph is different from the previous coloring of the graph. The
coloring of the graph might change as the interference matrix from equation (4.2) changes
with new powers. The scheme is described in algorithm 8.

Algorithm 8 All Colors

1: while New coloring of the graph different from previous coloring of the graph do
2: Color the graph
3: Optimize the power P for all the nodes in the graph. The power for the nodes with

coloring i are optimized independently of the nodes with coloring j, i 6= j
4: end while

5.2.3 Optimization Scheme - Power Reduction
In the last proposed optimization scheme, Power Reduction, the initial power for all the
nodes are set to max. After the graph is colored and the SNI values for all the nodes are
calculated, the power of the node with the highest SNI value is lowered by 10 %. Several
percentages were tested, such as 5 %, 20 % and 50 %, but 10 % was the one usually
giving the highest lowest SNI value. The tests were conducted on both graphs with a small
amount of nodes and a large amount of nodes with both giving the same results. The
number of iterations necessary for Power Reduction was the same for all reduction values
of the best SNI value.

The new SNI values and interference matrix are calculated using equation (1.1) and
equation (4.2) and the graph is then colored again. The process continues as long as the
lowest SNI value is increasing compared to the previous lowest SNI value. The scheme is
described in algorithm 9.

Algorithm 9 Power Reduction

1: while Lowest SNI value higher than previous lowest SNI value do
2: Calculate interference matrix Λ
3: Color the graph
4: Calculate SNI values
5: Lower the power of the node with the highest SNI value by 10 %
6: end while
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Implementation

The algorithms described in chapters 4 and 5 are implemented together to obtain useful
results. The coloring is performed by DSATUR (algorithm 5), while the optimization of
the transmitted powers are performed by One Color (algorithm 7) or All Colors (algorithm
8). In addition, the discrete heuristic optimization of the coloring is performed by using
local search (algorithm 2) or simulated annealing (algorithm 3). Choice of neighborhood
of local search and simulated annealing is described in section 6.2. The implementa-
tion consists of three main parts: the initialization of necessary variables, an alternating
optimization of the most optimal solution consisting of a coloring algorithm and an opti-
mization scheme, and in the end a heuristic algorithm for a possibly better optimization of
the coloring of the graph.

From these algorithms there are two different main methods: i) alternating optimiza-
tion that is performed by using DSATUR and continuous optimization schemes and ii) al-
ternating optimization combined with discrete optimization performed by local search or
simulated annealing.

In addition, an alternating scheme using Power Reduction (algorithm 9) is imple-
mented. DSATUR is used to color the graph in this scheme as well.

6.1 Alternating Optimization
After all the necessary variables are assigned, the graph is then colored using algorithm 5.
Then the powers of the nodes in the graph are optimized by using algorithm 7 or 8. The
scheme will continue to run as long as the new lowest calculated SNI value is higher than
the previous one, or until the new coloring of the graph is equal to the previous coloring of
the graph. The stopping criteria depend on whether algorithm 7 or 8 is used. If algorithm
7 is used, the scheme stops when the lowest SNI value is not increasing, if algorithm 8
is used, the scheme stops when no new coloring is found. The alternating optimization
scheme is described in algorithm 10.
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Algorithm 10 Alternating Optimization

1: while A better coloring or better optimized values for P is found do
2: Optimize the P s using algorithm 7 or 8, algorithm 5 is used to color the graph G
3: end while

In addition to the scheme in algorithm 10, the scheme described in section 5.2.3 is
implemented as its own scheme where the coloring of the graph is performed by DSATUR.

6.2 Local Search and Simulated Annealing
At the end of the implementation, the discrete heuristic optimization of the coloring is
performed by either local search or simulated annealing. If either local search or simulated
annealing finds a better coloring than the previous one, the powers for all the nodes in the
graph are optimized for the new coloring. The implementation for the heuristic algorithm
local search is described in algorithm 11.

Algorithm 11 Heuristic

1: Create neighborhood for the heuristic discrete optimization
2: while Neighborhood not empty or stopping criteria not satisfied do
3: Perform a heuristic discrete optimization of the coloring of G using local search
4: Calculate SNI values
5: if new lowest SNI value higher than current lowest SNI value then
6: Create new neighborhood for the heuristic discrete optimization
7: end if
8: end while

The implementation of the heuristic algorithm using simulated annealing looks very
similar to the one in algorithm 11. The difference is in the stopping criteria for the while-
loop, where simulated annealing stops when the "freezing temperature" is reached (see
algorithm 3). In addition, the neighborhood for simulated annealing is changed if the
criterion in line 5 in algorithm 11 is satisfied or if equation 2.6 is satisfied.

The neighborhood for the discrete optimization schemes is created from the color-
ing given by DSATUR from algorithm 10. The colorings throughout the iterations that
were not considered as the best colorings are used in the neighborhood. This is because
DSATUR optimizes the pairwise interferences in the interference matrix Λ, while the dis-
crete optimization algorithms optimizes the SNI values. In addition, neighborhood ele-
ments are created where the coloring of each node is changed exactly once. These color-
ings are created in such a manner that the coloring of exactly one element differ from the
coloring of the current discrete solution. If the graph consists of n nodes, n such elements
in the neighborhood are created. Furthermore, neighborhood elements are created in such
a way which is explained for the neighborhood of extended local search when an element
is not better than the current solution. Two completely random colorings were also used
as part of the neighborhood, to possibly escape a local maximum to a point giving a better
solution. Only two random elements were created due to limitations in computing time.
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The function used in order to test whether a coloring in the neighborhood is better than
the current coloring is the lowest calculated SNI value. When a coloring in the neighbor-
hood is evaluated, the powers are optimized for the current coloring to be checked. Further
the corresponding SNI values are calculated and compared with the current solution. If the
coloring in the neighborhood obtain a higher lowest SNI value than the current solution,
this coloring is chosen as the new current solution.

6.3 Proposed Algorithms
The final implementation scheme consists of the initialization, algorithm 10, and algorithm
11. The full implementation is described in algorithm 12. In the end of the implementation,
the SNI values for all the networks are calculated by equation (1.1).

Algorithm 12 Implementation

1: Create points for the graph G
2: Assign values to necessary variables α, hjj , hji, N , x0, lower- and upper bound
3: Run algorithm 10
4: Run algorithm 11
5: Calculate SNI values for all the nodes in G

The reason for using the heuristic methods after the coloring algorithm and optimiza-
tion scheme is finished in the initial part of algorithm 12 is because the time to run the
heuristic methods are longer than the time to run the coloring algorithms and the optimiza-
tion schemes. Thus, since the heuristic methods are run after the alternating optimization,
only the best coloring from that part is taken into account in the heuristic algorithms, sav-
ing computational time.

Algorithm 12 is used in order to obtain numerical results and analyze how well the var-
ious optimization schemes and discrete heuristic algorithms compares to each other. Thus,
all the different optimization schemes and discrete heuristic algorithms are implemented
and tested.
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Chapter 7
Results

Since the practical use of the graph coloring and mathematical optimization is for Wi-
Fi routers, the numerical experiments are thought to resemble an environment containing
several Wi-Fi routers. Thus, the numerical experiments simulate networks in an apartment
building, such as the one in figure 7.1. It is thought to be one network in each apartment,
and the position of the Wi-Fi routers and clients are created at random.

Figure 7.1: An apartment building used as an example for the algorithms in order to simulate a
somehow realistic environment. Figure by Torleiv Maseng.

In the numerical experiments, the algorithm used today, LCCS, is compared with
the coloring algorithm DSATUR, without any optimization scheme. Then DSATUR and
LCCS without any optimization is compared to the alternating optimization schemes where
DSATUR is implemented with an optimization scheme. Additionally, the performance of
the simple iteration optimization scheme Power Reduction with DSATUR used as coloring
algorithm is tested. In the end, the results of the alternating optimization are compared to
the results when one of the discrete heuristic optimization algorithms is implemented. In
addition, each heuristic algorithm is compared to each other.

The tests in this chapter are performed for a number of small graphs consisting of eight
nodes and a number of large graphs consisting of 112 nodes. In addition, an apartment
complex in Oslo, Lusetjern, is simulated and the algorithms are tested on this correspond-
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ing graph as well. Example of these three different graphs and corresponding colorings
are shown in figures 7.2, 7.3 and 7.4. These figures shows the coloring of a graph in the
last iteration where DSATUR managed to find a 3-coloring of the graph.

Lusetjern consists of two apartment buildings with 60 apartments in total, 36 apart-
ments in building one and 24 apartments in building two. Each apartment is assumed to be
identical and the AP in each apartment is assumed to be placed in the same position. The
clients in each apartment are assumed to have random position with a distance between 0
and 10 from the AP.

Figure 7.2: The 3-coloring of a graph containing eight nodes. The coloring is performed by
DSATUR. The thin edges represents the interference between the nodes, whereas the thick black
line shows the biggest interference between two nodes with the same color. The thick black line is
not an edge in the graph. The x- and y-axis are physical positions. Note that the graph is in 3D, but
this figure only shows the x- and y-axis.

The code running the coloring algorithms and optimization methods is written in MAT-
LAB and the code is executed on a calculation server named Markov that is owned by the
Department of Mathematical Sciences at NTNU.

7.1 Numerical Values - Initialization
At first, in the numerical experiments, numerical values are assigned to the necessary
variables. The position of the nodes representing the access points and corresponding
client are created at random, but with the requirement that the positions resembles an
apartment building with possibly several floors. The distance between the access points
and clients for all the networks are limited to be a value between 0 and 10.

The propagation constant α is set equal to 3, taken from a result given in [16], since it
is assumed that in a realistic scenario there are several Wi-Fi routers inside an apartment
building. The path loss is given by the distance between the different networks raised to
the power of the propagation constant.
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Figure 7.3: The 3-coloring of a graph containing 112 nodes. The coloring is performed by
DSATUR. The thin edges represents the interference between the nodes, whereas the thick black
line shows the biggest interference between two nodes with the same color. The thick black line is
not an edge in the graph. The thick black line is not an edge in the graph. The x- and y-axis are
physical positions. Note that the graph is in 3D, but this figure only shows the x- and z-axis.

Figure 7.4: The 3-coloring of a graph resembling Lusetjern. The coloring is performed by
DSATUR. The thin edges represents the interference between the nodes, whereas the thick black
line shows the biggest interference between two nodes with the same color. The thick black line is
not an edge in the graph. The thick black line is not an edge in the graph. The x- and y-axis are
physical positions. Note that the graph is in 3D, but this figure only shows the x- and z-axis.

The thermal noise is calculated by using equation A.1 and equation A.2, where we
used the bandwidth equal to 20 · 106 Hz and the temperature equal to 298 K. The lower
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bound and upper bound for the optimization scheme are 0 and 20 respectively by [21], and
the initial point x0 for the optimization scheme is somewhere between the lower bound
and the upper bound.

7.2 DSATUR Compared to LCCS
To begin with, the two coloring algorithms DSATUR and LCCS are tested and compared
to each other in order to test the two coloring algorithms’ performances. Initially only
the coloring of the graphs are tested, and no optimization techniques are applied. The
performances of the two algorithms are tested by comparing their smallest SNI values, and
comparing the highest interference between two interfering nodes from the interference
matrix Λ. Since DSATUR is designed to minimize the worst interference between two
nodes with the same coloring, i.e. optimize the values in the interference matrix, the results
for the lowest SNI value between two interfering nodes from the interference matrix are
presented, in addition the lowest SNI values. In this section, the powers for all the nodes
are set to their maximum value since there is no optimization schemes applied. The results
are collected from simulations performed on 10000 various graphs.

7.2.1 Graphs with Eight Nodes
First, the performances of DSATUR and LCCS were compared on graphs consisting of
eight nodes. The smallest SNI value for each graph were calculated for DSATUR and
LCCS, and the results are plotted in the left box plot in figure 7.5. In the box plots, the
red points outside the whiskers are outliers, i.e. points that are more than 1.5 times the
interquartile range from the top or bottom of the box. From the interference matrix Λ, the
interference, or SNI value, between two networks on the same channel can be obtained.
Again, Λ shows SNI values, in other words, higher value in Λ means less interference
between two networks. The right box plot in figure 7.5 shows the results of the highest
interferences between two networks on the same channel for DSATUR and LCCS.

The calculated mean and median values for DSATUR and LCCS regarding lowest SNI
values and lowest SNI values between two interfering networks are shown in table 7.1a
and table 7.1b respectively. In addition to the calculated mean and median, the number of
times the different algorithms had the best performance for the different graphs has been
counted. The number is shown in the column named "# Best" in the tables and shows
the best performance regarding lowest SNI values and lowest SNI values between two
interfering nodes. If two or more algorithms have the best performances for the same
graph then both algorithms are counted for that graph. All the numbers in the tables are
dimensionless. In addition, the highest mean and median value and the highest count of
best performances are marked with red color in the tables.

From the left box plot in figure 7.5, DSATUR and LCCS obtain almost the same lowest
SNI value and performs very similarly. The right box plot in figure 7.5, showing the
interference between two networks, shows that the median value of DSATUR is better
than the median value of LCCS. Thus the performance of DSATUR was overall better,
even though it did not perform any better than LCCS regarding lowest SNI value, which
is the goal to improve.
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Figure 7.5: Box plots of the results for LCCS (first row) and DSATUR (second row) from 10000
different graphs containing eight nodes. The left box plot shows the lowest SNI value, while the
right box plot shows the lowest SNI values between two interfering nodes from Λ.

Mean Median # Best
LCCS 14.6864 15.4157 6485

DSATUR 14.6437 15.3774 3973

(a) Mean, median and number of graphs with
best performance for LCCS and DSATUR re-
garding lowest SNI values.

Mean Median # Best
LCCS 21.1267 21.5782 684

DSATUR 23.4845 23.7891 10000

(b) Mean, median and number of graphs with
best performance for LCCS and DSATUR re-
garding lowest SNI values between two inter-
fering nodes.

Table 7.1: Calculated values for graphs containing eight nodes.

The results shown in tables 7.1a and 7.1b resembles the results in the box plots.
DSATUR and LCCS performed approximately equally well with the calculated mean and
median for the lowest SNI values. Additionally, LCCS and DSATUR performed exactly
equally well for 458 of the graphs with respect to lowest SNI values. When it comes to
the interference, DSATUR performed better than LCCS and the count shows that LCCS
performed better than DSATUR for no graphs. For 684 of the graphs DSATUR and LCCS
performed equally well regarding interference.

In conclusion, for small graphs DSATUR and LCCS are quite similar in terms of per-
formance. When looking at the biggest interference between two networks on the same
channel DSATUR performs in general better than LCCS. This is probably due to the fact
that DSATUR minimize the worst interference between two nodes with the same color-
ing. When it comes to the lowest SNI values, DSATUR and LCCS are almost equally
good. This is a surprising result as it was thought that DSATUR would perform better
than LCCS. The reason for this result might be that DSATUR minimizes the worst inter-
ference between two nodes with the same coloring, but this minimization does not lead to
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higher SNI values. When the SNI values are calculated, the coloring of the whole graph is
considered, not only the pairwise interference between two nodes.

7.2.2 Graphs with 112 Nodes
Next, the performance of DSATUR and LCCS were compared on graphs consisting of 112
nodes. The same measurements were done for the big graphs as for the small graphs. The
box plot for the lowest SNI values, and the box plot for the highest interference between
two nodes with the same color are shown in figure 7.6.

Figure 7.6: Box plots of the results for LCCS (first row) and DSATUR (second row) from 10000
different graphs containing 112 nodes. The left box plot shows the lowest SNI value, while the right
box plot shows the lowest SNI values between two interfering nodes from Λ.

Mean Median # Best
LCCS 4.9744 4.6868 6283

DSATUR 4.9406 4.6522 3717

(a) Mean, median and number of graphs with
best performance for LCCS and DSATUR re-
garding lowest SNI values.

Mean Median # Best
LCCS 9.2546 9.6237 707

DSATUR 11.0737 11.2748 10000

(b) Mean, median and number of graphs with
best performance for LCCS and DSATUR re-
garding lowest SNI values between two inter-
fering nodes.

Table 7.2: Calculated values for graphs containing 112 nodes.

Again, for the SNI values DSATUR and LCCS performed almost equally well. Table
7.2a shows the calculated mean and median for DSATUR and LCCS based on the lowest
SNI values and the number of graphs the two algorithms performed the best. These results
shows that LCCS’ mean and median value were slightly better than DSATUR. The count
for how many graphs LCCS and DSATUR had the best performance shows that LCCS
performed better than DSATUR for a lot more graphs.
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Looking at the box plot for the highest interferences between two nodes with the same
color, it is again clear that DSATUR performed much better than LCCS. Table 7.2b shows
the calculated values for the interference and the number of times the algorithms had the
best performance. Based on these results, it is again clear that DSATUR performed better
than LCCS overall. This time DSATUR and LCCS performed equally well for 707 graphs,
which again means that for most of the graphs DSATUR performed better than LCCS
regarding highest interference between two networks.

7.2.3 Graphs Resembling Lusetjern
At last, the graphs resembling the apartment complex in Lusetjern were tested. Since it
is approximately the same graph being tested over and over again, only 100 simulations
were conducted. The box plots from the 100 simulations for the lowest SNI values and
highest interference between two nodes are shown in figure 7.7.

Figure 7.7: Box plots of the results for LCCS (first row) and DSATUR (second row) from 100
graphs resembling Lusetjern. The left box plot shows the lowest SNI value, while the right box plot
shows the lowest SNI values between two interfering nodes from Λ.

Mean Median # Best
LCCS 8.7231 8.6165 65

DSATUR 8.7286 8.6152 35

(a) Mean, median and number of graphs with
best performance for LCCS and DSATUR re-
garding lowest SNI values.

Mean Median # Best
LCCS 12.0067 12.1225 9

DSATUR 13.2406 13.2145 100

(b) Mean, median and number of graphs with
best performance for LCCS and DSATUR re-
garding lowest SNI values between two inter-
fering nodes.

Table 7.3: Calculated values for graphs resembling Lusetjern.
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The left box plot in figure 7.7 shows that the difference in lowest SNI value for
DSATUR and LCCS is small. The calculations in table 7.3a shows the same.

The box plot for the biggest interference between two nodes with the same color,
shown in the right box plot in figure 7.7, shows that DSATUR performed significantly
better than LCCS. Table 7.3b leads to the same conclusion. The count for which algorithm
that performed the best regarding highest interference shows that DSATUR and LCCS
performed equally well for 9 graphs.

Overall the results for the simulations representing Lusetjern were quite similar to the
results for the small and big graphs.

In the end, it turns out that DSATUR and LCCS performs approximately equally well
regarding lowest SNI values, while DSATUR performs better than LCCS regarding getting
the lowest most critical interference between two interfering nodes. The last result is
expected since DSATUR minimizes the interference between nodes with the same color.
LCCS on the other hand chooses nodes in a random order.

The fact that DSATUR and LCCS appears to have similar performances regarding
lowest SNI values is a surprising result. As mentioned, it was thought that DSATUR would
perform better than LCCS. This result might be interpreted that the order the networks are
assigned a channel in terms of the lowest experienced SNI values is not that important.
This might be due to the fact that DSATUR only minimizes the pairwise interference
between nodes, and not the total interference between all nodes in the graph. It is possible
that the minimization of the pairwise interferences between nodes do not affect the result
of the calculated SNI values, where the interference from a node to all other nodes with
the same coloring is taken into consideration.

Computation times for both LCCS and DSATUR are both very short. For small graphs,
as well as large graphs, the computation time is less than one second for both LCCS and
DSATUR. LCCS uses typically less than one hundredth of a second to color graphs con-
taining eight nodes, while DSATUR typically uses around seven hundredths of a second to
color similar graphs. When it comes to graphs containing 112 nodes, LCCS typically uses
slightly more than one hundredth of a second to color the graph while DSATUR typically
uses around three tenths of a second to color the graph. The difference in computation time
between LCCS and DSATUR is bigger for large graphs than small graphs, but both are still
relatively fast. Since the code is written in MATLAB it probably affects the computation
time, and the code will probably execute faster if it is written in another language.

7.3 Alternating Optimization
After the coloring algorithms were tested, a comparison of the performance between col-
oring without optimization of the signal strengths and coloring with optimization of the
signal strength was conducted. Algorithms 7 and 8 were tested and implemented in the
alternating optimization scheme, algorithm 10. In addition, the Power Reduction scheme
in algorithm 9 was tested.
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7.3.1 Graphs with Eight Nodes
First, the alternating optimization algorithms were tested on small graphs containing eight
nodes. The box plots in figure 7.8 shows the results for the alternating optimization algo-
rithms, as well as DSATUR and LCCS. From the left box plot it is clear that coloring with
power optimization performs better than coloring without power optimization in terms of
smallest SNI value. Algorithm 7 and algorithm 8 both performed similarly well, while
Power Reduction performed slightly worse, but still better than DSATUR and LCCS.

Figure 7.8: Box plots of the results for the three alternating optimization schemes (Power Reduction,
All Colors and One Color), LCCS and DSATUR from 10000 different graphs containing eight nodes.
The left box plot shows the lowest SNI value, while the right box plot shows the lowest SNI values
between two interfering nodes from Λ.

Mean Median # Best
Power

Reduction 16.1148 16.9514 3300

All Colors 17.5577 18.2846 4105
One Color 16.9804 17.6924 2468

LCCS 14.7243 15.4227 137
DSATUR 14.6891 15.4102 94

(a) Mean, median and number of graphs with
best performance for alternating optimization,
LCCS and DSATUR regarding lowest SNI val-
ues.

Mean Median # Best
Power

Reduction 23.7367 24.0349 2690

All Colors 23.4016 23.7075 36
One Color 24.9111 25.2712 7274

LCCS 21.1048 21.5368 34
DSATUR 23.4654 23.7712 626

(b) Mean, median and number of graphs with
best performance for alternating optimization,
LCCS and DSATUR regarding lowest SNI val-
ues between two interfering nodes.

Table 7.4: Calculated values for graphs containing eight nodes.

Calculating the mean and the median for the algorithms, confirms the results in the left
box plot in figure 7.8. The results in table 7.4a shows that All Colors was the best scheme,
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just slightly better than One Color.
The right box plot in figure 7.8, showing the biggest interferences between two nodes,

shows once again that the algorithms which optimized the powers had the best perfor-
mance, but DSATUR did not perform much worse. From table 7.4b it can be seen that
One Color performed the best, while All Colors, Power Reduction and DSATUR per-
formed quite similarly. LCCS on the other hand performed significantly worse than the
rest of the algorithms.

One can see that DSATUR had the best performance in approximately 1 % of the cases.
This means that the best solution to that graph, in terms of lowest SNI value, was for all
the nodes to have the same power.

7.3.2 Graphs with 112 Nodes
The results regarding lowest SNI values are very similar for the graphs containing 112
nodes as for the graphs containing eight nodes. The left box plot in figure 7.9 shows that
All colors did the best, but One Color and Power Reduction performed almost equally
good. The results in table 7.5a support the results in the box plot. It is interesting to
note that even though Power Reduction did not have the best mean and median values, it
performed the best for the most graphs among the five algorithms.

Mean Median # Best
Power

Reduction 5.8612 5.8507 3319

All Colors 6.4047 6.5138 3303
One Color 6.2716 6.3069 2855

LCCS 5.0091 4.7548 523
DSATUR 4.9752 4.7265 514

(a) Mean, median and number of graphs with
best performance for alternating optimization,
LCCS and DSATUR regarding lowest SNI val-
ues.

Mean Median # Best
Power

Reduction 11.3706 11.5819 2571

All Colors 11.0944 11.3066 27
One Color 12.5867 12.7588 7402

LCCS 9.2901 9.6472 14
DSATUR 11.1041 11.3084 352

(b) Mean, median and number of graphs with
best performance for alternating optimization,
LCCS and DSATUR regarding lowest SNI val-
ues between two interfering nodes.

Table 7.5: Calculated values for graphs containing 112 nodes.

The results for the biggest interferences between two nodes, shown in the right box plot
in figure 7.9, shows that One Color performed the best while All Colors, Power Reduction
and DSATUR once again performed almost equally well. Again, table 7.5b support the
results in the box plot.

7.3.3 Graphs Resembling Lusetjern
Finally the graphs resembling the apartment complex in Lusetjern were tested. Once again,
only 100 graphs were tested since it is approximately the same graph in each iteration. The
results regarding the smallest SNI values are shown in the left box plot in figure 7.10. This
shows, once again, that One Color and All Colors were the two best algorithms, but Power
Reduction was not much worse.
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Figure 7.9: Box plots of the results for the three alternating optimization schemes (Power Reduction,
All Colors and One Color), LCCS and DSATUR from 10000 different graphs containing 112 nodes.
The left box plot shows the lowest SNI value, while the right box plot shows the lowest SNI values
between two interfering nodes from Λ.

Mean Median # Best
Power

Reduction 9.4341 9.7790 40

All Colors 9.8081 10.2668 30
One Color 9.8471 10.3748 30

LCCS 8.6031 8.8761 0
DSATUR 8.5984 8.8977 0

(a) Mean, median and number of graphs with
best performance for alternating optimization,
LCCS and DSATUR regarding lowest SNI val-
ues.

Mean Median # Best
Power

Reduction 13.3397 13.3913 18

All Colors 13.1183 13.1645 1
One Color 14.7623 14.9904 81

LCCS 12.1196 12.4597 0
DSATUR 13.1218 13.1645 3

(b) Mean, median and number of graphs with
best performance for alternating optimization,
LCCS and DSATUR regarding lowest SNI val-
ues between two interfering nodes.

Table 7.6: Calculated values for graphs resembling Lusetjern.

The calculated values for the mean and median of all the algorithms, confirms the
findings in the box plot. Table 7.6a shows again that One Color performed a bit better than
All Colors and Power Reduction. Once again, Power Reduction performed the best for the
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Figure 7.10: Box plots of the results for the three alternating optimization schemes (Power Re-
duction, All Colors and One Color), LCCS and DSATUR from 100 graphs resembling Lusetjern.
The left box plot shows the lowest SNI value, while the right box plot shows the lowest SNI values
between two interfering nodes from Λ.

most graphs even though it did not have the highest calculated mean and median value.
Looking at the results for the smallest interference between two nodes, shown in the

right box plot in figure 7.10, it is clear that One Color again had the best performance,
with All Colors and Power Reduction being a little worse. Table 7.6b support the findings
in the box plot.

Overall the results from the graphs testing the alternating optimization schemes shows
that graph coloring combined with optimization of transmitted powers performs better
than algorithms where only graph coloring is performed. This applies to both the results
for lowest SNI values and lowest SNI values between two interfering nodes. This result
was as expected. It is interesting that the simple iterative optimization scheme Power
Reduction performed almost as good as One Color and All Colors, even for big graphs.

As for computation time for the three alternating optimization methods, Power Reduc-
tion has the fastest while One Color has the slowest, which is not a surprising result since
Power Optimization only lower the power of one node, while One Color adjust the power
of several of the nodes in the graph. Power Reduction uses less than half a second to find
a solution to the problem for both graphs containing eight nodes and 112 nodes, while
One Color about 1.5 seconds for graphs containing eight nodes and around 80 seconds
for graphs containing 112 nodes. All Colors is slower than One Color in each iteration of
coloring and power optimization, since All Colors optimizes all colors in each iteration,
but One Coloring uses more function evaluations than All Colors.

All Colors usually only need one iteration to find a solution, in other words, All Colors
seems to find the best coloring and power adjustment in the first iteration. One Color on the
other hand usually needs around six iterations to find a solution. Power Reduction usually
finds a solution after two iterations. This holds for both small and large graphs. The reason
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that One Color needs more function evaluations than All Colors might be that One Color
only adjust the power of the nodes having one of the three colors. Power Reduction only
adjust the power of one node, but still uses few iterations. This might be due to the fact
that Power Reduction is a simple method and thus quickly finds a sub-optimal solution.

7.4 Discrete Optimization
Finally, the two heuristic discrete optimization algorithms, local search and simulated an-
nealing, are implemented and tested. Local search and simulated annealing are imple-
mented after the alternating optimization for both One Color and All Colors. In the final
tests all the algorithms are implemented, which mean there are nine schemes in total that
are tested. Local search and simulated annealing for both One Color and All Colors, in
addition to the five schemes that have been tested earlier.

7.4.1 Graphs with Eight Nodes
The first tests were conducted on graphs containing eight nodes. Since the schemes be-
comes very time consuming with local search and simulated annealing implemented, only
1000 random graphs were tested. The left box plot in figure 7.11 shows the results for
all the algorithms regarding the lowest SNI value. Local search and simulated annealing
for both One Color and All Colors performed very similar to each other, and all of them
performed better than the other algorithms without local search or simulated annealing
implemented.

Calculations of the mean and median of the various schemes, shown in table 7.7a,
show that local search for All Colors was slightly better than local search for One Color
and simulated annealing implemented for both One Color and All Colors. Calculated
values are still very similar for all of the four schemes. The results for the five algorithms
without discrete optimization implemented were similar to the earlier results. Counting the
performances of the algorithms shows again that the schemes with discrete optimization
implemented were the best performing schemes.

Right box plot in figure 7.11 shows the box plot for the results regarding the highest
interference between two nodes with the same coloring. This shows that One Color was the
algorithm that had the best performance while all the other algorithms, except for LCCS,
performed very similar to each other. The values in table 7.7b support the results in the
box plot.

7.4.2 Graphs with 112 Nodes
Due to the long run time for all the algorithms on graphs containing 112 nodes, only 400
different graphs have been tested. The resulting box plots are given in figure 7.12.

The left box plot in figure 7.12 shows that local search for One Color was the algo-
rithm that performed the best. Simulated annealing for One Color, and local search and
simulated annealing for All Colors performed a bit worse, while the rest of the algorithms
performed even worse. The results in table 7.8a support the results from the box plot.
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Figure 7.11: Box plots of the results for discrete optimization (All Colors with local search, All
Colors with simulated annealing, One Color with local search and One Color with simulated anneal-
ing), alternating optimization (Power Reduction, All Colors and One Color), LCCS and DSATUR
from 1000 different graphs containing eight nodes. The left box plot shows the lowest SNI value,
while the right box plot shows the lowest SNI values between two interfering nodes from Λ.

The right box plot in figure 7.12 and table 7.8b shows that One Color was the algorithm
that performed the best regarding highest interference between two interfering nodes. The
results here are very similar to the results for the small graphs. One Color performed the
best, while all the other algorithms, except for LCCS, performed more or less similarly to
each other.

In other words, the results regarding lowest SNI values and interference between two
nodes seems to be quite similar to earlier results. The results still shows that the algorithms
with discrete optimization implemented performs the best in general.

7.4.3 Graphs Resembling Lusetjern
The simulations conducted for all the algorithms on graphs representing the apartment
complex in Lusetjern have again been conducted on 100 graphs.

Left box plot in figure 7.13 shows the lowest SNI values for all of the algorithms. It
is again clear that the algorithms using discrete optimization on the coloring performed
better than the others. The four best algorithms performed very similarly, but One Color
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Mean Median # Best
All Colors

Local 20.0043 20.6889 514

All Colors
Annealing 19.5197 20.3088 411

One Color
Local 19.8949 20.5490 436

One Color
Annealing 19.5218 20.2277 366

Power
Reduction 16.2715 16.9148 77

All Colors 17.5647 18.3530 248
One Color 17.0450 17.7210 161

LCCS 14.7749 15.5837 0
DSATUR 14.7423 15.5950 2

(a) Mean, median and number of graphs with
best performance for discrete optimization, al-
ternating optimization, LCCS and DSATUR re-
garding lowest SNI values.

Mean Median # Best
All Colors

Local 23.2755 23.7308 17

All Colors
Annealing 23.3228 23.7776 44

One Color
Local 23.6561 24.1719 230

One Color
Annealing 23.7722 24.2367 257

Power
Reduction 23.6917 24.1325 236

All Colors 23.3639 23.7779 2
One Color 24.8188 25.2097 646

LCCS 21.2299 21.7298 3
DSATUR 23.4264 23.8374 48

(b) Mean, median and number of graphs with
best performance for discrete optimization, al-
ternating optimization, LCCS and DSATUR re-
garding lowest SNI values between two interfer-
ing nodes.

Table 7.7: Calculated values for graphs containing eight nodes.

combined with local search performed the best. The results for the five algorithms without
discrete optimization implemented were similar to earlier results. The values in table 7.9a
gives the same conclusion as the results from the box plot.

The results for the highest interference between two interfering nodes are again very
similar to the results for graphs containing eight nodes and 112 nodes. Right box plot in
figure 7.13 and table 7.9b shows that One Color once again had the best performance and
that the rest of the algorithms, except for LCCS, performed equally well.

In the end, based on the results, it can be concluded that the optimization schemes with
local search or simulated annealing implemented obtain better results than the schemes
with no discrete optimization implemented. The four schemes with discrete optimization
implemented seems to be more or less equally good, but local search seems in general to
perform slightly better than simulated annealing. A possible reason is discussed below.

These results shows, once again, that it is beneficial to use optimization schemes for
channel selection and transmitted power in Wi-Fi resource allocation schemes. The usage
of discrete and continuous optimization leads to higher lowest SNI values in an area with
several networks and thus higher bit rate for the networks experiencing the lowest bit rates.
A problem with the discrete optimization algorithms is that they are time consuming and
might be a bit impractical for applied usage.

As for computation time, local search is much slower than simulated annealing. For
graphs containing eight nodes, local search uses about 18 seconds to find a solution while
simulated annealing uses about four seconds to find a solution. For graphs containing
112 nodes the computation time is much higher. For one iteration where local search and
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Figure 7.12: Box plots of the results for discrete optimization (All Colors with local search, All
Colors with simulated annealing, One Color with local search and One Color with simulated anneal-
ing), alternating optimization (Power Reduction, All Colors and One Color), LCCS and DSATUR
from 400 different graphs containing eight nodes. The left box plot shows the lowest SNI value,
while the right box plot shows the lowest SNI values between two interfering nodes from Λ.

simulated annealing is performed for both One Color and All Colors on graphs containing
112 nodes, the computation time is approximately one hour, while for graphs containing
eight nodes it is approximately 50 seconds.

The reason why local search has a longer execution time than simulated annealing is
because local search performs more function evaluations, i.e, has more iterations, than
simulated annealing. For graphs containing eight nodes, with the values used, local search
used 81 iterations while simulated annealing used only 16 iterations. Simulated annealing
has much fewer iterations than local search because of the "cooldown" variable and how
fast it reaches the freezing temperature. The chosen value for the "cooldown" variable and
the freezing temperature leads to simulated annealing having few iterations. Based on the
results we see that local search performs better than simulated annealing in general. This
means that the chosen value for the "cooldown" variable might not be that good, and that
other values, possibly leading to more iterations for simulated annealing, would have been
more appropriate to receive a better result.

Looking at the iterations for local search it seems that local search usually converges
towards a solution after just a very few function evaluations. Often it converges after just
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Mean Median # Best
All Colors

Local 7.8113 8.1584 181

All Colors
Annealing 7.0672 7.1997 90

One Color
Local 7.9457 8.1875 186

One Color
Annealing 7.0779 7.3133 92

Power
Reduction 6.0749 6.1805 60

All Colors 6.4737 6.5259 62
One Color 6.3311 6.3686 56

LCCS 5.2136 5.0888 9
DSATUR 5.1708 4.8900 15

(a) Mean, median and number of graphs with
best performance for discrete optimization, al-
ternating optimization, LCCS and DSATUR re-
garding lowest SNI values.

Mean Median # Best
All Colors

Local 11.3827 11.5467 27

All Colors
Annealing 11.5168 11.6172 30

One Color
Local 11.5445 11.6444 75

One Color
Annealing 11.7626 11.8955 95

Power
Reduction 11.4787 11.6471 67

All Colors 11.1867 11.3372 1
One Color 12.7860 13.0432 233

LCCS 9.3801 9.6678 0
DSATUR 11.1909 11.3411 9

(b) Mean, median and number of graphs with
best performance for discrete optimization, al-
ternating optimization, LCCS and DSATUR re-
garding lowest SNI values between two inter-
fering nodes.

Table 7.8: Calculated values for graphs containing 112 nodes.

4-6 iterations for graphs containing eight nodes. One such example is shown in figure
7.14, where local search converge towards its best solution after just four iterations. The
reason for the early convergence of local search might be that the alternating optimization
is able to find a very good solution, and the optimal solution is very close to that solution.
Another reason might be that the choice of neighborhood for local search is very bad and it
is not able to find any potentially better solutions. There might be better heuristic methods
to choose appropriate elements in the neighborhoods than changing the color for exactly
one of the elements in the current solution.

Since local search usually converges towards its best possible solution quite fast, and
it requires long computation time to do all the function evaluations for graphs of size 112,
we chose to cut the local search algorithm after 200 iterations. This way the total com-
putation time was lowered while the algorithm still probably computes a solution within
these iterations. The solution computed by local search is probably a local solution, rather
than a global solution, since the neighborhood, or solution space, is very small compared
to the size of the problem.

There is no clear trend when simulated annealing converges towards its solution. This
is probably because it might choose a possibly worse solution, compared to the current
solution, with a certain probability.
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Figure 7.13: Box plots of the results for discrete optimization (All Colors with local search, All
Colors with simulated annealing, One Color with local search and One Color with simulated anneal-
ing), alternating optimization (Power Reduction, All Colors and One Color), LCCS and DSATUR
from 100 graphs resembling Lusetjern. The left box plot shows the lowest SNI value, while the right
box plot shows the lowest SNI values between two interfering nodes from Λ.
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Mean Median # Best
All Colors

Local 11.2810 11.5107 44

All Colors
Annealing 10.3857 10.4595 16

One Color
Local 11.4756 11.5620 61

One Color
Annealing 10.6765 10.4519 34

Power
Reduction 9.1978 9.8699 5

All Colors 9.7942 9.8699 10
One Color 9.9617 10.1616 26

LCCS 8.3918 8.3242 0
DSATUR 8.3938 8.3061 0

(a) Mean, median and number of graphs with
best performance for discrete optimization, al-
ternating optimization, LCCS and DSATUR re-
garding lowest SNI values.

Mean Median # Best
All Colors

Local 13.3895 13.3846 12

All Colors
Annealing 13.4883 13.6251 12

One Color
Local 13.5470 13.4515 18

One Color
Annealing 13.8639 13.8059 25

Power
Reduction 13.1259 13.0816 6

All Colors 12.9479 12.9628 0
One Color 14.6976 14.6921 63

LCCS 11.8536 12.0261 0
DSATUR 12.9525 12.9628 0

(b) Mean, median and number of graphs with
best performance for discrete optimization, al-
ternating optimization, LCCS and DSATUR re-
garding lowest SNI values between two interfer-
ing nodes.

Table 7.9: Calculated values for graphs resembling Lusetjern.

Figure 7.14: The convergence of local search on a graph containing eight nodes. The graph in the
figure shows that local search obtain its solution after four iterations.
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Chapter 8
Conclusion and Future Work

8.1 Conclusion
In this thesis, methods for resource allocation in radio networks, especially Wi-Fi net-
works, using graph coloring and optimization have been researched. Schemes combining
continuous optimization, discrete optimization and graph coloring have been developed in
order to see if resource allocation using these techniques works better than simple channel
allocation algorithms. The schemes were tested on small graphs containing eight nodes,
on large graphs containing 112 nodes, and on a simulated environment resembling an
apartment complex in Lusetjern consisting of 60 nodes. The goal was to see if suitable
graph coloring algorithms, continuous optimization of transmitted power, and discrete op-
timization of the channel selection would improve the lowest SNI values and decrease the
interference for a number of networks.

We started by looking at how to perform channel allocation for Wi-Fi networks. Two
specific graph coloring algorithms were presented, LCCS and DSATUR. In addition, two
discrete optimization techniques were described, local search and simulated annealing. We
assumed that discrete optimization of the channel allocation would provide better results.
Similarly, since DSATUR is a more sophisticated graph coloring algorithm than LCCS,
we assumed that the lowest SNI values would be higher for DSATUR than LCCS, and
the highest interference between two networks would be lower for DSATUR compared to
LCCS.

Further we looked at continuous optimization schemes for adjusting signal strengths
in Wi-Fi networks. Equation (1.1), the equation for calculating SNI values from the sig-
nal strengths, is a quadratic equation and thus the problem was rewritten as a quadratic
program. Algorithms performing the optimization of the signal strengths were chosen by
the MATLAB function FMINCON. From this optimization schemes alternating between
graph coloring and optimization of transmitted power were developed, One Color and All
Colors. In addition we presented an alternating scheme named Power Reduction, which
does not use FMINCON for adjusting signal strengths, but rather lower the signal strength
of the network with the highest SNI value. We assumed that the algorithms alternating be-
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tween graph coloring and optimization of signal strengths would obtain better results than
algorithms only performing graph coloring with no optimization of the signal strengths.

At last nine different schemes for resource allocation were tested. First we compared
DSATUR and LCCS against each other without any continuous or discrete optimization
applied. Next we tested the three alternating optimization schemes One Color, All Colors
and Power Reduction, where they all used DSATUR as the graph coloring algorithm. In the
end we implemented local search and simulated annealing together with both One Color
and All Colors. A neighborhood was created for local search and simulated annealing, and
the two discrete optimization algorithms used FMINCON to see if any better solution could
be found in the neighborhood of the current coloring solution.

The results of the comparison between DSATUR and LCCS showed surprisingly that
they performed approximately equally well regarding the lowest SNI value obtained. This
was true for the small graphs, the big graphs and the graphs representing Lusetjern. It
is hard to say why DSATUR did not perform better than LCCS. The reason might be,
as mentioned in chapter 7, that DSATUR minimizes the worst interference between two
nodes with the same coloring, but not the interference for the whole graph. When the SNI
values are calculated, the coloring of the whole graph is considered, not only the pair-
wise interference between two nodes. It is possible that the optimization of the pairwise
interferences does not affect the result for the total SNI values of the networks.

Regarding interference between two networks, the results between DSATUR and LCCS
were as expected and DSATUR obtained significantly better results than LCCS. In other
words, DSATUR works better than LCCS in preventing a high interference between two
networks communicating on the same channel.

When it comes to the results for the alternating optimization schemes, they showed
that One Color, All Colors and Power Reduction all performed better than only using
graph coloring. From these results we can conclude that performing optimization on the
signal strengths leads to higher obtained values for both lowest SNI values and lowest
SNI values between two interfering nodes compared to only using graph coloring. These
results were coinciding with our hypothesis. Additionally the results showed that One
Color and All Colors in general obtained higher values than Power Reduction. This was
also as expected since One Color and All Colors both used more sophisticated continuous
optimization schemes than Power Reduction. It was still a surprising result that Power
Reduction performed almost as good as One Color and All Colors, and that a simple
optimization scheme would get much better results than just performing channel allocation
with fixed signal strengths.

Our results for the schemes with discrete optimization of the coloring implemented
showed that these schemes performed better than the schemes without discrete optimiza-
tion implemented in terms of lowest SNI values. All the four schemes with discrete opti-
mization implemented performed better than the other schemes for all the different kinds
of graphs. In addition, these four schemes seemed to perform more or less similarly to
each other, but with local search implemented for One Color and All Colors being the
best two schemes. These results coincided with our assumptions as well, as we expected
schemes with discrete optimization implemented to be better than the other schemes.

However, we were a bit surprised that the discrete optimization schemes did not per-
form better than the other schemes regarding lowest SNI values between two interfering
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nodes. We thought that there would be a correlation between the pairwise interference of
two nodes and the lowest calculated SNI value. These results showed us that One Color
without discrete optimization implemented usually performed the best, but all the other
schemes, except for LCCS, performed almost equally well. We can from these results
conclude that discrete optimization does not improve interference between two nodes too
much compared to the other schemes, but it significantly improves the overall results of
lowest SNI values. Based on this it seems, again, to us that pairwise interference between
two nodes and calculated SNI values are not closely connected.

In the end we conclude that using both continuous optimization on the signal strengths
and discrete optimization on the channel selection will increase the lowest SNI values
obtained by networks and thus improve the quality of the Wi-Fi networks in areas where
there are many Wi-Fi routers that interfere with each other. How much the improvement
of the measured bit rates are when tested on a real network is yet to see, but based on these
theoretical results there appear to be improvements. The problem with these algorithms is
that they are time consuming, and might be too time consuming for resource allocation in
Wi-Fi networks. In that case, Power Reduction might be a suitable scheme as it is faster
than the other schemes with optimization applied and it obtain better results than pure
channel allocation.

8.2 Future Work
In the future it would be interesting to see if these theoretical results will coincide with
measurements performed on real Wi-Fi networks where optimization of the signal strengths
and the channel allocation are applied. To do so, an algorithm where these kinds of opti-
mizations are implemented needs to be created. To our knowledge, there are no algorithms
like this constructed to this day.

Furthermore it would be interesting to improve the schemes in this thesis, or similar
optimization schemes, so that they will obtain a result faster. The optimization schemes
implemented in this thesis, except for Power Reduction, are all very time consuming and
might not be very useful in an applied scenario. One way to do so is to use optimiza-
tion algorithms that are more efficient when solving a problem such as this. An example
is to implement Power Reduction with local search or simulated annealing since Power
Reduction has a much lower computation time than One Color and All Colors. Another
method to lower the computation time is to calculate SNI values based on the colorings in
the neighborhood of the current solution together with the signal strengths of the current
best solution. With this method, no new optimization is required for each element in the
neighborhood and it becomes faster to evaluate each element in the neighborhood if they
are better or worse than the current solution.

Finally, resource allocation schemes such as these are thought to run in parallel for
all the Wi-Fi routers in a network, and not being run on a centralized server. To be able
to do this it is necessary to create an algorithm that can run in parallel on several Wi-
Fi routers. This means that the algorithm needs to be efficient since a Wi-Fi router has
limited computing power and it needs to be able to obtain improved results, compared to
today, without having complete knowledge about the positions and interference of all the
surrounding networks.
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Appendix A
Wi-Fi

A.1 2.4 GHz band
The 2.4 GHz ISM frequency band is split into 14 channels with the center frequency in
the range from 2.412 GHz to 2.484 GHz. Each channel is separated by 5 MHz, except
for channel 14 which is separated from channel 13 by 12 MHz, and each channel has a
bandwidth of 22 MHz. This leave a total of maximum three non-overlapping channels.
For example channel 1, 6 and 11. When two or more Wi-Fi routers are operating on
overlapping channels and transfer data simultaneously, interference occure and the bitrate
decreases. Interference can be caused by other radio devices operating on the 2.4 GHz
band, in addition to Wi-Fi routers. [21].

Figure A.1: The 2.4 GHz frequency spectrum. The three non-overlapping channels 1, 6 and 11 are
marked with red. The figure is adopted from [2].
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A.2 5 GHz band
The 5 GHz ISM frequency band has a wider frequency spectrum available than the 2.4
GHz ISM frequency band, ranging from 5.035 GHz to 5.825 GHz, though not all of the
channels are available for Wi-Fi devices. Which channels that are available depends on
the country. Figure A.2 shows the channel distribution on the 5 GHz band in USA. Since
the spectrum available for Wi-Fi devices is broader at the 5 GHz band than the 2.4 GHz
band, there will be more space to spread the channels available on the 5 GHz band. This
leads to the channels on the 5 GHz band being non-overlapping, which avoids interference
between devices connected to different channels on the 5 GHz band [21].

Since the wavelengths are longer on the 2.4 GHz band than the 5 GHz band, the devices
connected to a channel on the 2.4 GHz band have longer range and works better than
devices on the 5 GHz band if there are a lot of walls or other objects between the AP and
the client.

Figure A.2: The 5 GHz frequency spectrum. The figure is adopted from [1].

A.3 Transmitted Power and SNI
Transmit power in a Wi-Fi router is the intensity of the signal sent from an access point.
The intensity of the transmitted power is regulated, and the limits varies between countries.
In Europe and Norway the limit is set to 100 mW [21]. That is equivalent of 20 dBm, which
is calculated by [7] as

PdBm = 10 · log10 (PmW) . (A.1)

In other words, the transmitted power of a Wi-Fi router is contained in the interval [0, 20]
dBm.

The quality of a network (SNI) depends on what channel the network is connected to
and how much interference there is from other networks transmitting on the same channel
or other overlapping channels. In addition thermal noise, the distance between the access
point and the client, and the environment between the access point and the client influences
the SNI value of the network [25].

The interference between two networks depends on the transmitted power of the two
networks and the distance between the two networks. Higher distance between the two
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networks leads to less interference, while higher transmitted power leads to increased in-
terference.

Thermal noise is electronic noise that is generated inside circuits and thus inside radio
frequency modules, which again affects the SNI value of a network. The thermal noise
is related to the temperature of the conductor in a circuit. This was first discovered and
explained by John B. Johnson and Harry Nyquist in 1926 [18, 29]. The thermal noise N
in mW is given by the equation

N = kTf, (A.2)

where k is Boltzmann’s constant, T is the temperature and f is the bandwidth of the Wi-Fi
channel.

The path loss in a network between an access point and its clients is the reduction in
power density of the transmitted signal as it propagates through space. Path loss is caused
by various effects and is influenced by the environment and the propagation medium. The
magnitude of the path loss influenced by the propagation medium is given by the prop-
agation constant. The propagation constant varies from the medium and is for example
equal to 2 in free space and usually varies from about 2 to 4 in a building depending on
the environment between the access point and the client [16].
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Appendix B
More about DSATUR

DSATUR can be proven to optimally color various classes of graphs. Optimally color
means that c(G) = χ(G). In the following proofs, the core of a graph means the 2-core of
a graph. I.e. all vertices in the graph with degree equal to 1 are removed.

Definition B.0.1. The k-core of G is the maximal subgraph G′ such that all vertices in G′

have degree at least k. The subgraph G′ is obtained from G by iteratively removing all
vertices with degree less than k. Except for G = ∅, the graph G does not have a k-core
for certain values of k and if the k-core of G does not exist then the core of the graph is
denoted ∅. Note that the empty graph ∅ is always a valid subgraph of G where each vertex
has degree greater than or equal to k for all k [6].

Definition B.0.2. Let G = (V,E) be a connected graph. An edge {u, v} ∈ E is called a
bridge if the removal of {u, v} leads toG being disconnected. The edge-connectivity ofG
is the smallest number of edges that needs to be removed in order to makeG disconnected.
The edge-connectivity is denoted by λ (G) [10].

1

2

3 4

5

6

Figure B.1: Example of a graph containing a bridge. The bolded edge {3, 4} indicates the bridge.
This graph has edge-connectivity λ (G) = 1.

Definition B.0.3. A graphG = (V,E) is called bipartite if the vertices in V can be divided
into two disjoint sets S and T so that for each edge {u, v} ∈ E, u ∈ S and v ∈ T or u ∈ T
and v ∈ S. In other words, each edge in E is between vertices in the two disjoint sets [10].
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1 2 3

4 5

Figure B.2: Example of a bipartite graph. Vertices {1, 2, 3} form one set while vertices {4, 5} form
the other set.

Theorem B.1. DSATUR optimally colors a graph where the core is a bipartite graph [8].

Proof. Let G = (V,E) be a connected bipartite graph where |V | ≥ 3. Assume that a
vertex u ∈ V has saturation degree equal to 2. Then u has two neighbors v, w ∈ V
assigned to two different colors. Divide V into two disjoint sets S and T and let u ∈ S.
Since G bipartite and {u, v} , {u,w} ∈ E then v, w ∈ T . Since v, w ∈ T and G is
bipartite then v and w are not adjacent vertices, nor are any other vertices in T adjacent
to each other. In the same way, no two vertices in S are adjacent to each other. Thus
c (v) = c (w). Then u has saturation degree equal to 1, which is a contradiction to the
assumption. Thus χ (G) = 2.

DSATUR will begin to color a vertex with maximum degree in G. If this vertex is in
S, then the next vertex to be colored is in T by the saturation degree and vice versa. These
two vertices will be colored with two different colors. Next DSATUR chooses to color an
adjecent vertex to the two colored vertices. If the chosen vertex is in S then the vertex get
the same color as the other colored vertex in S since no vertex in S are adjacent, and vice
versa for T . This shows that DSATUR obtain c (G) = 2 = χ (G).

If G is an unconnected graph then each part of G can be treated separately and proven
in the same way as with the connected graph.

Definition B.0.4. A graph G = (V,E) is multipartite if the vertices in V can be divided
into n disjoint sets S1, S2, . . . , Sn and if {u, v} ∈ E then u and v are contained in two
different sets. A multipartite graph is called complete if for any vertex v ∈ Si, 1 ≤ i ≤ n
there exist an edge between v and every vertex in all sets Sj , j 6= i [11].

Theorem B.2. DSATUR optimally colors a graph where the core is a complete multipar-
tite graph [30].

Proof. Assume a graph G = (V,E) is a complete multipartite graph with V1, V2, . . . , Vn

disjoint sets and
n⋃
i=1

Vi = V .

Let
{
v1, v2, . . . , vq

}
= Vi, q ∈ N. Since G is a complete multipartite graph, then for

all vt ∈ Vi and for all ut ∈ Vj , i 6= j there exist {vt, ut} ∈ E, and all vertices in the
same set Vi are not adjacent. This leads to all vertices being part of a clique of size n,
where each vertex in the clique is exactly one vertex from all the disjoint sets of V . Thus
χ (G) = n.
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DSATUR begin to color a vertex with maximum degree inG. SinceG is complete then
all vertices have the same degree, so assume the first vertex to be colored is in Vi. The next
vertex will be a vertex adjacent to the vertex in Vi, which will be a vertex in Vj = V \ Vi.
Next vertex will be a vertex adjacent to the two previous chosen vertices, which will be
in the set Vk = V \ Vi

⋃
Vj . This process will continue until one vertex in each of the

disjoint sets are assigned a coloring. Since G is complete multipartite, this coloring is a
coloring of a clique of size n. Further, the next vertex chosen to be colored by DSATUR
will be in set Vl and has n − 1 adjacent colored vertices. The coloring of the selected
vertex in Vl will be equal to the coloring in Vi, i = l. In general c (Vi) = c

(
Vj
)
, i = j.

Which means that vertices in the same set Vi get the same coloring. Thus DSATUR obtain
c (G) = χ (G).

Definition B.0.5. Let G = (V,E) be a graph. A cycle in G is a set of distinct vertices
(v1, v2, . . . , vn) ∈ V such that (v1, v2) , (v2, v3) , . . . , (vn−1, vn) , (vn, v1) ∈ E [10].

1

2 3

4

56

Figure B.3: Example of a cycle of size 6.

Theorem B.3. DSATUR optimally colors a graph where the core is a cycle [24].

Proof. Assume that graphG = (V,E) has a cycle of odd length. Let the set (v1, v2, . . . , vn) ∈
V be n vertices in the cycle, n is an odd number and let

{
(vi, vi+1) , (vn, v1)

}
∈ E, 1 ≤

i ≤ n− 1. Since the core of the graph is a cycle, then all vertices in the cycle might have
adjacent vertices not in the cycle with degree equal to 1 in G. Denote the set of these ver-
tices as Vouter. The vertices in Vouter are not part of the core of G. Since all vertices has
two adjacent vertices in the cycle then each of these vertices have degree greater than or
equal to 2 inG. Since the degree of the vertices in Vouter are equal to 1 then DSATUR will
color all the vertices in the cycle before any of the vertices in Vouter. Assume DSATUR
start to color vertex v1 and then color vertices v2, v3, . . . , vn−1 with alternating colors.
Since n is odd, then c (vn−1) 6= c (v1), and then c (vn) will be a third color.

Now since all vertices in Vouter has degree 1, then the coloring of each vertex in Vouter
will be different from the vertex in the cycle adjacent to it. This leads to all vertices in
Vouter having one of the three colors that are a color of the vertices in the cycle. Thus
DSATUR produces a coloring c (G) = χ (G).

Now assume that G has a cycle of even length. Let the set (v1, v2, . . . , vn) ∈ V be
n vertices in the cycle, n is an even number and let

{
(vi, vi+1) , (vn, v1)

}
∈ E, 1 ≤

i ≤ n − 1. Assume again that DSATUR start to color vertex v1 and then color vertices
v2, v3, . . . , vn−1 with alternating colors. Since n is even, then c (vn−1) = c (v1), and then
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c (vn) will be a second color. Then by the same argument as for odd cycles DSATUR
produces a coloring c (G) = χ (G).

Definition B.0.6. Let G = (V,E) be a graph. A wheel in G is a set {v1, v2, . . . , vn} ∈
V where the first n − 1 vertices form a cycle and there exists a vertex vn such that
{v1, vn} , {v2, vn} , . . . , {vn−1, vn} ∈ E. Vertex vn is called the hub [14].

1

2 3

4

56

7

Figure B.4: Example of a wheel where vertices {1, 2, . . . , 6} form a cycle and vertex 7 is the hub.

Theorem B.4. DSATUR optimally colors a graph where the core is a wheel [24].

Proof. LetG = (V,E) be a graph and assume it contains a wheel of size n. Let vn ∈ V be
the hub and the vertices (v1, v2, . . . , vn−1) ∈ V form a cycle of size n− 1, where n− 1 is
an even or odd number. Each vertex in the cycle might have adjacent vertices with degree
equal to 1 in G. Let these vertices be elements in Vouter. DSATUR start by either color vn
if vn has the highest degree in G or color a vertex in the cycle if any of the vertices in the
cycle has degree greater than n− 1. Since the degree of all vertices in Vouter are equal to
1, then DSATUR will color all the vertices in the cycle and the hub before it colors any of
the vertices in Vouter.

Assume first that DSATUR start by coloring the hub. Then DSATUR will choose one
of the vertices in the cycle as the next vertex to be colored. From the proof of theorem
B.3 it is known that DSATUR optimally color cycles of even and odd lengths, and thus
optimally color the wheel.

Assume that DSATUR start by coloring a vertex in the cycle. DSATUR will continue
to color vertices in the cycle as long as there is a vertex adjacent to the colored vertices
in the cycle with degree greater than n − 1. When there are no vertices in the cycle with
degree greater than n − 1 that are adjacent to a colored vertex, the hub is colored. After
the hub is colored, a vertex adjacent to the hub and a colored vertex in the cycle is colored.
By the same argument as in the paragraph above DSATUR optimally color the wheel.

From the proof of theorem B.4 it is clear that a wheel with an even cycle has chromatic
number equal to 3 and a wheel with an odd cycle has chromatic number equal to 4.

Definition B.0.7. A graphG = (V,E) is called a cactus graph if any two cycles inG have
at most one vertex in common [11]. Figure B.5 shows an example of a cactus graph.

Theorem B.5. DSATUR optimally colors a graph where the core is a cactus [30].
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Figure B.5: Example of a cactus graph. Vertices {1, 2, 3}, {3, 4, 5, 6} and {7, 8, 9} form three
different cycles.

Proof. Let G = (V,E) be a graph with a cactus as its core and let n be the number of
cycles in the graph. If n = 1 then the cactus is a cycle and DSATUR optimally colors G
by theorem B.3.

Now assume n ≥ 2. Then there exist vertices with degree equal to 3 or 4. A vertex
has degree equal to 3 if it is a vertex in a cycle and a bridge in G, and it has degree equal
to 4 if it is a vertex in two different cycles. Thus, 3 or 4 is the maximal degree a vertex in
G can have, and so DSATUR will begin to color a vertex with degree equal to 3 or 4.

Assume DSATUR starts to color a vertex vi between two cycles. Denote the cycles
where vi is a vertex as Ci1 and Ci2 . Let G′ and G′′ be two subgraphs of G separated by
vertex vi. Both G′ and G′′ contains vi, and c (vi) is equal in both subgraphs. G′ contains
Ci1 and all cycles connected to Ci1 when G is separated by Ci1 and Ci2 . In the same way,
G′′ contains Ci2 and all cycles connected to Ci2 . In other words each subgraphs contains
less than n cycles. The process of dividing G into such subgraphs can be done for all the
cycles sharing one vertex in G.

In the same way, if G contains any bridges between two cycles Cj1 and Cj2 , then
Cj1 and Cj2 can be divided into two different subgraphs of G, where the two cycles, or
subgraphs, does not have any vertices in common.

The process of disconnecting G into subgraphs containing less than n cycles can be
done recursively for all the subgraphs of G, eventually creating n subgraphs of G, each
containing one of the cycles in G. Each of these subgraphs will be colored optimally by
DSATUR by theorem B.3 and a vertex with degree equal to 3 or 4 will be colored first in
each subgraph since it is the vertex with maximum degree in the subgraph.

The coloring of each subgraph of G will be independent of each other by DSATUR.
Look at the two cycles Ci1 and Ci2 that has vi as a common vertex. c (vi) is equal in Ci1
and Ci2 . If DSATUR colors Ci1 sequentially and then Ci2 then both cycles and thus both
subgraphs of G will be optimally colored by DSATUR by theorem B.3.

Now assume DSATUR colors k vertices of Ci1 , k > 1, and then starts to color the
vertices in Ci2 . Assume DSATUR colors all vertices in Ci2 , then Ci2 is optimally colored
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by same argument as before. DSATUR will eventually color the remaining uncolored
vertices in Ci1 . Since Ci1 and Ci2 only has one vertex in common, vi, and c (vi) is equal
in both cycles, then the coloring of the other vertices in Ci2 does not affect the coloring
the vertices in Ci1 obtain by DSATUR. Thus, the coloring of Ci1 and Ci2 are independent
of each other by DSATUR.

Now look at the coloring obtained by DSATUR between two cycles, or subgraphs,
connected by a bridge. Look at the cycles Cj1 and Cj2 and let vk ∈ Cj1 and vl ∈ Cj2
such that {vk, vl} ∈ E. Then vk and vl are the two vertices in the bridge connecting Cj1
and Cj2 . The leads to c (vk) 6= c (vl). Since there are no vertices in common in Cj1 and
Cj2 then the coloring of the two cycles obtained by DSATUR will be independent of each
other. The only difference is that DSATUR has two different colors as starting color for
the two cycles.

Thus DSATUR colors all of the subgraphs of G independently of each other. Since the
coloring of each subgraph of G are optimal and independent of the other subgraphs, then
G is optimally colored by DSATUR.

Definition B.0.8. Let G = (V,E) be a graph that is a cycle. Any cycle is a polygon tree.
A new graph G′ is a polygon tree if a new cycle is added to the old graph G and the new
cycle shares exactly one edge with G [20].

1
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6

Figure B.6: Example of a polygon tree. Vertices {1, 2, 3}, {2, 3, 4} and {2, 4, 5, 6} form three
different cycles where each cycle shares exactly one edge with one of the other cycles.

Theorem B.6. DSATUR optimally colors a polygon tree [30].

Proof. See [30].

The fact that DSATUR optimally colors all polygon trees is interesting as each floor in
an apartment building (each floor in the graph) might be seen as a polygon tree as the graph
then can be seen as a two-dimensional graph. If that is the case, DSATUR will optimally
color each floor in the graph. On the other hand, if the graph representing apartments
contain more than two floors, the graph is no longer easily a polygon tree as it spans in
three dimensions.
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B.1 Modified DSATUR
Two modified versions of DSATUR are proposed in order to handle the extra complexity
with nodes having fixed coloring. The two modified versions are created with inspiration
from the original version of DSATUR and what it uses as parameters to determine the next
vertex to be colored.

One version updates the degree of saturation before the algorithm decides which vertex
to be colored next. This algorithm gives priority to the vertices with adjacent colored
neighbors from the first step. The scheme can be seen in detail in algorithm 13. The
second version uses the degree for each of the uncolored vertices in order to decide what
vertex to be colored first. After that vertex is colored, the algorithm updates the saturation
degree for each of the uncolored vertices adjacent to the colored vertices, and next vertex
to be chosen is decided by the saturation degree. This algorithm is similar to algorithm 5,
but with some vertices with a coloring before the algorithm start. The scheme is described
in algorithm 14.

If there are vertices with fixed color that have adjacent vertices with a fixed color, the
edge between these vertices is removed. This is because these vertices are already colored,
and the algorithm cannot do any further improvements with these vertices. In addition
if two adjacent vertices with a fixed color has the same fixed color then the coloring is
improper even before DSATUR has started.

Algorithm 13 Modified DSATUR version 1

1: procedure DSATUR
2: Remove edges between vertices with fixed color.
3: Sort vertices in V in decending order by their degree
4: Update degree of saturation for the vertices adjacent to the vertices with fixed

coloring
5: while Uncolored vertices do
6: Find v ∈ V with highest saturation degree
7: if More than one v with highest saturation degree then
8: Choose a vertex with highest degree among those with highest saturation

degree
9: end if

10: Color v with the lowest color class that is not used to color any vertices adja-
cent to v

11: if No existing color class possible then
12: Create a new color class and color v with this color
13: end if
14: Update degree of saturation
15: end while
16: return Coloring of the vertices in the graph
17: end procedure
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Algorithm 14 Modified DSATUR version 2

1: procedure DSATUR
2: Remove edges between vertices with fixed color.
3: Sort vertices in V in decending order by their degree
4: Find uncolored v ∈ V with highest degree
5: Color v with the lowest color class that is not used to color any vertices adjacent

to v
6: if No existing color class possible then
7: Create a new color class and color v with this color
8: end if
9: Update degree of saturation for the vertices adjacent to the colored vertices, in-

cluded the vertices with fixed coloring
10: while Uncolored vertices do
11: Find v ∈ V with highest saturation degree
12: if More than one v with highest saturation degree then
13: Choose a vertex with highest degree among those with highest saturation

degree
14: end if
15: Color v with the lowest color class that is not used to color any vertices adja-

cent to v
16: if No existing color class possible then
17: Create a new color class and color v with this color
18: end if
19: Update degree of saturation
20: end while
21: return Coloring of the vertices in the graph
22: end procedure
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Appendix C
Results DSATUR

The results in this section are theoretical results of DSATUR and modified DSATUR from
my project thesis. The edges in the graphs in this section are created by using the physical
distance between the nodes, instead of the interference between them.

C.1 DSATUR Compared to LCCS
Running the algorithm for DSATUR and the algorithm for LCCS on the same topologies,
give the chance to compare the efficiency of the algorithms and compare the result of the
two algorithms. In order to check if DSATUR is any better than LCCS, the two algorithms
were tested on 1000 different topologies and the results were compared. The best algo-
rithm in the different topologies were the one having the biggest smallest distance between
two vertices of the same color. By running the algorithms on a topology that is thought
to model an apartment building with 8 floors and 8 vertices per floor (in total 64 vertices),
illustrated in picture 7.1, DSATUR gave the best result in 95% of the topologies, where
DSATUR and LCCS performed equally well in 5% of the cases. An example of the result
for one of the topologies where DSATUR was better than LCCS can be found in figure
C.1 and figure C.2. In other words, DSATUR was always better than or at least equally
good as LCCS. From this result it is clear that it is beneficial to use more sophisticated
algorithms than for example LCCS when assigning channels to Wi-Fi routers in an area
with many Wi-Fi routers in order to minimize interference between the routers.
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Figure C.1: DSATUR used to color a
graph. The smallest distance between
two vertices of the same color is shown
with the bold black line.

0

10

0246810121416

0

5

10

15

20

25

30

 7
 8

40

47

17

56

48

31

 9

41

63

 1

49

23

39

25

55

16
15

24

5764

33

32

Least Congested Channel Search 

62

38

34

10

50

22

18

14

42

54

46

26

 2

30

 6

58

28

 4

35

13

27

52

45

36

44
43

29

20

59

19

 3

60

11

12

51

21

61

37

53

 5

Figure C.2: LCCS used to assign fre-
quencies to imaginary Wi-Fi routers and
thus to color a graph. The smallest dis-
tance between two vertices of the same
color is shown with the bold black line.

C.2 DSATUR
Running DSATUR on various graphs shows that the algorithm works very well and that it
is able to find a 2-coloring or 3-coloring of the graph for several iterations of the variable
d in algorithm 6. Tests on various graphs shows that DSATUR is able to find a 2- or 3-
colroing in the span between 34 and 133 iterations of d for a graph with 64 vertices. One
example on how DSATUR performs throughout the iterations is shown in figure C.3.

The reasons that DSATUR does not find a 2-coloring or 3-coloring solution at some
point is either because the algorithm fails to find such a coloring, even though it is possible,
or it is not possible to color the given graph with less than four colors. By inspecting
various smaller graphs it is seen that DSATUR fails to find a 3-coloring at the first iteration
where a clique of size four is created. An example is shown in figure C.4.

In order to figure out how often DSATUR fail to find a 3-coloring of a graph due to
a clique of size 4 for bigger graphs, 10000 graphs with 64 randomly placed vertices were
created and colored by DSATUR. Among the 10000 graphs 96.86% of the graphs had a
clique of size 4 in the first iteration of d in algorithm 6 where DSATUR got a 4-coloring of
the graph. In other words, the graph was optimally colored by DSATUR. Of the remaining
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Figure C.3: Shows how many colors DSATUR need to color a graph throughout the iterations of
algorithm 6. The x-axis shows iteration number and the y-axis shows the number of colors needed to
color the graph. In this example, DSATUR find a 2-coloring until about iteration 50 and a 3-coloring
until about iteration 93.

Figure C.4: A graph with five vertices where DSATUR fails to find a 3-coloring due to a clique of
size four (vertices 2, 3, 4 and 5). The vertex not getting any of the first three colors was colored in
light blue.

314 graphs, all of them had cliques of size 3 and 141 of those graphs were graphs that had
chromatic number equal to 4, even though there did not exist any clique of size 4. These
results gives that 173 of those 10000 graphs, or 1.73% of the graphs had chromatic number
equal to 3, but were colored with 4 colors by DSATUR. In other words, DSATUR failed to
optimally color the graphs in 1.73% of the cases. One of the graphs where DSATUR fails
to find an optimal coloring is shown in figure C.5. In order to find the chromatic number
of the graphs, software in [5] was used.

The reason for the wide span of iterations of d in algorithm 6 before DSATUR cannot
find a 2- or 3-coloring solution can have many reasons. One important factor is the density
of the graph. If the vertices of the graph are close to each other, the number of edges in
the graph will increase quickly and thus quickly create a clique of size four for example.
Another example is when the graph has low density, but the graph is disconnected and
some of the separate disconnected graphs have a high density. In other words, a smaller
amount of vertices in the graph are creating a subgraph. Such a graph quickly creates a
clique of size four by algorithm 6, an example is shown in figure C.6. By checking on
1000 different graphs, the graphs will not be 3-colorable when the density of the graph is
0.0484 on average. Using equation (3.1) to calculate the density.

There do exist graphs where DSATUR fails to find an optimal coloring, i.e. for a graph
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Figure C.5: A graph with 64 vertices, which DSATUR fails to color optimally. DSATUR obtain
c (G) = 4, while χ (G) = 3 [5]. Vertex 28 is colored with a fourth color.

(a) A disconnected graph where vertices
6, 7, 14, 15, 16, 23, 24 are creating a
subgraph.

(b) DSATUR fails to find a 3-coloring
after 56 iterations. This because vertices
6, 7, 14, 15 are creating a clique of size
four.

Figure C.6: A graph and its corresponding graph showing how many colors needed at each iteration
to color the graph.

G DSATUR get c (G) > χ (G). [30] shows that the smallest graph where DSATUR might
fail to get an optimal coloring has seven vertices, while the smallest graph where DSATUR
is guaranteed to fail has eight vertices. The choice of the first vertex to color among those
with maximum degree determine whether or not DSATUR fails for the graph with seven
vertices. The smallest graph where DSATUR is guaranteed to not find an optimal coloring
is given in figure C.7. In this graph, DSATUR will use four colors, while the chromatic
number of the graph is equal to 3.
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Figure C.7: The smallest graph where DSATUR is guaranteed to not color the graph optimally.

DSATUR will color the vertices of the graph in figure C.7 in the following order: 1,
3, 2, 4, 5, 6, 7, 8. DSATUR color the vertices in this order since DSATUR in algorithm
5 chooses the vertex with lowest index in the graph if there are two or more vertices with
the same saturation degree and same number of adjacent neighbors. Here the numbers
correspond to the vertex number. This produces a 4-coloring since the neighbors of vertex
number 8 has been colored with three distinct colors. If the vertices of the graph had been
colored in the order 1, 5, 6, 7, 8, 3, 2, 4 then the graph would have obtained a 3-coloring
and thus an optimal coloring.

DSATUR has been tested on several smaller graphs similar to the tests on the graphs
consisting of 64 vertices, in order to test how good DSATUR perform at finding an optimal
coloring for smaller graphs. Such as graphs of order 6, 7 or 8. Examples can be seen in
figure C.8 and figure C.9.

As expected from [30] DSATUR is able to optimally color all graphs with less than 7
vertices. Figure C.8 correspond to figure 1a in [30], which shows that DSATUR might fail
to find an optimal coloring for this graph depending on which vertex DSATUR chooses to
begin to color. If DSATUR chooses to start to color vertex 2, then it will find a 4-coloring
as in figure C.8. On the other hand if it start to color vertex 7 and color the remaining
vertices in order 4, 5, 6, 2, 3, 1 then DSATUR will obtain a 3-coloring. In the same way,
the graph in figure C.9 obtain a 4-coloring if DSATUR start to color vertex 2, but if it starts
to color vertex 8 then DSATUR obtain a 3-coloring.

73



Figure C.8: Coloring of a graph of order 7 where DSATUR fails to find a 3-coloring, even
though the chromatic number of the graph is equal to 3.

Figure C.9: Coloring of a graph of order 8 where DSATUR fails to find a 3-coloring, even
though the chromatic number of the graph is equal to 3
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