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Problem Description

It is desirable to locate a speaker in a room and have the microphones focus on this

speaker. The problem that will be explored in this thesis is to implement source lo-

calization based on the inputs from the 64-channel microphone array, and thereafter

find an appropriate method for classifying speech relative to noise. A classification

method will be chosen to be examined in detail. Model adaption will be implemented

as a way of improving the system performance, with the aim to adapt the parameters of

the speech model to better match the input data.
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Summary

The implementation of the source localization in MATLAB showed satisfactory results,

where the system was able to determine from which directions sound sources were

coming from. However, the system only found the strongest sound sources without

taking into account which type of sound it was. Due to this, it was necessary to imple-

ment sound classification to distinguish between speech and non-speech.

The methods that were used in this thesis were Mel-frequency cepstral coefficients for

feature extraction, and Gaussian mixture models for classification. Two systems were

developed for classification, each with a speech model with 512 mixtures and a noise

model. One noise model had 2048 mixtures and the other noise model had one mixture.

Based on the log likelihood of each model output, the performance was measured. The

system performance showed to be poor for inputs of one frame of 25ms, with an equal

error rate above 30% for both systems. The more frames that were used as inputs, the

higher the accuracy was and the more robust the threshold value became. Both systems

reached 100% accuracy when the input sequences had a length of up to several seconds.

Silence was classified as noise, which was optimal as it was undesirable for the system

to focus on silence.

The system performance was expected to be improved from model adaption. If only

the speech model was adapted, the system with the 1-mixture noise model showed very

positive improvements with an average of 8.6% decrease in the error rate, reaching 5.6%

error rate at 500ms inputs. If the noise model was adapted too, the system was expected

to be perform even better. However, it was not possible to obtain an adaption matrix

for this noise model as the mean values of the model was too small. The system with

the 2048-mixture noise model showed a small improvement when adapting the speech

model, and the system was further slightly improved by adapting both the speech and

noise model. However, the improvement was not as big as expected.

The difference in performance between the two noise models were not significant enough

to choose one over the other. In general, if more data, especially keyboard noise, were

obtained for training, adaption and testing, it is likely that the system performance

would show clear improvements. There were a lack of adaption data, in particular for

the noise model adaption, resulting in an adaption matrix that was not entirely optimal.

The system reaching 5.6% error rate at 500ms input is working well for offline use, but

improvements would need to be made if either one of the systems were to be used in

real-time. The results for short input sequences are currently not adequate as the error

rate is too high for providing good accuracy and thereby a good user experience.
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Sammendrag

Implementasjonen av kildelokalisering i MATLAB resulterte i tilfredsstillende resultater,

hvor systemet klarte å bestemme hvilken retning de ulike lydkildene kom fra. Systemet

fant imidlertid kun de sterkeste lydkildene i rommet, uten å ta hensyn til hvilken type

lyd det var. På grunn av dette var det nødvendig å implementere klassifikasjon for å

skille mellom tale og ikke-tale.

Metodene som ble brukt i denne avhandlingen var Mel-frekvens cepstralkoeffisienter

til funksjonsekstraksjon, og Gaussiske blandingsmodeller til klassifisering. To ulike sys-

temer ble utviklet for klassifikasjon, hvor hvert system inneholdt én talemodell med 512

blandingsfordelinger og én universell bakgrunnsmodell for støy. Den ene støymodellen

brukte 2048 blandingsfordelinger, mens den andre brukte én. Ytelsen til systemene ble

målt basert på log-sannsynligheten til utgangen av hver modell. Ytelsen til systemene

viste seg å være dårlig når inngangen kun inneholdt én ramme på 25ms, hvor feilraten

var på over 30%. Dess flere rammer som ble brukt på inngangen, dess høyere ble nøyak-

tigheten og dess mer robust ble verdien på terskelen. Begge systemene nådde 100%

nøyaktighet når inngangen inneholdt opptil flere sekunder med data. Stillhet ble klas-

sifisert som støy, noe som var optimalt ettersom det var uønsket at systemene skulle

fokusere på stillhet.

Systemenes ytelse var forventet å forbedre seg ved å innføre modelltilpasning. Systemet

med kun én blandingsfordeling i støymodellen viste positive resultater når talemod-

ellen ble tilpasset, med en gjennomsnittlig reduksjon på 8.6% i feilraten og en minimal

feilrate på 5.6% ved 500ms på inngangen. Det viste seg å ikke være mulig å adaptere

støymodellen til dette systemet ettersom middelverdiene til modellen var for små. For

systemet med en støymodell med 2048 blandingsfordelinger viste tilpasningen av tale-

modellen en liten forbedring av systemet, mens tilpasning av både tale- og støymodell

resulterte i et enda litt bedre system. Til tross for dette var ikke forbedringene like store

som forventet.

Forskjellen i ytelse mellom de to støymodellene var ikke stor nok til å velge en over

den andre. Hvis mer data, spesielt støy fra tastatur, ble innhentet til trening, tilpasning

og testing, er det sannsynlig at systemenes ytelse ville blitt tydelig forbedret. Det var

mangel på tilpasningsdata, spesielt for støymodell, noe som resulterte i at tilpasnings-

matrisen ikke ble helt optimal. Systemet som nådde 5.6% feilrate ved 500ms på inngan-

gen vil fungere godt til frakoblet bruk, men forbedringer i systemenes ytelse måtte blitt

oppnådd før de kunne blitt brukt i sanntid. Resultatene for korte inngangssekvenser er

ikke tilstrekkelig gode nok slik systemene er nå ettersom feilraten er for høy til å gi god

nøyaktighet og en god brukeropplevelse.
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Chapter 1

Introduction

1.1 Background and Motivation

This thesis is focused on the UniSound 64-channel microphone array. In various con-

texts, it is beneficial with microphone systems that automatically align with the speaker.

The easiest way to solve this is to focus on the strongest source. However, this may

have unwanted consequences if noise dominates in certain periods and is amplified as

a result of this. It would be beneficial for a microphone system to be able to neglect

unwanted noises, such as air conditioning noise or noise from keyboards.

As for today, the 64 channels in the microphone array are processed and comes out

as one channel. However, the processing of the 64 channels is volume-based, mean-

ing that the array focuses its attention to where the strongest energy source is located

without any concern to what makes the sound, whether it being speech or non-speech.

As the microphone array studied in this thesis is primarily made for offices and lec-

ture rooms, this is a big concern as there is often background noises occurring in these

rooms, such as clinking of coffee cups or clicking on a keyboard.

If the microphone system would be able to locate the strongest sound sources in the

room, and thereafter choosing to focus on one of them if it recognizes it to be speech, it

would improve the user experience of the system significantly.

1
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1.2 Scope and Focus

Trying to recognize speech in noisy environments, as well as tracking an object in a

room based on sound, are problems that have been researched for many years and that

are still hot topics today. The problem of this thesis can be divided into source local-

ization and speech recognition. Even though the problems are connected, it has been

necessary to choose which one should be in focus. The main focus has therefor been

chosen to be on the speech recognition problem.

Many different approaches have been proposed for recognition of speech in noisy en-

vironments, such as Hidden Markov Models (HMM), Dynamic Time Warping (DTW),

Artificial Neural Networks (ANN) and Gaussian Mixture Models (GMM) [1]. DTW, ANNs

and GMMs are used for classification, based on feature extraction from other methods,

such as Mel-Frequency Cepstral Coefficient (MFCCs) or Short-Time Fourier Transform

(STFT). This thesis is not so comprehensive that it allows several different methods to be

examined. Due to this, the thesis will be focusing on one of the most popular methods

for feature extraction and for classification, namely MFCCs and GMMs. MATLAB will

be used as the main tool for this thesis, both for source localization and classification.

1.3 Outline

The thesis is structured as explained below, where basic information about the problem

and methods is explained before going into the implementation of the source localiza-

tion and classification, and then ending with results, discussion and a conclusion.

Chapter 2. The Microphone Array: The thesis will start out with an introduction of the

microphone array to form a basis of the problem which is faced in this thesis.

Chapter 3. Theoretical Background: This chapter forms a basis of the theory that is

useful to know in order to understand the focus of the thesis. It contains explana-

tions to methods and terms that are explored throughout the work of this thesis.

Chapter 4. Database: In this chapter, there will be a description of the recordings that

are obtained from the microphone array, as well as external databases that have

been used both for speech and for noise. The chapter will explain the details of

how the recordings have been obtained.

Chapter 5. Implementation: This chapter contains a description of the tools and meth-

ods that have been used to implement a proposed solution to the problem of the

thesis.
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Chapter 6. Experiments and Results: Contains the results that have been obtained af-

ter implementation. The results will be explained and discussed in detail together

with plots and tables in this chapter.

Chapter 7. Conclusion: This chapter draws a conclusion based on what has been found

and discussed previously in the thesis.

Chapter 8. Future Work: The chapter suggests work that can be done in the future, as

a continuation of the work that has been provided in this thesis.
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Chapter 2

The Microphone Array

The microphone array that is used for this thesis has dimensions 60x60cm. The area

of the array containing microphones has dimensions 52.5x52.5cm. The dimension of

the array is the same as the regular size of a ceiling tile. The idea is that a ceiling tile

can be switched with a microphone array and that way not taking up any space in the

room. There are 64 microphones distributed across the array in a specific pattern, as

displayed in figure 2.1, where each blue dot represents a microphone element.

Figure 2.1: An illustration of the positioning of the microphones on the array

5
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As can be seen in the figure, the microphone array has non-uniformly distributed ele-

ments. However, there is a clear pattern to the distribution of the elements, where the

horizontal and vertical spacing between two adjacent elements can have two different

values. The largest horizontal or vertical spacing between two adjacent elements in the

array is 10.5cm, while the smallest corresponding spacing is 3.5cm.

The array sends the audio information from the 64 microphones over Ethernet, and

passes it through different types of audio processing steps before it reaches the loud-

speaker or recording device as a one-channel output. Figure 2.2 gives a detailed expla-

nation of how the array operates.

Figure 2.2: Display of how the microphone array works

The 64 channels will first pass a static noise removal filter, which, as the name implies,

has the objective to remove static noise. This thesis will be focusing on the signal pro-

cessing-part of the block scheme, where there can hopefully be added useful techniques

for focusing the system on speech instead of noise. After this step, the data reaches the

localizer and the filter. Here, beamforming techniques are used together with informa-

tion about the predicted location of the sound source to concatenate the 64 channels

into one. The single channel audio is then sent to the Automatic Gain Control (AGC),

which provides a controlled and adjusted signal amplitude at its output. From there,

the audio can be played through a speaker.

A way of describing the coordinates of the array is by the spherical coordinate system.

These coordinates use the elevation angle, azimuth angle and radius to explain where

in a room an object is located. This coordinate system will be used further in this thesis

when it comes to positions in a room. Figure 2.3 illustrates how this coordinate system
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is related to the microphone array.

(a) Elevation angle, seen from side. (b) Azimuth angle and radius, from above.

Figure 2.3: Spherical coordinates of the microphone array

From the input of the different microphones of the array, it should be possible to locate

a sound sources in the room by the spherical coordinate system. In the figures above,

the microphone array is place in the side so that is looks straight at the speaker and

noise sources, instead of being placed in the ceiling. The microphone array is not yet

on the market, as it is currently under further development.
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Chapter 3

Theoretical Background

The way that a microphone array is structured can be used for multiple causes. The

most basic problems that can be solved with a microphone array are to find the num-

ber and location of energy-radiating sources, enhancement of the signal-to-noise ratio

(SNR), as well as tracking of moving sources. This chapter will provide useful theory to

understand the implementation and results of the thesis, such as a theoretical back-

ground of source localization, creation of speech models and universal background

models, as well as model adaption.

3.1 Source Localization

The first step in the thesis’ problem is to locate the sound sources in the room. By

identifying the sound sources, it is further possible to do a classification to determine

which sources are speech and which are non-speech. In order to detect the positions of

the sounds sources, it is necessary to have some theoretical background on the subject

which will be explained in the next sections.

3.1.1 Beamforming

Array processing is the processing of the information that is obtained by the micro-

phones of an array. It is an overall term that includes several estimation techniques.

Beamforming techniques are spectral-based estimation techniques of array processing

[2]. The microphone array in this thesis uses a delay-sum beamforming technique.

9
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Beamforming techniques are algorithms for determining the complex sensor weights

wn(f), which are used to implement a desired shaping and steering of the array di-

rectivity pattern. The simplest of all beamforming techniques is known as delay-sum

beamforming. With this technique, the time domain sensor inputs are delayed by τn

seconds before they are summed to provide a single array output [3]. An illustration of

this technique is shown in figure 3.1.

Figure 3.1: Illustration of the delay-sum beamforming method [4]

As figure 3.1 illustrates, delay-sum can be used to merge several audio signals into one

enhanced audio signal. The technique can also be used to merge the audio signals

into one, consisting of each of the original audio signals in a sequence. The delay-sum

is a fixed beamforming technique, meaning that the parameters of the array are fixed

during operation. The technique should be used for a broadside array configuration

and is operating under optimal noise conditions when there is incoherent noise [5]. A

source that is placed perpendicular to the aperture axis, is referred to as a broadside

source. Incoherent noise is known to be spatially white, and in the case of microphone

arrays, electrical noise in the microphones is mostly randomly distributed. The noise

can therefore be considered to be a source of incoherent noise.
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3.1.2 Grating Lobes

When the separation between each microphone element in an array is too large, there

can occur grating lobes. Grating lobes are known as unintended beams of radiation.

The occurrence of these lobes can be eliminated in uniformly spaced arrays by decreas-

ing the separation between the elements. For non-uniform arrays, like the one in this

thesis, it can be more challenging to predict grating lobes. Equation 3.1 shows a com-

mon formula used to calculate the maximum allowed spacing between elements, in

order to eliminate grating lobes [6].

∆=λ/2 (3.1)

The formula cannot guarantee that all grating lobes will be eliminated, but it provides

a good approach. The wavelength λ equals the speed of light divided by the wave fre-

quency. An illustration of typical grating lobes can be seen in figure 3.2. Depending

on the spacing between the elements, as well as the relative phase between them, the

grating lobes will move in or out of the visible region [7].

Figure 3.2: Visible grating lobes at 1.5 wavelength spacing [6]

In the figure, there are two large grating lobes at 45°and 135°azimuth. If the spacing be-

tween the microphones for this example would be decreased, these grating lobes would

also be reduced and eventually disappear.
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3.2 Speech Model

The next step after source localization is to classify the sound sources in a room as ei-

ther speech or non-speech. To make a microphone focus on the speaker can be done by

detection of speech. There are several ways that this can be done. However, the meth-

ods that are discussed in this section are among the most common ones in the area of

speech recognition. The human vocal system is only able to produce a limited amount

of phonemes. A well-trained speech recognition system would therefore only need to

recognize each of these phonemes [1].

3.2.1 Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCC) are coefficients that make up a represen-

tation of the short-term power spectrum of a sound. The spectral features are com-

monly used in speech applications due to its robustness [8]. Extracting the MFCCs from

a speech signal is a common method in speech recognition. The MFCCs are then used

as features in a speech recognition system. This feature extraction method was first

mentioned in the 1970s, and it has been further developed since then [9]. MFCC mim-

ics the logarithmic perception of loudness and pitch of the human auditory system. It

also tries to eliminate speaker dependent characteristics by excluding the fundamental

frequency and their harmonics [9]. The procedure to obtain the MFCCs is depicted in

figure 3.3.

Figure 3.3: Block diagram of the MFCC algorithm [9].

At first, the audio signal is split into frames using Hamming windows, before a Fast
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Fourier Transform (FFT) is performed on each frame. A frame is typically around 25ms

long, as this length will represent one sound in regards to speech [1]. The FFT is a ver-

sion of the Discrete Fourier Transform (DFT). MFCC feature vectors are calculated for

each frame of speech because speech can be considered short-term stationary [8]. The

formula for calculating the FFT of the speech signal is explained in equation 3.2, where

N represents the number of samples inside a speech frame [10].

X [k] =
N−1∑
n=0

x[n]e−2i (πkn/N ), k = 0, ..., N −1 (3.2)

After the FFT is performed, triangular overlapping windows are used to map the powers

of the spectrum onto Mel scale. The spectrum is filtered with different band-pass filters

and the power of each frequency band is computed. The number and shape of the

filter (rectangular, triangular etc.), as well as the center frequency, can be varied for

performing this step [9]. Figure 3.4 illustrates a typical filterbank of 25 triangular band-

pass filters used to compute the Mel-frequency spectrum. Typically, the window size is

around 25ms and the overlap between successive window is 10ms.

Figure 3.4: Filterbank with 25 triangular band-pass filters [9]

After the Mel-frequency spectrum have been obtained, the log of the powers of each of

the Mel frequencies is taken. The reason for this is because the MFCC aims to mimic

human hearing and humans perceive loudness on a logarithmic scale [9]. Thereafter,

the Discrete Cosine Transform (DCT) of the resulting powers is conducted. The formula

for calculating the DCT of the powers is explained in equation 3.3, where N denotes the

length of the input vector [11].

X [k] = 2

N

N−1∑
n=0

x[n]cos
[ (2n +1)kπ

2N

]
k = 1, ..., N −1 (3.3)
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At last, the MFCCs are found as the amplitudes of the resulting spectrum. The MFCCs

that are extracted from the audio signal can be used to train a Gaussian mixture model,

which is explained in detail in subsection 3.2.3.

3.2.2 Cepstral Mean Normalization

It would be beneficial being able to remove any effects caused by the channel. Cepstral

Mean Normalization (CMN) is a technique that is used for this purpose. Given an in-

put signal x[n] and a channel impulse response h[n], the recorded signal, y[n], can be

considered a linear convolution of the two, such as

y[n] = x[n]?h[n]. (3.4)

The next step in the CMN technique is taking the FFT of equation 3.4. This leads to

the important convolution-multiplication equivalence [12]. Equation 3.5 denotes the

resulting signal.

Y ( f ) = X ( f ) ·H( f ) (3.5)

The next step after this, is to perform the logarithm of the equation. In the cepstral

domain, multiplication becomes addition, which is a very important property [12]. The

expression then becomes

log[Y ( f )] = log[X ( f ) ·H( f )] (3.6)

⇒ Y [q] = X [q]+H [q]. (3.7)

When taking the difference between the original signal and the average over all samples,

the resulting signal does not contain the channel interference. The resulting signal is

denoted as Di , where the mean subtraction is performed on the input signal. Equation

3.8 explains the steps for obtaining this result [12] [13].

1

N

∑
i

Yi [q] = H [q]+ 1

N

∑
i

Xi [q] (3.8a)

Di [q] = Yi [q]− 1

N

∑
Yi [q] (3.8b)
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Di [q] = H [q]+Xi [q]− (
H [q]+ 1

N

∑
i

Xi [q]
)

(3.8c)

Di [q] = Xi [q]− 1

N

∑
i

Xi [q] (3.8d)

As the result in equation 3.8d implies, the advantage of obtaining the cepstral feature

vector is that it is possible to remove the channel interference.

3.2.3 Gaussian Mixture Model

A Gaussian mixture model is a probabilistic model for representing normally distributed

subgroups within an overall group. The method is known as an unsupervised learning

method, as it does not require knowledge about which subgroup a data point belongs

to. That way, the model is able to learn the subgroups automatically. GMMs are used for

multiple purposes, including feature extraction from speech data to be used in speech

recognition systems, and object tracking of multiple objects in a video sequence [14].

In a video sequence, the number of mixture components and their means are used to

predict the location of an object at each frame.

Mixture models are used for multimodal data, i.e. data that have more than one peak in

its distribution. Many distributions are unimodal, i.e. they only have one peak, and is

modeled by a Gaussian distribution. One way to look at multimodal data is therefore to

think of the data as multiple unimodal Gaussian distributions. GMMs maintain several

of the computational and theoretical advantages of Gaussian models. This way, they

are highly practical for modeling very large datasets efficiently [14].

A GMM is parameterized by the weights of the mixture component, as well as the means

and variances/covariances of the component. The multivariate representation of the

mixture model is explained in equation 3.9. Here, K represents the number of compo-

nents, and the i th component has mean vector ~µi and covariance matrix ~Σi . The weight

of the i th component is represented as φi .

p(~x) =
K∑

i=1
φi N (~x|~µi ,Σi ) (3.9a)

N (~x|~µi ,Σi ) = 1√
(2φ)K |Σi |

exp
(
− 1

2
(~x − ~µi )TΣ−1

i (~x − ~µi )
)

(3.9b)
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The mixture model has a constraint regarding the component weights. The total prob-

ability distribution needs to be normalized to 1, as explained in equation 3.10.

K∑
i=1

φi = 1 (3.10)

When the number of components K is known, the Expectation Maximization (EM) al-

gorithm is the most common technique for estimating the parameters of the GMM [14].

This technique is explained further in the following subsection.

3.2.4 Expectation Maximization algorithm

The EM algorithm is an iterative, numerical technique for estimating maximum likeli-

hood. The maximum likelihood of the data strictly increases by each iteration, implying

that it will always move towards a local maximum or a saddle point [14]. The results will

give an implication of what the optimal number of parameters is for the GMM.

The procedure of the EM algorithm for mixture models consist of two steps: the Ex-

pectation (E) step and the Maximization (M) step. The algorithm starts with random

initialization, before it moves on to the E step. The E step assigns points to the nearest

cluster center, given the model parameters φi , µi and Σ [15]. The M step maximizes

the expectations calculated in the E step with respect to the model parameters, i.e. it

sets the cluster centers to the mean [14]. The steps repeats in an iterative manner until

the algorithm converges and provides a maximum likelihood estimate. An illustration

explaining the steps of the algorithm is shown in figure 3.5.

Figure 3.5: Illustration of the steps of the EM algorithm [15].

As can be seen from the figure, the EM algorithm for GMMs starts with an initialization

where the model parameters are assigned values based on the data. Thereafter, the
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model iterates over the Expectation and Maximization steps until the estimates of the

parameters converge.

It is possible to work with the algorithm even if the number of components, K, is un-

known. Then, different values for K will be tested and the model with the best trade-off

between number of components and fit will be chosen [14]. The steps of the algorithm

can be expressed mathematically. The mathematical expressions for the E and M step

for the multivariate case are rather complex. Hence, they are not included in this sub-

section but can be found in [14].

3.2.5 Akaike Information Criterion

The Akaike Information Criterion (AIC) is a criterion that is used to simplify model se-

lection. The AIC value is calculated for each model, with the same data set. The model

with the lowest AIC value, is considered the best model. The value of AIC is dependent

on the data y, which leads to uncertainty in regards to model selection [16]. Equation

3.11 presents the mathematical expression for the AIC.

AIC = 2k −2ln
(
L (θ̂|y)

)
(3.11)

In the formula, k denotes the number of estimated parameters, L denotes the likeli-

hood function, while θ̂ denotes the maximum likelihood estimate and y is the empirical

data. By using this formula, it is possible to choose a reasonable value for the number

of components to use when fitting a GMM to empirical data. However, the results are

not necessarily unambiguous. Therefore, the relative likelihood criterion can be used,

which is explained further in the next subsection.

3.2.6 Relative Likelihood

The Relative Likelihood (RL) criterion can be used to choose the number of components

when fitting a GMM to data. The formula for the RL criterion is relying on the AIC

values, and is denoted as

RLi = exp(
AICmi n −AICi )

2
) (3.12)

where RLi denotes the relative likelihood for model i. It can be said that the relative

likelihood for model i is proportional to the likelihood that model i is able to minimize
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the information loss [17]. The closer RLi is to zero, the lower the probability is that

model i can minimize the information loss. However, the closer RLi is to 1, the higher

the probability is that model i can minimize the information loss. If a model provides

relative likelihood close to 1, the model should not be left out [17].

3.3 Universal Background Model

It may help to identify non-speech elements, to exclude it as speech. Using MFCCs

is found to perform well also for detection of non-speech [1]. In order to detect non-

speech, it is necessary to have a very large library of sounds, on the contrary to speech

recognition. The complexity of non-speech sound recognition techniques increase be-

cause of the extremely large non-speech corpus that is needed [1]. However, in the

scenario of a meeting room, it is possible to focus on certain sounds that occur very

frequently. Sounds like the clink of coffee cups, air conditioning or keyboard clicking

are likely to occur in a typical meeting room. Because of this, a possibility is to detect

these commonly occurring sounds as non-speech, and thus simplifying and improving

the speech detection in the room. It is important to use a computationally fast method

for detection in this scenario, due to the sudden occurrences of these types of sounds.

A Universal Background Model (UBM) is a model that represents general feature char-

acteristics. This model can be used for comparison with a model with specific feature

characteristics. This section is mainly based on findings in [18]. A typical example

of where a UBM is used is within speaker verification. Here, a model is trained for a

specific person with specific feature characteristics, and a UBM is trained with speech

samples from various speakers. A Likelihood Ratio Test (LRT) can be used to make a

decision based on the score between the UBM and the speaker-specific model, where

a speaker is then either accepted or rejected. The UBM can also be used in the case of

separating speech from noise or non-speech, as seen in the following subsection.

3.3.1 Likelihood Ratio Test

The LRT is closely related to the RL criterion from subsection 3.2.6. The LRT is more

complex, as it requires nested models, whereas the RL does not. Despite the complexity,

they both have the same goal: evaluating which model provides the best likelihood for

the input data [18].

The LRT can be used to determine whether a sound should be classified as speech or

non-speech. This is done by forming two hypotheses, H0 and H1, based on a sound
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sample X :

H0: X is speech

H1: X is non-speech

In general, the test is said to verify the null hypothesis, which in this case will be to verify

that the sample is speech. This test is the optimum test to choose which of the two

hypotheses is most likely, and is given by equation 3.13, where T denotes a threshold.

p(X |H0)

p(X |H1)
=

{ ≥ T, Accept H0

≤ T, Reject H0

(3.13)

Writing the test in a different form, equation 3.14 is obtained. By taking the logarithm

of the probability, the division is replaced by subtraction. By summing over all samples,

a single value is obtained, which can be compared to a threshold.

LLR =∑
i

log(p(Xi |H0))−∑
i

log(p(Xi |H1)) (3.14)

The threshold T should be optimized for best performance, depending on how vulner-

able the scenario of wrong classification is. Section 3.4 goes deeper into selection of

threshold and possible consequences.

3.3.2 Alternative hypothesis modeling

The model for H0 is clearly defined and can be trained with speech samples denoted as

P. The alternative hypothesis H1, modeled by λP , is not as clearly defined, as it might

need to represent all possible alternatives of non-speech. From the area of speaker

recognition, there are mainly two ways of defining the alternative hypothesis H1. The

first approach is to use a set of different models to represent the entire space of H1.

The alternative hypothesis can be represented as in equation 3.15, from a set of N back-

ground noise models {λ1, ... , λN }.

p(X |λP ) =F
(
p(X |λ1), ..., p(X |λN )

)
(3.15)

The function F () can be an averaging or maximum function of the likelihood values of

the background noise set. Each model would represent individual background noises,

such as having one model for keyboard noise, one for clinking of chinaware, one for
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door slamming etc. This can end up being a very complex way of modeling the alterna-

tive hypothesis if speech should be recognized from all types of noise. In the scenario

of classifying speech from a small, specific number of noise sources, this can be a good

representation of H1.

The second approach of defining the alternative hypothesis is to collect noise from mul-

tiple sources in order to form a collection of noise sources that can be used to train a

single model. The single model is often referred to as a world model, a general model

or a universal background model. This method creates a model that is supposed to rep-

resents all types of background noise. It is therefore important to chose noise sources

with big variations in order to get a widespread representation. One way to represent

this model is by a GMM with large variance. By choosing this approach, the model can

be used for all cases, whereas with the first approach it is necessary to adapt the model

for each scenario where it should be used.

3.4 Threshold

When performing classification, there are certain factors that need to be considered.

These factors include choosing a suitable threshold for the system, as well as a level of

significance, in order to reduce the amount of errors.

3.4.1 Choosing a threshold

When performing classification on a set of samples, there are two types of errors that

can occur: False Acceptance (FA) and False Rejection (FR). False rejection means that

what in reality is true, is classified as false, while false acceptance means that what in

reality is false, is classified as true. This is illustrated in the scheme in figure 3.6.
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Figure 3.6: Scheme of the four possible results of classification

This problem can be illustrated by many scenarios, such as an impostor trying to get au-

thorization from a system, or a voice recognition system trying to detect speech. Based

on the last scenario, the illustration in figure 3.7 explains how the threshold can bring

out both types of errors.

Figure 3.7: Threshold creating errors when classifying speech
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Based on this example, the problem of choosing the threshold ends up being a question

of how sensitive it is if either one of the errors occur. If the scenario is detection of

speech, it may not be too big of a problem if FA occurs. However, if the scenario is that

an impostor is trying to get authorization to a security system, it may be very dangerous

if FA occurs. It is common to denote the errors by False Rejection Rate (FRR) and False

Acceptance Rate (FAR), which is the rate in which the errors occur. Equal Error Rate

(EER) is known as the error rate which equates to the point at which the FAR and FRR

cross, namely a compromise between FAR and FRR [19]. This is often chosen as the

optimal threshold, as seen in the figure above.

3.4.2 Statistical significance

This subsection is based on what is found in [13], where it is stated that statistical sig-

nificance is important when dealing with the confidence of statistical inference, such as

knowing if the estimation of a parameter can be accepted with confidence. In pattern

recognition, such as recognition of speech, significance testing is highly important for

deciding whether the difference between two classifiers is real. It is highly important to

compare the performance of the classifiers, and by that choosing the optimal classifier.

One common approach is to test two classifiers on the same test samples and deter-

mine whether one classifier is better than the other. The difference in performance

between the two classifiers needs to be statistically significant in order to choose one

over the other.

Significance testing is one of the most important methods of statistical inference. Sim-

ilar to the LRT, significance testing consists of a null-hypothesis, H0, and an alternative

hypothesis, H1. Also here, the aim is to either accept or reject the null-hypothesis. The

objective is to find the probability of the test rejecting H0. The upper bound α is known

as the level of significance and specifies the the upper bound for false rejection. The

greater α is, the more likely the test is to reject H0. In other words, the aim is to have α

as low as possible. Once a hypothesis is rejected by a test, the decision can be consid-

ered ’correct’ with (1-α) confidence. The most common value for α is 0.05. It is then

said that a test is carried out with 0.05 level of significance, or 0.95 level of confidence.
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3.5 Training, validation and testing

In the case of creating a speech model, a database made up of speech samples is essen-

tial. The database can be divided into training, test and validation sets for processing.

The training set should be significantly larger than both the test set and the validation

set. Figure 3.8 illustrates the division of a dataset.

Figure 3.8: How the dataset is divided into 3 individual sets

The training set contains a set of input data used for learning, where the aim is to fit the

parameters of the speech model. Based on this input data, the speech model should

be trained to recognize speech. For a general speech model, it is important that the

training set contains a broad variation of speech samples, with variations in regards to

age, gender, voice and dialect of the different speakers.

The validation set is a set of input data used for adjusting of the parameters of the

speech model [1]. The model that performs best with the validation set is usually the

one that is chosen as the final one. The test set on the other hand, is not used for cre-

ating or tuning the speech model. The test set is a set of input data used for testing the

performance of the speech model. The test set does not provide any expected output,

but it rather shows how accurate the model is at classification.

3.6 Cross validation

In order to make sure that a model has got most of the patterns from the input data

correct, performing cross validation is a common approach. For the model to be stable,

it should be low on bias and variance. The model might be underfitting or overfitting

the input data. According to [20], overfitting is when the system learns features or cor-

relations that are specific to the training data, making the test data inapplicable. The

training data is then modeled too well, resulting in poor performance for the system, as

the model is not generalized for different types of test data. Underfitting is the opposite,
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where the system is too generalized, resulting in poor performance as system has not

learned the important features of the training data. The aim of cross validation is to give

an indication of how well the trained model will generalize to unknown data [13].

In [13], the Holdout Method, or H Method, is explained as using some of the data sam-

ples for training and the rest for testing. Based on error estimation, it is possible to

known how the model is performing on unknown data or the validation set. This is the

most basic approach of cross validation and it is easy to implement. However, the ap-

proach is known to suffer from issues of high variance as the results are very dependent

on which data that gets included in the validation set.

Another approach that is described in [13] is the V Fold cross validation. This cross vali-

dation approach involves dividing the dataset into V equal parts, or subsets. Thereafter,

the holdout method is repeated V times, where each time, one of the subsets is used as

the validation set, while the other subsets are used for training. The error estimation

is then averaged over all the V trials. That way, all the data appears in the validation

set once and in the training set V-1 times. By using this approach, bias is significantly

reduced as the training set is larger, and the variance is reduced since all the data is at

some point used in the validation set. The idea behind this approach is to have as much

training data as possible, as there can never be enough, and removing parts of the data

for validation can cause underfitting.

3.7 Model adaption using MLLR

The idea behind model adaption is to adapt the parameters of a model to better match

the input data. There are different approaches to do so, such as Maximum A Poste-

riori (MAP) adaption of HMM or GMM parameters, and Maximum Likelihood Linear

Regression (MLLR) of GMM parameters [21]. In this section, the focus will be on model

adaption using MLLR of GMM parameters.

MLLR uses linear transformation of Gaussian model parameters to adapt to test data.

This is done by calculating a transformation of a given model’s parameters to maximize

the observations’ likelihood [22]. New, adapted parameters, such as mean vectorsµ, are

calculated by applying MLLR. There are different approaches to the implementation.

One approach is based on [21], where the mean vectors are given by

µ̃m = Aµm +b (3.16)

= Wµ̃m (3.17)



3.7. MODEL ADAPTION USING MLLR 25

where A is a matrix, b is a bias vector, W denotes the transformation matrix, m denotes

the mixture component and µ̃ is given by

µ̃=


µ1

...

µp

1



According to [21], given an adoption utterance O and a given model Λ, the maximum

likelihood estimate of the transformation is given by

Ŵ = argmax
W

p(O|W,Λ). (3.18)

One option is to make the transformation matrix diagonal, in order to have less param-

eters to estimate. A drawback of having diagonal transformation matrices is that the

resulting transformation is limited when it comes to adaption capabilities [22].

Another option is to make the transformation matrix block diagonal. Most practical sys-

tems are based on diagonal covariance matrices, which will turn into a block diagonal

matrix [21], denoted as



G1 0 . . . 0 0

0 G2 0 0 0
...

...
. . .

...
...

0 0 . . . Gp−1 0

0 0 . . . 0 Gp



where Gi is denotes as

Gi =
M∑

m=1
γmσ−2

m (i )µ̃mµ̃
T
m (3.19)

and γm , γm,n and om are denoted as
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γm =
N∑

n=1
γm,n (3.20)

γm,n = N (xn ;µm ,Σm)cm∑M
l=1 N (xn ;µl ,Σl )cl

(3.21)

om =
N∑

n=1
γm,n on . (3.22)

In the equations above, σm(i ) is the ith diagonal element of the covariance matrix of

mixture component m, while om(i ) is the ith element of the cumulative observation

vector corresponding to mixture m. The observation vector normally includes three

partitions: MFCC features, and their first and second derivative [22]. Due to this, the

block diagonal transform normally consists of three corresponding Gi . If it is decided to

use full transformation matrices instead, the computational cost and statistics needed

for estimation are maximal.

By using the block diagonal transform given above, it is possible to use equation 3.23 to

solve p sets of p+1 equations in p+1 unknowns, as

Gi wi = zi . (3.23)

In the equation above, w i represents the ith row of the transformation matrix, W, while

zi is given as

zi =
M∑

m=1
σ−2

m (i )om(i )µ̃m . (3.24)

Based on the system of equations given above, it is possible to implement an iterative

algorithm in order to find a suitable adaption matrix W.



Chapter 4

Database

The complete database that has been used in this thesis consists of different types of

recordings of both speech and noise, as listed below:

• Recordings of speech, noise and silence from the UniSound microphone array

• Speech database of Norwegian language [23]

• Database of non-speech sounds [24]

The methods that were tested in this thesis are based on the available data. Even though

it in some cases could be beneficial to have other types of data than the sources listed

in this chapter, it has been necessary to use what was available, as it would be time-

consuming to record a large dataset of sound samples.

4.1 Array Recordings

The microphone array database contained six recordings from the microphone array,

each with a length of approximately two minutes. Both the processed single-channel

output, as well as the raw unprocessed 64 channels were saved to the database. All of

the recordings were obtained with the UniSound microphone array with a sampling

rate of 24410Hz and 16 bits per sample.

The audio tests that were obtained found place in a room with a size of 14m2. The room

was covered in thick, sound absorbing blankets on all four walls, as well as in the ceiling.

The array was placed on a chair along one of the walls, with the microphone elements

27
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on the microphone array facing the wall of the opposite side of the room. The person

talking was placed in the corner on the opposite side of the room from the microphone

array, while three different noise sources were placed in a specific location away from

both the array and the speaker. An illustration of the setup in the room can be seen in

figure 4.1.

Figure 4.1: An illustration of the test setup, seen from above.

The brown colored lines in the figure illustrate the sound absorbing blankets. There

were two windows and one door in the room. The microphone array was in an upright

position, facing the wall of the other side of the room. As there are endless amounts

of different noise sources that could be present in a meeting room, it was convenient

to choose a few typical noise sources to focus on. The noise sources that were chosen

were the following:

• Keyboard noise

• Noise from coffee cup

• Fan noise (recording played from smartphone)

These noise sources were chosen both because they are commonly occurring in a meet-

ing room, but also because they are easy to reproduce in test recordings. There were

three different speakers in the recordings, as listed in table 4.1.
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Table 4.1: Speakers in the array recordings

Gender Dialect/Region Age group [years] Length [min]

Female Rogaland 20-30 4

Male Trøndelag 20-30 4

Male Oslo 20-30 4

From the table above, it is seen that all three speaker are in the same age group. How-

ever, they all have different dialects and both genders are represented, which are im-

portant factors in building a speech database. In total, there exists almost 4 minutes of

speech of each person through the microphone array. Ideally, there should be more dif-

ferent speakers and a bigger variety in age among them. However, this was not possible

to obtain at the time.

4.2 Norwegian Speech Database

In addition to the self-produced recordings, a speech bank from Nasjonalbiblioteket

[23] was used. This is an acoustic-phonetic speech bank of Norwegian speech. The

module that was used for this thesis was one with manuscript-read speech from 240

different speakers, all with Norwegian as their mother tongue. The speech samples are

in general less than 10 seconds, as they are one sentence utterances. In total, there

are 4800 speech samples in the corpus, whereof 2159 of them are unique sentences.

There are variations in age, gender and dialect between the samples, and the corpus is

divided into a training set and a test set. The training and test set are independent of

each other, with no overlap of speakers. Each speaker reads 20 sentences, whereof 3 are

used for calibration, 5 are unique and 12 are read by 3 different speaker. Two different

microphones were used to record the utterances:

• Headset microphone: Sennheiser HS 2-5-1

• Multi-Pattern Dual Diaphragm Microphone: Shure KSM44

All of the recordings should have a sampling rate of 48kHz with 16 bit per sample. How-

ever, some of them were recorded with a sampling rate of 44.1kHz by mistake. Those

are neglected in this thesis. The producers of the speech bank used a greedy search

algorithm to find a suitable amount of sentences from a large corpus. The algorithm

was set to include a large amount of different acoustic incidents, to get large variability

between the recordings.
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4.3 Non-Speech Database

The database of non-speech sounds, found in [24], consists of 105 types of sound sources.

These recordings were obtained with a standard single microphone in an anechoic

room, and are therefore known as dry source recordings since they are free of influ-

ences. The recordings are divided into three different categories:

• Collision sound source

• Action sound source

• Characteristic sound source

Collision sound sources are classified as sources caused by one-time collision of an ob-

ject, such as dropping a hard object on the floor or clinking of china. Action sound

sources are classified as a sounds that cannot be clearly specified by itself on the basis

of the sound, but the sound source presents a characteristic tone. Examples of sounds

like these can be clapping of hands or sawing. Characteristic sound sources are the

sound source whose tone characteristically expresses the type of sound source, such

as sounds from musical instruments or electronic sounds from toys or phones. All of

the recordings have a sampling rate of 48kHz and 16 bit per sample and the database

includes 9700 noise samples. The recordings of the sound sources were done with the

following equipment:

• A standard microphone: B&K 4134

• A microphone amplifier filter: B&K 2636

• A DAT recorder: SONY DTC-77ES

Only parts of the database were used in this thesis, namely the ones that were more

likely to occur in a meeting room. Table 4.2 displays the different sound sources that

were chosen from the database, the average length of those files and the number of files

that were used. In total, 904 non-speech audio samples were used.

The sound sources that were chosen, and the amount that was chosen, was related to

the probability of occurrence in a meeting room. As an example, there are 133 audio

files of chinaware while there are only 31 audio files of a bell, as clinking of chinaware

is more likely to occur than ringing of a bell. The dataset is structured to include a

wide variety of non-speech sound sources, but still with the focus on the most likely

sound sources that could occur in a meeting room. One drawback is that the non-

speech database in [24] does not contain clicking of a keyboard. As this is one of the

sounds that is in focus in this thesis, it can be a source of error that this sound is not

available nor included in the chosen database.
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Table 4.2: Sound sources from the non-speech database [24]

Type of Sound Description Average length Amount

Collision

Chinaware Using a wooden stick or a spoon to
beat chinaware that is placed on a
sound absorbing board

767ms 133

Coffee can Beating a handheld metallic coffee
can with a metal stick

468ms 41

Cola can Beating a handheld metallic soda
can with metal stick

543ms 41

Cup Using a wooden stick or a spoon to
beat a glass cup that is placed on a
sound absorbing board

1796ms 82

Glass bottle Using a wooden stick to beat a
glass bottle that is placed on a
sound absorbing board

567ms 41

Action

Multiple claps Multiple individual clap of hands 758ms 97

Single clap A single clap of hand 430ms 97

Characteristic

Bell Ringing a suspended small bell by
pulling the cord

1075ms 31

Clock Ringing of a bell-alarm clock 500ms 41

Coin Dropping a coin on a wooden
board

1833ms 41

Paper Crumble Crushing copy paper by hand 1796ms 71

Paper Tearing Paper being teared apart by hand 1616ms 65

Phone1 Ringing of a home telephone 723ms 41

Phone2 Beep of a cellular phone 1798ms 41

Stapler Stapling copy papers with a stapler 736ms 41
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Chapter 5

Implementation

This chapter will provide explanations of how the work of this thesis has been imple-

mented. The chapter will go through the implementation step by step, where each sec-

tion and subsection builds upon the previous one. The software that has been used will

be mentioned in the appropriate sections. The chapter will start off with the implemen-

tation of the source localization before it goes over to the implementation of the speech

model.

5.1 Source Localization

For the implementation of source localization with the 64-element microphone array,

MATLAB and its toolbox Phased Array System Toolbox was used [25]. The Phased Array

System Toolbox uses the spherical coordinate system for direction. Figure 5.1 illustrates

the setup that was used when obtaining recordings from the microphone array. As seen

in the figure, azimuth represents the y-axis, elevation represents the z-axis and the ra-

dius represents the x-axis in this scenario. The square box illustrates the microphone

array.

33
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Figure 5.1: Illustration of the recording setup together with coordinates

The implementation started off by creating an object for the microphone element. This

object, together with the positions of the microphones and the view angle in spherical

coordinates, was then used to create the microphone array object, as encoded in the

example below:

1 Mic = phased.OmnidirectionalMicrophoneElement(’FrequencyRange ’, [0,fs/2]);

2

3 array = phased.ConformalArray(’Element ’, Mic , ’ElementPosition ’, positions , ...

4 ’ElementNormal ’, [normal_az; normal_el ]);

Further, a beamformer object was created based on the array object, the sampling fre-

quency, propagation speed and a chosen incident angle. The MATLAB script was sweep-

ing through azimuth and elevation angles to cover many incident angles from the space

in front of the microphone array. Each incident angle was used to create a beamformer

object, which again was used on the original signal ys, as encoded in the example below:

1 InnVinkel = [azi(az+1); azi(el)];

2

3 beamformer = phased.TimeDelayBeamformer(’SensorArray ’, array , ...

4 ’SampleRate ’, fs, ’PropagationSpeed ’, c, ...

5 ’Direction ’, Innvinkel );

6 Y = beamformer(ys);

The original signal ys represents a few seconds of a recording. That way, it could be pos-

sible to find whether those seconds contained speech, noise or both, and see if MATLAB

was able to determine where the sound source was located.
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5.2 Speech Model

Among several possible approaches for building a speech model, the results from [1]

gave reason for implementing feature extraction by MFCCs and a GMM as a classifier, as

these methods are found to perform well in speech and sound recognition. The imple-

mentation of the speech model that was used to recognize speech was done in MATLAB

with help from the Statistics and Machine Learning Toolbox [26]. This section explains

step by step how the model was implemented, where each step has its own subsection.

5.2.1 Training, validation and test set

The first step of implementing the speech model was to divide the samples of the speech

database into a training, validation and test set. As the speech samples were already

marked as training or test samples, the only set that needed to be created was the valida-

tion set. This set was created with a certain amount of training samples and an amount

of test samples. Figure 5.2 shows the number of speech samples that was chosen for

each set and how it was divided by gender, with 195 speech samples in total. Since the

training set should be significantly larger than the two other sets, having a training set

that was approximately three times larger than the other sets seemed reasonable.

Figure 5.2: Number of speech samples in each set

Out of the 195 speech samples, 107 of them had female speakers and 88 had male speak-

ers. Due to this, it was not possible to have equally many female and male speech sam-

ples in the sets. However, the difference between male and female speakers were at-

tempted to be kept as little as possible.
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5.2.2 Removal of silence

The Norwegian speech database contained an Extensible Markup Language (XML) file

containing information about each file in the database. This included information

about the time when the spoken sentence started and ended in each audio file. By using

the Falkena’s MATLAB function for converting XML-files into MATLAB structures [27],

it was possible to access the data in the XML-file and use it to remove the silence at the

beginning and end of every audio file. This way, the speech files used for training would

contain exclusively speech and no silence. The silence between words were neglected

as it was very brief and insignificant. Due to this procedure, the audio files were ready

to be used for training a speech model, without training the model to recognize silence

as speech.

5.2.3 Resampling

Resampling is the process of changing the sampling rate of an audio file. An audio file

can be downsampled to reduce the sampling rate, or upsampled to increase it. Resam-

pling is the general term for either one of these processes. The audio files from the mi-

crophone array had a sampling rate of 24410Hz, while the audio files from the speech

and noise databases had a sampling rate of 48kHz. It is not possible to obtain infor-

mation that is not available, as would be the case if upsampling the array recordings.

However, it is possible to downsample the sound samples from the speech database

without losing information or quality. The MATLAB function resample() was used in-

stead of downsample(), when downsampling the samples, because resample() applies

an antialiasing FIR lowpass filter to the signal and compensates for the delay introduced

by the filter [28].

The audio samples from the speech database were downsampled to match the audio

files from the microphone array. By resampling each audio file from 48kHz to 24410Hz,

resampling with a factor of 4800/2441 seems like an clear choice. However, it is possi-

ble to simplify this to a factor of 2, since 4800/2441 = 1.9664. The difference between

downsampling with a factor of 2 versus a factor of 1.9664 is insignificant and is therefore

highly unlikely to affect the results in any way. This equals resampling the data at 0.5

times the original sampling rate.
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5.2.4 Extraction of MFCCs

After the speech samples were downsampled to 24kHz, it was possible to use them for

extraction of information. By using MATLAB code from [29], it was possible to extract

the mel-frequency cepstral coefficients from each speech sample. The cepstral coeffi-

cients were extracted from each 25ms of the speech samples, which is an appropriate

frame size as it normally contains one sound. The code returned 13 coefficients, namely

c0,...,c12, where c0 contained the information about the energy in the frame. After the

cepstra had been extracted from each speech sample, cepstral mean normalization was

performed on the cepstra. The cepstral coefficients of interest, namely c1,...c12, were

saved in a matrix to be used in the next step.

5.2.5 Fitting data to a model

When the cepstral coefficients had been extracted from the speech samples, they were

used to form a speech model. The function fitgmdist() from the Statistical and Ma-

chine Learning Toolbox was used to fit a Gaussian mixture model to data. By feeding

the cepstral coefficients to the function, together with the number of components, a

regularization value and a given termination tolerance value, it created a GMM, as im-

plemented in the example below.

1 options = statset(’TolFun ’, 1e-4);
2 GMModel = fitgmdist(cepstra , 512, ’CovarianceType ’, ’diagonal ’, ...
3 ’RegularizationValue ’, 0.001* min(var(cepstra)), ’Options ’, options );

The function fitgmdist() uses the EM algorithm to fit GMMs to data. When the object

representing the GMM had been created, the function pdf() could be used to form a

probability density function from the model and an input vector. This can be written in

MATLAB as below, which corresponds to p(X ;θ).

1 P = pdf(GMModel , Vcepstra );

In the example above, the object GMModel represents θ and the MFCCs from the vali-

dation set, Vcepstra, represents the input vector X . The last step in implementing the

speech model was to determine the number of components to be used in the model.
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5.2.6 Model selection

There are several different criteria that can be used for GMM model selection. One of

the most popular is the AIC which can measure the goodness of fit of the GMM. As this is

a common method to use, it was also used in the implementation of this speech model.

The AIC was provided as a property of the fitted GMM object from using the function

fitgmdist().

Several different values were tested for the amount of mixtures of the GMM when fit-

ting it to the data. It was desirable to get the lowest possible value for AIC to have the

best model. However, the value of the AIC kept decreasing as the number of mixtures

was increased. Due to this, it was necessary to choose a number of components that

provided a low value for the AIC, but that was still withing certain limits, as it would be

too computationally complex to have a number of components near infinity.

In [22], where the topic is speech enhancement and noise-robust speaker verification,

512 components are used when fitting a GMM to data. Due to this, it seemed reasonable

to choose 512 components for the problem in this thesis, too. The model selection in

[22] is not based on the AIC, but rather on the LRT.

5.3 Universal Background Model

The implementation of the UBM followed the same procedure as the implementation

of the speech model, where feature extraction was done with MFCCs and a GMM was

fitted to data. This approach is found to be a good method also for building a noise

model, according to [1]. The implemented UBM represented a general noise model,

based on the noise samples from table 4.2. The step by step implementation is ex-

plained in the following subsections.

5.3.1 Training, validation and test Set

The first step in creating the UBM was to divide the dataset of noise into a training set,

a validation set and test set. Figure 5.3 illustrates the distribution of the noise samples

in the different sets, in total 904 samples. As with the speech model, the sets were also

here divided so that the training set was approximately three times larger than the other

two sets.
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Figure 5.3: Distribution of noise files in the dataset

The dataset consisted of 15 different noise sources. There was an even distribution of

the sound sources between the three sets. A drawback with the dataset was that it did

not contain keyboard noise, which can be one the most common disturbing sounds in

a meeting room, and also one of the sound sources that had been chosen as a focus

for this thesis. The keyboard noise recorded by the array could therefore be a possible

source of error.

5.3.2 Preprocessing of the Data

After the files had been distributed into three sets, they were preprocessed before the

noise model was developed. The two steps of the preprocessing followed the block

diagram in figure 5.4.

Figure 5.4: Block diagram highlighting the two preprocessing steps

The noise database did not contain information that could help remove the silence

from the recordings, like the speech database did. The audio files contained little si-

lence and it was therefore not as big of an issue as for the speech samples. However, the
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areas of the noise samples that had an amplitude below 10−4 were cut away to make

sure the samples contained as little silence as possible. This cutaway value was chosen

by inspecting several of the noise samples to find a suitable threshold between noise

and silence.

As with the speech model, the audio samples from the noise database were downsam-

pled to match the audio files from the microphone array. The audio files were down-

sampled with a factor of 2 for simplification, equal to 0.5 times the original sampling

rate, resulting in a sampling rate of 24kHz.

5.3.3 Implementation of the Noise Model

The procedure of creating the noise model, or the UBM, was the same as with the

speech model, where MATLAB’s Statistics and Machine Learning Toolbox was used. The

noise model was implemented according to the block diagram in figure 5.5.

Figure 5.5: Block diagram highlighting the implementation steps of the noise model

The noise model was based on having a pool of different non-speech sound sources

and training a GMM on that, rather than training a single model for each noise source.

The reason for choosing this approach was due to complexity and convenience, as it

was more time consuming, and required more data, to build a separate noise model for

each sound.

The model was created by extracting the MFCCs from each 25ms-frame of each noise

file, with 10ms step between successive windows. The function fitgmdist() was used to

fit a GMM to the MFCCs from the training set. Two different noise models were chosen

to be explored further, one GMM with 2048 mixtures and one GMM with one mixture.

The reason for choosing these two models is discussed further in chapter 6.2.
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5.4 Model Adaption using MLLR

Model adaption was the last problem to be implemented. It was implemented in order

to adapt the parameters of the models to better match the input data, and in that way

improve the overall system performance. The model adaption was conducted based on

the equations in section 3.7. Figure 5.6 displays the iterative algorithm resulting from

the equations which is used for obtaining the adaption matrix W.

Figure 5.6: Diagram showing the iterative model adaption algorithm

In the algorithm, µx , Σ, σ and c are produced by either the speech model or the noise

model, where µx is a vector of mean values with a 1 added to the end of the vector.

X represents the cepstra that is produced by the speech or noise samples from exter-

nal databases, while the adaption matrix W was initialized to Wi ni t = [I; 0] for the first

iteration.

The optimal adaption matrix was obtained by iterating through the algorithm until the

maximum log likelihood was reached. The log likelihood was found by

LLH =
N∑

n=1
log(

M∑
l=1

N (x;µl ,Σl )∗ cl )n . (5.1)

The adaption matrix W that followed from the iteration with the highest log likelihood
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was used to create the adapted model. The adapted model was implemented in MAT-

LAB based on the W matrix and the original non-adapted model. An example where an

adapted speech model is produced is described below, where GMModel represents the

non-adapted speech model.

1 load(’GMModel.mat’); load(’W.mat’);
2 muT = [GMModel.mu , ones(length(GMModel.mu) ,1)];
3

4 Adapted_SpeechModel = gmdistribution ((W*muT)’, GMModel.Sigma , ...
5 GMModel.ComponentProportion );

The overall system performance is expected to be improved from adapting the models,

compared to the non-adapted models. The EER is expected to be lowered when testing

with speech and non-speech samples from the microphone array recordings. However,

this is highly dependent on whether there is enough adaption data to obtain a suitable

adaption matrix W.



Chapter 6

Experiments and Results

This chapter will present the different experiments that were conducted for this the-

sis, and the results that followed. In the beginning of this chapter, there is a section

about source localization done with Matlab. Thereafter, the consecutive problem of

classifying whether the detected sound source was speech or non-speech arises. The

classification of the dominant sound source from the recordings have been chosen as

the main focus, and will therefore be explored in more detail than source localization.

It is necessary to take into account that the amount of data from the microphone array

was limited. Due to this, the tests performed in this thesis can be used for indications,

but more data would need to be obtained before making general statements about the

methods.

6.1 Source Localization with MATLAB

In order to locate the sound source in the room, beamforming techniques from MAT-

LAB was implemented. It was possible to plot the output to see where in the room the

strongest sound source was located. The output was a sum of the energy in each di-

rection. Several different recordings were tested to see how well it worked. The results

are somewhat subjective as they are showing the direction of where the sound source is

coming from, but not the exact position. Due to this, the results cannot be classified as

strictly correct or incorrect, but rather acceptable or not acceptable. As an example, the

plot in figure 6.1 shows the results from extracting and plotting the energy of 25ms of

an array recording. This recording contains both speech and fan noise, and the axes are

43
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organized as in figure 5.1 from the previous section, where the x-axis now represents

the energy value.

Figure 6.1: Plot of 25ms of speech and fan noise

From the figure, it can be seen that there are more energy to the left of the plot, namely

at the positive values of the y-axis. By comparing to figure 5.1 it is found that this is the

area where the speaker is located. The right side, where the y-axis is negative, is the side,

or direction, where the noise sources are located. Due to this, it can be concluded that

the microphone array is able to located two sources in the room, for this case being the

speaker and the fan, whereas the speaker is the strongest sound source.

To explore this further, two different scenarios are plotted in figure 6.2. One of the sce-

narios includes a person speaking, while the other scenario includes noise from a coffee

cup.

(a) Pure speech (b) Noise from coffee cup

Figure 6.2: Source localization of speech and coffee cup
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The person speaking and the noise sources were always placed apart, in order to dis-

tinguish them. The resulting plots were produced from 300ms of a recording in order

to display the results properly. In some cases, 25ms was not enough to show a clear

distinction, which is why 300ms were chosen in the upcoming plots.

The source localization in both scenarios of figure 6.2 clearly shows in which direction

of the room the sound was coming from. Figure 6.2a detects the speaker as the strongest

sound source, but it also detects some energy around the area of the noise sources.

In all cases, there was a person standing next to the noise sources. Even though the

recordings sometimes appear to be of only the speaker, the microphones might still

detect some energy from the other person breathing or moving. This would affect the

source localization, even though this person is "quiet".

Both figure 6.2a and figure 6.2b shows that the system is able to detect the strongest

sound source, as well as some background noise from other areas. Having only one

source makes the source localization a simple problem. However, when more than one

source is present, the task might be more difficult. Another scenario that is therefore

worth looking into is when both speech and noise occurs at the same time. In figure

6.3, two different plots are presented with speech and two noise sources. The plot in

6.3a represents the output when a coffee cup is making noise during the time a person

is speaking. The plot in 6.3b represents a person speaking while someone is pressing a

keyboard.

(a) Coffee cup and speech (b) Keyboard and speech

Figure 6.3: Source localization with noise during speech

It can be seen from the plots that both the noise source and the speaker is perceived by

the microphone array. However, the strongest source is shown to be the one with high-

est amplitude. The sound from a coffee cup hitting a table can be quite loud and draw

attention away from the speaker, as seen in figure 6.3a. A keyboard, on the other hand,
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does not provide very much energy, which makes the speech the strongest source. The

keyboard noise in figure 6.3b clearly confuses the source localization, as the localiza-

tion is not as distinct as when only speech is present. Speech is nevertheless a stronger

sound source than keyboard noise, which is also the conclusion from the figure.

The results of the implementation shows to be satisfactory, where the sound sources

in the room are detected. There is still room for improvement, as the plots could be

more specific in regards to exact location of the sound source. It becomes clear from

the figures that when there are multiple sound sources in a room, it can become hard to

choose which one to focus on. The source localization does not tell us anything about

the type of sound that is detected, only the amount of energy that is detected for each

incident angle. To build upon that, it would be useful to know which sound source is

detected. The next sections will therefore explore the results of speech and noise clas-

sification. By combining source localization and speech/noise classification, a robust

speaker detection system could be built.

6.2 Classification

The classifications step was the main focus of this thesis, where the aim was to dis-

tinguish between speech and noise in recordings done by the microphone array. This

section will provide reasons for decisions that have been made, explore the experiments

that was done, show results that were obtained and discuss the outcomes.

6.2.1 Choosing mixtures for the UBM

The noise model that was used in the classification system was a universal background

model. This model should have a wide variance in order to be a general model that

would pick up a wide variety of noise. It was therefore important that the model was

not overfitting by learning only the specific noise sources used for training. Two models

were explored, one that used one mixture and another that used 2048 mixtures.

Using a model with only one mixture would exclude the issue of overfitting and make

the model very general. However, by training the model with 2048 mixture, a wider

variance could be obtained and the data could potentially be fitted better to the model.

The amount of 2048 mixtures were chosen based on findings in [18]. Figure 6.4 shows

a comparison of the different noise models together with the speech model that was

trained with 512 mixtures.
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Figure 6.4: Comparison of the models

Figure 6.4 shows that using a UBM with 2048 mixtures, a greater variance is obtained

compared to using one mixture. The noise models are shifted from the speech model,

indicating that they are able to classify different input with little overlap. The two differ-

ent UBMs were explored further in regards to performance. When feeding the models

input from the microphone array of noise and speech, with length of 500ms, the re-

sults in figure 6.5 were obtained. The Detection Error Tradeoff (DET) curve compares

the FFR and FAR and finds the EER intersection between the two rates, as well as the

optimal threshold.

(a) GMM-UBM with 1 mixture (b) GMM-UBM with 2048 mixtures

Figure 6.5: Comparison of two different systems tested with 500ms input
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It becomes clear from the DET curves in figure 6.5 that using a UBM with 2048 mixtures

results in a more robust system. The reason for this is that the threshold decision is

more sensitive for one mixture than for 2048. A slight shift in the threshold value for

the 1-mixture UBM can result in large errors, either as FR or FA. A slight shift in the

threshold value for the 2048-mixture UBM will also result in larger error rates, but not

as large as for the 1-mixture UBM.

Overall, the UBM with 2048 mixtures shows to have a larger variance and to be more

robust when it comes to the threshold decision, compared to the UBM with 1 mixture.

However, as there are limited amounts of data, using a UBM with 1 mixture might re-

sult in better performance for the system, also because it eliminates the possibilities

of overfitting. Due to this, both the UBMs were used for testing in this thesis and the

results of both systems are compared later in this chapter.

6.2.2 Testing the system

The testing was done with sound samples from the array recordings as well as from the

speech and non-speech databases. Table 6.1 explains the details of the test sets that

were used. The table explains the amount of files in each test set and the length of each

file in the test set. Each test set is numbered to easier explain which test set is used later

in this chapter.

Table 6.1: Overview of the test sets that were used

Test Set No. Sound Source Source Length [ms] Amount

1 Speech Array 500 102

2 Speech Array 1500-5500 29

3 Noise Array 500 27

4 Silence Array 500-700 15

5 Speech speech database 500 35

6 Noise non-speech database 500 172

The test sets of the microphone array were made up of parts of the recordings, where

only speech, noise or silence were present. There are two test sets of speech from the

microphone array, namely test set 1 and test set 2. Test set 1 contains speech samples

with a length of 500ms, while test set 2 contains longer speech samples with lengths

between 1.5 and 5.5 seconds.
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As it was known whether each sample was speech, noise or silence prior to the testing,

it was possible to find the FAR and FRR when running the samples through the models.

Each sample was tested as an input for both the noise model and the speech model,

and the classification was done based on the difference in log likelihood between the

two probabilities. If the difference in log likelihood exceeded the threshold T, the sam-

ple was classified as speech, otherwise it was classified as noise, according to the Like-

lihood Ratio Test in section 3.3.1. Table 6.2 shows the results that were obtained from

the classification of speech and noise samples from the microphone array. In the table,

T describes the threshold value at the EER intersection. Test set 1 was used for speech

input, while test set 3 were used for noise input.

Table 6.2: Comparison of threshold values and equal error rates

Frames Length [ms] E E R1 [%] E E R2048 [%] T1 T2048

1 25 32.4 43.2 -3 10

2 50 27.3 33.5 -4 9

3 75 31.4 29.7 -3 10

5 125 30.0 21.9 -2 17

8 200 26.6 16.2 -3 28

10 250 23.3 17.3 -5 35

15 375 20.2 14.9 -8 56

20 500 14.9 11.0 -15 65

It can be seen from the table that the threshold values for the 1-mixture UBM are rather

stable over different amounts of frames, compared to the threshold values for the 2048-

mixture UBM. The threshold is the point where FA and FR meets at the EER. As the

threshold value is a value that can be chosen when a final, well functioning system is

obtained, this chapter will not focus its attention towards finding an optimal threshold

value, but rather focus on the EER.

The EER is high when only one frame of 25ms is used for classification, for both the

UBMs. It is also seen that as more frames are used as input for the classification system,

the lower the error rate becomes. The 1-mixture UBM performs better in regards to EER

for one and two frame inputs, while the 2048-mixture UBM performs better for higher

amounts of input frames. This is illustrated in figure 6.6.
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Figure 6.6: Comparison of the EER over frame input for the two systems

Figure 6.6, as well as table 6.2, show that the EER decreases more slowly when the num-

ber of frames become larger, for the system with the 2048-mixture UBM. Even though

the system with the 2048-mixture UBM results in higher EER for one and two frame

inputs, the EER is lower for all other amounts of input frames. The question of which

model that should be used for classification relies on whether the system should work

online or offline.

If the system is working online, namely in real-time, it is desirable to use few frame

inputs in order to have a fast-responding system. The system should be able to clas-

sify speech as soon as someone starts to speak, thus, it should be able to make a de-

cision based on a few frames only. This will naturally lead to a higher EER. By using

many frames for online classification, the system will react more slowly to changes and

thereby give a poor user experience. A balance between number of input frames and

acceptable EER would then need to be chosen. If only one input frame were to be used,

the system with the 1-mixture UBM should be chosen as this provides more than 10%

lower EER than the system with the 2048-mixture UBM. Despite this, having a system

with over 30% EER, like both the current systems have, is not a robust system and would

not work well in real life.

If the system is working offline on the other hand, it is possible to use larger amounts of

input frames. That way, the system has more data to rely on when making a classifica-

tion decision, and the error rate will naturally drop. This is also seen in table 6.2, where

the EER drops below 15% for both systems when 20 input frames are used, namely an
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input of 500ms. The length of the input is dependent on which types of noise source

that are expected to be found.

From table 4.2 it is seen that clinking of chinaware has an average length of about

500ms, which indicates that using 500ms inputs should be enough to detect these types

of sudden noises in an offline system. The noise from air conditioning or from clicking

a keyboard can last from long periods of time, indicating that having input of a few sec-

onds could be used to classify these noise sources. By comparing the DET curves for

different amount of input frames for the system with the 2048-mixture UBM, figure 6.7

is obtained.

(a) 1 frame (b) 20 frames

Figure 6.7: Classification with different amounts of frames

The system is more robust the more frames that are used as input in the classification

process. The more frames that are used, the more stable the threshold decision is. As an

example, if the threshold is moved 10 values higher than what is optimal, it will lead to

83% false rejections when only one frame is used as input, by an increase of 43%. If the

same shift is done for the scenario where 20 frames are used as input, the EER will only

increase from 11% to 13% false rejection. This gives reason for inspecting the results

when longer inputs are used for the classification system. In figure 6.8, the long speech

samples from test set 2 and the noise samples from test set 3, namely samples from the

microphone array, are used as input.
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(a) System with UBM with 1 mixture (b) System with UBM with 2048 mixtures

Figure 6.8: DET curves for long speech input sequences

When up to several seconds of a recording are used for classification, it can be found

that the EER becomes zero for both systems. The system is able to distinguish between

noise and speech with high confidence and with a wide range of optimal threshold val-

ues. However, the system is working slowly as it needs to record multiple seconds before

making a decision. In other words, it may be used in an offline system, but not in a real-

time system. The system might still not work optimally offline, as sudden noises might

not be detected if they only take up a few frames of the entire input.

Another aspect of classification is to look at silence. The speech model should not have

learned that silence is the same as speech, as the microphone array should not focus

on silence. When running test set 4 of silence samples through the speech and noise

model, table 6.3 was found.

Table 6.3: Classification of silence

Number of frames Length [ms] Speech Noise

1 25 0% 100%

10 250 0% 100%

20 500 0% 100%

Both UBMs were used in the classification of silence, and they both gave the same re-

sults. Table 6.3 clearly shows that all samples of silence are classified as noise. This is

optimal and as hoped for, as it is undesirable that the system focuses on silence when it

is supposed to focus on speech.
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6.3 Model Adaption

The goal of implementing model adaption was to improve system performance. It is

crucial for the speech input to be perceived as well as possible, and it was therefore

expected that using model adaption on the speech model would improve the overall

system performance. Less adaption data were available for adaption of the noise model.

However, the results where both models are adapted is found towards the end of this

section. By implementing model adaption on the speech model, namely finding an

optimal matrix W that could adapt the mean values of the mixture model, the results

in figure 6.9 were found. Test set 1 with 102 speech samples from the microphone array

were used to obtain the optimal W.

(a) Systems with UBM with 1 mixture (b) Systems with UBM with 2048 mixtures

Figure 6.9: Comparison of non-adapted and adapted systems with array input

Figure 6.9a clearly show an improvement for the system with the 1-mixture UBM. The

adapted system provides better results for every amount of input frames larger than

one. For an input of only one frame, the non-adapted system provides an EER that is

0.5% lower than for the adapted system. Neglecting this point, the adapted system has

an EER between 3.4% and 12.8% lower than the non-adapted system. By averaging over

all the frames, the adapted system show an overall 8.6% decrease in EER, which is a very

positive improvement. The results of the model adaption for this system can therefore

be considered satisfactory.

The system with the 2048-mixture UBM, on the other hand, does not show as clear

improvement. The adapted system can be interpreted as overall slightly better than the

non-adapted system. For inputs of one frame, the non-adapted system provides better

results than the adapted system, also for this system, with a difference in EER of 2%.
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The poor improvement of the adapted system is likely due to the lack of data. Since

the number of mixtures is high for the UBM in this system, it is likely that there is not

enough data to make a good adaption for this system. An adaption of the speech model

should be able to improve the system performance more than what is seen in figure

6.9b.

By comparing the different systems in regards to performance, it is found that there is

not one single system that is optimal, but rather that it depends on the amount of input

frames. Table 6.4 gives an overview of which system provides the lowest EER, and is

thereby the optimal system, depending on how many frames are used as input.

Table 6.4: Overview of which system provides lowest EER

Input frames Optimal System EER

1 Non-adapted system w/UBM1 32.4%

2-3 Adapted system w/UBM1 23.8% - 24.5%

4-10 Adapted system w/UBM2048 14.4% - 18.0%

11-20 Adapted system w/UBM1 5.6% - 14.2%

The adapted system with the 1-mixture UBM turns out to be the best choice for very

few inputs as well as larger inputs, which is seen from the results in figure 6.9 and table

6.4. When 20 frames are used as input, the adapted system reaches the minimum EER

of 5.6%, meaning that the system classifies speech with high confidence. However, for

inputs of 4-10 frames, the adapted system with the 2048-mixture UBM turns out to be

the better choice. Altogether, there is not one system that is overall significantly better

than the other. It is likely that having more data would result in clearer results in regards

to finding an optimal system for all amounts of input.

Another approach for exploring how the adapted system is performing, is to test it on

speech and noise from test sets 5 and 6, namely on input that is not from the micro-

phone array. This should result in poorer performance for the adapted system since it

is adapted to the microphone array. The results can be seen in figure 6.10.
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(a) Systems with UBM with 1 mixture (b) Systems with UBM with 2048 mixtures

Figure 6.10: Comparison of non-adapted and adapted systems with non-array input.

It becomes clear from the two figures above that the overall system performance is de-

teriorated due to the adaption of the speech model, regardless of which noise model

is used in the system. This was as expected, and these results are therefore satisfac-

tory. Similar to figure 6.9, it can also here be seen that an adaption of the system results

in clearer differences in the system with the 1-mixture UBM than the system with the

2048-mixture UBM, which is likely due to the small amounts of data.

Taking a step further, the approach of adapting both the speech model and the noise

model for the system was studied. The 27 noise files from test set 3 were used to find

the optimal adaption matrix W for the adaption of the noise model with 2048 mixtures.

The results of the adapted systems with the 2048-mixture UBM are presented in figure

6.11.

Figure 6.11: Comparison of systems with 2048-mixture UBM
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From figure 6.11, it is seen that the EER drops by almost 10% for one frame inputs and

there is a slight improvement at inputs of 10 frames or higher, for the system where both

models are adapted. All in all, the system where both models are adapted is slightly

better than the two other systems.

When trying to find an appropriate adaption matrix for the 1-mixture UBM, it was not

possible to find the adaption matrix from the equation G ·W = Z since G was not of

full rank and thereby not invertible. This was caused by the very small mean values

of the noise model, which was in the order of 1e-16 or lower. This led to the matrix G

containing values between 1e-35 and 1e-16 which equals machine precision of zero in

practice.

By inspecting the log likelihood values that were obtained in the search of optimal adap-

tion matrices, clear differences were found. These results can be an indication that an

optimal adaption matrix might not have been found for the noise model adaption. The

log likelihood values are displayed in figure 6.12.

(a) Log likelihood for speech model adaption (b) Log likelihood for noise model adaption

Figure 6.12: Comparison of log likelihood values for adaption

Figure 6.12b clearly shows that the log likelihood values of the noise model adaption of

the 2048-mixture UBM is alternating, while the values for the speech model adaption in

figure 6.12a increases until a certain point before they very slowly decrease. The graph

of the log likelihood values of the speech model adaption is smooth, as oppose to the

graph for the noise model adaption. This indicated that an optimal adaption matrix is

found for the speech model adaption, while there is still some uncertainty to whether

the absolute optimal adaption matrix is found for the noise model adaption. This is

likely due to the amounts of data that were used for adaption, as the adaption of the

speech model used cepstra from 102 speech samples, while the adaption of the noise



6.3. MODEL ADAPTION 57

model only used cepstra from 27 noise samples.

If more data were available, adapting both models could potentially result in better

overall performance. However, as the current amount of data, and especially amount

of noise data, for adaption was very limited, adapting both models did not provide a

very significant improvement, as somewhat expected. If more noise data were avail-

able for model adaption, a more optimal adaption matrix W could be found. That way,

the parameters of the noise model could be adapted to better match the input data.

From subsection 3.4.2 in the theoretical background chapter, it is mentioned that the

difference in performance between two classifiers needs to be statistically significant in

order to choose one over the other. It would be preferable to see how the system with

the 1-mixture UBM would perform if the noise model was adapted. Despite this, based

on this statement, as well as table 6.4, it is not reasonable to choose one of the noise

models over the other, as there is not one systems that is clearly better than the other.
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Chapter 7

Conclusion

When implementing source localization in MATLAB, the results turned out to be sat-

isfactory. The strongest sound source, as well as the less strong sound source, were

detected by the system. However, the system only found the source with the highest

amplitude without any consideration of what the source was. This is the reason classi-

fication had to be implemented.

The methods that were used in this thesis were Mel-frequency cepstral coefficients for

feature extraction, and Gaussian Mixture Model for classification. A GMM for speech

classification was trained with 512 mixtures, while two GMMs for noise classification

were trained: one with 2048 mixtures and another with one mixture. The noise models

were trained to be universal background models with large variance in order to pick up

a wide variety of noise sources.

The performance of the classification systems were dependent on the length of the in-

put sample. With only one frame of 25ms, the performance of the systems were poor,

with EER above 30%. However, both systems were able to recognize speech better, the

longer the input sequence was. Inputs of length 500ms resulted in EER below 15% for

both systems, while inputs of up to several seconds reached EER of 0% for both systems.

Longer inputs could be used in an offline system, where the input length should be cho-

sen dependent on which noise sources are expected. A real-time system should make

computationally fast decisions in order to switch between speakers rapidly and not fo-

cus on noise, and by that only use a few frames as input. A real-time system should

therefore be much more robust for very short input sequences than what is found in

this thesis.
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The system with the 1-mixture UBM showed best results from input sequences of one

and two frames. However, from input sequences greater than two frames, the system

with the 2048-mixture UBM showed the best results. As more frames were used as in-

put, not only did the EER decrease, but the threshold value also became more robust. A

slight shift in the threshold value had smaller impact on the error rate, the more frames

were used as input. When classifying samples of silence, they were found to be clas-

sified as noise for both systems, regardless of the input length. This was optimal, as it

was undesirable that the systems classified silence as speech and thereby focused on

silence.

Model adaption was implemented in order to adapt the parameters of the models to

better match the input data. When only the speech model was adapted, the system

with the 1-mixture UBM showed great improvement, with an average of 8.6% decrease

in EER, which was a very positive improvement. However, there was no improvement

for inputs of one frame, only on inputs of more than one frame. The system with the

2048-mixture UBM showed a slight improvement when the speech model was adapted.

When feeding the systems input that was not from the microphone array, the adapted

systems showed poorer performance than the non-adapted systems. This was expected

as the adapted systems were adapted to the microphone array.

Adapting both the speech and noise model resulted in a slight improvement for the

system with the 2048-mixture UBM, compared to when only the speech model was

adapted. However, the adaption of the system did not show as big improvements as

expected. For the system with the 1-mixture UBM, it was not possible to find an adap-

tion matrix as the mean values of the noise model were too small, resulting in a non-

invertible adaption matrix. 102 adaption samples of speech were used to obtain the

adaption matrix W and the log likelihood values showed a clear maximum which re-

sulted in an optimal W matrix. For the adaption of the noise model on the other hand,

only 27 adaption samples of noise were available and the log likelihood values were al-

ternating. It was therefore likely that the adaption matrix W was not the most optimal.

More adaption data would be necessary for finding absolute optimal adaption matrices.

The difference in performance between the two noise models was not statistically sig-

nificant enough to choose one over the other. Overall, obtaining more data, especially

keyboard noise, for training, adaption and testing is likely to improve the system per-

formances. The system with 1-mixture UBM that was adapted for the speech model

reached 5.6% EER at 500ms inputs, indicating that this system was working well for of-

fline use. There are however clearly room for improvement if the systems are to be used

in real-time, as the EER is currently too high for providing good accuracy and thereby a

good user experience.
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Future Work

One of the most important approaches for improving the system is to obtain more noise

and speech data for training, testing and adaptation. That way, stronger models can be

trained, and the performance can be evaluated more thoroughly. Collecting noise from

keyboard clicking for training the noise model is likely to improve the overall system

performance. Working further on developing an fully adapted system for the system

with the noise model with one mixture is likely to provide good results. Other methods

can be tried out, as there are several other approaches for sound classification that can

potentially provide better results.

The final system should be one where source localization and classification are con-

nected. Further work should therefore be to connect source localization and classifica-

tion to build a connected system that actively searches for the speaker in a room, based

on inputs from the microphone array. The connected system should be computation-

ally fast in order to provide the best user experience, if used in real-time.

To built further on the system, a potential addition would be to attenuate the noise in

order to improve the system performance. That way, the system can not only find and

switch between speakers, but also lower the noise that is found in the room. The final

system should be optimized to provide a good user experience.
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