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Abstract

Analog and mixed-signal circuit designs are more important now than
ever, due to the popularity of wearable and wireless electronic devices. The
forecast of the Internet of Things (IoT) suggest that the need for advanced
Mixed-Signal System-on-Chips (MSSoC) will be present in many years to come.
The increasing functionality required by the analog parts of MSSoCs presents a
great challenge in the verification of such systems. Simulation Program with
Integrated Circuit Emphasis (SPICE) tools are still the main technique used
to verify analog circuits. However, the speed of SPICE simulation becomes
an issue with the increasing complexity of analog designs. Other verification
strategies are necessary in order to reach sufficient functional verification
within the time to market. Real Value Modeling (RVM) is a technique that
can be used for digital simulation of analog circuit, yielding a greater speed
performance than SPICE tools. By exploiting RVM in combination with the de
facto standard for digital verification, the Universal Verification Methodology
(UVM), sufficient functional coverage can be achieved.

This thesis presents the design and implementation of a UVM based
Universal Verification Component (UVC) for the Near Field Communication
(NFC) protocol. The final UVC enables protocol verification of NFC devices
using the NFC-A technology. By leveraging Metric Driven Verification (MDV)
and RVM models, the UVC achieves digital simulation speed in functional
verification. A mathematical model for driving stimulus on an analog interface
is presented as well as a model for estimating the frequency of the observed
interface. The models enable driving and monitoring of analog characteristics
such as amplitude, modulation and frequency.

Verification was performed by the UVC in a testbench with a Device Under
Test (DUT) using the NFC-A technology. 100% functional coverage was reached
at digital simulation speeds, according to a verification plan. Visual inspection
of the driven and monitored interface confirms the UVCs ability to perform
correct protocol verification. The results indicate that the UVC can mitigate the
speed performance of SPICE simulation to improve functional verification of
analog modules.
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Sammendrag

Analog og blandet krestdesign er viktigere enn noen gang på grunn av
populariteten rundt bærbar og trådløs elekronikk. Prognosen for tingenes
internett (IoT) antyder et økende behov for avanserte systemkretser basert
på blandet kretsdesign (MSSoC) i mange år fremover. Behovet for økt
funksjonalitet i analoge deler av MSSoC-systemer har ført til utfordinger
relatert til verifikasjon av slike system. Simuleringsprogram med fokus på
integrerte kretser (SPICE) er fremdeles den viktigste måten for å verifisere
analog kretser, men i lys av økt kompleksitet i analoge krester kommer
simuleringshasigheten til SPICE-verktøy til kort. Andre metoder for å
oppnå tilstrekkelig funksjonell verifikasjon er nødvendig for å nå markedet i
tide. Ekte verdi modellering (RVM) er en teknikk som kan brukes i digital
simulering av analoge kretser for å øke simuleringshastigheten i forhold til
SPICE-simuleringer. Ved å utnytte RVM i kombinasjon med den mest brukte
metoden for digital verifikasjon, universell verifikasjonsmetodologi (UVM),
kan tilstrekkelig funksjonell verifikasjon oppnås.

Denne oppgaven presenterer en UVM basert universell
verifikasjonskomponent (UVC) designet og implementert for
nærfeltskommunikasjons (NFC) protokollen. Den ferdige UVC’en muliggjør
protokollverifikasjon av NFC enheter som dekker NFC-A teknologien. Ved å
utnytte målstyrt verifikasjon (MDV) og RVM-modeller oppnår UVC’en digital
simuleringshastighet ved funksjonell verifikasjon. En matematisk modell for å
påtrykke stimuli på et analogt grensesnitt er presentert i tillegg til en modell
for å estimere frekvensen observert på grensesnittet. Modellene muliggjør
påtrykking og overvåking av analoge karakteristikker som amplitude,
modulering of frekvens.

UVC’en er demonstrert ved å utføre verifikasjon i en testbenk satt opp
med en enhet under test (DUT) basert på NFC-A teknologien. 100%
funksjonell verifikasjon oppnås ved digital simuleringshastighet, i henhold
til en verifikasjonsplan. Visuell inspeksjon av påtrykte og målte verdier på
grensesnittet bekrefter at UVC’en verifiserer protokollen riktig. Resultatene
indikerer at UVC’en kan gi økt hastighet ved funksjonellverifikasjon av analoge
moduler ved å tilføyes SPICE-simuleringer.
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Chapter 1

Introduction

The trend in increased applications for consumer electronics, as well as
commercial electronics, does not seem to reach an end anytime soon. Wearable
electronics are becoming popular and has a range of applications such as
health monitoring, navigation, media, communication and more applications
are probably right around the corner. So it seems when hearing about the next
big thing of tomorrow, the Internet of Things (IoT). Imagine a world where any
physical device could be accessed from anywhere through the internet. Search
missing keys on the internet and their location will be given in seconds. Patients
with heart disease could have an embedded chip inside the chest that monitors
the heart. Information about the patient’s heart can be sent to computers at a
hospital running powerful algorithms, potentially predicting a stroke and save
lives. This is some of the forecast potential of the IoT and it is predicted that
within 2020, 50 billion devices will be connected in the internet [1, p. 3].

For the semiconductor business, all these wearables and physical devices
connected to the internet, means a high demand for wireless communication.
Hence, the need for Mixed-Signal Systems-on-Ship (MSSoC) increase as well as
the complexity of these chips, due to the large range of possible applications.
The challenge of such systems is that verification becomes a real issue and
with the time-to-market requirement it is nearly impossible to perform all
the necessary verification in time. According to [2], 70% of the logic design
phase of a chip is devoted to verification and 60% of SoC re-spins are due to
mixed-signal errors. The increasing functionality of SoCs have been an issue for
quite some time. Hence, methodologies for improving the verification process
of Integrated Circuits (IC), such as the Universal Verification Methodology
(UVM), have appeared. However, UVM is used for verification of digital parts
of the chip and analog parts are verified by Simulation Program with Integrated
Circuit Emphasis (SPICE) tools. SPICE tools yield accurate simulation of the
analog circuits, but they are time consuming. With the increasing complexity
of the analog parts of the SoCs, performance becomes an issue, and other
approaches are needed. Real Value Modeling (RVM) is a technique based on
discrete models of analog parts of a design. These models can be used in digital
simulation, yielding a speed-up in the functional verification of analog designs.

In this thesis UVM and RVM is combined to mitigate the poor speed of
functional verification in SPICE simulations.
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2 Chapter 1. Introduction

1.1 Main Contributions

A Universal Verification Component (UVC) for the NFC-A technology of the
Near Field Communication (NFC) protocol has been designed and tested. The
UVC is based on the verification methodology UVM and is designed to be
reusable and easily configurable for different testbenches. Due to its modular
design, several of the components comprising the UVC is reusable for other
UVC designs.

A mathematical model has been designed for estimating the period of a
sinusoidal signal. For interfaces similar to the NFC interface, the model can
be used to estimate the period of the interface down to a pico second in a
simulation with a nano second timescale. Thus, enhancing simulations speed.

The UVC comes with a UVM based stimulus library for NFC-A requests.
The library is intended for users of the UVC to easily create interesting stimulus
for different testbenches. Its modular structure enables fast creation of new
stimulus and it could work as an example for writing stimulus libraries for
other UVC designs.

1.2 Methodology

The final design is based on evaluating the ease extending functionality,
reusability and meeting requirements of the verification methodology and the
protocol. The design consists of modular components and the evaluation is
performed separately for each component and for the design as a whole.

Testing is done according to a specified verification plan and targets the
functional verification of the protocol. The testbench use Metric Driver
Verification (MDV) to quantitatively measure the end of test and to aim the
stimulus towards a specific part of the stimulus space. The results are analyzed
in terms of the initial requirements of the design, according to the verification
plan and by visual inspection.

1.3 Outline of the Report

First a presentation of the verification methodology, UVM, and the analog
protocol, NFC, is given in Chapter 2. How to set up a verification plan for
functional verification is presented as well as a brief study of relevant work.
Chapter 3 describes the result of the design phase of the thesis and arguments
for the chosen design. Detailed description of the components comprising the
implementation is given in Chapter 4. To demonstrate the final implemented
design, a testbench is set up to simulate a realistic scenario, which is presented
in Chapter 5. The results of the testbench is presented in Chapter 6. Based
on the arguments during the design phase and results from the testbench,
a discussion is presented in Chapter 7 to evaluate the design. Chapter 8
concludes the thesis, sums up the most important evaluations and presents
recommendations for future work.



Chapter 2

Background and Related Work

This chapter is meant to present the necessary information on the central topics
and relevant work leading up to the conclusion of this thesis. UVM and the
NFC protocol will be covered as well as section about verification planning.
The UVM and NFC sections are included from a project report the author did
in an earlier study [3], however, the sections are extended and customized for
this thesis. A final sections presents a brief study of relevant literature.

2.1 Universal Verification Methodology (UVM)

UVM seems to have taken over as the standard in functional verification of
digital designs. It is the successor of other methodologies such as Open
Verification Methodology (OVM) and is currently at version 1.2. UVM consist
of the industry’s best practice in functional verification of digital design [4,
p. 1] for over a decade and provides a solid framework for setting up a
verification environment. Very importantly UVM provides MDV which means
that constrained random stimulus is generated and functional coverage is
performed in a self-checking environment [4, p. 2]. This is also known as
the "three C’s" - Coverage, Checkers and Constraints and is essential in UVM.
With its fixed coding style and use of Transaction-Level Modeling (TLM) UVM
enables high reusability through what is called the UVC. As System-on-chips
(SoC) become more complex, so does the verification of the SoCs. By leveraging
these techniques UVM might contribute in making the verification effort less
time consuming.

This chapter will describe the important components that makes up the
UVC [4, p. 13-15] and how to set up a UVM testbench. For more details on
UVM and how create a UVM testbench please refer to [5].

2.1.1 Test Bench

Figure 2.1 shows the overview of an example UVM testbench created according
to the recommended guidelines presented by the UVM User’s Guide [5].
The testbench typically encapsulates the running tests, instantiates the Device
Under Test (DUT), the interface and the connections between them. The tests
are dynamically instantiated at run-time which allows the testbench to be
compiled once and run different tests.

3



4 Chapter 2. Background and Related Work

FIGURE 2.1: Typical UVM testbench architecture.

The following chapters will elaborate on the recommended guidelines for
setting up the components and objects inside the testbench illustrated in Figure
2.1.

2.1.2 Test

The test is the top-level UVM component of the testbench and is responsible
for creating the environment and test stimuli, based on sequences, and passes
the test stimuli down the component hierarchy. The test configures the
environment by setting configurations in the configuration database.

2.1.3 Configuration Database

The configuration database is a type-specific mechanism that enables the
verification engineer to store parameterized configuration information that can
be access from anywhere in the component hierarchy. This allows the designer
to specify a configuration object in the test component and by storing the
object in the configuration database it can be access in the sub components in
order to set up the components with the desired configuration. In the example
testbench, Figure 2.1, the environment and agents are configured through this
mechanism. The configuration object for the environment would contain fields
indicating whether to include a scoreboard, the number of different agents
and/or other environments. It usually would contain the configuration objects
for the agents if changes to these objects are made in the environment. The
agent configuration objects would contain parameters for specifying whether
the agents are active or passive or if it should have a coverage component.
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Other specific parameters used in the configuration are put in the respective
configuration objects.

2.1.4 Environment

The environment holds the agents, the scoreboard, coverage collectors, other
components, other environments and configuration objects that are interrelated
in order to exercise the DUT. The environment reads the configuration from
the configuration database and connects all the sub components together
accordingly.

2.1.5 Agent

The agent encapsulates the driver, sequencer, monitor, coverage collector
and a configuration object that configures the components for the particular
verification environment. There is generally one agent per interface making the
agent a hierarchical component that groups the verification component dealing
with a specific interface to the DUT.

According to UVM the agent has to be configurable as an active or a
passive component. The difference is that an active agent is instantiated
with components that enables stimulus generation. A passive agent is only
configured with the ability to monitor the interface.

2.1.6 Sequencer

Execution of sequences is performed by a sequencer. Upon a driver request for
a sequence item, the sequencer grants the request with a randomized sequence
item by executing a sequence. The randomization happens after the item has
been granted and happens within the constraints of the sequence.

2.1.7 Sequence

When generating stimulus for the DUT it should be random, but it should also
be a combination of relevant stimuli. The sequence makes it possible to put
together a meaningful sequence of sequence items. The items of this sequence
are randomized by executing the sequence. An example of such a sequence
could be a burst transfer on an AMBA High-performance Bus (AHB) bus. The
sequence would specify the general structure of the transfer. When executed,
the sequence would be randomized within a certain set of constraints.

2.1.8 Sequence Item

UVM enables a higher abstraction above the signal representation in a
traditional verification environment through TLM. TLM means that the signal
representation is replaced with the notion of transactions. An example of such
an abstraction is an Ethernet frame consisting of different signals. The sequence
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item is the fundamental object of this abstraction level in UVM and represents
the information passed between components inside the environment. The
sequence item holds direct information about the signal interface of the DUT as
well as any additional attributes considered to increase the abstraction inside
the verification environment. One of the greatest features about the sequence
item is the possibility generating random stimulus by randomizing the fields
inside the item. One other great feature is the ability to put constraints on
the randomization of the fields inside the item. The sequence item is also a
container for functions for printing, coping and comparing of sequence items.

2.1.9 Driver

The driver is the component which is responsible of driving the signals to the
DUT. This task includes requesting sequence items from the sequencer before
translating the items to interface signals. In addition, the driver takes care of
the timing in when to proceed with the next item of the sequence.

2.1.10 Monitor

The monitor is similar to the driver in the way that is handles translation
between items and signals on the interface. The monitor decides when to
create sequence items from the signals on the interface. The items are broadcast
to components such as scoreboards, coverage collectors and checkers. The
monitor is a fundamental part of the self-checking mechanisms of UVM.

2.1.11 Scoreboard

The scoreboard’s main responsibility is to check the behavior of the DUT. The
scoreboard receives the input and the output of the DUT through the analysis
port of an agent and runs the input through a model to produce the expected
output and checks if the actual output matches the predicted output. In essence,
the scoreboard takes two inputs and checks if they match according to user
defined criteria.

2.1.12 Coverage

Coverage is an essential part of the MDV in UVM. Coverage is used to specify
a metric for how well the design is tested. The coverage points are often put
inside the monitor or in a separate component that receives broadcast items
from the monitor. By coverage it is referred to functional coverage.

2.1.13 Interface

The interface is the connection between the UVC and the DUT. It is typically a
standard bus, such as AHB, and consists of all the control and data signals of
that particular bus.
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2.2 Near Field Communication (NFC)

NFC is a communication technology enabling data transfer through physical
proximity. It is coming up as one of the IoT technologies and enables
an interactive and secure way of communication. One particular use case
is safe pairing of two Bluetooth devices. It is potentially easier and less
time consuming when pairing with many devices. The NFC Forum [6]
develops specification and test mechanisms that ensure consistent, reliable NFC
transaction worldwide.

This chapter will elaborate on the characteristics of the carrier that is
essential in the communications between NFC devices using the NFC-A
technology. Details about how the carrier is modulated to pass information
and how information is represented will be given.

2.2.1 NFC-A Technology

NFC-A technology is one of several modulation techniques and protocols used
by NFC devices. When using NFC there is a notion of a sender and a receiver.
The sender notifies the receiver, through its physical proximity, and starts
communication. Communication is performed over an inductive coupling
between the sender and the receiver. Information is modulated on a carrier with
a frequency (fC) of 13,56MHz that passes from the sender to the receiver though
the inductive coupling. Throughout this report the device generating the carrier
will be referred to as the polling device and the device that receives the carrier
will be referred to as the listening device. Figure 2.2 illustrates the polling and
the listening device in physical proximity and the direction from which device
generates the carrier. The carrier is modulated by both the polling and the

FIGURE 2.2: Illustration of physical between a polling device and
a listening device.

listening device to send requests and responses in order to communicate.

2.2.2 Carrier Specification

To ensure reliable communication between the polling and the listening device
the carrier characteristics have to guarantee a set of requirements specified
by the NFC Forum in [7]. Figure 2.3 depicts the characteristics of the carrier
during modulation by a polling device. Table 2.1 depicts the requirements that
is extracted from the carrier specification in Figure 2.3. Note that if the rise
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FIGURE 2.3: Modulation polling device to listening device for
NFC-A [7, p. 34].

TABLE 2.1: Requirements of the NFC-A carrier.

Requirement Min Value Max Value
Pulse width t2 t1 + t3
Carrier amplitude V4 V1
Modulation amplitude ∼ 0% V2
Fall time 0 t1 - t2
Rise time 0 t3

and fall times are max, the pulse width has to be min. The specification also
allows overshoots immediately following the rising edge of the modulation
which shall remain within (1±VOU,A·V1). V1 is the initial voltage level measured
immediately before the first modulation is applied by the polling device. The
legal frequency and period of the carrier is given by Equation 2.1.

fC ∈ [13.553, 13.567]MHz⇔ TC ≈ [73709, 73784]ps (2.1)

2.2.3 Polling→ Listening Device

Sequence Format and Requirements

Figure 2.4 illustrates the typical sequence format of a polling device. It shows
how the analog signal is modulated using the Modified Miller coding with
Amplitude-Shift Keying (ASK) 100%. The amplitude of the carrier is modulated
either as a 100% V "on" or below 5% V "off". Varying the time the carrier is
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FIGURE 2.4: Modified miller coding with ASK 100% [8, p. 15].

"on" results in patterns X, Y and Z. Figure 2.4 depicts the different patterns and
the patterns relation to the bit duration (bd) [8, p. 12]. The requirements for
building patterns are listed as follows:
• Pattern X is always "on" in the first half of the bd and "off" in rest of the

bd.
• Pattern Y is characterized by the carrier being "on" for the complete bd.
• Pattern Z is always "off" in the first half of the bd and "on" in the rest of

the bd.
The listening device should treat all patterns other than X, Y and Z as illegal.

Synchronization and De-synchronization

The NFC-A requires no synchronization in terms of synchronizing a sequence.
De-synchronization is characterized as the pattern Y. Pattern Y can be read

by the listening device as the End-of-Frame (EoF) when:
• it detects a pattern Y after a pattern Y
• or it detects a pattern Y after a pattern Z.

Bit Level Coding

The patterns modulated by the polling device are used to represent the digital
alphabet. Pattern X shall represent a logic ’1’ and pattern Y a logic ’0’. The
exceptions are:
• Start-of-Frame (SoF) logic ’0’ shall be represented as pattern Z.
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• All contiguous logic ’0’s except the first are represented by pattern Z.

2.2.4 Listening→ Polling Device

Sequence Format and Requirements

Figure 2.5 illustrates the typical sequence format of a response from the
listening device. The analog signals is modulated using Manchester coding

FIGURE 2.5: Manchester coding with OOK [8, p. 17].

with On-Off Keying (OOK). The listening device uses the carrier frequency
(fC) from the polling device to derive a subcarrier (fC/16) to perform OOK.
Applying the OOK subcarrier modulation on the carrier defines the two
patterns D and E with respect to bd as depicted in Figure 2.5. If no modulation
is applied for one bd the patterns is defined as F. The requirements for building
patterns are listed as follows:
• If the carrier is modulated by the subcarrier only for the first half of the

bd it shall be treated as pattern D.
• If the carrier is modulated by the subcarrier only in the last half of the bd

it shall be treated as pattern E.
• If no subcarrier modulation is performed for a complete bd it shall be

treated as pattern F.
If the polling device detects patterns different from pattern D, E and F, it should
be treated as illegal patterns.

De-synchronization

If the polling device detects a pattern F from the listening device, it should treat
it as a EoF.
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Bit Level Coding

The patterns modulated by the listening device is used to represent the digital
alphabet. Pattern D shall represent a logic ’1’ and pattern E a logic ’0’.

2.2.5 Frame Format

There are three types of frame formats used for NFC devices configured with
the NFC-A Technology: Short Frame, Standard Frame and the Bit Oriented
SDD Frame. All formats are based on a payload encapsulated with an SoF
and EoF. For more details on the structure of each frame format, please refer to
[8].

2.2.6 Command Set

The payload exchange between to NFC devices consist of requests and
responses. The frames of the NFC-A protocol is described in Table 2.2.

TABLE 2.2: NFC-A Command Set [8, p. 24].

Request Response Frame Type
ALL_REQ, SENS_REQ Short Frame

SENS_RES Standard Frame
SDD_REQ Bit Oriented SDD Frame

SDD_RES Bit Oriented SDD Frame
SEL_REQ Standard Frame

SEL_RES Standard Frame
SLP_REQ Standard Frame
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2.2.7 Timing Requirements

The NFC-A Technology poses timing requirements on the communication
between the polling and listening devices [8, p. 37-43]. Three Frame Delay
Times (FDT) timing requirements are associated with the timing between two
consecutive frames. The FDT is described in Table 2.3. The FDT is dependent

TABLE 2.3: Timing requirements between consecutive frames of
the NFC-A protocol.

Requirement Description
FDTA,L Timing between a request and a response. The

minimum timing requirement are equal for
combinations containing an ALL_REQ, SENS_REQ,
SDD_REQ or SEL_REQ. For these combinations,
the maximum value of the requirement equals the
minimum value.

FDTA,P Timing between a response and a request. The
minimum timing requirement is equal for all
combinations of responses and requests. No maximum
value is defined for this requirement.

FDTA,PP Timing between two consecutive requests. The
minimum timing requirement for all combinations of
consecutive requests are the same except if the first
request is an SLP_REQ. No maximum value is defined
for this requirement.

on the last pattern of the first frame and the first pattern of the last frame. Figure
2.6 illustrates the dependency for the timing constraint FDTA,L. Similarly, is the

FIGURE 2.6: Illustration of the dependency between the last
pattern of the frame and the FDTA,L [8, p. 38].

dependency for the FDTA,P and FDTA,PP .
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2.3 Verification Planning

Verification of hardware designs makes up a great deal of the time spent during
development of a new hardware module. As opposed to software modules
the verification phase of hardware is more critical due to the significant cost
involved with re-spins. A re-spin involves fixing the erroneous hardware before
starting a new fabrication process which is both expensive and time consuming.
Erroneous software can often be fixed by releasing a software patch which,
compared to a hardware re-spin, is much cheaper. Thus, it is important that
the process of verifying hardware is thorough. To ensure that the design is
carefully tested it is advisable to have a strategy for testing the design’s intent.
A verification plan is such a strategy and will be the topic of this chapter. How
to compose a verification plan from the design specification and how to answer
the important question "Are we done verifying?" will be discussed based on
Mentor Graphics’ Coverage cookbook [9].

2.3.1 Coverage

The goal of the verification phase is to determine if all the structures of the
design have been exercised and that design features and requirements have
been verified. Coverage is a metric aimed to help determine this goal and to
optimize the test procedure of the design. Controllability and observability are
two important concepts of coverage. Controllability refers to the possibility
of activating a structure of the design through stimulating the inputs of the
design. Stimulating the inputs gives good controllability of the design’s model,
however this method has low controllability of the internal structures of the
design. Consequently, a bug within the design could not be discovered as it did
not propagate to the output ports. In contrast to controllability, observability
refers to the ability of observing the effect on the internal structures of the
design. A good testbench should have good controllability and observability.
Issues related to poor controllability and observability can be addressed with
code coverage and functional coverage.

In order to explain coverage a classification of coverage based on their
method of creation or by their origin of source can be illustrated as seen in
Table 2.4. Functional coverage is extracted from the design specification by

TABLE 2.4: Different categories of coverage [9].

Implicit Code Coverage Area of Research
Explicit Assertions Functional Coverage and Assertions

Implementation Specification

the designer, thus it is an explicit type of coverage. Assertions are gathered
from the internals of the design and contributes to the overall observability
of the testbench and is therefore related to the implementation and explicitly
defined by the designer. Implicit coverage, such as code coverage, is the metrics
extracted by the simulation tools. Different types of code coverage can be
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extracted by the tools and includes, among others, toggle, line, statement, block,
branch and expression coverage. Please refer to [9] for detailed information
about different code coverage. Code coverage is used to measure how well the
design has been exercised by the testbench. It is an important measure which
tells whether or not the complete design has been activated during testing.
However, 100% code coverage does not guarantee that a 100% of the design
functionality has been tested. Functional coverage was invented as a metric
for how well the design functionality has been tested and consists of both data
and temporal components. Cover group modeling refers to the data related
components of functional verification and is essentially coverage collected by
sampling state variable of the design. Often it is important that a sequence in
the designs functionality follows a temporal requirement which can be handle
by cover property modeling. This type of functional coverage can be addressed
with assertions.

Implicit coverage based on specification refers to simulation tools’ ability to
extract coverage from specification. This is currently still an area of research
and is not the concern of this thesis.

The goal of verification is to reach 100% of both code coverage and
functional coverage. However, verification is an incomplete process and even
for small designs it can be difficult to verify everything in time. Consequently,
functional coverage should be prioritized and covered in an iterative manner
to address the most critical functions of the design before tape-out.

2.3.2 Test Plan to Functional Coverage

In order to be able to define good functional coverage the behavior of the
design must be captured, thus it is necessary with a good test plan. In [9] it is
illustrated two approaches on how to set up a good test plan, the bottom-up
and the top-down approach. Different conditions favor one or the other
approach. The bottom-up approach is suited for small designs and designs with
a good design or implementation specification. Coverage is extracted from the
low-level requirements which makes it easy to link and close on coverage goals.
However, this technique could lead to an explosion of requirements that needs
prioritization. In contrast, the top-down approach extracts requirements from
high level architectures and works best with large designs. Coverage is not as
easily linked to the specification of the design, as for the bottom-up approach,
however high level coverage from the top-down approach could be useful for
exploration of design trade-offs. The interested reader is referred to [9] for more
details on the two approaches.

Once the test plan is created it should include what features have to be
tested, under what conditions the features should be tested, how the design’s
interface should be stimulated and monitored and how the testbench will check
that the features work. From the test plan the functional coverage model can be
extracted based on covergroup and cover property modeling. The important
considerations of covergroup modeling can be summarized as illustrated in
Table 2.5. Having these questions in mind during the creation of a functional
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TABLE 2.5: Summary of covergroup modeling [9].

Coverage Criterion Feature on which data coverage is
to be collected

Which values are important? Identify the important values to hit
What are the dependencies between
the values?

Identify the important cross
products between data values

Are there illegal conditions? Identify values, or combinations of
values that should not occur

When is the right time to sample? Specify a valid sampling point
When is the data invalid? Identify conditions when the data

should not be sampled

coverage model helps closing on testing of the designs functionality.

2.4 Related Work

Examples of testbenches using UVM are given in [10] and [11]. The work in
[11] gives a detailed overview of the components of a UVM testbench and how
they interrelate in order to generate and monitor stimulus. UVM is adapted
in [10] to create a methodology suited for mixed-signal verification such that
reusable verification components can be used for analog modules. It describes
the concept of an interface UVC through what is referred to as a wire UVC
which is similar to the UVC discussed in this thesis. Both [10] and [11] illustrate
that UVM is suited for Analog Mixed-Signal (AMS) and RVM simulations and
that benefits can be exploited at IP and system level. The work of these to
paper aims increase functional coverage of analog modules and points out
that SPICE simulations have trouble in achieving that goal in time due to poor
performance. In [2] it is stated that using RVM simulations compared to SPICE
simulations can increase the performance of the simulation up to 100 times.
However, as [10] emphasize, there is an extra cost involved with creating AMS
and RVM models as they cannot mitigate the accuracy in SPICE simulations.

The work in [12] discuss an interesting approach designing a layered
testbench. It shows how a testbench and its components can be categorized into
layers representing different functions and purposes. Arguably, this approach
breaks down the complexity of the testbench and components can be created
separately in more manageable pieces.

The concept of MDV is verification technique encouraged in [2], [10], [11],
[13] and [14] and is a concept based on Constrained Random Verification (CRV)
and Coverage Driven Verification (CDV). MDV is originally a technique used in
verification of digital design, however these paper encourage the use of MDV
in mixed-signal verification as well. In short MDV depicts that stimulus is
automatically generated at random and constrained to hit relevant scenarios.
Coverage is collected through self-checking mechanisms and used to reach
closure on functional coverage.
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To mitigate for the poor speed performance of SPICE simulations, modeling
techniques based on AMS and RVM can used to increase the performance in
mixed-signal verification as described in [2], [10], [13], [14] and [11]. AMS is
the most accurate modeling technique, compared to RVM, but requires both
digital and analog solvers in a mixed-signal simulation. Better performance
can be achieved with RVM as these models are suited for digital solvers as
described in [15] and [2], however accuracy is compromised even further with
this technique. Both AMS and RVM are models of the analog circuits in the
simulation which has an advantage not only increasing performance but the
models can be developed in an early stage of the design.
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Design

Verification IP (VIP) is probably a familiar term among hardware design and
verification engineers. In the Very-Large-Scale Integration (VLSI) business it
refers to a stand-alone reusable module that includes all the necessities for
performing verification of a hardware module. This hardware module could
be a small IC like a peripheral unit or more commonly a communication
bus/interface on a SoC. A VIP could be used in a large testbench with other
VIPs or it could be used only to verify its intended IP. The VIP is a testbench
component which is more similar to software than actual hardware. Any VIP
based on UVM is referred to as a UVC, which is the main topic of this thesis.
Naturally, the UVC will make use of all the benefits of UVM such as reusability,
object-oriented programming (OOP) and MDV.

The author presented the development of a UVM verification IP for an
analog RF protocol in an earlier project [3]. This UVC targeted the NFC
interface and more precisely the NFC-A protocol. In accordance with UVM
a framework was set up and the UVC was able to both drive and monitor
stimulus of the NFC-A protocol. However, the UVC was only able to handle
requests of a polling device, as described in Chapter 2.2.3. Thus, it was only
able to verify parts of the NFC-A protocol and was not able to verify a NFC-A
listening device. This thesis is a continuation of that design and aims to extend
and improve the design’s functionality such that the UVC can be used in
verification of the NFC-A listening device protocol behavior.

This chapter will present the design that is implemented and challenges
addressed during the design process. The design process involved many
considerations and possible solutions to several design components and
arguments for the chosen design will be given. The NFC-A is a large protocol
and consequently parts of the protocol is left out of the scope of this thesis.
However, as this thesis will discuss, parts that are left out are considered in the
design process to facilitate for future extension.

Several components of the design are reused from the project, however,
these components have either been slightly modified of completely changed
to fit the new design. The design considerations have a slight overlap
with the project, but are included here they are regarded important for the
understanding of the UVC. A summary of the chosen design and requirements
will be given in Chapter 3.6.

17
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3.1 The Design

The design is based on the verification methodology UVM which puts
requirements on how the framework of the UVC is set up, but it also provides
powerful benefits for verification. As mention in Chapter 2.1 UVM depicts
a hierarchy of OOP-based components. The different components serve a
small part of the functionality needed to perform MDV. Some components
are directly concerned with handling of stimulus. Such components include
drivers, monitors, scoreboards, coverage collectors and other components,
and some components are responsible for setting up other components and
handling their connections. When all the components are connected in a
configuration they can perform the intended verification. Figure 3.1 illustrates
the final result of the design process and the final UVC.

FIGURE 3.1: Design of hierarchical component Environment.

The hierarchical component environment encapsulates all the agent
components, scoreboard, coverage and a framing component and is responsible
for connecting components to the interface and interrelated components
together. As the figure illustrates, the active agents are either configured as a
master or a slave and the instance number of these agents are configurable.
A passive agent, the interface monitor, surveys the interface and broadcasts
sequence items to the framing and coverage component. The important
self-checking mechanism required for MDV is provided by the monitor and
scoreboard. The scoreboard receives interface information from the monitor
through the framing component.
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The agents are configurable as either active or passive, as depicted by UVM.
Figure 3.2 illustrates the design of the agent. If used as an active agent the

FIGURE 3.2: Design of hierarchical component Agent.

component will be configured with the three components, sequencer, driver
and monitor. However, if the agent has a passive configuration the components
is only configured with a monitor and the active components are disabled.

3.2 Analog Interface Model

Digital simulations and analog models are in conflict due to the discrete nature
of the simulation and the analog nature of the model. However, in order to
be able to verify the analog NFC-A protocol a model has to be designed for
the interface signal. Otherwise it would not be possible to drive or monitor
stimulus going to and from a DUT. Chapter 2.2.2 describes the characteristics
and requirements of the NFC interface. Together with information about
the DUT, an analog model is designed that enables the required verification.
Figure 3.3 illustrates the analog model of the NFC carrier during modulation.
Associated with the carrier are a few characteristics such as the amplitude with

FIGURE 3.3: Illustration of discretized analog model of the NFC
interface during modulation.
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and without modulation, indicated in Figure 3.3 as Ami and Aci, and the pulse
width of a NFC-A pattern. The NFC-A protocol allows these characteristics to
vary inside a range which is illustrated in Figure 3.3 as the difference between
the black and light gray sinusoidal carrier signals.

The analog model is realized by using the SystemVerilog real data type
which is a floating point type variable suited for analog-like level modeling.
The carrier model illustrated in Figure 3.3 is similar to the model described in
Chapter 2.2.2, however, the model is simplified. Rise and fall times related to
start and end of modulation is neglected as it is not a part of the RVM model of
the DUT. Overshoots are also neglected from the model as their analog behavior
are complex to model discretely. The designed model does however allow
NFC-A protocol communication in a basic form.

3.3 Layer-based Design

Layering is a principle found in UVM which facilitates reuse and provide
high-level abstraction. The UVM sequence is one of such examples in UVM
where interesting stimulus can be comprised by multiple sequence items and
later be reused to create new and more complex sequences. Analogous to
the NFC-A protocol the sequence item could represent a pattern, a sequence
could comprise these patterns into a request and the requests could assemble
an initialization routine in another sequence. The technique of layering is
advantageous in several ways and is widely used not only in UVM sequences.
A good example illustrating layering is the OSI model [16]. All the layers of
the OSI model is a logical succession of the lower layers which enable network
entities to connect to the different layers. Thus, selective information can be
obtained from within the hierarchy of layers. This property could be useful
inside the UVC and will be the topic of this chapter.

As mentioned in Chapter 3.1 the UVM environment has a modular structure
of reusable components. These components cover different functionality and
could be considered to reside in different layers. The UVC is an interface
UVC, thus developed for a designated protocol [4, p. 257], and the components
typically cover parts of the protocol, but not necessarily. However, the driver
and the monitor are the components that deal directly with the interface,
thus managing the lowest level of the protocol. From a verification point
of view, the monitor will perform verification at this level of the protocol.
Other components in the UVC, as the scoreboard, should not have to perform
same verification, but instead verify higher level protocol functionality. The
monitor broadcasts sequence items, which represent NFC-A patters, to analysis
components. The sequence items can be analyzed in terms of frames, which
is the next natural layer in the NFC-A protocol, by the receivers of the
monitor. Receivers would typically be the scoreboard, but could be any analysis
component. Verification of NFC-A frames, by the scoreboard, would involve
checking type of requests and responses and timing between consecutive
frames. Higher level protocol functionality than NFC-A frames is beyond the
scope of this thesis. Figure 3.4 illustrates the components of the UVC and
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how they relate to the protocol hierarchy. This ordering of components could

FIGURE 3.4: UVC components illustrated in relation to the NFC-A
protocol hierarchy.

increase readability for debug purposes and increase ease of use when adding
coverage groups. Having a separate framing component for extracting frame
content is relevant for scoreboards and other analysis components.

3.4 Components of the UVC

A presentation of the main UVC components and design considerations will be
given in this chapter.

3.4.1 Sequence Item

The sequence item has many purposes in the UVC. Most importantly it holds
information about the signals on the interface, but also other attributes that
are necessary or convenient for communication between the UVC components.
It is necessary that the sequence item holds the characteristics of the NFC-A
carrier so that the driver can produce the discrete analog model described in
Chapter 3.2. The same characteristics are also used by the monitor when it
extracts carrier information and creates a sequence item for analysis by the
scoreboard and coverage collectors. Due to the layer-based the design of the
UVC, the sequence item has to encapsulate both frame and pattern related
information. Thus, the data members of the sequence item are split into these
two categories. The sequence item is the lowest level of randomization in the
UVC, and the data members related to the carrier characteristics are declared as
random variable and constrained according to the NFC-A protocol. A copy and
a compare function is designed to be used by components like the scoreboard.

Reuse of the sequence item is limited. A UVC is typically defined by the
sequence item, thus this item holds the information that is unique for the test
purpose.

Two slightly different designs for the sequence item have been considered.
Both designs are based on different time intervals of the NFC interface. The
first design held the carrier information related to one single period on the
interface. This enabled great flexibility in terms of randomization of the carrier
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which could be used to create very realistic stimulus. However, the chosen
solution represents an NFC-A pattern as described in Chapter 2.2.3 and 2.2.4.
This restricts the randomization of stimulus to per pattern, but it is an intuitive
representation of the NFC-A stimulus.

3.4.2 Driver

When the UVC is ready to drive new stimulus onto the interface, the
driver requests a sequence item from the sequencer. Upon reception of
this sequence item the item has to be translated into interface signals. The
driver handles this translation by setting up a carrier on the interface and
extracting the carrier characteristics contained in the sequence item as well
as modulation information. The period, carrier amplitude and modulation
amplitude information is fed into a mathematical model which emulates a
discrete representation of an analog signal. The sampling frequency of this
signal is determined by the simulation timescale and is 1 ns by default, however
the driver is easily configured to work with another timescale.

The driver design is based on a previous design provided by the supervisor
of this thesis, Christoffer Amlo. The mathematical model has been customized
to fit the UVC and new functionality has been added to support all patterns
of the NFC-A protocol. In addition, the driven stimulus is synchronized to the
start of a new period on the carrier for better control of the stimulus.

3.4.3 Monitor

The purpose of the monitor is to capture information from the interface and
reassemble a sequence item as a container of the information. This is a
necessary step in the self-checking capability of the UVC. The requirement
for the monitor is based on the characteristics of the carrier signal and the
verification goal of the UVC. Interesting carrier characteristics are period,
carrier amplitude, modulation amplitude and pulse width.

A number of different designs were considered for the monitor and two
designs in particular will be described here. One design was based on two
monitor implementations, one covering listening device patterns and one
covering polling device patterns. The intention was to create agents which
drove requests and monitored responses and vice versa. This is an intuitive
set up for the agents and it would require only one agent configured as a
polling device driver to verify a listening device. The principle of reusability
based on class extension could be used in such a design when creating the two
monitor implementations. Both monitors could extend a base class containing
the similar routines of the monitors. This solution would add complexity
to the configuration routine of the UVC when configuring with the correct
monitor. However, a problem occurred when trying to facilitate for extending
the UVC. If the UVC is configured with several slave agents the environment
would be configured with many monitors performing the same task. As the
monitor is the most active component of the UVC, monitoring the interface



Chapter 3. Design 23

each simulation step, this solution would lead to unnecessary use of resources.
Even though handling the resource usage of such a design is simply done by
disabling all but one of the slave agent monitors, this solution seems a bit
awkward and counter intuitive.

The final design is based on a concept described in [5, p. 174], an
interface/bus monitor, which address some of the design issues related to the
design discussed above. An interface monitor is a passively configured agent
that monitors all interface traffic as opposed to an ordinary monitor which
could monitor traffic pertained with the particular agent. An interface monitor
solves the resource usage problem with a minimal solution that requires only
one monitor implementation. Consequently, the interface monitor will have to
implement both monitoring of polling and listening device patterns which will
result in a more complicated component.

The monitor is designed to capture all the characteristics of the carrier as
well as the start and end of modulation. Based on this information the monitor
is able to determine the type of pattern that it represents and broadcasts a
sequence item to analysis components such as the scoreboard. The monitor
synchronizes on the SoF condition in order to capture the carrier characteristics
of each pattern residing inside a frame. An algorithm determines if the monitor
should wait for the SoF condition or start recording information of the patterns.
The algorithm ensures that the monitor stops recording when the EoF condition
occurs.

A simple design has been preferred for the monitor component as recording
of pattern information requires a relatively complex algorithm. The monitor
has a notion of the SoF and EoF, but it is considered a pattern layer component
as it only performs analysis of patterns.

3.4.4 Frequency Calculation

The carrier signal of the analog model in Chapter 3.2 is given as a sine of
amplitude A and phase θ as described in Equations 3.1 and 3.2.

S = A sin θ (3.1)

θ = 2πfCt = 2πkTs|k∈[0,74] (3.2)

The phase of the signal is determined by the frequency of the carrier fC at
a given time t, which is equal to an amount of simulation timesteps kTs.
The frequency of the carrier can vary inside the range described in Equation
2.1 from Chapter 2.2.2. Equation 2.1 states the approximate resulting period
of the carrier signal which determines the range of k in Equation 3.2 with
a Ts = 1ns. Refer to Chapter 2.2.2 for information about the carrier signal.
Changing Equation 3.1 with respect to the phase, the phase can be described
by the amplitude of the signal and the value of signal at a certain timestep, as
described in Equation 3.3.

θ = arcsinS/A (3.3)
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By sampling the signal at a point TS and TE in time, the phase difference
between the two sampling points can be calculated, as described in Equation
3.4.

∆θ = θE − θS (3.4)

Combining Equation 3.4 with Equation 3.2 a time difference between the two
sampling points TS and TE can be calculated, as described in Equation 3.5.

∆t =
∆θ

2πfC
(3.5)

If the two sampling points TS and TE are approximately one signal period apart,
the time difference ∆t corresponds to the error in the measured period of the
signal. This can be used to mitigate for a frequency estimation error that occurs
with a simulation timestep of 1 ns. That is, carrier frequency is either measured
to 73 ns or 74 ns. However, Equation 3.5 is dependent on the frequency of the
signal in order to calculate the time difference. At the time the frequency is
unknown and the frequency is the target result of the calculations. As Equation
3.6 describes, the error in ∆t calculated with a fAV = 13,56MHz is never off by
more than 0.14% if the actual frequency fC = fWC . fWC equals the frequency at
the boundaries of the legal frequency range.

∆tERROR =
∆θ

2π
· 1

|fACTUAL − fAV |
=

∆θ

2π
· 1

|fWC − fAV |
≈ 0.14% (3.6)

This is due to the fact that the time difference is always less than 1 ns and that
the worst case difference in frequency fWC , that is, at the boundaries of the
legal frequency range, as a result of the approximation is accurate to more than
99.8%. That means a total error in the time difference calculation of less than
0.2 ps. Thus, the frequency of the carrier can be calculated, as described in
Equation 3.7.

fC =
1

TE − TS −∆t
(3.7)

3.4.5 Agent

The agent is described in Chapter 3.1 and is a component only related to the
structure of the UVC. By design, this component is completely reusable, if
following the guidelines of UVM. It does not directly relate to the layers of
the UVC, however, it encapsulates the pattern layer components.

A feature for disabling the monitor instantiation of the agent was design
to reduce unnecessary simulations cycles if an interface monitor agent is
present in the UVC. The configuration of the agent is set in the coupled agent
configuration object.

3.4.6 Framing

The framing component is a custom component designed for the NFC-A
protocol. Its purpose is to extract the contents of an NFC-A frame.
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Even though the framing component is specific for the UVC it is reusable.
It works as a kind of middle man between the frame and pattern layer of the
UVC by extracting the frame content of a frame. This is the first step in frame
analysis for any NFC-A high-level protocol analysis component, thus analysis
component can receive items from the framing component and less code is
needed.

3.4.7 Scoreboard

After the monitor, the scoreboard is the second component contributing to
the self-checking ability of the UVC. The scoreboard should handle high-level
verification of the interface, as the monitor performs verification of patterns.

A scoreboard is typically not a reusable component of a testbench as it
performs very specific checks based on the type of interface. However, the
components of a UVC provides functionality that can help make the scoreboard
reusable. Even though UVM facilitates for reuse of the scoreboard, it cannot
be completely reusable as a model describing how to perform checks of the
scoreboards inputs must be implemented.

An interesting scoreboard design is proposed in [17, p. 13] where a
reusability is the main concern. The design is very modular an is built on four
components: the scoreboard, a comparator, a predictor and a model for the
predictor. The model for the predictor is the only component that is not reusable
in the design, which main task is to predict the item on the other input based
on the received item of the first input. The comparator receives the predicted
item from the predictor and performs only a check whether they are identical.

However, a minimalistic scoreboard was designed consisting of only one
component. The input is compared against the output through the use of the
sequence item compare function. Both the design proposed in [17, p. 13] and
the chosen design are based on UVM fifos on the inputs.

3.4.8 Environment

As mentioned in Chapter 3.1, the purpose of the environment component is
to set up the necessary components required for a specific testbench. The
environment is the top-level component of the UVC, thus it is referred to as the
UVC, and performs only build and connect configuration of other components.
The environment is reusable across different testbenches with a requirement for
NFC-A protocol verification. However, the environment could be configured
for ether testbenches by disabling the NFC-A specific components. It is
configurable through a coupled configuration object to create different UVC
configurations suited for different test scenarios. Examples of such scenarios
could be only two communicating NFC Devices or a more interesting scenarios
with a one polling device and several listening devices. The UVC cannot
perform verification of the latter scenario, however, the environment facilitates
for setting up the necessary components for this scenario. Having a typical
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design depicted by UVM improves facilitation of adding new components to
the design.

3.5 Stimulus Library

As mentioned in Chapter 2.1.7 stimulus in UVM is based on sequences that
describe a combination of sequence items. A library of sequences describing the
polling device request given in Table 2.2, except for the SLP_REQ, is designed
with the UVC. The purpose of the library is give the user of the UVC a head
start in creating stimulus for different testbenches. However, the sequences
have limitations. The collision resolution part of the NFC-A protocol is not
described by the sequences and consequently a fixed ID for the receiver of the
stimulus is embedded in the sequences. The library also works as an example
for creating new stimulus.

The sequences in the library is extended from a base sequence. The base
sequence instantiates a sequence item and holds functions for generating
random sequence items based on the NFC-A patterns described in 2.2.3. The
functions are able to produce SoF and EoF patterns as well as X, Y and Z
patterns. Higher level protocol sequences are extended from the base sequence
to create relevant requests.

The request library is based on one sequence item which holds information
about the NFC-A frame and pattern layer. Another interesting method
proposed in the UVM 1.2 User’s Guide [5, p. 147–148] is to create separate
sequence items for the different layers in the protocol. This technique differs
from the one used in the request library in that sequences are based on virtual
sequences. This means that the sequence is responsible of executing the
sequences on the required sequencer. Having two different sequence items
would require two sequencers and two monitors in order to drive and monitor
the stimulus. It was considered as a solution for the design of the request
library, however it required extra complexity which might be more necessary
in a more complex protocol such as TCP. For future work, if the UVC should
include verification of the NFC-B and NFC-F protocol, this technique could be
considered.

3.6 Chosen Design and Requirements

A brief summary of the requirements for the UVC implementation based on the
argumentation of this chapter is listed below:
• The monitor should be capable of monitoring:

– both polling and listening device patterns that reside inside an
NFC-A frame

– the analog characteristics carrier amplitude, modulation amplitude,
frequency, pulse width and start and end of modulation

– pattern-level protocol information only
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• The driver should be capable of driving both polling and listening device
patterns
• The sequence item should represent all the patterns of the NFC-A protocol
• All communication between components should use the TLM abstraction

of the sequence item
• Overshoots and rise- and fall times of the carrier should not be allowed
• A sequence library should come with the UVC. It should include all

necessary requests
• The UVC should be configured by a configuration object that includes a

default configuration
• The scoreboard should verify timing and frame-layer protocol behavior

only





Chapter 4

Implementation

A detailed description of the UVC implementation will be given in this chapter.
The implementation is based on the designed developed in the design phase of
this thesis. Each component of the UVC will be described separately based on
the chosen design and requirements, as described in Chapter 3.6.

4.1 Environment

The environment is the top-level component of the UVC and is designed to
be reusable across different testbenches. In order to make the environment
generic an array of master and slave agents are declared in the class
declaration as well as an interface monitor agent, a framing component and
a scoreboard. Algorithm 4.1 depicts how the environment use configuration
information to create the agents and other child components. Depending

Algorithm 4.1 Build configuration of the environment class.

class environment extends uvm_environment
Declare agents, scoreboard, coverage and framing components
Obtain environment configuration object from configuration database
Set configuration for agents
if has_interface_monitor then

Create interface monitor agent
end if
if has_coverage then

Create coverage component
end if
if has_scoreboard then

Create framing component
Create scoreboard

end if
for number of master and slave agents do

Create agents
end for

end class

on the configuration information the components are connected together in
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order to perform analysis and coverage checking. Figure 4.1 illustrates
the four possible configurations of the components. The interface monitor,

FIGURE 4.1: Possible connect configurations of the environment
class components.

scoreboard, coverage and framing component are denoted IM, SB, F and COV,
respectively. As an example, setting has_interface_monitor and has_scoreboard
in the configuration object achieves connect configuration 2). In order for
the environment to be able to compile it is necessary to use the environment
configuration object. It is also necessary to set up the agent configuration object
for the master, slave and interface_monitor agent as the environment passes the
configuration down the hierarchy.

4.2 Agent

The agent is designed to be either an active or a passive component. Depending
of its configuration different child component are created and connected.
Common in both configurations is the creation of a monitor. If the agent is
active, the stimulus component sequencer and driver is created. The agents
can also be configured with a coverage component if necessary. Algorithm 4.2
shows how the agent class implementation use the configuration objects passed
to the respective agents to set up the necessary components.

4.3 Interface and Sequencer

The NFC interface contains the two SystemVerilog based real data type
variables nfcAnt1 and nfcAnt2. The driver is connected to nfcAnt1 and the
monitor is connected to nfcAnt2.

The sequencer is instantiated from the sequencer class which is extended
from the UVM sequencer with no modifications. The UVM sequencer class
provides the necessary arbitration and randomization of sequence items that is
required.



Chapter 4. Implementation 31

Algorithm 4.2 Set up configuration of the agent class.

class agent extends uvm_agent
Declare sequencer, driver, monitor and coverage component
Obtain agent configuration objects from configuration database
Create monitor
if is_active then

Create sequencer and driver
Connect sequencer item export to driver item port
Connect interface to driver virtual interface

end if
if has_coverage then

Create coverage component
Connect monitor analysis port to coverage component analysis export

end if
Connect monitor analysis port to agent analysis port

end class

4.4 Driver

The implementation of the driver is based on four main tasks;
ta_generate_carrier_phase, ta_generate_carrier_amplitude, ta_generate_carrier
and ta_drive_pattern(seq_item s). The three tasks ta_generate_carrier_phase,
ta_generate_carrier_amplitude and ta_generate_carrier are closely interrelated
in order to generate a sinusoidal carrier. The three tasks are synchronized
such that the phase θ is calculated before the carrier amplitude A and the
carrier amplitude is calculated before the level of the carrier is put on the
interface signal nfcAnt1. An illustration of the synchronization during
each timestep Ts is depicted in Figure 4.2. The ta_drive_pattern(seq_item

FIGURE 4.2: Synchronization of the three task generating the level
of the carrier.

s) task is used to define the frequency fC , carrier amplitude A and pulse
width of the carrier. The task calculates the frequency fC , carrier amplitude
index Aci and the modulation amplitude index Ami from the sequence item
information. The modulation bit m of the carrier is toggled using the functions
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fu_start_modulation and fu_start_modulation. Task ta_generate_carrier_phase
generates a carrier clock which is used to synchronize when to drive stimulus.
If the sequence item obtained from the sequencer is a SoF, the driver starts
driving stimulus at the positive edge of the carrier clock. Algorithm 4.3 depicts
how ta_drive_pattern(seq_item s) modulates and change the characteristics
of the carrier based on the sequence item information. Equation 4.1, 4.2

Algorithm 4.3 Task ta_drive_pattern.

task ta_drive_pattern(seq_item pattern)
Collect pattern characteristics from sequence item
Update the characteristics of the driven stimulus
case pattern_type

Modulate the carrier based on pattern type
end case

end task

and 4.3 shows the mathematical expression used in the calculations of the
carrier in ta_generate_carrier_phase, ta_generate_carrier_amplitude and
ta_generate_carrier, respectively.

θ = θ + 2πTsfC (4.1)

A = Aci!m+ Amim (4.2)

nfcAnt1 = Asin(θ) (4.3)

4.5 Monitor

The implementation of the monitor is designed to monitor patterns that either
reside inside a frame on the interface or indicates a SoF or EoF. Thus, the
monitor is a component representing the pattern layer of the protocol even
though it operates with the notion of frames. Monitoring of the interface is
carried out by a set of tasks and functions that share information through
class objects and events. As a result, the monitor is able to monitor analog
characteristics such as carrier amplitude, modulation degree, carrier frequency,
pulse width and the start and end of modulation. The main task and their
cooperation will be described in this chapter.

ta_sample_carrier samples the carrier continuously, thus detecting any
possible change. By analyzing the carrier, this task determines the
start of each new period of the carrier and generates a corresponding
event, new_period. The new_period event is used to synchronize the
ta_decode_pattern, ta_detect_frame and ta_sample_characteristics tasks. A
bit, representing modulation of the carrier, is set if the amplitude maximum
of the carrier is recorded below the modulation threshold, V2.
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ta_sample_characteristics calculates the characteristics of the carrier and
store them in a sequence item. The frequency is calculated using the method
from Chapter 3.4.4 and the pulse width and modulation start and end is
calculated from an array holding the envelope of the carrier.

ta_decode_pattern creates an array of the envelope of the carrier and decodes
the current pattern type. This task is initialized at the beginning of each bit
duration. On each new period event, during one bit duration, the modulation
bit from ta_sample_carrier is evaluated to determine the carrier envelope. The
information is stored in the bit array where a modulated and unmodulated
carrier is represented as a logic one and a logic zero, respectively. Before
returning, the bit array is analyzed for pattern type and correct pattern type
and logic value is stored in the sequence item.

ta_detect_frame is a two-state Finite-State Machine (FSM) controlling when
to monitor the patterns of a frame and is the main task of the monitor. With
no modulation present on the interface, the task resides in a SENSE state
searching for a potential SoF pattern. If modulation is detected in the SENSE
state, thus potentially indicating a SoF pattern, the FSM shifts to a DECODE
state. The DECODE state manages the perception of frames and the bit
duration. In each execution of the DECODE state a decode of the interface
patterns are performed by the ta_decode_pattern task and the SoF and EoF
conditions are monitored. At the same time, starting the ta_decode_pattern
task, ta_sample_characteristics is initiated to read the characteristics of the
carrier. Patterns of the current frame monitored is sent consecutively to an
analysis port. Figure 4.3 illustrates the operation of ta_detect_frame in detail.

4.6 Sequence Item

The sequence item holds the NFC-A protocol characteristics pulse width,
carrier amplitude, modulation amplitude and period. These are the pattern
layer data members of the sequence item, as well as attributes like pattern
type, logic value of the pattern, SoF and EoF. Frame layer data members of
the sequence item include FDT timing, modulation start and end, command
type of the frame and whether the sequence item is a frame. The characteristics
are constrained according to the requirements in Chapter 2.2.2. Additional
constrains ensure that the logic value is set to match the pattern type of the item
and for stimulus to hit the corner cases of their respective ranges. The compare
function calculates timing based on the modulation start and end information
and relates the timing to the command type.

4.7 Framing Component

The framing component implements the necessary step of unpacking frames,
extracting information about the start and end of modulation as well as
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determining the command if the frame. The framing component receives the
patterns from the monitor with the SoF and the EoF which encapsulates the
command. The information from the frame is comprised in a sequence item
that is broadcast to the scoreboard and other analysis components. Algorithm
4.4 depicts the operation of the framing component and how information is
extracted from the frame.

Algorithm 4.4 Unpacking algorithm of the framing component.

case framing_state
IDLE:
Wait for next pattern
if SoF then

Save type and modulation start of current pattern
Jump to FRAMING state

end if
FRAMING:
Wait for next pattern
if EoF then

Set send flag
else

Append logic value of pattern in frame content array
Save type and modulation end of current pattern

end if
if send flag set then

Check type of command in frame content
Save command and frame modulation start and end in item
Send item
Jump to IDLE state

end if
end case

4.8 Scoreboard

The scoreboard receives sequence items through its analysis export from the
framing component. The scoreboard waits for the reception of a request and a
response before a check is performed whether it has received a valid response
to the request according to the NFC-A protocol. The check is performed using
the compare function of the sequence item. The number of passed and failed
comparisons are reported at the end of simulation. The sequence items are
reported to the coverage component.
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4.9 Coverage

The coverage component contains two coverage groups, cov_pattern and
cov_frame. The coverage groups encapsulate the user defined functional
coverage points specific for the pattern and frame layer, respectively. Coverage
is reported to the coverage component from the monitor and the scoreboard.

FIGURE 4.3: Operational illustration of the ta_detect_frame FSM.
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Test Setup

A good way to test the UVC is to create a realistic scenario of a testbench
set up to perform verification of an NFC-A listening device. From Nordic
Semiconductor ASAs point of view rigorous testing of their IPs are important
and the UVC is designed to contribute to production of error-free designs.
Nordic Semiconductor ASA provided their NFC-A listening device for this
thesis as well as their original testbench as a starting point for the testing of the
UVC. This chapter will describe the original NFC-A listening device testbench
and how it was modified with the UVC. A test designed to verify functionality
of the NFC-A listening device will be described. A verification plan was set
up for measuring functional coverage of the NFC-A listening device based on
the capability of the UVC and the NFC-A protocol. Ultimately the goal is to
close on 100% functional coverage of the NFC-A listening device based on the
verification plan.

5.1 Testbench

Nordic Semiconductor ASA provided a testbench used to verify the NFC
feature of their latest chip nRF52. The testbench is written in SystemVerilog and
simulates the NFC-A listening device in a chip environment. The top module of
the testbench sets up the power and clock domains, NFC, testbench and register
interfaces, the NFC-A listening device and a polling device verification module
for stimulus production. The testbench is bound to assertions specific for the
NFC-A listening device and starts a SystemVerilog program. The program
resets the environment, sets up loggers and holds an interface monitor and
coverage groups. After the initialization step various test are run to verify
the design in terms of noise, oscillator calibration, register access, timing
requirements, pattern recognition and field detection.

5.2 Testbench with the UVC

A couple of modification are necessary when the UVC is included in the
testbench provided by Nordic Semiconductor ASA. In the top-level module
of the testbench the NFC interface, provided with the UVC, is connected to
the NFC-A listening device. The NFC interface and the testbench interfaces is
made accessible in the UVC by adding the interfaces to the UVM configuration
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database. The polling device stimulus driver is disconnected from the NFC-A
listening device as the UVC provides this service. The program is modified
to perform a custom test with the UVC instantiation and the original tests are
removed.

The simulation of the testbench is performed using the Nordic
Semiconductor ASA standard for digital simulations. The testbench is
compiled and run using Questasim 10.e_4c which has a built-in UVM 1.1
library, uvm-1.1d, enabled for the testbench with the UVC.

5.3 Verification Plan

The NFC-A listening device has a comprehensive set of features that should
be verified. However, as the UVC is a protocol UVC, focus is to verify
that the NFC-A device behaves according to protocol. In order to ensure
sufficient functional coverage from the testbench, a test plan was set up in
a bottom-up fashion, as described in Chapter 2.3. The bottom-up approach
enables extraction of coverage points directly from a detailed specification. The
same specifications used to constrain stimulus generation in the UVC is used
for writing coverage points. As mentioned in Chapter 3.2, the UVC produces
a simplified model of the NFC carrier, thus functional coverage cannot be
measured on unmodeled features of the NFC-A protocol. The rest of this
chapter will try to answer the questions in Table 2.5 from Chapter 2.3.2 based
on a bottom-up approach on the NFC-A protocol specifications [7] and [8].

Which values are important? The carrier amplitude and modulation
amplitude are important metrics to verify as a listening device should be able
to interpret the patterns from a polling device where these characteristics vary
inside the legal ranges. These amplitude characteristics could in a realistic
scenario be related to a varying the distance between the polling and the
listening device. Similarly, are variations in period and pulse width, and the
DUT should handles all these variations. The pulse width of the modulated
patterns on the carrier can vary quite a lot and the DUT must handle the
variations. However, the pulse width does not vary much inside a frame as
a given NFC Device will produce quite constant pulse width for all patterns.

It is also important that a listening device is able to reply with legal response
and that the timing associated with the response is according to protocol.
Timing between a response and a request, and between two requests, are of
less interest as these timing requirements are controlled by the test.

What are the dependencies between the values? The characteristics of the
NFC-A protocol is not particularly dependent on each other. However, the
period and the pulse width has a dependency, as the pulse width relates to
a number of periods of the carrier. This dependency must be accounted for,
which is why cross coverage of the two characteristics should be checked.
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Timing has a dependency with the last bit of the frame, thus it has a dependency
with the command type.

Are there illegal conditions? Illegal conditions include stimulus or responses
that reside outside the range of the values specified in Chapter 2.2.

When is the right time to sample? The carrier characteristics are not all valid
until the rising edge of the last modulation of a pattern. The right time to
sample is once modulation of the pattern has finished.

When is the data invalid? The carrier characteristics are invalid before the
last modulation of a pattern and after the bit duration of a pattern has finished.

The conclusion of the verification plan is that each carrier characteristic
should be covered by separate coverage points and the dependency between
the pulse width and the period should be cross covered. Table 5.1 depicts
the planned functional coverage specification. It is important that all the

TABLE 5.1: Functional coverage plan.

Name Coverage type Description
Frame layer
c_poll_to_listen coverpoint DUT replies with correct

FDTA,P timing
c_commands coverpoint All requests and responses are

exercised and the DUT replies
with all responses

Pattern layer
c_pattern_type coverpoint All NFC-A patterns have been

exercised
c_pulse_width coverpoint Pulse width is exercised at the

boundaries of and inside the
legal range

c_carrier_amplitude coverpoint Carrier amplitude is exercised
at the boundaries of and inside
the legal range

c_modulation_amplitude coverpoint Modulation amplitude is
exercised at the boundaries of
and inside the legal range

c_period coverpoint Period is exercised at the
boundaries of and inside the
legal range

c_pulse_width_period cross Cross of the pulse width
and period is exercised at its
boundary
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characteristics are tested at their boundaries and not as important to cover the
characteristics inside the ranges. Thus, only one bin is considered sufficient
coverage at the two boundaries and inside the boundaries of each characteristic.
This gives a total of three bins per coverpoint.

5.4 Control Unit for DUT

A control unit has been set up a connected to the DUT as the DUT must be told
how to respond to request. In hardware, this is typically done by a higher level
module inside the NFC-A peripheral. For this particular testbench a limited
control unit is designed to read the request, picked up by the DUT, and tell
the DUT how to respond to that request. It is a simple control unit based on
a subset of the state diagram of a listening device as illustrated in NFC Forum
Activity Specification [18, p. 119]. The operation of the FSM in the control unit
is depicted in Figure 5.1. The control unit does not have to determine when

FIGURE 5.1: FSM of the NFC-A listening device control unit.

the response is sent as this is handled by the DUT. However, it makes the
DUT respond according to protocol which is necessary in order to do timing
analysis between frames. Different responses have different timings associated
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with them, thus information about the nature of the frame is necessary in order
to compare the DUT timing against correct timing requirements.

5.5 Configuration of UVC

The configuration of the UVC is based on the goal of the test. The DUT is a
listening device, thus a NFC carrier signal has to be provided by the test. Hence,
the UVC is configured with a polling device agent. To verify that the DUT is
able to respond correctly to requests the UVC is configured with an interface
monitor and a scoreboard. The configuration includes a framing component to
provide frame content from the monitor to the scoreboard. Analysis of pattern
layer requirements is performed by the monitor and timing requirements are
performed by the scoreboard. A coverage collector is configured in the UVC
to collect pattern and frame layer coverage from the interface monitor and the
scoreboard. The coverage collector records coverage based on the functional
coverage specification in Table 5.1 from Chapter 5.3. Figure 5.2 depicts the
components of the UVC once configured for the testbench.

FIGURE 5.2: Testbench configuration of the UVC.

5.6 Test

The test extends a test base class which performs the necessary setup for any
testbench using the UVC with the sequence library. The test base instantiates
and configures the UVC as described in Chapter 5.5. It instantiates the control
unit and connects the serial interface of the DUT to the control unit. A sequence
item is declared for the test and added to the configuration database which is
necessary in order to generate stimulus with the sequence library.
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The test class holds only the description of stimulus generation. Before
driving actual stimulus, an initialization routine is performed. This sets up
the carrier, indicating the presence of a NFC carrier. Secondly, a sequence from
the sequence library is performed until 100% functional coverage of the frame
layer coverage points described in Table 5.1 from Chapter 5.3 is reached. This
sequence traverses the FSM in Figure 5.1. Finally, another sequence from the
sequence library is performed until 100% functional coverage of the pattern
layer is reached.

Figure 5.3 illustrates the components of the test. The sequences from the
sequence library are referred to as worker sequences.

FIGURE 5.3: NFC-A listening device testbench with the UVC.
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Results

The testbench finished reaching a 100% closure on functional coverage at a
simulation time of 55 seconds. Table 6.1 shows the number of passed and
failed request sent by the UVC and responses sent by the DUT. Passed requests

TABLE 6.1: Requests and responses monitored during simulation.

Request Instances Passed Failed
ALL_REQ 9 9 0
SENS_REQ 1 1 0
SDD_REQ_CL1 1 1 0
SEL_REQ_CL1 1 1 0

Response Instances Passed Failed
SENS_RES 10 10 0
SDD_RES 1 1 0
SEL_RES 1 1 0

indicate that legal stimulus was exercised and passed responses indicate that
the DUT is able to reply according to protocol. The scoreboard confirms that
the DUT replies to request within the legal timing requirements of the protocol
by reporting no errors.
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Figure 6.1 shows the coverage report from the Questa simulation tool
confirming 100% functional coverage.

FIGURE 6.1: Functional coverage result from Questa simulation
tool.
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Figure 6.2 illustrate the discrete analog model driven by the UVC depicting
a NFC-A pattern X with its associated analog characteristics. Note that
Modulation_Amp and Amplitude, indicating the carrier amplitude with and
without modulation, respectively, indicates the percentage of a normalized
carrier amplitude of 1.

FIGURE 6.2: Discrete analog model of NFC carrier driven by the
UVC.
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Visual inspection of frames confirms that exercised requests and responses
are legal according to protocol. Figure 6.3 illustrates the waveform of
an exercised ALL_REQ request. The pattern and req boxes holds the
characteristics of the monitored and driven stimulus, respectively. Thus, Figure
6.3 confirms that the UVC is able to monitor correct stimulus, by monitoring the
exact driven stimulus.

FIGURE 6.3: ALL_REQ request on the NFC interface.
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Analysis and Discussion

Reusability through modular components is one of the benefits of UVM.
The components object-oriented nature makes them easily extendable which
enhance the reuse of code. UVM provides a convenient configuration
mechanism that allows configuration of components both before and during
simulation. It is a simple mechanism based on a database that can be accessed
from anywhere in a component hierarchy. The UVM factory is another
beneficial mechanism where component definitions are stored. This contributes
to the overall reusability of the UVM environment as component definitions can
be changed in different test without changing the underlying code base.

When designing the UVC it was preferable to register all the components
in the factory. The sequence item is often a part of the component definition
and by registering the components to the factory they are automatically
re-defined if the sequence item is modified or changed. The hierarchical
components, environment and agent, dealing with configuration of child
components, should obtain configuration from the configuration database.
The configuration of these components must be set in advanced, however
they could be changed dynamically. Whether the configuration is stored
as a separate object in the configuration database or it is set as parameters
in a given test is the designer choice. Different approaches suit different
environments better, but if no guidelines for the project is set or the design
not too comprehensive a separate configuration object could be advisable. A
configuration object has the convenient property of gathering the configuration
in one location and can keep default configurations.

As the UVC is an interface UVC, the long-term goal of the design is to
cover the complete NFC-A protocol and even the complete NFC protocol.
Due to the limited time budget of this thesis the focus is put on the NFC-A
protocol. Complex parts of the NFC-A protocol, like collision resolution, is also
considered to be out of the scope of this thesis. However, the design is designed
with this long-term goal in mind and facilitates for extended functionality.

Collision resolution is a part of the NFC-A protocol which only takes effect
when multiple listening devices tries to communicate with the same polling
device. The immediate goal of this thesis is the verification of only one
listening device, thus the UVC is only configured with a polling device agent.
However, the environment can be configured with multiple polling devices
and/or listening devices when it becomes necessary.
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7.1 Analog Interface Model

When dealing with analog modeling in a digital environment it will eventually
result in loss of information in the model. The timescale of the simulation might
give sufficient sampling to achieve the wanted results, but information is lost
between each sample. Analog models often have complex characteristics hard
to recreate with a simple digital model. In order to keep the digital model as
simple as possible, while still being able to model enough information of the
analog model, the most complex characteristics could be neglected.

The carrier of the NFC-A protocol allows a few complex characteristics
such as overshoots. Overshoots the rising edge of the modulation, provide
no unique high-level protocol information and are mathematically complex.
Removing the overshoots from the digital model will remove a possibly
interesting analog characteristic, but will allow the same high-level protocol
modeling and a much simpler digital model.

At the start and end of modulation a certain amount of time will be related
to the transition of the carrier amplitude which could be associated with rise
and fall times.

7.2 Components of the UVC

The protocol coverage of the UVC have been improved and extended during
this thesis. Capabilities for both driving and monitoring of listening device
stimulus have been added and the UVC is able to perform verification of
protocol behavior of listening devices. The monitor implementation has a
new and more readable design and synchronization issues has been removed
due to less communication between internal tasks. The UVC is now able to
monitor the frequency of the interface without compromising simulation speed.
Configuration objects makes the UVC configurable for different testbenches
which improves reusability.

In this chapter discussion related to specific components of the UVC will be
presented.

7.2.1 Sequence Item

The sequence item designed for the UVC enables the required communication
between components and encapsulates all the information needed to create
the interface analog model. However, the disadvantage of the sequence item
representation is that representing complex analog behavior inside a NFC-A
pattern is a challenge. Complex analog behavior such as overshoots and rise
and fall times should be considered for future work of the analog model, but it
is not straight forward to implement this behavior with the current sequence
item design. A possible solution could be to add data members that holds
information about the range of the overshoots, rise and fall times. This would
require changes to the driving algorithm of the driver component as well.
Considerations regarding improving the analog behavior, work load, reuse of
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components and facilitation of additional functionality should be considered in
the design of a new sequence item. Alternative sequence abstractions should
be considered in order to find the best representation. The sequence item
considered in Chapter 3.4.1, representing a period of the NFC-A carrier, could
give a finer grained stimulus control which might be preferable for complex
analog modeling. One challenge with representing a period of the carrier is
monitoring. A period of the carrier does not have enough information and
consequently the monitor will have to analyze the periods of a pattern. A
solution might consider using the principal of layering. A solution with a
layered monitor could monitor periods and broadcast the period items to the
second layer of the monitor. The second monitor could perform analysis of the
pattern layer of the protocol.

7.2.2 Driver

The driver and is not designed to be reusable. However, by extending the
interface with methods for writing the driver could be designed reusable by
using calls to this method. This requires little work and would basically require
the driving routine to be put in the write method of the interface. This could be
an interesting point for future work concerning the driver.

By descretizising an analog signal in the digital domain, information will be
lost. The sampling frequency of the signal is important in how well the signal
is represented and a minimum requirement for sampling a signal is given by
the Nyquist Rate [19]. Nyquist state that the sampling frequency of a signal
must be equal or greater than twice the frequency of the sampled signal. A
simulation timescale of 1 ns will result in a sampling rate of 1 GHz which is
well above the minimum sampling frequency of the 13.56 Mhz NFC frequency.
However, other unmodeled features of the carrier, such as overshoots and rise
and fall times, leads to loss of information.

The design depicted by UVM will be followed in this thesis for the
generation and driving of stimulus. The driving algorithms are implemented in
the driver as the UVC is one of a kind in an otherwise traditional SystemVerilog
testbench. In a larger UVM based testbench, typically a large top-level
testbench, it could be wise to design a more generic driver component and
have the driving algorithm inside the interface implementation. In such a case,
it would be more beneficial with a reusable component.

7.2.3 Monitor

As well as driver, the monitor is not design to be reusable. However, it could
similarly be designed reusable by using an interface read method.

Noise is not taken account for by the monitor. In a particular noisy
environment any distortion of the carrier signal will not be filtered out as noise,
but will be considered a violation of the protocol [8, p. 40]. The NFC-A protocol
states that during parts of the time between transmission of frames the polling
and listening devices are not allowed to produce any detectable disturbance.
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This will be ignored by the monitor, thus it is not able to verify this part of the
protocol.

The monitor implementation is specific for the NFC-A protocol and
extending the functionality to cover the NFC-B and NFC-F protocol will
possibly require completely new structure of the component.

Collision resolution, which is a necessary part of the NFC-A protocol when
several listening devices are communicating with a polling device, is not
supported by the monitor. Even though the UVC enables configuration of
a network of listening devices, it will require collision free communication
between the devices. This requirement will lead to a less realistic and
interesting test scenario.

7.2.4 Agent

UVM dictates two configurations of the agent, an active and a passive agent, as
mention in Chapter 2.1.5. However, in the design of the UVC an extra feature
for disabling the monitor of an agent was designed. This is not mention in the
guidelines of UVM, but it in a scenario where the UVC contains many agents,
thus many monitor, this feature could decrease the consumption of simulations
cycles by disabling unnecessary monitor. This is typically suitable for interface
UVCs with an interface monitor. In this situation it is most likely sufficient one
monitor surveying the interface for protocol behavior. Adding this feature does
not compromise the reusability of the agent, thus the agent is still completely
reusable in any UVC.

7.2.5 Framing

Specific for the UVC is the framing component which works as a frame content
provider for analysis components. Extracting the content of a NFC-A frame
is a necessary step for any analysis component that deal with verification of
frames. Thus, code reuse of this step is increased as analysis component can
either extend or receive frame content from this component.

Analysis components are some of the most important component in a
verification IP like the UVC. As mentioned in Chapter 3.1 and 3.3 the UVC
is implemented with a framing component. One of the arguments for having
this component is to facilitate for new analysis components that might become
necessary if new parts of the protocol should be covered. One example where
this component’s potential is useful is if the UVC should implement the NFC-B
and NFC-F protocol.

7.2.6 Scoreboard

A scoreboard is often very specific to a testbench, but UVM enables this
component to be reusable. The sequence items are implemented with copy
and compare functions which could be used by the scoreboard. Thus, the
scoreboard becomes independent of the testbench as compare functionality
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reside in the sequence item. The proposed design in [17, p. 13] is a very
interesting design which should be recommended for future work. Reusability,
through modular components, are the main advantage of this design.

7.2.7 Environment

Using the principle of reusability has been a major focus throughout the design
of the UVC. The environment class of the UVC refers to the active agents
as masters and slaves and generates the number of these components as a
configurable number. This makes the implementation less dependent of the
protocol, thus it can be used in verification of other master/slave protocols as
well. In addition, it enables the UVC to be configured with multiple masters
and/or slaves to create a potentially more realistic verification environment.
One such example is the NFC where more than one listening device might
connect to the polling device.

However, the environment is a component which potentially have different
demands on required functionality from testbench to testbench, thus is
potentially more difficult to design for reuse. As described in Chapter 2.1.4
the environment can hold a range of components which of course is not
necessarily needed in any given testbench. Consequently, when designing the
environment, design features that could enhance reusability of the environment
was extracted from the purpose of the UVC. The intention of the UVC is to
perform verification of the NFC-A protocol which is based on a master/slave
relationship between its communicators. This is typical for other protocols
as well. By designing the environment with an array, containing master and
slave agents, the environment is made reusable for similar protocol testbenches
with different demands on number of master and slave agents. A coupled
configuration object is designed to hold variables that can be set to enable
different configurations of the environment.

7.3 Sequence Library

Reusability has been a major focus when creating the request library. By
extending new sequences from a base sequence, which holds the instantiations
of the patterns necessary for a polling device request, the sequences become
structurally simple and readable. UVM sequences are very well suited for
CRV. UVM depicts sequences to be extended from smaller sequences to create
hierarchical sequences. This increase reuse of code and is readable. Perhaps the
most powerful feature of the UVM sequence is that a hierarchical sequence can
be constrained from any level in its hierarchy and the constraints will be passed
down to the lowest level. Thus, it is easy to aim stimulus to hit interesting
scenarios.

Some of the sequences in the request library use the UVM defined macros
for randomizing and executing sequences and sequence items. This provides
a readable format of the sequences which has been the motivation behind
the use of the macros. However, the macros include, among other, a pre
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and post-randomize step that is not used. The consequence is excess code
evaluation that only slows down the simulation. The macros could be replaced
by choosing the required functionality that comprise the macro, but on the
compromise of readability. Depending on the amount of calls to the macros
the cost in simulation time will increase, however it is such a small amount of
extra code that the trade-off between readability versus faster simulation favors
readability. The base sequence does not use the UVM macros but provide
a similar abstraction trough function. The functions are designed to increase
reusability and readability when creating higher level sequences.

Some of the sequences represents potential parts of the collision resolution,
but in a simple setup with one polling and one listening device the definition of
these sequences become constant. When the testbench increase in complexity
and collision resolution must be implemented, it can be implemented with
minimum effort.

7.4 Test and Results

The main focus of the testbench set up with the UVC is not to verify the
DUT, but to confirm that the UVC is able to perform protocol verification of
a NFC-A listening device. This focus makes the UVC testbench difficult to
compare quantitatively with the NFC-A listening device testbench provided
by Nordic Semiconductor ASA. As mentioned in Chapter 5.1, the testbench
provided by Nordic Semiconductor ASA test a lot more functionality of the
DUT than the UVC testbench. However, the UVC testbench performs a more
complete verification of the protocol behavior of the DUT. In addition, the UVC
testbench is able to verify the analog characteristics of the interface which it
provided testbench is not capable of.

The stimulus of the test performed by the testbench targets the functionality
of the protocol and the characteristics of the interface. The test exploits
the principal of MDV by first running stimulus targeting high-level protocol
features such as frames and timing between frames. Once sufficient coverage
is reached at this level of the protocol, the test aims the stimulus hit the
characteristics of the interface. This method decreases the potential stimulus
scenarios, yielding greater simulation speed. Constraining the stimulus is main
technique used to aim the stimulus at specific parts of the stimulus space. The
boundaries are described, in Chapter 5.3, as the most important verification
criterion of the analog characteristics. The reason behind this criterion is that
the DUT measures the analog characteristics by level and timing sensitive
circuits. Thus, if the DUT handles the characteristics at the boundaries, it
is reasonable to assume that the DUT handles the characteristics inside the
boundaries.

The results suggest that the UVC is able to perform verification of a NFC-A
listening device. 100% functional coverage is reached much faster than is
possible in a SPICE simulation. This is due to the use of digital simulation
solvers and using a MDV technique on a RVM model. Code coverage is not
considered important as the testbench targets the protocol behavior of the DUT,
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not the functionality of the complete DUT. Otherwise, the it would be important
with 100% code coverage to ensure that the DUT’s functionality was fully
tested.

Figure 6.2 and 6.3 indicate that the UVC models the interface according to
the analog model described in Chapter 3.2.

7.5 RVM

SPICE simulations are the most used type of simulation when verifying an
analog IP. The benefit of SPICE simulation is the accuracy with which it can
verify a circuit, however the performance of the simulation is compromised by
its accuracy. This problem becomes apparent if the circuit is large and complex
which could result in a long tedious simulation if all functionality is to be
tested. The time-to-market requirement of the VLSI business will most likely
make it impossible to verify all the functionality of such analog circuits with
SPICE simulation accuracy. Alternatives to the SPICE simulations exists on the
market, such as AMS and RVM simulations, however they tend to compromise
the accuracy of the simulations to gain performance. AMS is the most accurate
simulation type of the two and uses both digital and analog solvers in the
simulation of a design. Unfortunately, this leads switching activity between the
solvers based on when a digital or an analog portion of the circuit is simulated.
This in addition to using the analog solvers decrease the performance of the
simulation, though it is faster than SPICE simulations. RVM trades even more
of the accuracy for more performance by using only the digital solvers. This
requires discrete analog models of the analog IPs which significantly degrades
accuracy. Not only is the convergence analysis of the circuit lost, due to not
using SPICE, but even more information is lost due to the discretization of
analog behavior. The importance of such circuit analysis cannot be mitigate
for by digital solvers and consequently RVM simulation cannot replace SPICE
simulations. However, RVM simulation can still be beneficial in the verification
of mixed-signal circuits. Especially for large analog IPs a discrete model
simulated in a RVM simulation could be used increase functional verification
of the IP. As well as for large analog IPs, even for small analog IPs, RVM
simulations is useful in top-level testbenches of a chip. It allows functional
verification of the complete cooperation of the chip. A less attractive alternative
is black-boxing of analog IPs in the top-level simulation and only perform
verification of the interconnects between the digital and analog circuits. For
RVM simulation to be beneficial it is important to notice that the testbench can
only be as good as the model of the analog circuit itself. Thus, a good model
that allows verification of the intended functionality is important.

7.6 UVM

UVM has a lot to offer in terms of digital simulation. Based on the
SystemVerilog language it has the ability to create constrained random
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variables in an OOP environment. CRV is not only a benefit found in UVM,
but CRV is very powerful when the stimulus space is large. The time and effort
related to creating stimulus is greatly reduced, compared to directed tests, by
letting the simulation solver create the stimulus inside given constraints. Thus,
providing better control in the process of ensuring that all possible stimulus
scenarios within the legal stimulus space is hit. Reusability based on modular
components is one of the key features of UVM which is a structure UVM itself
is based on. The larger the testbench, the more this benefit becomes significant
and the UVC can be designed to be almost completely reusable. There is a cost
related to learning UVM and setting up a UVM environment, however once
it is set up for one IP it takes less effort setting up another. From a design
and/or verification engineer’s point of view the methodology provides a fixed
structure of the verification modules which makes it easier for the engineer to
migrate to other UVM testbenches. An interesting aspect of UVM is the notion
of a developer and a user of UVCs. What this means is that professional UVM
developers can set up the testbench environment and function as the moderator
of the simulation. However, the user does not have to concern with this issue
as much as only defining stimulus sequences and including the UVCs in the
testbench. This allows the user to focus on the actual problem of defining good
stimulus and in turn spend less time verifying the design.

UVM is a dynamic simulation environment that allows testbench to change
tests during simulation. In an MDV simulation this is beneficial as certain tests
can be stopped based on coverage metrics and other test can be initiated to
hit other parts of the design functionality. The configuration database in UVM
allows UVCs to easily be configured to suit different testbenches which can be
a time consuming process.

As this thesis shows, UVM is not only suited for the traditional digital
designs, but also for RVM simulations. Using UVM on analog behavior models
enables the all the benefits of UVM in this type of simulation. However, analog
behavior models are typically level sensitive and often requires floating point
precision. The SystemVerilog real data type provides this precision, but it is not
possible to randomize such variables opposed to integers and other similar data
types. The solution is to create a model for converting a random variable into
a real data type representation. This works well and is a technique used in the
UVC where the frequency of the NFC carrier signal is based on a randomized
period represented as an integer.

As the RVM simulation is used to mitigate for SPICE simulation
performance the focus of the simulation becomes functionality. UVM sequences
allows functionality to be exercised in a convenient are readable manner.
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Conclusion

The work of this thesis presents the successful design and implementation of
a UVC for the NFC-A protocol. The UVC has been simulated in a testbench
with a NFC device and was able to close on 100% functional verification of the
device according to a verification plan. Reusability has been one of the main
focuses in the creation of the UVC, thus components of the UVC can be reused
for other UVC projects. Parts of the NFC-A protocol that is not covered by the
UVC could be implemented with minimal effort due to the focus on facilitation
of additional functionality.

The UVC illustrates how UVM can be used with RVM to achieve digital
simulations speeds in functional verification of analog IPs.

A sequence library for stimulus generation comes with the UVC to provide
users of the UVC with examples and a starting point for creating relevant
testbench stimulus.

8.1 Recommendations for Future Work

• Design the driver and the monitor components reusable by replacing the
algorithms with calls to interface methods.
• Extend the monitor component with the ability to detect noise on the

interface.
• Extend the stimulus library with responses for listening devices.
• Create more reusable scoreboard design.
• Extend the driving and monitoring algorithms with the ability to perform

collision resolution of the NFC protocol.
• Extend the UVC to cover verification of the complete NFC protocol.
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