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Abstract

This thesis investigates the advantages of using functional programming as a
hardware description tool. The functional programming paradigm shares a lot
of similarities with hardware, as it is highly parallel in nature and has a notion
of structure in its descriptions. Furthermore, it operates on a higher-level of
abstraction compared to commonly-used hardware description languages, which
facilitates the design- and debugging process.

The goal has been to implement a decoding algorithm - the Viterbi algorithm
(VA) - used in a variety of communication networks. An estimate done in
2005 revealed that approximately 1015 bits are being decoded by the Viterbi
algorithm in digital TVs, every second of the day. This estimate neglects a
billion of cellphones that are also a large user of the VA.

Throughout the design process, the functional implementation of a Viterbi de-
coder has been simulated directly within the interactive environment of the
source language, without the need to create a customized testbench. A mod-
ularized design can simulate components in isolation to give written functions
evidence of correctness.

The complete implementation has been transformed to a synthesizable Sys-
temVerilog description, using an open-source tool called CλaSH. The resulting
code has been verified with several testbenches that were written for a refer-
ence design, verifying correct timing- and decoding behavior. Furthermore, it
has been compared with a reference design made in SystemVerilog, in terms of
performance and resource utilization.

Functional programming has proven to be well-suited for hardware designs.
However, it is still hard to achieve the same quality as traditional methodologies,
and requires the designer to be skilled in the functional programming style.
Nevertheless, it is a superb alternative for performing architectural exploration,
and creating high-quality circuits.



Sammendrag

Denne oppgaven undersøker fordelene ved å bruke funksjonell programmering
som et verktøy for å beskrive maskinvare. Den funksjonelle programmerings-
paradigme deler mange likheter med maskinvare, ettersom det har en svært
parallell natur og gir en form for struktur i dens beskrivelser. I tillegg, ope-
rerer det p̊a et høyere abstraksjonsniv̊a i forhold til vanlig brukte maskinvare
beskrivende spr̊ak, som forenkler design- og feilsøkings prosessen.

Målet har vært å implementere en dekodingsalgoritme - Viterbi-algoritmen -
som brukes i en rekke forskjellige kommunikasjonsnettverk. Et anslag som ble
gjort i 2005 viste at om lag 1015 bits blir dekodet av Viterbi-algoritmen (VA)
i digitale TV apparater hvert sekund. Dette anslaget neglisjerer en milliard
mobiltelefoner som ogs̊a er en stor bruker av VA.

Gjennom hele designprosessen, har den funksjonelle implementasjonen av en
Viterbi dekoder blitt simulert direkte i det interaktive miljøet til kildekoden,
uten behov for å lage en tilpasset testbenk. Et modulærisert design kan simulere
komponenter i isolasjon, for å bevise funksjonene som korrekt.

Den komplette implementasjonen har blitt transformert til en syntetiserbar Sys-
temVerilog beskrivelse, ved hjelp av et verktøy kalt CλaSH, som er åpen kilde-
kode. Den resulterende koden er blitt verifisert av flere testbenker, som har
verifisert at tidsstyring og dekodingsoppførselen er korrekt. I tillegg har desig-
net blitt sammenlignet med en tilsvarende løsning som er laget i SystemVerilog,
med fokus p̊a ytelse og ressursutnyttelse.

Funksjonell programmering har vist seg å være velegnet for å designe maskin-
vare. Det er likevel vanskelig å oppn̊a den samme kvaliteten som tradisjonelle
metoder, og det krever i tillegg at designeren er dyktig i den funksjonelle pro-
grammeringsstilen. Det er imidlertid et ypperlig alternativ for å utforske ulike
arkitekturer, og generere kretser av høy kvalitet.
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Chapter 1

Introduction and
motivation

The development in electronics play a key-role in the modern age, and is nec-
essary to solve important societal challenges. The complexity of integrated
circuits is ever growing, and the industry is racing to develop the best solutions
and seize their window of opportunity. Because of this, there has been a contin-
uous demand to save time along the ”critical path” in the development process.
A field of interest is the design- and debugging phase, where hardware tools of
today date back to the late 1980s. Even though these are highly customized for
hardware, their abstraction is close to the details of the modeled circuit, and
requires a testbench for simulating their behavior.

For decades, there have been attempts to raise the abstraction level of hard-
ware description languages, with a process known as high-level synthesis (HLS)
[12]. It utilizes features of a high-level language for describing hardware, and
can facilitate the debugging and verification process through better simulation
possibilities. This can be especially useful for digital signal processing, like
describing an algorithm used in a digital radio. Additionally, HLS allows de-
signers to perform architectural exploration and compare post-synthesis results
and performance between different implementation methods.

One well-established programming paradigm that has gained increasing inter-
est from hardware designers, is functional programming. This is due to their
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similarities with hardware, and highly parallel nature. There are several fea-
tures that makes functional programming stand out from other programming
paradigms in terms of hardware design. Firstly, their written programs are
an expression of data dependencies rather than a sequence for the compiler to
execute, which gives the program a notion of structure. Secondly, functional
languages are strongly typed, which means that any violation of an argument’s
type or size will be caught at compile time. Both of these features are highly
related to circuits, as these have a static structure with fixed-sized bit-width.
What makes it even better is that functional languages are immutable, which
means that objects are not allowed to change once they are created, and the
transformation to hardware can be formally proven.

This thesis explores the functional hardware description language (HDL) CλaSH.
It uses the functional language Haskell as source language, and allows a func-
tional description to be transformed to a synthesizable hardware representation.
For testing the usability and reliability of CλaSH, a Viterbi decoder is imple-
mented and compared with a reference design. The Viterbi decoder is widely
used in communication systems to prevent transmitted messages from being lost
over noisy communication channels. In order detect errors in the received mes-
sage sequence, redundant information is added with a forward error-correcting
code known as convolutional code.

1.1 Project description

This thesis explores the Viterbi decoder in detail, and looks at related hardware
implementation techniques. The decoder will be implemented in the functional
programming language Haskell, and transformed to a synthesizable SystemVer-
ilog description with CλaSH. The design methodology will be evaluated in terms
of usability and reliability, based on the quality of the generated hardware rep-
resentation and the freedom of expression that CλaSH allows.

1.2 Structure of the thesis

Chapter 2 provides the background information of high-level synthesis, and
explains the features of functional programming and what makes it suitable
for describing hardware. CλaSH and other functional HDLs are addressed,
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describing their main differences and what makes CλaSH unique. Furthermore,
the details of the Viterbi algorithm are described, with illustrative examples
showing its main phases. Finally, some implementation specific methods are
described and other techniques optimized for hardware are mentioned.

In chapter 3, an introduction to Haskell and CλaSH is given. The introduction
covers the required information of the functional programming style, to under-
stand the details of the presented implementation. Following, it describes the
steps needed to customize the implementation to be compatible with the CλaSH
compiler.

Chapter 4 gives an overview of the overall system, and presents the implemen-
tation details of the Viterbi decoder. Some examples are included to highlight
the internal behavior of the functions, and keep the chapter free from in-depth
explanations. Furthermore, the simulation procedure used throughout the de-
sign process is presented as examples, covering simulations of single components
and the overall system. Moreover, the verification phase is described as several
steps. First, the setup for generating a simple testbench with CλaSH is shown,
then some of the more exhaustive verification steps - using provided testbenches
- are described.

In chapter 5, the implementation is evaluated. A general note on functional
programming as a hardware description tool is given, based on experiences
throughout the project. Additionally, CλaSH is evaluated, where its usabil-
ity and issues are addressed. Post synthesis results are presented in terms of
performance and resource utilization.

1.3 Contributions

The functional hardware description is transformed into synthesizable SystemVer-
ilog code, using the Haskell-based functional HDL CλaSH. The generated solu-
tion is verified with testbenches made for a reference design provided by Nordic
Semiconductor, to give evidence of correctness. Furthermore, the resulting im-
plementation is synthesized to gate-level hardware, and compared with a ref-
erence design in terms of performance and utilized resources. As a final step,
the implementation is integrated into an existing digital radio, part of a com-
plete system-on-chip (SoC). The chip is tested as a whole with several top-level
testcases, and the digital radio is synthesized for an FPGA.
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Chapter 2

Background and Theory

This chapter gives an overview of concepts and tools used in the hardware im-
plementation presented in this paper. It discusses the fundamental features of
functional programming, and its suitability as a hardware description tool. Fur-
thermore, the chapter addresses error-correcting codes and decoding techniques
based on the Viterbi algorithm.

2.1 Background Information

Traditionally, the first step involved in hardware design is often to model its
functionality in a generally applicable software language such as MATLAB, C
or SystemC. The model serves as the performance reference for the hardware
implementation, where it is common to explore different design methods prior
to the actual design process. Through simulations and comparisons, decisions
can be made early and the high-level model can provide stimuli and response
files for hardware testbenches. Additionally, a software model can later be used
for equivalence checking1. The actual hardware implementation is commonly
made from a hardware description language (HDL) such as Verilog or VHDL,
which is syntactically and semantically very different from a software language.

1Equivalence checking is used to compare two representations of a circuit description, to
prove that they exhibit the same behavior.
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Their abstraction level is considerably closer to hardware, as they model logical
operations on digital signals and their flow between hardware registers. This low
level of abstraction is commonly referred to as the register transfer level (RTL),
and has proven to be too verbose and concrete for some application domains.
Considering the high increase of chip functionality and complexity, especially
accounting for very-large-scale integrations (VLSI), the need to express hard-
ware at a higher-level of abstraction become increasingly important. This have
resulted in several new approaches to arise. Some include features from object
oriented programming to already existing HDLs, resulting in languages such as
SystemVerilog, while other approaches aim at translating high-level languages
to gate-level hardware - a process known as high-level synthesis. This process
often goes through several transformation steps before generating the actual
gate-level hardware. It is common to translate a high-level description to a
commonly-used HDL representation, in order to use available tooling for the
remaining synthesis-steps. Although HDLs are still widely used and preferred
in the industry for its quality assurance, it can still be rewarding to derive sep-
arate HDL modules from a high-level language, to work in conjunction with
existing modules. Nevertheless, a synthesizable high-level software model can
be useful when investigating the fidelity of area, power or resources, during the
architectural exploration.

This thesis explores an alternative way of implementing the software model with
a programming paradigm known as functional programming. With a supporting
tool known as CλaSH, the functional description can be transformed into a
synthesizable VHDL-, Verilog- or SystemVerilog representation.

2.2 High-Level Synthesis

High-level synthesis (HLS) is the process of translating a high-level language to
gate-level hardware [12]. A high-level language refers to programming languages
with strong abstraction from the details of the computer. HLS tools are able
generate a fully timed implementation, even from an untimed or partially time
high-level specification. In terms of hardware design, we differentiate between
several abstraction levels, namely circuit-, logic-, register-transfer-, algorithmic-
and system level. These levels are described by three distinct design domains,
and is best visualized by an Y-chart [17], depicted in Figure 2.1.

The design methodology explored in this thesis are mostly targeting the struc-
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Figure 2.1: Gajski Y-Diagram: Figure copied from [5]

tural domain, with some aspects from the behavioral domain. Expressing hard-
ware at a higher abstraction level serves many purposes for a hardware designer.
It can for instance be time-saving in terms of both coding and debugging. Addi-
tionally, it allows the designer to explore and compare different design methods
and architectures ahead of the actual implementation.

Higher-level synthesis started out as a research for academic purposes and has
been a topic since the beginning of the 1970s. Although, commercially it did not
become available until the beginning of the 1990s. This escalation started when
the industry gained interest. Even then, Higher-level synthesis was tiresome
to use and produced poor results, thus further pending its success. Today,
previous problems associated with HLS tools have been addressed - making it
increasingly important for large scale designs. Although, issues concerning the
efficiency of this method is still salient in the field. [37]

Some of the more currently available HLS tools and languages are described in
[28].
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2.3 Functional programming

Functional programming is a programming paradigm that operates entirely on
functions. It is essentially programming with mathematical functions, where
functions are not allowed to keep state or change their objects once they have
been created. This is a feature referred to as immutability, and makes functions
completely safe from outside manipulation and free from side effects2. Because
of this, it is guaranteed that functions will return the same value every time
it is given the same set of inputs - a property referred to as referential trans-
parency. This makes it easier to run parallel computations, and write programs
that exploits multi-core CPUs, which alone is reason enough for functional pro-
gramming being on the rise. Given that there are no data dependencies between
functions, their order can be reversed or executed in parallel.

For the mainstream programmer, used to imperative languages (e.g. C, Java,
Python), the though-process of a functional language may require some adap-
tation. A functional language treats functions as first-class citizens, allowing
functions to be passed as arguments and be used as return types. Functions ex-
ploiting this, are known as higher order functions. They are not just a powerful
way of solving problems, but may be considered the main building-block of a
functional program.

It is common to distinguish between two types of functional languages, known as
pure and impure. Impure languages, only adopt some functional features from
the completely pure languages. This thesis uses the pure functional language,
Haskell, which was developed to be the standard for functional languages. Com-
mon for all pure functional languages, is that they utilize a compiler technique
called lazy evaluation, which avoids executing functions until it is specifically
told to. This makes programs an expression of what things are, rather than
what it should do. Furthermore, some pure languages - including Haskell - are
statically typed, meaning that the compiler will automatically figure out the type
signature of functions, so that it becomes unnecessary to label every part of the
code with its own type. Moreover, all pure functional languages are strongly
typed - making them more likely to report errors at compile time if there are
any incongruity between the actual type and the expected type. Aesthetically,
functional programs can appear quite elegant and concise, as they typically
compresses loops and code blocks to a single line of code.

2When a function or expression modifies some state, it is said to have a side effect. This
includes modifications of global variables and any interactions with the outside world.
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It is fair to note that every feature of a purely functional language, is also part
of the reason why it has not become as mainstream as imperative languages.
Sometimes it is desirable to utilize side-effects and work with mutable data
structures at the cost of keeping the data consistent. Moreover, there are far less
programmers skilled in the functional programming style, and a large amount of
maintainable systems built from imperative languages. Nevertheless, functional
programming has a promising similarity with hardware, and might be a perfect
match.

2.4 Functional HDLs

Functional HDLs are the common designation of languages, which uses func-
tional programming as the basis for describing circuits. In the context of cir-
cuit design, they are the most studied, non-imperative paradigm, which uses
available abstractions from functional languages to simplify the expression of
hardware. Typically, a functional HDL will transform a functional hardware
description to a commonly-known HDL, such as VHDL, Verilog or SystemVer-
ilog. This way, they can easily be included as a module in a larger design and
utilize existing tooling for synthesis and verification. Functional HDLs are able
to simulate hardware components without the need to create a separate test-
bench. Because of this, the simulation time is much faster and it also allows
single components to be tested separately.

Functions modeling a sequential circuit will typically execute on every tick of
the system clock, or - if the language supports multiple-clock domains - it can be
assigned to a specific clock source. Since functions are state-less, functions must
connect their outputs with their inputs in order to model state. This creates a
feedback loop that allows a function’s calculated state to be given as input in
the following clock cycle.

There have been many functional HDLs over the years, usually made obso-
lete by their successor. Some of the most known functional HDLs of today are
ForSyDe [34], Bluespec System Verilog [31], CλaSH and the Lava family, includ-
ing Chalmers-Lava [11], Xilinx-Lava [8] and Kansas-Lava [19]. ForSyDe and the
Lava family, is implemented as an embedded domain specific language3 (EDSL)
on top of Haskell, which encodes the hardware in custom data-structures. This

3A language that is defined as a library, on top of a host language, which adds domain-
specific primitives.
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allows languages to have its own syntax and semantics, but requires the designer
to learn it. Bluespec and CλaSH on the other hand, was both initially developed
as a subset of Haskell, where the syntax and semantics were already defined.
However, Bluespec later decided to add a layer of syntax on top, to make it
look more like a HDL, and limited the use of abstraction that Haskell offered.
As CλaSH have stayed true to the idea of leveraging an existing functional lan-
guage, it has gained an increasing interest. Another interesting HDL which is
worth mentioning is Chisel. It is embedded in the functional language Scala,
and provides concepts from object orientated programming as well as functional
programming [6]. The remainder of this thesis, will however only be focusing
on CλaSH and its potential as a functional HDL.

2.5 CλaSH

CλaSH was developed as a research platform for hardware design methodologies
at the University of Twente [5, 25, 4]. It is a functional HDL, which borrows al-
ready defined syntax and semantics from the functional language Haskell. This
makes every CλaSH design a valid Haskell program, which facilitates the simu-
lation process and provides an extensive support for commonly used functions
[3]. Simulations in CλaSH are essentially done by executing a function repre-
senting the hardware, which allows modularized code to test sub-components
in isolation. As CλaSH leverage an existing functional language, it adopts all
of its syntax and semantics. However, this means that CλaSH also uses the
”standard” compiler approach towards synthesis, which limits its support for
recursive functions - frequently used in the functional programming style ??.
Luckily, this does not greatly limit the designer’s freedom of expression, since
Haskell’s higher-order functions have been redefined in CλaSH to avoid non-
synthesizable recursion techniques, and - in most cases - eliminates the need
to define our own recursive functions. Although there are elements in Haskell
that have no meaning in hardware, most of its commonly-used features are sup-
ported, and CλaSH extends its library with functions and types well-suited for
hardware design. This is further described in Chapter 3, where a short intro-
duction is given.

In addition, CλaSH supports testbench generation, multiple-clock domains,
user-defined VHDL/(System)Verilog primitives, and top-level annotations, to
exert some control of how the top level function is created.
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2.6 Forward error-correcting codes

Some background information is required to understand the presented imple-
mentation of a Viterbi decoder. From this point forward, decoding concepts and
hardware specific methods are discussed. First is a short introduction to codes
allowing a decoder to detect errors in a transmitted message sequence.

Forward error-correcting (FEC) codes are used to prevent messages from being
lost when sending messages over an unreliable or noisy communication channel.
This is done by adding redundant information before each message is sent,
and allows the receiving side to reconstruct the original message despite errors.
It is a technique that is heavily applied in one-way communication links and
other situations where retransmissions can be either impossible or costly. There
are mainly two categories of FEC codes; block codes and convolutional codes.
Block codes work on fixed-size packets of bits or symbols, while convolutional
codes operates on bit streams of arbitrary length. This thesis is focusing on
convolutional codes, which are decoded by the Viterbi algorithm.

2.7 The Viterbi Algorithm

The Viterbi algorithm was first introduced in 1967 by Andrew J. Viterbi [36]. It
is an algorithm for message decoding over noisy communication links, and is a
special case of the well-known Bellman-Ford shortest distance algorithm4. Com-
mon for both algorithms is that they use a method called dynamic programming
- a method for solving a complex problem by breaking it into simpler overlap-
ping problems. The basic algorithm was later redefined to make it a practical
decoding technique [21], and has become the most popular decoding procedure
for convolutional codes, due to its high accuracy. However, it is considered the
most resource-consuming compared to alternative decoding algorithms, such as
the Fano algorithm and the Stack algorithm. There has however been proposed
several different implementation techniques for the viterbi algorithm, for re-
ducing power consumption, reducing memory requirements and increasing the
throughput. A better overview of existing methods is given in Section 2.8. In
addition to radio communication, the algorithm has been applied in applications
concerning speech recognition, modems and modern disk drives [16].

4The Bellman-Ford algorithm, is used to compute the shortest distance in a weighted
graph, from a single source node to all other nodes.
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The remainder of this chapter will describe the Viterbi algorithm in more detail,
while taking on a running example. For an in-depth explanation of the Viterbi
algorithm, see [35]. In order to understand how the Viterbi decoder operates,
it is necessary to be familiar with the convolutional encoder - producer of the
convolutional code. The overall communication system is best illustrated by a
block diagram, shown in Figure 2.2.

Figure 2.2: Overall system

2.7.1 Convolutional Encoder

The encoder operates on a stream of input bits, representing the original mes-
sage, and transforms k bits to a series of n output bits. The relationship between
the number of inputs and outputs are referred to as the bit rate r = k/n, where
the number of output bits n always exceed the number of input bits k. A rate of
r = 1/2 is the simplest form an encoder can operate with, and is used through-
out this thesis, both in the examples and in the actual implementation. Such
an encoder is best visualized by a FSM, controlling the generation of outputs
based on its current state and input bit. Figure 2.3 illustrates this behavior,
with a total number of eight possible states.

Figure 2.3: Encoder FSM
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The number of states is determined by the number of memory elements used
in the encoder, known as the constraint length K. The relationship between
K and the number of states is: nr of states = 2K−1, hence K = 4 results in
eight states. The actual encoding is performed with modulo-2 adders, and a
multiplexer, as Figure 2.4 illustrates.

Figure 2.4: Convolution encoder diagram

Note that connections between the memory elements and the modulo-2 adders
determines the polynomials, which must be known by the decoder. For this
convolution encoder, the polynomials will be 15 and 11 for A and B, respec-
tively.

Given the aforementioned encoder, an input message of 0100110100 will result
in the encoded sequence 00 11 10 11 00 01 01 11 01 11, where each bit-pair is
referred to as a codeword. However, the sequence received by the decoder may
deviate from what was originally transmitted, due to noise and instability on
the communication link. The task of the Viterbi decoder is to figure out the
state transitions that was taken by the encoder, even though there are faulty
bits in the codewords.

2.7.2 Viterbi Decoder

The task of the Viterbi decoder is to reproduce the original message processed by
the encoder. It does this by keeping track of the encoder’s state transitions for
each received codeword, and reproduce the encoded message based on this. Since
a received codeword may deviate from a transmitted codeword, the decoder
needs to evaluate a number of successive codewords in order to determine the
most likely state transition. For instance, receiving the first codeword from its
initial state 000, there are two possible codewords that the encoder can produce
(i.e. 00 or 11. See Figure 2.3). If however the received codeword is neither of
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these, the decoder knows that one of the bits are faulty. In order to determine
if the codeword was originally 00 or 11, the decoder looks at the successive
codewords - resulting in several possible paths in the encoder’s FSM. Each path
will be associated with an error metric, which helps the decoder chose the most
likely path to reproduce the original message from. This is best visualized by a
Viterbi trellis, which is essentially the encoder’s FSM represented as a directed
acyclic graph (DAG). A trellis based on the aforementioned encoder is shown
in Figure 2.5.

Figure 2.5: Viterbi trellis based on the encoder from the previous section

Each state in the trellis is placed vertically and each branch represents a valid
transition to a new state. The adjacent number to each branch is the encoded
codeword, which the received codeword is compared with. Each path leading
from the initial state to a final state will correspond to a message, though
only one path will produce the original message. The length of the trellis is
determined by the implementation. As a rule-of-thumb, it is typically 5∗K and is
referred to as the traceback depth. Hence, the illustrated trellis should ideally be
twice its size, and will only serve as a model for demonstration purposes.

The steps included in the decoding process, can be divided into three main
phases. It is appropriate to look at these as separate units: Branch Metric
Unit, Add-Compare-Select Unit, and Traceback Unit. A typically hardware
implementation will also require a FILO, as the block diagram in Figure 2.6
illustrates.

Each unit will execute in order whenever a new codeword is received by the
decoder. Their task is further described in the following subsections:
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Figure 2.6: HW implementation

Branch Metric Unit (BMU)

The branch metric (BM) is a weight assigned to each branch in the trellis. It is
a measure of the likelihood of a state transition based on the received codeword.
A BMU will calculate these weights as the hamming distance between each state
transition and the received codeword. For a bit rate of r = 1/2, the weight will
be a value between 0 − 2. This approach assumes that the received codewords
have already been converted to digital values, and is commonly known as hard
decision decoding.

Figure 2.7 illustrates the calculation of branch metrics for an arbitrary time-step
in the decoding process.

Figure 2.7: Branch metric calculations

There is another approach to this, known as soft decision decoding, where the
received codewords have not yet been converted to digital values. It is more
accurate method which is further described in Section 2.7.3.
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Add-Compare-Select Unit (ACSU)

The Add-Compare-Select (ACS) Unit will keep track of the accumulated BMs
for each path in the trellis. These metrics are referred to as path metrics (PMs),
and reflects the total number of bit errors detected along a path. Based on the
calculated BMs and PMs of a stage, the ACSU will decide which of the incoming
branches to a state that should survive, and form a path back to the initial
state. The calculation of the next PM for each state, is as follows:

PM ′
0 = Min{PM0 + BM0→0, PM1 + BM1→0}

PM ′
1 = Min{PM2 + BM2→1, PM3 + BM3→1}

PM ′
2 = Min{PM4 + BM4→2, PM5 + BM5→2}

PM ′
3 = Min{PM6 + BM6→3, PM7 + BM7→3}

PM ′
4 = Min{PM0 + BM0→4, PM1 + BM1→4}

PM ′
5 = Min{PM2 + BM2→5, PM3 + BM3→5}

PM ′
6 = Min{PM4 + BM4→6, PM5 + BM5→6}

PM ′
7 = Min{PM6 + BM6→7, PM7 + BM7→7}

Figure 2.8 illustrates an example for an arbitrary time step, where the received
codeword is 01. Note that each node contains the path metric value for its
respective time-step.

Figure 2.8: Path metric calculations

16



Traceback Unit (TBU)

The most likely path is first chosen at the end of the trellis. If the received
codewords is equal to the codewords produced by the encoder, there will be one
state at the final time-step with zero PM. From this state, there will be a single
path leading back to the initial state, from which the decoder will start back-
tracing from. The state transitions in this path will correspond to the original
message processed by the encoder. While back-tracing through the trellis, the
decoder will output a decoded bit based on each state transition. Since the
decoded bit sequence is read in reverse order, it is required to have a FILO
to reverse the order. This method is commonly known as the traceback (TB)
method, and is a well known method which have been optimized for hardware
in several papers (see Section 2.8). Figure 2.9 depicts a Viterbi trellis where
all PM’s have been calculated for each time-step, and the received codewords
equals the transmitted ones.

Figure 2.9: Trellis example: Received codewords = Transmitted codewords

If we introduce two incorrect bits to the received codewords, it will still result
in the same path as depicted above. This is because the final state 001 will still
have the least PM compared to the others, and the correct message is recreated.
Figure 2.10 illustrates this case.
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Figure 2.10: Trellis example: Received codewords 6= Transmitted codewords

2.7.3 Hardware Implementation Methods

This section describes some implementation methods utilized in the actual de-
sign. More implementation specific details is described in Chapter 4.

Register Exchange

Register Exchange (RE), is an alternative implementation method for the trace-
back unit, which is conceptually simpler and faster than the aforementioned TB
method. The method assigns a register to each state and uses them to record
the decoded output for each time-step in the trellis. This requires every bit in
each register to be read and rewritten whenever a new codeword is received by
the decoder, which is the main disadvantage of the original RE method. The
decoded bits are appended to their register - shifting them to the left. At the
end of the trellis, when each register will be filled, the leftmost bit will be the
first decoded bit for their respective path. Figure 2.11 illustrates the previously
shown trellis example, implemented as a RE architecture.

Notice that the registers in the last time-step contains the decoded sequence for
its associated path. The read-out will happen during any successive codewords
from when the registers became full, by reading the leftmost bit of the state
register with the least PM. This read-out process can be seen in Figure 2.12
for the first five bits in the original message. Note that the leftmost container
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Figure 2.11: Register exchange

of each step, is the PM for each state, which decides which state register to
read.

Figure 2.12: Decoded bit read-out.

Since the RE method does not require back-tracing, it eliminates the need for
additional RAM blocks for traceback, and increases the throughput. In addition,
it eliminates the need for a FILO since the output order is correct. It is common
to name the traceback-unit as the survivor memory unit (SMU) when using the
register exchange architecture.
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Soft Decision Decoding

Soft decision decoding is a decoding process where the received codewords are
represented directly as the voltage samples, before digitizing them. Because
hard decision decoding throws away information in the digitizing process, soft
decision decoding will be more accurate and reduce the overall probability of
bit errors. Each codeword will contain information about reliability of each
received symbol. For instance, in a 4-bit encoding, this reliability information
can be encoded as Figure 2.13 illustrates.

Figure 2.13: Softbit reliability information

2.8 Related work

This section highlights work related to CλaSH and decoding methods using
the Viterbi algorithm. One publication in particular is especially related, as
it investigates a Viterbi decoder implemented in a different functional HDL,
Kansas Lava [9]. However, the architecture is completely different, and not
related to the implementation presented in this paper.

2.8.1 Viterbi decoder methods

Many implementation variations of the Viterbi decoder are possible. They are
trading off implementation complexity, decoding latency, area and power con-
sumption.
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Traceback optimization

As the conventional traceback approach is known to use more area than the RE
method, an optimized traceback architecture is proposed in [18]. It is known
as the pre-traceback architecture which in addition to saving area, reduces the
number of read operations and achieves a more energy efficient solution. [10]
presents another solution which aims at reducing the decoding latency of the
traceback method. Additionally, another power efficient architecture is pro-
posed.

ACS Lookahead

The add-compare-select (ACS) lookahead method, is an implementation for
high-speed applications [27, 24, 15, 14]. It allows the ACS unit to compute
several number of time-steps in parallel. It results in much greater area for the
design, but the method can be profitable for high-speed applications.

Register Exchange optimization

[13] presents a new implementation technique for the register exchange (RE)
method. As previously mentioned, the disadvantage of the RE method is that
every bit needs to be read and rewritten when a new codeword is received by
the decoder. The modified method uses a pointer concept instead, so that it is
not necessary to copy the contents of one register to another.

Soft-output Viterbi algorithm

The soft-output Viterbi algorithm (SOVA) is producing a soft output instead
of a decoded output bit. There are several methods for implementing this
architecture [20, 7, 23, 38].

2.8.2 Publications about CλaSH

CλaSH can be used for a number of things, from quick algorithm prototyp-
ing to complete architectures. There have been several publications about
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CλaSH, featured at the homepage of clash [2]. Here, some of them are briefly
described.

[30] shows how a simple dataflow processor can be implemented by using CλaSH.
The design was transformed to VHDL code and compared with a reference
design to evaluate the outcome of the CλaSH implementation. It was shown
that CλaSH generated a VHDL code that resembled the functionality described
by Haskell, and that it was synthesizable for both ASIC and FPGA.

[29] presents a highly configurable coarse-grained reconfigurable array (CGRA),
implemented in CλaSH.

CλaSH has also been used for implementing an algorithm used for frequency
estimation, known as the MUSIC algorithm [22]. The thesis investigates how
CλaSH compares to VHDL, and proves the usability of CλaSH descriptions for
a non-trivial hardware implementation.

In [33], a proposed solution for handling recursive functions is presented. It
describes a method for transforming a recursive function description to a cor-
responding circuitry. It has proven that data-dependent recursive functions
can be transformed with formal rewrite rules, though there are aspects of the
methodology that still need to be researched further.
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Chapter 3

Design Methods and
Tools

This chapter aims at giving the reader a basic understanding of Haskell and
provide the necessary knowledge needed to understand the implemented solu-
tion made in CλaSH. First is a short introduction to Haskell, displaying some
example code as new concepts are introduced. The second part of this chapter,
specifically targets CλaSH, and explains some important things to consider when
implementing hardware.

3.1 Introduction to Haskell

This section aims to give a quick introduction to the syntax of Haskell and
show some of its most useful features, utilized by functional HDLs. A complete
tutorial can be found in [26], [32].

3.1.1 Syntax

When writing a function, one must first specify the function name and then
list all its parameters. These are separated by spaces without any surrounding
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brackets. The return value is determined by the right hand side of the equality
sign. For instance, a function multiplyTogether, that multiplies three values
together could be defined as shown in Listing 3.1. Here, the function has three
parameters, named x, y and z.

multiplyTogether x y z = x * y * z 1

Listing 3.1: Function with three parameters

Within the interactive environment of GHC (GHCi), these arguments can be
applied a specific value to study the outcome:

ghci> multiplyTogether 2 5 10

100

GHCi also allows a user to define its own functions and variables directly within
the interactive environment. This is done by writing let in front of the function
declaration:

ghci> let minus a b = a - b

ghci> let pi = 3.14

ghci> minus pi 2

1.14

As both parameters of minus is followed by the function name, it can be confus-
ing to know which of the parameters that is subtracted from the other. Functions
like these are called prefix functions, and are the default for user declared func-
tions. However, since there are only two parameters, it can be used as a infix
function - placed in between its given parameters - to make it more readable.
This can be done in the following way:

ghci> pi ‘minus‘ 2

1.14

Notice that the defined functions do not specify the type of the their parameters
or return values. This makes the functions polymorphic, and enables them to
determine the result type based on its given parameters. This means that the
function works with more than one type, which can be revealed when inspecting
the type of multiplyTogether in GHCi (:t):

ghci> :t multiplyTogether

multiplyTogether :: Num a => a -> a -> a -> a

24



The left hand side of the => sign specifies the typeclass of the function’s pa-
rameters. Num a denotes that a is a numeric type, which includes Integer
and Double. Knowing this, we interpret that multiplyTogether can accept any
numeric type but expects all parameters to have the same type, as seen from
the right hand side of the => sign. The − > signs separates the parameters
from each other, where the last one always displays its return type. Naturally,
the return value has same type as the given parameters. By including a type
signature in the function definition, we can specify the input/output type as
shown in Listing 3.2.

multiplyTogether :: Double -> Double -> Double -> Double 1

multiplyTogether x y z = x * y * z 2

3

multiplyTogether :: Int -> Int -> Int -> Int 4

multiplyTogether x y z = x * y * z 5

Listing 3.2: Type signatures

Even though the compiler figures out the type by itself, it is good practice
to explicitly state a function’s type, especially when it is used for hardware
generation.

The basic Haskell library provides a lot of predefined functions for performing
common operations in our programs. In fact, +, -, /, etc. are functions as
well, that goes between the parameters, which makes them infix functions. A
complete overview of the base package of Haskell can be found at [1].

3.1.2 Data structures

Sometimes, a function is required to return several values. This is the case for
the well-known abc-formula, made as a Haskell function in Listing 3.3. The
output values are encapsulated in parentheses that makes it a data structure
called a tuple. A tuple combines a number of elements into a structure that can
contain several different types. Also notice how the code has been made more
readable with a where clause.
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functionRoot :: Int -> Int -> Int -> (Int, Int) 1

functionRoot a b c = (x1,x2) 2

where 3

x1 = ((-b) + sqrt d) / (2*a) 4

x2 = ((-b) - sqrt d) / (2*a) 5

d = b*b - 4*a*c 6

Listing 3.3: ABC-formula

It is also possible to define our own tuples with appropriate names. E.g, a set
of coordinates consisting of different values would be appropriate to encapsu-
late in such a data structure. Geographically coordinates for instance, are often
expressed in either latitude and longitude or DMS (degrees, minutes and sec-
onds) with an orientation symbol. We can make tuples to represent this in the
following way:

type LatLong = (Double, Double)

type DMS = (Char, Int, Int, Double)

type Coordinates = (DMS, DMS)

Note that the keyword for a tuple is type. Elements in a tuple are accessed by
their position, which can work fine for few elements, but may become unclear
when it becomes more. In such cases, there is another more applicable structure
called records, which gives each element its own name. Hence, elements are
accessed by their given name rather than their position. The aforementioned
tuples can be expressed as records with the data keyword, as follows:

data LatLong = LatLong {lat::Double, long::Double}

data DMS = DMS {ori::Char, degrees::Int, minutes::Int, sec::Double}

data Coordinates = Coordinates {north_south::DMS,east_west::DMS}

These records can be used as part of a functions type signature as shown in
Listing 3.4. Notice how the output is defined and how records are instantiated
in line 10. This example makes use of three predefined functions: floor which
returns the number in front of a decimal point, abs which returns the absolute
value of a given argument, and fromIntegral which converts from any Integral
type (i.e. Integer or Int) to a numeric type (including Double).
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deg_to_dms :: Double -> DMS 1

deg_to_dms lat = DMS {ori=o,degrees=d,minutes=m,sec=s} 2

where 3

o = if lat > 0 then ’N’ else ’S’ 4

d = floor lat 5

md = abs (lat - (fromIntegral d)) * 60 6

m = floor md 7

s = (md - (fromIntegral m)) * 60 8

9

myTreasure = LatLong {lat=63.25498,long=10.23421} 10

myLatitude = deg_to_dms (lat myTreasure) 11

Listing 3.4: Degree to DMS

In order to display the data within the myLatitude record, we access its elements
in the following way, from GHCi:

ghci> ori myLatitude

’N’

ghci> minutes myLatitude

15

For someone familiar with other programming languages, the if then else con-
struction used in Listing 3.4 may already be well-known. However, Haskell has
other useful choice constructs to chose from.

3.1.3 Choices

In addition to the if then else construction, Haskell makes use of a choice con-
struct called guards. This is symbolized with the | symbol, and can replace the
choice from Listing 3.4 as shown in Listing 3.5.

o | (lat > 0) = ’N’ 1

| otherwise = ’S’ 2

Listing 3.5: Guards

Guards also allows additional branches to be added, and should in every case in-
clude an otherwise option to capture every other case. There are also something
called pattern matching and case constructs for matching a certain value or con-
structor. Listing 3.6 gives an example of how they can be used to determine a
function’s outcome.
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guess 5 = "You guessed the correct number!" 1

guess _ = "Try again." 2

3

guess x = case x of 5 = "You guessed the correct number!" 4

_ = "Try again." 5

Listing 3.6: Pattern matching and case constructs

The underscore indicates a don’t care condition and covers all possible inputs.
The lines are evaluated sequentially, meaning that it would always result in
the first branch if the lines where switched. These methods are essential when
operating with recursion as we will see in the following subsection.

3.1.4 Recursion

Recursion is a much used methodology in functional programming, and intro-
duces an effective method for evaluating lists of data. Consider the quicksort
algorithm presented in Listing 3.7.

quicksort :: Ord a => [a] -> [a] 1

quicksort [] = [] 2

quicksort (p:xs) = (quicksort lesser) ++ [p] ++ (quicksort greater) 3

where 4

lesser = filter (< p) xs 5

greater = filter (>= p) xs 6

Listing 3.7: Quicksort algorithm

This is a well-known algorithm for sorting a list, by using a so-called divide-
and-conquer technique. It divides a list into smaller parts which can be quickly
sorted and merged together in the correct ordering. The list is divided based
on a reference value (pivot element), which in our example is chosen to be the
first element of the list (notice how this is done using the : notation). For each
function call, the remaining elements in the list are divided into two smaller
lists - lesser and greater. The function then calls itself recursively for each of
these new lists, and continues the process until the list becomes empty ([]). The
++ function ensures that the resulting lists (consisting of only one element) are
combined into one list in ascending order. Figure 3.1 is included to illustrate
the behavior of this algorithm.

It might not be obvious from the implementation of the quicksort algorithm,
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Figure 3.1: Quicksort algorithm example

but the function that does the filtering called filter, is actually accepting a
function as an argument, making it a topic for the next subsection - higher
order functions.

3.1.5 Higher order functions

A higher order function is a function that either accepts other functions as
arguments, or has a function as return type. As mentioned in the previous
subsection, the filter function is expecting a function as one of its argument,
thus making it a higher order function. This can be revealed when examining
its type:

ghci> :t filter

filter :: (a -> Bool) -> [a] -> [a]

The parentheses in the type signature is an argument expected to be a function,
which evaluates some type a and returns a Bool. When studying the function
calls in Listing 3.7, we see that the arguments that are expected to be a function
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are given as (< p) and (>= p). Both < and >= are functions that expects two
parameters, but in this case, they are only given one, namely p. In cases like
these, the function is actually returning a different function, which serves
a different purpose. The new function will in this case expect one argument
to compare its ”previous argument” p, with. In fact, every function in Haskell
officially only takes one parameter. The reason why functions works with several
parameters is because they evaluate the first argument, and then returns a new
function, crafted to handle the next argument. Not until the last argument is
evaluated, will the result share type with the return value of the original function
- which may as well be another function. This means that the type signatures
presented in Listing 3.8 can be used interchangeably for the < functions.

(<) :: (Ord a) => a -> a -> Bool 1

(<) :: (Ord a) => a -> (a -> Bool) 2

Listing 3.8: Interchangeable type signatures

All functions that accept several parameters are known as curried functions.
This includes the very first function multiplyTogether presented in this chapter,
which means that we are actually evaluating a sequence of functions rather than
all of its arguments at once. Listing 3.9 shows an alternative type signature for
multiplyTogether.

multiplyTogether :: Num a => a -> a -> a -> a 1

multiplyTogether :: Num a => a -> (a -> (a -> a)) 2

Listing 3.9: Alternative type signature for multiplyTogether

It is important to be aware of how curried functions are evaluated, but for
simplicity’s sake, we can assume that functions are evaluating several parameters
at once.

There are a few commonly-used higher order function that often recur, when op-
erating with a list in of data. These are discussed in the following sections:

map

The map function is heavily used when working with a single list. It applies
a function to each element of a given list and returns the result as a new list.
Figure 3.2 illustrates its behavior.
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Figure 3.2: Example - map function

Note that a list can consist of other lists as well, or even tuples. Some of the
function’s application area is shown below:

ghci> map (+4) [2,3,6,1,7]

[6,7,10,5,11]

ghci> map (replicate 4) [2,4..10]

[[2,2,2,2],[4,4,4,4],[6,6,6,6],[8,8,8,8],[10,10,10,10]]

ghci> map snd [(3,"blue"),(7,"yellow"),(2,"red"),(5,"green")]

["blue","yellow","red","green"]

foldl and foldr

When it is required to go sequentially through a list from the left or the right,
we can use either foldl or foldr, respectively. From an initial value, a function
is applied to each element in order of the list. This is illustrated by Figure 3.3
for the foldl function.

Some examples for the foldl function is given below:

ghci> foldl (+) 0 [2,5,4,3]

14
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Figure 3.3: Example - foldl function

zipWith

When operating with two lists, the zipWith function can be useful. As the
name suggests, the two lists are zipped together into one list, as the result of a
given function. The elements of both lists are given as arguments to the function,
which creates a new list based on its results, as Figure 3.4 illustrates.

Figure 3.4: Example - zipwith function

The zipWith function can for instance be used in the following scenarios:

ghci> zipWith (+) [4,2,5,6] [2,6,2,3]

[6,8,7,9]

ghci> zipWith max [6,3,2,1] [7,3,1,5]

[7,3,2,5]
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3.1.6 Lambda expressions

Lambda expressions are used to define anonymous functions that are only used
once. They are typically fairly simple, and are used together with higher-order
functions. Lambda expressions starts with a \, followed by its parameters.
Instead of an equal-sign as ordinary functions uses, we use − > to separate
the function parameters from its body. Some examples are given in Listing
3.10.

map (\x -> multiplyTogether 3 5 x) xs 1

zipWith (\x y -> if (x*2 > y) then True else False) xs ys 2

Listing 3.10: Lambda examples

The first example passes each element of xs to the previously defined multiply-
Together function. The second example compares the elements of two lists, xs
and ys with each other, where the elements of xs is doubled. If the doubled
element of xs is greater than the element from ys, then it returns True, in any
other case it returns False.

3.2 CλaSH

3.2.1 From Haskell to CλaSH

This section addresses some of the differences between CλaSH and pure Haskell.
As previously mentioned, hardware design requires values to have a fixed-size
throughout the design, in order to derive circuits from the description. Hence,
it is required to specify the number of bits for number types, and operate on
fixed-sized lists. CλaSH introduces a library which provides the designer with
types such as Signed n, Unsigned n, Bit, BitVector n and Vector n a.

Number types

Instead of operating with e.g. Integers or Doubles, we specify the type to be
either Signed n or Unsigned n. An example is given in Listing 3.12.
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multiplyTogether :: Signed 16 -> Signed 16 -> Signed 16 -> Signed 16 1

multiplyTogether x y z = x * y * z 2

Listing 3.11: Signed type

If it is desirable to resize the resulting value to be represented as a different
number of bits, we can for instance use signExtend or truncateB, as Listing 3.12
shows.

my_value = multiplyTogether 3 4 2 1

my_value_s32 = (signExtend my_value) :: Signed 32 2

my_value_s8 = (truncateB my_value) :: Signed 8 3

Listing 3.12: Resizing values

It is also possible to convert a Signed type into Unsigned, and vice versa. In
such cases, we use the function fromIntegral to convert between types, as Listing
3.13 shows.

my_value = (fromIntegral my_value) :: Unsigned 16 1

Listing 3.13: From Signed to Unsigned

In cases where we are operating with a single bit, we can use the bit type instead
of Unsigned 1.

Lists

As Haskell operates with infinite lists, it is not suited for hardware design.
Instead, CλaSH introduces the Vector type for representing lists. A Vector
is simply a list with its length encoded in its type, such that the number of
elements may never change. To instantiate a Vector, we can use the examples
shown in Listing 3.14, interchangeably.

my_vector1 = (1:>2:>3:>4:>5:>Nil) :: Vector 5 (Signed 8) 1

my_vector2 = $(v [1,2,3,4,5]) :: Vector 5 (Signed 8) 2

Listing 3.14: Instantiation of Vectors

Note that the second example uses v to transform a list to a Vector. The
elements of a Vector can be accessed by the !! function. For reading the third
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index of a Vector, do the following:

ghci> my_vector1 !! 2

3

When the elements of a Vector represents bits, the Vector type can be changed
to the BitVector n type. In the implementation, it is possible to convert between
the two types with v2bv and bv2v, as shown in Listing 3.15.

my_vector = (1:>0:>0:>1:>1:>Nil) :: Vector 5 (Unsigned 1) 1

my_bitvector = 0b10011 :: BitVector 5 2

my_vector_as_bv = v2bv my_vector 3

my_bitvector_as_v = bv2v my_bitvector 4

Listing 3.15: Conversion between Vector and BitVector

If a circuit is said to have a Vector as input/output instead of a BitVector, the
CλaSH compiler will generate n different input/output signals. Therefore, it
is important to use either the BitVector- or Signed/Unsigned type at the top
function, in order to group the bits to the same input/output port.

3.2.2 Higher-order functions and recursion

As previously established, CλaSH has poor support for recursive functions. This
is made up for by the built-in support for higher order functions, that have been
redefined in CλaSH to work with the Vector type instead of lists. This way,
the compiler avoids unsupported recursion calls, and can produce finite circuit
designs. The function names are the same, i.e. map, foldl and zipWith, and
are used in the same way as the original functions. In addition to the well-known
higher-order functions, CλaSH includes altered versions of these which returns
the index in addition to the element. They are indicated by a leading i in the
function name, i.e. imap, ifoldl and izipWith.

ghci> let xs = (5:>4:>8:>1:>2:>4:>5:>Nil)

ghci> let ys = imap (\i a -> (xs !! (i+2)) * a) (2:>5:>7:>3:>Nil)

ghci> ys

<16,5,14,12>

ghci> izipWith (\i x y -> if (i==0) then 1 else x*y) xs ys

<1,20,112,12>
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3.2.3 Sequential circuits

All sequential circuits in CλaSH, work on values of type: Signal a. The Signal
type specifies that it is an infinite stream of samples, where its components
are synchronized to a global clock. Hence, a function with Signals in its type
signature, is executed at each tick of the clock. To delay the stream by one clock
cycle, we use a register- or regEn function, as shown in Listing 3.16.

foo :: Signal Bit -> Signal Bit -> Signal Bool 1

foo input enable = out 2

where 3

a = register 0 input 4

b = regEn 0 enable input 5

out = a && b 6

Listing 3.16: Register functions

The first argument of the register and regEn function specifies the initial value
at time 0. As the regEn function models a register with an enable signal, it
requires an additional argument.

State

Due to the immutable nature of Haskell, functions can not keep state or internal
values. In order to model state, we therefore need to ”tie the knot” between
the inputs and outputs of the function. This way, the function can calculate the
next state based on its input, and receive the new state as input in the following
clock cycle. This creates a feedback loop on the outside of the function, and is
an idiom that corresponds to the actual schematics of a sequential circuit. Such
functions can be modeled as a Mealy machine, as Figure 3.5 illustrates.

To model sequential functions in CλaSH, the combinational function needs to
be written in the following way:

foo state inputs = (next_state, outputs)

Assuming that we want to have a valid signal dependent on the value of a
counter, we can define the function count to 100, as depicted in Listing 3.17.
Note that this function does not use the Signal type, since it is combina-
tional.
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Figure 3.5: Mealy machine: Figure copied from [29]

count_to_100 :: Unsigned 8 -> Bool -> (Unsigned 8, Bool) 1

count_to_100 c enable = (c’,reached_100) 2

where 3

c’ = if (enable && c’ < 100) then (c + 1) else c 4

reached_100 = if (c’ >= 100) then True else False 5

Listing 3.17: Combinational function

The next step is to apply a helper-function to model the combinational function
as a synchronous function, for describing a Mealy machine. This is done with
the mealy function available in CλaSH, and can be seen in Listing 3.18.

valid_signal1 = mealy count_to_100 0 enable_signal 1

Listing 3.18: Modeling a function as a Mealy machine

The parameters of the mealy function is the transfer function followed by its
initial state, and then the function’s input.

In the actual design presented in this paper, we use a version of the mealy
function called mealyB, which does automatic bundleing. This means that
functions with several inputs and outputs will automatically bundle the input
signals, and unbundle the output signals, to suit the type signature of the mealy
function. Consider a function foo with the type signature given in Listing
3.19.
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foo :: Int -> (Signal Bit,Signal Bool) -> (Int, (Signal Bool,Signal Bit)) 1

Listing 3.19: Type signature of a function

The mealy function expects an input type of Signal i, and requires the input
signals to be bundled with a bundle function. As this will produce an output
type of Signal o, the output needs to be unbundled with an unbundle function.
In this specific case, the bundle and unbundle function will perform the following
conversions:

bundle :: (Signal Bit,Signal Bool) -> Signal (Bit,Bool)

unbundle :: Signal (Bool,Bit) -> (Signal Bool,Signal Bit)

To model the function foo as a Mealy machine, we can either use the bundle
and unbundle functions manually with the mealy function, or let the mealyB
function handle this automatically, as shown in Listing 3.20.

(outA, outB) = unbundle (mealy foo 0 (bundle (inpA, inpB))) 1

(outA, outB) = mealyB foo 0 (inpA, inpB) 2

Listing 3.20: Automatic bundling and unbundling

Note that CλaSH can also model Moore machines, in a similar way.

Explicitly clocked functions

For designs utilizing multiple clock-domains, we attach a ’ to the end of the
function-name (e.g. mealy’, register’, regEn’) to specify the driving clock of the
function/circuit. The function’s input signals then needs to be synchronized to
the same clock, which can be specified with the Signal’ clk a type. In order
to synchronize signals between the clock-domains, we make use of either the
unsafeSynchronizer- or the dualFlipFlopSynchronizer function1. Listing
3.21 shows an example of this.

1dualFlipFlopSynchronizer is a synchroniser based on two sequentially connected flip-flops
to reduce metastability. unsafeSynchronizer should never be used to synchronize signals be-
tween two asynchronous clock-domains.
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type ClkA = ’Clk "clkA" 500 1

type ClkB = ’Clk "clkB" 1000 2

3

clkA :: SClock ClkA 4

clkA = sclock 5

clkB :: SClock ClkB 6

clkB = sclock 7

8

foo :: Signal’ clkA (Signed 8) 9

-> Signal’ clkB Bool 10

-> Signal’ clkA (Signed 8) 11

foo input valid = output 12

where 13

valid_sync = dualFlipFlopSynchronizer clkB clkA False valid 14

output = if (valid_sync) then 15

mealy’ clkA foo2 init_state input 16

else 17

0 18

19

foo2 state input = (next_state, output) 20

where 21

... 22

Listing 3.21: Multiple clock-domains and synchronization

3.2.4 RTL generation

In order for the CλaSH compiler to transform the functional description to
RTL code, it needs to have a starting point. This is specified with a topEntity
function as seen in Listing 3.22.

topEntity :: Signal Bool 1

-> Signal Bool 2

topEntity enable = mealy count_to_100 0 enable 3

4

count_to_100 c enable = (c’,reached_100) 5

where 6

c’ = if (enable && c’ < 100) then (c + 1) else c 7

reached_100 = if (c’ >= 100) then True else False 8

Listing 3.22: TopEntity function

In the interactive environment of CλaSH, one of the following commands can
be issued to generate the desired RTL code:
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ghci> :vhdl

ghci> :verilog

ghci> :systemverilog

To generate a simple RTL testbench in addition to the circuit description, two
additional functions needs to be specified, namely testInput and expectedOut-
put. The testInput function will contain the stream of input values, while the
expectedOutput function will - as the name suggests - list the expected out-
put. For creating the input stream, another helper function stimuliGenerator
is required in order to feed the circuit with a new input on each tick of the
clock. Similarly, the expectedOutput function needs an outputVerifier function
in order to evaluate one output at a time. Listing 3.23 shows an example for
creating a testbench for the above topEntity function.

testInput = stimuliGenerator (repeat True :: Vec 100 Bool) 1

expectedOutput = outputVerifier (repeat False :: Vec 100 Bool) ++ (True:>Nil) 2

Listing 3.23: Automatic testbench generation

It can be helpful to generate a testbench in order to examine the timing behavior
of the circuit description.
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Chapter 4

Methodology

This chapter presents the Haskell/CλaSH implementation of a Viterbi decoder.
First, an overview of the implementation is given, with the signal interface and
a block diagram. Next, each function is given as a code snippet, and their func-
tionality is briefly described. Furthermore, we show how simulations were per-
formed throughout the design process, and discuss the details of the verification
phase.

4.1 Overview

The functional architecture of the Viterbi decoder is based on the implementa-
tion methods described in Section 2.7.3. The top-module consists of four main
functions modeled as Mealy machines, namely: decoder, valid ctrl, flush ctrl
and flush sr. All outer signals are synchronized to the same clock, ck. In ad-
dition, there is another clock ckDiv, driving the decoder function and all its
internal functions, since they are operating on softbit-pairs instead of single
softbits. This clock is synchronous to ck, and operating on half the frequency
when handling a stream of valid softbits, but is switched off when the decoder is
inactive. This is done with a clock gating unit which is not part of the Haskell
implementation, but provided by Nordic Semiconductor and not shown in this
thesis. The unit enables the clock based on the enckDiv signal, which goes
high when a valid softbit-pair is received (or in the case of clear or flush). This
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way, unnecessary switching of the ckDiv -clock is avoided. The overall system
is illustrated by Figure 4.1, which also depicts the data dependencies between
functions.

Figure 4.1: Viterbi decoder block diagram

Note that this block diagram does not include synchronization logic between
the clock-domains and the functions’ internal behavior. The signal interface of
the top-module is listed below:
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Signal In/Out Description
ck In Clock signal with frequency corresponding to

the softbit input rate
ckDiv In Clock signal driven by enckDiv
ck rstn In Asynchronous reset
ckDiv rstn In Asynchronous reset
softBit[3:0] In Input data signal
validSB In Signal indicating that the softbit is valid
clear In Signal used to clear the decoder’s internal

state
flush In Signal used to read the remaining bits in the

state register with the least path metric (PM)
preselect[2:0] In Only relevant if clear is high: selects the initial

state of the trellis by setting its initial PM to
zero

dOut Out Decoded output bit
validB Out Signal indicating that dOut is valid
enckDiv Out Output that enables the ckDiv clock
stateRegDOut[19:0] Out Parallel readout of state register with the least

PM, for applications requiring near zero la-
tency flush.

4.2 Implementation details

This section presents the details of the implemented Viterbi decoder. Each
function will be presented and shortly described. Some examples are shown to
illustrate the internal behavior of the functions. The entire code can be seen in
Appendix A.

The top-module viterbi decoder is presented in Listing 4.1 (Figure 4.1). Its
inputs and outputs are synchronized to the ck clock and the function executes
on every clock tick. In short, the softbit-pair and the signals are synchronized to
ckDiv and given to the decoder function (line 12-18). The decoder function
and the valid ctrl- and flush sr functions are all modeled as mealy machines
(line 24-32). Together, they make up the main functionality of the decoder and
provide the outputs for the top-module. Some registers have been added to the
top-module to ensure correct timing behavior. Note that decoded output bits
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are either read from the decoder function or the flush sr function, depending
on the flush signal (line 38-40).

viterbi_decoder :: SClock ck -> SClock ckDiv 1

-> Signal’ ck (Signed 4) 2

-> Signal’ ck (Bool) 3

-> Signal’ ck (Bool) 4

-> Signal’ ck (Bool) 5

-> Signal’ ck (BitVector 3) 6

-> Signal’ ck (Bit, Bool, Bool,(BitVector 20)) 7

viterbi_decoderck ckDiv softbit validSB clear flush preselect = out 8

where 9

sb1 = (regEn’ ck 0 validSB softbit) 10

sb2 = softbit 11

-- Signals synchronized to ckDiv 12

sb_pair = dualFlipFlopSynchronizer ck ckDiv (0,0) 13

(bundle’ ck (sb1,sb2)) 14

flush_sync = dualFlipFlopSynchronizer ck ckDiv False flush 15

clear_sync = dualFlipFlopSynchronizer ck ckDiv False clear 16

preselect_sync = dualFlipFlopSynchronizer ck ckDiv 17

(0 :: BitVector 3) preselect 18

-- Flush Signals 19

flushDelayed = mux flush (register6’ ck False flush) flush 20

flushPosEdge = isRising’ ck False (register’ ck False flush) 21

flushPosEdged = isRising’ ck False (register’ ck False flushPosEdge) 22

-- Mealy machines 23

(dOut, sr_dOut) = mealyB’ ckDiv (decoder) 24

(init_pms,init_state_regs,0) 25

(sb_pair,flush_sync,clear_sync,preselect_sync) 26

(validB_temp,validSB_vec) = mealyB’ ck (valid_ctrl) 27

(0,0,False) 28

(clear,validSB,flushPosEdge,flushPosEdged) 29

(dOut_flush,validB_flush) = mealyB’ ck (flush_sr) 30

(0) 31

(flushDelayed,stateRegDOut,clear) 32

-- Outputs 33

validB = (register’ ck False validB_temp) 34

dOut_sync = (dualFlipFlopSynchronizer ckDiv ck 0 dOut) 35

stateRegDOut = unsafeSynchronizer ckDiv ck sr_dOut 36

enckDiv = (validSB_vec .||. flushPosEdge .||. clear) 37

out = mux flushDelayed 38

(bundle’ ck (dOut_flush,validB_flush,enckDiv,stateRegDOut)) 39

(bundle’ ck (dOut_sync,validB,enckDiv,stateRegDOut)) 40

Listing 4.1: Top-module of the Viterbi decoder

Following, the functions modeled as a mealy machine are presented. First, we
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look at the decoder function and all of its sub-functions.

4.2.1 Decoder

The decoder function is modeled as a Mealy machine, and is responsible for
calculating the decoded output on each rising edge of ckDiv. Listing 4.2 shows
the implemented function. Note that pms, state regs and min pms state are
its state inputs, and are used to calculate their next state with the bmu (line
9), acsu (line 17) and smu (line 20) functions. The decoded output bit dOut,
is read from the leftmost position of the state register with the least PM, given
by the value of min pms state (line 22). Additionally, the same state register is
returned by the function, so that in the case a flush is issued, all remaining bits
in the state register can - if required - be read simultaneously.

decoder (pms,state_regs,min_pm_state) 1

(sb_pair,flush,clear,preselect) 2

= ((pms’,state_regs’,min_pm_state’), 3

(dOut,stateRegDOut)) 4

where 5

sb1 = (signExtend (fst sb_pair))::Signed 8 6

sb2 = (signExtend (snd sb_pair))::Signed 8 7

sb_pair_se = (sb1,sb2) 8

bms = bmu sb_pair_se 9

(pms’,min_pm_state’,surviving_preds’) = 10

if (flush) then 11

(pms,min_pm_state,init_surviving_preds) 12

else if (clear) 13

((imap (\i x -> if (i == (unpack preselect::Index 8)) 14

then (0::Unsigned 8) 15

else x) init_pms), 0, init_surviving_preds) 16

else (acsu pms bms) 17

state_regs’ | (flush) = state_regs 18

| (clear) = init_state_regs 19

| otherwise = smu state_regs surviving_preds’ 20

-- Outputs 21

dOut = (state_regs’ !! (min_pm_state’)) !! (0 :: BitVector 3) 22

stateRegDOut = v2bv (state_regs’ !! min_pm_state’) 23

Listing 4.2: Decoder function with all the decoding logic

Note that the initial states init pms, init surviving preds and init state regs are
not defined in this code snippet. See Appendix A for more details. In the
following, the three main units (BMU,ACSU and SMU) of the decoder function
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is presented and further described.

Branch Metric Unit (BMU)

The bmu function must be seen together with two other functions - eucDist
and calc codeword. Listing 4.3 presents the implementation of the bmu func-
tion. It takes a softbit-pair (sb pair) as an argument and calculates the BMs
based on these. This is done by looping through pred states1 and pred states2,
(i.e. the first and second predecessor of each state), and calculates their BMs:
bm1s and bm2s, respectively. At the end, their elements are combined into
a Vector of tuples, so that the first tuple in the Vector contains BM0→0 and
BM1→0.

bmu sb_pair = bms 1

where 2

bm1s = imap (\i a -> eucDist a (encInps !! i) sb_pair) pred_states1 3

bm2s = imap (\i a -> eucDist a (encInps !! i) sb_pair) pred_states2 4

bms = zipWith (\x y -> (x,y)) bm1s bm2s 5

Listing 4.3: BMU function

Each predecessor state (pred) will be passed to the eucDist function together
with the softbit-pair (sb pair) and the encoder input (encIn). The function
then calculates the euclidean distance (i.e. the branch metric (BM)) for one of
the two outgoing branches from the given predecessor state, based on the given
encoder input. The eucDist function is shown in Listing 4.4.

eucDist pred encIn sb_pair = bm 1

where 2

sb1 = fst sb_pair 3

sb2 = snd sb_pair 4

codewordA = calc_codeword polya pred encIn 5

codewordB = calc_codeword polyb pred encIn 6

e_distA = if ((codewordA == 1) && (sb1 < 0)) then sb1 * (-1) 7

else if ((codewordA == 0) && (sb1 >= 0)) then sb1 8

else 0 9

e_distB = if ((codewordB == 1) && (sb2 < 0)) then sb2 * (-1) 10

else if ((codewordB == 0) && (sb2 >= 0)) then sb2 11

else 0 12

bm_temp = e_distA + e_distB 13

bm = fromIntegral (bm_temp)::Unsigned 8 14

Listing 4.4: Function calculating the branch metric for one branch

46



The eucDist function uses the calc codeword function for calculating the
codewords associated to the branch. These are seen in relation with the softbits,
to calculate the branch metric. The calc codeword function can be seen in
Listing 4.5. Note that the encoder’s polynomials must be known in order to
calculate this. In this thesis, polya and polyb are 15 (0b1111) and 11 (0b1011),
respectively.

calc_codeword poly state encIn = bit 1

where 2

temp = (poly .&. state)::Unsigned 4 3

bit = encIn ‘xor‘ (reduceXor temp) 4

Listing 4.5: Function calculating a codeword produced by the encoder

Add-Compare-Select Unit (ACSU)

The acsu function calculates the next PMs based on the previous PMs and the
calculated BMs. Listing 4.6 shows the implementation. It first adds together
the current PMs with the BMs (line 5-6), then selects the branches resulting in
the least PM (line 7) for the next time-step. This way, each state will only have
one incoming branch. The smallest PM are subtracted from each state’s PM in
order to avoid overflow (line 12), and returned by the function. In addition, it
returns the state with the least PM (line 13), and the surviving predecessor of
each state (line 14-18).
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acsu pms bms = (pms’,min_pm_state,surviving_preds’) 1

where 2

bm1s = map fst bms 3

bm2s = map snd bms 4

pm1s = imap (\i x -> (+) (pms !! (pred_states1 !! i)) x) bm1s 5

pm2s = imap (\i x -> (+) (pms !! (pred_states2 !! i)) x) bm2s 6

pms_temp = zipWith (min) pm1s pm2s 7

min_pm = fst (mapAccumL (\acc x -> if (x < acc) 8

then (x,acc) 9

else (acc,acc)) 10

(pms_temp !! 0) pms_temp) 11

pms’ = map (\x -> (x - min_pm)) pms_temp 12

min_pm_state = fromMaybe 0 (findIndex (== min_pm) pms_temp) 13

surviving_preds’ = (izipWith (\i pm1 pm2 -> if (pm1 < pm2) then 14

(pred_states1 !! i) 15

else 16

(pred_states2 !! i)) 17

pm1s pm2s) :: Vec 8 (Unsigned 8) 18

Listing 4.6: Function calculating the path metrics (PMs) and surviving prede-
cessor states

Survivor Memory Unit (SMU)

The smu function seen in Listing 4.7, updates the state registers based on
the surviving predecessor states returned by the ACSU. Each state copies the
register of its predecessor, then bit shifts it with the decoded bit (i.e. the
encoder’s input bit for the state transition).

smu state_regs surviving_preds = state_regs’ 1

where 2

state_regs’ = 3

imap 4

(\i x -> ((state_regs !! (surviving_preds !! i)) <<+ (encInps !! i))) 5

states 6

Listing 4.7: Function calculating the next state registers from the surviving
predecessor states.
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4.2.2 Valid control

The valid ctrl function is responsible for flagging a decoded output bit as valid.
It does this by keeping count of how many valid softbit-pairs have been received
by the decoder. When the state registers becomes filled, the decoded output bit
is flagged valid each time a new valid softbit-pair is received. The function can
be seen in Listing 4.8.

valid_ctrl (i,j,validB) (clear,validSB,flushPosEdge,flushPosEdged,flush) = 1

((i’,j’,validB’), (validB’,validSB_vec)) 2

where 3

j’ = if (validSB && (j < 2)) then (j + 1) 4

else if (j >= 2 && validSB) then 1 5

else if (j >= 2 || clear) then 0 6

else j 7

validSB_vec = if (j’ >= 2) then True else False 8

i’ = if (clear || flush) then 0 9

else if (validSB_vec && (i < td + 2)) then (i + 1) 10

else i 11

validB’ | (validB) = False 12

| (flush) = False 13

| (clear) = False 14

| ((i’ >= td) && flushPosEdge) = True 15

| ((i’ >= td + 2) && validSB_vec) = True 16

| ((i’ >= td + 2) && flushPosEdged) = True 17

| otherwise = False 18

Listing 4.8: Function controlling the validB signal, by counting the number of
valid softbit-pairs.

4.2.3 Flush state register

Listing 4.9 shows the flush sr function, which reads the remaining bits in the
current state register (stateRegDOut). Since this function’s signals are syn-
chronized to the ck -clock, the read-out is accelerated and the validB signal is
constantly kept high for 20 clock cycles (traceback depth of decoder). Note
that stateRegDOut is a BitVector, where its elements are accessed by a single
!.
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flush_sr c (flush,stateRegDOut,clear) = (c’,(dOut,validB)) 1

where 2

c’ = if (not flush) then 0 else (if (flush && c < td) then (c + 1) else c) 3

dOut = (stateRegDOut ! (td - c’)) 4

validB = if (clear) then False else (if (flush && c < td) then True else False)5

Listing 4.9: Function reading the remaining bits of a state register when the
flush signal goes high

4.3 Simulation

As mentioned in chapter 2, the design can be simulated within the interactive
environment of Haskell (GHCi). The implementation is modularized, such that
each unit is represented as its own function, and can be tested in isolation of each
other. This makes the debugging process easier as it only targets the separate
module rather than the overall system. Simulations are performed by executing
the function and provide it with its expected input type.

The bmu function can be simulated with various combinations of softbits (see
Figure 2.13) to examine the resulting BMs, in the following way:

ghci> bmu (7,7)

<(14,0),(0,14),(7,7),(7,7),(0,14),(14,0),(7,7),(7,7)>

ghci> bmu (-8,7)

<(7,8),(8,7),(15,0),(0,15),(8,7),(7,8),(0,15),(15,0)>

ghci> bmu (-1,0)

<(0,1),(1,0),(1,0),(0,1),(1,0),(0,1),(0,1),(1,0)>

Note that the values close to the least confident 0s and 1s, produces smaller
branch metric values. The same simulation process can be done for the func-
tion that represents the ACSU as well, but since this function operates on the
calculated branch metrics, we let the BMU calculate these for us, instead of
manually writing them:

ghci> let bms = bmu (-8,7)

ghci> let (pms,min_pm_st,surv_preds) = acsu init_pms bms

ghci> pms

<7,7,0,0,7,7,0,0>

ghci> min_pm_st

2

50



ghci> surv_preds

<0,3,5,6,1,2,4,7>

The calculated surviving predecessor states can be further used to simulate
the smu function. In addition, the state registers needs to be filled with bits.
This can be done within the interactive environment of CλaSH in the following
way:

ghci> let sr0 = $(v [0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1])

ghci> let sr1 = $(v [0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1])

ghci> let sr2 = $(v [0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0])

ghci> let sr3 = $(v [0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0])

ghci> let sr4 = $(v [0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1])

ghci> let sr5 = $(v [0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1])

ghci> let sr6 = $(v [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1])

ghci> let sr7 = $(v [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1])

ghci> let stRegs = (sr0:>sr1:>sr2:>sr3:>sr4:>sr5:>sr6:>sr7:>Nil)

ghci> smu stRegs surv_preds

<<1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0>

,<0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0>

,<0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0>

,<1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,0>

,<0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,1>

,<0,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,1>

,<0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1>

,<1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1>>

To simulate the decoder function, the previously calculated states can be used
as input together with a softbit-pair and the other input signals. The following
is an example of this:

ghci> let sbPair = ((4::Signed 4),(-6::Signed 4))

ghci> let pre_sel = 0 :: BitVector 3

ghci> decoder (pms,stRegs,min_pm_st) (sbPair,False,False,pre_sel)

((<11,4,7,0,11,4,7,0>,

<<1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0>

,<0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0>

,<0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0>

,<1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0>

,<0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,1>

,<0,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,1>
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,<0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1>

,<1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1>>

,3)

,(1

,1111_1111_1111_1111_1110))

Note that the decoded output is 1 and that state 011 have the least PM, since
its state register is returned as the stateRegDOut.

4.4 Verification

The generated SystemVerilog implementation has been through several verifi-
cation steps. The first step was to verify the timing model with a testbench
generated by CλaSH. In order to provide the test inputs, a simple Perl script
was made to mimic an encoder (See Appendix C). The generated input values
was contained in a separate file, which could be read by the testInput function
in CλaSH. Listing 4.10 illustrates an example of this.

import Language.Haskell.TH.Syntax 1

import CLaSH.Prelude 2

import CLaSH.Prelude.Explicit 3

import System.IO 4

import qualified Prelude as P 5

6

testInput :: (Signal’ ClkSys (Signed 4) 7

,Signal’ ClkSys (Bool) 8

,Signal’ ClkSys (Bool) 9

,Signal’ ClkSys (Bool) 10

,Signal’ ClkSys (BitVector 3)) 11

testInput = (testSoftbits, testValidBits, testClear, testFlush, testPreselect) 12

13

testSoftbits = stimuliGenerator’ ckSys z 14

where 15

z = $(do a <- qRunIO (readFile "sb_vec.txt") 16

let x = P.map read (lines a) :: [Int] 17

y = P.map fromIntegral x :: [Signed 4] 18

v y) 19

20

testValidBits = stimuliGenerator’ ckSys (repeat True :: Vec 100 (Bool)) 21

testClear = stimuliGenerator’ ckSys (repeat False :: Vec 100 (Bool)) 22

testFlush = stimuliGenerator’ ckSys (repeat False :: Vec 100 (Bool)) 23

testPreselect = stimuliGenerator’ ckSys (repeat 0 :: Vec 100 (BitVector 3)) 24
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Listing 4.10: Stimuli for auto-generated testbench

Each softbit are read from a file (sb vec.txt) and converted to its expected type
Signal’ ClkSys Signed 4. Note that this setup does not test the clear-, flush-
or preselect signals, and expects that every softbit is valid.

The expectedOutput function is also required in order for CλaSH to gener-
ate a simple testbench. This function can be seen in Listing ??. Note that
encoder input bits is a Vector that is not shown here, but will contain the bits
to compare the decoded output bits with.

expectedOutput :: (Signal’ ClkSys (Bit, Bool, Bool, BitVector 20)) 1

-> Signal’ ClkSys Bool 2

expectedOutput (output) = expected_dOut 3

where 4

unbundled_output = unbundle’ ckSys output 5

dOut = (\(x,_,_,_) -> x) unbundled_output 6

validB = (\(_,x,_,_) -> x) unbundled_output 7

enckDiv = (\(_,_,x,_) -> x) unbundled_output 8

stateRegDOut = (\(_,_,_,x) -> x) unbundled_output 9

expected_dOut = outputVerifier’ ckSys z dOut 10

where 11

z = encoder_input_bits 12

Listing 4.11: Function specifying the expected output for the auto-generated
testbench

We can even runs simulations with the specified testInput:

ghci> let output = sampleN 100 (topEntity testInput)

[(0,False,False,0000_0000_0000_0000_0000),...]

ghci> let valid_output = (Prelude.filter (\(_,x,_,_) -> x) output)

ghci> let dOut = Prelude.map (\(x,_,_,_) -> x) valid_output

ghci> dOut

[1,0,0,1,0,0,1,0,0,1,1,1,0,1,1,0,0,1,1,1,0,1,1]

Exhaustive testing

The next verification step was performed by a testbench developed at Nordic
Semiconductor, and made specifically for a Viterbi decoder. The testbench was
reduced to only operate within the constraints of the implemented design. The
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testbech provides over 10 000 000 test-bits, which were read from input files and
used to compare the decoded bits with. This resulted in some bit errors, but
all within the specified limits of the testbench. Figure 4.2 displays a portion of
the generated waveform. Notice that the testbench provides the softbits as a
continuous stream, as indicated by the validSB signal.

Figure 4.2: Waveform from SystemVerilog testbench 1

A second testbench - also provided by Nordic Semiconductor - was used for
testing some of the corner-cases of the decoder. For instance, it would test what
would happen if the flush signal was given as a single pulse. Furthermore, it
would verify that the decoder was able to operate with softbits given several
clock cycles apart. Figure 4.3 shows an example of this.

Figure 4.3: Waveform from SystemVerilog testbench 2

The performance was measured as the bit error rate (BER) between the CλaSH-
and the reference design with a third testbench.

4.5 IP integration

As a final test, the Viterbi decoder was integrated in a complete SoC design,
hereby replacing the existing decoder. The resulting SoC was then tested as a
whole, with testbenches targeting the top-level system.
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Chapter 5

Evaluation

This chapter evaluates CλaSH as a hardware description tool, and discusses its
advantages and current issues. The presented results are based on experiences
throughout the design process, and the features of functional programming. Fur-
thermore, the quality of the generated SystemVerilog solution is compared with a
reference design. The quality is based on the calculated bit error rate, synthesis
results and from exhaustive testing cases.

5.1 Hardware design with functional program-
ming

Common for the execution of digital hardware and the evaluation of a functional
language is that they are both highly parallel. This semantic equivalence, gives
functional programming an edge in describing hardware compared to impera-
tive languages. As combinatorial circuits are immutable and can be directly
modeled as mathematical functions, they translate well into a functional lan-
guage. Sequential circuits on the other hand, can not keep their internal states
in a function, as all functions are state-less. However, it is far from hard to
model state, as it is all about creating a feedback loop between a function’s
input and its calculated output. In fact, this idiom is exactly what a feedback
loop looks like in the schematics, but is not explicit in common HDLs as they
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are in functional HDLs.

As hardware is described at a higher abstraction level in a functional language
compared to a traditional HDL, it commonly results in far less code than a
corresponding solution made in a HDL. However, the code length may not be
representative for the time spent during the design process. Typically, func-
tional languages tend to compress calculations and code blocks to a single line,
much due to higher-order functions and the use of lambdas (see Section 3.1.5).
Nevertheless, the code is still easier to debug in most cases, because of the inter-
active environment and the opportunity to test functions in isolation. Once a
function has been thoroughly tested, it is not necessary to re-verify everything,
as the features of Haskell does not allow it to ever change its internal behavior.
When all required functions are created and verified, it is all about putting the
pieces together and achieve correct timing behavior of the system.

As the correctness of design transformation from a functional HDL to RTL code
can be mathematically proven, their written programs is highly reliable. This
was also experienced when testing the design with several testbenches, and from
a successful integration into a complete SoC.

5.1.1 CλaSH

The most commonly used features of Haskell seem to be supported by CλaSH.
It gives the designer a freedom of expression, and allows newcomers to CλaSH
to get started without learning a new language. CλaSH also introduces some
new types and functions, tailor-made for hardware purposes. Sequential signals
are given as a Signal type, which makes functions execute every tick of their
associated clock. Moreover, CλaSH allows complex sequential circuits to be
easily modeled as a Mealy- or a Moore machine to create the aforementioned
feedback loop.

One of the issues that CλaSH currently has, is the poor support for recursive
functions. The workaround for this has been to redefine the higher-order func-
tions of Haskell to support the Vector type, and avoid unsupported recursion
calls. Still, it limits the possibilities for the designer and might be considered
the greatest disadvantage that CλaSH currently has.

Furthermore, the introduced Signal type which models a sequential signal, is
not able to utilize all of Haskell’s predefined functions. To deal with this, CλaSH
provides alternative functions with a slightly different syntax. For instance, it
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is required to use .&&. instead of && and .||. instead of ||. Additionally, the
Signal type does not support the use of guards or the if-else-then construct,
and must use the mux function for making choices. It is not a big issue, but
working directly with the Signal type does require a fairly good overview of the
library of CλaSH.

Another thing worth mentioning about functional programming and CλaSH, is
that any interaction with the outside world is not very intuitive. This interaction
is a possible cause of side-effects (see Section 2.3), and must be avoided by using
a structure known as a monad. Because of this, reading and writing to files, or
reporting internal values during simulations can be hard.

As a whole, the experience with CλaSH has been very satisfying. From the
beginning of the project, it has not been any big ”change of plans”, as all
the ideas have been implementable in CλaSH. The poor support for recursive
functions has not been an issue, as the predefined higher order functions has
been able to tackle every problem. Moreover, since most functions from Haskell
are supported, it has been possible to find extensive support for these.

5.2 Quality of Result

The CλaSH implementation is compared with a reference design, provided by
Nordic Semiconductor. This is to give a measure of quality, since the imple-
mentation of multiple designs are out of scope for this thesis.

As there are a lot of available functions in Haskell/CλaSH, there are multiple
ways to go about when implementing a Virterbi decoder. This makes it hard
to argue whether the presented solution could have been made easier and more
understandable for the common programmer. Another aspect that has not been
concluded, is if a better quality of result could have been achieved with another
design approach. In terms of area, number of registers, and the BER, there may
be solutions which results in more efficient SystemVerilog code. As the details
of the synthesis process is unclear to the designer, it is hard to know exactly
what is generated, unless VHDL/(System)Verilog primitives are defined by the
designer.

In this section, the quality of the solution made in CλaSH is compared to the
reference design and discussed in more detail.
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5.2.1 Exhaustive testing

As mentioned in Chapter 4, the CλaSH generated implementation has been
through several verification phases. The testbenches were originally made for the
reference design, and were performing exhaustive testing cases. Every testbench
passed, which proves that the presented implementation is working as expected,
and that CλaSH is in fact able to generate a fully-functioning SystemVerilog
design.

5.2.2 Bit error rate

A separate testbench was used to calculate the bit error rate (BER) for both
the CλaSH- and the reference design. The same input stimuli was given to both
designs in form of softbits, so that the presented numbers are representative for
the achieved quality:

Design BER
CλaSH 128/204000

SystemVerilog 121/204000

It was found that the CλaSH design was producing 7 more bit errors compared
to the reference design, which is a difference of 5%. Hence, the difference is not
very significant.

5.2.3 Synthesis results

The CλaSH generated SystemVerilog code was synthesized as an application-
specific integrated circuit (ASIC) and for an FPGA. Both synthesis processes
compiled successfully from the generated SystemVerilog code. The resulting
FPGA netlist - containing a complete digital radio - was transferred to an
FPGA, but never fully tested due to time limitations. However, the digital radio
was tested with a quick sanity check and found to be working properly.

The synthesis results for the ASIC design was compared to the reference design
provided by Nordic Semiconductor. It was found that the CλaSH generated
solution was using approximately 22% more flip-flops in total, compared to
the design made in SystemVerilog. In terms of area, measured as the NAND-
gate equivalence, the difference was 42%. It should be noted that the CλaSH
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design was never optimized for area and number of registers, and that better
results might be achievable in CλaSH. For instance, the CλaSH design uses
synchronizers between the clock-domains, even though this could have been
avoided.

5.2.4 Generated SystemVerilog code

The generated SystemVerilog code is not very readable, as there typically are
a lot of files and auto-generated signal names1. The designer can exert some
control of how the top level function is created with TopEntity annotations,
which is all that is needed to integrate the IP in a larger system. However, it is
often desirable to look at internal signals as well, when inspecting the waveform
of a testbench. This can be cumbersome as every internal signal is given an
auto-generated name. It also makes it harder to probe the design when creating
properties with SystemVerilog Assertions (SVA).

In addition, one of the generated files required some editing in order to synthesize
the design as an ASIC. These changes were very small, and did not delay the
synthesis process significantly.

1A newer version of CλaSH seem to address this issue, by using the names given in Haskell
for the auto-generated signal names.
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Chapter 6

Conclusion

This thesis starts of by introducing the reader to the functional programming
paradigm and the theory behind the Viterbi algorithm. Following, we elaborate
on the functional programming style, and how this can be utilized for designing
hardware with CλaSH. This lays the foundation for understanding the imple-
mentation details described in the following chapter, where simulation and veri-
fication steps are included. The final chapter evaluates the design methodology
based on experiences throughout the project, and presents a measure of the
achieved quality.

A Viterbi decoder has been successfully implemented in the functional HDL
CλaSH. It has been an experimental project, to see if the current state of the
CλaSH is reliable and useful for hardware engineers. From the beginning of the
project, the approach towards a complete implementation has been based on
the three main units of the Viterbi decoder discussed in Section 2.7.2. Along
the way, there has not been any big changes and CλaSH has been able to trans-
form the ideas to fully-functioning SystemVerilog implementation. It has shown
that the freedom of expression that Haskell offers can describe hardware in a
variety of ways, without going too much into the details of the circuit. The
downside however, is that it is not very flexible for describing the timing behav-
ior, and the support for recursive functions are poor. Moreover, the generated
SystemVerilog implementation for this thesis is not able to match the quality
of the provided solution. Nevertheless, CλaSH has proven to be highly reliable
and is an excellent choice for implementing a software model and performing
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architectural exploration.

It has been proven that CλaSH is able to generate a fully-functioning Viterbi
decoder from a Haskell implementation. This has been verified with several
testbenches, and been concluded from a successful integration into a complete
SoC. Furthermore, the resulting gate-level hardware have been compared to a
solution made in SystemVerilog, which gives CλaSH a measure of quality. It
should be noted that the design has been implemented by a newcomer to the
functional programming style and the Viterbi algorithm.

The presented implementation is a visual example of how easily circuits can be
described in a functional language. It shows a rather complex implementation,
and how functional programming enables the designer to approach the problem
with a step-wise design methodology. This is thanks to the interactive envi-
ronment of CλaSH, which allows parts of the circuit to be implemented and
simulated in isolation. This makes it easy to explore different implementation
techniques without the need to create a customized testbench.

6.1 Future work

Although the presented solution has proven to be working and could poten-
tially be used in a SoC, the implementation could be further explored and
optimized. It would be interesting to see if better resource utilization could
have been achieved with another design approach. Furthermore, the decoder
could have been made parametrizable in order for it to work with different con-
straint lengths and polynomials. Different implementation methods could also
have been explored, with methods such as ACS lookahead or an optimized RE
method (see Section 2.7.3).

Another aspect that could have been further explored, is if it would be possible
to generate a more complex testbench with CλaSH.
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Appendix A

CλaSH implementation

module RxViterbiDecoder where 1

2

import Language.Haskell.TH.Syntax 3

import CLaSH.Prelude 4

import CLaSH.Prelude.Explicit 5

import System.IO 6

import qualified Prelude as P 7

import Data.Maybe 8

9

{-# ANN topEntity 10

(defTop 11

{ t_name = "RxViterbiDecoder" 12

, t_inputs = ["softBit","validSB","clear","flush","preselect"] 13

, t_outputs = ["dOut","validB","enckDiv","stateRegDOut"] 14

}) #-} 15

16

polya = 15 17

polyb = 11 18

numstates = 8 19

numstates_SNat = d8 20

td = 20 21

22

type ClkSys = ’Clk "ck" 500 23

type ClkDiv = ’Clk "ckDiv" 1000 24
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clk :: SClock ClkSys 25

clk = sclock 26

clkDiv :: SClock ClkDiv 27

clkDiv = sclock 28

29

register6’ ck start x = register’ ck start (register’ ck start ( 30

register’ ck start (register’ ck start ( 31

register’ ck start (register’ ck start x))))) 32

33

-- Init vectors 34

init_pms = (repeat 128 :: Vec 8 (Unsigned 8)) 35

init_state_regs = (repeat (repeat 0 :: (Vec 20 (Bit))):: Vec 8 (Vec 20 (Bit))) 36

init_surviving_preds = (repeat 0 :: Vec 8 (Unsigned 8)) 37

38

-- Constant vectors 39

states = iterate numstates_SNat (+1) 0 40

encInps = map (\state -> if ((state+1)>(numstates ‘div‘ 2)) then 1 else 0) states 41

pred_states1 = (map (\x -> ((2 * x) ‘mod‘ numstates)) states) 42

pred_states2 = (map (\x -> ((2 * x+1) ‘mod‘ numstates)) states) 43

44

-- Decoder functions 45

topEntity :: (Signal’ ClkSys (Signed 4) 46

,Signal’ ClkSys (Bool) 47

,Signal’ ClkSys (Bool) 48

,Signal’ ClkSys (Bool) 49

,Signal’ ClkSys (BitVector 3)) 50

-> Signal’ ClkSys (Bit, Bool, Bool,(BitVector 20)) 51

topEntity (softbit,validSB,clear,flush,preselect) = 52

viterbi_decoder clk clkDiv softbit validSB clear flush preselect 53

54

55

viterbi_decoder :: SClock ck -> SClock ckDiv 56

-> Signal’ ck (Signed 4) 57

-> Signal’ ck (Bool) 58

-> Signal’ ck (Bool) 59

-> Signal’ ck (Bool) 60

-> Signal’ ck (BitVector 3) 61

-> Signal’ ck (Bit, Bool, Bool,(BitVector 20)) 62

viterbi_decoderck ckDiv softbit validSB clear flush preselect = out 63

where 64

sb1 = (regEn’ ck 0 validSB softbit) 65

sb2 = softbit 66

-- Signals synchronized to ckDiv 67

sb_pair = dualFlipFlopSynchronizer ck ckDiv (0,0) 68

(bundle’ ck (sb1,sb2)) 69

flush_sync = dualFlipFlopSynchronizer ck ckDiv False flush 70

clear_sync = dualFlipFlopSynchronizer ck ckDiv False clear 71

preselect_sync = dualFlipFlopSynchronizer ck ckDiv 72

(0 :: BitVector 3) preselect 73

66



-- Flush Signals 74

flushDelayed = mux flush (register6’ ck False flush) flush 75

flushPosEdge = isRising’ ck False (register’ ck False flush) 76

flushPosEdged = isRising’ ck False (register’ ck False flushPosEdge) 77

-- Mealy machines 78

(dOut, sr_dOut) = mealyB’ ckDiv (decoder) 79

(init_pms,init_state_regs,0) 80

(sb_pair,flush_sync,clear_sync,preselect_sync) 81

(validB_temp,validSB_vec) = mealyB’ ck (valid_ctrl) 82

(0,0,False) 83

(clear,validSB,flushPosEdge,flushPosEdged) 84

(dOut_flush,validB_flush) = mealyB’ ck (flush_sr) 85

(0) 86

(flushDelayed,stateRegDOut,clear) 87

-- Outputs 88

validB = (register’ ck False validB_temp) 89

dOut_sync = (dualFlipFlopSynchronizer ckDiv ck 0 dOut) 90

stateRegDOut = unsafeSynchronizer ckDiv ck sr_dOut 91

enckDiv = (validSB_vec .||. flushPosEdge .||. clear) 92

out = mux flushDelayed 93

(bundle’ ck (dOut_flush,validB_flush,enckDiv,stateRegDOut)) 94

(bundle’ ck (dOut_sync,validB,enckDiv,stateRegDOut)) 95

96

97

valid_ctrl (i,j,validB) (clear,validSB,flushPosEdge,flushPosEdged,flush) = 98

((i’,j’,validB’), (validB’,validSB_vec)) 99

where 100

j’ = if (validSB && (j < 2)) then (j + 1) 101

else if (j >= 2 && validSB) then 1 102

else if (j >= 2 || clear) then 0 103

else j 104

validSB_vec = if (j’ >= 2) then True else False 105

i’ = if (clear || flush) then 0 106

else if (validSB_vec && (i < td + 2)) then (i + 1) 107

else i 108

validB’ | (validB) = False 109

| (flush) = False 110

| (clear) = False 111

| ((i’ >= td) && flushPosEdge) = True 112

| ((i’ >= td + 2) && validSB_vec) = True 113

| ((i’ >= td + 2) && flushPosEdged) = True 114

| otherwise = False 115

116

117

flush_sr c (flush,stateRegDOut,clear) = (c’,(dOut,validB)) 118

where 119

c’ = if (not flush) then 0 else (if (flush && c < td) then (c + 1) else c) 120

dOut = (stateRegDOut ! (td - c’)) 121

validB = if (clear) then False else (if (flush && c < td) then True else False)122
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decoder (pms,state_regs,min_pm_state) 123

(sb_pair,flush,clear,preselect) 124

= ((pms’,state_regs’,min_pm_state’), 125

(dOut,stateRegDOut)) 126

where 127

sb1 = (signExtend (fst sb_pair))::Signed 8 128

sb2 = (signExtend (snd sb_pair))::Signed 8 129

sb_pair_se = (sb1,sb2) 130

bms = bmu sb_pair_se 131

(pms’,min_pm_state’,surviving_preds’) = 132

if (flush) then 133

(pms,min_pm_state,init_surviving_preds) 134

else if (clear) 135

((imap (\i x -> if (i == (unpack preselect::Index 8)) 136

then (0::Unsigned 8) 137

else x) init_pms), 0, init_surviving_preds) 138

else (acsu pms bms) 139

state_regs’ | (flush) = state_regs 140

| (clear) = init_state_regs 141

| otherwise = smu state_regs surviving_preds’ 142

-- Outputs 143

dOut = (state_regs’ !! (min_pm_state’)) !! (0 :: BitVector 3) 144

stateRegDOut = v2bv (state_regs’ !! min_pm_state’) 145

146

147

bmu sb_pair = bms 148

where 149

bm1s = imap (\i a -> eucDist a (encInps !! i) sb_pair) pred_states1 150

bm2s = imap (\i a -> eucDist a (encInps !! i) sb_pair) pred_states2 151

bms = zipWith (\x y -> (x,y)) bm1s bm2s 152

153

154

eucDist pred encIn sb_pair = bm 155

where 156

sb1 = fst sb_pair 157

sb2 = snd sb_pair 158

codewordA = calc_codeword polya pred encIn 159

codewordB = calc_codeword polyb pred encIn 160

e_distA = if ((codewordA == 1) && (sb1 < 0)) then sb1 * (-1) 161

else if ((codewordA == 0) && (sb1 >= 0)) then sb1 162

else 0 163

e_distB = if ((codewordB == 1) && (sb2 < 0)) then sb2 * (-1) 164

else if ((codewordB == 0) && (sb2 >= 0)) then sb2 165

else 0 166

bm_temp = e_distA + e_distB 167

bm = fromIntegral (bm_temp)::Unsigned 8 168
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calc_codeword poly state encIn = bit 169

where 170

temp = (poly .&. state)::Unsigned 4 171

bit = encIn ‘xor‘ (reduceXor temp) 172

173

174

acsu pms bms = (pms’,min_pm_state,surviving_preds’) 175

where 176

bm1s = map fst bms 177

bm2s = map snd bms 178

pm1s = imap (\i x -> (+) (pms !! (pred_states1 !! i)) x) bm1s 179

pm2s = imap (\i x -> (+) (pms !! (pred_states2 !! i)) x) bm2s 180

pms_temp = zipWith (min) pm1s pm2s 181

min_pm = fst (mapAccumL (\acc x -> if (x < acc) 182

then (x,acc) 183

else (acc,acc)) 184

(pms_temp !! 0) pms_temp) 185

pms’ = map (\x -> (x - min_pm)) pms_temp 186

min_pm_state = fromMaybe 0 (findIndex (== min_pm) pms_temp) 187

surviving_preds’ = (izipWith (\i pm1 pm2 -> if (pm1 < pm2) then 188

(pred_states1 !! i) 189

else 190

(pred_states2 !! i)) 191

pm1s pm2s) :: Vec 8 (Unsigned 8) 192

193

194

smu state_regs surviving_preds = state_regs’ 195

where 196

state_regs’ = 197

imap 198

(\i x -> ((state_regs !! (surviving_preds !! i)) <<+ (encInps !! i))) 199

states 200
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Appendix B

CλaSH testbench

testInput :: (Signal’ ClkSys (Signed 4) 1

,Signal’ ClkSys (Bool) 2

,Signal’ ClkSys (Bool) 3

,Signal’ ClkSys (Bool) 4

,Signal’ ClkSys (BitVector 3)) 5

testInput = (testSoftbits, testValidBits, testClear, testFlush, testPreselect) 6

7

testSoftbits = stimuliGenerator’ clk z 8

where 9

z = $(do a <- qRunIO (readFile "sb_vec.txt") 10

let x = P.map read (lines a) :: [Int] 11

y = P.map fromIntegral x :: [Signed 4] 12

v y) 13

testValidBits = stimuliGenerator’ clk (repeat True :: Vec 100 Bool) 14

testClear = stimuliGenerator’ clk (repeat False :: Vec 100 Bool) 15

testFlush = stimuliGenerator’ clk (repeat False :: Vec 100 Bool) 16

testPreselect = stimuliGenerator’ clk (repeat 0 :: Vec 100 (BitVector 3)) 17
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expectedOutput :: (Signal’ ClkSys (Bit, Bool, Bool, BitVector 20)) 18

-> Signal’ ClkSys Bool 19

expectedOutput (output) = expected_dOut 20

where 21

unbundled_output = unbundle’ clk output 22

dOut = (\(x,_,_,_) -> x) unbundled_output 23

validB = (\(_,x,_,_) -> x) unbundled_output 24

enckDiv = (\(_,_,x,_) -> x) unbundled_output 25

stateRegDOut = (\(_,_,_,x) -> x) unbundled_output 26

expected_dOut = outputVerifier’ clk z dOut 27

where 28

z = encoder_input_bits 29

30

encoder_input_bits = $(v [...]) 31
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Appendix C

Encoder Perl script

#!/usr/bin/perl -w 1

2

use strict; 3

use warnings; 4

use Getopt::Long qw(GetOptions); 5

use Switch; 6

7

sub check_arguments; 8

my $current_state = 0; 9

my @encInp; 10

my @encOut; 11

my $argument; 12

my $random = 0; 13

14

check_arguments(); 15
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for (my $i = 0; $i < scalar(@encInp); $i++){ 16

my $inp = $encInp[$i]; 17

18

switch($current_state){ 19

case 0 {if ($inp == 0) {$current_state = 0; push @encOut, "00";} 20

else {$current_state = 4; push @encOut, "11";}} 21

case 1 {if ($inp == 0) {$current_state = 0; push @encOut, "11";} 22

else {$current_state = 4; push @encOut, "00";}} 23

case 2 {if ($inp == 0) {$current_state = 1; push @encOut, "11";} 24

else {$current_state = 5; push @encOut, "00";}} 25

case 3 {if ($inp == 0) {$current_state = 1; push @encOut, "00";} 26

else {$current_state = 5; push @encOut, "11";}} 27

case 4 {if ($inp == 0) {$current_state = 2; push @encOut, "10";} 28

else {$current_state = 6; push @encOut, "01";}} 29

case 5 {if ($inp == 0) {$current_state = 2; push @encOut, "01";} 30

else {$current_state = 6; push @encOut, "10";}} 31

case 6 {if ($inp == 0) {$current_state = 3; push @encOut, "01";} 32

else {$current_state = 7; push @encOut, "10";}} 33

case 7 {if ($inp == 0) {$current_state = 3; push @encOut, "10";} 34

else {$current_state = 7; push @encOut, "01";}} 35

} 36

} 37

print "Encoder Input: ", @encInp, "\n"; 38

print "Encoder Output: ", @encOut, "\n"; 39

my @encOutSB; 40

41

if ($random){ 42

for (my $i = 0; $i < scalar(@encOut); $i++){ 43

my $sb1 = int(rand(8)); 44

my $sb2 = int(rand(8)); 45

if ($encOut[$i] eq "00"){ 46

push @encOutSB, "-$sb1"; 47

push @encOutSB, "-$sb2"; 48

} 49

if ($encOut[$i] eq "11"){ 50

push @encOutSB, "$sb1"; 51

push @encOutSB, "$sb2"; 52

} 53

if ($encOut[$i] eq "01"){ 54

push @encOutSB, "-$sb1"; 55

push @encOutSB, "$sb2"; 56

} 57

if ($encOut[$i] eq "10"){ 58

push @encOutSB, "$sb1"; 59

push @encOutSB, "-$sb2"; 60

} 61

} 62

} 63
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else{ 64

for (my $i = 0; $i < scalar(@encOut); $i++){ 65

if ($encOut[$i] eq "00"){ 66

push @encOutSB, "-8"; 67

push @encOutSB, "-8"; 68

} 69

if ($encOut[$i] eq "11"){ 70

push @encOutSB, "7"; 71

push @encOutSB, "7"; 72

} 73

if ($encOut[$i] eq "01"){ 74

push @encOutSB, "-8"; 75

push @encOutSB, "7"; 76

} 77

if ($encOut[$i] eq "10"){ 78

push @encOutSB, "7"; 79

push @encOutSB, "-8"; 80

} 81

} 82

} 83

84

open my $fh, ’>’, "sb_vec.txt" or die "Cannot open sb_vec.txt: $!"; 85

86

foreach (@encOutSB) 87

{ 88

print $fh "$_\n"; 89

} 90

91

######################## CHECK ARGUMENTS ########################### 92

sub check_arguments(){ 93

GetOptions( 94

’input|i=s’ => \$argument, 95

’random|r’ => \$random 96

)or die "Invalid argument.\n"; 97

98

if ($argument){ 99

@encInp = split //, $argument; 100

} 101

} 102
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