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Summary and Conclusions

Recent development of 3D scanners have provided small, precise and cheap consumer grade

scanners operating in real-time. Especially because of their low weight, they are being consid-

ered for usage in visual servoing (vision aided robot control). These 3D scanners take images

that are represented as an unstructured list of points represented by their position in 3D space

and color called point clouds. The goal of this project has been to perform real-time point cloud

registration using Graphics Processing Unit (GPU) acceleration (Registration is the task of align-

ing separate 3D scans into a single point cloud that minimize the distance between common

features in the point clouds) for a camera mounted in an eye-in-hand configuration to perform

scans of food and food-like objects. This is different from a lot of previous work that look at

room scale scans.

This thesis is based on state of the art algorithms for GPU accelerated point to point based

registration and extended this with a point to plane linear least squares optimizer, which is one

of the novel contributions of this thesis. This also involved an implementation of a kD-tree

search algorithm on the GPU. The point-to-plane optimizer is compared to a recent grid based

registration algorithm that is also extended with a pre-search strategy and a multi-resolution

search. In this project, a new point correspondence rejector based on a boundary rejection

strategy that improves registration quality was evaluated, showing that it could greatly improve

registration quality. Apart from the specific implementations, one of the main contributions

of this master thesis is the use of a Relative Pose Error (RPE) based error metric to evaluate

algorithms that are conceptually different.

Both performance and registration correctness has been evaluated for the GPU implementa-

tions of the 3D registration methods in this thesis, showing that real-time point to point based

registration is possible for high resolution point clouds without noticeable loss of registration

correctness. The GPU implementations performed are 33 times faster than similar CPU imple-

mentations and 8 times faster than the PCL-based CPU implementations. The point to plane

linear least squares optimizer was proven to perform well both performance wise and correct-

ness wise. The grid based search with its suggested improvements was observed to be fast, but

didn’t match the quality of the point to point based algorithms on the GPU. The algorithm cor-

rectness was evaluated using a reference trajectory generated with the robot arm. The point to

point distance evaluation strategy that is typically used when evaluating registration algorithms

is in this work shown to be insufficient to compare different algorithms to each other, in which

the reference path strategy is an external evaluation that is shown to be an efficient metric when

comparing different algorithms to each other. The 3D registration methods and implementa-

tions used in this thesis are evaluated against a number of rigid and non-rigid properties varying
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textural and optical properties (the desired application for the project is to be used with com-

pliant objects and food objects).
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CHAPTER 1

Introduction

This section will describe the background for the project as well as the problem formulation this

master thesis is based on. This master thesis is a continuation of the autumn project conducted

at NTNU fall 2017 (Isachsen (2017); IDI (2018)). The pre project was about evaluation of some

ICP based registration algorithms, while this master thesis is based on those results to perform

GPU implementation of a few registration algorithms to obtain real-time registration. Since this

MSc thesis is a natucal continuation of the pre-project, certain parts of the text is taken from

the pre-project (Isachsen (2017)) (section 1.4 contains a list of the sections that is taken from the

pre-project).

1.1 Background and motivation

The IProcess project (www.iprocessproject.com) is a research project headed by Sintef-Ocean

(2018). The aim of the IProcess project is to develop novel concepts for flexible robot based au-

tomation in the food processing industry. One part of this project is the WP3 research (Sintef

Ocean (2018)). The goal of WP3 is to develop vision guided and machine learning based robot

manipulation of compliant food objects. This involves developing a grasping concept that can

find suitable grasping poses for a robot arm gripper. In order to do this, the robot arm is given

point clouds obtained from an RGB-D camera mounted on the arm itself (eye-in-hand configu-

ration).

As the robot arm moves, the RGB-D camera will obtain scans of the object from different robot

arm poses. This thesis will explore the registration step, which is about merging the different

3
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scans obtained into one model which represents the model and/or the environment. The goal

of the project is to evaluate different variations of registration algorithms implemented on the

graphics processing unit and evaluate the possibility of doing registration in real-time.

The WP3 research have multiple subtasks which rely on obtaining good 3D-registrations. Hav-

ing a good point cloud registration will first of all enable 3D model construction of arbitrary ob-

jects. The meshes obtained from 3D model construction can then be used further to for exam-

ple perform tracking of the objects while they are deformed or changed (as described in section

1.2.1). However, for 3D model construction, real-time registration is only convenient but not

required. Other related tasks are related to object reconstruction such as next-best-view esti-

mation. This task is about finding the next view a camera should have of an object to minimize

occlusion. In this task, it is very beneficial to have fast feedback from a registration algorithm,

such that it can quickly find a trajectory that efficiently scans the entire object. In this case, it

is especially to have a real-time registration to help the robot make decisions on the fly. Other

task might include robot grasping. In this case, the robot is presented with an object and should

determine how the object should be grasped and handled. In this case, a fast registration algo-

rithm is beneficial to give the robot a more complete 3D view of the object and quickly make a

decision regarding grasping and handling.

1.2 Problem Formulation

This section will first discuss why real-time point cloud registration is a problem and why this is

important before it gives a clear problem formulation.

1.2.1 Real-time point cloud registration

Food objects issue some challenges in robotics for some of the following reasons:

• They might be soft, and change shape when interacted with.

• Items differ in color, shape and size.

• The robot might perform actions which can significantly change the properties of the ob-

ject (for example cutting).

As well as facing these challenges, the robot should also be able to process information and

perform it’s tasks efficiently.
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As food objects have individual variations in shape, color and size, a general registration algo-

rithm should be considered. This is because the prior knowledge of the individual objects are

more limited compared to other industrial applications which have more similar objects. As the

robot is supposed to operate efficiently, it is important that it scans the object in an efficient

manner. This is where the importance of real-time registration comes in. If the registration is

real-time, the processing time itself is reduced as well as it can enable the robot to quickly eval-

uate next best view, which is the next position the robot should move to in order to obtain an

optimal view of the entire object. One way to obtain faster registration time is to perform point

cloud simplifications such as voxelization and downsampling. However, some of the actions the

robot perform might require high accuracy and tracking of certain features as it performs the

action (for example cutting). For these kind of tasks, a high resolution description of the point

cloud might be required. This will make point cloud simplifications a less attractive option as

the maximum resolution might beneficial.

With both real-time requirements and full-resolution point-clouds, powerful hardware is re-

quired. In order to have less compromises on the resolution and registration time, Graphics

Processing Units (GPUs) are used in the implementation of the registration. The Point Cloud

Library (PCL) will be used for the project (Point Cloud Library (2017); Rusu and Cousins (2011)).

While there exists one GPU-based implementation of registration in PCL (Kinfu (Pirovano et al.

(2013))), it is highly dependent on voxelization. The processing pipeline is also quite interwoven

compared to the otherwise modular design of PCL. This motivates that some other GPU based

approaches of registration could be implemented into PCL (a voxelization strategy is evaluated

in this report to give a comparison betweeen the two approaches).

1.2.2 Problem formulation

The main goal of the master thesis is to evaluate state-of-the-art registration algorithms and

implement the most optimal and relevant ones on the GPU. The optimality and relevance is

based on the interoperability with existing libraries (PCL), performance, registration quality,

stability and generality (having few requirements about the point dataset). The implementa-

tions support the Point Cloud Library in such a way that it can be used in a similar way as other

subsystems in the Point Cloud Library.

An Intel RealSense SR300 camera and an Intel RealSense D435 camera is provided as 3D scan-

ners for the project (Intel (2018b,c)). These cameras are relatively cheap considering relatively

good image quality (both RGB and depth), small size and low weight. This makes it a good

choice for eye-in-hand configuration.
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Franka is the robot arm that is provided with the project (Franka (2017)). The Franka robot is

a relatively cheap robot-arm that can be controlled through a C++ library. One of the main ad-

vantages of the robot is the 7 joints that all have force-torque control. While the thesis includes

implementations for controlling the robot, this is not the main focus of the project.

Given the goal above, the project was set with the following objectives

1. Implement robot control software that is able to follow certain trajectories while capturing

depth and RGB images with the Intel RealSense SR300 or D435 camera.

2. Create benchmark tests. These should be based on relevant scans of objects and realistic

scan trajectories of the robot.

3. Implementations of registration algorithms

(a) Implement a brute-force point correspondence estimation version of the Iterative

closest point (ICP) algorithm on CPU.

(b) Implement a brute-force point correspondence estimation version of the ICP algo-

rithm on GPU.

(c) Implement a kD-tree based point correspondence estimation version of the ICP al-

gorithm on CPU.

(d) Implement a kD-tree based point correspondence estimation version of the ICP al-

gorithm on CPU.

(e) Implement a kD-tree based point correspondence estimation version of the ICP al-

gorithm on GPU.

(f) Implement a Voxelization based point correspondence estimation version of the ICP

algorithm on CPU. This is mainly for comparison with the GPU implementation.

(g) Implement a Voxelization based point correspondence estimation version of the ICP

algorithm on GPU.

4. Evaluation, the evaluation will be a comparison of the implemented algorithms as well as

some implementations already implemented in PCL.

1.3 Problem solution

Based on the problem formulation described in section 1.2.2, the work done in this thesis can

be divided into two major tasks. The first task is about obtaining relevant 3D data to perform

registration on. The second task is to do implementations of the algorithms described in section
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1.2.2 (Brute force search, kD-tree search and voxelized search strategies for both CPU and GPU).

The first task was solved by implementing a robot control program that moves the robot to user

specified waypoints. This is further described in section 4.1. An Intel RealSense SR300 camera is

mounted on the hand of the robot arm, and while the robot is moving between the waypoints,

the camera captures depth frames to a custom file format as well as RGB-images. This is further

described in section 4.2.

As for the second major task, the algorithms described in section 1.2.2 were implemented.

This is done through command-line based framework that reads the data generated from the

camera mounted on the robot arm, and performs registration based on multiple parameters

that can be specified. Through this framework, it is possible to select a variety of ICP-based

registration algorithms, including the algorithms mentioned in section 1.2.2. This is a powerful

tool that enables parameter testing and evaluation of the registration algorithms.

The kD-tree based implementation is able to perform registrations in real-time under real-

istic circumstances. This algorithm can shortly be summarized as a standard kD-tree search

algorithm with a fixed stack size. This enables the GPU perform recursion like behaviour, with

some limitations. If this fixed stack size is smaller than the tree-depth, the nearest neighbour

search performed on the kD-tree will be an approximation. This approximation have never

been evaluated for the task of registration. This implementation is explained further in section

4.4.4.

The suggested voxelized registration method is an implementation of a O(N) search algorithm

based the work done by Marden and Guivant (2012) (where N is the size of the point cloud that

is to be aligned). This project contains a version of this algorithm implemented on the GPU. To

avoid relying on the requirement of a close initial alignment in the algorithm presented by Mar-

den and Guivant, additional suggested improvements are implemented. The first extension is to

change the voxel size between the individual iterations of the iterative closest point algorithm,

and the other suggestion is to perform a pre-search in the voxel grid to enable the closest point

operator to look further than the algorithm presented by Marden an Guivant. The suggested

algorithm is further explained in section 4.4.6.

The Franka robot provides precise pose estimations of the robot arm position. This enables

comparison of the estimated poses obtained from the registration with the reference trajectory

of the robot. This is the most important measure used in this project for evaluation of the cor-

rectness of the registrations. The other important measure is the performance of the algorithms,

which is measured as the time it takes to align two point clouds, where the sizes and other prop-

erties of the point clouds are varied. This is further explained in section 5.1.3.
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1.4 Structure of the Report

While this section has presented the problem setting for the task, section 2 will focus on the

theoretical background for point cloud registration. Section 3 will look at similar work that looks

at similar problems from different angles, which serves as an inspiration for the work in this MSc

thesis. Further, section 4 will describe the implementations done for this project, and section 5.1

will focus on the experimental setup done to evaluate and compare the implemented algorithms

and library implementations in PCL. Section 6 shows the results from these experiments and

section 7 will give an evaluation and discussion of the presented results. Finally section 8.1 will

summarize the results and conclude the findings from the experiments. Section 8.2 will be about

suggested work that can extend on the work that is done here.

As this project is an extension of the pre-project, some of the text have been taken from the

project (Isachsen (2017)). In the background section, sections 2.1 (the part about the SR300

camera), 2.1.1, 2.1.2, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 and 2.10 (except the part about the point to plane

linear least squares optimizer chapter) are taken from the pre-project. In the related work sec-

tion, sections 3.1. In the Implementations section, section 4.3 is extended from the pre-project.

Section 1.1 is also somewhat extended from the pre-project. Note that a few modifications have

been done and that many of the figures are created for this document and doesn’t exist in the

pre-project report.



CHAPTER 2

Background

This chapter will go through the theory that is the foundation for doing point cloud registration.

The first sections are about 3D sensors. The following sections are about foundations in point

cloud processing in general. The section ends with a summary of the ICP algorithm.

2.1 RGB-D cameras

The issue of getting 3D data is an important one regarding robotics. Example of 3D sensors are

stereo cameras, LIDAR (Light Detection and Ranging), 3D cameras, etc. 3D cameras (RGB-D) are

a great compromise between a LIDAR and a stereo camera. Stereo cameras have the problem

of determining the distance to featureless surfaces, while the LIDAR is very large and expensive.

An RGB-D camera is relatively small and cheap, while giving relative good 3D data. This project

is based around using the Intel RealSense SR300 camera and the Intel RealSense D435 to some

extent.

2.1.1 RGB-D sensors

There are many existing RGB-D sensors. One such example is the Intel RealSense camera

seen in figure 2.1 (Intel (2018b)). The Microsoft Kinect and ASUS Xiton Pro are examples of

similar cameras (Microsoft developer (2018); ASUS (2018)). Another more expensive alternative

is the Zivid camera (Zivid labs (2018)). These cameras work in a similar way using a technique

called structured light 3D scanning (Intel® RealSense™ (2016); Pirovano et al. (2013); Zivid labs

(2016)).

9
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(a) Intel RealSense SR300 (b) Intel RealSense D435

Figure 2.1: Figure showing an image of the Intel RealSense SR300 camera (a) taken from the web
(Intel (2017)). (b) is showing an image of the Intel RealSense D435 camera taken from the web
(Intel (2018c)).

Figure 2.2 shows the internals of a structured light 3D scanner, here represented by a Re-

alSense SR300. The most important components in regards of this chapter is the IR laser pro-

jector, the IR camera and the Color camera. The IR laser projector projects a laser pattern into

the world in the infrared spectrum. This pattern is known to the system, and is captured by the

IR camera. Because this pattern is known, it’s possible to quantify the distortions in space and

calculate the depth of each pixel from that. The color camera is applied on top of the depth

image in order to get an RGB-D image consisting of pixels with a known color and the distance

to the camera (Intel® RealSense™ (2016)).

The Intel RealSense SR300 camera uses the projector to illuminate the scene using multiple

vertical bar patterns with increasing spatial frequency to both get near and far objects. An ex-

ample of one such pattern is shown in figure 2.3. One problem with structured light scanners

is that they are dependent on the reflective properties of the objects they are scanning. If the

object absorbs the emitted light, it makes it impossible for the camera to deduce the depth data.

Another problem occurs if the objects are reflective. If they have a lot of specular reflection, the

structured light pattern is not visible at that spot, and it can also reflect to other surfaces and

distort the depth data at other positions in the image. This section will not go any further into

how structured light scanning is performed because it’s not the concern of the project. More

details on structured light scanning can be found in Skotheim and Couweleers (2004).

The Intel RealSense D435 is slightly different from the SR300 camera. It uses a fixed dotted

pattern that is projected into the scene Intel® RealSense™ (2018). It uses a stereo camera pair to

match features which in turn is used to deduce the 3D information. This can make this camera

better at reflective and absorbing materials, as it isn’t really dependent on having the projected
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Figure 2.2: Figure showing the main components of the Intel RealSense SR300 camera. The IR
Laser projector projects a pattern into the world which is captured by the IR camera. The depth
image is found by inspecting the distortion of the projected pattern. This is then joined with
the image from the RGB camera. Figure taken from the Intel RealSense SR300 manual (Intel®
RealSense™ (2016))

pattern. The camera is also expected to work better at greater distances than the SR300 camera.

The main issue with this technology is that it might lose some accuracy compared to the SR300

camera.

2.1.2 Alternatives to the Intel RealSense camera

As mentioned in section 2.1.1, there are many alternatives to the RealSense camera. Com-

paring the RealSense to the Kinect, they are both based on the same technology and are in the

same price range. However, the Kinect has a larger blind area in front of the camera compared

to the RealSense Intel (2018b); Microsoft dev Center (2017). It’s also larger and heavier, making

it less practical for an eye-in-hand setup. Another thing to note is that Microsoft is advising to

use the RealSense instead of the Kinect, as they are working with the RealSense team for future

applications Microsoft developer (2018). The Xiton Pro has more or less the same dimensions

and price as the RealSense, but seems to be less popular and unavailable at the moment. It also

has a large blind-area as the Kinect.

The Zivid seems to be a great alternative with great resolution and high quality. However, it’s

expensive, heavy and relatively large in size making it unpractical for usage in a eye-in-hand

configuration (Zivid labs (2018)). Two similar examples is the Artec scanners (Artec3D (2018))

and the Creaform scanners (Creaform (2018)), which is also based on structured light scanning.

They claim that they have resolution of the same scale as the Zivid camera, but has some of the

same drawbacks like price, weight and scale. With all things considered, The Intel RealSense

seems to be the best choice for this application (at least if price is a concern).
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(a) Long exposure time. (b) Short exposure time.

Figure 2.3: Figure showing a pattern emitted by the IR projector of the Intel RealSense SR300
camera. (a) shows a longer exposure time than (b). (b) shows one of the many patterns that are
emitted by the IR projector. Images are taken from a forum post on the Intel forum samotab
(2015). Note that the Intel RealSense D435 camera works differently from the SR300 camera,
and therefore use a different pattern Intel® RealSense™ (2018).

2.2 Point Cloud Library (PCL)

The Point Cloud Library is a large scale open source project for 2D/3D image and point cloud

processing (Point Cloud Library (2017)). PCL is a popular library including libraries supporting

the whole point cloud processing pipeline from input, filtering, registration, output, etc. It is

designed around the principle of modularity, where the different processing stages are loosely

coupled. PCL is written in C++ which is well suited for real-time registration and GPU de-

velopment regarding performance. While development have been slow the last years there is

still active contributions, and has an active forum (Open Perception Foundation (2017b, 2018b,

2017c)). Given the popularity and number of active contributors, PCL seems to be high quality

software that is well maintained. Another advantage of PCL is that it has a relatively good docu-

mentation with examples of common operations done with PCL (Open Perception Foundation

(2017b)). One problem with PCL is that it lacks GPU implementations of some of the modules.

The Kinfu project was a promising extension, but was not entirely integrated into the standard

PCL registration framework, and had a quite specific use case of large scale scene reconstruc-

tion (Pirovano et al. (2013)). This motivates the work done in this thesis as it includes a modular

point to point based solution for registration implemented on the GPU. To summarize, PCL is a

library that seems promising regarding point cloud processing.
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2.3 Point Cloud representation

In terms of the Point Cloud Library (PCL), there are two ways to store point clouds (Open Per-

ception Foundation (2017a)). One is referred to as a organized cloud while the other is referred

to as an unstructured cloud. The structured cloud is dividing the space into some structure,

where the points are placed inside this structure based on one or more rules. An unstructured

point cloud can be considered an array of single points with no overall structure.

2.3.1 2D-grid representation (organized point cloud)

Another way to represent point clouds is to structure them in a 2D grid as they are captured by

the input device (Open Perception Foundation (2017a)). As described in section 2.1.1, the point

clouds are captured as an RGB image with corresponding depth values. The points are ordered

in a 2D grid, where each pixel represents the 3D position of that point after deprojection. In this

way, the point cloud is represented in a compact (dense) way given that it is obtained from a

camera, while still having some structure which can be exploited by algorithms. While avoid-

ing loss of accuracy of the point clouds (compared to voxelized point clouds), the disadvantage

of this representation is that it’s less flexible when adding and removing points. When trans-

forming the cloud, it might lose the validity based on the transform (for non-rigid transforms

for example), but it’s still simple to convert to an unstructured cloud if these operations are re-

quired. In PCL, point clouds can be represented as either a 2D array like described here, or as an

unstructured cloud.

2.3.2 Unstructured cloud

Finally, the unstructured point cloud is simply a list of points without any specified structure

(Open Perception Foundation (2017a)). This is the most general and compact representation

of a point cloud, but because of lacking structure, it usually involves more computations on

multiple algorithms that depend on the relative positions of the individual points.

2.3.3 Voxel representation

One way to structure the point cloud is called voxelization. This involves dividing the 3D space

into cells of a fixed size ordered in a grid structure, which can be stored into a 3D array. One such

cell is called a voxel. A voxel is either empty or is filled with a value. For colored point clouds,

a voxel can consists of values representing the color (for example RGB values). Voxelized point

clouds can be considered as an image in 3D space instead of 2D. Voxelization is a method that

is frequently used when constructing objects and scenes with examples like Kinfu and Kinect

fusion (Newcombe et al. (2011); Pirovano et al. (2013)). They are especially useful when doing
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operations like ray-tracing, which is about finding where a line intersects the surface of some

object (or similar). The disadvantage of voxel represented point clouds is that they might con-

tain a lot of redundant information. Depending on the scene, most voxels are empty as standard

3D cameras capture surfaces and not volumes. Figure 2.4 shows a visualization of a vozelized

space.

Figure 2.4: Figure showing how 3D space can be divided into voxels. Figure is taken from
wikipedia (Wikipedia (2017))

2.4 Downsampling

Given the computation time required by of some of the PCL algorithms, certain algorithms

would require downsampling in order to meet real-time constraints. While this project aims

at avoiding downsampling, it’s still a common technique to use. Downsampling can be done in

multiple ways. One example of downsampling is to reduce the resolution of the input images

obtained from the camera using standard image downsampling techniques. Another technique

is to use a voxel grid filter (Open Perception Foundation (2017b)). A voxel grid filter starts by

dividing the space into equally sized quadratic cells stacked tightly in a grid. Points are mapped

to their closest voxel, and if multiple points are mapped to the same voxel, all those points are

replaced by their centroid. An example of voxel grid downsampling can be seen in figure 2.5.

See section 2.5.2 for a definition of a centroid. Note that this technique differs from voxel point

cloud representation because it doesn’t change the representation of the point clouds (they can

still be organized or unorganized). The voxelization is an intermediate step to reduce the num-

ber of points.
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(a) Full resolution banana (b) Downsampled banana

Figure 2.5: Figure (a) is showing the full resolution point cloud, while (b) is showing the exact
same point cloud after a voxel-grid filter is applied. The resolution is clearly reduced. The figure
show that (b) has fewer point than (a), but the main characteristics of the object is still main-
tained.

2.5 Normal calculations

A normal vector is a vector whose direction perpendicular to a surface. Since point clouds

don’t contain a surface in itself, the normals are calculated assuming there is a surface related

to the points. Usually, this involves looking at the neighbours of the individual points and as-

sume that they are part of the same surface. This assumption is usually valid when working

with 3D scans, as the scanners only scan the surface of objects. This also introduces the no-

tion of neighbourhoods. Rusu (2009) categorized neighbourhoods either as a radius search or

a k-nearest search. In the radius search, all neighbours are considered neighbours if they are

within a radius r of the point of interest. In the k-nearest neighbourhood, the k-nearest points

are considered part of the neighbourhood. Rusu concludes that which metric to use and values

for r and k depends on the application.

The normals in a point cloud can be viewed as a higher level feature in point cloud than the in-

dividual points as it also involves the the context of those points. Normal estimation can be done

in multiple ways as there is no perfect way to determine a surface when the data only consists

of independent points. A comparison of multiple normal estimators was done by Klaas Klas-

ing (2009). This project however, will focus on the method used in PCL which is summarized
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by Rusu (2009). Figure 2.6 shows how the normals are computed for a 2D case. The method is

similar to the 3D case.

2.5.1 Problem formulation

One simple way of calculating the normal of a point is to consider it’s neighbourhood and fit

a plane through this neighbourhood (J. Berkmann (1994)). The plane is described by a point x

and a normal vector ~n. The goal is to define a plane that minimizes the distance to the plane of

all the points in the neighbourhood. The distance from a point to a plane can be described as

di = (pi −x) ·~n

where di is the distance between point pi and plane described by point x and normal vector ~n.

2.5.2 Solving the normal vector

The point x can be calculated as the centroid of the neighbourhood around the point of interest:

x = p̄ = 1

k

k∑
i=1

pi

where k is the number of points in the neighbourhood of the point of interest, and pi is point

i in the same neighbourhood. Further, the normal of this plane can be calculated from the

covariance matrix of the neighbourhood

C = 1

k

k∑
i=0

wi · (pi − p̄) · (pi − p̄)T

where k is the number of neighbours and wi is the weight of point pi , but is usually just set

to 1.

The eigenvalues and eigenvectors of the covariance matrix form an orthogonal frame. The

eigenvalues λ can be interpreted as the significance of the eigenvectors. This means that the

eigenvector with the largest corresponding eigenvalue represents the direction with the largest

variance when they are found from the covariance matrix. By taking the eigenvector of the

smallest λ, we are selecting the unit direction in which the variance of the points are minimized.

Given that the points are placed on a plane, this will also represent the normal of the plane that

minimizes the distance of the neighbourhood points to the plane.
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The eigenvectors are defined as

C · ~v j =λ j · ~v j ∈ 0,1,2

By letting 0 ≤ λ0 ≤ λ1 ≤ λ2, and ~v0 be the corresponding eigenvector to λ0, ~v0 is the estimated

normal of the plane, which is the estimated normal of the point of interest.

2.5.3 Getting the correct orientation

Solving the eigenvector problem doesn’t necessary give the correct orientation of the normal

vectors relative to each other or to the camera. Rusu (2009) discuss some methods for this,

which will be summarized here. If the wanted viewpoint wp is known, the following condition

is what is required of the sign of the normal vector:

~ni · (vp −pi ) > 0

If this condition is wrong, one can simply flip the sign of the normal vector. If the viewpoint

is not known, the problem is slightly harder. Hoppe et al. (1992) suggested a solution to this

which involves transforming a point cloud to a graph problem where each point is represented

as a node with edges to all other nodes. Edge weights are set as the euclidian distance between

the two points. The algorithm will construct a spanning tree from this graph. It will start with

a point in the graph which has a known true normal orientation or is randomly chosen if no

such point is known. It will traverse the graph from this point, and flip neighbours based on the

following rule

~ni · ~n j < 0 ⇒ ~n j =−~n j

Here, ~ni is the normal of the point with a known orientation and ~n j is the unknown point. After

a point is evaluated, it can be considered to have a known orientation and the algorithm can

continue.

While this algorithm shows a way to flip wrongly oriented normals, it’s still quite computa-

tionally heavy, and often it gives just as good results just setting a viewpoint somewhere (Rusu

(2009)). When using a 3D scanner, the viewpoint of the camera relative to the point cloud is

known. When applying the registration step (section 2.10.1), this viewpoint can be transformed

to it’s position relative to the result point cloud. This is done by applying the same transforma-

tion found in the registration step used to transform the point cloud.
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(a) Neighbourhood search (b) Eigenvectors (c) Normal of point

Figure 2.6: Figure showing how the normals of a points is computed in 2D. The method is similar
for 3D. (a) shows the point, whose normals is to be computed marked as a gray point. (b) show
a representation of the eigenvectors computed for the neighbourhood found in (a). Finally (c)
show that the normal is found as the least least significant eigenvector, representing the axis of
least variance.

2.6 Segmentation

Segmentation is the task of separating the point cloud into different categories based on charac-

teristics of the data. Rusu (2009) mentions two main categories of segmentation that is relevant

for point cloud data. The first category is about fitting simplified geometric models, while the

other is about clustering in general.

2.6.1 Geometric model fitting

Fitting the point cloud to some simple geometric model is one way of segmenting the data. In

geometric model fitting, the input is a point cloud and a geometrical shape. The goal is to find a

set of points as large as possible that fit the geometrical shape based on some error metric and

a threshold on the error. One way of finding a set of points is the RAndom SAmple Consensus

(RANSAC) algorithm introduced by Fischler and Bolles (1981) The algorithm is described below

using a plane model in the next paragraph as done by Rusu (2009). The method can easily be

extended to other models as well, but for this Project, only the plane model is used. Figure 2.7

shows the RANSAC algorithm applied on 2D spatial data. The concepts are the same for the 3D

case.

RANSAC applied on a point cloud to find the best-fitting plane can be described with the

following steps:
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(a) First iteration with 3 inliers. (b) Second iteration with 10 inliers.

Figure 2.7: Figure showing the RANSAC algorithm for plane fitting performed in a 2D case with
two iterations. (a) shows the first iteration where two random points have been selected to de-
scribe a line, and 3 points are within the threshold (SAC threshold). (b) shows the second itera-
tion where a different point pair has been selected to describe the line. In the second iteration
10 inliers are found, so this is kept as the current best line. The steps are similar for the 3D case,
where the line is replaced with a plane. This also involves using 3 random points to describe the
plane instead of the two required for a line.

1. Randomly select three non-collinear unique points from the point cloud. In other words,

they should not lay on the same line or be the same points in any way. Given another

model to fit, fewer or more points might be required.

2. Solve the model’s equation based on the three points. For a plane this is ax+by+cz+d = 0.

This model must obviously be replaced if using another model than a plane.

3. Calculate the distance from all points in the point cloud to the model found in the previous

step. For the plane model, this is just the euclidean distance from each point to the closest

point on the plane.

4. Count the number of points whose distance is less than a user specified threshold.

This process is repeated k times, where the best model is kept and returned as the best fitting

model. k can be chosen as an arbitrary number or based on some probability of selecting the

best fitting model. The following equation can be used for just that (Fischler and Bolles (1981))

1−p = (1− (1−ε)s)k ⇒ k = log(1−p)

log(1− (1−ε)s)

ε is the probability of choosing a sample that produces a bad estimate. s is the number of

good samples that is desirable to have, p is the desired probability of success. For the plane

model, s = 3 as it’s required to pick three points to solve the plane equation. ε is the probability

that a randomly picked point belongs to the actual object (for example, if half the model consists
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of a plane: ε= 0.5). It therefore depends on the scan application. However, for a scan of objects

laying on a table, there is a high probability that a point belongs to the table, which means that

it’s not required to have a too large k to segment the table surface.

Rusu (2009) extends the model fitting method for general object as well, and can be used to

segment objects of interest given that the model definition is known. However, given that the

application of this project is to be used in the food processing industry, objects are unlikely to

be similar, and segmenting objects based on some reference model will be impossible.

2.6.2 Clustering

The general goal of clustering is to divide a point cloud into smaller parts. This goal is very gen-

eral, and can be achieved in multiple ways. While section 2.6.1 focused on segmenting data to

best fit a mathematical model, this section will focus on object clustering. This means that the

point cloud contains some kind of object structures, while the geometric properties are not nec-

essarily known. The general assumption here is that the objects are spatially separated. Given

that objects are not placed too close to each other, it’s possible to separate the objects because

they have significant gap between each other (Rusu (2009)).

The ”gap” mentioned in the previous paragraph must be defined before proceeding. Though

it can be defined in multiple ways, one simple but efficient way is to define it as the minimum

distance between two or more object point clusters. If the minimum distance between these

object point clusters are above a certain threshold, they are considered separate clusters, but if

it is below this threshold they are considered the same object point cluster.

Rusu (2009) defines an object point cluster in the following way. Oi = pi ∈ P is a distinct point

cluster from O j = p j ∈ P if the following is true

min ||pi −p j ||2 ≥ dth

dth is a user specified distance threshold. This is the minimum allowable distance between

the two point clusters if they should be considered as separate point clouds. P is the point cloud

containing the object clusters if there are any. This must be valid for all pi ∈ Oi and p j ∈ O j if

they are to be considered as separate object point clusters.

Rusu (2009) also suggests an algorithm in order to find clusters such that this property is main-

tained. This algorithm is summarized here and visually shown in figure 2.8 for a 2D case.



2.7. RGB-D IMAGES 21

1. Create a kd-tree representation of the point cloud P . This step is not really required, but

is almost a requirement in order to get acceptable performance. kD-trees are explained in

section 2.9.

2. C ← An emtpy list of clusters,

Q ← A queue of points to be checked.

3. For each point pi ∈ P , do the following steps:

(a) Add pi to Q and mark it as processed.

(b) For every point pi in Q do:

• Search for neighbours P k
i of pi with radius r < dth that have not been processed.

• Add all points in P k
i (which is not marked as processed) into Q. Mark all points

in P k
i as processed.

4. Termination happens when all points pi ∈ P have been evaluated. All points now belong

to at least one of the clusters in C .

Each iteration of step 3 will add the points to an unique cluster. The algorithm described

above will evaluate every point and search for neighbours within a radius. All those points are

considered part of the same cluster as that point. For each of the newly found points, the same

search is performed, possibly adding new points to the cluster. This is repeated until no new

points can be added to the cluster without violating the distance threshold rule. Then this step

is repeated until all points belong to some cluster.

2.7 RGB-D images

An RGB-D image is a 2D array of pixels much like a standard camera. Unlike a normal camera,

each pixel is represented by 4 values instead of 3. In addition to storing the color information as

3 RGB values, it also stores the depth that pixel has relative to the camera. This can be depro-

jected into a scene and produce a point cloud. This chapter will focus on why RGB-D images

are preferred to standard RGB images and depth images without color data. Figure 2.9 shows an

RGB-D image. The depth and color data is separated in the figure, but can easily be combined

on the computer while processing them.

One of the advantages of RGB-D images is that it’s able to combine standard 2D image tech-

niques (which is often used in robotics) with 3D data. Using RGB data is for example very im-

portant when doing visual tracking, which is an important task in robotics. As another example,

Chen et al. (2016) suggested a method combining 3D data and RGB-data to improve 3D object
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(a) Point selection (b) Next point from queue

(c) Find new point and add to new cluster (d) All points are found

Figure 2.8: Figure showing how the clustering method described by Rusu Rusu (2009) for 2D
data. (a) starts with selection of some point and adding neighbours within a certain radius to
the queue. (b) selects the next point from the queue and processes it the same way as for (a).
In (c), the queue is empty and a new unvisited point is selected and processed as (a) and (b)
but with a new cluster index. Finally, (d) shows that all points have been visited and added to a
cluster, making the algorithm terminate. The method is the same for the 3D case.



2.8. GPU PROGRAMMING 23

(a) RGB image (b) Depth image

Figure 2.9: (a) shows the RGB content of a depth image. (b) shows the corresponding depth
image. Red color is closer to the camera while blue color is further. Figure is created using the
rs-capture tool provided with librealsense by Intel (2018a).

detection. At some of the test sets, using RGB data together with depth data gave significant im-

provements compared to using only depth data. It’s also possible to think of applications where

color data is necessary in addition to depth data when certain features are only visible in color.

2.8 GPU programming

This section will briefly introduce the necessary concepts required for GPU computing. The

method outlined here is based on the CUDA programming guide by NVIDIA (2018). This guide

is based on the parallel concepts rather than the actual architecture, though they are related.

This section will use the terminology and concepts used in CUDA because this is the GPU pro-

gramming language used for this project. Other frameworks like OpenCL might have a different

terminology, but the main concepts are almost identical (Karimi et al. (2010)).

2.8.1 Comparing a GPU to a CPU

A graphics processing unit (GPU) is a massively parallel computational unit similar to a cen-

tral processing unit (CPU). GPUs was originally designed to perform highly specialized tasks in

graphics processing, but has in recent years become more general. The main difference is that

GPUs come with a lot more processing cores than a standard CPU, but loses some generality

when doing so. This makes GPUs better suited for algorithms that is computationally intensive

and parallelizable, while the CPU is still better for serialized tasks due to their more advanced

and general processing cores. A simplified comparison of CPU and GPU architecture is shown

in figure 2.10.
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Figure 2.10: Figure showing a simplified architecture of a CPU (left) and a GPU (right) based
on the die area. The figure is showing two architectures with the same die area, where the CPU
typically dedicates more space for advanced control (more advanced instructions) and memory
control (for more advanced memory accesses), while the GPU will dedicate more space to the
arithmetical units. This enables massive parallelism for the GPU, while the CPU is better for
serialized tasks and advanced branching patterns. The figure is taken from NVIDIA (2018).

2.8.2 GPU restrictions

Because of the priorities done on a GPU, there are certain limitations. The first limitations is

that GPU and CPU memory is separated (this is not always the case, but is usually the case for

dedicated graphics cards). This means that data must be transferred between CPU and GPU

memory in order for them to share data. This introduces some overhead, meaning that the

speedup obtained with the GPU might not be beneficial for data intensive applications because

transfer becomes the bottleneck.

Another difference is that the individual cores are not able to execute individual instructions

on the GPU. The programming model is known as single instruction multiple threads (SIMT,

which is similar to single instruction multiple data (SIMD)). A group of threads that are inter-

locked is referred to as a warp in cuda terminology. Each warp typically consists of 32 threads,

which have to operate on the same instruction at any time (they might operate on different

data). The threads can have conditions that disables them (for example in a conditional branch

in the code) temporarily, but must wait for the other threads to continue execution. This concept

is referred to as branch divergence, and is an important consideration when programming the

GPU. The programmer should think of this when programming, such that interlocked threads

work on the same conditional branches when possible.

The Streaming multiprocessor (SM) is the unit that creates, manages and executes the warps.

This can be viewed as a processing core that run multiple threads instead of a single one.
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2.8.3 GPU memory

The memory hierarchy of the GPU is slightly different from that of the CPU. Both architectures

have a main memory (referred to as the global memory on the GPU), while the GPU also has

multiple specialzied caches. These caches must typically be manually managed by the GPU,

while the caches of the CPU is for most practical reasons automatically configured. To obtain

higher bandwidth, many of the GPU memories are banked. This also means that memory align-

ment is important because conflicting accesses (parallel accesses that go into the same bank)

might require to be serialized. The memory is divided into the following stages according to

NVIDIA (2018):

Registers These are the fastest memory available. The most special thing about them is that

they are shared between all the threads, meaning that running fewer threads can enable

more registers to each thread.

Local memory Memory local to an individual thread but is stored in global memory. This

means that it is as slow as global memory, but is aligned in an efficient manner.

Shared memory This is a faster on-chip memory shared between the threads within a block

(block is explained in section 2.8.4).

Constant memory This is a global memory cache but serializes different memory accesses in-

stead of similar ones. This means that all accesses to the same memory address are ob-

tained in one access. If all threads access the same element at a time, constant memory is

a good choice to put this value.

Texture and surface memory A device memory cache that optimizes certain access types that

are typically found when working with textures in graphics. Can be good for 2D and 3D

striding in memory.

The usage of the different memory and memory caches are typically domain specific and

based on a trial-and-error method to improve the memory bandwidth.

2.8.4 Programming concepts

While Streaming Multiprocessors (SMs) and warps are a hardware concepts. In software, the

notion of blocks and threads are more common NVIDIA (2018). A block is a collection of threads.

A thread is an individual execution unit, while a block is a collection of threads. Each block can

consist of threads arranged in a 1D, 2D or 3D structure. Each block can also be arranged in a 1D,

2D or 3D structure. What this means is that each individual thread get their per-block unique

identifier which is organized in an x, y and z index (Based on how many dimensions there are).

The same applies for the block.
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The GPU code is written in functions called kernels. These are functions that each individual

thread will run in parallel. They must be designed such that the scheduler is free to select any or-

der of execution of the threads. Inside the kernel, the x, y, and z indices for both the threads and

block are available. The scheduler organizes these indices when launching the separate blocks

and threads, which is automatically managed. The programmer has to specify how many blocks

and threads are wanted in each dimension such that the scheduler is able to assign indices to

each thread and block.

2.9 kD-Trees

Many registration algorithms and related algorithms are based on neighbourhood searches. Ex-

amples of such is solving normals (section 2.5), clustering (section 2.6.2) and the ICP algorithm

itself (section 2.10.1). A brute force nearest-neighbour search has an asymptotic running time

of O(N M), given two point clouds where N is the number of points in the source cloud and M

is the number of points in the target cloud. N = M in the case of searching through the same

cloud.

kD-trees are binary search trees that can speed up neighbourhood searches. The concept was

introduced by Bentley (Bentley (1975)), but this section will focus on a specialized case only in-

volving spatial points. The idea is that each point has k dimensions, and they are ordered by one

dimension at a time. Each layer in the tree is ordering the points based on a single dimension.

The tree structure is based on that a node has two children, where the value of the left child’s

i ′th dimension is smaller than that of the node itself. The value of the right child’s i ′th dimen-

sion is larger than the node. This is valid for some 0 ≤ i ≤ k − 1. The ordering dimension i is

typically circulated between 0 and k − 1 for each level of the tree. Figure 2.11 shows the most

basic structure of a kD-tree.

2.9.1 Contructing a kD-tree

A kD-tree can be constructed by inserting one point at a time into it. The construction method

described here is based on the method proposed by Bentley Bentley (1975), but has a few simpli-

fications as it only deals with spatial points. Algorithm 1 shows how the kD-tree is constructed.

The expected height of this tree is expected to be O(log(N )), where N is the number of points

inserted. For each insertion, the expected running time is therefore log(N ), meaning that total

kD-tree construction time is expected to be O(N log(N )).
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Figure 2.11: Figure showing the ordering of a kD-tree with 3D spatial points. The figure is show-
ing how the kD-tree is order at one dimension at each level of the tree. The tree guarantees that
all left children are smaller on the dimension of that level, and that the right children are larger
on that dimension. Figure is taken from the pre-project by Isachsen (2017).

Algorithm 1 constructTree

Require: A point list L to create kD-tree from
Require: The current dimension 0 ≤ d ≤ k −1, typically starting at 0

if len(L) = 0 then
return nil

end if
if len(L) = 1 then

return L[0]
end if
i ← median_index(L)
node ← L[i ]
d = ((d +1) mod k)
node.lchild ← constructTree(L[: i ], d)
node.rchild ← constructTree(L[i +1 :])
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2.9.2 kD-tree search

While the method described in section 2.9.1 for kD-tree construction is relatively simple, a good

searcing strategy is slightly harder. The idea is to use the kD-tree structure to limit the search,

such that only a subset of the points need to be visited. The most common way to search a kD-

tree is either to do a radius search or a k-nearest search. The radius search starts with a point p

and a fixed radius r around that point. The search should return all points in the kD-tree within

this radius of the point. The k-nearest search (k is not referring to the number of dimensions

here) is searching the k nearest points of a point p. This is similar to a radius search, where the

radius r starts as infinite and is reduced to the furthest of the currently closest k points. Since

point cloud registration generally uses a k = 1-nearest search, the k-nearest search strategy is

summarized in algorithm 2. Note that the algorithm easily can be extended to a radius search

by fixing the radius r . The listed algorithm is based on a basic kD-tree search algorithm (Fried-

man et al. (1977)). The main difference is that it uses a size-limited stack (the circular stack)

to backtrack the search. It also avoids using the hyper-rectangle bounds and instead compares

the node to the distance of the hyperplane of the current dimension. Figure 2.12 shows how a

kD-tree search is done using an example.

2.9.3 kD-tree Optimizations

The kD-tree described in section 2.9.1 is not necessarily efficient for storage or search. One

important optimization that can be done on kD-trees is called left-balancing. This structure is

shown in figure 2.13. The main idea is that nodes are related to each other by their index in the

tree. The following equation can be used to find the left child of a node

ileftchild = (2 · inode)+1

and the right child can be found using the formula

ileftchild = (2 · inode)+2

. Similarily, the parent node can be found with the formula

ichi l d −1

2

. This structure will have size exponentially in terms of tree depth. Therefore, the depth should

be limited.
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Algorithm 2 Kd-tree search.

Require: A point p to find nearest neighbour of
Require: root, the root of the kD-tree.

d ← 1
s ← Initialize stack
s.push(root)
c ← inf
while s is nonempty do

Skip this node if it is nil
n ← s.pop()
if First discovery of n then

c ← dist(p,n) if dist(p,n) ≤ c
s.push(n)
if p[d ] ≤ n[d ] then

s.push(n.leftchild)
else

s.push(n.rightchild)
end if
d = ((d +1) mod k)

else
if |p[d ]−n[d ]| ≤ c then

if p[d ] ≤ n[d ] then
s.push(n.rightchild)

else
s.push(n.leftchild)

end if
d = ((d +1) mod k)

else
d = ((d −1) mod k) {Assuming mod operator gives positive values}

end if
end if

end while
c is the shortest distance for point p
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 2.12: Figure showing some steps of a k-nearest search using a kD-tree. (a) shows that the
search starts at the root, which is the currently known closest point indicated with the search
radius. The search continues to evaluate the root left child, as the x-dimension value is smaller
than that of the root in (b). Again, the same procedure is applied for (c) in the y-dimension. As
these steps are performed, the current closest point is updated. When going up the tree, the
current best radius has been updated such that a portion of the tree doesn’t have to be searched
in (d). This particular case has 2D data, but the idea is similar for 3D. This figure is copied from
the pre-project by Isachsen (2017)



2.9. KD-TREES 31

(a) kD-tree represented as a tree

(b) kD-tree represented as an array

Figure 2.13: Figure showing a left-balanced kD-tree in (a), and the same tree represented as an
array (b). Each subtree is separated on the median, which enables this dense representation of
the tree. The array structure in (b) is easily stored in computer memory without using pointer
structures and can then easily be transferred to the GPU memory.
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The depth can be minimized by balancing the tree. While constructing the tree, instead of

adding points by the order they are listed, it is possible to partition the tree on the median of

each dimension. The median is inserted as the root of that subtree, meaning that an equal

amount of elements are placed in the left and right subtree of that node. With this optimization,

the tree will at maximum have a size of 2 ·n where n is the number of points in the point cloud.

2.10 Point cloud registration

Point cloud registration is about aligning a measured point cloud to a reference point cloud or

reference model. This section will explain the basics of registration in general and outline some

of the research done in the field. It will also introduce the ICP algorithm suggested by Besl and

McKay (1992).

Point cloud registration have been an active research since the 1990’s and there have been

many suggested algorithms to solve the problem. An early and very popular approach is the ICP

algorithm which works by finding corresponding points between an object model and a mea-

sured point cloud (Besl and McKay (1992)). It does so by regarding the pairs of points from all

points in the measured point cloud to it’s closest point in the model object. Based on these cor-

respondences, it finds a matrix that transform the measured cloud in such a way that it will min-

imize the distance of the correspondences. The algorithm will converge to some local minimum

after applying these two steps iteratively (closest point correspondence and transformation).

The reminder of this document will use the terminology used by Besl and McKay (1992). They

consider registration of two point clouds. One of the point clouds is referred to as the point

shape denoted as P and a model shape denoted as X (in PCL terminology, they are ferred to as

source cloud and target cloud respectively). These clouds are also denoted as a test/data set

and reference shape. Pt and Pm will also be used in this project as test shape and model shape

respectively. The P notation is used to emphasize that the sets are in fact point clouds in this

project (but doesn’t have to be that in the general formulation of the ICP algorithm). The goal

of a registration algorithm is to find a transformation that is applied to Pt such that Pt and Pm

have an overlap that minimizes some error function based on the distance between points in

the two point clouds.

2.10.1 The ICP algorithm

Point cloud registration have been an active research since the 1990’s. The Iterative Closest Point

(ICP) algorithm was first suggested by Besl and McKay (1992). The algorithm works by minimiz-
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ing the squared distance between a registration cloud P and a model cloud X (or Pm). The

following formula is used:

f (~q) = 1

Np

Np∑
i=0

‖~xi −R(~qR )~pi − ~qT ‖ (2.1)

f (~q) is the objetive function to minimize. ~xi is the i’th point in the model set corresponding

to a point ~pi in the measurement point cloud. The correspondence is found using closest point

which will be explained later. R(~qR ) is transformation matrix based on the rotational quaternion

qR and ~qT is a translation vector. The goal is to find R(~qR ) and ~qT that minimizes the objective

function f (~q).

The next equations are some preliminary equations used later to solve the unknowns.

~µp = 1

Np

Np∑
i=0

~pi (2.2)

~µx = 1

Nx

Nx∑
i=0

~px (2.3)

These equations is simply the centroid of the point clouds P and X. By finding the cross-

covariance matrix, it’s possible to determine the transformation that will reduce the error. The

idea is based on the eigenvectors of the cross-covariance matrix. The cross-covariance matrix is

defined by:

Σpx = 1

Np

Np∑
i=0

[(~pi − ~µp )(~xi − ~µx)t ] = 1

Np

Np∑
i=0

[~pi~xi ]− ~µp ~µx
t (2.4)

In order to find a matrix that gives a rotational quaternion as the unit egenvector corre-

sponding to the largest eigenvalue, the following steps are required.

A =Σpx −ΣT
px (2.5)

A is just a intermediate step to compute the column vector from the cyclic components of A.

∆=
[

A23 A31 A12

]T
(2.6)

The final matrix that is used to compute the rotation quaternion is the following 4x4 matrix:

Q(Σpx) =
[

tr (Σpx) ∆T

∆ Σpx +ΣT
px − tr (Σpx)I3

]
(2.7)

I3 is simply a 3x3 identity matrix. tr (a) is the trace of the matrix, which is simply the sum
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along the matrix diagonal. By solving the eigenvectors and eigenvalues of this matrix, it’s possi-

ble to find the rotation quaternion. The rotation quaterion ~qR =
[

q0 q1 q2 q3

]t
is the eigen-

vector corresponding to the largest eigenvalue.

The goal of this derivation was to obtain the optimal rotation of the point cloud. This is ob-

tained from the rotation quaternion ~qR using the following definition

R =


q2

0 +q2
1 −q2

2 −q2
3 2(q1q2 −q0q3) 2(q1q3 +q0q2)

2(q1q2 +q0q3) q2
0 +q2

2 −q2
1 −q2

3 2(q2q3 −q0q1)

2(q1q3 −q0q2) 2(q2q3 +q0q1) q2
0 +q2

3 −q2
1 −q2

2

 (2.8)

Finally the translation component can be found with the following:

~qT = ~µx −R(~qR )~µp (2.9)

The operation that transforms this cloud is denoted as the least squares quaternion opera-

tion and is denoted

(~q ,dms) =Q(P, X ) (2.10)

dms is the mean square point matching error. Before stating the algorithm itself, some words

on closest point estimation is required.

The problem of finding closest points is an involved question Rusinkiewicz and Levoy (2001).

More of this is explained in section 3.1.2, but for now, the method described by Besl and McKay

(1992) will be used. The closest point operator is denoted by C (P, X ) which ends in a new point

set Y . The closest point in X of a point ~p in P is simply the closest euclidean distance:

d(~p, X ) = mi n~x∈X ||~x −~p|| (2.11)

Based on all these definitions, the ICP algorithm itself can be stated. Figure 2.14 shows this

algorithm in a 2D case, which conceptually works the same way as in 3D.

1. Initialize variables. Set P0 = P , q0 =
[

1 0 0 0 0 0 0
]t

and k = 0. qi is just a com-

bined vector where the first 4 components are the rotation quaternion qR and the last

three is the translation component qT .

2. Perform the following steps until convergence. That is when the change of mean square

error dk−dk+1 drops below a threshold τ, or the maximum number of iterations is reached

etc.

(a) Compute the closest points Yk =C (Px , X )
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Figure 2.14: Figure showing the steps of the ICP algorithm in a 2D case. The concept is the
same in the 3D case. The first step is the correspondence estimation indicated by the black
arrows in on the left side. The rotation matrix and translation vector minimizes the error of the
found correspondences. The results is shown in the right of the figure. This is repeated until a
convergence condition is met.

(b) Compute the registration (~qk ,dk ) =Q(P0,Yk )

(c) Apply registration with Pk+1 = ~qk (P0). qk (P ) is just application of the transformation

derived from the translation and rotation quaternion qk on the point cloud P .

(d) Test if the mean square error is below the threshold: dk −dk+1 < τ. If this is the case,

the algorithm terminates.

Besl and McKay (1992) gives a proof that this algorithm is guaranteed to converge. This

proof as well as other parts of the paper is left out here because they are not that relevant for

an implementation of the algorithm. Another large part of the paper involves an analysis of

finding the global minimum as the algorithm tends to get stuck at local minima (Besl and McKay

(1992)). This is usually not part of the basic ICP implementation (as with PCL (Open Perception

Foundation (2017b))). This is because the initial alignment is an important question regarding

the ICP registration, and depending on the application this might be known. Therefore, the

general implementation of ICP in PCL does not perform this extra step to improve probability

of finding the global minimum.

The performance of this algorithm is highly dependent on the individual steps. Most of the

operators used are linear in terms of point cloud size. The exception is the closest point estima-

tion which in the case of closest neighbour search runs in Np Nx in worst case and Np log(Nx) on

average by using a kD-tree as specified in section 2.9. This is without considering the number of

iterations. However, as shown in section 6.4.2, this number is usually low compared to the size

of the point clouds, and convergence is likely within 50 iterations.
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Figure 2.15: Figure showing an accelerated ICP algorithm as suggested by Besl and McKay
(1992). The figure is taken from their paper on the ICP algorithm.

2.10.2 Non linear ICP (accelerated ICP)

As a final comment on the ICP algorithm by Besl and McKay (1992), they suggested an accel-

erated version of the ICP algorithm involving interpolation between consecutive iterations of

the ICP algorithm. Figure 2.15 is taken from Besl and McKay (1992). The figure shows how the

quaternion is interpolated between consecutive iterations to speed up the convergence of the

algorithm.

2.10.3 Using point to plane as transformation minimization

As described in section 3.1, there are many variations of the ICP algorithm, and one such varia-

tion can be obtained by changing the transformation estimation step with a linear least squares

optimization like Chen and Medioni (1992). Previous work by Isachsen (2017) showed that the

linear least squares transformation estimator gave good results. Though section 3.1.5 is about

ICP variations of different transformation estimators, this section will cover the basic mathe-

matical background for transformation estimation using hte linear least squares estimator. This

section is based on the derivation performed by Low (2004).

The main idea of the point to plane linear least squares error metric is that instead of mini-

mizing the distance from point-to-point (like Besl and McKay (1992)), it minimizes the distance

between a point and the tangent plane of the corresponding point. The tangent plane is repre-

sented by the normal vector of that point, which can be found using the technique described in

section 2.5. The optimization becomes the following:
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Mopt = argminQ

∑
i

((M ·pt ,i −pm,i ) ·ni )2 (2.12)

Where Qopt and Q are 4x4 homogeneous matrices that transforms the data cloud to the

model cloud. pt ,i and pc,i is the i ’th point in data cloud and closest point cloud Y (as done

in section 2.10.1). ni is the normal of point pm,i . As mentioned this equation is about finding

the best M such that the distance from pt ,i and the tangent plane of pc,i is minimized.

As the transformations of M are rigid, it can be written as a combination of a translation T

and a rotation R.

R = T ·R (2.13)

T and R are standard matrices used for homogeneous transformations where R is divided

into a rotation done on each axis (α around first axis β around second axis and γ around third

axis).

R = R(α) ·R(β) ·R(γ) (2.14)

As these are quite standard matrices for 3D transformations, I will not describe them further,

but a complete description can be found in Low (2004). As these matrices contain sinusoidals,

they are quite hard to solve. In order to simplify them, an approximation θ ' 0 is used: sinθ ' θ
and cosθ ' 1. Because of these simplifications the rotation matrix can be simplified by the

following when α,β,γ' 0:

R ' R̂ =


1 −γ β 0

γ 1 −α 0

−β α 1 0

0 0 0 1

 (2.15)

Note that this also assumes that multiplications of values ' 0 is approximated to 0. Using

the R̂ matrix, the point to plane distance for a single point can be written extended as a single

expression:
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(Q̂ ·pt ,i −pc,i ) ·ni =

Q̂ ·


pt ,i ,x

pt ,i ,y

pt ,i ,z

1

−


pc,i ,x

pc,i ,y

pc,i ,z

1


 ·


ni ,x

ni ,y

ni ,z

0


= [(ni ,z pt ,i ,y −ni ,y pt ,i ,z)α+ (ni ,x pt ,i ,z −ni ,z pt ,i ,x)β+ (ni ,y pt ,i ,x −ni ,x pt ,i ,y )γ

+ni ,x tx +ni ,y ty +ni ,z tz]

− [
ni ,x pc,i ,x +ni ,y pc,i ,y +ni ,z pc,i ,y −ni ,x pt ,i ,x −ni ,y pt ,i ,y −ni ,z pt ,i ,z

]
(2.16)

Here, the c and t indices are used to indicate which point cloud they belong to. The i is the

point pair index, and x, y, z is the x, y and z components of the points. The notation is the same

as previous equations. The next trick is to arrange all of these expressions into a matrix for each

1 ≤ i ≤ N into a matrix expression (N is number of correspondences):

Ax −b (2.17)

The A, x and b values are taken from the equation and is defined as the following:

b =


n1,x pc,1,x +n1,y pc,1,y +n1,z pc,1,y −n1,x pt ,1,x −n1,y pt ,1,y −n1,z pt ,1,z

n2,x pc,2,x +n2,y pc,2,y +n2,z pc,2,y −n2,x pt ,2,x −n2,y pt ,2,y −n2,z pt ,2,z
...

nN ,x pc,N ,x +nN ,y pc,N ,y +nN ,z pc,N ,y −nN ,x pt ,N ,x −nN ,y pt ,N ,y −nN ,z pt ,N ,z

 (2.18)

x =
(
α β γ tx ty tz

)
(2.19)

and A is defined as:

A =


n1,z pt ,1,y −n1,y pt ,1,z n1,x pt ,1,z −n1,z pt ,1,x n1,y pt ,1,x −n1,x pt ,1,y n1,x n1,y n1,z

n2,z pt ,2,y −n2,y pt ,2,z n2,x pt ,2,z −n2,z pt ,2,x n2,y pt ,2,x −n2,x pt ,2,y n2,x n2,y n2,z
...

nN ,z pt ,N ,y −nN ,y pt ,N ,z nN ,x pt ,N ,z −nN ,z pt ,N ,x nN ,y pt ,N ,x −nN ,x pt ,N ,y nN ,x nN ,y nN ,z


(2.20)

While these matrices might look complicated, they are simply a matrix representation of

equation 2.16. Each of the elements of the A and b matrices are taken from certain parts of

equation 2.16. The advantage of representing the data as equation 2.17 is that Singular value

decomposition can be used to solve the unknowns. This is because
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min
M̂

∑
i

((
M̂ ·pt ,i −pc,i

) ·ni
)2

) = min
x

|Ax −b|2 (2.21)

which again gives the following:

xopt = argminx |Ax −b|2 (2.22)

The last step is now simply to solve this linear least-squares problem. This is done using a

Singular-Value Decomposition (SVD) decomposition on A:

A =UΣV T (2.23)

Where T denotes the transpose. The preudo-inverse of A (A+ = V Σ+U T ) is used to solve

the equation. Σ+ is found by finding the inverse of the non-zero elements of Σ and otherwise

leaving the other elements unchanged. This solves the optimal vector:

xopt = A+b (2.24)

which in turn in inserted into the transformation M = T (tx,opt, ty,opt, tz,opt)·R(αopt,βopt,γopt).

Note that the rotation matrix R is used instead of the approximated R̂. Even with the small angle

approximation in equation 2.15 Low (2004) claims that this method is relatively good even for

angles up to 30 degrees.
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CHAPTER 3

Related Work

While section 2 focused on the mathematical background and the basic formulation of point

cloud registration, this section will focus more on work related to the goal of the project itself.

The first section will be about different variations of the ICP algorithm based on the work done

by Rusinkiewicz and Levoy (2001). Section 3.2 will go through an variation of the ICP algorithm

based voxelization of the point cloud as described by Marden and Guivant (2012). Section will

look at accelerating the nearest neighbour lookup by performing kD-tree search on the GPU.

This is based on work by Qiu et al. (2009).

This section will also briefly discuss the Kinect fusion algorithm in section 3.4 and the Kinfu

algorithm in section 3.5. These are based on work by Newcombe et al. (2011); Pirovano et al.

(2013) respectively. Finally, section 3.7 will briefly discuss alternatives to the ICP algorithm, and

is based on the list given by Magnusson (2013) in his PhD thesis. While these last sections have

less direct relevance for the project, they are either included to give wider view of registration in

general, and to show some thought that are included in this project.

3.1 Variations of the ICP algorithm

This section is based on the paper by Rusinkiewicz and Levoy (2001) called ”Efficient variants of

the ICP algorithm”. The paper divides the ICP algorithm into several stages, each having mul-

tiple variants. This section will follow the same structure as this paper regarding the different

stages and variations provided.

41
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Rusinkiewicz and Levoy (2001) divides the ICP algorithm into the following stages: selec-

tion, matching, weighting, rejecting, assigning error metric and minimizing error metric. The

algorithm performs the steps in that order.

3.1.1 Selection of points

This part is about selection of points in the data cloud (which is aligned with the model cloud).

Besl and McKay (1992) simply use all points in the data cloud. Turk and Levoy (1994) and Ma-

suda (2002) use a subsample of the points. While Masuda use a random subsample that is dif-

ferent for each iteration, Turk et al. use uniform subsampling. Weik (1997) use points with

high intensity gradient based on the luminance of the points, using some color or gray scale

intensity along the depth data from a scanner in order to aid the registration process. Another

approach is to use both data cloud and model cloud in the selection stage, which was suggested

by Guy Godin (1994).

Finally Rusinkiewicz and Levoy (2001) have their own suggested point selection strategy that

is based on selecting points in such a way that the distribution of normals is maximized. This

method is based on the observation that in certain registration tasks, there are small features

that are vital to the registration (like shallow grooves). This technique will try to distribute the

points such that these smaller features have more importance if their normals are significantly

different from the remaining model.

The results from this part is that all methods are equally good on simple point cloud sets,

but the main difference is when the point clouds are featureless surfaces (like planes), except for

a few significant features (like grooves). In this case, the subsampling strategies failed because

they selected to few points in the significant parts of the model. Only the point selection strategy

suggested by Rusinkiewicz and Levoy was able to get convergence on such test sets. Because of

these results, all data cloud points are used for this project, though certain filters of the data

cloud can utilize some of the benefits of the point selection method suggested by Rusinkiewicz

and Levoy.

3.1.2 Matching points

After the points in the data cloud (or both data and model cloud in the case of the suggestion by

Guy Godin (1994)), the ICP algorithms must find corresponding points in the model cloud. The

following list gives a summary of some of the possible point correspondence methods. Some of

them are shown in figure 3.1.

• Use the closest point in the model cloud. This is the method used by Besl and McKay

(1992). See figure 3.1a.
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(a) Closest point (b) Normal shooting (c) Back projection

Figure 3.1: Figure showing examples of different correspondence estimators as summarized by
the work done by Rusinkiewicz and Levoy (2001). (a) shows the closest point estimator, (b)
shows the normal shooting estimator, and (c) shows the point projection estimator. These are
the correspondence evaluators used in this project which is implemented in PCL. Only the clos-
est point correspondence estimator is used for the GPU implementation.

• Normal shooting. From a point in the data cloud, compute the normal and trace this along

it’s direction. Find the intersection point with the destination cloud. This was the method

used by Chen and Medioni (1992). See figure 3.1b.

• Project the point in the source cloud onto the destination cloud from the point of view

of the model cloud’s camera (trace the ray going from the camera of the model cloud’

through the data point cloud source point. Find the point where this ray intersects the

model cloud). This method was used by Blais and D. Levine (1995) and is referred to as

”reversed calibration”. See figure 3.1c.

• Perform a search in the model cloud. Use the projected point as described in the previous

method as a starting point of the search. Use some error metric when performing the

search (for example point to point distance like Benjemaa and Schmitt (1997))

• Guy Godin (1994) also included some compability metrics. The methods described above

must also be validated based on some compability measure. Godin did this based on the

color, but other approaches can be used (Rusinkiewicz and Levoy (2001)).

To summarize the work done by Rusinkiewicz and Levoy (2001), the normal shooting vari-

ants are the fastest converging methods in terms of number of iterations. However, they are un-

able to give convergence for certain types of point clouds, where only the closest point matching
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gives convergence. When considering performance, the projective methods give the fastest con-

vergence when considering the running time. All three are quickly evaluated in this project, but

only the closest point correspondence estimator is used for the GPU implementations.

3.1.3 Weighting of pairs

When the point correspondences are found, it is possible to weight the pairs. Guy Godin (1994)

suggested multiple weighting schemes. The simplest method is to use constant weighting (this

is very common as weighting seems to have less impact on performance than many of the other

measures Rusinkiewicz and Levoy (2001)). Godin suggested a weighting scheme using point

distances and normal compabilites. Point distance weighting can be defined by Weight = 1−
Di st (p1,p2)

Di stmax
, and the normal compability can be defined by Weight = n1 ·n2. Rusinkiewicz and

Levoy also suggests a scheme based on the uncertainty of the surface normals etc. (Rusinkiewicz

and Levoy (2001)).

Rusinkiewicz and Levoy concluded that weighting has little effect on the end results of the

registration. Therefore, weighting is not evaluated or implemented in this project.

3.1.4 Point pairs rejection

There are multiple approaches to doing point pairs rejection. The following list is based on the

work done by Rusinkiewicz and Levoy (2001).

• Reject points that are further apart than a user specified distance.

• Rejection of a certain percentage of the points based on some error metric. Pulli (1999)

rejected the worst 10 % of the points.

• Reject pairs which have a distance larger than some multiple of the standard deviation of

distances. This was suggested by Masuda (2002).

• Reject points that are not consistent with neighbouring points. One such metric as used

by Dorai et al. (1998), is to verify that the difference in distance between two neighbouring

pairs is less than a threshold based on the largest distance of the point pairs.

• Reject pairs that contain points on the boundaries. Given partial overlaps, this metric

makes the non-overlapping regions less significant for the final registration.

The idea behind point pair rejection is that the point clouds usually have partial overlaps. By

setting a rejection criteria, the non-overlapping regions will have less impact on the final regis-

tration. Rusinkiewicz and Levoy (2001) suggested to always use the latter rejection metric. They

also found that rejecting 10 % of the points gave slower convergence speed. Otherwise, there
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was little difference in using point rejection compared to not using it. The box correspondence

rejector described in section 4.5 is based on the suggestion of rejecting boundary points, where

a box is placed around the object such that boundary correspondences are rejected.

3.1.5 Error metric

The most common way to define the error metric is the squared distances of the all point pairs

found in the matching stage. By using this metric, there are multiple ways to estimate the opti-

mal transformation that reduces the error, but the main advantage is that there exists a closed

form solution. The first approach was to use the singular-value decomposition method (SVD)

(Arun et al. (1987)). Horn (1987) introduced the use of orthonormal matrices. Dual quaternions

were introduced by Walker et al. (1991). Another possible improvement is to include color data

into the error metric (Johnson and Hebert (1997)). The final suggestion is slightly different and

was introduced by Chen and Medioni (1992). The idea is to sum the squared distances from the

points in the data point cloud to the plane containing the matching point in the model cloud

that is oriented perpendicular to the destination point. There is no closed for solution to this,

but multiple non-linear methods are possible. This method was proposed by Chen and Medioni

(1992).

In this project however, the the unit quaternion method described by Horn (1987) (which is

the formulation used by Qiu et al. (2009)) is implemented for the GPU. Additionally the point

to plane linear least squares optimization introduced by Low is implemented on the GPU (Low

(2004)) (as described in section 2.10.3). PCL has implementations of the dual quaternion and

SVD approach which is also briefly evaluated.

3.1.6 Minimization

Again, there are multiple alternatives here. However, Rusinkiewicz and Levoy indicates that

multiple of the solutions described are very slow. These involve multiple starting tranformations

(Simon (1996)), stochasic search using simulated annealing (Blais and D. Levine (1995)) and

iterative minimization with randomly selected subsets of points, and then selecting the optimal

result using a robust metric (Masuda (2002)).

Since the methods mentioned above are relatively slow, only two of the methods for finding

a new transformation that minimizes the error metric will be considered. This includes the iter-

ative method used in the standard ICP algorithm by Chen and Medioni (1992); Besl and McKay

(1992). These methods provide a relatively light-weight search strategy while still obtaining con-

vergence within a few iterations (for example 20 iterations for many normal point cloud sets)

(Rusinkiewicz and Levoy (2001)).
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3.2 Voxelized space for approximate nearest neighbours

Section 3.1 focused on the steps in the ICP algorithm, as well as multiple variations of each step.

This section will go through a simplistic point correspondence estimator which is the founda-

tion of the implementation in section 4.4.5 and 4.4.6. This registration algorithm was introduced

by Marden and Guivant (2012).

3.2.1 Description of algorithm

The algorithm is based on the ICP formulation done by Besl and McKay (1992). The main con-

tribution by Marden and Guivant (2012) is the point correspondence estimation based on vox-

elization of the model cloud, instead of the standard closest point estimator. The following steps

are used for correspondence estimation:

• The xmi n , xmax , ymi n , ymax , zmi n and zmax is found by inspecting the target cloud and

finding the min and max values of each dimension.

• Divide the target point cloud space into an uniform voxel space. Each voxel is represented

by the centroid of the points that fall within the voxel’s bounds. This is simply done by

calculating the mean of all points whose dimensions are within the bounds of the voxel.

• Correspondence estimation is done in a similar manner as the voxel space construction.

Each point in the source cloud is matched with the centroid of the voxel which encapsu-

lates the point. The centroid was found in the previous step.

The voxel index (i, j, k) of each point is found using the following equations.

i =
⌊x −xmi n

l

⌋
, j =

⌊ y − ymi n

l

⌋
,k =

⌊z − zmi n

l

⌋
(3.1)

where l is the side lengths of the voxels.

Finally, the voxel’s can be updated with new points with the following equation.

N
′
i j k = Ni j k,exi st i ng +Ni j k,new (3.2)

µi j k = µi j k,exi st i ng Ni j k,exi st i ng +µi j k,new Ni j k,new

Ni j k,exi st i ng +Ni j k,new
(3.3)

where µi j k is the voxel centroid at index i , j ,k and Ni j k is the number of points that are inside

voxel at index i , j ,k. These equations are simply increasing the new point-count inside each

voxel and updating the new centroid by considering the new points as well as the previous ones.
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Summary of algorithm While the results from the work gives some good registrations, they

don’t have an empirical measure to prove that it’s actually better than a PCL implementation

which they compare it with. They show a few examples where they perform better than the PCL

implementation of registration. While it is clear that the performance in improved using this

strategy, they are unable to prove that their approach is better in the general case.

While the suggested approach is unable to fully convince that there is an improvement in

registration quality, it suggests a really simple method with great performance. Given the quick

lookup time, the algorithm might justify running more iterations of the ICP algorithm.

In their future work, they mention that a more robust testing framework could be applied to

the method. Another thing they note is that they require a good initial transformation estima-

tion in order to function. This is also the case for the standard ICP formulation, but is more

extreme in the voxelized case. They also suggest that a GPU implementation can be done. Each

of these points will be more or less investigated in this report. In this MSc thesis, a GPU imple-

mentation of an algorithm very similar to that of Marden and Guivant (2012) is implemented

and evaluated using a reference trajectory comparison, which enables comparison with other

registration algorithms. Additionally, a few extension to the voxelized ICP algorithm is suggested

to lessen the initial alignment requirement by searching on multiple resolutions and performing

a pre-search in the voxelized space.

3.3 kD-tree acceleration on GPU

While voxelization might aid the speed of registration algorithms, it does perform a significant

approximation of the underlying data. This motivates the use of search structures like kD-trees.

Section 2.9 show how kD-trees are constructed and searched. These algorithms are usually not

considered ”GPU-friendly” due to their recursive nature. Still, there is some work that evaluated

the use of GPU for kD-trees and kD-tree like structures that will be investigated in this section.

This is to accelerate the nearest-neighbour lookups which is the most computationally expen-

sive step of the ICP algorithm (Besl and McKay (1992)).

3.3.1 GPU accelerated kD-tree search for registration

Qiu et al. (2009) did a GPU implementation of a kD-tree search algorithm. The main idea is

that the kD-tree is constructed on the CPU and transferred to the GPU where the search itself is

performed. The search algorithm is based on the algorithm proposed by Arya and Mount (1993).
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The algorithm starts with construction of a kD-tree on the CPU in a similar manner as section

2.9.1. The kD-tree is left balanced and stored in a compact format. This is then transferred to

the GPU where the search itself is performed. A flow chart of their system is shown in figure

3.2. The search algorithm works slightly different from the method described in section 2.9.2,

where it instead of using recursion or a stack, they use a dynamic priority queue. The search

starts by searching to the closest leaf node in the tree. On the way down the tree, it evaluates

the distance to the hyper-rectangle of each node it visits. The priority queue is updated with the

node, where the priority is the distance to the hyper-rectangle. When a leaf-node is reached,

it will perform backtracking by extracting the currently closest element in the priority queue.

To make this algorithm more GPU friendly, the priority queue has a fixed size. This makes the

algorithm an approximated closest distance. However, they apply this kD-tree search strategy

to perform the closest point lookup in an ICP algorithm, where they show that this guarantee

is not required. This search algorithm is based on the search algorithm presented by Arya and

Mount (1993).

Other than the correspondence search on the GPU, the algorithm is similar to a standard ICP

algorithm where they use an SVD matrix approach for error minimization (as described in sec-

tion 4.5.2 and section 3.1.5). This project has implemented the unit quaternion approach (as

done by Besl and McKay (1992)) and the point to plane linear least squares approach (as done

by Low (2004)), which differs from the work done by Qiu et al. (2009).

Qiu et al. (2009) claims that their algorithm is 88 times faster than a standard and comparable

CPU implementation. They also use convergence as a way to determine the termination of

the algorithms, and show that even a queue size of 1 will converge to the same minima as a

queue size of up to 10, suggesting that the ICP algorithm is not dependent on having precise

nearest neighbours (the ICP algorithm itself approximates the corresponding points, so this is

more or less expected). The convergence is slightly slower with a queue size of 1, but since the

performance overall is increased, this is not a big problem.

The authors suggest a more fully-fledged registration as future work, as they only focused on

the registration step itself. They also suggested that kD-tree construction might be possible

in the future. Another thing to note is that the dataset they present is slightly different and

limited compared to the eye-in-hand camera configuration used in this project. As this paper

is a few year old, the 3D scanner they use works quite differently from the scanners used with

this project. The correctness comparison is also quite limited when comparing to alternative

algorithms.
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Figure 3.2: Figure shows the data flow of the ICP algorithm implemented by Qiu et al. (2009).
The figure shows where each steps of the ICP algorithm is computed. The figure is copied from
their work (Qiu et al. (2009)). A similar architecture is used in this thesis, shown in figure 4.3.

3.3.2 Other GPU based kD-tree implementations

Multiple other GPU based kD-tree search algorithms have been proposed. One such example is

the work done by Hu et al. (2015) where they performed a kD-tree construction and search on

GPU. The approach they use is based on the suggestions from Qiu et al. (2009), but they don’t

apply the algorithm for registration. The search method is similar to that of Qiu et al. (2009),

which uses a priority queue based kD-tree search.

Zhou did used a surface area heuristic (SAH) kD-tree to perform ray-tracing (Zhou et al.

(2008)). The main contribution is that the kD-tree search is performed without any stack. There

also exist other similar work that use kD-tree searches to speed up certain tasks in graphics

processing.

3.4 Kinect fusion

Another interesting work is the Kinect fusion algorithm. This is a real-time algorithm that en-

ables 3D reconstruction of scenes, while a more conceptual description is given here. The im-

plementation is based on the work by Newcombe et al. (2011). The architecture of the algorithm

is shown in figure 3.3. Before briefly describing each of these steps, the Truncated Signed Dis-

tance Function (TSDF) will be described in section 3.4.1.
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Figure 3.3: Figure showing the steps involved in the Kinect fusion algorithm. Figure is taken
from the Kinect fusion paper by Newcombe et al. (2011).

3.4.1 Truncated Signed Distance Function (TSDF)

Multiple of the steps of the Kinect fusion algorithm is based around the Truncated Signed Dis-

tance Funciton (TSDF) structure. A Signed Distance Function (SDF) is a voxelized structure,

where each voxel contains the signed distance to the nearest surface. Distances behind the sur-

face is considered negative. In the Kinect fusion algorithm, the SDF measures the distance to

the closest surface on a line going through the voxel and the camera. A TSDF is the same as an

SDF, but the SDF is only computed in an interval (−µ,µ), which is the expected measurement

error of the sensor. This saves up a lot of space, as most of the space in a scene can be consid-

ered empty. This is shown in figure 3.4. This volume was the main inspiration for the pre-search

strategy introduced in section 4.4.5

3.4.2 Measurement

This step is capturing depth images from a 3D scanner and performing some initial compu-

tations (Newcombe et al. (2011)). This involves image smoothing and normal computations

which is computed from the pixel neighbours in the raw depth image.

3.4.3 Pose estimation

This is the most interesting step regarding this project. This step is the registration step, where

an ICP algorithm is used to find the transformation of the camera. The ICP version used in

Kinect fusion is using a projective data association algorithm which is based on work by Blais

and D. Levine (1995) and uses a point-to-plane error metric as Chen and Medioni (1992); New-

combe et al. (2011). This requires a good initial alignment, which the authors argue is possible

due to the high frame-rate (the camera is not able to move significantly between each frame).

The Kinect fusion algorithm also applies a multi-resolution registration by downsampling the
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Figure 3.4: Figure showing a TSDF-volume in 2D. Each voxel represents the distance to the sur-
face on a line going through the voxel and the camera. The sign is negative on the ”invisible”
side of the surface. Note that the values are clamped between -1 and 1, which is considered
empty space. This space can be simplified, saving a lot of space compared to an SDF. The figure
is taken from the PCL website (perception foundation (2017)).

input image. The lower resolution image captures coarse camera movements, while the lower

resolutions capture finer camera movements.

3.4.4 Update reconstruction

This step merges the registered image onto the existing TSDF, updating the estimated model

(Newcombe et al. (2011)).

3.4.5 Surface prediction

The final step is the surface prediction step. This step is used to generate an estimated image

that the next input image is aligned to. The ray-tracing is moving in steps of µ (where µ is the

uncertainty of the camera as described in section 3.4.1) and is looking for sign changes in the

TSDF, meaning that the surface is passed. If a sign change is found, a more precise search is

performed in that area to find the voxel that is closest to the sign change.

3.4.6 Summary

The algorithm described is a relatively complicated and interwoven algorithm. Compared to the

registration pipeline found in PCL, the Kinect fusion algorithm has less modularity, where each

stage of the algorithm is heavily dependent on the other stages. The algorithm is also dependent
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of voxelization of the input space. As mentioned in section 1, this should probably be avoided

if possible. The algorithm is not implemented or tested for this project, but the open source

alternative Kinfu (section 3.5) could be a good alternative to evaluate for this project, as it could

give real-time registration (Kinfu was also not implemented or evaluted in this project).

3.5 Kinfu

The Kinfu algorithm is an open-source alternative to the Kinect fusion algorithm (describe in

section 3.4). The algorithm is based on the same architecture and concepts, though some dif-

ferences are present as the Kinfu algorithm tries to use more of the existing GPU functionality

in PCL. Because it is similar to the Kinect fusion algorithm, it has some of the same issues. It

is more like a separate system in the PCL project, and is not based on the standard registration

pipeline found in PCL. Therefore, it lack some of the modularity present in PCL, which in turn

is one of the reasons to use PCL in the first place. A case study by Pirovano et al. (2013) shows

how the Kinfu algorithm works, as well as an implementation of a 3D scanner (not using Kinfu)

which will be explained later in section 3.6.

In Kinfu, a few algorithms have been replaced as it is later integrated into PCL, and want to

utilize some of the built-in functions in PCL (Pirovano et al. (2013)). One difference is that the

Kinfu algorithm uses eigenvalue normal estimation as described in section 2.5, instead of a vec-

tor cross-product between neighbouring pixels in the depth image as done in Kinect fusion.

Rendering is performed using a marching cubes algorithm instead of the ray-casting method

used in Kinect fusion. An additional difference is that the Kinfu algorithm works with any scan-

ner supported in PCL, while Kinect fusion only works with the Microsoft Kinect (though this

would probably be an easy extension for the Kinect fusion algorithm anyway).

3.6 A PCL based 3D scanner

Pirovano et al. (2013) also used PCL to implement a 3D scanner without using the Kinfu library.

The registration framework developed for this project (section 4.3) is based on the method de-

scribed by Pirovano et al. (2013). However, as Pirovano et al. (2013) doesn’t use a GPU imple-

mentation for this, it depends on filtering to reduce the point cloud size. These filters are also

implemented in the registration framework described in section 4.3 because they are generally

usefull when doing object reconstruction and registration. These filters and processing stages

will briefly be described here:
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3.6.1 Voxel grid filter

This voxel grid filter works as described in section 2.4. This is the first step of the 3D scanner

described by Pirovano et al. (2013). This filter can significantly reduce the size of the point cloud

(which will improve performance).

3.6.2 Crop box filter

This is another simple filter that simply keeps the points that are inside the bounds of a box

specified by the user. This is the second step of the scanner described by Pirovano et al. (2013).

3.6.3 Plane model segmentation

This filter removes the most significant plane in the point cloud based on the geometric model

fitting method described in section 2.6.1. This filter improves performance by decreasing num-

ber of points. This could also help the registration if the author is using a transformation esti-

mator that is sensitive to image boundaries, where the registration algorithm will prioritize to

align boundaries of the point clouds instead of the actual objects.

3.6.4 Euclidean cluster

Pirovano et al. (2013) also included an euclidean cluster filter, which is described in section 2.6.2.

After the other filters are applied, there are still some points left that are not part of the point

cloud of interest. These can be removed by an euclidean filter, given that they are significantly

smaller or larger than the object of interest.

3.6.5 Initial alignment

The scanner implemented by Pirovano et al. (2013) is based on using a few scans to align the

model. This required to use some initial alignment algorithm before using the ICP algorithm as

the inital alignment from the previous scan is insufficient. Pirovani used the SAmple Consensus

Initial Alignment (SAC-IA) algorithm to do this with Fast Point Feature Histograms (FPFH) as

feature descriptors for the SAC-IA algorithm. This step is in many cases not required in real-

time registration as using the previous transform is good enough for the initial alignment. After

the initial alignment step, the actual registration is performed with the ICP algorithm, which is

the main focus for this MSc thesis.
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3.7 Other alternatives to ICP

Though the ICP algorithm have become the most dominant approach for point cloud registra-

tion, there are many alternatives to this algorithm. Magnusson (2013) collected a few alterna-

tives to registration in general which will be briefly summarized here.

One class of algorithms are based on the same concepts as the ICP algorithm, where the (It-

erative Dual Correspondence) proposed by Lu and Milios (1994) is one such example. The core

of the algorithm is the same, but it also includes another correspondence point which helps

finding the correct rotation. This extra correspondence point is based on similarity in polar co-

ordinates. Another group of algorithms are based on probability estimates of points r regions

of the point cloud. The pIC algorithm proposed by Montesano et al. (2005) is similar to the ICP

algorithm, but is based around uncertainty of initial pose estimate and scanner noise. Similar-

ily, the point-based probabilistic registration algorithm by Hhnel2002ProbabilisticMF treats the

point as probability distributions instead of individual points. The NDT algorithm is another

work Biber and Strasser (2003) which is again based on a space representation that models the

likelihood of finding a surface point as a linear combination of normal distributions. The ad-

vantage is that the problem can be solved using numerical optimization and the space repre-

sentation avoid the expensive nearest neighbour lookup. Another class is based on numerical

optimizations using Branch and Bound like algorithms for registration (like done by Nüchter

et al. (2007)), which is slightly different approach to the problem, though they are better for 2D

registration Magnusson (2013). A final suggestion is a more general class of algorithms that look

at position invariant feature matching instead of the point based methods described so far. The

main motivation behind such strategies is that initial poses become less relevant. Magnusson

also mentions more NDT-like registration algorithms, but they are not mentioned here due to

the similarity to the NDT algorithm, or lack of relevance (for example 2D registration).

While there are many alternatives to image and point cloud registration, the ICP is the domi-

nant approach in the field. This is probably due to a relatively simple principle, yet very efficient.

The modularity of the algorithm enables a quick setup of a domain specific variation of the algo-

rithm, which works with high precision. The initial alignment requirement (though also present

in many other algorithms) seems to be acceptable as many applications can use a different al-

gorithm for initial alignment (As done by Pirovano et al. (2013)), assume the previous alignment

as close enough (as done by Newcombe et al. (2011)), or maybe even a manual initial alignment.

The ICP algorithm is a popular approach, and is implemented as the core registration algorithm

in PCL (Open Perception Foundation (2017b)).
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The robot scanner application presented in the project seems to favor the use of the ICP algo-

rithm. The modularity of the algorithm enables exploration of multiple variations and proper-

ties. The initial pose can either be obtained from the robot itself.
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CHAPTER 4

Implementations

This section is about the implementations that are done in the master thesis. It will give high-

level descriptions of the algorithms and not deal with the details of the implementations. The

implementations presented are a continuation of the work done in the pre-project by Isachsen

(2017)

4.1 Robot control for camera movement

As a Franka robot arm was provided with the project, it was necessary to integrate the robot

control software with the registration. The robot setup itself is explained further in section 5.1.1.

While section 4.2 goes through the implementation for capturing point clouds, this section will

go through the software controlling the robot itself.

According to the Franka examples and documentation, there are multiple ways to control the

robot arm (Franka Emika GmbH (2018, 2017)). One such example is the ”Cartesian velocity con-

troller”, which was used in this project. The ”cartesian velocity controller” guides the robot by

specifying the wanted velocity of the end effector at regular intervals (1000 Hz). ”The Cartesian

pose controller was initially attempted” (controlling the pose of the end effector instead of the

velocity), but due to technical issues with the robot in this mode, the Cartesian velocity was the

one that was selected. This worked well enough for simple movement for scanning objects. As

the robot arm movement is not the main purpose of this project, linear accelerating movement

was selected for the robot arm. This means that the robot arm moves the hand in a linear accel-

erating motion between user defined waypoints. The rotation of the robot is also accelerating,

57
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but not necessarily with linear angular acceleration.

The franka library requires samples at a rate of 1000 Hz. For the cartesian pose controller, it

requires a new cartesian pose each millisecond (hand pos and orientation in x,y,z coordinates

as well as orientation in pitch, roll and yaw). The cartesian velocity controller is similar, but

it requires a cartesian velocity every millisecond (this is the velocity of the hand position in x,

y, z as well as angular velocity in pitch, roll and yaw). As the cartesian velocity controller was

selected, the following implementation is based on those principles.

Given a linear accelerating movement, the robot motion can be divided into two stages. The

first stage is the acceleration stage, and the second is the deceleration stage. The acceleration

is constant towards the destination point in the acceleration stage and constant away from the

destination point in the deceleration stage. The acceleration stage is the first one, and switches

to the deceleration stage halfway through the motion towards the destination point (both in

distance and time). By using some classical mechanics, it is possible to calculate the expected

timings. t t
0 is the starting time of the translation movement, t t

1 is the middle time of the transla-

tion movement and t t
2 is the end time of the translation movement.

t t
1 =

√
2

s1 − s0

amax
+ t t

0 (4.1)

t t
2 = 2

√
2

s1 − s0

amax
+ t t

0 (4.2)

s1 is the distance from the starting point s0 and the middle point on the path to the destina-

tion. amax is the maximum allowed acceleration for translation movement. If s2 is the destina-

tion point, the following equation can be used to calculate the distance.

s0 = 0 (4.3)

s2 = ‖P t
2 −P t

0‖ (4.4)

s1 = 1

2
(s2− s0) (4.5)

Where P t
0 is the translational component of the start pose, and P t

0 is the translational com-

ponent of the destination pose.

Similar considerations can be done for rotation.

t r
1 =

√
2
θ1 −θ0

αmax
+ t r

0 (4.6)
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t r
2 = 2

√
2
θ1 −θ0

αmax
+ t r

0 (4.7)

θ0 = 0 (4.8)

θ2 = d q(P r
0 ,P r

2 ) (4.9)

θ2 = 1

2
(θ2 −θ0) (4.10)

t r
1 is the time of the middle point of the rotation from P r

0 to P r
2 . t r

2 is the time of the end point

of the rotation from P r
0 to P r

2 . P 2
0 is the rotational component of the start pose as a quaternion

and P r
2 is the rotational component of the destination pose as a quaternion. αmax is the maxi-

mum allowed rotational acceleration. θ0 is the starting angle, θ1 is the angle relative to θ0 of the

middle point of the rotation, and θ2 is the angle relative to θ0 of the destination rotation. Finally,

the d q(P r
0 ,P r

2 ) is the angular distance between quaternion P r
0 and P r

2 .

d q(a,b) = 2 ·ar ct an2(‖vec(a ·b∗)‖, |w(a ·b∗)|) (4.11)

ar ct an2 = somethi ng (4.12)

The vec function extracts the vector component of a quaternion (which is the i, j, and k

components). The w function extracts the real part of the quaternion.

The timings obtained from rotation and translation is most likely different. The actual time

of the movement is estimated as the maximum of the two.

t2 = max(t r
2 , t t

2) (4.13)

t1 = max(t r
1 , t t

1) (4.14)

The acceleration in translation (a) and rotation (α) is found using the following:

a = 2
s1− s0

(t1− t0)2
(4.15)

α= 2
θ1 −θ0

(t1− t0)2
(4.16)

The wanted velocity is computed from the current time t and distance from start point s.

v = a(t − t0) if s < s1

v =−a(t − t2) otherwise
(4.17)

The final translation velocity vector sent to the robot controller −→v is found by multiplying

the velocity with the direction of movement
−→
d .
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−→v = v ·−→d (4.18)

−→
d = P t

2 −P t
0

‖P t
2 −P t

0‖
(4.19)

The rotation is treated slightly differently as it needs to be converted from quaternions to

euler angle velocity. As this is a quite involved conversion, the following definition is not accu-

rate, but is good enough for the purpose of scanning objects. The idea is that it uses a circular

interpolation (slerp) to find the previous expected rotation qpr ev and current wanted rotation

qcur r ent . Then, it takes the difference between the two rotations and converts it to euler an-

gles. By dividing by the time it takes between the current rotation and the previous, it is able to

estimate the euler angle velocity of that step.

tpr ev = t −∆t (4.20)

∆t is the time that have passed since the last robot pose update happened. tpr ev is the time

at the previous robot pose update and t is the current time.

βcur r ent = 2( t−t0
t2−t0

)2 if t < t1

βcur r ent = 1−2(1− ( t−t0
t2−t0

)2) otherwise
(4.21)

βpr ev = 2(
tpr ev−t0

t2−t0
)2 if tpr ev < t1

βpr ev = 1−2(1− (
tpr ev−t0

t2−t0
)2) otherwise

(4.22)

βcur r ent andβpr ev are some temporary values that will be used for the circular interpolation.

This is the interpolation amount.

qcur r ent = slerp(P r
0 ,P r

2 ,βcur r ent ) (4.23)

qpr ev = slerp(P r
0 ,P r

2 ,βpr ev ) (4.24)

Refer to section B.3 for how the slerp function is defined. The next step is to find the euler

angle representation of the two current rotations.

−−−−−→rcur r ent = quaternionToEuler(qcur r ent ) (4.25)

−−−→rpr ev = quaternionToEuler(qpr ev ) (4.26)

Refer to section B.4 on how the quaternion is converted to euler angles. The final step is to

find the corresponding euler-angle-velocity ω with the following.
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ω= clamp(
−−−−−→rcur r ent −−−−→rpr ev

∆t
) (4.27)

The clamp function simply converts the angle of each axis to the range [−π,π]. This is the

translation and rotational velocities that is sent to the robot controller. This is done with a rate

of 1000 Hz. For each update the robot does, the current pose is read. All poses are stored in a file

with a corresponding timestamp. Note that the read value is not based on the wanted positions

calculated, but is the measured position done by the robot.

Due to the bad quaternion to euler conversion described here, the rotation will drift signifi-

cantly. This was fixed by measuring the drift from the wanted position. This position was then

added to the destination position (it then wants to travel that distance extra). This gave a lot

better movements, and gave a few degrees error for a typical movement. The drift-fix was also

used for the position. At this point the movement was considered to be sufficient.

The waypoints can be read from text files. These files can either be generated by some pro-

gram or be manually constructed. However, for this project, it was developed an additional

program that enabled the user to move the robot to certain waypoints and obtain the pose of

that waypoint. These can be read by the robot arm controller. The franka library enables this

kind of interaction very simple because it enables the user to read the pose anytime. This is

made possible becaues the Franka robot can easily be moved manually.

4.2 Camera capture methodology

While section 4.1 enables the robot to move in a specific pattern, this section will describe how

the images are obtained while the robot is moving (the camera is not required to be mounted

on a robot arm). The description shown here is based on the guide by Blacker (2016).

The output obtained from the realsense cameras through the librealsense library are standard

image streams. There are three separate optional streams that can be configured to be obtained

from the realsense cameras. These are the depth stream, color stream and infrared stream. This

report will not consider the infrared stream, but the principles are the same as for the color

stream.

The raw data from the camera are simple arrays of pixels. Each pixel in the depth stream is

a 16-bit value representing depth, and each pixel in the color stream is a 3-byte value where

each byte represents the red, green and blue channels. The width and height of the image are

obtained from the intrinsics for each stream.



62 CHAPTER 4. IMPLEMENTATIONS

When the image is obtained, this must be converted to a point cloud. If only the depth stream

is present, the point cloud can be generated with a simple deprojection. If the color stream is

also present, the two streams need to be aligned. This is because the infrared camera used for

depth estimation is offset from the rgb-camera with a translation and rotation. To align these

streams, the depth image is first deprojected. Then it is transformed with the offset from the rgb-

camera before it is projected back onto the rgb-camera. The transformation matrix representing

the transform between the infrared and rgb-camera is called the extrinsics. This transformation

and reprojection is done for each pixel in the depth stream.

The projection and deprojection is handled by librealsense, but the technique is summa-

rized here. The method assumes the camera is positioned at x = 0, y = 0, z = 0 and pointing in

the z-direction with the centerline of the camera going along the z-axis. The deprojected point

is found with the following formula. 
x

y

z

=


d ·ux

d ·uy

d

 (4.28)

d is the depth of the pixel. ux and uy are the x and y value of the pixel after considering the

camera intrinsics and lens distortion. They are computed with the following assuming no lens

distortion

[
ux

ux

]
=

[
px

py

]
(4.29)

however, for an inverse Brown Conrady distortion model, the following formula is used.

[
ux

uy

]
=

[
px f +2c3px py + c4(p2

x +p2
y +2p2

x)

py f +2c4px py + c3(p2
x +p2

y +2p2
y )

]
(4.30)

[
px

py

]
=

 ix−ppx
fx

i y−ppy
fy

 (4.31)

f = 1+ c1(p2
x +p2

y )+ c2(p2
x +p2

y )2 + c5(p2
x +p2

y )3 (4.32)

An image capturing tool was developed for the pre-project. This tool reads the raw images

from the capturing device (realsense camera) and stores each of the streams in separate files.

The color images are stored as bmp images, while the depth-stream is stored as dpt files which

is a custom file format. The format contains the required intrinsics and extrinsics as well as the

depth stream itself stored in a raw format. A corresponding tool was developed to read the files

generated by the capturing tool. This reader tool generates the point clouds as described in this
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section, but is incorporated in the registration framework described in section 4.3. The reason

for using this kind of architecture is first of all to generate datasets that can be read without using

the camera. The reason for saving the raw depth file instead of a point cloud (which can be done

through pcl) is to obtain flexibility for algorithms working directly on the raw image input. No

algorithm implemented in this project utilizes the raw depth image, but in the pre-project, this

was not certain. The registration framework also has a capturing tool to do the registration in

real time.

4.3 Registration framework

This is the program that runs the actual registrations and take the timings of them. The program

is configurable by inserting program arguments from the command line. It is possible to con-

figure the registration program to select registration parameters, filtering and writing of results.

The input to the program is the files to perform registrations on, as well as the arguments which

describes how this is done. The program will output log messages to the command line or to a

log file if specified. It can also output the final registration as a .pcd file if specified. Figure 4.1

shows the registration pipeline including all the steps.

The input files can either be the .dpt files (as described in section 4.2) or .pcd files. In the case

of .dpt files, the program will look for a corresponding .bmp images based on the name of the

.dpt file and .bmp files.

The other program arguments can specify most of the behaviour of the program. See ap-

pendix C for a list of all available arguments and their corresponding default value. It is possi-

ble to specify filters, filter arguments, registration algorithms, registration parameters and in-

put/output (IO) based arguments. The following filters are supported: voxel grid, plane model

segmentation, euclidean clustering, pass through filter and box filter. All filters have specialized

arguments to configure the filter parameters. Though plane model segmentation and euclidean

clusters are not strictly filters in terms of PCL terminology, they are referred to as filters in this

sense because they remove certain parts of the point cloud based on some rules. Supported

registration arguments are which registration algorithm to run and convergence criteria. IO ar-

guments specify log files, output .pcd files, whether the point clouds should use color, and if the

program should visualize the results.

When running the registration program, filtering is the first operation that is performed. The

order of the filters is the same as the order they are specified in the arguments list. The voxel

grid filter works as specified in section 2.4 by removing excess points that share the same voxel
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Figure 4.1: Figure showing the registration architecture. The point cloud is processed in all of
the steps denoted in the figure. The figure starts by loading a point cloud, which can either be
done from a saved file (.dpt or .pcd file formats) or from a RealSense camera connected to the
computer. The following filtering steps are filters as explained in section 4.3. They are applied
in the user specified order (see appendix C). The normal computation step is performed if it is
specified by the user, or if the registration algorithm requires it. The registration step is the core
of this project where the registration itself is performed. The captured and filtered point cloud
is aligned to the accumulated point cloud. After this is done, the cloud itself is accumulated to
the point cloud. The final step is the post-filtering step, that works like the filtering steps, only
that they operate on the accumulated point cloud after the registration is performed. There is
also the option to store the point cloud and visualize it.
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Figure 4.2: Figure showing the steps involved in registration. These are basically the same steps
that are outlined in sections 2.10.1 and 3.1. The registration is performed by finding a transfor-
mation that aligns the source cloud to the target cloud. To accelerate search, a search structure
(like voxelized space of kD-tree) is constructed to speed up the registration. The source cloud is
aligned with an initial transformation if provided. The correspondence estimation is performed
as described in sections 2.10.1 and 3.1.2. The correspondence rejection is a list of correspon-
dence rejectors that are applied in order (see section 3.1.4). The transformation estimation is
done by a transformation estimation, that minimizes some error based on the correspondences
found (section 3.1.5). Finally, the source cloud is transformed based on the transformation
found in the previous step. If convergence is found (either by going below a fitness threshold,
transformation threshold or reaching the iteration count), the algorithm terminates. Otherwise,
the registration step is repeated.
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when dividing the space into a 3D grid. Plane model segmentation works by removing all points

belonging to the most dominant plane in the model using the method described in section 2.6.1.

This is used to remove the table surface from the point clouds. The euclidean clustering works

the same way as described in section 2.6.2, and will simply remove points that don’t belong to a

large enough cluster (based on a threshold which can be specified as an argument). This filter

removes noisy irrelevant point data that is usually not part of the object of interest. The pass

through filter is simply a filter that removes points that are either too close or too far away from

the camera. These points usually contain noise which makes the registration harder. The box

filter will filter away all points that are outside the bounds of the box specified in the filter.

If required, the next step is to calculate normals. The program determines if the registration

algorithm will require that normals are computed and compute them if necessary. The normals

are computed using the build-in functions of PCL, which is based on the method described in

2.5.

The following step is the actual registration. The registration steps are shown in figure 4.2.

The program will select the registration algorithm, as well as the transformation method and

correspondence estimation method, all specified by the user (otherwise, it is defaulted). Some

of the algorithms, correspondence estimators and transformation estimators are already imple-

mented in PCL. Some of those will be included in the project as a baseline for registration cor-

rectness/accuracy and performance. Some other algorithms are implemented for this project,

and is further described in section 4.4. Some of the algorithms that can be selected have some

limitations in transformation method and correspondence estimation. This is because not all

of the transformation estimators are implemented for the GPU based registration algorithms,

and because the correspondence estimation is more implicit to the name of the algorithm it-

self (which is what is tested). The reason for the implicit correspondence estimation is that the

registration algorithm might require control of GPU data during the iterations, and might differ

slightly from the standard registration pipeline described in PCL (Open Perception Foundation

(2018a)).

Finally, after the registration is performed, the program adds the newly registered cloud to an

accumulated cloud.

The post-filter stage is similar to the filtering stage. The same filters and arguments apply, but

this filtering is performed on the accumulated cloud. This step might be required in a real-time

scanner (depending on how long it is expected to run) in order to limit the accumulated point

cloud size. If the point cloud grows to large, the running time of each iteration is increased.

A post filter might remove excess points such that the accumulated point cloud is limited in
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size. Another reason to use a post-filter is for other filtering options that are not convenient to

perform before the registration step.

The accumulated can then be visualized immediately. This means that the point-cloud can be

visualized after each frame is registered to show the real-time behaviour as the scanner moved

around the object. The visualized object is the accumulated cloud after the post-filtering stage.

The steps described here are run for each point cloud in the stream. The first point cloud

is only filtered, as there is no current model cloud to compare it to. After all registrations are

performed, the resulting cloud can be stored to disk, or be visualized within the registration

program.

The registration program uses logging during the execution such that the user can obtain in-

formation about what it does. The log contains timings and registration results. Registration

results are for example the fitness score of the ICP algorithm and the final transformation ma-

trix. This log is designed such that it is simple to parse for a different program which can provide

insights (section 4.6.5). The timings are done using wall time. The timings are given after every

operation described in this section. This fine timing is nice to have when evaluating an im-

proved algorithm. While one algorithm might improve the registration time, it might require

more computationally intensive pre-processing. The fine grained timing gives finer control on

this matter.

4.4 Registration algorithms

This section is about the actual algorithms implemented for the master thesis. This is the main

work of this master thesis. Most of the work is based on changing the point-correspondence

method as this usually is the bottleneck of the registration process. Chapter 4.6 will go through

other activities done on the GPU, while this chapter will mainly focus on the correspondence

estimation step of the registration algorithms.

4.4.1 Brute-force correspondence estimation CPU

This is the first and most simple correspondence estimation implemented. It is implemented as

a PCL correspondence estimator which enables it to be used with other registration algorithms

already implemented in PCL. The algorithm uses a brute-force all-to-all closest match without

any search structure. This gives the algorithm a running time of O(N M), where N is the number

of points in the source cloud and M is the number of points in the target cloud. This algorithm
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is merely included as a baseline to compare the other implementations described in later chap-

ters.

4.4.2 Brute-force correspondence estimation GPU

This is the same correspondence estimation as in section 4.4.1, but implemented on the GPU.

The asymptotic performance is still expected to be O(N M) where N is the number of points

in the source cloud and M is the number of points in the target cloud. The performance is

still expected to be drastically improved compared to the CPU implementation because of the

massive parallelity of the GPU. The algorithm is not expected to suffer from branch divergence,

or similar.

4.4.3 Kd-tree correspondence estimation CPU

A kd-tree is almost guaranteed faster than a brute-force correspondence estimation for most

point clouds. This is why this is defaulted to be the search structure when using registration

algorithms in PCL (Open Perception Foundation (2017b)). This project contains a CPU imple-

mentation of a kD-tree for nearest neighbour search in order to have a baseline to compare with

the existing implementation is PCL. The implemented kD-tree is based on the description found

in section 2.9. This section will further describe some of the implementation details of kD-tree

construction and search.

Before the individual iterations in the ICP algorithm is run, the kD-tree is constructed. The

kD-tree is constructed once for the target cloud, and then searched for each iteration of the ICP-

algorithm. The tree uses a dense tree representation as described in section 2.9.3. In order to

balance the tree, a quick-partition algorithm is used to find the median (this works the same

way as quicksort, but does only one recursive call, giving it an expected running time of O(N )

when finding the median). The quick-partition algorithm guarantees that all elements in the list

before the median is smaller than the median, and that all other elements are greater or equal.

This must be done for each subtree with it’s corresponding dimension. This will guarantee that

the tree is balanced. This leads to a total running time of N log N asymptotic running time for

kD-tree construction where N is the number of points in the target cloud.

The search is performed, and each element has expected running time of log N , giving a total

running time of M log N for a correspondence search. M is the number of points in the source

cloud and N is the number of points in the target cloud.
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4.4.4 kD-tree correspondence estimation on GPU

The kD-tree search algorithm is doing the same thing as the CPU version described in section

4.4.3. The only difference is that the search is performed on the GPU, while the kD-tree con-

struction still is performed on CPU. Qiu et al. (2009) shows that most of the time consumption in

the ICP algorithm is the point correspondence search. Another consideration is that construc-

tion of a kD-tree is the hardest part to perform on a GPU. All these factors suggests the method

implemented here and Qiu et al. (2009). The idea is to construct the kD-tree on the CPU, and

then transfer it to the GPU to perform the actual search there. While algorithm is similar to the

one described in section 4.4.3, the actual search is performed on the GPU.

As in the work by Qiu et al. (2009) the main consideration when performing the search on

GPU compared to a CPU implementation is the dynamic structures. In the case of a search, the

dynamic structure is the stack to enable backtracking when searching through the kD-tree. Qiu

et al. (2009) shows that the stack can have a fixed size which can be preallocated. If this size is

shorter than the maximum depth of the kD-tree, the final result might differ slightly from the

correct. However, as the ICP algorithm depends on correspondences for each point, the ap-

proximate nearest neighbour found using the limited stack search method can still give good

registration results. Even if the search doesn’t find the nearest neighbour, the found correspon-

dence is likely to be relatively close to it.

4.4.5 Voxelized search space for correspondence estimation on CPU

The algorithm described in section 3.2 (based on the work by Marden and Guivant (2012)) de-

scribes the method implemented here. The space is divided into voxels, and the centroid is com-

puted for each voxel. The search is done by finding which voxel each source points fall within,

and use the centroid of that voxel (based on the target cloud) as the corresponding target point.

The implemented algorithm is as described in section 3.2.

Two suggested improvements where suggested in this thesis. One improvement is to use a

dynamic voxel size. The basis of this improvement is that using larger voxel sizes, the registration

loses some accuracy due to loss of smaller features. Having to small voxels might require too

many iterations to complete because fewer correspondences are found when the alignment is

bad (typically at the earliest iteration of the algorithm). It might even be unable to find any

correspondences at all if the initial alignment is not good enough. The idea is to use a larger

voxel size for the earliest iterations to get the higher level features and then use a smaller voxel

size for the later iterations in order to align using more low-level features.
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The other suggested approach is to use an initial distance estimation on the available voxels.

The first step is to construct the voxelized centroid structure as described in section 3. This

voxelized space is called V0. Then, a new voxel space V1 is created by copying V0. Then, each

empty voxel in V1, the the closest centroid is found by searching through V0 with a maximum

distance d . The voxel centroid in V1 is simply copied from the closest nonempty voxel in V0. This

can enable the algorithm use slightly smaller voxel sizes, while still being able to search longer

distances. This method is easily parallelizeable on the GPU by assigning a thread to each voxel

in V1.

4.4.6 Voxelized search space for correspondence estimation on GPU

This algorithm is based on the same concepts that are described in section 4.4.5, but is com-

puted on the GPU. Both voxel space construction and voxel space search is implemented on the

GPU. The only thing to note here is that there is a race condition when parallelizing this algo-

rithm. When iterating over the target point cloud, multiple points can fall into the same voxel,

and there is therefore a race condition. This race condition is not taken into consideration. Both

voxelization extensions suggested in section 4.4.5 are also implemented on the GPU.

4.5 Point correspondence rejector

PCL comes with a lot of different point correspondence rejectors (Open Perception Foundation

(2017b)). The correspondence rejector implemented for this project is based on the organized

boundary correspondence rejector. Rusinkiewicz and Levoy (2001) suggest that the correspon-

dences from the boundaries of the point cloud should be rejected because this is often where

point clouds don’t have overlapping features. However, the organized boundary rejector re-

quires an organized point cloud (as described in section 2.3.1). This implementation is based

on the same concept, but does not require the point cloud to be organized. The concept is that

the user specifies a region of interest as a box. This box is then transformed together with the

cloud through the iterations of the ICP algorithm. The box is specified in camera-frame, which

enables the user to specify the region of importance in the point cloud. After the box-structure is

configured, the rejection consists of two steps. The first step is to determine the transformation

of the box, and the second step is to determine which points to reject.

4.5.1 Rejection box construction

The box consists of six planes specified by their normals and a point on the surface. The user

specifies the bounds of the box using the minmum and maximum values of the box in each

coordinate axis. The box is always aligned with the coordinate axes in the camera frame. The
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planes are specified from their corresponding normal vector and surface point (meaning that

plane 1 is specified by ~n1 and p1, plane 2 is specified by ~n2 and p2, etc.)

~n1 =
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0

0
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And similarily, the corresponding points are defined as the following.

p1 =


xmi n

ymi n

zmi n

 , p2 = p1, p3 = p1, p4 =


xmax

ymax

zmax

 , p5 = p4, p6 = p4 (4.34)

4.5.2 Finding the transform

This is a simple task given the transformation from the registration algorithm. However, in PCL,

the correspondence rejectors are not given the transformation from the registration. There-

fore, the transformation is computed by observing the movement of the first three points in the

source point cloud and computing the transformation from this. This is possible because the

points don’t change positions during registration, though the method described here is not very

pretty, and would optimally be avoided if possible. The method uses SVD on the points to obtain

the optimal rotation.

The first step is to compute the centroids of the original point positionµorig and the new trans-

formed point µtrans.

µorig = 1

3
(porig

1 +porig
2 +porig

3 ) (4.35)

µtrans = 1

3
(ptrans

1 +ptrans
2 +ptrans

3 ) (4.36)

The matrix H is computed as the cross-covariance between the points after subtracting the

centroid

X =
[

porig
1 −µorig porig

2 −µorig porig
3 −µorig

]
(4.37)

Y =
[

ptrans
1 −µtrans ptrans

2 −µtrans ptrans
3 −µtrans

]
(4.38)

H = X Y T (4.39)

X and Y are simply 3×3 matrices where each column is a point where the centroid is sub-
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tracted. The next step is to perform an SVD matrix decomposition.

UΣV = H (4.40)

The rotation R can then be found from this:

R =V DU T (4.41)

and the translation~t is found using

~t =µtrans − (Rµorig) (4.42)

The determinant of R is wanted to be positive, which is why the matrix D is introduced. The

D matrix is an identity matrix where the lower right element is replaced by the determinant of

V U T .

The rotation matrix R and translation~t is now applied to the box coordinates in the following

way.

~ni
trans = R~ni |fori = 1..6 (4.43)

pi = (Rpi )+~t |fori = 1..6 (4.44)

This is basically the same steps required in the ICP algorithm, but multiple iterations are not

required. This is because the corresponding points are certain to be correct.

4.5.3 Doing the correspondence rejection

Now, the rejection box is at it’s correct place, and the actual rejection can take place. A point

inside the box is indicated that the signed distance to all planes are positive. If the point is

outside the box, the point is rejected. The following equation determines if the point is inside

the box or not:

~ni · (p0 −pi ) > 0 | fori = 1..6 (4.45)

p0 is the source point of a correspondence pair. If this condition is true, the point is on

the inside of the box, otherwise it is outside, and the correspondence is rejected. This step is

repeated for all point correspondences.

When implemented on the GPU, the point correspondence rejector can easily be extended

to work on the GPU. The difference comes from the implementation details, where the GPU
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Figure 4.3: Figure showing the work division and interaction between the CPU and GPU for the
ICP algorithms implemented for this project. The developed 3D registration architecture for
the GPU implementations used in this project is based on the architecture developed by Qiu
et al. (2009). The figure shows the same steps as in figure 4.2, but also how the work is divided
between the GPU and CPU. Looking at the step in the figure, the CPU is basically only solving the
transformation for each iteration of the ICP algorithm. The data sent back and fourth between
the GPU and CPU in the main loop is basically a few matrices and vectors (depending on the
selected transformation estimator).f

implementation doesn’t change the length of the correspondence list, and would instead set a

flag, indicating that the correspondence is invalid.

4.6 Other implementation considerations on GPU.

This section involves other implementation details when doing registration on the GPU. Section

4.6.1 shows how the work is divided between CPU and GPU for the ICP algorithm. Section 4.6.2

is about point cloud transformation on the GPU and section 4.6.3 is about how the reductions

in the transformation estimation is performed on the GPU.

4.6.1 CPU and GPU interaction

This section will show how the work is divided between the CPU and the GPU. This architecture

is based on the one used by Qiu et al. (2009). However, the same architecture/pipeline is valid

for the other GPU based registration algorithms. Figure 4.3 shows the interaction and division

of work between the CPU and GPU.
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4.6.2 Point cloud transformation

Transformations of point clouds is a trivial task for the GPU and is in itself a massively parallel

task. Transformations of the point cloud is therefore performed on the GPU. This is in itself

utilizing the parallelity of the transformation operation as well as it makes avoids transferring

the point cloud back and forth from the GPU between each iteration. The implementation is

basically applying a transformation matrix to each point.

4.6.3 Reduction trees

Many of the transformation estimations described in section 3.1 are based on summation of

matrices for each point. This can also be performed on the GPU and as Harris (2018) shows,

there are many ways to do this. The method used in this project is something that looks like

”Kernel 4” in the reduction presentation by Harris (2018). While the presentation show other

faster alternatives, the speedup is probably less significant when operating with matrices and

vectors as each level in the reduction tree does more work compared to integer summation.

These methods could be considered, but where not used in this project mainly to have a simpler

implementation with cleaner code, while still being fast enough and drastically faster than a

similar CPU implementation. As claimed by Qiu et al. (2009), the transformation estimation is

generally not the bottleneck in the ICP algorithm.

Each thread from the matrix computation step outputs it’s own partial sum. Given n blocks

and m threads per block, this gives an output size nm which is fed into the reduction tree. The

summing tree will then first call the reduction kernel with n blocks and m threads per block. This

will reduce the array size to n as a local reduction is performed for each block. The next step, m

threads are still run per block, but the number of blocks have been reduced to n
m . This procedure

is repeated until there is one element left in the array. By selecting n ≤ m, this procedure can

be completed with two calls to the reduction kernel, though other values are still possible. The

final step is to transfer the first element of the array (containing the sum of all elements in the

tree) back to the CPU where it can compute the final transformation.

The kernel itself works by doing a local reduction of elements within the same block. Each

thread is assigned to an array element, and by using the sequential addressing method described

by Harris (2018) it computes the sum of it’s own element and another element based on the

sequential addressing mode. Finally, the first thread computes the answer corresponding to it’s

block while the other threads in that block have completed their local sum.
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Both the point-to-plane lls transformation and dual quaternion transformation estimators

use a summing tree in the implementations. These are the two algorithms that have required a

reduction tree on the GPU.

4.6.4 Convergence/termination criteria

The convergence criteria implemented in PCL are based on three conditions Open Perception

Foundation (2017b). The first condition is the maximum iteration count. If the iteration count

reaches this value, it is terminated. The second convergence criteria is the fitness epsilon. If the

fitness of the registration (as described in section 5.1.3) changes less than a certain threshold

(the fitness threshold), the algorithm will terminate. The final criteria is the transformation ep-

silon. Similarily as the fitness epsilon, if the transformation (for example translation) between

two consecutive registrations drops below a certain threshold, the algorithm is said to converge.

All of these convergence criteria are tested in section 5.1.4.

4.6.5 Evaluation tool

The evaluation tool is a python framework developed for this project. This program reads log-

files from the registration program and robot controller program and formats the data in a more

readable way such as visualizations and tables. The following list shows the most important

features of this program.

• Show 3D pose visualizations from lists of pose-matrices.

• Generate timing tables.

• Compute evaluation metrics (as in section 5.1.3) from two timed lists of poses (for example

robot pose and estimated pose from registration.)

Generally, all graphs shown in section 6 are generated using this tool.
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CHAPTER 5

Evaluation

While chapter 4 explained the implementation done for this project, this section will go through

the strategy for evaluation of the algorithms in section 5.1 and the results in section 6.

5.1 Experimental setup

This section will introduce the generated test sets, evaluation metrics and experimental setup.

5.1.1 Robot and camera setup

For this project, both free-hand scans and camera mounted on robot arm was performed. The

robot arm provided for the project was the Franka robot arm (Franka (2017)). An Intel RealSense

SR300 camera was mounted on the robot arm. Figure 5.1 shows how this camera is mounted to

the robot arm. An Intel RealSense D435 camera was used for the free-hand scans.

5.1.2 Test sets

Several test sets were generated for the project. The test sets can be divided into two main cat-

egories depending on the scan method. The first category is the free-hand scans, and the other

category is taken from a camera mounted on the robot arm as shown in figure 5.1. The following

lists will contain the names of the test-sets as well as a few properties and considerations for the

test set. The coordinate system used when describing the test sets are also shown in figure 5.1.

77
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Figure 5.1: Figure showing the Franka robot arm and an Intel RealSense SR300 camera mounted
on it. This was the setup used for robot arm based scans in this project. The figure also shows
the coordinate system used when explaining the different test sets in this section.

Robot trajectory scans

The following list contains multiple test sets where the scan trajectory is the triangular scan

as described in section 5.1.2 using the robot arm. The SR300 camera is used for these scans

because it is the one that is mounted on the robot arm. The are taken from the robot-mounted

Intel RealSense SR300 camera. Each of the test set is named after the object it scans. All object

scans consist of 138 images with a framerate of 10 FPS (most of the tests does not use all images).

The point clouds usually contain 300 000 points when read from the camera.

Monkey This is a stuffed toy, consisting of both large and smaller features as well as a mostly

smooth surface. The fabric it is made of enables good 3D-synthesis for the SR300 camera.

The object is close to mirror-symmetric along the y-z-plane. Some soft-body deforma-

tions are present, making it slightly asymmetric. Symmetry is not considered an issue for

this object. The main challenge of this object is to align the smaller features correctly that

can disappear when using downsampling.

Banana The surface of the objects enables good 3D-synthesis. The object is close to mirror-

symmetric along the x-y plane, but because the plane is present, no symmetry is present.

The main challenge of this set is the small size of the object compared to the field of view

of the camera, but in general, this is a quite simple object to scan.

Pear The surface of the object enables good 3D-synthesis. The object is rotational symmetric

along the y-axis. While this is not the primary axis of rotation for the robot movement,
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symmetry is expected to cause issues with the registration. Other than the small size of

the object, this is a quite simple scan.

Apple The surface is slightly more glossy, but still gives quite good 3D-synthesis. The object is

rotational symmetrical along the z-axis. Since a lot of movement is rotational relative to

the z-axis, symmetry is expected to be an issue. Since the object has a very smooth surface,

the slight asymmetry of the object is not expected to help much in the registration. The

main challenge is the rotational symmetry making this a hard scan to register.

Cap The cap object is made of a fabric enabling good 3D-synthesis. The object is large com-

pared to the other objects, has asymmetric features and has large and smooth surfaces. It

is mirror-symmetric along the y-z plane. Taking all this into consideration, this object is

not expected to give any problems.

Hat The object is made of a fabric enabling good 3D-synthesis. The object is relatively large

compared to the other objects with relatively large features and a smooth surface. This

object contains no symmetry. This object is not expected to give difficulties to register.

Compared to the other objects, this is quite tall compared to the plane it is placed on, but

it’s not expected to be a challenge.

Fruit-scene This scene consists of an apple, a pear and a banana. The goal is to get a better

registration of the pear and apple removing the rotational symmetry. The scene itself is

partially symmetric in the x-y plane, and is not expected to give any issues. Given a single

object, it can be hard to determine the correctness of the registration, so this test set can

verify that the registration also is valid for a large area with muliple separated objects.

Box The object is made of cardboard making good 3D-synthesis. This object is mirror sym-

metric along multiple axes. The object has 4 symmetrical rotations around the z-axis as

well as subsections that are translational symmetric (for example small segments of the

surfaces). Using small frame-to-frame movements, this should not be an issue as the top

surface is always visible. The object has clear surfaces and has rough edges. This object is

not expected to give issues when registering. The main challenge is the symmetry when

doing large steps between individual images.

Some plastic stuff This scene has a surface that is difficult for the 3D-reconstruction using the

SR300 camera. The camera is only able to register a small portion of the object at different

angles (depends on the viewing angle), and will produce more erroneous point than with

previous objects (this is a problem with this kind of objects when scanned with the SR300

camera). The symmetry is similar to that of the pear.
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Some casted object This is a different material than the previous objects. The yellow color (as

seen in figure 5.1) makes it easy to see errors in the registration. This object is not consid-

ered a particular challenging scan.

Free-hand scans and food objects

The next test-set consists of food-objects captured with a hand-scanner. The scans has a lot

of supporting structures in the environment to aid the registration process. This is because

the features of the food objects themselves are quite small, and adding larger features helps

the registration. These structures can easily be removed with some filtering. The tabletop is

blue, and each object can be extracted based on color and position if this is wanted. The Intel

RealSense D435 camera was used because of the wavy pattern generated by the Intel RealSense

SR300 camera (see figure 6.4). These tests use different frame rates and durations, resulting in

different number of images for each test set. Other reference objects are placed in the scene

to aid the registration. While some registration algorithms are able to perform the registration

anyway, it can enable more algorithms to register the objects.

Lettuce Free-hand scan with 19 RGB-D images using the D435 camera. The lettuce is placed

on a table together with a box as a reference object. The surface of the lettuce gives good

3D reconstruction with with both cameras. The scene itself does not show any symmetry

because of the reference objects.

Pork-filet Free-hand scan with 29 images using the D435 camera. This scene consists of a pork-

filet with multiple reference objects. When using the SR300 camera, the meat gives a wavy

effect in the depth stream shown in figure 6.4, which is why the D435 camera was used.

Pork-chop Free-hand scan with 13 images using the D435 camera. Similar to the previous

scene, but the object itself is very flat, making it hard to separate from the table. There-

fore, other reference objects were added around it to aid the registration. As in the previ-

ous scan, the meat generates a wavy-pattern (shown in figure 6.4) when using the SR300

camera, so the D435 camera was used for this object.

Salmon-top Free-hand scan with 21 images using the D435 camera. The object is a salmon filet

with the skin side facing downwards. There are multiple reference objects in the scene to

aid the registration because the object itself is flat. As with the previous scan, the wavy

pattern shown in figure 6.4 was observed for the salmon as well when using the SR300

camera, which is why the D435 camera was used.



5.1. EXPERIMENTAL SETUP 81

Robot scan trajectory test sets

In order to test some properties, some extra test sets where generated. The following test sets

will focus on different scan trajectories. The goal of the trajectories is to show guidelines on scan

trajectory as well as exploring some weaknesses of the ICP algorithm. Only a few of the objects

mentioned above are used as the interesting part here is how well different trajectories work,

and not properties of the objects themselves. The scanned object is a banana. See figure 6.5 for

a visualization of the trajectories mentioned here. All trajectories run the camera at 10 FPS, and

the generated point cloud contains approximately 300 000 points. The following list contains

all tested scan trajectories. Note that all scan trajectories except the transnational scan has the

object centered in the camera view.

Square scan A scan that looks at the object from object from four different sides. This gives a

good view of the entire object, but is the slowest scan tested in this project. This results in

about 162 images in total.

Long swipe scan A trajectory consisting of 3 waypoints looking down at the object. The trajec-

tory goes over the top of the object. This scan has a total of 65 images. This is included

because certain objects don’t need to get a full view of all sides of the object.

Short swipe scan A short trajectory looking down at the object. As this is a short scan, it ends

up with a total of 51 images. This is included because certain objects don’t need to get a

full view of all sides of the object.

Translation scan While most scans are rotational, this one is translational. This means that the

movement relative to the object is mostly translational and not rotational. As shown in

section 6.9 this introduces a few difficulties for the registration.

Triangle scan Trying to get as much as the objects as possible through 5 waypoints where 3 of

the waypoints are positioned in a triangluar pattern such that the camera gets a view of all

sides of the objects. This results in a total of 139 images.

Zoom movement scan This scan goes through a series of waypoints where the distance to the

object is changed (meaning that it’s actually not doing a zoom). No other movement is

present. This trajectory is added to the project to evaluate if the registration algorithms

are able to register object where the resolution of the object change.

Zoom scan This is similar to the zoom scan (meaning that this is not really a zoom either) in

that it changes the camera distance to the object. At the same time, the camera is moved

around the object. This can be used to test whether the registration algorithm is able to

handle change of resolution of the object itself as well as the view of the object itself is

changed.
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5.1.3 Evaluation metrics

This section will cover the different evaluation metrics used for evaluation of the algorithms.

The two most interesting metrics to measure is the registration quality and the performance of

the algorithms. The registration quality is a measure of how good the registrations are, which

implies the quality and correctness of the object. The performance is the time the algorithm

uses for normal payloads.

Registration quality

This section will go through multiple metrics that are used to determine the quality of the regis-

trations.

The first metric is the Fitness F . This is one of the internal metrics used by the ICP algorithm

used to determine convergence. This metric is based on the 2.10.1. The metric is defined as the

following:

F = 1

Nt

Nt∑
i

d(pt ,i , min
j∈Pm

||d(pt ,i , pm, j ))||2 (5.1)

where Nt is the number of points in the registration cloud, Pm is the model cloud set, pt ,i is

point with index i in registration cloud Pt , and pm, j is point with index j in model cloud Pm and

d(a,b) is the euclidean distance between point a and b. In other words, F is the average squared

distance from all points in point cloud Pt to it’s closest point in point cloud Pm . This metric is

good to show that the algorithms converge, but it is bad to compare different algorithms to each

other as some of the ICP variations tested does not optimize this metric. It is also bad for com-

paring between different test-sets as they have different properties regarding correspondence

rejection, number of points, etc. This motivates for the use of a metric that uses the object pose

based on some reference.

The next measure will be referred to as precision P . In short, this measure is the distance the

estimated path has from some estimated reference path. This metric will be divided into the

four following sub-metrics:

• P A
t The translational absolute error.

• P R
t The translational relative error.

• P A
r The rotational absolute error.

• P R
r The rotational relative error.
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All these four metrics are based on the Relative Pose Error (RPE) as defined by Sturm et al.

(2012). Before computing the final error metrics, the Relative Pose Error Ei must be computed

for all the captured frames using the following equation:

Ei = (Q−1
i Qi+∆)−1(P−1

i Pi+∆) (5.2)

where Qi is some ground truth trajectory at step i and Qi+∆ is the same ground truth trajec-

tory at step i +∆ for some fixed time interval ∆. Pi is the estimated trajectory at step i and Pi+∆
is the estimated trajectory at step i +∆. Using the T = A−1B is a technique to find the transfor-

mation T A = B , which is the transformation that maps A to B . The RPE error is doing this twice,

meaning that Ei is the transformation that maps the change of ∆ in one trajectory to another

with equal step size.

With this relative pose error, a total relative pose error can be computed as well as a total

pose error. Sturm et al. discusses the differences between using Absolute Trajectory Error (ATE)

and evaluating the RPE over all possible ∆, and conclude that there is practically no differences

between them (Sturm et al. (2012)). In this report, the metrics will mostly be used to compare

the implemented algorithms and not necessarily to give an absolute measure on the registration

quality. Based on the RPE, Sturm et al. suggests the following metrics for pose estimation error.

P A
t = 1

n

n∑
∆=1

√
1

m

m∑
i=1

||trans(Ei )||2 (5.3)

P R
t =

√
1

m

m∑
i=1

||trans(Ei )||2 (5.4)

P A
r = 1

n

n∑
∆=1

√
1

m

m∑
i=1

||rot(Ei )||2 (5.5)

P R
r =

√
1

m

m∑
i=1

||rot(Ei )||2 (5.6)

m and n are the number of estimated relative pose errors (which is the same as number of captured frames−
∆). The two are used simply to separate the two sums. ∆ is some fixed time interval, and Ei is

the relative pose error as calculated in equation 5.2. ||trans(Ei )|| is the euclidean length of the

translational component of the Ei matrix. In other words, it is the euclidean distance of the

translation. ||rot(Ei ) is the rotational length of the rotational component of the Ei matrix. This

technique is shown in section B.1.

The RPE based evaluation metrics are sensitive to extreme outliers. These outliers are sig-

nificantly off the actual path and will give large error estimations if the algorithm that can give

extreme outliers. These outliers can easily be rejected during the registration, and should there-
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fore be accounted for by some error estimation. Initially, an error metrics that took this into

consideration was proposed, but as shown in section 6, most of the registrations was valid, and

those metrics didn’t show much extra. The suggested metrics was based on only selecting the

metrics that had a translational or rotational error below a certain threshold (either by counting

them or computing the RPE based metrics only on those RPE-measures). It was concluded that

in the case of extreme outliers, it was a more effective measure to simply show the trajectory and

show the RPE based measures from equations 5.3, 5.4, 5.3 and 5.6 instead.

Performance

Since the goal of the project is to perform point cloud registration in real-time, it is important

to have a measure of performance. Given real-time considerations, the interesting factor is the

time it takes to perform a registration. Therefore, ”wall” time is used to measure the perfor-

mance of the algorithms, which is simply to calculate the difference of the system clock before

the registration is started and after it is completed. The registration framework described in sec-

tion 4.3, logs the time at different stages in the program, which in turn is used to compute the

wall time.

One issue with wall time is that it is dependent on unknown factors present in the operating

system and computer. The operating system might be configured to give stable behaviour in

this manner, but this is not done for this project as it probably is a tedious process expected to

have minimal effect on the end result. Instead, the registration program is run alone on the com-

puter (together with a bare minimum of background processes to keep the computer running)

to reduce the impact of the unknown factors.

5.1.4 Experimental setup

This section will go through the parameters, filters and algorithms that where used for different

experiments. It will contain a list of the experiments that was run.

Default parameters

All meaning of all arguments are explained in appendix C. The following list contain parameters

that was used on all registrations.

Normals radius = 0.005 Though normals are not computed for all experiments, the normal ra-

dius is set to this value when it is computed. The normals are always computed when

using the point to plane lls transformation estimator or the normal shooting correspon-

dence estimator. It is not computed for all other tests.
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xmi n xmax ymi n ym ax zmi n zmax

Apple -0.15 0.15 -0.10 0.10 0.001 10.0
Banana -0.10 0.10 -0.05 0.05 0.001 10.0

Box -0.13 0.13 -0.12 0.12 0.001 10.0
Cap -0.20 0.20 -0.20 0.20 0.001 10.0
Cast -0.10 0.10 -0.07 0.07 0.001 10.0

Fruits -0.10 0.10 -0.10 0.10 0.001 10.0
Hat -0.13 0.13 -0.10 0.10 0.001 10.0

Monkey -0.12 0.12 -0.08 0.08 0.001 10.0
Pear -0.10 0.10 -0.10 0.10 0.001 10.0

Plastic -0.10 0.10 -0.10 0.10 0.001 10.0
Pork chop -0.20 0.20 -0.20 0.20 0.001 10.0

Lettuce -0.20 0.20 -0.20 0.20 0.001 10.0
Pork filet -0.20 0.20 -0.20 0.20 0.001 10.0
Salmon -0.20 0.20 -0.20 0.20 0.001 10.0

Table 5.1: Table is showing the correspondence rejection boxes used for the different test sets.
The boxes are represented using boundaries for each dimension, which is the way it is repre-
sented in the registration framework. All values are in cm. As all values are specified in camera
coordinates, the boxes are long and thin. Note that the x and y dimensions of the hand-held
scans are relatively large, as the objects are not guaranteed to be centered in the camera frame.

Color This argument is always enabled. It has no effect on the registration, but using color gives

better visualizations.

Use previous transform This argument makes the registration algorithm use the transforma-

tion of the previous image as initial alignment.

Post filter A voxel grid post filter was used on all datasets. The leaf size was set to 0.001 m (1

mm). As noted in section 4.3, the post filter is applied on the accumulated cloud after

registration. The reason for this is to keep the frame rate more stable and keep the accu-

mulated point cloud to grow too big.

Default correspondence box

Some of the point tests used the correspondence box rejector described in section 4.5. For a

given test set, the same correspondence rejection box was used. Table 5.1 shows the boundaries

of the correspondence rejection boxes for each of the test sets that used it.

Best registration experiment

The first test presented is simply the currently best found parameters for registration of each

of the scenes described in section 5.1.2. The strategy for finding these parameters was simply
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trial and error, where new arguments was tried until the result was satisfactory. Later chapters

will explore some of these parameters in more depth. This experiment is designed to give some

good initial default parameters. The following list contains all parameters that was used for all

test sets for the best registration:

Transformation estimation = ”point to plane lls” This was found to give the best and fastest

convergence for the best registrations found.

Correspondnece estimation = ”nearest point”

Fitness epsilon = 1 ·10−8

Transformation epsilon = 1 ·10−8

Max iterations = 50

Algorithm = ”ICP kD-tree GPU” Given a large enough stack, the GPU implementation performed

as good as the PCL implementations.

Stack size = 20 This was deep enough for most point clouds in this project.

Defaults Default arguments as specified in section 5.1.4.

The only remaining arguments is the correspondence rejection box. The boundaries are de-

fined in table 5.1. The correspondence rejection box was only used for the banana, cap, cast,

hat, monkey, plastic, pork-chop, pork-filet, salmon and lettuce datasets. The tests used a frame

rate of 2.5 FPS, resulting in a total of 34 images. Note that even though the frame rate is 2.5 FPS,

it might use more time for the actual registration.

The results from these registrations are shown in figure 6.1 and 6.2. Additionally, the evalu-

ation tool 4.6.5 was used to plot the estimated trajectory from the registrations and the error

metrics from section 5.1.3. This is shown in figure 6.3 and table 6.1.

Iteration count experiments

These experiments were created to show how the number of iterations effect the registration

performance and quality. The idea is to set the fitness epsilon and transformation epsilon suf-

ficiently low, such that the iteration count is the limiting termination criteria. The following list

were the default arguments used for this experiment:

Fitness epsilon = 1 ·10−10
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Transformation epsilon = 1 ·10−10

Algorithm = ”ICP kD-tree GPU” Given a large enough stack, the GPU implementation performed

as good as the PCL implementations.

Stack size = 20 This was deep enough for most point clouds in this project.

Defaults Default arguments as specified in section 5.1.4.

Different combinations of transformation estimation, correspondence estimation and algo-

rithm are tried while the number of iterations are varied. This test set was run on the fruits

dataset, using a framerate of 1.25 FPS giving a total of 16 images to register. Note that even if

the framerate is 1.25 FPS, the registration might use more time per image than this. The results

from this is shown in figures 6.8 and 6.9. Additionally, table 6.2 is provided to show how many of

the registrations that were successful for the different variations tried.

Fitness epsilon experiments

This experiment was identical to the iteration count experiment in section 5.1.4 except for the

fitness epsilon and iteration count. The fitness epsilon was varied while the maximum itera-

tion count was kept constant at 500. The results from this experiment is shown in figures 6.10

and 6.11. Additionally, table 6.3 is provided to show how many of the registrations that were

successful for the different variations tried. Refer to section 5.1.4 for more details and default

parameters.

Transformation epsilon experiments

This experiment was identical to the iteration count experiment in section 5.1.4 except for the

transformation epsilon and iteration count. The transformation epsilon was varied while the

maximum iteration count was kept constant at 500. The results from this experiment is shown

in figures 6.12 and 6.13. Additionally, table 6.4 is provided to show how many of the registrations

that were successful for the different variations tried.. Refer to section 5.1.4 for more details and

default parameters.

Experimenting with frame rate

Another interesting question regarding real-time registration is requirements on frame-rate.

This test is designed to vary the frame rate and evaluate the registration quality and perfor-

mance under those changes. The following list contains the constant registration parameters

that was run for all the image tests:
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Max iteration count = 50

Fitness epsilon=1 ·10−8

Transformation epsilon=1 ·10−8

Stack size = 20 This was deep enough for most point clouds used in this project.

Defaults Default arguments as specified in section 5.1.4.

Different combinations of transformation estimation, correspondence estimation and algo-

rithms was tried while the frame rate was varied. The results from this is shown in figures 6.14,

6.15 and 6.16. Additionally, table 6.5 is provided to show how many of the registrations that were

successful for the different variations tried. The dataset used for this experiment is the ”fruits”

dataset. Consult appendix C for more details on the arguments used.

Scan method experiments

The scan methods introduced in section 5.1.2 are evaluated by testing a few registration algo-

rithms. The goal is to evaluate how good the registration algorithms are to track different scan

methods. The following registration arguments were used for all experiments regarding the scan

method:

Max iteration count = 50

Fitness epsilon=1 ·10−8

Transformation epsilon=1 ·10−8

Correspondence estimation = ”nearest point” This was used as there was no significant dif-

ferences between the different correspondence estimators (further discussed in section

7.8)

Stack size = 20 This was deep enough for most point clouds used in this project.

Defaults Default arguments as specified in section 5.1.4.

The transformation estimation, algorithm and scan method was varied for the different scan

methods. The results from these experiments are shown in table 6.6 and figure 6.5, both gen-

erated using the evaluation tool 4.6.5. Each test set was designed to approximately 16 images,

which gave slightly different results in both frame rate and number of images. This was the

results as a steady frame rate was desired. Though the frame rate is specified, the actual reg-

istration might have used more or less time. The following list contains the actual number of

images and frame rates used in the registrations:
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Square 16 images was used, giving a frame rate of 1 FPS.

Long swipe 16 images was used, giving a frame rate of 2.5 FPS.

Short swipe 17 images was used, giving a frame rate of 3.33 FPS.

Translation 16 images was used, giving a frame rate of 2 FPS.

Triangle 15 images was used, giving a frame rate of 1.11 FPS.

Zoom move 19 images was used, giving a frame rate of 3.33 FPS.

Zoom 17 images was used, giving a frame rate of 2.5 FPS.

Stack size experiments

The major question regarding the proposed kD-tree search method in section 4.4.3 and 4.4.4 is

how the stack size affects the registration performance and quality. The following registration

parameters where the defaults used for the experiments used to evaluate the effect of stack size:

Max iteration count = 50

Fitness epsilon=1 ·10−8

Transformation epsilon=1 ·10−8

Correspondence estimation = ”nearest point” This was used as there was no significant dif-

ferences between the different correspondence estimators (further discussed in section

7.8)

Algorithm = ICP kD-tree GPU This is the GPU implementation of the kD-tree search as de-

scribed in section 4.4.4.

Defaults Default arguments as specified in section 5.1.4.

The dual quaternion and point to plane lls transformation estimator was evaluated while

varying the stack size of the kD-tree serach. The results from this is shown in figure 6.18, 6.19.

The frame rate was kept constant at 1.25 FPS giving a total of 16 images. Though the frame rate

is 1.25 FPS, the registration might have a faster or lower frame rate depending on the registration

time. The test set is the ”banana” test set.
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Additionally, the fitness score was evaluated for different stack sizes and different iteration

counts. The test is identical to that described above, the only difference is described in the

following list:

Fitness epsilon=1 ·10−12

Transformation epsilon=1 ·10−12

Experiments with the voxelized ICP algorithm

This test was a quite extensive test evaluating both the basic voxelized ICP algorithm and the

suggested improvements. This test experiment also included a comparison using a voxel grid

filter to compare the voxelized algorithms performance and correctness to other similar ap-

proaches. As with the previous tests, this test contains a few default parameters that is presented

in the following list:

Max iteration count = 50

Fitness epsilon=1 ·10−8

Transformation epsilon=1 ·10−8

Defaults Default arguments as specified in section 5.1.4.

The other parameters such as transformation estimation, voxel size, number of voxel search

levels, voxel level downscale and pre-search range was varied and evaluated (read section C for

the meaning of these parameters). The frame rate was kept at 2.5 FPS (note that this is refer-

ring to the capture frame rate and not the registration frame rate). The test set used was the

”fruits” dataset. The different approaches varying voxel size, voxel search levels and voxel level

downscale is shown in figure 6.21a and figure 6.23a.

A similar method to the one above was performed for the pre-search strategy. The voxel search

levels and voxel level downscale parameters are not used, and the pre-range search is used in-

stead. The results from this is shown in figure 6.21b and figure 6.23b.

Similarily, the same parameters was used for the voxel grid search filter. The voxelized algo-

rithm was replaced with the kD-tree GPU ICP algorithm. The voxel size (also called leaf size)

was varied, and the results are shown in figures 6.22 and 6.24.



CHAPTER 6

Results

This chapter will show the results from the experiments described in chapter 5.1.

6.1 Registration results

Section 5.1.4 described how the default parameters were found to give good registration results.

A point cloud visualization of these parameters is shown in figure 6.1 for each of the robot-based

scans. Similarily, figure 6.2 shows a point cloud visualization when using the best found param-

eters for the free-hand scans. These figures show that a good registration is found, that has con-

verged to the correct minima for all images. No other registration is expected to be significantly

better than these, and they are considered good enough for a robotics application. Based on this,

table 6.1 shows the RPE based error measures for the registrations shown in figure 6.1. Because

no other registrations are expected to give better results than those shown in figure 6.1, table

6.1 is used as a reference on what to expect from a good registration given the setup explained

here. The corresponding estimated trajectories from the registrations are shown in figure 6.3. In

this figure, the estimated trajectory from the registration is plotted together with the estimated

reference trajectory from the robot. By comparing table 6.1 and figure 6.3, it’s possible to see the

relation between the estimated trajectory and the corresponding error measures.

6.2 Camera differences

This section is based on an observation when scanning some food objects in which a distortion

pattern was observed when using the SR300 camera. Figure 6.4a and 6.4c shows a comparison

91
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(a) Apple (b) Banana (c) Box (d) Cap

(e) Cast (f) Fruits (g) Hat (h) Monkey

(i) Pear (j) Plastic

Figure 6.1: Figure showing the accumulated point clouds of the objects described in section
5.1.2. This figure is considered an near-optimal registration of the objects shown in the figure,
meaning that it’s not expected to get any better registrations in this project, and that the regis-
tration quality of these images are good enough for a robotics application. Table 6.1 shows the
RPE based registration errors from these images. The figures are generated using the PCL viewer
tool in the PCL package.
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(a) Lettuce (b) Pork filet (c) Pork chop (d) Salmon

Figure 6.2: Figure showing the accumulated point clouds of the objects described in section
5.1.2. This figure is considered a near-optimal registration, meaning that it’s not expected to
get any better registrations in this project, and that the registration quality of these images are
good enough for a robotics application. Note that there are placed a lot of boxes in the scene.
This was done due to an earlier version of the registration framwork that didn’t support point
correspondence rejectors. It’s unknown if these reference objects actually are required given the
latest version of the registration framework, but the registration would probably be fine even
without the extra objects added to the scene, though the pork-chop and salmon would be harder
than the pork filet and lettuce. The figures are generated using the PCL viewer tool provided with
the PCL package.

P R
t P A

t P R
r P A

r

apple 0.032 0.091 0.131 0.397
banana 0.034 0.091 0.130 0.386

box 0.032 0.090 0.130 0.394
cap 0.031 0.090 0.127 0.387
cast 0.034 0.092 0.128 0.387

fruits 0.032 0.091 0.130 0.393
hat 0.030 0.088 0.124 0.382

monkey 0.031 0.089 0.126 0.386
pear 0.031 0.353 0.133 0.482

plastic 0.034 0.093 0.129 0.385

Table 6.1: Table showing the error metrics (as described in section 5.1.3) for the registrations
explained in section 5.1.4, and shown in figure 6.1. These registration are considered to be near-
optimal, meaning that no other registration is expected to noticeable better. This table is there-
fore used as a reference on what the evaluation metrics show for good registrations. As explained
in section 5.1.3, P A

t is the RMSE of the RPE error for each frame, P A
t is the RMSE of the absolute

RPE error. Both is the translational components. P R
r and P A

r are the same metrics applied to the
rotational error instead of the translational. This table shows that each frame has about 3 cm
of drift from the reference path (could possibly be camera calibration issues or timing issues).
Note that the fitness measure is not included.
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(a) Apple (b) Banana (c) Box (d) Cap

(e) Cast (f) Fruits (g) Hat (h) Monkey

(i) Pear (j) Plastic

Figure 6.3: Figure showing the estimated trajectories of the scans shown in section 6.1 and figure
6.1. The estimated paths (green line) are plotted together with the reference path (red line)
obtained from the robot pose estimation. The robot trajectory for these scans are the triangle
scan trajectory from figure 6.5b. These figures are shown from a top view (looking down on the
objects) which is the most interesting view for the reference path plot. The 3 cm drift per frame
observed in 6.1 is reasonable considering this figure.
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(a) D435 Depth (b) D435 Color (c) SR300 Depth

Figure 6.4: Figure showing some distortion artifact observed using the SR300 camera. (a) shows
a depth image of a pork chop using the Intel RealSense D435 camera, (b) shows the same object
with the color camera of the D435 camera and (c) shows a depth image of the same object using
the Intel RealSense SR300 camera. The images are screenshots from the rs-capture tool provided
with the Intel RealSense software (Intel (2018a)).

between the depth images from the SR300 camera and the D435 camera, showing the distortion

pattern observed with the SR300 camera. The reason this pattern is observed is briefly discussed

in section 7.6.

Other than the distortion patter, there are a few other differences between the cameras. Some

of them will be mentioned instead of visualized as the differences are less significant. All of the

following observations are observed for this project.

The D435 get certain ”holes” in the depth stream indicating unknown depths, which is not

the case for the SR300 camera. This is also seen in figure 6.4. This can be avoided by using

hole-filling techniques in software, but in general, these ”holes” are not an issue for a regis-

tration of reconstruction. Another difference is that the D435 camera works better for further

distances. As the D435 camera is a stereo camera, it isn’t as dependent on the projected pattern

as the SR300 camera. However, when scanning smaller objects close to the camera as done in

this project, the SR300 camera generally gives better images and works better at close distances

than the D435 camera. Another observation is that the SR300 is somewhat more limited on the

surfaces it is able to scan. The SR300 is unable to reconstruct the depth of objects with certain

optical properties. This is typically absorption and reflections that are present in certain types

of plastics. The plastic example in figure 6.1i is an example of one such object.

6.3 Camera and robot paths

This section will show the estimated camera trajectories for the robot scans and free-hand scans.
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6.3.1 Robot trajectories

Section 5.1.2 describes all the different robot-scan trajectories used for this project. The esti-

mated trajectories based on the internal pose estimation of the robot is shown in figure 6.5. The

figure clearly shows that the robot moves in a linear accelerating motion between waypoints.

The markings on the path is setup at regular intervals, and indicate the orientation of the cam-

era. They represent the coordinate axes of the camera (red is x, green is y, and blue is z). This

shows that for most scans, the blue line (viewing direction of the camera) is pointing towards

a center point, which is the approximately at the center of the object. The figures show that

the robot follows the expected trajectory based on the waypoints and movement methodology

described in section 4.1.

To make the trajectory show the camera trajectory instead of the end-effector trajectory, a

transformation matrix was applied to all the end-effector poses. This transformation matrix

was found using the calibration guide by VISP (2018). The resulting transformation matrix is the

following:

T =


0.04764713966 −0.9410012188 −0.3350320227 0.02151870377

0.9980178969 0.05865345273 −0.02280460337 −0.01713208633

0.04110994447 −0.3332813805 0.9419307267 −0.048754478

0001


This matrix was applied to all poses obtained from the Franka robot before plotting or com-

parison with the reference trajectories obtained from the robot.

6.3.2 Estimated free-hand trajectories

Section 5.1.2 describes how the free-hand scans are performed. The estimated camera trajectory

estimated from doing the registrations are shown in figure 6.6. As with the robot scans, the

markings are placed at regular intervals to indicate the orientation of the camera (see section

6.3.1). The trajectories look similar to the actual trajectories done, though no external tracking

was performed to verify this claim, but the registrations shown in figure 6.2 indicate that the

registrations was quite good, meaning that these trajectories are relatively precise.

6.4 ICP variations

Section 4.6.4 describes an experiment to find good convergence criteria. This section will focus

on the results from these experiments, and will show both performance and error-measures.
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(a) Square scan (b) Triangle scan (c) Short Swipe scan

(d) Long swipe scan (e) Translation scan (f) Zoom scan

(g) Zoom movement scan

Figure 6.5: Figure showing the paths of the camera based on the estimated pose of the robot.
The viewpoint of figure is positioned along the axis of least variance (meaning that as little as
possible of the 3D information of the figure is removed in the projection). The markings on the
trajectory indicate the coordinate axes of the camera at a given time (red is x, green is y and z is
blue).
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(a) Lettuce (b) Pork filet

(c) Pork chop (d) Salmon

Figure 6.6: Figure showing the estimated trajectories of the free-hand scans from section 5.1.2
whose accumulated point clouds are shown in figure 6.2. The markings on the estimated tra-
jectory correspond to where the individual images are taken (which is not the case in figure
6.5). The trajectories show a realistic path based on how the real scans were performed which
indicate a good registration result.
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Number of iterations
1 8 16 32 64 128

icp voxel gpu, nearest point, dual quaternion 4 1 1 1 1 1
icp gpu, nearest point, dual quaternion 1 1 1 1 1 1
icp gpu, nearest point, point to plane lls 15 3 1 1 1 1

icp voxel gpu, nearest point, point to plane lls 15 0 0 4 0 0
icp voxel, nearest point, point to plane lls 0 0 0 0 0 0

Table 6.2: Table shows the number of valid registrations performed for different variations of the
ICP algorithms shown in figure 6.8 and 6.9. As the test set contains 15 images, it’s desirable to
have 15 in all cells in the table. This means that the registration parameters were suboptimal for
the algorithms that show fewer than 15 successful registrations. Read this together with figures
6.8 and 6.9. Note that the algorithms that performed all 15 registrations correctly are left out of
this table.

6.4.1 Trajectory estimation

First of all, figure 6.7 shows the estimated path from some of the different ICP variations evalu-

ated. Note that compared to figure 6.3, figure 6.7 use half the number of images and does not

include the last image. Therefore, the reduced precision and lack of loop closure is expected.

6.4.2 Varying number of iterations

This section will focus on how some of the evaluation metrics change when varying the maxi-

mum number of iterations in the ICP algorithm.

Figures 6.8a and 6.8b show the running times of different versions of the ICP algorithm when

varying the maximum number of iterations. This figure does not show the entire truth because

the point to plane lls transformation estimator reached convergence based on the fitness or

transformation epsilon (section 7.8) before reaching the iteration count criteria. These varia-

tions simply converged a lot faster than expected. Also note that a few algorithms have been

left out because the registrations failed. The ICP voxel GPU implementation also has a drop in

running time when increasing number of iterations. This is also because the registration fails in

the middle of the search, giving better results than expected.

The translational RMSE of the RPE error corresponding to the running times shown in figure

6.8 is shown in figure 6.9. As multiple of the algorithms might be unable to perform the reg-

istrations, this figure should be read together with table 6.2, which shows the number of valid

registrations for each configuration of the algorithm. The table has only included the algorithms

that got at least one invalid registration.
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(a) Nearest point
dual quaternion

(b) Nearest point
point to plane lls

(c) Nearest point
svd

(d) back projection
dual quaternion

(e) back projection
point to plane lls

(f) normal shooting
dual quaternion

(g) normal shooting
point to plane lls

(h) voxelizied
dual quaternion

Figure 6.7: Figure showing the estimated trajectory of the different icp-variations evaluated.
Note that the voxelized search with the point to plane lls transformation estimator is not shown
here because it was unable to find correspondences. The figure shows a slight drift from the
optimal registrations in figure 6.3, but also note that this registration used half of the framerate,
which also removed the final image (thereby the lack of loop closure on a few of the scans). This
figure show that there is little difference between the algorithms. The dual quaternion and SVD
transformation estimators shown in (a), (c), (d), (f) and (h) have a slightly larger drift to the left
side of the image compared to the tighter fit of the point to plane lls transformation estimator
shown in (b), (e) and (g). The voxelized ICP variation sticks out as a lot worse than the other
variations in (h).
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(a) Slowest ICP variations (b) Slowest ICP variations

Figure 6.8: Figure showing the total running time of different variations of the ICP algorithms
run on the fruits dataset with 16 images when varying iteration count. The slowest algorithms
are shown in (a) and the fastest in (b), and time is measured in seconds. Note that a few algo-
rithms have been left out because the registration failed (see table 6.2). Also note that ”icp voxel
gpu, point to plane lls” algorithm also failed the registration which is the cause for the strange
running time drop in (b). The point to plane lls algorithms terminated unexpectedly fast, reach-
ing some other convergence criteria before the iteration count criteria, which explains the flat-
tening in the figure.

(a) Slowest ICP variations (b) Fastest ICP variations

Figure 6.9: Figure showing the RMSE of the translational RPE error with ∆= 1 of different varia-
tions of the ICP algorithms varying iteration count. The slowest algorithms are shown in (a) and
the fastest in (b). Note that a few algorithms have been left out because the registration failed
(see table 6.2 for a list of the algorithms that failed. It is adviced to read that table together with
this data). Also note that a few of the algorithms are hidden behind the black line because the
function quite similar, and therefore gives similar error values. The zero values in (b) means that
no valid registration was found.
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(a) Slowest ICP variations (b) Slowest ICP variations

Figure 6.10: Figure showing the total running time of different variations of the ICP algorithms
run on the fruits dataset with 16 images when varying fitness epsilon. The slowest algorithms are
shown in (a) and the fastest in (b), and time is measured in seconds. Note that a few algorithms
have been left out because the registration failed (see table 6.3). The figure shows that the fitness
epsilon has little effect on running time. This was because the fitness epsilon was set too high,
and the algorithm terminated immediately.

6.4.3 Varying fitness epsilon

As mentioned in section , the fitness epsilon is one convergence criteria. This section will show

some evaluation metrics of different variations of the ICP algorithm when varying the fitness

epsilon termination criteria.

Figure 6.10 shows the running times of different variations of the ICP algorithm when varying

the fitness epsilon convergence criteria. A few variations have been left out of the figure because

they gave invalid results (these are shown in table 6.3). The figure shows that performance is

somewhat better for a larger fitness epsilon, but for many of the algorithms, the graph looks

flat. This indicates that the fitness epsilon values slightly missed the important area where the

change is more significant. All the selected values were quite high, and given the unexpected

fast convergence of the point to plane lls transformation estimator, it quickly skipped fitness

epsilon values tested. The ICP algorithm is designed to minimize this metric, and it’ is therefore

expected to drop quite fast.

The corresponding error estimations of the running times shown in figure 6.10 is shown in

figure 6.11. Table 6.3 shows how many valid registrations done for some of the datasets. The

ones that are not shown in the table had all 15 registrations valid. This should be read together

with figure 6.11. As mentioned in the previous paragraph, the error measures presented in figure
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(a) Slowest ICP variations (b) Fastest ICP variations

Figure 6.11: Figure showing the RMSE of the translational RPE error with∆= 1 of different varia-
tions of the ICP algorithms varying fitness epsilon. The slowest algorithms are shown in (a) and
the fastest in (b). Note that a few algorithms have been left out because the registration failed
(see table 6.3 for a list of the algorithms that failed. It is adviced to read that table together with
this data). Also note that most of the algorithms are hidden behind bottom the black line. The
zero values in (b) means that no valid registration was found. The figure shows that selected
fitness epsilon gave no variation in the error, because the values were to high, and the algorithm
terminated immediately.

6.11 are also quite flat, meaning that the tested fitness epsilon values was reached too quickly,

not showing any differences in the registration.

6.4.4 Varying the transformation epsilon

The final convergence criteria available in PCL is the transformation epsilon. This section will

show a few evaluation metrics when varying the transformation epsilon.

The running time of the same variations of the ICP algorithm as used previously is shown in

figure 6.12. This figure clearly shows that the performance is increased as the transformation

epsilon is increased.

The corresponding error metrics to the running times shown in figure 6.12 is shown in fig-

ure 6.13. The figure show that the error is slightly increased as the transformation epsilon is

increased. However, for the GPU implementations, the error is not changed much when in-

creasing the transformation epsilon.
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Fitness epsilon
6.10352e-07 2.44141e-06 3.90625e-05 0.000625

icp voxel, nearest point, point to plane lls 0 0 0 0
icp gpu, nearest point, point to plane lls 1 1 1 1

icp voxel gpu, nearest point, point to plane lls 0 0 2 0
icp gpu, nearest point, dual quaternion 1 1 1 1

icp voxel gpu, nearest point, dual quaternion 1 1 1 1

Table 6.3: Table shows the number of valid registrations performed for different variations of the
ICP algorithms shown in figure 6.10 and 6.11. As the test set contains 15 images, it’s desirable
to have 15 in all cells in the table. This means that the registration parameters were suboptimal
for the algorithms that show fewer than 15 successful registrations, and they failed after zero
or a few images. Read this together with figures 6.10 and 6.11. Note that the algorithms that
performed all 15 registrations correctly are left out of this table.

(a) Slowest ICP variations (b) Slowest ICP variations

Figure 6.12: Figure showing the total running time of different variations of the ICP algorithms
run on the fruits dataset with 16 images when varying the transformation epsilon. The slowest
algorithms are shown in (a) and the fastest in (b), and time is measured in seconds. Note that
a few algorithms have been left out because the registration failed (see table 6.4). The ”ICP
voxel” timings in (b) is strange because it was unable to register all images. Figure shows that
slacking the transformation epsilon does improve performance. The zero value indicates that
the registration was invalid.
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(a) Slowest ICP variations (b) Fastest ICP variations

Figure 6.13: Figure is showing the RMSE of the translational RPE error with ∆ = 1 of different
variations of the ICP algorithm varying transformation epsilon. The test is run on the ”fruits”
test set with a total of 16 images. The slowest algorithms are shown in (a) and the fastest in (b).
All algorithms have been included, but some of them contains invalid registrations which can
be seen in table 6.4. The invalid registrations are shown as zeros in this figure. The figure shows
that slacking the transformation epsilon somewhat gives worse registrations. The GPU versions
in (b) show less effect on this value.

Transformation epsilon
7.8125e-05 0.00015625 0.000625 0.0025 0.01

icp voxel gpu, nearest point, dual quaternion 1 1 1 15 15
icp voxel, nearest point, point to plane lls 0 0 0 0 0
icp gpu, nearest point, dual quaternion 1 1 1 1 1

icp voxel gpu, nearest point, point to plane lls 0 13 15 0 0

Table 6.4: Table shows the number of valid registrations performed for different variations of the
ICP algorithms shown in figure 6.12 and 6.13. As the test set contains 15 images, it’s desirable
to have 15 in all cells in the table. This means that the registration parameters were suboptimal
for the algorithms that show fewer than 15 successful registrations, and they failed after zero
or a few images. Read this together with figures 6.12 and 6.13. Note that the algorithms that
performed all 15 registrations correctly are left out of this table.
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(a) Slowest ICP variations (b) Fastest ICP variations

Figure 6.14: Figure showing the total running time of different variations of the ICP algorithms
run on the fruits dataset when varying number of images. The slowest algorithms are shown in
(a) and the fastest in (b), and time is measured in seconds. The figure show that performance
is increased by using more images, but due to a worse initial alignment, the correspondence
estimation step takes slightly longer time per image compared when using fewer images.

6.4.5 Varying number of images

This section will show evaluation metrics when varying the number of images used in the regis-

tration based on the method described in section 5.1.4.

The running time of the different ICP variations when varying the number of images in the

registration are shown in figure 6.15. It’s clear that the number of images greatly affects the

running time, but some of the variations flattens flattens slightly. Note that it’s really the frame

rate that changes, meaning that more images gives a smaller step for the robot arm between

consecutive images. Because of this, the initial alignment between consecutive images better

which reduces the search time slightly.

Again, the performance is presented together with the error metrics. The error measures re-

lated to the figure 6.14, the RMSE of the translational RPE with ∆ = 1 is shown in figure 6.15.

The problem with this measure is that it shows the RMSE of the RPE error between each frame,

meaning that using more frames is expected to give less drift per image. Therefore the abso-

lute error (as described in section 5.1.3) is shown in figure 6.16. As the metric averages over all

∆ it takes all steps in to consideration (but is still rewarding the small steps slightly more than

large steps). Because of this, the absolute error flattens out when using enough images. Based

on figure 6.16 even using 8 images gives quite good results, and going going above 17 generally

seems to be just as good as more images for most variations. The only difference is the voxelized
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(a) Slowest ICP variations (b) Fastest ICP variations

Figure 6.15: Figure showing the RMSE of the translational RPE error with ∆= 1 of different vari-
ations of the ICP algorithm when varying number of images. The test was run on the ”fruits” test
set. The slowest variations are shown in (a) while the fastest are shown in (b). As some of the reg-
istrations were unsuccessful, table 6.5 shows the number of valid registrations for the different
number of images tried in this figure. The table is used together with this figure to evaluate the
error of the registrations. The figure show that the error per image goes down as more images
are added. This is expected, and a bit hard to interpret, so see figure 6.16 for the absolute errors.

methods which generally is unable to get a valid registration using less than 34 images.

6.5 Scan method results

This section shows the results from the different scan methods as described in section 5.1.4. The

table is used to compare the different ICP variations on the test sets. It’s hard to compare the ac-

tual methods to each other as they have a different number of images and distance between

them. Therefore, figure 6.17 is included to give a visual comparison of the scan methods and

the point to plane lls transformation estimator. In this figure, it’s only the triangle and transla-

tion scans that are completely off. The zoom scan also have done a single mistake at the end.

However, the triangle scan has shown better results in figure 6.3, so this was probably an un-

lucky single event for the triangle scan method. The same could be said for the translation scan,

but during the project, there has been little luck getting good registrations with the translational

scan method. One example of one such trial is shown in section 6.9, but is generally a hard

task without a good initial alignment. The long-swipe, short-swipe and zoom move scan has

relatively good registrations apart from the wrong alignment in the scan start.
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(a) Slowest ICP variations (b) Fastest ICP variations

Figure 6.16: Figure showing the absolute translational RPE error as described in section 5.1.3 of
different variations of the ICP algorithm when varying number of images. The test is run on the
”fruits” dataset. The slowest variations are shown in (a) while the fastest are shown in (b). As
some of the registrations were unsuccessful, table 6.5 shows the number of valid registrations
for the different number of images tried in this figure. The table is used together with this figure
to evaluate the error of the registrations. This figure shows that the total absolute error is more
or less unaffected by the number of images used. This indicates that the algorithm is able to
perform all registrations correctly, even with low frame rates.

Number of images
4.0 8.0 17.0 34.0 69.0

icp gpu, nearest point, point to plane lls 0 1 1 32 66
icp gpu, nearest point, dual quaternion 0 0 1 32 66

icp voxel gpu, nearest point, dual quaternion 0 0 1 32 66
icp voxel, nearest point, point to plane lls 0 0 0 0 0

icp voxel gpu, nearest point, point to plane lls 0 1 0 0 1

Table 6.5: Table shows the number of valid registrations performed for different variations of
the ICP algorithms shown in figures 6.14, 6.15 and 6.16. As the test set contains 15 images,
so it’s desired to have 15 in all cells in the table. This means that the registration parameters
were suboptimal for the algorithms that show fewer than 15 successful registrations, and they
failed after zero or a few images. Read this together with figures 6.14, 6.15 and 6.16. Note that
the algorithms that performed all 15 registrations correctly are left out of this table. This table
corresponds to figures 6.15 and 6.16.
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Scan method
cross l.swipe s.swipe trans triang. zoom z. m.

icp pcl, dual quaternion 0.076 0.024 0.013 0.110 0.076 0.071 0.044
icp pcl, point to plane lls 0.049 0.024 0.012 0.081 0.073 0.067 0.037

icp kd tree gpu, dual quaternion 0.065 0.035 0.014 0.090 0.090 0.066 0.040
icp kd tree gpu, point to plane lls 0.055 0.037 0.013 0.142 0.109 0.151 0.038

icp voxel, dual quaternion 0.139 0.026 0.017 0.110 0.366 0.217 0.095
icp voxel, point to plane lls 0.000 0.000 0.000 0.000 0.000 0.000 0.058

icp voxel gpu, dual quaternion 0.215 0.136 0.205 0.157 0.302 0.000 0.000
icp voxel gpu, point to plane lls 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 6.6: Table showing the translational RPE with ∆ = 1 for the different scan methodologies
described in section 5.1.4 and different variations of the ICP algorithm. Note that some values
are zero, which means that the registration failed. The table again show that the point-to-plane
lls transformation estimator is the most accurate for most test sets. The dual quaternion method
comes in between and the voxelized methods are worst. One additional thing to note is that the
GPU implementations perform slightly worse than the CPU implementations. The table also
shows that the tranlational, triangle and zoom scans are harder than the others. Figure 6.1 show
that the triangular scan is usable, so again, this could be caused by an unfortunate setup that
favored certain scan methods. See figure 6.17 for corresponding trajectories.

Considering all this data, there is little indication that any scan method is better than any

other. If a complete view of the object is required, the square, triangle or translation scan is

required. The triangle scan is slightly faster than square scan, and the translational scan is not

recommended if it can be avoided. The long-swipe and short swipe scans are good for a quick

scan if not an entire view of the object is required. The zoom scans (they are moving the camera

closer to the object, and is not actually zooming) show that the camera can be moved closer and

further away from the object if more or less detail is desired.

6.6 kD-tree search stack size

One important question regarding the kD-tree search is the size of the fixed size stack. This sec-

tion will show the results generated from the method described in section 5.1.4, which includes

performance and error measures comparisons.

6.6.1 Performance

The running time of the kD-tree search is shown in figure 6.18 where the stack size is varied.

The figure is based on the GPU implementation, but similar results are expected for the CPU

version. The corresponding error measures are shown in figure 6.19. These figures show what

is expected, which is that the registration takes more time when the stack size is increased, and
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(a) Square (b) Long swipe (c) Short swipe (d) Translation

(e) Triangle (f) Zoom (g) Zoom move

Figure 6.17: Figure is showing the estimated trajectory (green) for the point to plane lls transfor-
mation estimator and the reference robot trajectory (red) together for different scan methods.
Most figures shows correct results, while (d), (e), (f) shows some errors. The (e) and (f) set was
probably due to an ”unlucky” registration. This can happen because the parameters that work
for one type of algorithm might not work for another. The translation scan is generally hard as
the transformation estimator tries to align the underlying plane with maximum overlap instead
of maximizing the overlap of the objects themselves.
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Figure 6.18: Figure showing the running times of the GPU implementation of the ICP algorithm
using the kD-tree search when varying stack size. The test set is the ”banana” test set with a total
of 16 images giving a frame rate of 1.25 FPS. As expected, increasing the stack size gives a slower
algorithm. However, when using a stack larger than the depth of the tree (about stack size 20), it
makes little difference on performance.

that the error is reduced as the stack size is increased.

To show the convergence of the algorithms, figure 6.20 was included. However, looking at the

figure, the fitness value seems to increase as more iterations are performed. While some of the

large values are due to erroneous registrations, which can be compared with figure 6.19. The

reason for these results are discussed further in section 7.8.1.

6.7 Voxel search variations

As described in section 4.4.5, a few suggested improvements to the voxelized search correspon-

dence estimator which is the basis for the method described in section 4.4.5. This section will

also do a comparison of the voxelized search method and using a voxel grid filter and perform a

standard search.

Figure 6.21 shows the running time of different voxel sizes and variations of the voxel search

algorithm. The running times of a standard kD-tree search on the GPU usng a voxel-grid filter is

shown in figure 6.22.

As with the previous sections, the performance is presented with the some error evaluation

metrics in figure 6.23, and figure 6.24 for the voxel grid filter alternative. The voxelized algorithm
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Figure 6.19: Figure showing the RMSE of the RPE with ∆= 1 for the GPU implementation of the
ICP algorithm when varying the stack size. The test set is the ”banana” dataset with a total of 16
images. The figure shows that increasing stack size improves the registration quality, though it
can be acceptable in some cases to use a small stack size (stack size of 10, shows to be close the
the best registrations obtained). As the stack size is increased above 20, no precision is gained
because the stack size is as large as the depth of the kD-tree.

Fitness epsilon
0.002 0.003 0.005 0.007 0.01 0.03 0.05 0.1

icp voxel, pre-search range 2.0 7 20 32 - 32 32 - -
icp voxel gpu 23 32 32 9 32 32 32 32

icp voxel 32 32 32 32 32 32 32 32
icp voxel gpu, pre-search range 2.0 0 1 32 - 32 32 - -

icp voxel, pre-search range 8.0 0 1 6 - 32 32 - -
icp voxel gpu, pre-search range 8.0 0 2 32 - 32 32 - -

icp voxel, pre-search range 4.0 2 7 26 - 32 32 - -
icp voxel gpu, pre-search range 4.0 0 1 32 - 32 32 - -

Table 6.7: Table showing the number of registered images for the running times and error values
shown in figure 6.21 and 6.23. All sets contain 32 images, and any lower values indicate that
the registration failed. Registrations also failed where no counts are specified. As it’s desired
to complete all 32, any lower values in the cell indicate that the registration was more or less
unsuccessful.
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(a) Dual quaternion (b) Dual quaternion

(c) Point to plane lls (d) Point to plane lls

Figure 6.20: Figure showing the fitness values when varying the stack size in the GPU implemen-
tation of the ICP algorithm with both the dual quaternion and point to plane lls transformation
estimators. The fitness values are defined in section 5.1.3. The figure show that using more it-
erations give a worse fitness. This is not a good sign, but the fitness measures the closest point
error, which might not be the correct thing to do. Therefore, the desired property is to see that
it stabilizes at some point, which is the case when using larger stack sizes in (b) and (d). (a) and
(c) show that the convergence is less stable when not using a precise nearest neighbour search.
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(a) Multilevel (b) With pre-search

Figure 6.21: Figure showing the running times of different variations of the voxelized ICP al-
gorithm varying voxel size, multi-resolution levels and pre-search radius. The test is run on the
”fruits” dataset using a total of 32 images. (a) shows multiple variations of using multi-resolution
search while (b) shows multiple variations of the pre-search strategy, both explained in section
4.4.5. In (a), ”DF” is a shortening of dynamic factor, which is the number that is multiplied with
to get the voxel size of the next level (as described in section 4.4.5).

Figure 6.22: Figure showing the total running time of the kD-tree ICP GPU algorithms run on
the fruits dataset with 32 images when voxel-grid filter leaf size (voxel size). Because the nor-
mals radius was constantly kept at 5 mm, the point-to-plane lls transformation estimator failed
when the voxel size was any larger than this. The figure shows that performance can significantly
be increased by lowering the resolution of the input cloud. Smaller voxel sizes are performing
better on the GPU because the GPU implementation also search for the closest point in neigh-
bouring voxels (thereby increasing search range slightly).
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(a) Multilevel (b) With pre-search

Figure 6.23: Figure showing the RMSE of RPE with ∆= 1 for different variations of the voxelized
ICP algorithm. In (a), the ”DF” means dynamic factor, which is the number the voxel size is
multiplied by for each level. Note that the figure contains zero values. This indicates that the
registration was invalid. Refer to table 6.7 for which registrations was valid. The figure shows
that there is an optimal voxel size for the different variations. Note that the multi-resolution
variations are plotted at their starting resolution, and that the pre-search values are plotted from
the base resolution. The pre-search range denotes the pre-search radius in number of voxels.
The figure shows that there is a sweet spot for the voxel size to get good registration results.

Figure 6.24: Figure showing the RMSE of RPE with∆= 1 for two standard GPU implementations
of the ICP algorithm when varying the voxel size. Note that the figure contains zero-values,
indicating that the registration was invalid. The figure show that the registration error is not
affected much by the leaf size. Also note that the point to plane lls transformation estimation
was for some reason unable to perform the registrations here.
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(a) Voxelized ICP on CPU (b) Voxelized ICP on GPU

Figure 6.25: Figure showing the fitness values when varying the stack size in the voxelized ICP
algorithm. The fitness values are defined in section 5.1.3. The figure show that using more
iterations give a quite stable fitness. This is not a good sign, but the fitness measures the closest
point error, which might not be the correct thing to do. Therefore, the desired property is to see
that it stabilizes at some point, which is the case for some of the voxel sizes in (a). (b) show less
stable behaviour, which is probably caused by the race condition explained in section 4.4.6.

Finally, the fitness of the voxelized algorithm is presented in figure 6.25. As with the fitness of

the stack size in section 6.6, the algorithms converge to some error fitness value for a good voxel

size.

6.8 Correspondence rejection

This section is included to give a qualitative evaluation of the box correspondence rejector de-

scribed in section 4.5. In general, this section is included to show the importance of boundary

rejection strategies in general. Figure 6.26 shows some examples of registrations done with and

without the box correspondence rejector. The reason it’s done like this is that the previous used

error metrics will not necessarily show the quality of these images. There is only minor differ-

ences between figure 6.26c and 6.26d that would not show on the RPE based methods. The

fitness score also a bad idea as it probably is better for figure 6.26a the others because it is the

only method that directly optimizes the fitness score. Figure 6.26 shows that optimizing the

global fitness doesn’t necessarily give the best registration. The boundary rejection strategy en-

ables the algorithm to only optimize the important part of the point cloud instead of the global,

which might converge to a local minimum.
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(a) No correspondence rejection
Dual quaternion

(b) With correspondence rejection
Dual quaternion

(c) No correspondence rejection
Point to plane lls

(d) With correspondence rejection
Point to plane lls

Figure 6.26: Figure showing four registrations of the pork chop dataset using the dual quater-
nion and point to plane lls transformation estimators with and without a correspondence box.
It’s clear that using the correspondence box in (b) and (d) greatly improves the registration qual-
ity. It also shows that the point-to-plane lls transformation estimator in (c) and (d) gives better
registration quality than the dual quaternion approach in (a) and (b) for similar conditions and
arguments. (b) has converged to the correct minima, but the dual quaternion approach simply
requires a lot more iterations than the point to plane lls transformation estimator.



118 CHAPTER 6. RESULTS

6.9 Registration of translation scans

Based on the results in section 6.5, the translational scan seems like a bad idea. This section will

show the results of that section, explaining how a translational scan might be performed.

Figure 6.27 shows how application of filters can aid the registration. Though not perfect, figure

6.27b shows that the filtering makes a better registration than the unfiltered alternative.

The reason the unfiltered variant looks is unable to register the banana correctly is because of

the way the optimization stage in the ICP algorithm works. The problem is that if the algorithm

were to align the banana, a large portion of the underlying plane would be shifted outside of

the underlying plane of the reference point cloud. This in turn would give a significant distance

to the closest point, and the optimizer would shift the model cloud such that it’s better aligned

with the reference cloud. Because the banana is so small as it is, the correspondences of the

banana is simply not large enough compared to the much larger plane.

Another thing that makes this particular dataset hard is that the underlying plane is not per-

fectly flat. This is caused by some depth error produced by the camera itself, but the surface

itself is not very flat. Using a plane model segmentation filter would require to set a large dis-

tance threshold, that would remove large portions of the banana itself as well. If it was possible

to get the underlying plane to be more flat, the translational scan would be easier to register

because of this.

Other options could be to filter the point cloud based on color. By first using a color segmen-

tation on the banana, it could be possible to extract it from the plane. However, the plane in this

project has a quite similar color to the objects themselves. However, in a robotics application,

one option could for example be to color the plane red (given that it only work with bananas),

that would make color based filtering easier. As discussed in section 3.1.1, another point selec-

tion strategy could also help with this type of registration.

6.10 Real time registration video

As additional results, a video is provided with this report to show the GPU implementations can

perform registrations in real-time. The video shows that the framework is able to do real-time

registrations as the robot moves. It also shows how a voxel grid filter is used to increase the

performance significantly. Most of the clips use the ICP GPU implementation using a kD-tree

search, and one clip shows the voxelized ICP implementation on GPU.
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(a) Unfiltered (b) Filtered

Figure 6.27: Figure is showing the same input data and registration parameters with different
filtering. (a) is unfiltered, while (b) has applied a box filter, multiple plane model segmentation
filters and an euclidean cluster filter. The figure shows that filtering somewhat can enable hard
scans, but due to certain properties of the scan, the banana is not perfectly aligned.

6.11 Other results

This section contains other small results that are doesn’t directly fit into the other categories.

The following list is a collecion of a few timings that is not included in the other results sections:

CPU Normal computation time This takes about 25.75 seconds on 35 images, which is 0.736

seconds per image. The timings for normal computation is not included in a figure be-

cause it shows an almost constant time per image for a given point cloud. This observa-

tion is done by analyzing the program logs.

GPU Normal computation time This takes about 1.752 seconds on 35 images, which is 0.050

seconds per image. The timings for normal computation is not included in a figure be-

cause it shows an almost constant time per image for a given point cloud. This observa-

tion is done by analyzing the program logs.

Voxel filter computation time Applying a double voxel grid filter (two times in a row with larger

voxel size the second round) 0.624 seconds on 35 images. This is 0.018 seconds per image.

As with the normal computations, this is more or less the same for all voxel sizes for a

given point cloud and is therefore not included in a figure. This observation is done by

analyzing the program logs.

Most of these times are negligible compared to the registration logs. They should be consid-

ered in a real-time application and is used in the discussions in chapter 7.
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CHAPTER 7

Discussion

This section will discuss the results and try to draw conclusions based on results and experi-

mental setup. It will also compare the results from this work to some of the related work from

section 3. The section starts with a general overview of the accomplishment of the project and

will in later chapters more details and sources of errors.

7.1 Registration quality and performance

This section will be general discussion about the overall accomplishment of this project which

is the registration quality and performance.

7.1.1 Registration quality

Figures 6.1 and 6.2 show that the accumulated point clouds generated from the registration al-

gorithms are good. As both of these are run using the GPU version of the ICP algorithm (using

kD-tree search and point to plane lls transformation estimation on GPU) it verifies that the GPU

implementation does in fact work. As additional proof of this, the estimated error measures in

table 6.1 show that the relative pose error is relatively small. Figure 6.3 show that this error makes

sense, and that the registration is relatively good. The video also show that the registration can

be performed while the robot operates and give a good registration model. The registration per-

formed in the video work on full resolution point clouds. The main takeaway here is that the

accumulated point clouds are sufficiently good for a robot scanner application, and a robot is

expected to be able to interact with the objects based on what is shown in figure 6.1.
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7.1.2 Registration performance

It can discussed whether this is actually real-time or not. It is able to operate on the fly, but

real-time is often defined as algorithms running with at least 20-30 fps. However, given results

from section 6.4.5 show that using a relatively low frame-rate still gives acceptable registration

results for the robot-mounted camera application. Considering that the robot moves around

the object it scans, it is creating a view of the model, and will require to use some time obtaining

a complete view of the object. This give the algorithm enough time to register a few images from

multiple views of the object for a complete object reconstruction.

Considering the robot scanner application, the registration can be considered real-time. Given

the results from figure 6.22 and 6.24, it is clear that the running times are significantly reduced

while still keeping a relatively good registration quality. This is also shown in the attached video.

Similarily, figure 6.18 and 6.19 show that the stack size can be lowered significantly without dras-

tic loss of precision.

Figure 6.8 show that the implemented kD-tree search for this project is about four times slower

than the library implementation in PCL. Again comparing with the GPU implementation of the

same algorithm, it is about 30 times slower for the same kD-tree implementation, showing the

great speedup potential. The GPU implementation is about 8 times faster than the PCL library

implementation. In this project, only a few optimization tricks were performed, and there are

probably a lot more optimizations that could be implemented both on the GPU and kD-tree

search algorithm. This could potentially get a speedup of approximately 30 times the library

PCL implementations. All of these comparisons are done using the timings from 128 iterations

and a stack size of 20.

Another thing to note is that the stack size can be tuned to give a good trade-off between per-

formance and precision. Compared to the search method used by Qiu et al. (2009) the method

presented in this thesis seems to perform slightly worse when using smaller stack sizes. This is

probably due to the priority based queue used in Qiu et al. (2009), which keeps nodes higher up

in the tree if it has a shorter distance than the other ones further down in the tree. This is caus-

ing the precision increase. However, when comparing the 30x speedup observed here, it is not

that far from the implementation by Qiu et al. (2009), but given the use of a smaller stack size, a

speedup of twice that can be realistic, and is not that far from the GPU implementation by Qiu

et al. (2009) (though this is not guaranteed will be observed if changing the search algorithm).

For a future implementation, the priority queue search method is advised before the standard

kD-tree implementation done for this project.
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7.1.3 Free-hand scans

While discussion in section 7.1.1 and 7.1.2 is based on the robot scans, the registration quality

of the free-hand registrations will briefly be discussed here.

As there is no reference scan, the free-hand scans shown in figure 6.2 are simply evaluated by

looking at the registration result and verifying that the trajectory shown in figure 6.6 looks like

the actual trajectory (which is the case). As all these figures look sensible, the conclusion is that

the registrations of the free-hand scans were successful using parameters similar to that of the

robot based scans. The goal of the free-hand scans was to show that it was possible to do, and

the results fro figure 6.1, show that this goal is achieved.

7.1.4 Wall time

The wall time measure was used and showed stable behaviour. Though not shown in the refer-

ence section, multiple runs with the same algorithm was performed, which gave similar results.

As the real application is real-time registration, the computer the registrations was run on is sim-

ilar to something that could be used for a robot, and wall time is a measure that gives an idea

of the actual performance. No strange timings was observed due to the interference with other

programs, and considering the long running times of the program, such processes would prob-

ably not have visible impact on the timings. Therefore, the wall time is considered a trustworthy

measure given the experimental setup.

7.2 Voxelized ICP variations

This section is separated from section 7.1 mainly because the results was not that comparable to

the other algorithms, but also because it contains many variations that require some discussion

in themselves.

7.2.1 Voxelized ICP algorithm

This section is about the standard voxelized version of the ICP algorithm. First of all, figures 6.14

shows that the CPU implementation of the algorithm is the fastest of the non-GPU variations,

but the performance is not impressive when looking at the error in figure 6.15. The algorithm

generally seems to give worse registration results than the point based algorithms. This trend is

also seen through sections 6.4.2, 6.4.3 and 6.4.4.
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Note that the voxelized ICP algorithm works quite differently from the other evaluated reg-

istration methods. This means that the registration might be slightly different from the other

algorithms. Sections 6.4.2, 6.4.3 and 6.4.4 have parameters that are setup to be used with a

point-to-point based registration, which can have penalized the voxelized variations. However,

section 6.7 have more voxel-friendly parameters, and slightly less pessimistic results for the vox-

elized variations.

Comparing the algorithm to the work by Marden and Guivant (2012), the algorithm performs

a lot worse for the robot scanning application than the dataset used by Marden and Guivant

(2012). The main differences is the dataset, and the fact that Marden and Guivant (2012) used

the Inertial Measurement Unit (IMU) to estimate an initial pose. The last difference could be

used for this project by using the estimated robot position. However, the dataset will remain

different. The dataset used by Marden and Guivant (2012) was a room scan with relatively large

and smooth objects. The voxelization loose the small features, and the alignment fails because

of this.

A final note on this is the use of a voxel grid filter. Comparing figure 6.22 with 6.21 and 6.24

with 6.23, it shows that similar performance can be obtained by using a voxel grid filter and then

applying the registration using a kD-tree based GPU implementation.

7.2.2 Voxel size

This section will briefly discuss the results for voxel size in the voxelized ICP variations. This

is mainly observed in figures 6.21, 6.23. The important observation here is that the error and

performance has an optimal voxel size given the registration quality. The same is the case for

the performance, though it is a bit flatter for the GPU implementations. This section will not

conclude any further as these parameters is highly dependent on the application and object

sizes. The following two subsections will discuss the suggested improvements, though it’s not

convincing that they are better than the standard voxelized ICP.

7.2.3 Multilevel search

The results from figure 6.21a and 6.23a show that there is a relatively high cost to perform a

multilevel search, especially on the CPU implementations. Figure 6.23a show that registration

precision can be improved somewhat for more voxel sizes. Anyway, the basic voxelized strategy

shows a just as good registration quality for a specific voxel size. The algorithm is probably con-

verging anyway because the object is centered, and the distance from the camera to the object

is more or less fixed. Therefore, the standard voxelized approach work well for this particular
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scan. The multi-resolution approach might be better if the camera does not center the object,

or if the camera change distance to the object.

7.2.4 Pre-search method

The argumentation is the same as the previous section. The pre-search use quite a lot of time

(though it is faster on the GPU). However, the registration quality generally seems to be im-

proved using this technique by looking at figure 6.23b.

7.2.5 Race condition in Voxelized ICP

As mentioned in section 4.4.6, the GPU implementation of the voxel correspondence search

method. This occurs because the algorithm is parallelized on the data cloud, and multiple

points in the data cloud might be inserted into the same voxel, resulting in a race condition.

As explained in section 4.4.6, the race condition is not going to cause any problems given that

the voxelized cloud has a random-like distribution. This is however not the case when dealing

with point clouds, and there was observed issues with the method. The observation was that

the point cloud was slightly skewed for each iteration of the ICP algorithm. This is most likely

caused by an unbalanced weighting of the elements within a voxel, meaning that the vector go-

ing from the center of the voxel to the computed centroid is not 0. This is a problem with this

kind of voxelization in the first place because the average offset from the voxel center to the

voxel centroid might not be 0. This was especially seen when using the GPU version because of

the race condition. The race condition because multiple of the insertions where discarded, and

because the centroid might not be valid in the first place. This was probably less of an issue in

the work by Marden and Guivant (2012) because the room-scale features was able to counteract

the voxel-skew effect. In the robot-scanner application, the plane allowed for skew as there was

no larger features to ”hold” the data cloud at the right position. This effect will probably be less

significant when using larger objects.

Based on many observations and results in section 6, the voxelized strategy proposed by Mar-

den and Guivant (2012), seems to be a suboptimal solution for real-time registration even con-

sidering the very fast runtime. This does not mean that voxelization in general is a bad idea.

7.2.6 Comparing the Voxelized CPU and GPU implementations

Comparing the performance in figure 6.21, there is a big difference in running time between the

GPU implementation and the CPU implementation. Because of the voxelized datastructure,

the problem is highly parallelizeable when searching for correspondences, giving the tenfold
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speedup shown. This speedup is somewhat less than what is observed with the full resolution

kD-tree search. This is probably due to the algorithm being faster in itself, giving

7.3 Dataset quality

This section will discuss why a new and custom dataset was used for this project compared to

an existing dataset. It will also discuss the quality of the dataset.

7.3.1 Using a custom dataset

There are many standard datasets available for 3D registration applications (for example the ASL

datasets (https://projects.asl.ethz.ch/datasets/doku.php?id=iros2017)). These were not used in

this project because they generally capture larger scenes with large and clear features. For the

robot scanning application these datasets are based on applications and considerations that are

unrealistic for a robot scanner. A robot scanner is typically placed in a sterile environment, and

for a general scanning algorithm to work for this type of application, it should not only work on

room-scale datasets which is typically the case for these datasets.

Some of the related work like Magnusson (2013) also use simulated datasets. This gives an

opportunity to get precice data for many examples. The same argument applies for existing

datasets as mentioned above. Creating a new simulated dataset would be time consuming, and

given that the final application would be to use a real-world camera, this was not done. A simu-

lated dataset usually contain some unrealism that makes the transfer to real data less smooth.

7.3.2 The robot based datsets

The new test set created with the robot arm is considered a realistic setup. The robot arm is

placed in a sterile environment with only the object as a distinct feature. The camera is also a

standard camera that easily could be used in a real-world robot application.

Figure 6.5, the robot trajectory seems to move as expected. Given the control method de-

scribed in 4.1 the linear accelerating movement between waypoints is as expected. Looking at

the video, and the actual movement of the robot, this also seems to match. The figure generated

in figure 6.5 is generated from the internal position estimate of the robot, but there is still room

for errors as there is no external calibration system to verify this, meaning that the trajectory

could be wrong.
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Seeing figure 6.3 and table 6.1, it looks like the estimated trajectory is relatively close to the

robot trajectory. Considering the results shown in figure 6.1 the final registration looks relatively

good, meaning that the estimated trajectories are probably quite good. Given the accuracy of the

registrations and the path, most of the error of these figures are caused by a wrongly estimated

camera path. A slightly different measured angle might be hard to see in the accumulated point

cloud, but can cause large drifts relative to the reference path when far away from the object.

All in all, the robot based test-sets are good enough to give a somewhat quantitative measure

of how good a registration is. Due to some calibration differences with the camera and robot

arm, some offset is expected, even for a perfect registration. The robot arm trajectory is the one

that is most likely the correct path and can be used to evaluate the quality of a registration.

7.3.3 Free-hand datasets

The free-hand datasets does not contain any reference path, so it is hard to tell any quantitative

measures on how well a registration has performed. A reference path could be generated by us-

ing an external tracking system of some kind, but because the robot paths give a reference path,

the free-hand scans are included to give a qualitative evaluation of the registration algorithms in

a different setting than the robot scanner. The objects that are scanned are somewhat limited,

but is based on what is considered for the project (as introduced in section 1.2.1).

7.4 Robot arm movement

This section is included to give a brief discussion of the method described in section 4.1. The

basis for this analysis is figure 6.5. Robot movement method described obviously has a few draw-

backs, especially the quaternion to euler-angle-velocity conversion and robot velocity control.

Looking at figure 6.5 the described problems doesn’t seem to be a big issue for the scanning,

and the trajectory looks as expected based on the set waypoints. Another thing to note is that

start and ending point is the same for figures 6.5a, 6.5b and 6.5e which indicates that either the

trajectory is very precise, or that it’s able to catch up with the errors (which the controller is de-

signed to do). The main argument for the trajectories is that it really doesn’t matter because the

values shown in figure 6.5 is taken from the robot’s estimated position and not from the wanted

path. As long as the trajectory is known, the actual correctness of the path is irrelevant (more

about comparison of the estimated robot trajectory and camera trajectory in section 7.3.2).
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7.5 Evaluation metrics

Most of the related work (section 3) use the fitness epsilon to evaluate convergence. Other ap-

proaches (such as Kinect fusion Newcombe et al. (2011)), does a trajectory estimation, but as the

scanner is free-hand it is not compared to a reference model. By using a robot arm, this project

has compared the registration algorithms from an external viewpoint, which is concerned with

how well the registration is based on the transformation it computes.

In figure 6.20, this project has shown some of the challenges by using the traditional fitness

value. By comparing with figure 6.25, it shows how hard it can be to compare two different al-

gorithms using the fitness value. Especially when the correct transformation may not be at the

minima. This is because of the partial overlaps that the optimizer and fitness metric might over-

look. If the fitness computation also considered the point correspondence rejections, it would

in this project show that the convergence would be continuously decreasing, but this is not nec-

essarily the case, and the other problems with the fitness epsilon is present when comparing

different approaches.

7.6 Camera differences

As described in section 2.1, the two cameras used for this project (Intel RealSense D435 and

SR300) are based on two slightly different technologies, which is clearly shown in figure 6.4. The

observed distortion effect is most likely caused by some reflection or absorption. A similar effect

was seen on the casted object (figure 6.1j) and around thin plates when looking on along the

surface (looking down on the surface edge). The effect is therefore most likely caused by lacking

parts of the projected pattern, or that the pattern is shifted in some way. The meat and casted

objects might have different optical properties on the wavelength used by the infrared projector

of the Intel RealSense SR300 camera, making the pattern different than what is expected. This

effect could also be present for the Intel RealSense D435 camera, but as it is a stereo camera, it

is still able to reconstruct the depth based purely on the image itself. Another thing to consider

is to use a depth camera like the SR300 that use a different wavelength that is better for meat-

tissue.

7.7 Point correspondence rejector

Figure 6.26 shows the impact of using a correspondence rejector. No quantitative measures was

given to prove that this was an improvement, though this figure clearly shows the point. The

ICP algorithm might get irrelevant correspondences in other parts of the cloud (for example the
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background when scanning the pork-chop). Therefore, the correspondence rejector is able to

remove those irrelevant correspondences that does affect the transformation estimator.

7.8 ICP variations

There was a few ICP variations tested. Through the termination criteria tests, it showed that the

point to plane lls transformation estimator generally was better than the others considering the

number of iterations required. The dual quaternion seems to generally give more stable results

(as a closed form solution is guaranteed). The point correspondence estimators showed that

there was some difference in how they converged, but it was a less significant impact compared

to the transformation estimator. This is based on sections 6.4.2, 6.4.3 and 6.4.4 and the related

figures.

7.8.1 Stack size

Figures 6.18, 6.19, and 6.20 show that there is possible to trade precision for performance. Figure

6.18 shows that halving the stack size also gives approximately half the running time. Looking at

the errors in figure 6.19, the error is significantly reduced (based on the transformation estima-

tor). This section will not draw any more concluding remarks as the stack size depends on the

application.

As a final note on the stack size, is that the dynamic queue used by Qiu et al. (2009) is a better

strategy for a kD-tree implementation on the GPU. The dynamic queue prioritizes the currently

closest found, which is more likely to give a closer neighbour than using the fixed size stack in

this project.

7.9 Scan methods and object variations

The tested registrations methods used in this master thesis was applied on different scan method-

ologies and objects. The different scan methods showed that similar registration parameters

could be used to perform registrations using multiple camera trajectories. The errors observed

in figure 6.17 are a few exceptions where some algorithms can fail drastically if provided with

the wrong arguments (and if they are ”unlucky”).

When it comes to the object scans, the results were quite surprising. Both the ”plastic” and

apple test sets gave good registrations. The apple was expected to give erroneous registrations
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because of it’s rotational symmetry. The ”plastic” object was expected to get a bad 3D recon-

struction that made it hard to register. The reason they worked is probably due to the underlying

floor (a cardboard floor) that was not completely flat.



CHAPTER 8

Conclusion and further work

In this chapter, based on the results from section 6, I draw some conclusions with regard to 3D

registration methods shown in this thesis. In addition, I recommend some topics as a future

work in connection to this interesting area of research in section 8.2.

8.1 Conclusion

The goal of this project was to implement and evaluate state of the art solutions to real-time

point cloud registration for a camera mounted on a robot arm. This was broken down into

subgoals which included implementation of a robot arm controller, test set creation, registration

algorithm implementations and algorithm evaluation.

These goals were reached in this project which included a robot arm controller implementa-

tion and a 3D scanner capture program that captured RGB-D images while the robot was mov-

ing, or when used in free-hand scans. The robot controller was concluded to not be very elegant,

but certainly good enough for evaluation of a robot based 3D scanner. The test sets created for

this project was concluded to be relevant and realistic considering the environment the robot

will work in.

When it comes to the implementations of the algorithms, all of the mentioned algorithms

from section 1.2.2 were implemented and evaluated. The brute-force based algorithms was left

out of the main results and discussion as they were a preliminary step for the kD-tree ICP and
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voxelized ICP implementations (they are always slower than the kD-tree search and not per-

forming better). These algorithms were implemented in a registration framework developed for

this project that works as a 3D scanner that can be used from the command line. This regis-

tration tool was both useful for exploring parameters for the registration and 3D scans as well

as evaluation of the algorithms. The algorithms was evaluated using a python tool that com-

puted the timings and RPE based error metrics based on the log files provided by the registration

framework. The RPE based error metrics used in this project provided an external evaluation

strategy of the registration algorithms that enabled different types of registration algorithms to

be evaluated. This is different from the fitness metric (average point to point distance between

point clouds) that commonly used when evaluating registration algorithms. The external RPE

based evaluation strategy was enabled by the pose estimations obtained from the robot while

the scans was performed.

The algorithms themselves included GPU implementations of two transformation estimators.

These was based on a quaternion method and a point to plane linear least squares optimizers.

Additionally, a voxelized correspondence estimation strategy was implemented together with a

couple of suggested improvements. These improvements included a multi-resolution voxelized

search and a pre-search strategy in the voxelized space. The final implementation done for the

registration step itself was a point correspondence rejector that was based on specifying a box

around the object of interest. The rejection step was based on rejection of correspondences that

was outside of this box.

The point to plane linear least squares optimizer was shown to be the best transformation

estimator used in this project. This estimator gave quick convergence, and correctly aligned the

objects of interest. This was compared to the dual quaternion optimizer which was shown to be

slightly faster and more stable per iteration, but was required a lot more iterations than the point

to plane linear least squares optimizer. The different evaluated correspondence estimators was

shown to have less impact on registration quality. Only the nearest point was implemented for

the GPU, but the normal shooting and back projection estimators could be considered for future

implementations as they seem to give slightly faster convergence in certain cases. The closest

point estimator was shown to be good enough for the registrations performed in this project.

The GPU implementations was shown to be about 33 times faster than a similar CPU imple-

mentation and 8 times faster than similar library implementations. This without any loss of

accuracy. By reducing the fixed stack size, even better performance can be achieved by some

loss of accuracy. Additional speedup is expected to be possible through search and code op-

timizations. The voxelized search strategy was shown to generally give worse results than the

other methods, but is the fastest algorithm tested. This also was also the case for the suggested
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improvements to the voxelized ICP algorithm. The increased speedup could also be achieved

through downsampling of the point clouds, and still providing better registration results. There-

fore, this is the suggested method if low-latency registrations are desired.

The scan method was concluded to have little impact on the registration quality in general

(except for the voxelized ICP algorithms). The most important thing to note when scanning

objects is to try to keep the object centered (though it’s not a requirement, it makes the problem

a lot easier) and use a box-correspondence rejector that is placed around the object of interest.

The implemented registration framework was able to perform registrations of multiple objects

using similar arguments for all the objects. The main surprise was that the scanner was able

to register both the ”apple” and ”plastic” scene, which was considered very hard registrations

because of the small object sizes, rotational symmetry and 3D reconstruction with the plastic

object. Because the apple in principle is impossible to scan, the scanner was probably using the

curvature of the underlying plane to register these two objects.

The implementations of the 3D registration completed and shown in this thesis, show that do-

ing registrations in general is a challenging task. It usually requires a lot of parameter tuning and

trial and error to get good registrations. Section D is about general guidelines for registration,

and can be a good starting point for point cloud registration, but for a new scanner application,

some time is expected to get familiar with the new registration domain. Another thing that took

a lot of time in this project was the setup of PCL for use with GPU. This was due to old compiler

compability and CUDA versions. The computer setup is significantly more complicated and

time consuming when working in CUDA.

The work performed here has enabled faster registration. This can be useful for faster proto-

typing of 3D scanner and registration parameters. This can enable faster 3D reconstructions of

object is the future thanks to a faster feedback loop. However, the most important application of

this is to give robots fast perception of the environment. This enables the robot to make quicker

decisions. Even higher value can be added to the robot if it is able to perform scanning decision

as it goes thanks to a faster registration algorithm.
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8.2 Further work

This section will look at short term, medium term and long term suggested future work and

improvements/extensions. These will be presented in the following list.

• (Short term) Implementations of more transformation estimators, correspondence esti-

mator and point correspondence rejectors. The GPU implementations implemented in

this project was mostly based on the methods found most efficient in the pre-project for

registration of smaller food-like objects. PCL comes with a few other transformation esti-

mators, correspondence estimators and correspondence rejectors that could be added to

the GPU framework presented in this project. The current implementations are probably

good enough for object scans like the ones done in this project, but for other applications,

it might be an idea to add a few more.

• (Short term) Using estimated robot pose as initial alignment. This is a simple addition

that can enable faster search time and registration correctness.

• (Short term) kD-tree construction on GPU. While this project didn’t look at that, Hu et al.

(2015) showed that great speedup could be obtained by constructing kD-tree on the GPU.

kD-tree construction on GPU has not yet been evaluated for a registration task, tough it’s

not expected to give any drastic changes.

• (Short term) Search optimizations. With the current implementations, it was able to per-

form real-time registration considering the robot application. However, there is probably

a huge potential in further optimizations of the GPU algorithms and the kD-tree search.

This thesis showed that the kD-tree implementation for CPU was slightly slower than the

library implementations. It is probably an additional 10x speedup that can be obtained

with minor algorithmic and GPU based optimizations.

• (Medium term) A color based scanner. In this project, only the point positions were con-

sidered for the registration. Alternatively, the RGB data could be included in the corre-

spondence estimation step, giving better correspondences.

• (Medium term) A point removal strategy. This comes from the fact that an accumulated

point cloud quickly can grow out of proportions if points are not removed. This project

simply used a voxel-grid filter with a small voxel size. However, given that the scanner

position is known, it is possible to find which regions of the point cloud that can be re-

moved based on occlusions. While it’s hard to say which occluded parts are never visible

again, it is possible to remove points that should have been seen by the scanner if they

were correctly positioned.
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• (Medium/long term) Optimal scan trajectories. The scan trajectories proposed in this

work was included to show some properties of the registration itself, and is not necessar-

ily good registration paths in themselves. A future work could be to evaluate more scan

methodologies and conclude which is best for object scans given the ICP implementa-

tions done for this project.

• (Long term) Another suggestion to scan trajectories is to use a smart scanner that evalu-

ates the next best view while wile it scans the object. There are multiple techniques that

could be used for this, but the main point is that it can more efficiently get a complete

view of the object of interest.
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APPENDIX A

Acronyms

ATE Absolute Trajectory Error

BMP BitMaP image file

CPU Central Processing Unit

DPT Raw DePTh file

FLANN Fast Library for Approximate Nearest Neighbors

FPFH Fast Point Feature Histograms

FPS Frames per second

GPU Graphics Processing Unit

SAC-IA SAmple Consensus Initial Alignment

ICP Iterative Closest Point

IMU Inertial Measurement Unit

IO Input/Output

IR Infrared

kD (As in kD-tree) k-dimensional (as in k dimensions)
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LIDAR Light Detection and Ranging

NDT Normal Distributions Transform

OpenCL Open Computing Language

OpenNI Open Natural Interaction (standard 3D scanner interface)

PCL Point cloud library

RANSAC RAndom SAmple Consensus

RGB Red, green, blue

RGB-D Red, green, blue - depth

RMSE Root-Mean-Square Error

RPE Relative Pose Error

SAC SAmple Consensus

SAH Surface Area Heuristic

SDF Signed distance function

SIMD Single Instruction Multiple Data

SIMT Singe Instruction Multiple Threads

SM Streaming Multiprocessor

SVD Singular-Value Decomposition

TSDF Truncated Signed Distance Function

WP3 Work package 3



APPENDIX B

Quaternion operators

This chapter will describe and define some quaternion operators used in the thesis. As there are

many aspects of quaternions, this section will only include the quaternion operators used in the

thesis.

B.1 Quaternion/matrix rotation magnitude

This section will show how the the magnitude of a rotation can be computed using two quater-

nions (there are other ways to do this as well). This section starts with a matrix M , which is

converted to a unit quaternion in which the rotational magnitude is computed. See section B.2

on how the quaternions are computed from the matrix.

||rot(M)|| =
√

log (q−1
0 q1) · log (q−1

0 q1) (B.1)

q0 is the unit quaternion q0 = 1.0+ 0i + 0 j + 0k and q1 is the quaternion representing the

rotation of the M matrix. The log operator is the quaternion logarithm operator. This is defined

as

log(q) = log(
p

q ·q)+ (qi i +q j j +qk k)

||(qi i +q j j +qk k)||cos−1 qr ealp
q ·q

(B.2)

q is a quaternion described as qr eal +qi i +q j j +qk k. i , j and k are the imaginary units of the

quaternion. The ||qi i +q j j +qk k|| operator is the euclidean vector length of the vector created

from the imaginary components described by the following
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||qi i q j j +qk k|| =
√

q2
i +q2

j +q2
k (B.3)

The final step to deduce this formulation is how the quaternions are converted from the M

matrix which is shown in section B.2

B.2 Converting from a quaternion to a matrix

This section will show how to convert a matrix M to a quaternion q . This is based on finding the

eigenvector~v corresponding to the largest eigenvalue. The eigenvectors are not computed from

M , but from the following matrix K :

K = 1

3


M1,1 −M2,2 −M3,3 0 0 0

M1,2 +M2,1 M2,2 −M1,1 −M3,3 0 0

M1,3 +M3,1 M2,3 +M3,2 M3,3 −M1,1 −M2,2 0

M3,2 +M2,3 M1,3 −M3,1 M2,1 −M1,2 M1,1 +M2,2 +M3,3

 (B.4)

Finally, the quaternion is found by extracting the eigenvectors sorted such that the larger

corresponding eigenvalues have lower indices (index as in vi ).

q = v4 + v1i + v2 j + v3k (B.5)

B.3 Quaternion circular interpolation (slerp)

The quaternion circular interpolation is done using the following equation

slerp(q1, q2, t ) = (1− t ) ·q1 + t ·q2 if |abs(q1 ·q2)| >= 1−ε
slerp(q1, q2, t ) = sin(1−t )arccos |q1·q2|

sinarccos |q1·q2| ·q1 + sin t arccos |q1·q2|
sinarccos |q1·q2| ·q2 otherwise

(B.6)

B.4 Quaternion to euler conversion

The quaternion to euler conversion done is using the following definition.

quaternionToEuler(q) =


arctan2(2(w(q)x(q)+ y(q)z(q)),1− (2(x(q)x(q)+ y(q)y(q))))

arcsin(clamp(2(w(q)y(q)− z(q)x(q)),−1,1))

arctan2(2(w(q)z(q)+x(q)y(q)),1− (2(y(q)y(q)+ z(q)z(q))))

 (B.7)
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Registration framework arguments

This appendix is a list of the arguments that can be passed to the registration framework. It also

includes the default values for the arguments that are not specified from the command line.

Each list entry is the argument and the default value. Consult the source code ”readme” for how

these arguments are actually set in the final program. Because the project is an extension from

the pre-project, multiple of the argument descriptions are taken from the pre project. Before

listing all the arguments, a quick intro to the program usage will be given.

C.1 Program usage

The following line is a program usage example:

./registration --capture_from_camera --color --use_previous_transform
--visualize_realtime --filter=voxel_grid --leaf_size=0.001
--epsilon=1e-8 --fitness_epsilon=1e-8 --iterations=50
--algorithm=icp_kd_tree_gpu --transformation=point_to_plane_lls

This is a good starting point for doing registrations with the registration framework and show

the most important values when doing registrations. The last part of this chapter will explain

these arguments. Note that the arguments can come in any order.

The 1’st argument specifies the program to run, which is the registration framework. The 2’nd

argument specifies that the program shall read directly from a RealSense camera connected to

the computer. This could alternatively be exchanged with a list of ”.dpt” or ”.pcd” files that will
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be registered. The 3’rd argument specifies that the program should read the color data from

the camera. The 4’th argument specifies that the registration should use the previous transfor-

mation found in the registration as the initial alignment to the next registration. This is almost

always a good idea to use. The 5’th argument will setup a window that shows the registration

image for image. The 6’th argument will setup a voxel grid filter. The 7’th argument is a filter

specification, which will be applied to the previously specified filter argument. In this case, it

is sets up the voxel grid filter to use a voxel size of 0.001 m. The 8’th, 9’th and 10’th argument

specifies the termination criteria. The defaults are often a bit to high, so it’s a good idea to set

them a bit lower (which is done here). The 11’th argument specifies to use the fast GPU im-

plementation of the ICP algorithm. The 12’th argument specifies that the ICP algorithm should

use the point to plane lls transformation estimator, which is shown to be the best for the robot

scanning application. Note that this argument will make the registration framework compute

normals with the standard radius search of 0.005 m.

C.2 Arguments

The following list contain the arguments that can be used with the 3D scanner application de-

veloped for this project. It also contain default values that are used if the arguments are not

specified.

Algorithm = ICP This specifies which registration algorithm to use. The possible values are the

following:

ICP Using the ICP implementation provided with the PCL package.

ICP_KD_TREE Using the kD-tree implementation used for this project. This algorithm is

explained in section 4.4.3.

ICP_KD_TREE_GPU The same as the previous, only this one will use the GPU implemen-

tation. This algorithm is explained in section 4.4.4.

ICP_GPU A GPU implementation using a brute force point correspondence search as ex-

plained in section 4.4.2.

ICP_VOXEL Using a CPU implementation of the voxelized ICP algorithm explained in

section 4.4.5.

ICP_VOXEL_GPU Using a GPU implementation of the voxelized ICP algorithm explained

in section 4.4.6.

Other algorithms It is also possible to select some other registration algorithms that are

not very well tested for the registration framework. They are based on PCL imple-

mentations. These include ICP_NL (None linear ICP as described in section 2.10.2),
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FPCS (4-points congruent sets for pairwise surface registration), NDT (Normal dis-

tributions transform) and GICP (Generalized ICP).

Iteration count = 50 This specifies how many iterations the registration algorithm should run

for.

Leaf size = 0.05 m This is the size of the voxels as used by the voxel grid filter. See section 2.4 for

more details about voxel grid filters. This value is measured in meters.

Correspondence method = Euclidean closest point This is the point correspondence method

used. More details on this can be found in 3.1.2. Possible values are

correspondence_estimation A standard closest point estimator.

back_projection

normal_shooting

brute_force

Transformation method = SVD This is the method used to compute the transformation from

one point cloud to another. More details are found in section 3.1.5. Possible values are:

point_to_plane_lls

dual_quaternion

SVD Singular-value decomposition

LM Levenberg Marquardt

Max corresponence distance = 0.1 m This is the maximum distance the ICP algorithm will search

for corresponding points.

Max similar iterations = 10 If the ICP does this number of similar iterations, it will terminate.

Transformation epsilon = 0 If the squared transformation distance drops below this value be-

tween consecutive iterations, the registration is considered as converged.

Transformation rotation epsilon = 0 If the rotational difference between consecutive iterations

drops below this value, the registration is considered converged.

Euclidean fitness epsilon = -inf If the euclidean fitness between two consecutive scans drop

below this value, the registration is considered as converged. The euclidean fitness is error

metric as defined in section 5.1.3.

Pass through min value = 0 m This is used by a pass through filter. All points with a z value

smaller than this value is removed from the point cloud. This value is measured in meters.



144 APPENDIX C. REGISTRATION FRAMEWORK ARGUMENTS

Pass through max value = 10.0 m This is used by a pass through filter. All points with a z value

larger than this value is removed from the point cloud. This value is measured in meters.

Use previous alignment = false When this parameter is set, the registration algorithm will use

the previous transform as an initial alignment before applying the next transformation.

Calculate normals = false Can force the algorithm to calculate normals. However, if not speci-

fied, the registration program will compute them if it is required by the registration algo-

rithm as described in section 2.5.

Calculate GPU normals = fales Works similar to the previous argument. This will do the nor-

mals computation on GPU instead of the CPU. This is a faster approach, but gives slightly

different results.

RANSAC threshold = 0.01 m A threshold value for the RANSAC plane model. All points within

this distance from the plane model are removed from the point cloud when the best fitting

plane is found using the RANSAC algorithm for plane fitting. More details on this is found

in section 2.6.1. This value is measured in meters.

Use previous point cloud = false If specified, the registration algorithm will align the point cloud

to the previously registered point cloud. The alternative is to align to the accumulated

model cloud which is the default.

Use previous transform = false This will use the transformation found from the previous regis-

tration as an initial alignment to the next registration.

Normals radius = 0.01 m The radius of neighbourhoods used when computing normals in the

model. More details can be found in section 2.5. This value is measured in meters.

Cluster tolerance = 0.01 m This is the maximum allowable distance for points to be considered

the same cloud. This explained in section 2.6.2. This value is measured in meters.

Min cluster size = 100 All clusters found that are smaller than this are removed from the model.

Max cluster size = 25000 All clusters found that are larger than this are removed from the model.

Filter This has no default value as it is an optional argument. These can be added in chains.

The other arguments that affect a filter will be applied to the last specified filter. The

following filters can be specified: voxel_grid, plane_model_segmentation, bandpass, eu-

clidean_clustering, box.

Post filter This is the same as the filter argument, but is applied on the accumulated point cloud

after the registration is done.
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Box min/max x/y/z = -1.0/1.0 m This argument is used together with a box filter. The min val-

ues are -1 and the max values are 1. Use the 6 variations of this argument to specify a box.

All points outside of this box will be filtered away.

Correspondence box min/max x/y/z = -1.0/1.0 m This argument is used to specify a box. The

min values are -1 and the max values are 1. The box rejector is enabled by using at least

one of these arguments. Use the 6 variations of this argument to specify a box. Point cor-

respondences within the bounds of this box are kept, while correspondences outside are

removed in the registration step. The box is transformed with the point clouds as the algo-

rithm iterates. This makes this box constant relative to the source cloud in a registration.

voxel Size = 0.1 This is the voxel size used by the voxelized ICP algorithm.

voxel pre search range This argument specifies the distance the voxel pre-search strategy should

look. Pre-search is disabled if this argument is not specified.

Dynamic voxel levels The number of different resolutions to use for the dynamic voxel search.

For each level, the new resolution is computed by multiplying the currrent with the dy-

namic voxel factor (next argument).

Dynamic voxel factor This argument is used to find the resolution of the next level of the multi-

resolution voxelized ICP algorithm. The next level is found by taking the current voxel size

and multiplying it with the dynamic voxel factor.

Stack size This is the stack size used by the kD-tree based search algorithms implemented for

this project (described in sections 4.4.3 and 4.4.4).
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APPENDIX D

Registration suggestions

This chapter will include some experiences and suggestions for doing point-cloud registrations.

The chapter is based on my personal experiences when performing point cloud registration.

D.1 Scanning

Try to keep the object centered. Translational movement (relative to center of camera) is prob-

lematic for many algorithms. If this is unavoidable, some initial translation alignment is sug-

gested. Try to get some features of the image that can do an initial alignment.

D.2 Filtering

In order to get a good registration, it’s recommended to either use a filtering strategy or cor-

respondence rejector (section D.5) to focus the algorithm on the object of interest. Generally,

filters remove points and thereby reduce the running time of the registration step and can im-

prove registration quality. The following sections will go through the filters used in this project.

A combination of the following filters can be applied to filter all points not part of the object.

D.2.1 Box filter

The first filter one can apply is a box filter. This filter removes all points outside (or inside) a user

specified box. This box is typically packed around the object, such that other irrelevant parts of

the point-cloud is removed. Use this to focus the attention on the object of interest.
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D.2.2 Voxel grid filter

Another filter one can apply is a voxel grid filter. This downsamples the cloud. In certain cases,

it can help the registration find the correct transformation, but mostly, this reduces the point

cloud size and can greatly speed up the registration step.

D.2.3 Plane model segmentation filter

A plane model segmentation can be applied if the object or other things in the environment can

be described with a mathematical expression. This can for example be very useful to remove flat

surfaces. This usually can help the registration algorithm to focus on relevant points.

D.2.4 Euclidean cluster filter

A final filtering step is to use an euclidean cluster filter. This filter will cluster the point cloud

into regions based on a simple euclidean distance metric before it removes or keeps the regions

based on number of points in the region. This is typically used after a plane model segmentation

to remove remaining regions that is not part of the object.

D.3 Transformation and correspondence estimation

Generally, for small food-like objects, the point to plane lls transformation estimator is the best

considering both performance and precision. It is a bit slower per frame, but gives superior

convergence time compared to svd and dual quaternion estimators (based on section 7.8). Cor-

respondence estimation has less effect on the end result. The advice is to use something that

enables quick lookup. In the case of unorganized point clouds, the nearest point is probably go-

ing to be the best choice. Note that some of the estimators might require to compute normals.

This takes additional time, but is usually at a much lower scale than the registration itself. The

point to plane lls transformation estimator requires to compute normals, but given the faster

convergence, this is outperforms other estimators that don’t require normals.

D.4 Convergence criteria

The fitness epsilon 5.1.4 might vary from the different correspondence estimators and trans-

formation estimator. Therefore, there is no general advice to give on how low this should be,

because it is highly dependent on the point clouds, transformation estimation and correspo-

nence estimation. Try to keep this value very low (Should be below 10−8), such that it doesn’t

terminate on this criteria.
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The transformation epsilon is a more general convergence criteria. The size of this depends

on the scale of the point cloud. Try to keep it around 1 ·10−8 when working objects on the scale

of 10 cm (as done in this project). Scale this parameter with the scale of the point cloud and

objects that are scanned.

The maximum number of iterations criteria depends on the transformation estimator and

correspondence estimator used. If using the point-to-plane metric approximately 20-30 should

be more than enough. Consider going slightly higher when using the dual quaternion transfor-

mation estimator. Here, you should probably go above 50 iterations.

D.5 Point correspondence rejectors

This is a very important part of having a good registration. It’s adviced to either use a good corre-

spondence rejector or a good filtering (section D.2) to enable the registration algorithm to focus

on the important regions. As adviced by Rusinkiewicz and Levoy (2001) it’s recommended to use

a boundary rejection strategy. Examples of this can be the organized boundary rejector in the

PCL library or the box correspondence rejector used in this project. Generally, the point to plane

lls transformation estimator might perform as good without the rejector, but it depends on the

setup. If the SVD or dual quaternion transformation estimators are used, it is more important

to use a correspondence rejector as it tends to ”prefer” to align the boundaries instead of the

actual object of interest. Filtering is another alternative.

D.6 Additional advice

This section will cover a few tricks that might help the registration.

D.6.1 Trial and error

When doing point cloud registration, there is no single method that is always the best. The

advice given in the appendix can be a good starting point, but for a specific application one

will probably have to tune the parameters for the application. A lot of time is spent on finding

good registration arguments in this project, which is expected when applying registration on a

specific domain. Trial and error is the way to go!

D.6.2 Initial alignment

As mentioned in section 2.10.1, it’s important to have a good initial alignment for the ICP algo-

rithm. When registering consecutive point-clouds, using the transformation for the previously
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found transformation usually is a good initial alignment given that the incremental positional

change of the camera is small. If this is not the case, it might be an idea to use some other initial

alignment strategy (for example doing a registration using keypoints is the point cloud.)

D.6.3 Using GPU for registration

While using a GPU for registration might speed up the registration process, it can be a tedious

process to setup the environment (a lot of time was spent on compiling and configuration of

PCL for GPU usage in this project). Another thing to note is that the GPU implementations in

this project use a similar, but slightly different workflow than that of PCL. Due to the limited time

of the project, not all registration implementations in PCL was implemented. Only the point to

plane lls transformation estimation and quaternion based method (as Besl and McKay (1992))

was implemented.
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