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Abstract

The problem of gripper vector estimation, also referred to as gripper pose estimation, is
the problem of constructing a vector describing the pose of the end-effector of a robotic
gripper, which enables it to grasp an object. Recent work have investigated the use of
Artificial Intelligence (AI) for constructing the gripper logic, where among others the use
of Deep Learning (DL) and supervised learning has been applied. However, as super-
vised algorithms require large labeled datasets to be constructed, we propose the use of
Deep Reinforcement Learning (DRL). The utilization of DRL mitigates the concerns re-
garding constructions of labeled datasets, but often requires more training and data than
supervised algorithms. To ease these challenges, we propose the use of a simulated en-
vironment, where training of DRL algorithms can be conducted significantly faster than
in the real world. It can be expected that a simulated environment will differ from the
real world environment in many aspects, and thus, problems regarding transfer learning
will arise. To increase the prospects of transfer learning, we propose the use of Domain
Randomization (DR) in the simulated environment. To ensure good and descriptive infor-
mation is available for the DRL agent, we propose the use of a state space consisting of
color images combined with their respective depth images (RGB-D).

To investigate the prospects of DRL in the context of gripper pose estimation and dexterous
robotic manipulation, a state-of-the-art literature review was conducted. The DRL algo-
rithms Deep Deterministic Policy Gradients (DDPG) and Proximal Policy Optimization
(PPO) were deemed promising and therefore investigated. The simulation environment
constructed was realized using the Unity Game Engine, exploiting its newly released Ma-
chine Learning (ML) library which enabled communication with the TensorFlow library.
To enable evaluations of the agents trained in simulation, a real world setup for the gripper
pose estimation task was constructed. This setup was realized with the Panda robot and a
two finger gripper, both made by Franka Emika, and the color and depth sensing camera,
Intel Realsense SR300.

The main question this thesis addresses is whether a Deep Reinforcement Learning (DRL)
agent, solely trained in simulation, can achieve satisfactory results for the problem of
gripper pose estimation in a real world environment without any domain adaption or fine
tuning. Our best DRL agent achieved a successful grasp prediction rate of 60% when eval-
uated for 60 gripper pose estimation attempts, and 88.3% of the grasp attempts were either
successful or within one centimeter and five degrees from a valid grasp. Additionally,
the mean positional and rotational offsets from a gripper pose that would have resulted in
a valid grasp were respectively; 0.47 centimeters with a standard deviation of 0.75 cen-
timeters and 0.6 degrees with a standard deviation of 2.1 degrees. Our main contributions
to the field are; evaluations for specific application domains of the PPO DRL algorithm,
additional evidence that DR positively impacts transfer learning when transferring from
simulation to real world environments. Last but foremost, we have contributed to our field
by demonstrating that an agent trained completely and solely in a simulation environment
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is able to perform successful grasping predictions for semi-compliant objects in the real
world after transfer learning, without any domain adaptation.

Despite aspects of Domain Randomization (DR) being incorporated in our simulation
environment, we observed that the Deep Reinforcement Learning (DRL) agents were
sensitive to lighting conditions in our real world setup. In light of this, we suggest the
inclusion of more expressive DR aspects regarding lighting conditions, in the simulation
environment. The results obtained with a generic Franka gripper, not customized for semi-
compliant objects, along with our general observations, lead us to strongly suspect that
DRL agents only trained in simulation can produce satisfactory results in a real world
environment for the problem of gripper pose estimation for semi-compliant objects.
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Sammendrag

Griper vektor estimerings problemet, også kalt griper poserings problemet, er problemet
som omhandler konstruksjonen av en vektor som beskriver posisjonen og rotasjonen til
ende-effektoren til en robot griper, der denne vektoren gjør roboten i stand til å gripe et
objekt. Nyere forskning har undersøkt bruken av kunstig intelligens for å konstruere griper
logikk, hvor blant annet bruken av dyp læring og ”supervised” læring har blitt testet. Et-
tersom ”supervised” lærings algoritmer trenger store mengder data med fasit inkludert,
foreslår vi å bruke dyp forsterkende læring (DRL). Bruken av DRL eliminerer bekymrin-
gene rundt å konstruere store datasett med fasit, men trenger til gjengjeld mer trening enn
”supervised” algoritmer. For å takle denne utfordringen foreslår vi bruken av et simuler-
ingsmiljø hvor trening av DRL algoritmer kan bli utført betydelig raskere enn i den virke-
lige verden. Man kan forvente at et simuleringsmiljø vil være ulikt det virkelige miljøet på
flere områder, der dette medfører problemer når man skal overføre den lærte kunnskapen
fra det ene miljøet til det andre. For å øke muligheten for en suksessfull overføring av
kunnskap, foreslår vi å bruke domene randomisering (DR) i simuleringsmiljøet. For å
sikre at god og informativ data er tilgjengelig for DRL agenten, foreslår vi bruken av
et ”state space” bestående av farge bilder kombinert med deres respektive dybde bilder
(RGB-D).

For å kunne utforske mulighetene for bruken av dyp forsterkende læring (DRL) i sam-
menheng med griper posering estimering og fingerferdig robot manipulering, ble gjen-
nomlesning av ”state-of-the-art” litteratur utført. De to DRL algoritmene ”Deep Deter-
ministic Policy Gradients (DDPG)” og ”Proximal Policy Optimization (PPO)” ble sett
på som lovende og ble derfor utforsket. Det konstruerte simuleringsmiljøet ble utviklet
med bruk av spillmotoren Unity, hvor det nylig publiserte maskin lærings biblioteket som
muliggjør kommunisering med ”TensorFlow” ble brukt. For å muliggjøre evaluering av
agenter som er trent i simulering, ble et oppsett for griper posering estimerings oppgaven
satt opp i den virkelige verden. Dette oppsettet besto av Panda robot griperen produsert av
Franka Emika og farge og dybde kameraet Intel Realsense SR300.

Hovedspørsmålet som vår oppgave adresserer er hvorvidt en DRL agent som bare er trent i
simulering kan produsere tilstrekkelige resultater for griper posering estimering problemet
i den virkelige verden uten å benytte seg av videre læring etter overføring. Vår beste DRL
agent oppnådde 60% godkjente griper prediksjoner når den ble evaluert på 60 griper poser-
ing estimerings forsøk. I tillegg estimerte denne agenten griper poseringer der hvor 88.3%
av forsøkene var enten vellykkede eller under 1 centimeter og 5 grader fra en vellykket
estimering. I tillegg var gjennomsnittsavvikene i forhold til posisjon og rotasjon fra en
vellykket griper posering estimering henholdsvis; 0.47 centimeter med et standard avvik
på 0.75 centimeter og 0.6 grader med et standard avvik på 2.1 grader. Våre hovedbidrag til
fagfeltet er følgende; evalueringer av spesifikke applikasjonsdomener for DRL algoritmen
PPO, videre bevis på at DR har en positiv innvirkning på kunnskaps overføring når man
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overfører fra en simulering til den virkelige verden. Sist og viktigs, har vi bidratt til vårt
fagfelt med å demonstrere at en agent som bare er trent i et simuleringsmiljø er i stand til
å utføre vellykkede griper estimeringer for halv-myke objekter i den virkelige verden uten
noe videre læring etter kunnskapsoverføring.

Til tross for at aspekter fra DR har blitt brukt i vårt simuleringsmiljø, observerte vi at
DRL agentene var sensitive til forskjeller i lysforhold i vårt oppsett i den virkelige ver-
den. Som en konsekvens av dette foreslår vi at det inkluderes sterkere DR aspekter når
det kommer til lysforhold i simuleringsmiljøet. Resultatene vi oppnådde med en gener-
isk Franka griper som ikke er spesialisert for griping av halv-myke objekter sammen med
våre generelle observasjoner, gir oss sterk tro på at DRL agenter som bare er trent i simu-
lering kan tilegne seg tilstrekkelige resultater i den virkelige verden for problemet som
omhandler griper posering estimering for halv-myke objekter.
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Chapter 1
Introduction

1.1 Background
SINTEF Ocean is leading a research project called iProcess, which aims to develop novel
concepts for flexible robot based automation in the food processing industry. One of their
research areas focuses on vision-guided Machine Learning (ML) robots that can grasp and
manipulate compliant food objects based on 3D images, where the use of Deep Reinforce-
ment Learning (DRL) is of current interest.

The grasping and manipulation of objects in robotic applications is a complex task, where
early systems required specialized algorithms and human expertise for the particular grasp-
ing problems. This in turn often lead to either highly specialized systems with low gen-
erality, or with systems of poor performance due to errors in sensors or insufficient mod-
eling of the problem. However, recent developments in Artificial Intelligence (AI) using
Deep Learning (DL) and supervised learning have accomplished good results on tasks like
robotic manipulation (Kumra and Kanan, 2016; Levine et al., 2016; Johns et al., 2016)
and image recognition (He et al., 2015; Krizhevsky et al., 2012). Supervised learning al-
gorithms learn by being fed the correct output, often called a label, given an input. This
imposes the challenge of collecting a labeled dataset that is sufficiently large and repre-
sentative for the problem to be learned. The collecting of a labeled dataset can often be
time consuming if the nature of the problem dictates the need of a human expert to label
the data. The challenge of dataset generation is especially valid in the context of robotic
learning and robotic gripper pose estimation. Consequently, learning methods which do
not require labeled datasets are of particular interest.

Reinforcement Learning (RL) as opposed to supervised learning, does not require a la-
beled dataset. Instead these algorithms learn by exploring the problem space and observ-
ing the rewards received for their actions. RL thus requires rewards instead of labeled data
to train, where the rewards are constructed based on a heuristic function relevant for the
task. Historically, RL has not been well suited for real world problems, as early RL algo-
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rithms did not adapt well to problems with a Continuous Action Space (CAS) or with high
dimensional state spaces. However, with the rise of DL, new RL methods using Artificial
Neural Networks (ANNs) have been devised, creating the field of Deep Reinforcement
Learning (DRL). DRL adapts more effectively to the problems present in the real world,
where the methods can handle both CAS, and inputs of high dimensions. Despite DRL be-
ing a rather novel field, promising results have been achieved on challenging and complex
problems including games (Mnih et al., 2013; Silver et al., 2017) and robotic control (Gu
et al., 2016; Popov et al., 2017; Inoue et al., 2017; Ghadirzadeh et al., 2017; Koch et al.,
2018).

In light of recent developments in the field of DRL, the investigation of such methods
applied to the challenge of estimating gripper poses, for grasping of compliant objects, is
of great interest for the iProcess project and for robotic handling of compliant objects in
general.

1.2 Motivation
The current Reinforcement Learning (RL) algorithms face primarily two challenges. Firstly,
RL performs poorly in domains with large or continuous action spaces, which makes it un-
fit for most real world problems. However, recent studies (Popov et al., 2017; Gu et al.,
2016; Lillicrap et al., 2015; Mnih et al., 2013; Schulman et al., 2017; Ghadirzadeh et al.,
2017; Inoue et al., 2017) have achieved promising results in such domains by combining
RL and Deep Learning (DL), giving rise to Deep Reinforcement Learning (DRL). The
emergence of DRL has led to renewed research in the training of such algorithms on real
world challenges, including robotic appliances. From the utilization of DRL, good poli-
cies can be learned in problem domains with large state spaces, such as raw images and
with Continuous Action Space (CAS), as demonstrated in the work of Ghadirzadeh et al.
(2017), Schulman et al. (2017) and Pinto et al. (2017). In order to achieve good results on
the challenge of gripper pose estimation for compliant objects, investigating state-of-the-
art DRL methods in general and applied to similar challenges is of the essence.

Secondly, both RL and especially DRL require an extensive amount of training in or-
der to learn viable policies and thus be able to perform well for the given problems. Both
methods learn by exploring combinations of states and actions available, and inspecting
the rewards achieved for these combinations. The number of possible combinations grows
rapidly along with the growth of state and action spaces, and in problems with CAS the
number of combinations are practically infinite. In real world applications such as robotic
control where the execution of each combination is expensive in terms of runtime, the ex-
ploration rapidly becomes constrained.

Recent studies (Gu et al., 2016; Popov et al., 2017; Ghadirzadeh et al., 2017; Pinto et al.,
2017) show that being able to simulate the environment and having an agent primarily
to learn in the simulated environment reduces this drawback. The hyperparameter tuning
can be performed more efficiently in a simulator and an agent can be trained in a simula-
tion, providing a starting point for the real world challenge as a form of transfer learning.
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The simulation of the environment also enables the agent to explore in a less constrained
manner during the first stages of training, as no physical equipment is at risk. Simula-
tions provide the possibility of high scalability and parallel exploration given sufficient
computing power, and can thus greatly reduce the time needed to train a good policy. The
investigation of simulation possibilities for the gripper pose estimation task is thus of great
interest.

A common challenge in both DL and DRL methods is the generalization capabilities of
the learner, where poor generalization often leads to poor performance in the case of er-
ror prone sensors or unseen variations of the environment. When using simulations, the
simulated environment will always be an approximation of the real world environment.
Specializing too much on this approximation may reduce the quality of the learned agent
in respect to transfer learning, and methods mitigating this effect are consequently of in-
terest. A common method for increasing the generalization of learning algorithms is to
use Domain Randomization (DR), where alterations that should not change the output of
the learner are applied to the environment. Some of the benefits of using DR on different,
but related problems, can be seen in the work of Tobin et al. (2017a,b), Pinto et al. (2017)
and Peng et al. (2017). In light of this, an interesting aspect to investigate is the effect of
Domain Randomization (DR) in regard to transfer learning of the gripper pose estimation
agent.

1.3 Problem Formulation
This work will focus on the investigation of viable Deep Reinforcement Learning (DRL)
solutions for solving the problem of gripper pose estimation with regards to grasping semi-
compliant objects based on visual input. The gripper pose estimation problem concerns
estimations of feasible sets of positions and rotations for the end-effector of a robotic grip-
per, which enables it to successfully grasp an object. A good corpus of research regarding
gripper pose estimation for rigid objects through the means of supervised learning exists,
and promising results have been achieved (Kumra and Kanan, 2016; Levine et al., 2016).
Training DRL agents to perform robotic manipulations based on high dimensional inputs
such as images, is more novel, but promising results have been achieved as shown in the
work of Ghadirzadeh et al. (2017) and Pinto et al. (2017). The estimation of gripper poses
in appliances with compliant or soft objects is rather novel and introduces more levels of
complexity, where successful gripper poses for rigid objects may no longer be sufficient
due to deformations of the objects during grasping. The state space of the DRL agents
will consist of visual inputs in the form of color and depth images, commonly referred to
as RGB-D images, which will be captured by a camera mounted on the end-effector of
a robotic gripper. The use of RGB-D images as a state representation also seems rather
novel, where related work using only RGB or only depth images seem more common.

The methodology and the approach for this work is to perform a state-of-the-art literature
review, select and implement two promising DRL algorithms, train them in a simulation
environment and evaluate different variations of the most promising algorithm in a real
world environment without any domain adaption. In order to increase the generalization
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capabilities of the algorithms, Domain Randomization (DR) is to be incorporated in the
simulated environment and a frame work for facilitating transfer learning to the real world
setup is to be constructed. The real world setup will contain molded silicone copies of the
same objects that are to be used in simulation, as well as a robotic gripper with a wrist
mounted depth sensing camera.

1.4 Goals and Research Questions
This thesis will have one primary goal:

Investigate the feasibility of using Deep Reinforcement Learning (DRL) to solve the prob-
lem of gripper pose estimation for grasping of semi-compliant objects based on visual
inputs in the form of RGB-D images, after only training in simulation.

To achieve this goal, this work will also focus on three respective sub goals:

Conducting a state-of-the-art literature review and selecting two promising state-of-the-
art DRL algorithms for evaluation.

Developing a base simulation for the gripper environment which incorporates Domain
Randomization (DR) aspects.

Constructing a framework which enables a DRL agent to obtain RGB-D images from a
depth sensing camera and to perform robotic actions in a real world setup.

Along with the goals of this thesis, three research questions regarding the gripper pose
estimation problem for semi-compliant objects will be investigated:

RQ1:
Can the benefits of Domain Randomization enable an agent solely trained in simulation to
produce satisfactory results in a real world environment?

RQ2:
Is training in a simulation environment with rigid objects sufficient for developing policies
for grasping semi-compliant objects in the real world?

RQ3:
Can the use of Curriculum Learning decrease the amount of training needed for develop-
ing good policies in a randomized simulation environment?
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Chapter 2
Theory

This chapter will present and briefly cover relevant theory behind the work conducted.

2.1 RGB-D Images
An RGB-D image is the combination of a normal color image showing the different color
intensities captured by the camera and the corresponding depth image. Depth images
can vary in encoding, but similar for all types are that instead of the colors in the image
reflecting the colors captured by the camera, the different colors encode the spatial distance
from the given pixel to the surface covered by this pixel. A common encoding for these
kinds of images are to use gray-scale values for the pixels, ranging either from black to
white or white to black. An illustration of a depth image can be seen in Figure 2.1, where
gray-scale and white to black encoding is used. From this illustration one can see that the
cube is closer to the camera than the sphere as the pixels in the area covered by the cube
are whiter.

Figure 2.1: RGB (left) and Depth (right) images showing a blue cube and a green sphere resting on
a wooden floor. White to black encoding is used on the depth image, resulting in close pixels being
whiter and pixels further away being darker. In the depth image one can see that the cube is closer
to the camera than the sphere, as the pixels covered by the cube are whiter than the pixels covered
by the sphere. In addition, the depth values for the floor ranges from white to black as the surface of
the floor gets further away.
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2.2 Artificial Neural Networks
Artificial Neural Networks (ANNs) are computational models inspired by biological coun-
terparts in humans. An ANN typically consists of five main components: nodes, weights,
input, output and activation functions. The nodes in a neural network can be thought
of as neurons in a brain, where information is altered and transmitted based on certain
conditions. In ANNs these conditions are referred to as activation functions and the infor-
mation relayed is encoded as numerical values. Activation functions can either transmit
the input or a zero value based on a threshold, or perform some other linear or non-linear
transformation on the input before transmitting. The weights in a neural network are the
connections binding the network together, where each weight encodes a connection from
one node to another. In addition to encoding connections, the weights contain a numerical
scalar which is tuned during training and used to alter the information as it passes from one
node to another. Input is the data sent in to the network and can be everything from pixels
in an image to the sensor readings of a robot. The output of a neural network is what the
network returns after running the input through its nodes, which are typically structured
in layers. The output can, among other things, be encoded to represent a classification
of an image or how much a robotic arm should rotate each joint. All these components
together build an Artificial Neural Network (ANN), and ANNs have proven themselves to
be powerful learners.

2.2.1 Network Structures
A common type of ANN is the feedforward fully connected neural network. In these
networks the nodes and the weights form an acyclic directed graph, where each node in
one layer is connected to all the nodes in the next layer and information moves steadily
from the input to the output layer. In recent years several other versions of ANNs have
been devised. Among these are the Recurrent Neural Network (RNN), which contain
weights pointing to previous layers in the network, thus creating cyclic graphs enabling
the network to learn features across multiple input sets and retain internal states. Another
version of the ANN devised in recent years is the Convolutional Neural Network (CNN)
which have shown promising results in the field of image recognition and pushed the state-
of-the-art substantially. A CNN, further introduced in section 2.3, uses sparse connections,
exploits spatial closeness and sharing of weights. This reduce the number of parameters
to be tuned and consequently increases training speed.

2.2.2 Gradient Based Learners
Most Machine Learning (ML) algorithms use an optimization algorithm to minimize a
given loss function. A subset of these optimization algorithms are gradient based, and
work by calculating gradients relative to the loss function and nudge the trainable weights
in the opposite direction of the gradient. These algorithms often use backpropagation to
calculate the gradients of the loss function. Backpropagation is an algorithm for calculat-
ing partial derivatives, and in an ANN, it derives the gradients of the error with respect to
each weight, ∂E

∂wij
, and feeds these to the optimization algorithm. The optimization algo-

rithm then uses these gradients to change the respective weights in the network in order to
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minimize the loss function. A variety of different gradient based optimization algorithms
have been proposed through the years. Some of the most popular optimization algorithms
are AdaGrad, Adaptive Moment Estimation (Adam) and RMSProp (Géron, 2017).

2.2.3 Activation Functions
Artificial Neural Networks (ANNs) have evolved through the years, and with it, the choice
of preferred activation functions. Activation functions are primarily used in hidden layers
and on the output layer. The classical and most used activation functions early on were the
sigmoid activation function (Equation 2.1), hyperbolic tangent activation function (Equa-
tion 2.2) and the identity activation function (Equation 2.3). Common for all activation
functions are that they take a numerical value x as input and produce a numerical value.
The sigmoid activation function was very popular in the early research of neural networks,
as it closely resembles how neurons in the brain activate. Additionally, the output of the
sigmoid activation function is scaled between zero and one, making it ideal to model prob-
abilities.

Sigmoid(x) = 1
1 + e−x

(2.1)

Another commonly used activation function in the early work was the hyperbolic tangent
function, which outputs are scaled between minus one and one, and which holds the nice
property of tanh of zero being zero. The hyperbolic tangent function also closely resembles
the identity function for inputs near zero, which produces good gradients for such values.

Tanh(x) = 2
1 + e−2x − 1 (2.2)

However, both the sigmoid and the hyperbolic tangent functions saturate at large positive
and negative values. This becomes a problem when gradient based optimizers [2.2.2] are
applied for tuning the weights in the network, as each layer’s gradients are multiplied
by its succeeding layer’s gradients during training. This makes the gradients in the early
layers very small, and consequently, the updates to the weights of these layers are minimal.
This phenomenon is commonly known as the vanishing gradients problem. The identity
activation function forwards the input x to the output applying no changes and cannot
be used to solve non-linear problems without the use of additional non-linear activation
functions. However, the derivatives of the identity function are constant for all values,
which result in good weight updates for all inputs.

Identity(x) = x (2.3)

One of the factors contributing heavily to recent years development in Deep Learning
(DL) is the use of the Rectified Linear Unit (ReLU) activation function. ReLU outputs
the input x when x has a value greater than zero and outputs zero when x is below or
equal to zero, as shown in Equation 2.4. The ReLU activation function benefits from
the derivative properties of the identity function, while also introducing non-linearity and
sparsifying the activations. The use of ReLU as an activation function has enabled training
of networks substantially deeper than could be achieved with other previous activation
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functions. However, activation functions like sigmoid and tanh are still used in the output
and later hidden layers of networks, but ReLU and variations of ReLU are dominantly
used in the hidden layers of deep networks. A plot of the values produced by the activation
functions mentioned, can be seen in Figure 2.2.

ReLU(x) = max(0, x) (2.4)

Figure 2.2: Four common activation functions used in Artificial Neural Networks (ANNs), respec-
tively: Sigmoid, Hyperbolic Tangent, Identity and Rectified Linear Unit

2.3 Convolutional Neural Network
A Convolutional Neural Network (CNN) is a type of an ANN which has been especially
successful when applied to problems with raw images as input and have shown promising
results in problem domains with inputs that embed spatial relationships, such as sound
recordings and natural languages. CNNs utilize sparse connections, with weights connect-
ing spatially close inputs to an output. These weights, referred to as a kernel, are shared
across the processing of different inputs, rendering the CNN capable of learning features
for multiple input locations without having to learn the feature in each location. The
strides in a CNN are commonly represented as vectors, and describes the number of inputs
to skip in each respective dimension of the input before applying another round of con-
volution with the kernels, producing an output value for the next layer. Another common
component of a CNN is a pooling layer which, like the convolutional layer, also works
by convolving over a sparse and spatially close set of the input with the stride parameter
dictating how many inputs to skip in each dimension. Popular versions of pooling layers
are max pooling and average pooling. Max pooling outputs the highest of the inputs and
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average pooling outputs the average of the inputs. Pooling layers are often combined with
strides higher than one to decrease the dimensions of the next layer. A diagram showing
an example of a CNN structure can be seen in Figure 2.3.

Figure 2.3: Visualization of a Convolutional Neural Network (CNN) architecture. As can be seen,
convolutional layers often produce deeper feature spaces, while the pooling layers do not alter the
depth of the features. Both convolution and pooling can reduce the dimension of the feature space
depending on the strides used, however, dimensionality reduction is more common in pooling layers.
As illustrated, CNNs are often combined with fully connected Artificial Neural Networks (ANNs).

2.4 Deep Learning
Conventionally the training of deep Artificial Neural Networks (ANNs) were problematic
due to activation functions such as sigmoid and tanh being used in the hidden layers, caus-
ing the vanishing gradients problem [2.2.3]. However, with the introduction of the ReLU
activation function, deeper networks could efficiently be trained with gradient descent
methods, and impressive results on previous challenging tasks such as image classification
were obtained. This introduced the concept of Deep Learning (DL), where the networks
used were much deeper than previously. Recent studies (He et al., 2015) have also in-
troduced a concept where shortcut connections between layers are used, called Residual
layers or Residual networks, which in turn lead to successful training of even deeper net-
works, further increasing the potential of deep ANNs.

2.5 Reinforcement Learning
Reinforcement Learning (RL) is an area of Machine Learning (ML), where an agent strives
to maximize its expected long-term reward. Available for such an agent is a set of obser-
vations and a set of possible interactions, often referred to as state space and action space
(Géron, 2017). The concept of RL stems from behaviour psychology observed in intelli-
gent beings, where they tend to behave in respect to what they have experienced as good
or bad. RL tries to mimic this learning strategy by giving the agent feedback or a re-
ward [2.5.2], based on its action in a given state. A simple diagram of a typical RL cycle
can be seen in Figure 2.4. In the early training of an agent it is important to explore the
given environment, typically by doing random actions. Over time the agent starts to utilize
what it has learned by doing random actions, often referred to as exploitation. By explor-
ing the environment and over time reducing exploration while increasing exploitation, the
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agent discovers the consequences of different state action combinations and learns how to
maximize its long-term reward. As it is unknown when an agent has learned enough to
predict the optimal action given the state observed, exploration versus exploitation is often
a challenging aspect of RL. RL algorithms are commonly divided into two categories, re-
spectively policy and value based algorithms. Policy based algorithms iteratively improves
a policy based on a previously calculated value function and value based algorithms im-
prove the value function directly for a given policy.

A common challenge regarding rewards in RL is the credit assignment problem. This
is a challenge when rewards are sparse, as it is often intractable to uncover which actions
that directly contributed to the received reward. In other words, it is unknown whether it
was the most recent action or a number of preceding actions that led to a given reward.
Due to this challenge, an RL agent often needs to heavily explore the environment and
discover which action sequences, given a state sequence, that most effectively contribute
towards a good expected long-term reward.

Figure 2.4: Illustration of a typical Reinforcement Learning (RL) cycle, where the agent observes
the state, performs an action and observes a reward and a new state based on the action.

2.5.1 Environments
The environment includes all the aspects of the world the agent is to interact with. The
environment can be either fully observable, where the agent has access to the full state of
the environment, or partially observable, where only certain aspects of the environment
can be perceived by the agent. Most real world environments are partially observable,
where the agent perceives the world through sensors like cameras, GPS or motor readings,
which are often inaccurate and prone to fault.
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2.5.2 Rewards
The rewards given to an agent, based on its action in a given state, are often encoded as
numerical values, where high positive values enforce good actions, and less positive or
negative values punish inferior or poor actions. The design of the reward function or a
critic is an important aspect of the design of an RL agent, and poor reward functions might
lead to poor performance for the trained agent.

2.5.3 Exploration Noise
The choice of the exploration noise impacts both the training times and the results of the
trained agent, but plays a bigger role in Continuous Action Space (CAS) than in Discrete
Action Space (DAS) [2.6.1]. In DAS, the noise is typically used to choose an action from
a defined set, whereas in CAS the noise is often added to the predicted action of the agent.
In environments incorporating CAS, the use of a temporally correlated noise functions is
often preferred over uniform noise functions. Nevertheless, performance of different noise
functions may vary greatly depending on the nature of the problem.

An example of a temporally correlated noise function used in CAS, is the Ornstein-Uhlenbeck
process (Uhlenbeck and Ornstein, 1930), which will also be used in our work. A plot of
the different values produced by this process can be seen in Figure 2.5.

Figure 2.5: Temporally correlated noise values produced by the Ornstein-Uhlenbeck process (Uh-
lenbeck and Ornstein, 1930) over 100 steps. Noise functions similar to this process are often pre-
ferred over uniform functions in Continuous Action Space (CAS) environments, where a common
strategy is to add the noise to the actions, enabling more systematic exploration of the environment.
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2.6 Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) shares many of the same concepts behind RL, but
uses an Artificial Neural Network (ANN) for predictions instead of methods like look-up
tables.

2.6.1 Action Spaces
Action spaces in RL and DRL problems are commonly divided into two categories, respec-
tively, Discrete Action Space (DAS) and Continuous Action Space (CAS). An example of
a problem containing a DAS is the game of Pong, where given each input state the agent
has to choose between three actions, either move up, down or stand still. An example of
a problem containing a CAS is the problem of controlling the driving direction of a car,
where given the state input, the agent is to predict continuous steering angles.

The algorithms concerning DAS work with a finite set of distinct actions and often con-
verge and learn relatively fast as the number of possible actions are limited. The limited
set of possible actions in DAS algorithms enables the exploration of the problem domain
to be faster and more exhaustive. Nonetheless, algorithms in DAS often do not perform
too well in problems with a large set of possible actions. The algorithms concerning DAS
can also be used for problems with a CAS, in the example of the car control, each steering
angle can be discretized into a set of actions with a set angle difference between them.
However, this yields a challenge with discretization of the action space, and often leads to
either low coverage of the action space or rapidly growing discrete action sets in relation
to number of action parameters.

The algorithms concerning CAS often learn slower than the algorithms concerning DAS.
These algorithms also rely more heavily on a good action noise [2.5.3] in order to prop-
erly explore the action space. However, many problem domains require algorithms which
support continuous actions, as discretization of the action spaces is not feasible. The
stability and ability to converge has long been a challenge in the development of CAS al-
gorithms, but recent systems utilizing target networks [2.6.3] and a replay memory [2.6.2]
have shown to help with these aspects in both CAS and DAS algorithms.

2.6.2 Replay Memory
A replay memory is often applied to DRL algorithms and increases the learning stability
in both DAS and CAS algorithms. In Deep Learning (DL), most algorithms assume that
the samples to learn from are independent and have a nearly uniform distribution. This is
not the case in DRL, as samples are generated in a exploration sequence and thus training
on each sample as they are gathered can lead to instability in the learning algorithms and
possibly unwanted feedback loops. In order to mitigate this problem a replay memory
or sometimes called an experience buffer is used, where the samples gathered through
exploration are stored in a buffer and sampled during training. An example of how a
replay memory can be used is to have a buffer of fixed size and have new experiences
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replace the oldest ones, and to sample a subset of these experiences during training. The
utilization of a replay memory also enables more efficient use of hardware during training,
as the agent can train on multiple samples, commonly referred to as a mini-batch, instead
of a single sample at each training step.

2.6.3 Target Networks
Target networks can be applied to both DAS and CAS algorithms and have shown to reduce
instability in the training of these. A target network is implemented by having a second
network with the same architecture as the main network and making the target network
either slowly update its weights towards the weights of the main network, or having it
fixed and periodically setting its weights equal to the weights of the main network. During
exploration the main network is used to decide actions, and in the learning phase the target
network is used to evaluate losses.

2.6.4 Deep Deterministic Policy Gradients
Lillicrap et al. (2015) proposed a DRL algorithm, named Deep Deterministic Policy Gra-
dients (DDPG), for use on continuous and high dimensional problems. Pseudocode for the
DDPG algorithm can be seen in algorithm 1. In total of four networks are created; critic
Q(s, a|θQ), actor µ(s|θµ) and their respective target networks Q′ and µ′. The DDPG
algorithm implements both a replay buffer and target networks in order to mitigate the
problems of data correlation and non-stationary distributions. An important aspect of CAS
algorithms is the action exploration noise [2.5.3]. In algorithm 1 the exploration noise is
denoted by the random process N , which was a Ornstein-Uhlenbeck process (Uhlenbeck
and Ornstein, 1930) in the original work of Lillicrap et al. (2015). For each step, explo-
ration noise is added to the action from the actor network before being executed in the
environment. After executing action at, the reward rt and new state st+1 is observed, and
previous state, action, reward and new state is added to the replay buffer as an experience.
Thereafter, a mini-batch, which is multiple experiences previously gathered by the agent,
is randomly selected from the replay buffer. This mini-batch is used to update the critic
network by minimizing the loss function seen in Equation 2.6. This loss function is the av-
erage squared difference between yi and the critic’s estimated reward value for state si and
action ai for each sample in the mini-batch. The yi component, as seen in Equation 2.5,
is an estimate of the long-term reward given state si and action ai, where the observed
reward ri is added to the γ discounted estimate produced by the target critic network ap-
plied to the observed next state si+1 and the action proposed by the target actor network
given si+1. The actor network is updated by applying the sampled policy gradients from
the aforementioned loss with respect to the action. As can be seen in Equation 2.7, the
gradients for updating the actor network is computed by taking the average of the product
of the gradients of the produced action a with respect to the critic’s value estimate and
the actor’s weight gradients produced in state si. At the end of each step the weights of
the target networks are slowly updated towards the weights of the actor and critic networks
based on a set value τ . This is done for a set amount of steps T for a set amount of episodes
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M , unless an episode is terminated by, for example, reaching a goal state.

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ

′
) (2.5)

L = 1
N

∑
i

(yi −Q(si, ai|θQ))2 (2.6)

∇θµJ ≈
1
N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si (2.7)

Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ

and θµ.
Initialize target network Q′ and µ′ with weights θQ

′ ← θQ, θµ
′ ← θµ

Initialize replay buffer R
for episode = 1, M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1,T do

Select action at = µ(st|θµ) +Nt according to the current policy and
exploration noise

Execute action at and observe reward rt and observe new state st+1
Store transition (st, at, rt, st+1) in R
Sample a random mini-batch of N transitions (si, ai, ri, si+1) from R
Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′)|θQ′)

Update critic by minimizing the loss: L = 1
N

∑
i(yi −Q(si, ai|θQ))2

Update the actor policy using the sampled policy gradient:

∇θµJ ≈
1
N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

Update the target networks:

θQ
′
← τθQ + (1− τ)θQ

′

θµ
′
← τθµ + (1− τ)θµ

′

end
end

Algorithm 1: The Deep Deterministic Policy Gradients (DDPG) algorithm proposed by
Lillicrap et al. (2015).
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2.6.5 Proximal Policy Optimization Algorithms
In the work of Schulman et al. (2017), a new family of promising policy gradient based
Deep Reinforcement Learning (DRL) algorithms were proposed, namely Proximal Policy
Optimization (PPO). The motivation behind creating a new policy based DRL algorithm
was to retain the data efficiency and stability of Trust Region Policy Optimization (TRPO)
methods while keeping the algorithm simple using only first-order optimization. PPO al-
ternates between sampling data from the current policy and optimizing this policy based
on the data sampled through previous interactions with the environment. Pseudocode of
an Actor-Critic (AC) version of the PPO algorithm is shown in algorithm 2.

for iteration=1,2,... do
for actor=1,2,...,N do

Run policy πθold in environment for T timesteps
Compute advantage estimates Â1, ..., ÂT

end
Optimize surrogate L wrt θ, with K epochs and mini-batch size M ≤ NT
θold ← θ

end
Algorithm 2: The Proximal Policy Optimization (PPO) algorithm Actor-Critic (AC)
Style proposed by Schulman et al. (2017). Where the advantage estimate Ât is produced
by the function seen in Equation 2.8 and the surrogate loss L is the function seen in
Equation 2.12.

For each iteration in algorithm 2, N actors are collecting experiences in parallel for T
time steps by doing actions dictated by the policy πθold and observing the resulting re-
wards and next states. After time step T , advantage estimates are calculated and used in
combination with the data collected by the N agents to construct the surrogate loss L. The
advantage estimate Ât is calculated as can be seen in Equation 2.8, where the difference
between the value estimated by the network for state st and the sum of; the reward rt, the
γ discounted rewards for step t + 1 to step t + T − 1 and the discounted value estimate
produced by the network for step t + T is calculated. The surrogate loss L is optimized
based on mini-batches with a gradient based learner [2.2.2], like Stochastic Gradient De-
scent (SGD) or Adaptive Moment Estimation (Adam), for K epochs. The surrogate loss
function found to produce the best results in the work of Schulman et al. (2017) was the
clipped surrogate objective which can be seen in Equation 2.10, where rt(θ) denotes the
probability distribution seen in Equation 2.9, Ât is the advantage estimate computed for
step t seen in Equation 2.8 and ε is a hyper parameter dictating the clipping bounds.

Ât = −V (st) + γTV (st+T ) +
T−1∑
i=0

γirt+i (2.8)

rt(θ) = πθ(at|st)
πθold(at|st)

(2.9)

LCLIPt (θ) = min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât) (2.10)
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The clipped surrogate loss function depicts how much the new policy obtained can differ
from the old policy, limiting the variation of the algorithm. Additionally, as the neural
network architectures used with PPO shares parameters between the policy and the value
function, a loss function combining the surrogate loss and the value function error is used.
The value function error term LV Ft (θ) is the squared error loss seen in Equation 2.11
with respect to the weights, where Vθ(st) is the current value estimate and V targt is the
discounted rewards. A third term S[πθ](st) was added to the surrogate loss, which depicts
the changes to be applied to the weights of the random normal distributed exploration
noise, based on the state st. This produced a combined surrogate loss L which can be
seen in Equation 2.12, where Êt denotes the empirical average over a fixed batch, and this
loss is used to train the network. The variables c1 and c2 of this equation are parameters,
where c2 can also be referred to as β. Where the β parameter dictates the strength of the
entropy regularization, in other words the balance between exploration and exploitation.
In our implementation of the PPO algorithm, the entropy regularization loss will be the
equation seen in Equation 2.13, which is used to calculate the gradients for the weights (σ)
associated with the normal distribution exploration noise.

LV Ft (θ) = (Vθ(st)− V targt )2 (2.11)

Lt(θ) = Êt[LCLIPt (θ)− c1L
V F
t (θ) + c2S[πθ](st)] (2.12)

S[πθ](st) = 1
2 log(2πeσ+1) (2.13)

2.7 Domain Randomization
Domain Randomization (DR), sometimes referred to as perturbation, is a method com-
monly used in order to cope with the generalization problem of Deep Learning (DL) algo-
rithms (Tobin et al., 2017a,b; Pinto et al., 2017; Peng et al., 2017). If a DL algorithm is to
learn and generalize, it is important to have enough data to train on, and this data should
cover enough of the state and action space. DR techniques in relation to the problem of
gripper pose estimation can be to change textures, sizes, rotations or colors of objects to
be grasped. Additionally, aspects relevant to the environment itself can be randomized,
including, camera field of view, table texture and color, lighting, shadows and reflections.
The general assumptions behind DR in regard to learning, is that by exposing the learning
algorithm to enough variations of the task given, it will learn which aspects of the input
that are most relevant to the solutions and enable it to be more invariant to changes that
do not affect the problem. As an analogy, a person knows how to pick up a pink ball even
though it has only seen balls of other colors.
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2.8 Transfer Learning
Transfer learning is a challenge in Artificial Intelligence (AI) regarding the utilization of
knowledge gained from solving previous problems on a new but often related challenge
(Silver et al., 2012). The base assumption is that solutions to similar problems relies on
common or similar features. The use of transfer learning seems to be a natural aspect of
learning in biological systems. For example, it can be assumed that knowledge gained
from learning to recognize cats can be applicable when learning to recognize other similar
animals like dogs. In our work, transfer learning will pose a challenge when introducing
an agent trained in a simulated environment to the real world version of the challenge.

2.9 Curriculum Learning
Curriculum Learning (CL) is a learning regime inspired by how humans and animals learn
better when challenges are presented in an ordered manner, introducing more complex
concepts gradually, instead of in a random order (Bengio et al., 2009). Typically, the diffi-
culty of the challenges increase with each challenge as in the curriculum structure students
face in school, enabling the learner to gradually extend its generality and comprehension
of the challenge. In our work, curriculum learning will be investigated as a tool for de-
creasing the amount of training needed for learning policies in a randomized environment
[2.7].

2.10 Robotic Gripper Pose Estimation
As mentioned in the introduction of this thesis, robotic gripper pose estimation concerns
the estimation of both the positioning and the orientation of the end-effector of a robotic
gripper. This estimate should ideally allow the gripper to perform some task in the opera-
tive environment. For our work, this task is to grasp a semi-compliant object that is within
the reach of the robotic gripper. Conventionally robotic grippers are controlled by instruc-
tions dictating the different rotations for each joint in the robot, which can range from one
to several joints. However, satisfactory algorithms exist for extracting these rotations from
the pose of the end-effector.

2.11 Summary
This section has briefly covered several theoretical concepts relevant for our thesis, intro-
ducing the fundamentals along with more advanced concepts. As our work will focus on
training an agent to estimate gripper poses based on RGB-D images, such images have
been introduced and explained both textually and visually. The concepts of Deep Rein-
forcement Learning (DRL) along with conventional Reinforcement Learning (RL) envi-
ronments have been described, introducing action spaces and observation spaces, where
this work will concern Continuous Action Space (CAS). Different Artificial Neural Net-
works (ANNs) architectures have been introduced, covering both feedforward fully con-
nected networks and Convolutional Neural Networks (CNNs) which will be used in our
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work. Two state-of-the-art DRL algorithms, which will be evaluated through experiments,
have been presented, and a textual explanation of their process has been given along with
pseudocode and corresponding equations. Finally, a brief description of the robotic gripper
pose estimation challenge has been presented.
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Chapter 3
Related work

Several studies have been conducted regarding the estimation of gripper poses in specific,
and robotic manipulation in general, through the means of Deep Learning (DL) and Deep
Reinforcement Learning (DRL). The act of estimating gripper poses for semi-compliant
objects using DRL and RGB-D visual input however, is novel. Most of the systems pro-
posed in the studies found either; concern rigid-objects, use low dimensional state spaces
or only use depth images as input. Additionally, related work using DRL seem more sparse
compared to supervised approaches. Nevertheless, gripper estimation for rigid objects is
considered highly relevant, and the different solutions applied to handle gripper pose es-
timations will thus be an important aspect of this section. A common challenge among
these studies and along with our work, is the challenge of data collection in real world
environments. Consequently, this section will also focus on the different methodologies
applied to tackle the challenge of data collection. Specifically, different approaches for
pre-training or solely training in a simulated environment before transfer to the real world
will be of particular interest.

3.1 Deep Reinforcement Learning
In recent years the combination of Deep Learning (DL) and Reinforcement Learning (RL),
namely Deep Reinforcement Learning (DRL), has increased the prospects of using RL on
more complex problems. In the work of Mnih et al. (2013) a DRL method which learns
control policies directly from raw pixels is presented. They propose a new DRL method
based on the popular Q-learning algorithm (Watkins and Dayan, 1992), with Stochastic
Gradient Descent (SGD) to update the weights. In order to mitigate the problems of data
correlation and non-stationary distributions, the training distribution is smoothed through
the means of an experience replay buffer [2.6.2], proposed by Lin, Long-Ji (1993). The
method of Mnih et al. (2013) was named Deep Q Network (DQN) and the algorithm
learned to play seven different Atari 2600 games implemented in The Arcade Learning
Environment by Bellemare et al. (2012). The DQN algorithm performed better on the
seven Atari 2600 games than any other previous methods and outperformed a human ex-
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pert in three of them.

Lillicrap et al. (2015) researched the possibility of transferring the success of Mnih et
al.’s DQN to the Continuous Action Space (CAS) [2.6.1]. They proposed an Actor-Critic
(AC), model-free method, based on the Deterministic Policy Gradient (DPG) algorithm
(Silver et al., 2014), which handles problems with CAS. Lillicrap et al. (2015) incorpo-
rated the ideas from DQN with training the agent off-policy with an experience replay
buffer [2.6.2] and two target networks [2.6.3] along with batch normalization (Ioffe and
Szegedy, 2015). The original DPG algorithm was more data efficient than stochastic AC
methods and solved a challenging task which involved a multi-joint arm. However, the
algorithm was used on toy-problems and did not take into account large high-dimensional
observation spaces. Making the DPG algorithm applicable to these kinds of problems led
to the development of the Deep Deterministic Policy Gradients (DDPG) algorithm. The
DDPG algorithm by Lillicrap et al. (2015) solves more than 20 simulated physics tasks in
the MuJoCo simulator (Todorov et al., 2012). Their method is able to find policies that are
competitive with those found by planning algorithms with full access to the dynamics of
the environment. Some of the tasks where the DDPG algorithm was able to learn policies
from raw pixels are shown in Figure 3.1.

Figure 3.1: Four simulated physics tasks where the Deep Deterministic Policy Gradients (DDPG)
algorithm of Lillicrap et al. (2015) is able to learn policies end-to-end from raw pixels. Left to right:
Singe joint reaching, Reaching fixed target, Cartpole swingup, Monoped fall and balance (Lillicrap
et al., 2015).

In the more recent work of Schulman et al. (2017) a new family of policy gradient methods
for DRL is proposed. This new method alternates between executing environment inter-
actions and optimizing a new objective function that enables multiple mini-batch updates,
where standard policy gradient methods only allows one gradient update per experience.
The proposed method of Schulman et al. (2017) is called Proximal Policy Optimization
(PPO) and the results obtained indicate that it is easier to implement, has better sample
complexity and is more general than other policy gradient methods. Results obtained by
testing on several benchmarks, including Atari games and simulated physics tasks, show
that the PPO algorithm for the most part outperforms other policy gradient methods in the
CAS, such as Trust Region Policy Optimization (TRPO) and different versions of Advan-
tage Actor Critic (A2C). Schulman et al. (2017) tested their algorithm on several tasks in
the MuJoCo simulator environment and achieved at least as good and often better results
than the other algorithms in the CAS. In the Atari games the PPO algorithm was evaluated
against the A2C algorithm (Mnih et al., 2016) and the Actor Critic with Experience Re-
play (ACER) algorithm (Wang et al., 2016) by running all three algorithms on 49 games.

20



Their results showed that the PPO method learned games the fastest on most occasions,
the ACER algorithm overall got the best final scores and the A2C algorithm was on one
occasion fastest and the best.

In the work of Koch et al. (2018) different state-of-the-art RL algorithms were investi-
gated, including DDPG, PPO and TRPO, on the problem of stability and control for an
autopilot system. In their experiments the investigated algorithms were compared using
various metrics, including; sample efficiency, training time, parameter tuning and final
policy accuracy. In order to investigate these aspects, Koch et al. (2018) developed a high-
fidelity simulator, incorporating CAS, where they trained and tested quadcopter attitude
control agents using the different RL methods. The results of Koch et al. (2018) show that
for the problem of quadcopter attitude control, PPO performed better than the other RL
algorithms investigated on all occasions and even better than a fully trained Proportional-
Integral-Derivative (PID) controller on nearly all metrics. These results further motivate
us to evaluate the PPO algorithm on the problem of gripper pose estimation.

3.2 Dexterous Robotic Manipulation
In the early history of robot control and dexterous robotic manipulation, the systems ap-
plied tended to use manually crafted features extracted by specialized algorithms, and
manually crafted algorithms for inferring actions based on these features. However, with
the increasingly successful utilization of Deep Learning (DL) in the fields of image recog-
nition, object detection and image segmentation (Krizhevsky et al., 2012; He et al., 2015),
attempts have been made to apply DL techniques in robotics as well. This has yielded
some success, as can be seen in the results of Kumra and Kanan (2016) and Ghadirzadeh
et al. (2017). According to Levine et al. (2016), most successful applications of either DL
or DRL have focused on producing relatively simple behaviour in relatively constrained
environments. Many successful implementations of DRL in respect to robot manipulation,
as in the work of (Gu et al., 2016; Popov et al., 2017; Inoue et al., 2017), also tend to re-
strain the state space, using low dimensional state spaces such as relative positions, joint
rotations etc., as opposed to using raw camera inputs. Several of the implementations of
DL algorithms using visual inputs for robotic problems also tend to use pre-trained feature
extractors for processing of the visual inputs, such as the work of Ghadirzadeh et al. (2017)
and Johns et al. (2016). In contrast to these, our work will focus on the use of raw image
data as the input for the learning agent, which results in much larger state spaces but has
the potential to be more general.

3.3 Deep Learning for Grasp Pose Estimation
The last couple of years many have applied DL to grasp pose estimation in various envi-
ronments. Kumra and Kanan (2016) redefined the state-of-the-art in 2016 for robotic grasp
detection with their multi-modal model which achieved 89.21% accuracy on the standard
Cornel Grasp Dataset (CU, 2009). Their model consists of two Deep Convolutional Neu-
ral Networks (DCNNs), one for RGB image input and one for depth image input, which
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is then combined in a shallow fully connected network to predict the final grasp pose.
Kumra and Kanan (2016) used a pre-trained ResNet, as proposed by He et al. (2015), for
both their RGB DCNN and depth DCNN. During training the fully connected end part of
the network was trained first, and then the whole network was trained.

Levine et al. (2016) describe a self learning based approach to gripper pose estimation
with DL and large scale data collection. They had 6-14 real world robots collecting data
with wrist mounted cameras throughout their experiment, learning hand-eye coordination
for grasping. Levine et al. (2016) made a DCNN with many layers of convolution and
pooling. In contrast to our work, this network was trained in a supervised manner, where
large data collection phases were initiated in the real world and labeled based on the suc-
cess of each grasp attempt. Their network could then be trained on the labeled dataset,
enabling it to predict probabilities of a grasp being successful.

A challenge when making DL-based approaches to robotic grasping is generalization.
Most state-of-the-art approaches in this domain are often trained on a low number of ob-
jects, which in turn makes generalization challenging. In the work of Tobin et al. (2017b)
a method for data generation with the idea of applying Domain Randomization (DR) to
the creation of objects is proposed. The proposed method procedurally generates millions
of unique objects and trains a deep Artificial Neural Network (ANN) on estimating grasp
poses for these objects. This resulted in a learner that generalized well and achieved 92%
accuracy on grasp pose estimations for the objects present in the YCB dataset (Çalli et al.,
2015), despite only training on randomly generated objects. Tobin et al. (2017b) identified
three categories where the method had problems making a successful grasp: objects that
were close to the max size of the gripper hand, curved objects that might cause a collision
with the gripper hand on the widest area and highly irregular objects like a chain. For the
method to be able to grasp such objects, the authors proposed to add more examples of the
edge cases to the training set and aid the agent with visual servoing. The core idea behind
the work of Tobin et al. (2017b) is to train a DL agent on different randomizations of the
simulation environment to make it generalize better. In our work, similar techniques will
be investigated, where randomizations of the scenery will be applied to change several
aspects of the simulation environment.

3.4 Deep Reinforcement Learning in Robotic Manipula-
tion and Grasping

In addition to DL, Deep Reinforcement Learning (DRL) has been applied to the problem
of robotic grasping and robotic object manipulation. Gu et al. (2016) implemented the
DDPG algorithm, the Normalized Advantage Functions (NAF) algorithm and a variant
of the NAF algorithm called Linear NAF. They trained a robotic agent with the different
algorithms in a simulated environment to achieve the task of reaching and opening a door
and compared the success of each algorithm with regards to how fast they learned. The re-
sults of Gu et al. (2016) showed that for the task of reaching and opening a door, the NAF
algorithm converged to a good solution faster than the DDPG algorithm, while Linear
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NAF did not reach a good solution with the time frame given. In the simulation experi-
ments both DDPG and NAF reached comparably good solutions. However, as the focus
of the project was to find an algorithm well suited for learning from scratch in real world
robotic appliances with respect to training times, the authors selected NAF to conduct fur-
ther experiments with. Gu et al. (2016) evaluated and tuned the hyperparameters for their
algorithms in a simulated environment in the simulation tool MuJoCo, made by Todorov
et al. (2012), and then used the best hyperparameters found in the simulation phase to train
the agent in the real world setup from scratch. The learning agents used relatively sim-
ple state spaces, consisting of joint angles and door handle positions, and their respective
time derivatives. The ANN used in the agents was rather shallow consisting of two hidden
layers with 100 nodes each, and thus training of the network weights could be conducted
relatively fast. To increase the learning speed of the agent, Gu et al. (2016) expanded the
NAF algorithm to handle asynchronous off-policy updates, where multiple robots gathered
experiences in parallel. Their results showed that learning with two robots greatly outper-
formed learning with one robot for their problem, where the agent both learned faster and
achieved better final solutions in the time frame given. Adding another robot, increasing
the number of parallel workers from two to three, further increased this benefit, but the
differences in final solutions and the speed of learning was smaller when going from two
to three, than when going from one to two.

Popov et al. (2017) investigated the use of DRL on the problem of picking up and stacking
bricks, with focus on data efficiency in the learning phase. They implemented the DDPG
algorithm and extended it to handle multiple mini-batch updates per step, where in the
original algorithm only one update is conducted per step. Additionally, they extended the
DDPG algorithm to handle asynchronous updates to the agent. The experiments were con-
ducted in a simulated environment using MuJoCo (Todorov et al., 2012). The state space
in the experiments consisted of the angles and angular velocities of the joints and fingers,
the position and orientation of the two bricks and the relative distance between the bricks
and the pinch position of the gripper. To reduce training time and increase the probabil-
ity of the agent finding a good solution, a form of apprentice learning was implemented,
where the agent was trained on different initial positions sampled from a solution trajec-
tory of the problem. Two different methods for initializing the starting states were used.
The first method was initializing the gripper with the brick already picked up, as if it had
previously conducted a successful grasp. The second method was initializing the gripper
with different starting distances from the brick it should pick up, where the agent initially
started close to the brick, and was then initialized iteratively further away from the goal
position.

Ghadirzadeh et al. (2017) proposed a data-efficient Deep Predictive Policy Training (DPPT)
framework with a deep ANN policy architecture, to solve the problem of skilled object
grasping and ball throwing. The network responsible for converting image input to motor
commands on the robot is conceptually divided into three sub-networks by the authors, re-
spectively, the perception, policy and behaviour super layers. The training of the different
super layers is conducted separately, where both the perception super layer and the be-
haviour super layer is trained prior to training the policy super layer. The perception super
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layer consists of an auto-encoder which maps an input image into a set of spatial feature
points containing points of interest in image space. The behaviour super layer takes an
action as input for the robot and uses an auto-encoder to map this action into a motor tra-
jectory for the seven joints of the robotic arm. The policy super layer is more shallow than
the other super layers, and has thus fewer parameters to be tuned by the learning algorithm.
The policy layer was trained in a RL manner and different DRL algorithms were tested,
including Vanilla Policy Gradient (VPG), Relative Entropy Policy Search (REPS), Cross
Entropy Method (CEM) and Trust Region Policy Optimization (TRPO). However, training
the policy layer with TRPO in simulations yielded the best results regarding convergence
rates.

Inoue et al. (2017) investigated the use of DRL on the high precision task of assembling
with robotic grippers. More precisely the problem investigated was that of guiding a peg
through its designated hole. The learning agent contains two Recurrent Neural Networks
(RNNs) with two Long Short-Term Memory (LSTM) layers each which outputs a pref-
erence regarding which action to choose. The two different networks are used in two
different phases of the task, where the first phase is to search for the hole, and the sec-
ond phase is inserting the peg into the hole. The two different phases have different state
spaces and action spaces. Where the states in both tasks encode continuous valued read-
ings of the forces and the moments on the peg, and in the phase of searching, the state also
contains the position of the peg relative to the hole. The action space for both phases are
heavily discretized, containing five different actions for the search phase and four different
actions for the insertion phase. The learning of the agent for the two tasks is facilitated
by the Q-learning algorithm, where the RNNs replace the q-value tables. Three different
reward functions were used, depending on whether an episode was completed within the
maximum steps allowed or not and which phase the agent was to complete. The results of
Inoue et al. (2017) show that DRL can be used to successfully teach an agent to perform
a tight clearance peg-in-hole task and that the proposed solution shows robustness against
real world sensor errors.

The work of Pinto et al. (2017) investigated the use of a simulated environment for mul-
tiple robotic manipulation tasks, including picking and pushing of a cube. The simulated
environment was realized in MuJoCo (Todorov et al., 2012) and enabled the training of
DRL algorithms before transferring the obtained knowledge to a real world setup. They
used the DDPG algorithm as the base of their DRL agent and proposed several exten-
sions, including the use of asymmetric actor critic state spaces and hindsight experience
replay (Andrychowicz et al., 2017). These extensions yielded better results in respect to
the stability of the learning and the number of environment interactions needed. To im-
prove the expected generalization capabilities of the trained algorithm regarding transfer
learning [2.8], they extended the simulation environment to incorporate Domain Random-
ization (DR) aspects. Experiments investigating both the performance of an agent trained
in the simulation incorporating DR and without were conducted, where the agent trained
without DR did not produce satisfactory policies in the real world setup, even though ob-
taining near perfect performance in the simulated environment. The agent trained in the
simulation containing aspects of DR however, produced good policies in the real world
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environment without training on any real world interactions.

3.5 Simulation of Environment
In order to mitigate the challenge of time constraints in experience gathering for DRL and
to ease the safety concerns regarding exploration in the context of robot manipulation,
robotic manipulation projects often turn to the utilization of simulators. Execution of ac-
tions on a real world robot can often take time in the order of seconds or even minutes,
but in simulations the execution of these actions can often be carried out multiple times
in a second depending on the complexity of the simulation. By conducting a preliminary
training phase in the simulated environment of the problem, it is expected that the trained
agent will have a good starting point with good prior assumptions when it is introduced
to the real world environment. This effect is often prominent even when the simulated
environment does not fully model the true environment or when the tasks trained on in the
simulator differs on some aspects from the final tasks.

The method of first training an agent on a related problem before introducing it to an-
other is often referred to as transfer learning [2.8]. Transfer learning in combination with
Domain Randomization (DR) can be a powerful tool, where the work of Pinto et al. (2017)
and Peng et al. (2017) show DRL algorithms that are able to perform complex tasks in real
world environments after only training in simulators. Among the mentioned implementa-
tions for solving problems concerning robotic manipulations, quite a few have turned to
simulators and achieved promising results with relatively low training times (Ghadirzadeh
et al., 2017; Gu et al., 2016; Popov et al., 2017; Pinto et al., 2017). However, only a few of
these incorporated transfer learning, while most of them used the simulations exclusively
to tune their hyperparameters before training their agents in real world from scratch.

In simulations of robotic interactions, especially gripper related simulations, the physics
capabilities of the simulation tools are of high importance. Hence, most of the simula-
tion tools investigated had high quality physics simulations but poor and seemingly lowly
prioritized rendering capabilities, as can be seen in Figure 3.2. Due to the importance
of high quality physic simulations for robotic grasps of compliant objects, the quality of
the physics libraries included in the different simulators is important. A common physics
library for simulating complex interactions is the Bullet (Bullet, 2018) physics library,
which is incorporated in the Gazebo (Gazebo, 2018) simulator.
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Figure 3.2: Three simulated environments respectively from left to right; the door opening environ-
ment in MuJoCo from Gu et al. (2016), the brick stacking environment in MuJoCo from Popov et al.
(2017) and the ball throwing environment in Gazebo from Ghadirzadeh et al. (2017).

3.6 Parallel Experience Gathering
Another method for reducing the time spent on experience gathering, either in a simulator
or in a real world environment, is the use of parallel experience gathering. In parallel expe-
rience gathering multiple instances of the agent interact with the environment in parallel,
and thus multiple combinations of states and actions can be explored in one step. An im-
plementation of this approach was used in the work of Levine et al. (2016), where multiple
physical robots interact with the real world environment in parallel and uses these experi-
ences to train the shared agent which governs their predictions. Using multiple instances
of physical robots rapidly becomes expensive, and the number of robots available is thus
limited by financial aspects. In simulations however, the expenses are often relatively low
for computer hardware as opposed to robotic hardware, and scaling is thus easier, where
parallel experience gathering can either be conducted on the same machine or on multiple
machines, or a combination of the two. The method of conducting experience gathering
in parallel can also be thought to ease the training sample set distribution problem, where
most gradient based optimizers assume uniform distributions of the samples. In Rein-
forcement Learning (RL) this is not true, as the new predictions or experiences depends on
the previous predictions trained on. Parallel experience gathering explores more combina-
tions of state and action pairs for each instance of the trained agent, and thus reduces the
influence of each prediction on the predictions in the next iteration of the agent. Training
the agent with parallel experience gathering can thus be a possible method for increasing
stability in the learner, as predictions are less heavily influenced by single previous predic-
tions and instead influenced by a multiple of different previous predictions. The benefits of
this method can be seen in the work of Gu et al. (2016) and Popov et al. (2017), where the
agents both converge towards good solutions faster than their single experience gathering
counterparts, and converge to better solutions during the training iterations performed.

3.7 Pre-trained Feature Extractors
As mentioned in section 3.2, some work investigating the applicability of DRL methods to
robotic manipulation incorporates pre-trained networks when visual inputs are used. These
networks function as feature extractors and might enable an agent to more rapidly tune
the parts of the network responsible for high level reasoning, assuming good pre-trained
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networks which extract discriminating and informative features. Two common approaches
for learning with pre-trained feature extractors are a), to only train the reasoning layers,
and b), to first train the reasoning layers while keeping the feature extractor part of the
network constant and then fine tune the whole network. The first approach can be seen in
the work of Ghadirzadeh et al. (2017) which used the ResNet (He et al., 2015), and the
latter approach can be seen in the work of Johns et al. (2016) which pre-trained their own
feature extractor. Both of these achieved promising results, and similar techniques will be
investigated in our work.

3.8 Domain Randomization for Transfer Learning to the
Real World

In order to cope with the challenge of generalization when transferring an agent trained in
a simulation to the real world, many have opted to use Domain Randomization (DR). As
can be seen in the work of (Tobin et al., 2017a,b; Pinto et al., 2017; Peng et al., 2017), DR
has been of great value for real world results after training in simulated environments. The
work of Tobin et al. (2017a) shows that they are able to bridge the gap between simulation
and real world with training an agent only on RGB images in a heavily randomized envi-
ronment. Their results show that their system is able to train a real world object detector
which is able to grasp objects in noisy environments and has a precision of detecting ob-
jects with an accuracy of 1.5 cm. The focus of Tobin et al. (2017a) was to train an agent
in a simulation with low-quality rendered RGB images and transferring it directly, without
any additional training, to the real world. Low-quality RGB images were used in order to
achieve high speed when training the agent and making the input to the agent invariant to
real world components such as light, camera field of view, textures and scene configura-
tions.

The work of Zhang et al. (2017) investigate the use of DR when training in a simulation
before transferring to the real world in the context of visual motor control for reaching
objects with a 7-DoF robotic arm, concerning 3D positions and ignoring the orientation
of the end-effector. In contrast to previously mentioned work, Zhang et al. (2017) focused
mainly on different domain adaption and fine-tuning methods for further improvements to
the performance of the algorithm after transfer. The results produced in their work showed
that the algorithm evaluated did not produce satisfactory results after only training in sim-
ulation, where the end-positions had a large mean error of 47.1 centimeters in their real
world experiments. This error was suspected by the authors to stem from too few and little
expressive DR methods being incorporated. However, the benefits of training in a simula-
tion with DR were strongly indicated where training on relatively few real world examples
enabled the algorithm to produce impressive results with a final success rate of 97.8% and
with a median control error of 1.8 centimeters.
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3.9 Curriculum Learning
Many have incorporated variants of Curriculum Learning (CL) in their trials and achieved
good results on complex problems both in relation to robotic control and otherwise (Popov
et al., 2017; Wu and Tian, 2017; Florensa et al., 2017; Bengio et al., 2009). The work of
Bengio et al. (2009) compare the results of training ML algorithms with and without CL
and conclude that the inclusion of this method can positively and severally impact con-
vergence rates, final accuracies and generalization. However, Bengio et al. (2009) also
theorized that CL might not be applicable to all problems and that it might be difficult to
develop suitable curriculum strategies. In our work, CL is to be incorporated in a some-
what novel extent. Instead of gradually altering the scope of the problem, the extent of
randomness applied to the environment and thus the observations of the agent, is to be
gradually increased, investigating if Curriculum Learning (CL) is applicable in this man-
ner.

3.10 Summary
In this chapter a selection of relevant work applying Deep Learning (DL) to complex prob-
lems, like robotic manipulation and gripper pose estimation, have been presented. For
these problems, both supervised and Deep Reinforcement Learning (DRL) methods have
yielded promising results, and key ideas and results from both approaches are deemed rele-
vant. Among the methods using DRL, the algorithms Deep Deterministic Policy Gradients
(DDPG) and Proximal Policy Optimization (PPO) seem to produce overall satisfactory re-
sults on several complex and related problems. Both these algorithms are thus of interest
in our work. Several of the studies presented opted to use simulators to mitigate time con-
straints in experience gathering and hyperparameter tuning, motivating us to investigate
the use of a simulator. Some of the work, which successfully transferred agents trained in
simulations to real world setups, used aspects of Domain Randomization (DR) and showed
its impact on the quality after transfer. Consequently, DR will be of great interest in our
thesis. Finally, studies investigating Curriculum Learning (CL) and its benefits have been
presented, motivating the investigation of its potential impact on training times in domain
randomized environments.
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Chapter 4
Methodology

In this chapter we describe the methodology and approaches used in this thesis. This
includes tools, such as Unity, Blender and TensorFlow, two Deep Reinforcement Learning
(DRL) methods, some Artificial Neural Network (ANN) architectures, as well as methods
for increasing the learning prospects in regard to generalization and transfer learning.

4.1 Tools
This section briefly describes the tools used in this project accompanied by their relevance
and utilization.

4.1.1 Unity
As mentioned in the relevant work section [3.5] most simulators used in previous work
regarding gripper pose estimations, incorporate low rendering capabilities and focus pri-
marily on realistic physics simulations. This poses no challenge for DRL methods that
do not include RGB-D visual inputs as their state representation and works well for DRL
methods that uses depth images or non-visual inputs. Rendering of high quality depth
images can often be achieved in these kinds of simulators (Todorov et al., 2012; Gazebo,
2018). However, in our project, we aim to use high quality RGB and depth renderings
as input states for the DRL algorithms. Simulators that meet these prerequisites are thus
favorable. The Unity Game Engine (Unity, 2018) offers high quality rendering, as Unity
is a high-end game engine created for modern game development. The physics simulation
capabilities of Unity, however, are optimized and simplified to be used in real-time appli-
cations, such as games, and do not meet the accurate simulation requirements of compliant
object grasping. Nonetheless, popular physics simulation libraries such as Bullet (Bullet,
2018), also incorporated in Gazebo (Gazebo, 2018), have recently been made available
for use in the Unity Game Engine. Recently the developers of Unity released a Machine
Learning (ML) API (Unity-ML, 2018) enabling it to communicate with common ML li-
braries, such as TensorFlow, making it easier to incorporate DRL methods.
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We suspect that training a DRL method on low quality RGB-D renderings that poorly
matches the visual inputs produced by a real world RGB-D camera, such as Intel Re-
alSense [4.3], can hamper the results after transfer learning [2.8]. Unity shows promising
prospects and fulfills the main expectations both regarding rendering quality and physics
simulation capabilities, and was therefore chosen as a basis for the simulation environment
in our research trials.

4.1.2 Blender
Simulation of physics and rendering of 3D environments requires 3D models to be de-
veloped and incorporated in the simulation tool. Available for this work were several 3D
CAD models of some relevant objects, which can be seen in Figure 4.1. The 3D CAD ob-
jects were intended to be used in the simulator and to be produced for experiments in our
real world setup. Along with the CAD models of the objects, a model of the Panda gripper
[4.3] was made available. However, as Unity does not support CAD models, we used the
modelling tool Blender (Blender, 2018) to convert these models to a format supported by
Unity. Blender is a free open source 3D modelling software which supports importing and
exporting of several common 3D formats, as well as other standard modelling tools. Ad-
ditionally, simulations often require models of relatively less resolution than of those used
in printing and visualization. In order to make the simulations tractable, down sampling
of the models was conducted in Blender.

Figure 4.1: Wire-frame render in Blender (Blender, 2018) of the 3D CAD objects made available
for this thesis by PhD student Aleksander Eilertsen at SINTEF Ocean.

4.1.3 TensorFlow
TensorFlow (TensorFlow, 2018) is an open-source graph computation framework devel-
oped by the Google Brain Team and has grown considerably in popularity among the
researchers of Machine Learning (ML). It was originally developed to be used in ML and
deep neural network research, but is now used in a variety of areas. TensorFlow includes
functionality for handling the computation of derivatives and structuring computational
graphs, which can then be effectively exploited on several CPUs and GPUs. We chose to
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use this framework as it enables easy construction and high speed training of ANNs, be-
cause of its good community, online support and the fact that it is well documented. In our
work, TensorFlow was used to implement the networks of the DRL agents with the Python
API. The GPU version of TensorFlow was chosen as it enables a substantial speed-up to
the training of large networks compared to the CPU version, given adequate GPUs.

4.2 Simulation
In order to be able to run experiments on simulations of the gripper pose estimation prob-
lem, a simulation environment was created. As mentioned in section 4.1.1, we chose to
use Unity as the basis for the simulation as it incorporates good rendering capabilities and
prospects of extensions with the Bullet Physics Library (Bullet, 2018). Initially, a baseline
for the simulator was developed, containing the necessary functionality for interactions
with the TensorFlow API through the use of Unity’s new ML library (Unity-ML, 2018).
This baseline enables a DRL agent to observe and interact with the environment and fa-
cilitates easy replacement and testing of different algorithms. The simulation environment
is realized in a way that enables extensions and changes to be made with relatively low
effort, depending on the complexity of the change itself, not the integration of the change.
Furthermore, an environment incorporating the Panda gripper along with the provided 3D
models was developed, where the task of reaching a close and properly orientated gripper
pose could be trained on. As the problem investigated only concerns the position and ori-
entation of the end-effector of the gripper, the simulation environment contains only the
head of the gripper. Additionally, as one of our research questions concerns the potential
of using an agent trained in simulation with rigid objects, compliant physic simulations are
not incorporated in this version of the simulator. These design choices make the simulator
more lightweight and enable faster environment interactions, resulting in faster training
times. Renderings from the simulation environment can be seen in Figure 4.2, where a
three step episode with a slightly trained DRL agent is shown.

Figure 4.2: Renderings of the simulation environment created in our work, where a slightly trained
Deep Reinforcement Learning agent is performing a three step episode, estimating a gripper pose
for the Fish Fillet object.

4.2.1 Environment
In the simulation environment developed, the actions provided are interpreted as move-
ment and rotations relative to the current pose of the gripper, enabling an agent to predict
actions relative to its current observation. In other words, the simulation receives a 6-DoF
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transformation, where the first three parameters represent the offsets of the x, y, and z po-
sitions in local coordinate space, and the last three represent the additional Rx, Ry and Rz
intrinsic rotations. A visualization of intrinsic rotation and its effect on the local coordinate
system can be seen in Figure 4.3.

Figure 4.3: Four renderings of the gripper’s end-effector along with a visualization of its local
coordinate system. The straight arrows represent translational axes and the curved arrows represent
rotations around these axes. The axes are color coded, where the x axis is red, the z axis is blue
and the y axis is yellow. In the top left render a base rotation of the gripper is shown, where the
local coordinate system of the end-effector and the global coordinate system are identical. In the top
right render the end-effector has rotated around the y axis. In the bottom left render the end-effector
has rotated around the x axis after rotating around the y axis. Finally, in the bottom right render the
end-effector has rotated around the z axis after the previously mentioned rotations. As can be seen in
the renderings, rotations impact how new rotations and translations are interpreted, keeping all axes
relative to the end-effector and not a global coordinate system.

The simulation developed is configured to handle an arbitrary amount of steps, produced
by an agent, before an episode is completed. However, for the experiments conducted in
this work, three environment steps per episode was chosen. Furthermore, the observations
gathered from the environment are represented by two images, one for the RGB render and
one for the depth render. Both renderings are produced by simulated cameras positioned
relative to the gripper’s end-effector, approximating the real world setup. For the depth
renderings a thresholded noise texture, generated by the Perlin Noise (Perlin, 1985) func-
tion, is applied. This produces black artifacts in the image, loosely mimicking the depth
shadows and other artifacts produced by a real world depth sensing camera. Renderings
showing examples of color and depth visual observations from the simulation can be seen
in Figure 4.4.
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Figure 4.4: Examples of visual observations gathered from the simulation environment for three
different steps from different episodes. Both the RGB (top) and the depth (bottom) renderings are
shown for the objects; Avocado, Fish Fillet and Raspberry. As can be seen in the gray-scale intensity
of the depth renderings, both the object and the background gets closer for each step (left-to-right).
Additionally, the added thresholded Perlin Noise (Perlin, 1985), producing black artifacts, can be
seen in the depth renderings.

The different graspable objects have been integrated in the simulation along with two
additional objects. For each episode of an environment instance, one of these objects are
selected randomly and placed at a random location with a random orientation. All objects
are placed within a bounding volume of 40 by 40 centimeters below the initial pose of
the gripper, ensuring that the current object is observable in the first observation of each
episode. A render of the objects included in the simulation environment can be seen in
Figure 4.5, where some of the objects have two material definitions.

Figure 4.5: A render of the 3D models incorporated in our simulation. The conversion of the
objects from 3D CAD, seen in Figure 4.1, to Unity (Unity, 2018) compatible formats was done with
relatively low effort in Blender [4.1.2]. After conversion, appropriate textures and materials were
added to each object.
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4.2.2 Reward Function
To enable DRL agents to learn gripper pose estimation in our simulation, a three compo-
nent reward function incorporating relevant aspects for the task was developed. During
training, the agent perceives the environment as partially observable as it can only sense
the environment through its visual observations, as described in section 4.2.1. However,
the reward function exploits the entire state of the environment in order to calculate the
reward.

The first component of the reward function consists of a distance measure, calculating
the Euclidean distance between the midpoint of the gripper and the closest of a set of good
gripper points on the object. Additionally, to increase the difference in rewards positively
as the positioning gets better, the distance measure is evaluated on a non-linear function.
The formula for the distance component can be seen in Equation 4.1, and the non-linear
function used to evaluate the distance score can be seen in Equation 4.2.

r1 = Evaluate(1− min
point

(DistanceBetween(gripperMidpoint, point))) (4.1)

Evaluate(x) = x2 (4.2)

The second component of the reward function, seen in Equation 4.3, measures the dif-
ference in orientation between the gripper and a set of good gripper orientations for the
object to be grasped, where the smallest difference is used.

r2 = 1− min
orientation

(RotationBetween(gripperAngle, orientation)
90 ) (4.3)

The third and final component, seen in Equation 4.4, checks whether one or more points on
the gripper are below the ground, indicating that the gripper has moved below the ground,
and either returns zero or a static penalty of -0.05 based on the results.

r3 =
{
−0.05, if one or more points on the gripper are below the ground
0.0, otherwise

(4.4)

The three components are combined as seen in Equation 4.5, where DistanceScale and
AngularScale are set to 0.5 for the experiments in our work. This function then produces a
reward function that scales between -1.1 and 1.0 for the possible combinations of gripper
poses and object instantiations in the environment and indicates the quality of the current
gripper pose given the current object to be grasped.

Reward = (r1 ∗DistanceScale+ r2 ∗AngularScale+ r3)− 0.5
0.5 (4.5)
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4.2.3 Domain Randomization
Related work investigating transfer learning [2.8] from a simulated environment to a real
world setup (Pinto et al., 2017; Peng et al., 2017; Tobin et al., 2017a) showed consistently
better results when training in a simulation incorporating Domain Randomization (DR).
These findings indicate that the agents learned more general features relevant for their
problems, making them more robust to differences between the simulation and the real
world setup. Motivated by this, aspects of DR were incorporated in our simulation envi-
ronment giving variations to the visual observations received in each instance. These as-
pects were implemented to support an arbitrary amount of randomization based on a scalar
provided by the agent, enabling the amount of randomization applied to each episode to
vary throughout the course of training. This implementation facilitates data gathering for
our first research question: Can the benefits of Domain Randomization enable an agent
solely trained in simulation to produce satisfactory results in a real world environment?
and our third research question: Can the use of Curriculum Learning decrease the amount
of training needed for developing good policies in a randomized simulation environment?

Several aspects of the environment were implemented with support for randomization.
A list of these can be seen in Table 4.1. Some examples of visual observations from the
environment with different scales of DR applied can be seen in Figure 4.6. The effect of
DR in our simulation environment scales linearly for all objects in the environment except
for the ground, where random textures are first applied when the scale of randomization
exceeds a threshold of 0.5.

Domain Randomization Aspects
Object Affected Aspects

Graspable Object Color, Size
Ground Color, Texture
Light Color, Intensity, Orientation
Camera Position, Field of View, Depth Range
Gripper Initial Position

Table 4.1: Table showing the different aspects of our simulation environment affected by Domain
Randomization (DR).
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Figure 4.6: Examples of RGB visual observations from our simulation environment, where the
depth images are omitted as they are mainly black in the first step of an episode. The first two rows
show visual observations without DR applied, the two middle rows show visual observations with
a Domain Randomization (DR) factor of 0.5 and the last two rows show visual observations with a
factor of 1.0. As can be seen in these images, many aspects of the observations are randomized as
the power of randomization increases.

4.3 Real World Setup
In order to evaluate the policies learned in the simulation environment, a real world setup
with a robotic gripper and a RGB-D camera was configured. The gripper used in our
work was the Panda robot by Franka Emika, shown untethered in Figure 4.7. Panda has
seven degrees of freedom, a maximum payload of three kilograms and a maximum reach
of 855 millimeters. The Panda robot is inspired by the human arm, striving to mimic its
aspects regarding agility, dexterity and sensitivity (Franka Emika, 2018a). Along with the
Panda robot, the depth sensing camera Intel RealSense SR300 (Intel, 2018) was deployed.
The RealSense camera renders high quality 1080p resolution images in 30 frames per
second and has an optimal depth sensing range between 0.2 and 1.5 meters. The RealSense
camera, seen in Figure 4.7, is light-weight and is therefore suitable for robotic applications
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as it can easily be mounted on a robot, like Panda.

Figure 4.7: The Panda robot by Franka Emika in a real world setup (Franka Emika, 2018a) and the
Intel RealSense SR300 depth sensing camera (Intel, 2018), both shown untethered.

In our setup the Intel RealSense depth sensing camera has been mounted to the wrist of the
Panda robot, enabling the visual inputs to be influenced by the movements and the current
pose of the gripper. Photographs from our real world setup with the camera mounted on
the end-effector of the Panda gripper can be seen in Figure 4.8, where the setup is fully
tethered and operational.

Figure 4.8: Photographs showing our real world setup for the gripping pose estimation problem,
with the Panda robot by Franka Emika (Franka Emika, 2018a) and a RealSense SR300 camera
(Intel, 2018) mounted on its end-effector.

As mentioned in subsection 4.1.2, replicas of the objects trained on in the simulation en-
vironment were used in the real world setup to evaluate the quality of the trained DRL
agents. In order to replicate these 3D objects, inverted models of the objects were created
using Blender. The inverted models were then printed in plastic using a 3D printer, pro-
ducing moulds for the objects, where some of these can be seen in Figure 4.9. Following,
the objects were produced by pouring a silicone compound into the plastic moulds, result-
ing in semi-compliant replicas. Additionally, a solid plastic version was constructed of the
Speaker object. A photograph showing the manufactured objects in our real world setup
can be seen in Figure 4.10.
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Figure 4.9: Image showing two of the 3D printed moulds used for producing the silicone based
objects for our real world experiments. The moulds shown were used for producing the Strawberry
object (left) and the Paprika object (right). Additionally, the moulds were greased to ensure slip
when extracting the solidified objects.

Figure 4.10: Photograph of the 3D models used in simulation, moulded in silicone for our real world
setup. The semi-compliant objects shown are respectively top-to-bottom and left-to-right; Avocado,
Pickle, Strawberry, Fish Fillet, Speaker and Paprika.

A framework building on Franka’s existing controller interface (Franka Emika, 2018b)
was developed, enabling movement and rotations of the end-effector of the gripper in
local coordinate space. This framework enables a Deep Reinforcement Learning (DRL)
agent, given equal actions, to produce the same behaviour in the real world setup as in the
simulation environment. Furthermore, a framework enabling a DRL agent to sample RGB-
D images from the wrist mounted camera and execute actions through the aforementioned
framework was constructed. This resulted in a complete framework for interacting and
sensing in the real world. The range of the depth images produced were modified in both
our real world and simulation setup in order to produce similar observations given similar
environment states. A collection of visual observations sampled from different states in
our real world setup can be seen in Figure 4.11.
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Figure 4.11: Examples of visual observations gathered from our real world setup for three different
steps from different episodes. Both the RGB (top) and the depth (bottom) renderings are shown for
the objects; Avocado, Fish Fillet and Strawberry.

4.4 Deep Reinforcement Learning Algorithms
Investigation of related work in regards to gripper pose estimation and robotic control, re-
vealed the Deep Deterministic Policy Gradients (DDPG) algorithm to be a suitable basis
for DRL agents working in large state spaces and in a Continuous Action Space (Lilli-
crap et al., 2015; Gu et al., 2016; Popov et al., 2017; Pinto et al., 2017). Additionally,
reviews of related work applying DRL methods to different, but seemingly related and
complex problems, revealed the Proximal Policy Optimization (PPO) algorithm to be a re-
cent and promising method for effectively learning in environments with high dimensional
state spaces and CAS (Schulman et al., 2017; Koch et al., 2018). Motivated by this, both
the DDPG and the PPO algorithms were implemented and evaluated in our preliminary
experiments. The DDPG algorithm was developed using the pseudo code shown in sub-
section 2.6.4, and like the work of Lillicrap et al. (2015) we used the Ornstein-Uhlenbeck
process (Uhlenbeck and Ornstein, 1930) as our exploration noise. For the PPO algorithm
a basis included in the Unity ML library (Unity-ML, 2018) was modified, where the ex-
ploration noise incorporated is an action noise sampled from a random normal distribution
which decays throughout training.

The preliminary experiments were designed to enable the selection of one algorithm for
use in further experiments, where sample efficiency, training times and performance were
of the essence. To ensure gathering of data from multiple training runs, creating a basis
for better comparison, relatively few training iterations and relatively shallow networks
were used. The network architectures chosen for our preliminary experiments built on
an instance of the pre-trained AlexNet (Krizhevsky et al., 2012) classifier, where only the
weights of the added fully connected end part of the networks were tuned. From AlexNet
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only the five first CNN layers were used, and a diagram of the full AlexNet structure
can be seen in Appendix A. The DDPG and PPO network architectures used for these
experiments can be seen in Figure 4.12 and Figure 4.13 respectively. The results of the
preliminary experiments are presented in section 5.1, and PPO was chosen for further
experiments.

Figure 4.12: Deep Deterministic Policy Gradients (DDPG) actor and critic networks learning the
reasoning on features extracted by a pre-trained feature extractor. The light blue squares represent
the CNN component from AlexNet (Krizhevsky et al., 2012), which can be seen more detailed in
Figure 4.15. The AlexNet CNN component receives a 227x227 dimension image with three channels
and outputs 9216 features. The green triangle represents a layer where the inputs are concatenated.
The dark blue squares represent fully connected networks, where the number of nodes in each layer
is presented in parentheses. Both networks receive the RGB and the depth images which are fed
separately through their AlexNet CNN components resulting in 9216 features each. These features
are then concatenated and fed to the first fully connected layer. The actor network outputs an action
based on a state, while the critic network outputs an estimated long-term reward (Q-value) based on
a state-action pair.
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Figure 4.13: Proximal Policy Optimization (PPO) actor and critic network learning the reasoning
on features extracted by a pre-trained feature extractor. The light blue squares represent the CNN
component from AlexNet (Krizhevsky et al., 2012), which can be seen more detailed in Figure 4.15.
The AlexNet CNN component receives a 227x227 dimension image with three channels and outputs
9216 features. The green triangle represents a layer where the inputs are concatenated. The dark
blue squares represent fully connected networks, where the actor sub-network is prefixed with the
letter ”A” and the critic sub-network is prefixed with the letter ”C”. The number of nodes in each
of the fully connected layers is presented in parentheses and the used activation function is shown
along the output. The RGB and the depth images are both fed to their dedicated instance of the
AlexNet CNN component, producing features for each input. These features are then concatenated
and fed to the first fully connected layer of both the actor and the critic sub-networks. The actor
sub-network outputs a predicted action and the critic sub-network predicts an estimated long-term
reward (Value).

41



In the main part of our experiments two different approaches were investigated regarding
network architectures and training regimes for PPO. The two different architectures both
consist of a deep CNN followed by a shallow fully connected network, however, the CNN
components differ. In the first version of the network, a custom deep CNN architecture is
constructed. This network takes the whole RGB-D image as input and is initialized with
random weights, enabling the agent to train fully end-to-end, specializing for the problem
given and jointly reason on both color and depth data. A diagram of the first network can
be seen in Figure 4.14.
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Figure 4.14: Proximal Policy Optimization (PPO) network architecture with a custom CNN com-
ponent which operates on RGB-D images jointly. The custom CNN component (left) is shown with
corresponding kernels, strides and activation functions for each layer [2.3]. Additionally, resulting
dimension of the data is shown between the layers. Before being fed to the fully connected sub-
networks, the output of the CNN component is reshaped to a one-dimensional tensor. The fully
connected sub-networks are prefixed with the letter ”A” for the actor sub-network the letter ”C” for
the critic sub-network. These sub-networks produce an action and an estimated long-term reward
(Value) respectively.
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The second network architecture, like in the work of Ghadirzadeh et al. (2017) and Johns
et al. (2016), incorporates pre-trained feature extractors. We chose to use AlexNet with
weights trained on the ImageNet dataset (ImageNet, 2018) as our feature extractor. Since
AlexNet uses three channel images (RGB) as input, two instances taking the RGB and
the depth images separately are incorporated. It can be expected that CNNs trained on
large image classification datasets extracts general features, for instance edges, in the early
layers of the network. Motivated by this, we chose not to tune the weights of the first
and the second CNN layers of the AlexNet instances. From the pre-trained AlexNet the
first five layers are used, enveloping the entirety of the CNN layers. The second network
architecture used in our experiments can be seen in Figure 4.15.
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Figure 4.15: Proximal Policy Optimization (PPO) network architecture building on a pre-trained
sub-network of AlexNet (Krizhevsky et al., 2012). The AlexNet CNN component (left) is shown
with corresponding kernels, strides, activation functions and output dimensions [2.3]. Additionally,
the first two convolutional layers use a Local Response Normalization (LRN) function, which nor-
malizes the output of the layer based on its activations (described detailed in the work of Krizhevsky
et al. (2012)). The output of each AlexNet CNN component is reshaped to a single dimension ten-
sor before being concatenated and fed to the actor and critic sub-networks. The fully connected
sub-networks are prefixed with the letter ”A” for the actor sub-network the letter ”C” for the critic
sub-network. These sub-networks produce an action and an estimated long-term reward (Value)
respectively.
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By conducting experiments with the aforementioned network architectures, data giving in-
dications on the difference between training on the color and depth jointly and separately
can be acquired. Additionally, some indications to the prospects of tuning a network spe-
cialized for color images and location and rotation invariant reasoning on RGB-D images
for a problem that require spacial and rotational features, can be obtained.

4.5 Experiments
As sample efficiency and training times were of importance in our work, we decided to im-
pose some minor constraints on the environment interactions for the agents during training
and evaluation. The first constraint discards the rotations around the x and z axis for the
first two steps of each episode. This results in the agent only rotating around the y axis for
the first two steps producing rotations around an axis that is perpendicular to the ground.
Our second constraint limits the total transformation of an episode to 75 centimeters trans-
lation in each axis and 180 degrees rotation around the y axis and 60 degrees around the x
and z axes. This is enforced by dividing the output of the agents, which are scaled between
-1 and 1, by four for the translations and three for the rotations. The motivation behind
enforcing the transformation limitations with a division, instead of clipping the actions
estimated by the network, is to retain an expressive range for the actions. Additionally, a
third constraint is enforced as the RealSense camera starts to produce more artifacts when
the distance between the camera and the object in focus is outside its optimal depth sens-
ing range [4.3]. This last constraint limits the gripper movement to 15 centimeters along
the y axis towards the ground for each of the two first steps of an episode, resulting in
the camera mounted on the gripper’s end-effector being roughly 25 centimeters above the
ground before the last step is executed.

Pre-processing methods were applied to the RGB images before feeding them to the net-
works as related work showed noteworthy results obtained with such methods (Ghadirzadeh
et al., 2017). This pre-processing was done by computing and subtracting the mean of each
channel in the image, resulting in pixel values that range from -1 to 1. The motivation be-
hind this was to lower the differences between images produced with different lighting and
contrast. For the depth images, however, no pre-processing was applied as we suspect that
valuable depth information could be lost.

4.5.1 Simulation Experiments
In order to gather data for the research question regarding the benefits of Domain Random-
ization (DR) two different experiments were conducted in the simulation environment. The
first experiment consisted of training the different agents on an instance of the environment
where no aspects were randomized, producing a baseline to measure against. The second
experiment concerned training the different agents on an instance where many aspects
of the environment were randomized, as described in subsection 4.2.3, producing trained
policies to evaluate against the aforementioned. Additionally, to investigate if Curriculum
Learning (CL) can positively impact the amount of training necessary for developing good
policies in a randomized environment, a third experiment was conducted. In this experi-
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ment the different agents were trained in an environment where the extent of DR increased
iteratively during the training phase.

4.5.2 Real World Experiments
To evaluate the policies produced by training in the simulated environment, experiments
in the real world setup were conducted. These experiments consisted of several grasping
attempts for each object in the setup, producing the data necessary for estimating overall
grasp success and grasp success per object for each of the different agents. However, as a
binary classification of whether a grasp was successful or not does not provide information
regarding the proximity of the failed attempts, additional measurements were performed.
These measurements evaluated if the pose estimated was within a certain threshold regard-
ing errors in position and angle, thus giving a more accurate representation of the quality
of the policy applied.

As a final experiment, the different agents were evaluated on a set of novel objects which
were not included in the simulation. This produced indicative data as to the generalization
capabilities of the policy beyond the examples included in the training set.
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Chapter 5
Results and Discussion

This chapter presents the results, discussions and analysis of our work, where the problem
of gripper pose estimation for semi-compliant objects was investigated. As described in
section 4.4, both the Deep Deterministic Policy Gradients (DDPG) algorithm and the Prox-
imal Policy Optimization (PPO) algorithm were deemed promising based on related work.
Both algorithms produced satisfactory policies on various complex problems incorporat-
ing high dimensional state spaces and a Continuous Action Space (CAS). To select the
most promising of these, preliminary experiments were conducted, comparing the two al-
gorithms based on multiple criteria. The most promising algorithm was then implemented
with two different network architectures and trained in three different versions of the sim-
ulation environment. Following, the trained agents were evaluated in our real world setup.
The simulation experiments presented in this chapter all conduct 500 episodes to estimate
the current quality of the agent, ensuring good estimations. Additionally, for both our
simulation and our real world environments, all episodes are divided into three environ-
ment interactions, often referred to as steps, constituting a complete grasp pose estimation
sequence.

5.1 Preliminary Experiments
Early experiments were conducted, applying the DDPG and the PPO algorithms to the
problem of gripper pose estimation in our simulation environment. Each algorithm was
trained for 50000 episodes, equivalent to 150000 environment interactions, over four runs
with random simulation seeds. Multiple and relatively short runs were conducted to gen-
erate data for comparing the two algorithms with regards to; training times, final policies
and sample efficiency. This section presents the setup used for these experiments, along
with the results obtained and a discussion of these.
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5.1.1 Network Architecture
As shown in section 4.4, the networks used in our preliminary experiments used a pre-
trained instance of AlexNet (Krizhevsky et al., 2012) as a feature extractor paired with
custom relatively shallow fully connected networks. In order to constrain training times
and total execution times for these experiments, only the fully connected end part of the
networks was tuned during training, leaving the weights of AlexNet constant. This en-
abled several runs to be executed, creating a better basis for selecting the most promising
algorithm.

5.1.2 Hyperparameters
The hyperparameters used for the DDPG algorithm can be seen in Table 5.1, and the hy-
perparameters used for the PPO algorithm can be seen in Table 5.2. For both algorithms
the hyperparameters were found by empirical testing. The DDPG algorithm seemed to
be sensitive to changes in hyperparameters, where small changes could severally decrease
learning stability. The PPO algorithm, however, responded better to changes in hyperpa-
rameters, making it easier to tune.
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Hyperparameters for the Deep Deterministic Policy Gradients (DDPG) algorithm
Parameter Value Description

Actor Learning Rate 1−5 −→ 1−6 The decaying learning rate for the actor’s Adam opti-
mizer.

Actor Epsilon 0.1 The Epsilon for the actor’s Adam optimizer.

Critic Learning Rate 1−4 −→ 1−5 The decaying learning rate for the critic’s Adam opti-
mizer.

Critic Epsilon 1−8 The Epsilon for the critic’s Adam optimizer.

Mini Batch Size 64 The number of sampled interactions from the Replay
Memory the algorithm is trained on for each step.

Tau (τ ) 1−4 Value dictating how fast the target networks should
approximate the base networks each update.

Gamma (γ) 0.99 Value dictating how important later rewards are com-
pared to the current reward.

Replay Memory Size 3500 The maximum number of experiences the replay
memory holds.

Pre-training Environment
Episodes

100 The number of interactions that are performed prior
to initiating learning.

Number of Episodes 50000 The total number of episodes the algorithm is trained
on.

Number of Steps 3 The number of steps in each episode.

Positional Noise Amplitude 2 −→ 0.1 The decaying amplitude multiplied by the Ornstein-
Uhlenbeck noise (Uhlenbeck and Ornstein, 1930).

Rotational Noise Amplitude 3 −→ 0.1 The decaying amplitude multiplied by the Ornstein-
Uhlenbeck noise (Uhlenbeck and Ornstein, 1930).

Table 5.1: Hyperparameters used for the Deep Deterministic Policy Gradients algorithm [2.6.4]
in our preliminary experiments. The hyperparameters were found through empirical testing. The
positional noise amplitude, the rotational noise amplitude and the learning rates are all decayed
linearly throughout the course of training.
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Hyperparameters for the Proximal Policy Optimization (PPO) algorithm
Parameter Value Description

Learning Rate 1−5 −→ 1−6 The decaying learning rate for the Adam optimizer.

Epsilon ε 0.2 −→ 0.1 The decaying epsilon dictating the bounds for the
clipped surrogate objective.

Beta β 1−2 −→ 1−5 The decaying beta dictating the strength of the en-
tropy regularization.

Number of Epochs 21 The number of epochs that the algorithm is trained for
each training interval.

Mini Batch Size 64 The number of sampled interactions from the buffer
the algorithm is trained on for each epoch.

Buffer Size 512 The number of experiences that are stored in the
buffer.

Lambda λ 0.95 The lambda value used to calculate the Generalized
Advantage Estimate where this value dictates how
much the agent relies on its current value estimate
when calculating a new one.

Gamma (γ) 0.99 Value dictating how important later rewards are com-
pared to the current reward.

Number of Episodes 50000 The total number of episodes the algorithm is trained
on.

Number of Steps 3 The number of steps in each episode.

Noise Amplitude 1 −→ 0 The decaying amplitude multiplied with a random
normal distribution.

Table 5.2: Hyperparameters used for the Proximal Policy Optimization algorithm [2.6.5] in our pre-
liminary experiments. The hyperparameters were found through empirical testing. The learning rate,
the epsilon and the beta parameters are decayed linearly throughout training. The noise amplitude
is decayed towards zero throughout training, based on the calculated loss and the beta parameter,
where high losses give more exploration and lower losses give more exploitation.

5.1.3 Results and Discussion
The results produced by training the DDPG and the PPO algorithms in our simulation en-
vironment without Domain Randomization (DR) for the gripper pose estimation problem
can be seen in Figure 5.1. Both algorithms seemed to learn relatively fast and achieved
adequate results given the fact that shallow networks and few episodes were used. How-
ever, as can be seen in Figure 5.1, the PPO algorithm both learned faster and ended at a
significantly better policy than the DDPG algorithm in our experiments. Additionally, the
results show that PPO has slightly less variance in performance between different runs.
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Figure 5.1: Graph showing the results produced by training the Proximal Policy Optimization (PPO)
algorithm (blue) and the Deep Deterministic Policy Gradients (DDPG) algorithm (green) for 50000
episodes (150000 environment interactions) in a non-randomized instance of our simulation. For
each algorithm the mean rewards and upper and lower bounds obtained from four individual runs
are shown.

The results produced by training the algorithms our simulation environment incorporating
Domain Randomization (DR) can be seen in Figure 5.2, where the power of random-
ness was set to 1.0. Both algorithms learned relatively fast for these experiments as well,
however, to our expectations, the final results were not as good as in the non-randomized
instance. Both algorithms seemed to vary more across different runs, with DDPG varying
slightly more. Interestingly, the DDPG algorithm seemed to be only marginally affected
by the introduction of DR, whereas the PPO algorithm was notably affected. We suspect
that this is caused by the difference in training strategies, where DDPG used a larger re-
play memory and only tuned the weights in the network slightly for each training update.
The PPO algorithm, however, incorporated a smaller replay memory in our experiments,
and used a more aggressive tuning strategy, where the advantage estimates, along with the
clipped surrogate loss, were used to tune the weights for each update. Despite being less
impacted by DR, DDPG did not produce quite as good final policies as PPO, however, the
difference in results were less prominent for these experiments.
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Figure 5.2: Graph showing the results produced by training the Proximal Policy Optimization (PPO)
algorithm (blue) and the Deep Deterministic Policy Gradients (DDPG) algorithm (green) for 50000
episodes (150000 environment interactions) in a domain randomized instance of our simulation.
For each algorithm the mean rewards and upper and lower bounds obtained from four individual
runs are shown.

We suspect that better hyperparameters can be obtained for DDPG, rendering it capable
of competing with the resulting policies of PPO. However, the difference in training times
and sample efficiency are significant. For these experiments, the DDPG algorithm trained
for one epoch each step, while the PPO algorithm only trained 24 epochs at intervals of
512 steps, resulting in DDPG training roughly 21 times more than PPO. This impacts the
difference in training times as the complexity of the networks applied increases. Addition-
ally, DDPG seemed less stable than PPO, where the difference in fluctuations and conver-
gence rates seemed to increase with the increase of network complexity. Based on these
results, along with the observations regarding training times and hyperparameter tuning,
the Proximal Policy Optimization (PPO) algorithm was chosen for further experiments.
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5.2 Simulation Experiments
This section presents the setup for the experiments conducted in the different instances of
our simulation environment along with the results obtained by training the PPO algorithm
with two different network architectures. Each architecture was evaluated over two runs
and trained for 600 thousand episodes in the base simulation, the Domain Randomization
(DR) version and the Curriculum Learning (CL) version of our simulation.

5.2.1 Network Architectures
As described in section 4.4, the different architectures used in our simulation experiments
differed in the Convolutional Neural Network (CNN) part of the networks. The first ar-
chitecture, seen in Figure 4.14, used a custom CNN component. The second architecture,
seen in Figure 4.15, used the CNN component of a pre-trained feature extractor, namely
AlexNet (Krizhevsky et al., 2012). In contrast to our preliminary experiments, most of the
CNN layers in the second architecture were tuned during training, where only the first two
CNN layers were kept constant as it can be expected that these early layers extract highly
general features. In the first architecture, the whole network was tuned as it was initialized
with random weights and no prior assumptions.

5.2.2 Hyperparameters
The hyperparameters used for these experiments were similar to the parameters used in
our preliminary experiments for the PPO algorithm, which can be seen in Table 5.2. As
we suspected that the network architecture building on a pre-trained instance of AlexNet
contained a good starting point for the weights, a smaller learning rate was chosen for this
configuration. This was done in order to not tune the pre-trained weights of the AlexNet
CNN layers too heavily with the early and rough weight updates produced by randomly
initialized fully connected networks. As the whole network of the first architecture was
initialized with random weights, a larger learning rate was used for these runs. The learn-
ing rate for the two architectures both decayed throughout learning and were 2−4 −→ 1−5

for the first architecture and 2−5 −→ 1−6 for the second architecture.

5.2.3 Results and Discussion
The agents trained in the base simulation without Domain Randomization (DR) obtained
the highest estimated final rewards for these experiments. The results after training the
PPO algorithm with our custom CNN component in a non-randomized version of our sim-
ulation environment can be seen in Figure 5.3. The rewards produced throughout these
runs show that the agent quickly learns decent policies, requiring only 100000 episodes
for obtaining an estimated reward of roughly 0.8. As can be seen in the plot, this config-
uration ended with an estimated reward of roughly 0.94. Additionally, as can be seen in
Table 5.3, this indicates that the average gripper poses estimated by this agent lies within
three centimeters and six degrees of a good grasping pose for all the objects in the simula-
tion environment.
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Figure 5.3: Graph showing the results after running the Proximal Policy Optimization (PPO) algo-
rithm with our custom Convolutional Neural Network (CNN) component in a non-randomized
instance of our simulation environment for 600000 episodes (1.8 million environment interactions).
The average, the upper bound and the lower bound are generated by two separate runs of this config-
uration. The estimated reward for this agent is measured every 2500 episode, where each estimate is
an average calculated over 500 episodes.

Rewards Produced by Proximate Gripper Poses
0cm 1cm 2cm 3cm 4cm 5cm 6cm

0◦ 1.00 0.98 0.96 0.94 0.92 0.90 0.88
2◦ 0.98 0.96 0.94 0.92 0.90 0.88 0.86
4◦ 0.96 0.94 0.92 0.90 0.88 0.86 0.84
6◦ 0.93 0.91 0.89 0.87 0.85 0.84 0.82
8◦ 0.91 0.89 0.87 0.85 0.83 0.81 0.79

10◦ 0.89 0.87 0.85 0.83 0.81 0.79 0.77
12◦ 0.87 0.85 0.83 0.81 0.79 0.77 0.75

Table 5.3: Table showing the values produced by the reward function in our simulation environment,
given small positional and rotational errors.
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The results produced by training the PPO algorithm with parts of AlexNet as a starting
point for a feature extractor can be seen in Figure 5.4. Similar to the agents with the
custom CNN component, the results for these runs show that the agents quickly develop
decent policies. Additionally, the fluctuations in these runs seem to be less prominent
than those produced by the agents using the custom CNN. We suspect that this difference
might stems from the fact that the first two layers of the pre-trained CNN component con-
tain good weights and are kept constant, reducing the cascading effect of heavy weight
updates in these early layers. Despite less fluctuations and a steep learning curve, this con-
figuration ended with a slightly lower estimated reward of roughly 0.92, which indicates
that the average gripper poses estimated lies within four centimeters and eight degrees
from a good gripper pose.

Figure 5.4: Graph showing the results after training the Proximal Policy Optimization (PPO) al-
gorithm with a pre-trained feature extractor in a non-randomized instance of our simulation
environment for 600000 episodes (1.8 million environment interactions). The average, the upper
bound and the lower bound are generated by two separate runs of this configuration. The estimated
reward for the agent is measured every 2500 episode, where each estimate is an average calculated
over 500 episodes.
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The results produced by training the PPO algorithm with a custom feature extractor in
an environment incorporating Domain Randomization (DR) are presented in Figure 5.5.
Despite being exposed to a heavy randomized environment, with great differences between
different visual observations, the results of these runs show that the agents quickly learns
decent policies. These runs ended with a policy that produced an estimated reward of
roughly 0.92, which, as can be seen in Table 5.3, signifies that the average estimated
gripper poses are within four centimeters and eight degrees of a good gripper pose.

Figure 5.5: Graph showing the results after running the Proximal Policy Optimization (PPO) al-
gorithm with our custom feature extractor in a Domain Randomized (DR) instance of our sim-
ulation environment for 600000 episodes (1.8 million environment interactions). The average, the
upper bound and the lower bound are generated by two separate runs of this configuration. The
estimated reward for the agent is measured every 2500 episode, where each estimate is an average
calculated over 500 episodes.

Running the PPO algorithm with the second network architecture, which builds on a pre-
trained CNN component, in our DR simulation environment, produced the results shown
in Figure 5.6. Similar to the configuration using a custom CNN component, the agents
learned rapidly despite DR being applied. The resulting policies obtained a final estimated
reward of roughly 0.9, which like in the experiments for the non-randomized environment,
were slightly inferior to the results obtained by the configuration using our custom CNN.
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Figure 5.6: Graph showing the results after training the Proximal Policy Optimization (PPO) al-
gorithm with our pre-trained feature extractor in a Domain Randomized (DR) instance of our
simulation environment for 600000 episodes (1.8 million environment interactions). The average,
the upper bound and the lower bound are generated by two separate runs of this configuration. The
estimated reward for the agent is measured every 2500 episode, where each estimate is an average
calculated over 500 episodes.

A plot showing the results from both the configuration using our custom feature extractor
and the configuration using a pre-trained feature extractor trained in our DR simulation can
be seen in Figure 5.7. As can be seen in this plot, the configuration using our custom CNN
component produces more fluctuations than the configuration using the pre-trained CNN.
Despite of this, the first architecture, using our custom CNN component, yields better final
policies. We suspect that this difference in final policies stems from the fact that our cus-
tom CNN extracts features from the RGB and the depth images jointly, whereas the second
network architecture extracts features from the RGB and the depth images separately. Ad-
ditionally, the second network architecture utilizes a feature extractor trained only on RGB
images. Consequently, it is not necessarily guaranteed that this CNN component extracts
descriptive and discriminating features from depth images in the early layers.
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Figure 5.7: Graph showing a comparison between the Proximal Policy Optimization (PPO) algo-
rithm with pre-trained and custom feature extractors in the Domain Randomized (DR) version
of our simulation environment. The average, the upper bound and the lower bound are generated
by two separate runs of both configurations. The blue graph shows the results produced with a
pre-trained feature extractor, and the green graph shows the results produced with a custom feature
extractor.

The results obtained by running the PPO algorithm with the network architecture building
on our custom CNN component on an instance of the simulation environment incorpo-
rating CL, can be seen in Figure 5.8. The Curriculum Learning strategy implemented,
linearly increased the amount of randomization from 0.0 to 1.0 throughout training. The
amount of randomization was increased by 0.1 every 15000 episode starting at episode
32500 and reaching a DR factor of 1.0 at episode 167500. The points of randomization
increase are represented in the plot as dotted black lines along the axis of the correspond-
ing episode. For most of the randomization increases the agent seemed to adapt quickly to
the changes, even to the introduction of texture changes which occurs when the DR factor
exceeds 0.5 at episode 107500. The final estimated reward obtained by this agent was
roughly 0.92, rendering it comparable with the agent trained in the environment with full
DR from start.
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Figure 5.8: Graph showing the results after running the Proximal Policy Optimization (PPO) algo-
rithm with our custom feature extractor with Curriculum Learning (CL) in a Domain Random-
ized (DR) instance of our simulation environment for 600000 episodes (1.8 million environment
interactions). The average, the upper bound and the lower bound are generated by two separate runs
of this configuration. The estimated reward for the agent is measured every 2500 episode, where each
estimate is an average calculated over 500 episodes. The dotted black vertical lines show where the
amount of Domain Randomization (DR) is increased. Our Curriculum Learning (CL) strategy in-
creases the amount of DR linearly from 0.0 to 1.0, where 0.1 is added every 15000 episode starting
at 32500 and ending at 167500.

A plot showing both the results of training the PPO algorithm with a custom CNN in the
DR and the CL instances of the simulation environment, can be seen in Figure 5.9. As
can be seen in the plot, the agent trained with CL learns faster than the agent trained with
full DR from start. However, after the first 100000 episodes, the difference between the
agents decreases. Both graphs in the plot inhabits large fluctuations, but increase somewhat
proportional to each other after the first 150000 episodes. The final results of each agent
were nearly identical with little variance around an estimated reward of 0.92.

61



Figure 5.9: Graph showing a comparison between the Proximal Policy Optimization (PPO) al-
gorithm with custom feature extractor in the Domain Randomized (DR) and the Curriculum
Learning (CL) version of our simulation environment. The average, the upper bound and the lower
bound are generated by two separate runs of both configurations. The blue graph shows the re-
sults produced in the DR environment, and the green graph shows the results produced in the CL
environment.

Training the PPO algorithm with a pre-trained CNN component on an instance of the sim-
ulation environment incorporating Curriculum Learning (CL) produced the results seen
in Figure 5.10. The same CL strategy was used for this configuration as for the config-
uration using a custom CNN component. Likewise, the points of randomization increase
are shown in the plot as dotted black lines along the axis of the corresponding episode.
The agent seemed to learn quickly and adapted well to increases in DR strength, however,
some medium fluctuations can be seen in the plot. The final estimated reward obtained by
this configuration was roughly 0.89, resulting in slightly poorer results than those obtained
by training the same network in an environment with full DR from start.
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Figure 5.10: Graph showing the results after training the Proximal Policy Optimization (PPO) al-
gorithm with a pre-trained feature extractor and Curriculum Learning (CL) in a Domain Ran-
domized (DR) instance of our simulation environment for 600000 episodes (1.8 million environment
interactions). The average, the upper bound and the lower bound are generated by two separate runs
of this configuration. The estimated reward for the agent is measured every 2500 episode, where each
estimate is an average calculated over 500 episodes. The dotted black vertical lines show where the
amount of DR is increased. Our CL strategy increases the amount of DR linearly from 0.0 to 1.0,
where 0.1 is added every 15000 episode starting at 32500 and ending at 167500.

A plot showing both the results of training the PPO algorithm with a pre-trained CNN
component in the DR and the CL instances of the simulation environment can be seen in
Figure 5.11. As can be seen in the plot, the CL configuration seemed to learn more rapid
for the first 80000 episodes, but then approached the results obtained by the DR agent and
they increased proportionally throughout the rest of the training. The rewards produced
by the CL configuration seemed to be more prone to fluctuations. The final results of
each learning configuration were comparable, with the DR configuration achieving slightly
better results.
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Figure 5.11: Graph showing a comparison between the Proximal Policy Optimization (PPO) algo-
rithm with pre-trained feature extractor in the Domain Randomized (DR) and the Curriculum
Learning (CL) versions of our simulation environment. The average, the upper bound and the
lower bound are generated by two separate runs of both configurations. The blue graph shows the
results produced in the DR environment, and the green graph shows the results produced in the CL
environment.

5.2.4 General Observations
Overall, the different approaches regarding network architectures and training regimes
all yielded satisfactory results in our simulation experiments with final estimated rewards
ranging from roughly 0.89 to 0.94. As can be seen in Table 5.3, these results indicate that
all agents estimates gripper poses that on average are six centimeters and twelve degrees
or closer to a good gripper pose. The agents concerned with the base environments pro-
duced higher final estimated rewards than the agents coping with Domain Randomization
(DR). This coincide with the assumption that learning more general concepts over diverse
data is a more complex task. Across all simulation experiments, minor and a few major
fluctuations occurred in the quality of the estimated gripper poses, with the agents using a
network architecture building on the AlexNet CNN producing fewer and smaller fluctua-
tions. We suspect that these fluctuations occur due to large weight updates in the network
based on poorly distributed experiences, where a majority of these experiences require
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similar changes to be made, resulting in exaggerated updates. Given sufficient hardware
capabilities, we suspect that increasing the buffer and mini-batch sizes along with decreas-
ing the epsilon (ε) hyperparameter can ease this effect. Despite some fluctuations in the
quality of the estimated grasp poses, the agents quickly stabilize and rebounds. Compar-
isons between configurations using DR and CL show indications of faster learning during
the first few stages of randomization increase, but this head start declines before reaching
full DR in both experiments. Additionally, the configurations using CL do not seem to
produce better final policies in our experiments. We believe that the reason why our CL
agents did not end up learning faster or producing better policies than the agents trained
with full DR from start, is that the CL strategy chosen did not benefit the agents sufficiently
during training.

5.3 Real World Experiments
In our real world experiments, the different agents trained in the gripper pose estimation
simulation environment were evaluated over a set of semi-compliant objects. The objects
were molded in silicone as described in section 4.3 and can be seen in Figure 4.10. For all
the experiments conducted in our real world setup, the agents evaluated were only trained
in simulation and no fine tuning or domain adaption was performed. Early trials of the dif-
ferent agents revealed that the agents trained in non-randomized environments produced
unsatisfactory gripper pose estimations which discriminated minimally between differ-
ent visual observations, and no successful grasp poses were estimated by these agents.
This observation led us to terminate the experiments regarding the agents trained in non-
randomized environments. Additionally, we observed that all the agents benefited from
the addition of thresholded Perlin Noise (Perlin, 1985) maps, like the ones used for the
depth renderings in our simulations. We suspect this can be derived from the fact that the
networks were trained on certain distributions of zero values in the depth images. To min-
imize the difference in estimated gripper poses for the same states in these experiments,
the Perlin Noise added to the depth images was kept constant.

To ensure good indications for the quality of the different policies, ten grasp attempts
were performed for each agent for each object, resulting in a total of 400 grasp attempts
for the first part of the real world experiments. A visualization of the different random po-
sitions and rotations used during evaluation can be seen in Figure 5.12, where each unique
object configuration is shown in one image per object. The second part of the experiments
concerned five gripper pose estimations for four novel objects not trained on in simula-
tion. The novel objects along with their random initial positions and rotations can be seen
in Figure 5.13.
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Figure 5.12: Visualization of the ten random initial configurations for each object used in our real
world experiments. For each object, each unique position and rotation is shown per image, visualiz-
ing the distribution of our test set. The objects shown are respectively left to right, top row; Avocado,
Fish Fillet and Paprika, bottom row; Pickle, Strawberry and Speaker.

Figure 5.13: Visualization of the five random initial configurations for each object used in our real
world experiments for novel objects not seen during training. For each object, each unique position
and rotation is shown per image, visualizing the distribution of the test set. The objects shown are
respectively left to right, top row; Apple and Pear, bottom row; Match Box and Milk Carton.
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In contrast to our simulation, where the agents were rewarded based on the offset from
good grasping poses with sufficient margins both regarding positional and rotational er-
rors, the error measurements in our real world experiments were based on the minimal
offsets required for obtaining successful grasps. For both the first and the second part
of our real world experiments, the manually measured offsets from viable grasps were
rounded to the nearest 0.5 centimeters and the nearest 5 degrees.

An example of a successful grasp pose estimation sequence for the Speaker object can
be seen in Figure 5.14, where a viewer’s perspective, the visual observations perceived
by the agent and the resulting grasp pose can be seen. Common for most of the gripper
pose estimation sequences and the sequence shown in this figure, is that the agents itera-
tively improves the end-effector’s position and rotation, exploiting the several steps of an
episode.

Figure 5.14: Photos and visual observations from an episode in our real world setup where the agent
estimates a successful gripper pose for the Speaker object. The first column shows the episode seen
from a viewer’s perspective. The second and third columns show the RGB and the Depth visual
observations perceived by the Deep Reinforcement Learning (DRL) agent. Finally, the last two
images show the resulting grasping pose from top and side view.
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5.3.1 Results and Discussion
The results from the first part of our experiments can be seen in Table 5.4 and Table 5.5,
where the grasping success rates of each agent are presented in the first table, and the mean
and standard deviation for each configuration is shown in the second table. As can be seen
by these results, the agent which used our custom CNN component trained in simulation
with full DR achieved the best overall results with a grasp success rate of 60% and 88.33%
of the grasps being either successful or within one centimeter and five degrees of a viable
grasp. This coincide with the results obtained in our simulation experiments, where the
agents using our custom CNN component achieved some of the best policies. Interestingly,
the agent using our custom CNN component along with the Curriculum Learning (CL)
strategy, did not obtain equally good results in these experiments despite achieving equally
good policies in our simulation experiments. However, as can be seen in Table 5.5, the
custom CL agent estimated gripper poses with errors whose mean and standard deviation
were comparable to the custom DR agent.
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Real World Experiments - Grasp Success Rates
Pre-trained DR Pre-trained CL

Object M1 M2 M3 M1 M2 M3
Fish Fillet 40% 70% 100% 10% 10% 90%
Avocado 40% 50% 100% 20% 30% 60%
Pickle 60% 60% 90% 10% 20% 60%
Paprika 40% 50% 70% 30% 40% 60%
Strawberry 70% 90% 90% 30% 90% 90%
Speaker 0% 70% 80% 30% 40% 90%
Total 41.66% 65.00% 88.33% 21.66% 38.33% 75.00%

Custom DR Custom CL
Object M1 M2 M3 M1 M2 M3
Fish Fillet 40% 70% 90% 10% 10% 90%
Avocado 70% 90% 100% 70% 70% 100%
Pickle 100% 100% 100% 40% 90% 100%
Paprika 70% 90% 100% 70% 80% 100%
Strawberry 30% 80% 100% 0% 60% 100%
Speaker 20% 90% 100% 0% 60% 90%
Total 60.00% 88.33% 98.33% 36.66% 73.33% 96.66%

Table 5.4: Table showing grasp success rates in our real world experiments for the four different
training and network configurations after only training in simulation. Both Pre-trained DR (top-left)
and Pre-trained CL (top-right) used the same network architecture, building on a pre-trained feature
extractor, where Pre-trained DR was trained in the Domain Randomization (DR) version of our
simulation and Pre-trained CL was trained in the Curriculum Learning (CL) version. Furthermore,
Custom DR (bottom-left) and Custom DL (bottom-right) used the network architecture incorporating
our custom feature extractor, where Custom DR was trained in a DR version of our simulation and
Custom CL was trained in the CL version. Each configuration was evaluated on the six objects
trained on in simulation with ten different initial positions and rotations. The first measurement M1
is a binary measurement of how many grasps were successful, enabling the gripper to grasp and lift
the object. The second measurement M2 shows the percentage of attempts that were not classified as
successful grasps, but were within 1 centimeter and 5 degrees of success. Finally, the measurement
M3 shows the percentage of grasps that were within 3 centimeters and 10 degrees of a successful
grasp. The Total row shows the measurements for each configuration for the whole dataset.
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Real World Experiments - Mean and Standard Deviation
Pre-trained DR Pre-trained CL

Object Pµ Pσ Rµ Rσ Pµ Pσ Rµ Rσ
Fish Fillet 0.95cm 1.08cm 0.0◦ 0.0◦ 2.25cm 1.45cm 0.0◦ 0.0◦

Avocado 1.05cm 0.93cm 0.5◦ 1.5◦ 2.25cm 1.63cm 0.0◦ 0.0◦

Pickle 1.05cm 1.37cm 2.5◦ 7.5◦ 4.50cm 5.82cm 5.0◦ 9.5◦

Paprika 2.70cm 3.82cm 2.5◦ 4.0◦ 3.50cm 5.37cm 6.0◦ 8.0◦

Strawberry 0.85cm 2.23cm 0.5◦ 1.5◦ 2.75cm 6.93cm 0.5◦ 1.5◦

Speaker 1.20cm 0.98cm 3.0◦ 4.6◦ 2.10cm 3.40cm 3.8◦ 6.2◦

Total 1.30cm 2.12cm 1.5◦ 4.2◦ 2.89cm 4.68cm 2.6◦ 6.2◦

Custom DR Custom CL
Object Pµ Pσ Rµ Rσ Pµ Pσ Rµ Rσ
Fish Fillet 0.7cm 1.33cm 0.0◦ 0.0◦ 0.95cm 1.13cm 0.5◦ 1.5◦

Avocado 0.35cm 0.63cm 1.5◦ 3.2◦ 0.45cm 0.69cm 0.5◦ 1.5◦

Pickle 0.00cm 0.00cm 0.0◦ 0.0◦ 0.55cm 0.52cm 0.0◦ 0.0◦

Paprika 0.35cm 0.55cm 0.0◦ 0.0◦ 0.40cm 0.70cm 0.0◦ 0.0◦

Strawberry 0.75cm 0.51cm 2.0◦ 3.3◦ 0.95cm 0.47cm 0.0◦ 0.0◦

Speaker 0.65cm 0.45cm 0.0◦ 0.0◦ 0.95cm 0.76cm 3.0◦ 9.0◦

Total 0.47cm 0.75cm 0.6◦ 2.1◦ 0.71cm 0.78cm 0.7◦ 3.9◦

Table 5.5: Table showing mean and standard deviation for the error in our real world experiments
for the four different training and network configurations after only training in simulation. Each con-
figuration was evaluated on the six objects trained on in simulation with ten random initial positions
and rotations. The first measurement Pµ shows the mean positional offset from a successful grasp
in centimeters. The second measurement Pσ shows the standard deviation of the positional offset.
The third measurement Rµ shows the mean rotational offset from a successful grasp in degrees, and
the last measurement Rσ shows the rotational offset’s standard deviation. The Total row shows the
different measurements for the whole dataset.

Common for all the agents in these experiments were poor grasp success rates for the
Speaker object, where we suspect that this is caused by the low clearance for this object.
However, as can be seen in the results obtained with the M1 and the M2 measurements
in Table 5.4, along with the mean positional offsets seen in Table 5.5, the gripper poses
estimated were close to viable. The different clearance measurements for all the moulded
objects can be seen in Table 5.6, where the clearances were measured based on a good
rotation and some objects contains two measurements due to the objects being graspable
from multiple orientations.
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Real World Object Gripper Clearance
Object Clearance
Fish Fillet 2.0 cm
Avocado 1.8 cm
Pickle 5.5 cm
Paprika 2.6 cm & 0.8 cm
Strawberry 4.7 cm & 4.3 cm
Speaker 2.0 cm & 0.7 cm

Table 5.6: Table showing the clearance between the different objects used in our real world experi-
ments and the gripper’s actuators in centimeters. Two clearance measurements are included for the
objects Paprika, Strawberry and Speaker, as they can be grasped from multiple orientations.

Overall, for the first part of our real world experiments, the agents using our custom CNN
component as a feature extractor performed better than the agents using a pre-trained in-
stance of AlexNet as a feature extractor. This also coincide with our simulation experi-
ments where all the agents using the AlexNet CNN component achieved final policies that
obtained lesser rewards. As mentioned in subsection 5.2.3, we suspect that this difference
stems from the fact that AlexNet was trained purely on RGB images, and the fact that the
first two layers were not tuned during training, potentially resulting in poor features being
extracted from the depth images.

To give some indications to the similarities between the results obtained in our real world
setup and the rewards obtained in simulation, some rough estimations were performed
based on the gripper poses estimated. As stated, the error measurements in these experi-
ments are based on the offsets from a viable grasp pose, as opposed to a good grasp pose
in the simulation. However, the clearance measurements for the different objects seen in
Table 5.6, can be used along with the mean offsets seen in Table 5.5 to roughly estimate
the average distance to a centered pose within a centimeter for each object. Additionally,
we observed that the viable grasps required an average of roughly 3-5 degrees of rotation
for obtaining good rotational clearances. Based on these estimations an indication of the
rewards can be produced, resulting in a value of 0.91 ± 0.02 for both the custom DR
agent and the custom CL agent, which both achieved 0.92 in simulation. These estima-
tions seem to correlate for the agents building on a pre-trained feature extractor as well,
where the Pre-trained DR agent achieved 0.90 in simulation and 0.89 ± 0.02 in our real
world experiments, and the pre-trained CL agent achieved 0.89 in simulation and 0.85 ±
0.02 in the real world. Although having notable differences in the amount of successful
grasps, these estimations show that the gripper poses estimated by the custom DR and the
custom CL agents produce grasp poses with similar average offsets, where this can also
be derived from Table 5.5. This coincide with the results obtained in simulation where
the agents achieved roughly the same estimated rewards. We suspect, that more accurate
error measurements along with more gripper pose estimations per object would further the
similarities between simulation and real world results.
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The agents evaluated for all the aforementioned experiments were trained on a relative
small set of different objects and evaluated on semi-compliant replicas of these. However,
a final set of experiments were conducted to reveal some indications as to the capability
of generalizing beyond these. A set of five different objects both semi-compliant and rela-
tively rigid, which was not seen during training, was presented to the agents and evaluated
over five different grasps. The different random initial positions for these novel objects
can be seen in Figure 5.13, and the resulting grasping accuracy of the experiments can
be seen in Table 5.7. Interestingly, the agent obtaining the highest accuracy for the seen
objects did not obtain the highest accuracy for these unseen objects. Another interesting
observation is that both the pre-trained CL and the custom CL agents obtain higher scores
for the unseen objects. We observed that for the estimated gripper poses in the experiments
regarding seen objects, the CL agents often estimated grasps that were above the small ob-
jects; Pickle and Strawberry. This did not occur in the experiments concerning the unseen
objects, which we suspect comes from the objects being larger and thus covering more of
the depth images while having larger ranges for valid estimations in the height dimension.
We suspect that these observations, along with relatively few grasp attempts, can be the
reason why the CL agents perform better on the novel objects. Considering the relatively
small set of different objects presented to the agents during training, these results were
noteworthy, with all the agents estimating gripper poses with at least 75% of the attempts
being within three centimeters and ten degrees of a valid grasp.

72



Real World Experiments on Novel Objects
Pre-trained DR Pre-trained CL

Object M1 M2 M3 M1 M2 M3
Apple 0% 40% 100% 20% 40% 60%
Matchbox 60% 80% 80% 80% 80% 100%
Pear 20% 20% 60% 60% 60% 60%
Milk Carton 0% 100% 100% 20% 80% 100%
Total 20% 60% 85% 45% 65% 80%

Custom DR Custom CL
Object M1 M2 M3 M1 M2 M3
Apple 40% 60% 80% 60% 60% 80%
Matchbox 40% 80% 100% 80% 80% 80%
Pear 20% 20% 40% 60% 80% 80%
Milk Carton 60% 80% 100% 20% 60% 60%
Total 40% 55% 75% 55% 70% 75%

Table 5.7: Table showing grasp success rates in our real world experiments for the novel objects
not seen during training, for the four different training and network configurations after only training
in simulation. Both Pre-trained DR (top-left) and Pre-trained CL (top-right) used the same network
architecture, building on a pre-trained feature extractor, where Pre-trained DR was trained in the Do-
main Randomization (DR) version of our simulation and Pre-trained CL was trained in the Curricu-
lum Learning (CL) version. Furthermore, Custom DR (bottom-left) and Custom DL (bottom-right)
used the network architecture incorporating our custom feature extractor, where Custom DR was
trained in a DR version of our simulation and Custom CL was trained in the CL version. Each agent
configuration was evaluated on four different objects that were not trained on in simulation with five
different initial positions and rotations. The first measurement M1 is a binary measurement of how
many grasps were successful, enabling the gripper to grasp and lift the object. The second measure-
ment M2 shows the percentage of attempts that were not classified as successful grasps, but were
within 1 centimeter and 5 degrees of success. Finally, the measurement M3 shows the percentage
of grasps that were within 3 centimeters and 10 degrees of a successful grasp. The Total row shows
the measurements for each configuration for the whole dataset.

5.3.2 General Observations
To our expectations, the agents trained in a non-randomized version of our simulation
environment did not produce satisfactory results when transferred to our real world envi-
ronment. Consequently, these agents were omitted from further experiments. The other
agents evaluated seemed to have a consistent error of one centimeter along the negative y-
axis and 0.75 centimeters along the negative z-axis, consequently, adjustments were made
to the final actions to correct this. We assume that this effect stems from poor correlation
between the camera position on the gripper’s end-effector in the simulation and the cam-
era’s position in our real world setup. Another observation seen across all agents was that
lighting conditions impacted the performance of the agents to a certain extent. Interest-
ingly, different lighting conditions seemed to impact the agents that built on a pre-trained
feature extractor more than the agents using our custom CNN architecture. We believe
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that this stems from our decision to not tune the first two CNN layers of the AlexNet com-
ponent, and suspect that the lighting conditions in our real world setup differs from the
lighting conditions present in the ImageNet (ImageNet, 2018) dataset. However, as both
architectures were impacted by lighting conditions in these experiments, we suspect that
incorporating more expressive Domain Randomization (DR) aspects regarding lighting,
such as light intensity, shadows, number of light sources etc., will produce better results
after transfer learning. Finally, we observed that the agents struggled more with the es-
timation of good gripper poses for objects that were almost as wide as the full extent of
the gripper’s actuators. This was not surprising as the error tolerance decreases severally
for these objects where even slight displacements can result in gripper poses going from
viable to failed grasps. We suspect that the utilization of robotic gripper actuators which
are more customized for grasping of compliant objects, and that also adapts moderately to
minor collisions instead of terminating, can increase the grasp success rates of the agents.
Despite sensitivity to lighting conditions and the use of a gripper which is not optimized
for grasping semi-compliant objects, many successful and nearly successful gripper pose
estimations were produced by our agents. A collection of six grasp attempts can be seen
in Figure 5.15, where the minor offsets required for moving from nearly successful to suc-
cessful can be seen. Additionally, the complete list of the results obtained in our real world
experiments can be seen in Appendix B.

Figure 5.15: Photographs of different successful (top) and nearly successful (bottom) gripper pose
estimations taken during our real world experiments. For the grasp attempts shown in these images,
nearly perfect rotations were estimated. As can be seen in the bottom row, these attempts only miss
a viable grasp pose by a few centimeters. Additionally, the gripper robot halts when the end-effector
collides, resulting in the elevated end-positions in the bottom left and bottom right images.
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Chapter 6
Conclusion and Future Work

This chapter presents a brief summary of the problem formulation, motivation and the
work of this thesis. Following, the key experimental results are discussed in relation to
our research questions along with our contributions to the field of Deep Reinforcement
Learning (DRL) and dexterous robotic manipulation. Finally, a brief section covering a
collection of further interesting alterations and extensions to our work, is presented.

6.1 Conclusion
The task of using Deep Reinforcement Learning (DRL) in the context of gripper pose es-
timation for semi-compliant objects is rather novel. However, work investigating related
tasks such as gripper pose estimation for rigid objects or vision guided robotic manipula-
tion in general is of great interest. A structured state-of-the-art literature review, investi-
gating work applying both Deep Learning (DL) and DRL to related tasks, was performed.
The review revealed the DRL algorithms Deep Deterministic Policy Gradients (DDPG)
and Proximal Policy Optimization (PPO) to be interesting candidates for experiments. A
simulation environment for training and evaluating DRL agents on the problem of gripper
pose estimation was developed along with support for Domain Randomization (DR) and
Curriculum Learning (CL). The simulation environment was developed to loosely mimic
the real world setup and incorporated rigid objects.

We performed a set of research experiments to reveal 1) which of the DRL agents that
produce the most satisfactory results based on a set of criteria including, training times
and final policies, and 2) to answer our research questions:

RQ1:
Can the benefits of Domain Randomization enable an agent solely trained in simulation to
produce satisfactory results in a real world environment?
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RQ2:
Is training in a simulation environment with rigid objects sufficient for developing policies
for grasping semi-compliant objects in the real world?

RQ3:
Can the use of Curriculum Learning decrease the amount of training needed for develop-
ing good policies in a randomized simulation environment?

The research experiments regarding the selection of one of the two DRL agents (1), yielded
results that strongly suggested PPO to be more suitable for the problem definition of grasp
pose estimation. Consequently, PPO was chosen for our second set of research experi-
ments.

To evaluate the implemented PPO agents in our real world setup, the agents were first
trained in our simulation environment. Three different training regimes were chosen for
these experiments. The first regime concerned training in a base instance without Do-
main Randomization (DR), the second regime concerned training in an instance with full
Domain Randomization (DR), and the last regime concerned training with Curriculum
Learning (CL). These training regimes produced the prerequisites necessary for gather-
ing data for our first and second research questions, while the second and third training
regimes produced data for our third research question.

Research experiments were conducted investigating the precision of different gripper pose
estimations in our real world setup, produced by several variations of the PPO algorithm
that were only trained in simulation. The trained agents produced by learning with the DR
and CL regimes produced the data necessary for discussing our first and second research
questions. The first training regime, concerning training an DRL agent in a base version
of our simulation, was evaluated in our real world setup, creating a basis for observing the
benefits of DR. Our experiments, in line with Pinto et al. (2017), revealed that the DRL
agents trained without DR, despite obtaining near perfect results in the simulation environ-
ment, did not produce satisfactory results in the real world. The gripper poses estimated
by these agents only showed marginal discrimination across different states and no suc-
cessful grasps were executed. However, our experiments evaluating agents trained with
DR showed promising results, where the grasp poses estimated by the best agent achieved
a success rate of 60% on our test set, with 88.3% of the grasp attempts being either suc-
cessful, or within one centimeter and five degrees of a successful grasp. Additionally,
the mean positional and rotational offsets from a gripper pose that would have resulted in
a valid grasp were respectively; 0.47 centimeters with a standard deviation of 0.75 cen-
timeters and 0.6 degrees with a standard deviation of 2.1 degrees. The gripper used for
these experiments was a crude two finger gripper, leading many of the estimated grasp
poses to fail on account of minor offsets, where the griper aborts grasps with minor colli-
sions instead of having fingers that adapts moderately to the objects during grasp initiation.
Based on the results obtained, we suspect that the use of a gripper that is more customized
for grasping of compliant and semi-compliant objects would lead to even higher grasping
accuracies. In light of this, we deem the results obtained by our best agent to be promising.
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Analysis of the results obtained in our real world experiments showed a notable corre-
lation between the results obtained in simulation and the accuracy in our real world setup.
This suggests that agents learning better policies in our simulation will produce better re-
sults in our real world setup. The best PPO agent using DR showed some weaknesses
regarding the lighting conditions and positional reasoning. However, we suspect that these
flaws can be mitigated by changes to the lighting DR aspects and changes to the camera
position in both simulation and real world. Based on our results and these hypothesis,
we strongly suspect our first research question RQ1 to be true, stating that DRL agents
trained solely in simulation can produce satisfactory results in a real world environment
by exploiting Domain Randomization (DR). The same results also indicate our second re-
search question RQ2 to be true, stating that training in a simulation incorporating rigid
objects is sufficient for developing policies for grasping semi-compliant objects in the real
world. However, we observed some dubious grasps, which given more compliant objects,
would most likely not be successful. These observations lead us to believe that training
agents in a simulation that incorporates physics that enables the simulation of compliant
objects and the grasping of these would be, if not crucial, at least beneficial for learning to
grasp highly compliant objects. Based on the results obtained by our experiments concern-
ing the training of agents in DR and CL simulation environments, we conclude that there
are not sufficient indications in our results to claim that our third research question RQ3
is true, stating that CL reduces the amount of training needed for learning good policies
in a DR environment. We believe that an explanation for why training with CL did not
outperform training in a DR environment from scratch, can be that the learning strategy
chosen does not benefit the agent sufficiently during training.

To the best of our knowledge, a novel approach using Curriculum Learning (CL) for
reducing the amount of training necessary for learning good policies in highly domain
randomized environments was proposed. However, the CL strategy explored in this thesis
failed to meet the expectations regarding the reduction of training times and the improved
quality of final policies. Results supporting the hypothesis that DRL agents trained solely
in simulations can produce satisfactory results in real world environments were obtained.
Our work is in line with the results achieved in the work of Koch et al. (2018), where
PPO was deemed more reliable and time-efficient than DDPG for learning a problem with
a high dimensional state space and a Continuous Action Space (CAS). Furthermore, our
work is in line with the results of Tobin et al. (2017a,b), Pinto et al. (2017) and Peng et al.
(2017), where the use of Domain Randomization (DR) improved the results obtained in
our real world environment after transfer from simulation. However, the results obtained
in our experiments differed from the results of Zhang et al. (2017), where their algorithm
produced poor estimations without the use of domain adaption. In contrast to the work
of Tobin et al. (2017a,b), our work investigated the prospects of dividing the gripper pose
estimation task into a sequence of three estimations. Our results indicate the benefits of
this approach, where it is shown that instead of estimating the full pose from only one
observation, the agents gradually fine-tune their estimates.
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Our results along with the work of Pinto et al. (2017) and Inoue et al. (2017) support
the claim that the use of DRL has great potential for the field of dexterous robotic ma-
nipulation. Ultimately, the results obtained in our thesis shows that the training of Deep
Reinforcement Learning (DRL) agents in a simulator holds great potential for appliances
in the real world, where many satisfactory and close 6-DoF gripper pose estimations were
produced without any fine tuning or domain adaption after transfer.

6.2 Future Work
The simulation environment currently incorporates no physics, and outputs rewards as de-
scribed in subsection 4.2.2. To increase the benefits of using a simulator in regards to
transfer learning, we recommend some extensions to the simulation environment, which
enables the simulation of non-rigid physics, as well as friction physics. These extensions
will enable the environment to simulate grasping of semi-compliant and compliant objects,
and thus the current rewards can be used for initial guidance combined with rewards for
successful simulated grasps.

Compliant objects deform both during a grasp initiation and during the execution of a
grasp. Consequently, it can be assumed that receiving additional inputs during the grasp
execution, incorporating information about the deformation or other related behaviour of
the object, can be valuable. Extensions enabling the inputs to the gripper agent to addition-
ally incorporate tactile information in a visual form, providing the agent information about
the touch points of the gripper fingers and the deformation of the object in the contact ar-
eas through the use of a gel based sensing technology, is therefore an intriguing aspect to
consider for future work.

As the camera used for gathering the observations from our environment is mounted to
the end-effector of the gripper, the placement of the camera relative to the gripper in sim-
ulation can be expected to be sensitive to errors. To reduce this sensitivity we believe that
an interesting alteration to explore in further work, is the re-positioning of the mounted
camera such that parts of the gripper, including the actuators, are shown in the visual ob-
servations of the agents. This was not an easy change to perform in our real world setup,
but we suspect that this additional information might ease some of the errors regarding
positional and rotational estimations.

Some of the the results covered in related work (Levine et al., 2016; Gu et al., 2016;
Popov et al., 2017) show the benefit of having multiple agent instances explore the prob-
lem domain simultaneously, where good improvements are obtained from the inclusion of
more agents. Consequently, we deem the investigation of using parallel experience gather-
ing in simulation to be of interest in future work. Another interesting aspect to investigate
regarding parallel experience gathering, is the use of a hybrid solution where both agents
in simulation and in the real world setup explore the problem domain simultaneously.

As shown in our results and reiterated in our conclusion, the agents using our Curriculum
Learning (CL) strategy did not end up learning faster or end up producing better policies
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than the agents learning with full Domain Randomization (DR) from start. We suggest that
further research should be conducted investigating other strategies regarding the changes
for each step of the CL sequence. For example, instead of increasing the extent of DR, one
could increase the number of aspects being randomized for each CL step.

The benefits of dividing the gripper pose estimation task into a sequence has been shown
in our results. However, the agent only reasons on one of the three observations included
in the sequence for each step. We believe that an interesting area to investigate is the uti-
lization of Recurrent Neural Networks (RNNs) for this task, enabling the agent to reason
on multiple observations for each grasp attempt.

Finally, a last interesting concept to explore in future work is the use of procedurally
generated objects in the simulation environment like the work of Tobin et al. (2017b). We
suspect that the incorporation of such methods can both increase the grasp success rate for
the pre-defined objects trained on, and for novel objects.
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Appendix A

Below is the AlexNet (Krizhevsky et al., 2012) structure visualized with labeled layers and
the pooling layers are omitted from the illustration.

Source: http://www.mdpi.com/remotesensing/remotesensing-09-00848/article deploy/html/
images/remotesensing-09-00848-g001.png
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Appendix B

The complete list of the results obtained in our real world experiments.
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