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Project Description

In this project we want to test various dataflow kernels of HPC-related com-
putations using a dataflow computing system that was donated to NTNU by
Maxeler. The purpose is to explore the benefits of FPGA acceleration and
see how the Maxeler system eases the typically hard and time-consuming
FPGA development process. The main focus of the project is to accelerate
miniAMR, a proxy application for adaptive mesh refinement developed by
Mantevo Project.
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Abstract

As we observe diminishing returns for multi-core CPUs, especially when con-
sidering power budgets, FPGAs are becoming increasingly important in the
HPC world. To push the limits of performance and energy efficiency, more
general-purpose hardware, i.e. multi-core and GPU systems are often not
sufficient, and we need to create specialised hardware systems. FPGAs are
specialised hardware devices that allow us to create systems that are op-
timized for a given application. However, development and integration is
generally difficult and time-consuming.

In this thesis we explore harnessing the power of FPGA acceleration through
Maxeler’s FPGA-based Multiscale Dataflow Computing system by acceler-
ating miniAMR, a proxy application for adaptive mesh refinement developed
by Mantevo project. Proxy applications are minimal applications, which
mimic the performance characteristics of full applications and are meant for
testing and benchmarking. The applications are easier to work with than
full applications and as they are meant to test both hardware and software,
they contain a lot of options and runtime arguments, which makes FPGA
acceleration challenging.

Using the Maxeler system, we create arithmetic kernels for the core 7-point
and 27-point stencil computations of miniAMR. By rearranging the data
used, properly managing memory, and moving the core 3D stencil calcula-
tions onto dataflow engines, we achieve a maximum speedup of 2.52 while
maintaining the functionality of miniAMR. Because of the flexibility of the
Maxeler system and since the application mimics characteristics of full appli-
cations, our kernels can potentially be used to accelerate full adaptive mesh
refinement or other stencil-driven applications with minimal effort.
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Sammendrag

I dag ser vi mer og mer begrenset ytelse fra flerkjerneprosessorer, spesielt
hvis man tar strømbruk og kjøling med i betraktningen, noe som betyr at
FPGAer blir stadig mer viktig for tungregning. For å teste grensene til ytelse
og energieffektivitet er mer generell maskinvare ikke alltid nok og vi m̊a lage
spesialiserte systemer. FPGAer er spesialiserte enheter som kan brukes til å
lage systemer som er optimalisert for en gitt applikasjon, men utvikling og
integrering er typisk vanskelig og tidkrevende.

I dette prosjektet utforsker hvordan vi kan utnytte FPGA-akselerering gjen-
nom Maxeler sitt “Multiscale Dataflow Computing” system som baserer seg
p̊a FPGAer ved å akselerere miniAMR, en proxyapplikasjon for tilpasset raf-
finering av nett utviklet av Mantevo prosjektet. Proxyapplikasjoner er min-
imale applikasjoner som etterligner egenskaper til fullstendige applikasjoner
og brukes til testing og benchmarking. Applikasjonene er lettere å jobbe med
enn fullstendige applikasjoner og siden de er ment for å teste b̊ade maskin-
vare og programvare s̊a har de mange alternativer og kjøretidsargumenter
som gjør FPGA-akselerering utfordrende.

Ved hjelp av Maxelersystemet har vi laget aritmetiske kjerner for 7-punkts-
og 27-punktsstensiler som ligger i kjernen av beregningen for miniAMR. Ved
å rearrangere dataen som bruker, h̊andtere minnet p̊a en skikkelig måte, og
flytte de aritmetiske kjernene for stensilberegningene over p̊a dataflytmask-
iner s̊a oppn̊ar vi en ytelsesforbedring p̊a 2.52 mens vi beholder all funksjon-
alitet i miniAMR. P̊a grunn av fleksibiliteten til Maxelersystemet og siden
applikasjonen etterligner egenskapene til en fullverdig applikasjon s̊a kan de
aritmetiske kjernene v̊are potensielt bli brukt til å akselerere fullverdige app-
likasjoner for tilpasset raffinering av nett eller andre stensilapplikasjoner med
minimal innsats.
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Chapter 1

Introduction

FPGAs are interesting pieces of hardware for modern high-performance com-
puting. They are flexible and allow us to create ideal machines for the type
of computation we need for a given application. Today, acceleration is done
either in the form of parallel programming using general-purpose hardware,
e.g. multi-core CPUs and GPUs, or by using specialised hardware, e.g. FP-
GAs and ASICs. As we observe diminishing returns from multi-core systems,
FPGAs are becoming increasingly important alongside GPUs [6].

FPGAs help bridge the gap between general purpose and specialised hard-
ware by being programmable and configurable. However, FPGA acceleration
is difficult and time-consuming. This type of computation is less mature than
parallel computation using multi-cores and GPUs and the process of convert-
ing standard high-level code to efficient parallel code is better understood
than conversion to efficient hardware designs suited for FPGAs. FPGAs also
run with far lower operating frequencies, and to achieve better performance
we need to use massive parallelism and deep pipelines [1, 11].

Maxeler’s Multiscale Dataflow Computing makes FPGA acceleration more
accessible by providing a system where dataflow is emulated on FPGA-based
dataflow engines and development takes a high-level approach. Dataflow is
the concept of viewing programs, or computation, as directed graphs with
clear data dependencies and deterministic execution, which makes it well
suited to represent massive parallelism and deep pipelines [5]. Dataflow en-
gines try to overcome some of the challenges associated with FPGAs acceler-
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ation by operating with arithmetic kernels developed in Java and integration
with applications through basic function calls using a SLiC interface [9].

To test the Maxeler system, we seek to accelerate miniAMR, a proxy ap-
plication developed by Mantevo project. Proxy applications are minimal
implementations that mimic the performance characteristics of full applica-
tions and are meant to benchmark and test both software and hardware [7].
The applications typically contain a lot of runtime variability, which makes
them challenging to accelerate.

Chapter 2 covers necessary background theory: How FPGAs work, FPGA
acceleration, dataflow, and the Maxeler system as well as how to program
DFEs. Chapter 3 covers the process of accelerating miniAMR and Chapter 4
shows our results. Finally, Chapter 5 concludes and lists future work.
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Chapter 2

Background

This chapter covers the necessary background theory for this project. We
cover FPGAs, dataflow, and both the hardware aspects and programming
of the Maxeler system. Section 2.1 describes how FPGAs work, the de-
velopment process and the potential for increased performance and HPC.
Section 2.2 describes dataflow and the most common execution model. Sec-
tion 2.3 to Section 2.5 covers Maxeler’s Multiscale Dataflow Computing sys-
tem and dataflow computers, and finally Section 2.6 describes dataflow pro-
gramming using the Maxeler system.

2.1 Field-Programmable Gate Array

Field-programmable gate array (FPGA) is the name of devices consisting of a
matrix of configurable logic blocks (CLBs) and programmable interconnects,
or switches. This structure is shown in Figure 2.1. The devices are called
field-programmable because configuration is possible “in the field”, i.e. after
manufacturing. FPGAs are integrated circuits which can be reprogrammed,
or reconfigured, with the functionality required for a given application. The
logic blocks are configured to perform specific operations and switches are
configured to provide an interconnection between the logic blocks [2, 3].

CLBs are created by combining a lookup table (LUT) with a flip-flop (see
Figure 2.2). The LUTs contains a block memory that is written to in order
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Logic Block

Interconnection

Figure 2.1: Internal structure of FPGA chips
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to implement a certain combinational function and inputs to the logic blocks
are used as addresses by the configured LUT to determine which value to look
up and produce as output. This output can either be sent out directly for a
fully combinational implementation or go through the flip-flop to make the
block sequential. Sequential behaviour is needed to be able to store the state
of the computation between clock cycles and create essential components like
registers and finite state machines [2, 3].

LUT

in1

in2

in3

in4

FF
MUX out

reset

clock

Figure 2.2: Key components of CLBs

2.1.1 FPGA Acceleration

FPGAs were originally developed in the 1980s to enable quick and easy
prototyping. The programmability made FPGA devices suitable to emulate
hardware circuits, which meant digital designs could be prototyped, tested
and debugged before actual circuits were manufactured. The devices were
also suitable as teaching tools, but by the early 2000s, the use of FPGAs had
spread to most areas of computing and there was also adoption in certain
specific areas when it came to HPC, namely cryptography and specialized
arithmetic. The strength of FPGAs lies in possibility for extreme parallelism
and optimal hardware solution. Typical overhead instructions for software
solutions like loops, branches and array indexing are also completely avoided
and every operation can produce a payload [11].

The road towards widespread adoption for HPC started fully between 2003
and 2006 when it was observed that Dennard scaling was breaking down.
Moore’s law was still in effect, albeit slowing down, and it was no longer
economically viable to support higher frequencies, mainly because of the
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increasing power density. Consequently, the focus shifted from single-core
performance to parallelism with multi-core processors and GPUs. It even-
tually became clear that FPGAs had potential in the HPC world and today
FPGAs are used to create, or emulate, ”ideal machines” for a given applica-
tion. The configurability enables developers to implement optimal hardware
solutions, and create new forms of computations that are not available in
CPUs or GPUs, e.g. dataflow computing, which is described in Section 2.2.
The three main reasons for the potential of FPGAs are [4, 11]:

1. The scalability problem with multi-cores: It is difficult to scale up, both
for frequency and number of cores, especially while limited by power
targets and cooling capabilities.

2. Unlike power density and frequency scaling, Moore’s law on transistor
density scaling still applies, which enable huge FPGA configurations.
FPGAs have the potential for implementing large, complex computa-
tion engines, and since they inherently operate at lower frequencies,
the power density problem has not been hit yet.

3. FPGAs have extreme flexibility and can implement practically any
hardware configuration needed for a given application. Most forms of
parallelism and computation can be used, and optimal configurations
can be created for applications of any scope.

2.1.2 FPGA Development

The FPGA development flow consists of four major steps: Creating the
design, creating test benches for simulations, synthesis and implementation,
and finally programming file generation. Design of the system results in
hardware description language (HDL) files and can either be done directly in
traditional HDLs like VHDL or Verilog, or with the help of various tools that
use high-level techniques to generate the HDL [1, 11]. Creating test benches is
done to perform simulations and verify that the design is working as intended
before it is implemented on the FPGA. The synthesis is what converts the
design to a basic hardware description in the form of gate-level components,
which can be implemented on the FPGA. The implementation consists of
smaller processes that generate the physical placement and the FPGA chip,
i.e. locations of the logic block and routes between them. The final step
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is generating a programming file, or bitstream, which can be downloaded,
a.k.a. flashed, onto the FPGA, after which it will function as a digital circuit
performing the functionality specified by the design [2].

Using FPGAs for HPC can result in significant performance improvements,
as well as increased energy efficiency. Extreme parallelism is possible, espe-
cially for computations using reduced precision, and typical overhead instruc-
tions like array indexing and loop computations are avoided since the control
flow is configured directly in the logic, trading space for performance. How-
ever, FPGAs, have some big challenges including low operating frequency
and programmability. FPGAs typically run at a frequency ten times lower
than high-end processors. Furthermore, the process of transforming existing
code, to run on multi-core processors or GPUs is more mature and better
understood than for FPGAs. Achieving significant speedup is usually possi-
ble, but entails making trade-offs between development effort and flexibility,
portability, maintainability etc [4].

2.2 Dataflow

Dataflow is the concept of viewing programs as directed graphs. The systems
for representing the programs can use cyclic graphs for full functionality and
support, e.g. loops, or acyclic graphs for easier optimization and generation
of efficient hardware designs, for example for FPGAs [1]. The nodes in the
graphs represent simple arithmetic or logical operations, i.e. basic instruc-
tions, while the arcs represent data dependencies between the instructions.
The name ”dataflow” comes from the concept of data flowing between the
instructions along the arcs. A simple program and its corresponding dataflow
graph is shown in Figure 2.3 [5].

2.2.1 Execution Model

The most common model for dataflow execution is the token-based dataflow
model in which data flows as tokens along the arcs in theoretically endless
FIFO queues. Arcs flowing into nodes are called input arcs and arcs flowing
out are called output arcs, and the set of input arcs that are needed for
the node to perform its operation is called the firing set. When all arcs in
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A = X + Y

B = Y/10

C = A ∗B

(a) A basic arithmetic program

X Y 10

+ /

*

C

(b) A simple dataflow graph

Figure 2.3: A basic arithmetic program in a traditional representation (a)
and dataflow (b), adapted from Johnston, Hanna, and Millar [5]

the firing set has data, the node is what we call fireable. After a node has
become fireable, it is activated, i.e. performs its operation, at some undefined
time. Execution consists of removing data tokens from arcs in the firing set,
performing the operation and creating new data tokens to place on output
arcs before waiting to become fireable again. This results in instructions
being executed, or scheduled for execution in practice, as soon as operands
are available, which is fundamentally different from the classic von Neumann
model where instructions are scheduled accordingto the program counter.
[5]

The main advantage of the dataflow model is that more than one instruc-
tion can be executed at once. There are widely used techniques to add this
capability to conventional processors, e.g. multi-core and multiple issue, but
the dataflow model has an inherent potential for extreme parallelism at the
instruction level. Programs in the pure dataflow model are also determinate.
This means that for a given set of inputs, execution will always produce
the same outputs. This is because the operations of the nodes are func-
tional, i.e. data is never modified, there is a locality effect and there are
no side effects. Languages for dataflow programming also need this func-
tional behaviour to be efficient, and most dataflow programming languages
will therefore be largely functional languages. However, some imperative
constructs, or at least imperative syntax, is needed to implement loops, so
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dataflow languages can also be created by restricting imperative languages.
The most common approach is to utilize high-level non-functional techniques
and meta-programming through abstractions, which are compiled down to
code suited for dataflow or create hardware configurations which emulate
dataflow. One such system, Maxeler’s Multiscale Dataflow Computing, is
described in Section 2.3 [5, 11].

2.3 Multiscale Dataflow Computing

The Maxeler model is an evolution of the dataflow architectures from the
1970s and 1980s. Multiscale dataflow computers combine a fast standard
processor with DFEs, which are emulated on FPGAs. Traditional CPUs are
inherently sequential and programs typically contain a critical loop where
memory is read and data is moved around, which limits the maximum speed
of computation. Dataflow engines does away with this problem by operating
on streams of data that flow between functional units called dataflow cores
on the chips. Tiny on-chip memories are spaced out to create a distributed
register file, which can have as many access ports as needed to ensure smooth
flow of data [9].

Dataflow is applied at various levels of abstraction: System level, architecture
level, arithmetic level and bit level. On a system level, multiple dataflow
engines are connected within a single computer system and multiple systems
can be connected to form clusters or super computers. On an architecture
level, memory access and arithmetic or logical operations are decoupled, i.e.
I/O orchestration is separated from computation. On arithmetic and bit
level, representations of data can be optimized, e.g. using reduced precision,
to balance computation and communication [9].

Each functional unit only performs one operation, arithmetic or logic, and
are simple enough that one DFE can accommodate thousands of dataflow
cores, all executing concurrently. This approach is said to be ”computing
in space” as opposed to the ”computing in time” of traditional control flow
cores, because the complete computation for a given application is laid out
spatially on the chip rather than taking place at different time points on a
smaller number of functional units (see Figure 2.4). Data dependencies are
therefore resolved at compile time, which simplifies the implementation of
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extreme parallelism and deep pipelines. The whole dataflow engine can be
pipelined with anywhere from 1000 to 10000 stages [10].

(a) Control flow system (b) Dataflow system

Figure 2.4: Control flow (a) vs. dataflow (b), from Multiscale Dataflow
Programming, version 2016.1.1 [9]

The Maxeler dataflow computation model does not explicitly operate with
instructions. The structure of the dataflow engines represent the computa-
tion and the instructions are replaced by execution units, i.e. the dataflow
cores. This means there is no overhead from decoding instructions, and tech-
niques such as branch prediction and out-of-order scheduling are not needed,
and general purpose caches are unnecessary because data is constantly avail-
able on the chip where it is needed. In other words, the majority of the chip
area can be utilized for computation, but this does require deep pipelining
and general parallelism for efficiency, and the dataflow engines are less suited
for single operations, especially on small amounts of data. Computer sys-
tems also need control flow for various other tasks, and this is why Maxeler
combines their dataflow engines with a conventional CPU as described in
Section 2.4 [10].

2.4 Dataflow Computers

A dataflow computer is typically a heterogeneous system that consists of
multiple dataflow engines and a standard CPU. The CPU is used for ad-
ministrative, system level tasks like storage, networking and process/data
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management in addition to smaller workloads, which are better suited for
control flow. The two types of devices serve different purposes, and there
are multiple schemes for combining them in one system. One simple scheme
is taking a master-slave approach with the CPU operating as the master.
The DFEs will then take commands and data from the CPU in a passive
manner before performing the computation. The simplicity of this scheme is
the main advantage, but the CPU and DFEs might need to operate equally
in the system, i.e. with the same access to system resources and the same
priority. The DFEs can then instruct the CPU for operations, which will
lead to better performance for certain applications. The main challenge for
this approach is designing the interface between DFEs and CPUs [10].

2.4.1 Memory

Memory management and data handling are generally the most important
aspects of HPC. When memory access and data orchestration is a significant
part of the given application, optimization on processor architecture or arith-
metic kernels will quickly hit diminishing returns. One approach for memory
access is to implement a combined, unified address space for CPU and DFEs.
This is the most flexible approach, but introduces problems with data coher-
ence between devices and contention on data buses, which limit the achievable
performance. The most used approach is therefore to provide the DFEs with
multiple memory banks. This gives greater bandwidth and divides the mem-
ory hierarchy to potentially give maximum performance, but also results in
more complexity and increased development effort. To make programming
easier, software abstractions and libraries are typically provided for memory
management. The Maxeler DFEs have two types of memories: fast memory
(FMem), which lies on-chip, and large memory (LMem), which lies off-chip.
FMem can store a couple of megabytes of data and is capable of access band-
width reaching terabytes per second, while LMem can store many gigabytes
of data, but is significantly slower [10, 9].

2.4.2 Coupling

Another important aspect of dataflow computers is how the CPU and DFEs
are connected, or coupled. The tightest coupling (see Figure 2.5a) is achieved
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Figure 2.5: Interconnection approaches for dataflow computers, from Pell
et al. [10]

by placing all devices on the same silicon die and having dedicated low latency
interfaces. With this approach the DFEs are typically activated through spe-
cial instructions on the CPU. The approach gives the most efficient communi-
cation, but it is only viable for small operations and requires modification of
the CPU architecture. Another approach for tight coupling (see Figure 2.5b)
is to provide sockets for the DFEs similarly to CPUs multi-CPUs systems.
The DFEs operate as standard CPUs and communication is done through
conventional processor interconnects. The major downside is that the DFEs
must support all features required to interface with the socket, which takes
resources away from computation, and this approach is also limited in size
and scale. A third approach (see Figure 2.5c) is to connect the DFEs using
PCI Express or other system buses. This way the interface can be imple-
mented either in the processor similarly to using dedicated sockets, or in
chip-external components on the DFEs. This results in overhead both for
communication latency and silicon area, but modern system bus standards
have enough bandwidth to accommodate a few DFEs per CPU. Finally, the
last approach (see Figure 2.5d) is a loosely coupled one that is related to
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cloud computing. Using clusters of CPUs and DFEs, communication is done
through the network interconnects, e.g. Ethernet or InfiniBand. This ap-
proach trades latency for greatly increased flexibility [10].

2.5 Real World Implementations

Maxeler offers three real world implementations of dataflow computing sys-
tems: MPC-C, MPC-X and MPC-N. MPC-C uses the system bus approach
shown in Figure 2.5c, while MPC-X uses the cluster approach. MPC-C
systems (see Figure 2.6) combine x86 CPUs connected with DFEs through
PCI Express, and the DFE are connected with a dedicated low-latency and
high-bandwidth interconnect called MaxRing. MPC-N systems are similar to
MPC-C systems except they have fewer DFEs, no MaxRing connection and
an emphasis on networking and throughput rather than computing. Both
systems are used to implement dataflow computation with a fixed combina-
tion of CPUs and DFEs. The MPC-X systems also uses MaxRing intercon-
nect between DFEs, but are stand-alone dataflow nodes, which need to be
connected with other nodes in clusters or supercomputers. More heteroge-
neous systems with multiple computation technologies and a need for varying
the number of DFEs require the MPC-X series [10, 9].

Figure 2.6: MPC-C Series Architecture, from Pell et al. [10]

2.6 Maxeler Dataflow Programming

The Maxeler programming model for dataflow, which is shown in Figure 2.7,
involves developing three separate parts of the application: CPU code, dataflow
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kernels, and a manager. The CPU code is written in any supported high-
level language, typically C or FORTRAN, while dataflow kernels and the
manager are written in MaxJ, a meta language based on Java. Maxeler has
created a language extension for Java to generate the hardware configuration
for the dataflow engines. The CPU code runs as a normal CPU application
and controls the system. The dataflow kernels, or arithmetic kernels, are
datapaths which perform the computation needed for the application. The
manager controls the flow of data as streams from CPU, between kernels,
and between on-chip and off-chip memory. The key part of this model is
that computation and communication is split into kernels and the manager,
respectively, which enables development of deeply pipelined kernels with-
out typical problems associated with parallelism, e.g. synchronization. To
achieve maximum performance, one must take advantage of the potential
for deep pipelining and parallelism both between kernels and within kernels
[10].

Figure 2.7: Maxeler dataflow programming model, from Multiscale Dataflow
Programming, version 2016.1.1 [9]

2.6.1 Dataflow Application

Complete application with dataflow acceleration will typically consist of
mainly CPU code with some small parts, i.e. arithmetic kernels, running
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on dataflow engines. When executing the Java code, the kernels are trans-
lated into graphs of pipelined arithmetic units. If there are no loops in the
design, the data simply flows through the graph, i.e. between inputs and
outputs, and as long as there is more data than pipeline stages in the im-
plementation, the computation is extremely efficient. Loops with carried
dependencies can be unrolled into pipelines, and if the loops are not fully
pipelined, the data can be interleaved to hide latency. The Java code is
essentially a meta-program that describes the configuration of the dataflow
engines [9].

The code is compiled and executed to create a .max file, which is a con-
figuration file with the proper bitstream to configure the FPGA chip. The
configuration file also contains various meta-information as well as CPU func-
tion calls for easier integration with the complete CPU application. The CPU
code is handled the standard way, but it is linked with the .max file and a
SLiC library (see Section 2.6.3) to connect CPU application and DFEs. The
full, final executable includes all the binary code necessary to run the CPU
application and perform computations on DFEs, which is done through a
series of function calls. The DFEs are configured, any streams of data com-
ing from the main memory is orchestrated, and computation is initiated.
The compilation process can take a long time, typically hours or even days
for larger programs, so development and testing is typically done through
simulations. Simulations are run purely on the CPU, and are significantly
slower, but can be compiled in seconds or minutes. This enables dataflow
kernels, and entire dataflow programs, to be developed with a trial-and-error
approach. The simulator gives insight into the computation and execution
of kernels, but since it is slow, small amounts of data should be used for
testing and verification before large amounts are run on the actual DFEs
[10, 9].

There are two stages to compilation [9]:

1. The first stage is Java compilation since kernels and managers are writ-
ten in Java. This stage is largely standard Java compilation, but the
MaxCompiler has its own Java compiler because of the MaxJ extension.

2. The next stage, or rather stages, are done at runtime of the Java pro-
gram, i.e. still part of the MaxCompiler complilation stage and not
application runtime. The compiled Java code is executed to perform
various operation:
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a) Graph construction
This is the step that creates the dataflow graph for the compu-
tation. The graph is constructed in the memory according to the
Kernel Compiler API.

b) Kernel Compiler compilation
The Kernel Compiler uses the generated graph to create a low-
level representation that can then be used to generate a dataflow
engine configuration or simulation model.

c) Back-end compilation
The back-end compilation is the final step that generates the DFE
configurations. This step involves third-party tools to generate
configurations for the specific chip that will emulate the DFE.

2.6.2 Implementing Kernels

Implementing a kernel is the process of translating the arithmetic for a given
piece of code into a dataflow graph. Since Java is used, this involves mostly
conventional classes, function calls, expressions etc. and common techniques
like object-orientation can be utilized, which makes the development much
easier compared to traditional digital design. However, this only applies to
the meta-programming that helps to generates the hardware components,
and not the computation that takes place upon execution, which has some
restrictions, e.g. single-assignment. MaxCompiler includes operations from
the digital design realm for connecting variables and concatenation. The
way loops are handled is also different as they are always unrolled to create
sequential code, rather than actually create conventional loops. The final
kernel graphs for an application will contain all the units needed to implement
the code on DFEs, using the following types of nodes [9]:

a b c d e
f

Figure 2.8: Types of nodes in dataflow graphs, adapted from Multiscale
Dataflow Programming, version 2016.1.1 [9]
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Computation nodes (2.8a) are labelled with the arithmetic or logic op-
eration which they perform. Typecasting is also represented with circular
computation nodes.

Value nodes (2.8b) are values, or parameters, and can either be constant
or set at runtime.

Stream offsets (2.8c) enable the design to look forward and backward in
data streams to use past and future data elements.

Multiplexer nodes (2.8d) are used for making decisions, i.e. give condi-
tional behaviour.

Counter nodes (2.8e) are used to direct control flow, e.g. length of rows/-
columns in arrays and keeping track of the current position in a stream for
boundary computations.

I/O nodes (2.8f) connect the data streams between kernels and the Man-
ager.

2.6.3 SLiC Interface

As described in Section 2.6.1, a Maxeler computing system will run conven-
tional executable files on a CPU and .max configuration files on DFEs. The
.max files are loaded by the CPU, initialized and run on available DFEs,
and this done through SLiC API functions. The functions execute actions
on the DFEs, e.g. sending datastreams and parameters. By default the
SLiC interface is accessed with C code, but there are also SLiC skins avail-
able so basic SLiC interface function calls can be made in other languages.
There are three types of SLiC interfaces available, but in practice, all but
the most basic application needs the advanced features of the SLiC API. The
advanced features give greater control and easier debugging as the interface
is explicitly configured and accessed instead of having to rely on automati-
cally generated functions. The main programming challenge associated with
the SLiC interface is calculating sizes of and handling datastreams. For stan-
dard data types with C-supported precision the process is a straight-forward
mapping in CPU code and manager, but uncommon precision is often used
for increased efficiency and better performance [9].
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The three types of SLiC interfaces are [9]:

1. Basic Static
Computation is done on a DFE through a single function call, which
is automatically generated by the compiler. Static actions, number of
streams, stream sizes etc. are defined for the particular .max file that
is used.

2. Advanced Static
This interface allows more control when loading DFEs. Multiple com-
plex actions can be set, and the developer can optimize CPU and DFE
collaboration.

3. Advanced Dynamic
The dynamic interface supports all the available dataflow optimiza-
tions. The developer has fine-grained control of allocation of dataflow
resources.

The life cycle of .max files in an application, whether advanced or basic
features are used, is as follows [9]:

1. Load
The .max file is loaded onto a DFE, after which the DFE will be ex-
clusively owned by the calling CPU process. Loading .max files takes
between 100 milliseconds and 1 second.

2. Execute actions
The CPU uses SLiC interface functions to perform actions on the DFE.
The loaded .max file should be utilized for long enough to make the
long, relatively speaking, load time worth it.

3. Unload
The CPU releases the DFE and returns it to the pool of DFEs, which
is managed by the underlying MaxelerOS.

2.6.4 Dataflow Manager

The manager’s work is to connect the kernels to the CPU application and or-
chestrate datastreams. It also handles compilation for either DFE execution
or simulation. The manager is created by importing the Manager class, or
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by extending the CustomManager class, and creating at the very least a main

method to run the build process. In the main method a manager object is
created using parameters in the form of a EngineParameters object, which
determines whether the design is built for DFEs or simulation. This is con-
trolled by run rules in the environment that is parsed by the MaxCompiler,
but apart from the run rules and the resulting engine parameters, there are
no differences between managers used for DFE execution and simulation.
Advanced managers uses the CustomManger class, has a custom constructor,
and additional methods, e.g. to create engine parameters [9].

2.6.5 Datastreams

The concept of streams of data lies at the core of dataflow computing, and
properly accessing values in the streams is key for efficiency. The datastreams
are viewed through windows, which are held in on-chip memory on DFEs to
minimize data transfers. This is done through the stream offset nodes (see
Section 2.6.2), and the windows are the range from the largest offset to
the smallest offset. MaxCompiler has three types of stream offset: Static,
variable and dynamic. Static offsets are fixed at compile-time (hard-coded),
variable offsets are set at runtime before streams are processed, and dynamic
offsets are set at runtime during stream processing. Static and variable offsets
are set according to values or standard Java-variables and are fixed for the
full duration of streams, while dynamic offsets use DFEVars and can change
for each kernel tick. Dynamic offsets supports more advanced flows of data,
but comes with some overhead compared to the fixed approaches, which can
be highly optimized by the compiler [9].

2.6.6 Control Flow

Control in dataflow computing is implemented with counters, which can be
thought of as the equivalent of loops in conventional computing. The coun-
ters keep track of where kernels are in the current datastreams as well as
various levels of streaming and iterations. There are simple counters, ad-
vanced timers, and counter chains, which enable nesting behaviour. The
simple counter is created with number of bits and optionally wrap point as
arguments, and will increment the value by one for each kernel tick, i.e. per
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element in the stream. The counter counts from zero to one less than the
wrap point or max value before starting again. Advanced counters have more
options, including start value, increment value, count mode and wrap mode.
Both simple and advanced counters can be nested using counter chains, which
are objects that control multiple counters. Counters are added to the counter
chain object one by one, and the outer counters (first ones added) will incre-
ment for every full count of the inner counters [9].
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Chapter 3

Implementation

In this chapter we describe the process of accelerating miniAMR. We start by
benchmarking and analysing the reference version to discover which parts of
the application has the greatest potential for improvement. We go on to detail
the necessary changes and the implementation of the dataflow version.

3.1 Performance Analysis

Figure 3.1 shows how different parts of miniAMR contributes to total exe-
cution time. It is clear that there are two main areas we need to focus on:
Memory management and stencil calculation. That is, allocating and freeing
the data used for the application, and the 7-point and 27-point stencil cal-
culation, which lies at the core of the application. For small problem sized,
memory management is the most critical part of the application, taking up
79.1 % of the total execution time when using the 7-point stencil and 63.4
% when using the 27-point stencil for a problem size of 103. For the 7-
point stencil, memory management remains the most critical part for larger
problem sizes, but when running the 27-point stencil, the stencil calculation
eventually overtakes it, 55.2 % over 39.9 % for a problem size of 503.
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Figure 3.1: Distribution of execution time for reference version of miniAMR
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3.2 Memory Management

The data in miniAMR is double values stored four-dimensional arrays. The
first dimension is the index for variables that will be calculated on and the
rest of the dimensions are the indices for the actual three-dimensional data:
x, y and z. The reference version of miniAMR uses a quadruple pointer and
multiple nested loops to allocate and deallocate the data, which is inefficient,
leads to fragmented memory and is ultimately what causes the memory part
of the application to take up a lot of the total execution time. Addition-
ally, this type of data structure is not suitable when interfacing the Maxeler
system. The SLiC interface requires single pointers and data stored in con-
tiguous memory.

To make the memory management more efficient we rewrite the application
to operate with single pointers. This is done by changing the multiple nested
allocation calls to a single large call for each variable, and similarly a single
deallocation call. This ensures that the data is stored in contiguous memory
and is also much faster, see Chapter 4. Additionally the contiguous memory
means that the principle of spatial locality applies, which could potentially
speed up the stencil calculation. To calculate the proper index from index
variables in a similar fashion to standard multidimensional indexing, we cre-
ate a function, which uses the problem size to calculate offsets in x, y and z
directions.

1 s i z e t c a l c i n d e x ( i n t var , i n t x , i n t y , i n t z ) {
2 re turn ( var ∗ x s i z e ∗ y s i z e ∗ z s i z e )
3 + ( x ∗ y s i z e ∗ z s i z e )
4 + ( y ∗ z s i z e )
5 + x ;
6 }

Listing 3.1: Function to calculate multidimension index

1 value = array [ var ] [ x ] [ y ] [ z ] ;
2 value = array [ c a l c i n d e x ( var , x , y , z ) ] ;

Listing 3.2: Multidimensional indexing using multiple pointers (line 1) and
a single pointer (line 2)
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3.3 Stencil Calculation

The stencils that lie at the core of miniAMR are basic averaging stencils:
A 7-point star stencil and a 27-point cube stencil. The 7-point stencil (see
Figure 3.2) uses elements from ± 1 in all directions, and the 27-point stencil
is similar, but also requires all the edges and corners.

(0, 0, 0)
(−1, 0, 0)

(1, 0, 0)

(0,−1, 0)

(0, 1, 0)

(0, 0,−1)

(0, 0, 1)

Figure 3.2: 7-point stencil used in miniAMR

Listing 3.3 shows 7-point stencil implemented in C. It uses three nested loops
and has seven memory accesses, six sums and one division for each iteration.
Moving this calculation onto DFEs involves three main challenges: Creat-
ing the datastream, getting all the seven elements from the datastream and
performing the stencil calculation, and handling the edges. After rewriting
the application to operate with single pointers, the datastreams are already
laid out in contiguous memory and we can create new pointers by adding the
offset for each array to the initial pointer. Running on multiple DFEs com-
plicates matters somewhat (see section 3.4), but creating the datastreams
only requires basic pointer arithmetic. Performing the stencil calculation
and handling edges, however, require more work.
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1 f o r ( i = 1 ; i <= x s i z e ; i++) {
2 f o r ( j = 1 ; j <= y s i z e ; j++) {
3 f o r ( k = 1 ; k <= z s i z e ; k++) {
4 work [ i ] [ j ] [ k ] = ( array [ i −1] [ j ] [ k ] +
5 array [ i ] [ j −1] [ k ] +
6 array [ i ] [ j ] [ k−1] +
7 array [ i ] [ j ] [ k ] +
8 array [ i ] [ j ] [ k+1] +
9 array [ i ] [ j +1] [ k ] +

10 array [ i +1] [ j ] [ k ] ) / 7 . 0 ;
11 }
12 }
13 }

Listing 3.3: C code for 7-point stencil in three dimensions

3.3.1 Dataflow Kernel

The sum for the stencil can be split into multiple operations and parallelized
since all the values required are separate and without data dependencies.
When running CPU code, the compiler and CPU will handle this through
optimization and multiple issue, out-of-order execution etc., but for dataflow
kernels we have to implement this explicitly. Using a standard, naive expres-
sion like in Listing 3.3 leads to a serialized sum as shown in Figure 3.3.

The standard sum for the 7-point stencil takes six cycles to produce the
result. By implementing partial sums running in parallel, we can reduce this
to three cycles as shown in Figure 3.4. Partial sums works the same way for
the 27-point stencil, except it’s even more significant as 26 cycles are reduced
to just five. Using partial sums like this has similar space requirements on
the DFEs, and give increased parallelism and performance at the cost of code
size and complexity for the developer as the sums need to be implemented
specifically for the stencil used.
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Figure 3.4: Dataflow graph for optimized sum
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3.3.2 MaxJ Kernel Description

Listing 3.4 shows the kernel description in MaxJ for the 7-point stencil. We
have created a function to generate the code, which makes it easy to im-
plement multiple datastreams meaning we can work on multiple arrays in
parallel. The function uses the input stream and offset expressions to get
all the required data elements. The offset expressions are calculated and
set in CPU code similarly to the index function in Listing 3.1 and passed
through the manager to create variable stream offsets (see Section 2.6.5).
This means that we can handle varying problem sizes without creating mul-
tiple kernels.

1 p r i v a t e DFEVar s t e n c i l (DFEVar input , OffsetExpr x o f f s e t ,
Of fsetExpr y o f f s e t ) {

2 DFEVar x1 = stream . o f f s e t ( input , −x o f f s e t ) ;
3 DFEVar x3 = stream . o f f s e t ( input , x o f f s e t ) ;
4 DFEVar y1 = stream . o f f s e t ( input , −y o f f s e t ) ;
5 DFEVar y3 = stream . o f f s e t ( input , y o f f s e t ) ;
6 DFEVar z1 = stream . o f f s e t ( input , −1) ;
7 DFEVar z3 = stream . o f f s e t ( input , 1) ;
8

9 DFEVar s1 = x1 + x3 ;
10 DFEVar s2 = y1 + y3 ;
11 DFEVar s3 = z1 + z3 ;
12

13 DFEVar s4 = s1 + s2 ;
14 DFEVar s5 = s3 + input ;
15

16 DFEVar sum = s4 + s5 ;
17 DFEVar cons t 7 = constant . var ( 7 . 0 ) ;
18 DFEVar r e s u l t = sum / cons t 7 ;
19 re turn r e s u l t ;
20 }

Listing 3.4: MaxJ code for 7-point stencil in three dimensions

Unlike the stencil written in C code, which only fetches the required elements
from the array, our kernel operates on a continuous stream and we have to
stream the whole array through the DFEs. This gives us the aforementioned
challenge with handling the edges. For the edges of the arrays, the original
input element should be passed to the output streams. We solve this by
implementing three counters (see Section 2.6.6) for the x, y and z indices.
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Using these counters we can detect when the current input element is an edge
as shown in Listing 3.5 and use a multiplexer to choose whether the input or
the result of the stencil calculation is passed to output.

1 DFEVar x under = x . eq (0 ) ;
2 DFEVar x over = x . eq ( x s i z e −1) ;
3 DFEVar x edge = x under | x over ;
4 DFEVar y under = y . eq (0 ) ;
5 DFEVar y over = y . eq ( y s i z e −1) ;
6 DFEVar y edge = y under | y over ;
7 DFEVar z under = z . eq (0 ) ;
8 DFEVar z ove r = z . eq ( z s i z e −1) ;
9 DFEVar z edge = z under | z ove r ;

10 DFEVar edge = x edge | y edge | z edge ;
11

12 DFEVar output = edge ? input : r e s u l t ;

Listing 3.5: MaxJ code for boundary check

3.4 Running on Multiple DFEs

Our Maxeler system is a MAX3, which contains four Vectis DFEs. To achieve
maximum performance we want to have all engines doing as much work in
parallel as possible. The limit for number of input and output streams is eight
per DFE so at most we can handle 32 datastreams at once [8]. The Maxeler
system has functions for non-blocking execution and synchronization, so by
checking the number of variables to calculate on, we can select a number of
DFEs to use between one and four. We can then handle between eight and
32 streams on DFEs, potentially in multiple iterations for large numbers of
variables, and then calculate the rest on the CPU. We have to synchronize
the engines after each iteration to make sure we do not get overlapping datas-
treams, which would ruin the results. This leads to low utilization and idle
engines for some iterations, but moves as much of the calculation as possible
onto DFEs while still being able to handle all problem sizes.

We could potentially allocate additional memory space for all output streams
from DFEs. This would enable us to run all iterations asynchronously, keep
the utilization higher, and only synchronize the last iteration. However, this
gives an significant increase in complexity in addition to raising the mem-
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ory footprint, and might not lead to better performance. Managing multiple
varying memory locations and keeping track of iterations and streams would
require fundamental changes to miniAMR, and if the implementation re-
quires copying or moving memory around, the overhead likely eats up any
performance benefits gained from increased utilization.
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Chapter 4

Results and Discussion

In this chapter we present the results, comment on their meaning, and discuss
trade-offs, alternative solutions, shortcomings etc. We start with the memory
section of the application and distribution of execution time before moving
on to stencil calculation and total speedup. For the diagrams in this chapter
the reference version of miniAMR is referred to as “ref”, the rewritten version
as “ref fix” and the dataflow version as “dataflow”.

4.1 Memory Management

Rewriting miniAMR to use single pointers reduces the execution time spent
on allocation and deallocation to almost zero. Figure 4.1 shows the execution
time in seconds that is spent on the memory section of the application for the
reference version and the rewritten version of miniAMR. As single pointers
are used, the number of allocation calls in the rewritten version is constant
for all problem sizes and only depend on the top index, i.e. number of
variables to calculate on. This translates to a near constant execution time.
The reference version, on the other hand, shows exponential growth in both
allocation calls and execution time.

After improving the memory section, the stencil calculation becomes the
critical part of the application for both stencils and all problem sizes. As
Figure 4.2 shows, the stencil calculation now stands for over 90 % of the
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Figure 4.1: Execution time spent allocating and freeing data

execution time for larger poblem sizes, and is an excellent target for acceler-
ation. When implementing the stencils on DFEs, we add some overhead, but
we are able to keep the percentage over 80 (see Figure 4.3). The overhead
stems from loading maxfiles and preparing the actions which run on DFEs.
This overhead is constant for both stencils regardless of problem size as it
does not depend on the number of data elements, but rather the kernels and
number of DFEs used.

Unlike the reference and rewritten versions of miniAMR, the distributions of
execution time is roughly the same for the 7-point and 27-point stencils for
the dataflow version. The 27-point stencil require some additional cycles for
partial sums, five vs. three (see Section 3.3.1), but the additional elements
can all be laid out in space on the DFEs. Listing 4.1 and Listing 4.2 Show
the total resource usage on the DFEs for the dataflow kernels. We want to
utilize as much of the chips as possible for maximum performance, and the
27-point kernel covers over 80 % of available logic resources. This results in
a significant speedup, which we will show in Section 4.2.
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Figure 4.2: Distribution of execution time for rewritten version of miniAMR
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Figure 4.3: Distribution of execution time for dataflow version of miniAMR
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Listing 4.1: Resource usage for 7-point stencil dataflow kernel

FINAL RESOURCE USAGE
Logic u t i l i z a t i o n : 89497 / 297600 (30.07%)

LUTs : 78267 / 297600 (26.30%)
Primary FFs : 80570 / 297600 (27.07%)
Secondary FFs : 13478 / 297600 (4.53%)

M u l t i p l i e r s (25 x18 ) : 0 / 2016 (0.00%)
DSP blocks : 0 / 2016 (0.00%)

Block memory (BRAM18) : 395 / 2128 (18.56%)

Listing 4.2: Resource usage for 27-point stencil dataflow kernel

FINAL RESOURCE USAGE
Logic u t i l i z a t i o n : 242175 / 297600 (81.38%)

LUTs : 211391 / 297600 (71.03%)
Primary FFs : 217499 / 297600 (73.08%)
Secondary FFs : 48170 / 297600 (16.19%)

M u l t i p l i e r s (25 x18 ) : 0 / 2016 (0.00%)
DSP blocks : 0 / 2016 (0.00%)

Block memory (BRAM18) : 410 / 2128 (19.27%)

4.2 Speedup

Figure 4.4 and Figure 4.5 show the total speedup for the 7-point and 27-
point stencils, respectively, running problem sizes between 103 and 503. The
speedups are calculated by comparing against the reference version of mini-
AMR. For both stencils, the rewritten reference version is the fastest for
smaller problem sizes while the dataflow version comes out on top when the
problem size grows. We can also observe that the speedup of rewritten ver-
sion shrinks for larger problem sizes. This is because a function is used to
calculate indices for every single access to the arrays that store the data,
which is necessary since the problem size is set at runtime, but adds signifi-
cant overhead as the problem size grows. This overhead is avoided when the
stencil calculation is moved onto DFEs.
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In theory we could have thousands of dataflow cores, i.e. functional running
concurrently, but we are limited by the number of streams that the DFEs
support and potentially I/O bandwidth as the number of streams increases.
However, we see significant speedup of over 1.5 for larger problem sizes as
the raw throughput is much higher than what the CPU can provide. This
is most visible for the 27-point stencil is it properly utilizes the concept of
computation in space and covers over 80 % the available logic resources to
give us a speedup of over 2.5.
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Chapter 5

Conclusion and Future Work

In this chapter we comment we conclude the project and propose topics for
future work. We describe our results, list potential improvements for the
dataflow version of miniAMR and comment on the reusability of dataflow
kernels and implementation code.

5.1 Conclusion

Maxeler’s Multiscale Dataflow Computing system eases the typically difficult
and time-consuming FPGA development process. This is important as we
observe diminishing returns from traditional parallel computation and in-
creased interest in FPGA-based acceleration. Using the Maxeler system, we
have altered miniAMR, a proxy application for adaptive mesh refinement de-
veloped by Mantevo project, to run on DFEs. By properly managing memory
and moving the core 3D stencil computation onto DFEs we achieve a maxi-
mum speedup of 2.52 while maintaining all functionality of the application.
For small problem sizes the dataflow version cannot match CPU execution
because of reduced utilization and being limited to only eight datastreams
per engine, but for larger problem sizes the increased throughput gives a
significant increase in performance.
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5.2 Future Work

The kernels we have developed in this project primarily use datastreams from
CPU to DFE. The DFEs have a complete memory system, which could be
used, but we chose not to do this as the streams from DFE memory have
less flexibility, and initial efforts showed little promise because miniAMR
operates with a large number of small arrays rather than a large array. The
maximum number of streams DFE memory is 16, compared to eight from the
CPU, which means a greater potential for parallelism. For future work, we
suggest making multiple specialised memory-driven kernels, e.g. for a certain
number of inputs, and testing whether the overhead from loading maxfiles
or reduced utilization from having certain engines idle is worth it.

Since the Maxeler system uses a high-level approach to development, the
kernels from this project are reusable and adaptable. Initializing the DFEs
is relatively simple through the SLiC interface and we have created func-
tions and loops for our kernels, which means that implementation in other
applications should take minimal effort as the initial development effort has
already been done. We suggest implementing the kernels in applications that
are similar to miniAMR or use 3D stencils at the core of computation to test
the efforts required and speedup that can be achieved without having to
significantly alter the kernels.
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