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Problem Description

In this thesis, we investigate the ability to automate detection and weight estimation of
fish, by exploiting the 3D camera technology. An image dataset of fish in a tank is given,
and tasks include finding a robust segmentation method for detection of fish and further
use this as a basis for weight estimation.
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Abstract

Being able to determine the weight of fish is important information for fish breeding facil-
ities. Current methods rely on manual measurements, but it is interesting to look into how
underwater imaging can be used to automate these measurements.

Underwater imaging is a complex problem due to light attenuation and poor water
quality yielding lots of light scattering from an illuminating light source. In collabora-
tion with Trollhetta and with the use of data from a cutting edge range-gated camera, we
will tackle the problem of automating the measurement of the weight and size of atlantic
salmon (Salmo salar) swimming freely inside a fish tank. The camera is manufactured by
SINTEF Digital in collaboration with Odos Imaging and Bright Solutions, and illuminates
the scene by the use of green light with a wavelength of 532nm.

An Active Shape Model (ASM) implementation is used as a backend to handle the
problem of segmenting salmon in the given images. The segmentation algorithm detects
the contour of the fish, and makes it easy to find both the length and height of the fish in
image space.

The segmented image is matched against the corresponding depth component of the
image and the mean of all pixels is used as a measurement for the distance from the camera
to the fish. By using the principal of similar triangles in the pinhole camera model we
project information like length and height from image space into world space.

The method proposed in this thesis can be regarded as a proof of concept, and a base-
line for further research into this particular problem.
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Sammendrag

Å finne vekten til fisk er viktig informasjon for oppdrettsanlegg. Dagens metoder måler
vekt manuelt, men det er interessant å se på hvordan bildetaking under vann kan bli brukt
til å automatisere disse målingene.

Bildetaking under vann er et komplekst problem grunnet høyt effekttap av lysenergi
og dårlig vannkvalitet som fører til lysspredning fra en opplysende lyskilde. I samarbeid
med Trollhetta og ved bruk av et moderne undervannskamera, skal vi undersøke problemet
med å automatisere målinger av vekt og størrelse på oppdrettslaks som svømmer fritt inne
i en oppdrettsmerde. Kameraet er utviklet av SINTEF Digital i sammarbeid med Odos
Imaging og Bright Solutions, og opplyser scenen foran kameraet ved bruk av grønt lys
med en bølgelengde på 532nm.

En ASM implementasjon er brukt for å takle problemet med å segmentere laks i de
gitte bildene. Segmenteringsalgoritmen detekterer konturen av fisker, og gjør det lett å
finne både lengde og høyde på fisken gitt i piksler.

De segmenterte bildene er sammenlignet mot de tilsvarende dybde-bildene og gjen-
nomsnittet av alle dybdeverdiene blir brukt som et mål på hvor langt unna en fisk er fra
kameraet. Ved å bruke prinsippet om formlike trekanter i hullkamera-modellen kan lengde
og høyde gitt i piksler projekteres til lengde og høyde i meter.

Metoden som er foreslått i denne oppgaven kan bli sett på som et ”proof of concept”,
og en basis for videre forskning til dette spesifikke problemet.
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Chapter 1
Introduction

Mass and size measurement of fish is important for many operations in the production
line of salmon breeding facilities. Hao et al. (2015) mentions several reasons to have a
good estimation of measurements like these. Transportation of fish for slaughtering can
be more effective and the slaughterhouse can know with a good estimate how much fish
they actually have. Rules for total fish weight limitations can be easily obeyed with better
control, and feeding of fish can be optimized to reduce breeding time and food waste.

The traditional method for estimating mass and size of a fish population has been to
take a certain amount of fish out of the cage and do the measurements manually. This is a
very cumbersome process and research has been put in to automate this process.

In the last decade, range sensing cameras has found many application for automation
problems. Shao et al. (2013) has collected research of different application areas for this
upcoming technology. They have collected applications for object classification and track-
ing, scene reconstruction, robotics, medicine and more.

This thesis will cover a method for automating the measurement of mass and size of
fish. State of the art image segmentation will be used to detect fish in images from a given
dataset made of images from a 3D camera. Each image in the dataset has a corresponding
depth map which will be used to calculate information about the fish.

1.1 Motivation

The problem of automating measurements of mass and size of fish is highly relevant for
the fish export industry. According to Statistisk sentralbyrå (2018), fish export is one of
the biggest export industries in Norway and lots of research is put into underwater imaging
for automation applications.

Although there has been a lot of focus lately regarding the use of deep learning for
solving computer vision problems, we will in this thesis use more traditional methods for
reaching our goal of segmenting fish from images.
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Chapter 1. Introduction

1.2 Contributions
The contribution of this thesis is a proposed method for automatic estimation of the weight
of fish from a 3D image. With the research presented and a method that can be viewed as a
proof of concept, it is much potential for future work using this thesis as a baseline. Ketil
Bø at Trollhetta, who I have been cooperating with from the beginning of this project, were
a part of defining the bounds of the problem description stated in this thesis. Ketil will have
the opportunity to use the work I have done, and make use of it out in the industry.

1.3 Thesis Outline
This thesis will continue using the following outline.

Chapter 2: Background will cover relevant research material for solving the stated
problem description. First theory comprising of 3D camera systems and image segmenta-
tion are covered, followed by techniques for estimating fish weight and finishing of with
related work.

Chapter 3: Methods will present the theory behind the techniques used for image seg-
mentation and the weight estimation of fish. This includes explaining the algorithms and
mathematics behind the ASM segmentation method, and how knowing the depth of objects
from a 3D camera can be used to project distances in image space into world space.

Chapter 4: Implementation is where we go into detail of how the methods are made
use of. We will mention what tools and frameworks has been used in order to achieve an
implementation of all the methods, and give a general overview of the project repository.

Chapter 5: Results will contain what we have achieved with our implementation and
show segmentation of fish, both what works and what does not.

Chapter 6: Discussion is where we go through our results and explain why they came
out as they did. We will talk both about the good results and the bad, and explain why they
are so.

Chapter 7: Conclusions and Future Work is the last chapter in this thesis and is where
we finalize and conclude our work.
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Chapter 2
Background

This chapter covers the background material relevant for the problem description stated at
the beginning of this thesis. The 3D camera technology will be described from early stereo
vision systems up until today’s 3D camera systems. Next state-of-the-art image segmen-
tation methods will be discussed, focusing on both traditional methods and deep learning
methods. Lastly this chapter will cover related work regarding 3D image segmentation,
and fish weight estimation from images. Although not been used in this project, some
Artificial Intelligence (AI) methods will be presented because it’s a subject that is under
intense study these days.

2.1 Stereo Vision

A traditional way for finding depth information in an image is by the use of stereo images.
The method is based on how humans perceive depth by using two eyes and letting the
brain ”calculate” the depth. Two cameras are used to represent the eyes, and a computer
running some clever algorithms does the work of the brain. Bradski and Daebler (2008)
describes the method in four steps when using two cameras.

1. The first step is called undistortion and handles the problem of cameras with slightly
different lenses. There are two lens problems that arise during manufacturing, radial
distortion is the result of lenses having slightly different shapes, and tangential dis-
tortion is when the lenses are placed and oriented differently when assembling the
cameras. This step requires two sets of parameters called distortion parameters and
camera intrinsic parameters, which is found during calibration of the two cameras.

2. The second step is called rectification and handles how the cameras are rotated and
translated in relation to each other. The translation and rotation of a camera is called
the extrinsic parameters and the result of this step are images that are projected so
that the two image planes are co-planar.

3



Chapter 2. Background

Figure 2.1: Stereo vision pinhole camera model adapted from Bradski and Daebler (2008)

3. The third step is called correspondence and finds the differences in x-coordinates
of the same feature on the image planes of the left and right cameras. The result
is called a disparity map and does not necessarily have to be the differences in x-
coordinates. If two cameras are placed on top of each other, then we need to find
the differences in y-coordinates. An overview and evaluation of different correspon-
dence algorithms is covered by Scharstein et al. (2001).

4. The fourth step is called reprojection and uses the disparity map to calculate the
actual depth of each pixel. The triangulation technique will be covered in Sec-
tion 2.1.1.

2.1.1 Triangulation
Given that we have an undistorted, aligned stereo camera setup with known camera ar-
rangement, we can calculate a depth map from a disparity map using triangulation. Fig. 2.1
shows a perfect stereo setup with equal and known focus length f for both cameras and
known distance T between camera origins. The disparity d is found in the disparity map
and is calculated from xl − xr. The depth Z is calculated from the properties of similar
triangles using the equation:

T − (xl − xr)
Z − f

=
T

Z
=⇒ Z =

fT

xl − xr
The depth is inversely proportional to disparity as we can see from the formula, which

gives a nonlinear relationship between the two terms. Fig. 2.2 shows a plot of this re-
lationship with arbitrary values for focal length and distance between the cameras. The
consequence of this relationship is that objects nearer the cameras has higher depth reso-
lution than objects further away from the cameras.

4



2.2 3D Vision

Disparity

D
ep

th

Figure 2.2: Relationship between depth and disparity in a stereo camera setup

2.2 3D Vision
Cameras with a built-in depth feature is a relatively new technology which has gained a
lot of attention, especially in the robotics and computer vision areas. Many commercial
3D cameras such as Intel RealSense and the Kinect is available at affordable costs and
has been found to be very useful for automation. The typical approaches for finding depth
is by the use of structured light or time of flight which both are explained by Sarbolandi
et al. (2015).

2.2.1 Structured Light

The structured light approach is quite similar to the traditional stereo vision approach only
that one of the cameras are replaced by a projector. A known pattern, typically vertical
stripes are projected onto the scene and a camera sees how the pattern is projected. Cor-
respondence between the left and right image planes are easily found because of the pro-
jected pattern and from this a disparity map is created. Depth is calculated using the same
method as for traditional stereo vision seen in Section 2.1.1. Fig. 2.3 shows a simplistic
model of a structured light setup and the idea of projecting a known pattern.

2.2.2 Time of Flight

Foix et al. (2011) describes how time of flight cameras work, specifically those that use
the continuous-wave modulation technology. Distance is calculated by emitting a sig-
nal towards the object and look at the signal reflected back at the camera. By measur-
ing the phase shift of the reflected signal, the time the signal travelled can be calculated.
The phase shift is calculated by using a method called four-bucket sampling (Kaufmann
et al. (2004)), and is done by sampling the incoming signal four times (A0, A1, A2, A3)
distributed equally over the period. Using this the phase shift ϕ is calculated.

ϕ = arctan
A3 −A1

A2 −A0

5



Chapter 2. Background

Figure 2.3: Structured light model. A projector located at Ol sends a known pattern onto the scene.
A camera located at Or sees the scene and how the pattern is projected onto it and a disparity map
can be created.

The time travelled ∆t is calculated by dividing the phase shift by the angular frequency of
the emitted signal.

∆t =
ϕ

2πf

The distance D is then easily found by using the distance formula with velocity equal to
the constant c which is the speed of light and the time the signal travelled ∆t.

D =
1

2
c∆t

We divide by 2 since the time the signal travelled is both ways, which is twice of what we
are interested in.

2.3 Image Segmentation
Image segmentation is the process of dividing an image up so that every pixel is cate-
gorized into a group. If we would like to segment a specific object, the goal would be
to gather the pixels that make up the object and put them into the same group. Smistad
et al. (2015) has made an overview of state of the art image segmentation methods, and
shown how well they are suited for optimization on the Graphics Processing Unit (GPU).
We will begin this section by describing some of these methods and then cover a state of
the art method using deep learning.

2.3.1 Level Set Method
The level set method introduced by Sethian (1999), finds boundaries of objects by evolving
an initial curve to converge to the edges of objects. The level set equation is a partial
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2.3 Image Segmentation

(a) An image of coins to be segmented (b) The speed at which the curve will evolve

Figure 2.4: Level set example

differential equation that can be solved numerically and looks like this.

∂φ

∂t
= −F |∇φ|

This equation describes how a curve evolves over time with F being the speed at which
the curve will evolve and |∇φ| is the gradient image of the current iteration of the curve
φ. Given an initial curve we can apply an update rule to evolve the curve over iterations,
which looks like this.

φn+1 = φn − F |∇φn|

As an example we can show how to segment the coins from the image in Fig. 2.4a. Our
initial curve will be a rectangle following the border of the image and the speed F will
be the gradient image passed through a sigmoid function to enhance the edges. The speed
function looks like the image in Fig. 2.4b where black areas corresponds to a slow evo-
lution of the curve and white areas is a fast evolution of the curve. Fig. 2.5 shows the
evolution of the curve through several iterations.

7



Chapter 2. Background

Iteration 0 Iteration 40 Iteration 80

Iteration 120 Iteration 160 Iteration 200

Figure 2.5: Curve evolution through iterations

2.3.2 Active Shape Models

ASM introduced by Cootes et al. (1995) is a technique for finding known shapes in an
image. By labeling shapes in an image dataset, a Statistical Shape Model (SSM) can be
trained to recognize similar shapes in new images. This is not to be mistaken with deep
learning approaches using neural networks, since the SSM creation is based on statisti-
cal analysis to be trained. The training dataset is labeled by placing landmark points at
protruding places around a shape. Each landmark point needs to be in the same anatomic
position for all the training shapes. When labeling is done all shapes need to be aligned,
which is typically done by using the Generalized Procrustes Analysis (GPA) introduced
by Gower (1975). When the shapes are aligned a mean shape is calculated and Princi-
pal Component Analysis (PCA) (Flury (1988)) is used to calculate shape variations. The
mean shape and its variations make up a SSM, which can be used by an ASM algorithm to
find new shapes. ASM is a local search algorithm that displaces each individual landmark
point to fit a new shape, to then use the SSM to verify that all the landmark points make
up a valid variation of a shape. Both the creation of the SSM and the ASM algorithm will
be covered more thoroughly in Chapter 3 and Chapter 4. Another algorithm that uses a
SSM is the Active Appearance Model (AAM) algorithm (Cootes et al. (2001)), which in
addition to using the SSM also uses texture information in the shapes.

8
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2.3.3 Machine Learning Methods
Mask R-CNN He et al. (2017), is a machine learning method that is built upon the Region
Based Convolution Neural Network (R-CNN) approach of detecting objects. The R-CNN
method has two outputs in its last layer of the neural network, which is an object class and
a bounding box surrounding the object. Mask R-CNN outputs the objects mask as a third
element, which is the task of instance segmentation in computer vision. Mask R-CNN was
tested on the COCO dataset which is an image dataset with over 300K images 1.5 million
object instances. According to the paper, Mask R-CNN outperformed every other instance
segmentation methods ran earlier, so it would be interesting to test its application towards
a similar problem description as the one in this thesis.

2.4 Related Work
Here will related work in regards to image segmentation and weight estimation of fish be
presented. The related work of image segmentation will mainly be focused on what has
been done in the area of segmenting 3D images that has both color and depth components.
The part regarding fish weight estimation will cover techniques for estimating weight us-
ing information like length, height and surface area, all values we can find by using the
methods for this project.

2.4.1 3D Image Segmentation
Rother et al. (2006) introduced the term co-segmentation in image analysis for segmenting
common parts of an image pair. Two color images containing the same foreground objects
were used for the background subtraction. For finding the common objects in both images
a histogram matching approach was used, and the ease of generalizing this method has
motivated follow-up work.

The depth data of an image can also be used in a co-segmentation method as presented
by Fu et al. (2015). Saliency models are used to find foreground objects in images by
creating a saliency map from a combination of saliency maps from the color and depth
images. The saliency map for the color component are created from a series of images of
the same scene, which makes the resulting map a so called co-saliency map. This is not
the case for the depth component where the saliency map is created from a single depth
image. This led to not fully exploiting the depth information in the scene, and was later
improved by Song et al. (2016).

Toscana and Rosa (2016) proposes a segmentation method mainly designed for robot
grasping. A modified canny edge detector combining information from both color and
depth maps is used to build an undirected graph of the image. The graph is then partitioned
using internal and external differences between graph regions.

2.4.2 Fish Weight Estimation
O. et al. (2010) estimated weight by analyzing an image of a fish in a controlled environ-
ment. Surface area of the fish was extracted, and width and length was found by fitting

9



Chapter 2. Background

the smallest possible rectangular bounding box around the fish. These variables was then
used and compared in different regression models, where a simple regression model based
on power curves was found to give the smallest error. This also made the calculation of
the bounding box obsolete, since surface area was the only variable used. The regression
model looked like this.

Y = AXB

Where Y = weight(kg), X = view area(cm2) and A and B are coefficients related to the
fish species.

Viazzi et al. (2015) used the same regression models as O. et al. (2010), but found that
the linear model

Y = A+BX

gave the best result.

10



Chapter 3
Methods

In this chapter, we will look at which methods have been used in order to solve the prob-
lem of estimating fish weight from 3D images. SINTEF Digital in cooperation with Odos
Imaging Limited and Bright Solutions, has developed an underwater 3D camera that esti-
mates depth in real-time. This camera has been used to create an image dataset of salmon
swimming inside a tank, which is the data the methods in this thesis is testing on. Both
the 3D camera and the dataset will be described in this chapter, followed by the techniques
used for segmentation and weight estimation.

3.1 3D Camera
The 3D camera developed by Risholm et al. (2018) uses a time of flight technique called
range gating to estimate depth. A laser with a wavelength of 532nm is used to illumi-
nate the scene in front of the camera and a Complementary metal–oxide–semiconductor
(CMOS) sensor is used to capture and convert the reflected photons. In front of the CMOS
sensor is a fast shutter mechanism that can open and close in 1.67ns. By having the shut-
ter mechanism open and close at different time periods after the laser emits a signal, the
distance the received light has traveled can be estimated. Because of the shutter time being
1.67ns and the light has to travel back and forth, the minimum spatial sample increment
is ∆z = 1

2∆tCw = 18.8cm when the light speed constant Cw is set to 22.5cm/ns which
is the speed light travels underwater. The intensity image and depth image in the dataset,
is created by taking images of 25 ranges with four exposures per frame for a total of 100
images per frame. This results in a camera that takes pictures 10 times a second with depth
estimates up to 8m.

3.2 Dataset
The dataset is a video made up of 809 images of salmon swimming inside of a fish tank. All
images has an intensity component and a depth component and the frame rate of the video
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Chapter 3. Methods

(a) Example intensity image (b) Example depth image

Figure 3.1: Dataset frame

is 10 frames per second giving 81 seconds of footage. Fig. 3.1 shows an example of a frame
in the video where Fig. 3.1a shows the intensity component of the image and Fig. 3.1b
shows the depth component of the image. All images from the dataset added in this thesis,
are added with permission from SINTEF.

3.3 Statistical Shape Model
The fish we would like to segment from the dataset all have similar shape with some
variations. Some fish may be larger than others, some can swim perpendicular to the
camera direction while some swim slightly directed towards the camera. SSMs are a
statistical model of a shape that catches these slight variations in shape. A SSM needs
to be trained from a labeled dataset and can be used to segment shapes in new images.
The labeled dataset consists of several fish where their shape has been represented by a set
of landmark points shown by Fig. 3.2. Before creating the SSM, all shapes needs to be
aligned using GPA. After alignment PCA can be performed to create the SSM, which will
contain a mean shape and its variations. Both GPA and PCA will be described in detail
below.

3.3.1 Generalized Procrustes Analysis
Procrustes analysis introduced by Gower (1975), takes a set of shapes and finds the trans-
lation, scale and rotation to align them all. Procrustes analysis minimizes what is called the
Procrustes distance, which for two shapes with k points each, (x1, y1), (x2, y2), ..., (xk, yk)
and (z1, w1), (z2, w2), ..., (zk, wk) can be computed using:

d =
√

(x1 − z1)2 + (y1 − w1)2 + ...+ (xk − zk)2 + (yk − wk)2

To achieve minimization we start by translating the mean of the shapes to the origin (0, 0)

x̄ =
x1 + x2 + ...+ xk

k
, ȳ =

y1 + y2 + ...+ yk
k

All points are translated in the following way:

(x′, y′) = (x− x̄, y − ȳ)

12



3.3 Statistical Shape Model

Figure 3.2: A fish represented by landmark points

Scaling is performed by finding the scaling factor that will set the root-mean-square devi-
ation (RMSD) to 1.

s =

√
(x1 − x̄)2 + (y1 − ȳ)2 + ...+ (xk − x̄)2 + (yk − ȳ)2

k

All points are scaled in the following way:

(x′, y′) = ((x− x̄)/s, (y − ȳ)/s)

Rotating is trickier since there is no standard reference shape. GPA solves this by first
choosing a arbitrary reference shape and then perform regular Procrustes analysis. When
done if the Procrustes distance is larger than some threshold between the mean shape and
the reference shape, then the mean shape is used as reference shape and the method is
repeated. To find the angle θ to rotate a shape towards a reference shape, Singular-value
decomposition (SVD) is used.

3.3.2 Principal Component Analysis
Principal component analysis is widely used to statistically analyze multidimensional data.
Here we will describe PCA with relevance to SSM creation and ASM search, but a more
thorough explanation can be found in numerous sources like Flury (1988).

If we consider a set of data points in two dimensions as shown in Fig. 3.3, the eigenvec-
tors of the covariance matrix plotted in blue and green, will be the directions of variance
in the data. These eigenvectors together with their eigenvalues are what’s called principal
components. The blue vector is the first principal component since it has the largest pos-
sible variance. This is given by the eigenvalue, and the vector is scaled by a factor of the
square root of the eigenvalue. This method of computing the PCA is called the covariance
method, which is further explained by Shlens (2014). In the case of ASM, the data we
want to analyze will be in 2k dimension, where k is the number of landmark points we use
to represent the fish shape. We multiply by 2 because of the points themselves being in
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Figure 3.3: Eigenvectors of the covariance matrix of the distributed points

two dimensions. If we use the notation (x1, y1), (x2, y2), ..., (xk, yk) for the landmarks in
the first shape, (z1, w1), (z2, w2), ..., (zk, wk) for the landmarks in the second shape and
(u1, v1), (u2, v2), ..., (uk, vk) for the landmarks in the nth shape, our data matrix will look
like the following with dimensions 2k × n:

A =



x1 z1 ... u1
y1 w1 ... v1
x2 z2 ... u2
y2 w2 ... v2
... ... ... ...
xk zk ... uk
yk wk ... vk


This matrix can be used to find the covariance matrix C = cov(AT ), which will have

the dimension 2k×2k. The principal components will be the eigenvectors and eigenvalues
of the covariance matrix which are defined by:

Cv = λv

where v are the eigenvectors and λ are the eigenvalues. Variations of a fish shape can then
be found by a linear combination of the mean shape S̄ and weighted principal components
b:

S′ = S̄ + vb

where only the most significant principal components is used and b is a vector of weights
equal to the number of principal components constrained by the particular principal com-
ponent’s eigenvalue.

−3
√
λk ≤ bk ≤ 3

√
λk
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3.4 Active Shape Model Search

(a) Landmark point of the tip of a fish’s
head

(b) Gradient of 11 × 11 region around land-
mark

Figure 3.4: Gray-level profile of landmark

3.4 Active Shape Model Search

The search algorithm used in this project follows the work done by Milborrow (2016).
Before the actual search, every landmark point needs to build a gray-level profile model.
This model is used during the search to find which direction the individual landmark point
needs to be moved to converge into the new shape. A profile model is built from finding the
gradient of a s×s region around each landmark point in all of the training shapes. Fig. 3.4
shows an example landmark on the tip of a fish’s head and a 11× 11 normalized gradient
image around the landmark. All the gradient images are thereby reshaped into a 1D vector
of size s2, and the mean and covariance matrix is calculated for each landmark point across
all training shapes. As seen for the statistical shape model, PCA is also performed on the
gray-level profiles and stored with the profile model to test the validity of a landmark point
during search.

When the gray-level profile model is built, The mean shape of the SSM is placed at an
initial point where it is estimated that a fish will be. This is done by smoothing the image
we would like to search with a very high smoothing value. By doing this we look at the
image as a height map, where there is likely to be fish at high intensities. By finding all
local maxima, we have a set of points we can use as initial points when starting the search.

The search is an iterative search that begins with going through all the landmark points
of the current shape and look at a 3 × 3 square region and use all these pixels as a center
to calculate 9 gradient images. This is illustrated by Fig. 3.5 using a square region of size
11 × 11, only the center pixel (the current landmark point) is left out. All these gradient
images are tested towards the mean gray-level profile, and the one that is most equal to the
mean is the direction of which the current landmark will be shifted. To calculate which
gradient image is most equal to the mean, we use the information we stored in the gray-
level profile model when we performed PCA. If ḡi is the mean gray-level profile for the
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Figure 3.5: Gradient images of a square region around pixels surrounding a landmark point shown
in red

current landmark i and g is a reshaped gradient image from one of the 3 × 3 surrounding
pixels, we can calculate the distance metric which is the Mahalanobis distance mentioned
by Milborrow (2016).

m =

√
(g − ḡi)TC−1g (g − ḡi)

where C−1g is the inverse covariance matrix of the gray-level profile data. The pixel sur-
rounding the current landmark that minimizes m is chosen as the new position of the
current landmark.

When all landmarks are shifted to their new positions, GPA is done to fit the current
shape scurr to the new landmark points. From this we can deform the fitted shape S into
a new shape variation using PCA, by calculating the weighted principal components and
constraining them by the eigenvalues:

b = vT (S − S̄)

and then calculating the new shape variation:

S′ = S̄ + vb

3.5 Salmon Weight Estimation
The weight estimation technique is using a fairly straight forward approach. There are
three measurements we can derive for a fish using the depth image and the segmented
intensity image, length L, height H and surface area A. First we need to find the distance
the fish is from the camera. We do this by checking what pixels in the segmented intensity
image corresponds to in the depth image. These points are stored as a vector and we find
the standard deviation of the set of points. If the standard deviation is bigger than some
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Figure 3.6: Exploiting the landmark points to get easy access to the fish’s length and height in
pixels.

threshold we say that the fish are not valid for finding depth data because the depth image
is to noisy. If we pass the test we take the mean of all the points and use that as our distance
Z to the fish.

The neat feature of active shape models that appear during this part of the process is
that we can easily find how many pixels long a fish is. The same goes for the height in
pixels, because we know what landmark point is at the tip of the fish and we know what
landmark point is at the tail of the fish. We say that the length between these landmark
points is the length of the fish, which is equally true for the height shown in Fig. 3.6.

We use the notation Lp, Hp for the length and height measured in pixels, and the
area Ap of the fish is just the number of pixels the shape consists of. To project these
values from image space into world space we need to know the focal length of the camera
measured in pixels. By looking at the pinhole camera model shown by Fig. 3.7 we can use
some trigonometry to find the focal length.

If we know the horizontal angle of view θ and the image width in pixels W , the focal

Figure 3.7: Simple pinhole camera model
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length in pixels is given by:

f =
W

2tan( θ2 )

When we know the focal length in pixels it is straight forward to project from image
space to world space by the use of similar triangles.

L = Z
Lp
f
, H = Z

Hp

f
, A = Z2Ap

f2

Using these calculations in reality is most likely not sufficient for accuracy. This will
be further explained in Chapter 6.
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Chapter 4
Implementation

In this chapter, the implementation of the methods described in Chapter 3 will be covered.
The main tool used for developing has been MATLAB, with its high level functionality for
image processing. The first part of this chapter will explain the image dataset and its label-
ing. Next we will cover the segmentation part and the active shape model implementation.
And lastly the implementation of the weight estimation method will be explained.

root/
Data/

images/
images labeled/
images segmented/
landmarks/
FishGrayModel.mat
FishInCage.nc
FishShapeModel.mat

Matlab/
Labeling/
LoadData/
Segmentation/
WeightEstimation/

Figure 4.1: Folder structure of the project

4.1 Dataset and Labeling
The dataset of the 809 frames video is stored in the NetCDF file format, which is a sort of
standard in the scientific community for storing array-oriented data. The people behind the
3D camera the dataset is created by, has also their own project UTOFIA (UTOFIA (2018))
for testing underwater applications of the camera technology. On their web page a loader
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(a) Local maxima of all rows and all
columns

(b) The local maxima intersection between
rows and columns

Figure 4.2: Local maxima of highly smoothed intensity image

for the NetCDF file, can be downloaded and is included in the LoadData/ folder in the
project. The loader is written in MATLAB and reads all the raw data from the file Fish-
InCage1.nc to then do the calculations necessary to generate an intensity image and depth
image for every frame. All the images are read through this loader and stored in a MAT-
LAB friendly .mat format in the images/ folder.

The labeling of the images are done partially manual and automatic. 30 fishes has
been labeled manually by creating a binary image where all the pixels that make up the
fish are set to one and zero elsewhere. An automatic landmark generator is written inside
the Labeling/ folder to create 60 landmark points around the contour of the fish and store
them in a .csv file inside the images labeled/ folder.

4.2 Active Shape Model Implementation
The ASM implementation is based on the work done by Miller (2017), who has made
a MATLAB implementation of the ASM technique from the method described by Mil-
borrow (2016). The original implementation was meant for locating faces in images, and
trained its shape model using the MUCT database (Milborrow et al. (2010)).

The first problem we encounter when implementing the ASM search, is how do we
know where there is likely to be a fish in an image. The way we find our potential points
to search for fish, is by taking the Gaussian blur of the image using a very large smoothing
value to view the image as a height map. Then we find all the local maxima along all
the rows and all the columns as shown in Fig. 4.2a. We can see that we get several cross
sections, which is the intersection points shown in Fig. 4.2b. The ASM search is run for
every intersection point we find in an image, but before the search starts we need to build
the SSM and the gray-level profile model.

The SSM is built by first aligning all training shapes using GPA without taking consid-
eration to the scaling between the shapes, because we need the search to able to find fish of
different sizes. Fig. 4.3 shows the landmark points of all training shapes after Procrustes
analysis is performed. PCA is performed on the training shapes by using MATLAB’s built
in functionality for finding eigenvectors and covariance matrices. Fig. 4.4 shows the vari-
ation of shapes by tweaking the three principal components that has the most influence on
the shape (where the variance is largest).
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Figure 4.3: The training shapes aligned using Procrustes analysis.

The gray-level profile model follows the method for building as described in Chapter 3,
only we need to build gray-level profiles for different resolution. The search will start of
at a very coarse resolution of 1

4 times the original resolution, then the search will move on
to do the same operations at only half the resolution, and lastly the full resolution will be
used. This means that we need to generate gray-level profiles for all these three resolution
for every landmark point in every training shape. The size of the square region around
each landmark point will also vary between each resolution ranging from 10 × 10 down
to 5 × 5. To find the gradient image of these images, the Laplacian kernel is used in the
convolution process which looks like the following:

L =

 0 −1 0
−1 4 −1
0 −1 0


The gradient image is then normalized and passed through a sigmoid function to limit very
high and low values.

The ASM search itself does not contain any implementation specific details other than
what is already explained in Chapter 3. The search is ran for every detected peak in the
highly smoothed image that finds potential fish positions. The search is run over three
different resolutions and five iterations for each resolution. For a fish to be validated to
be a true positive we check the Mahalanobis distance metric and if it is below a certain
threshold we accept it as a valid segmented fish. The final contour of the fish is found
from drawing lines between the final landmark points and all the pixels containing the
fish is found from running a region growing algorithm using 4-connectivity starting from
the mean pixel. The segmented fish is saved as a binary image in the images segmented/
folder. The length and height in pixels of the fish are stored in the filename of the binary
image and are found from taking the distance between known landmark points. The length
is defined as the length between the landmark points at the head and the tail, and the height
is found from the landmark points marking the top and bottom of the fish.
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Figure 4.4: Variations of the 3 most influencing principal components
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×

=

Figure 4.5: Extraction of depth pixels from depth image and the binary segmented image

4.3 Weight Estimation Implementation
The weight estimation implementation is made simple by manually selecting segmented
images that have succeeded in converging to a fish contour. Each of these images is used
in combination with the corresponding depth image to extract the depth pixels of the fish.
This can be visualized by Fig. 4.5. From these depth values we extract the mean depth and
the standard deviation of the depth points. The standard deviation tells us how noisy the
data points are, and we use the mean as the distance to the whole fish.

We need to calculate the focal length to be able to project distances into world space.
This is done using the formula derived in Chapter 3, and we know from the camera docu-
mentation that the screen width in pixels are W = 960 and the horizontal angle of view is
θ = 63.42◦. This gives the focal length

f =
960px

2tan( 63.42◦π
2∗180 )

= 777px

In Chapter 5 we will use this focal length to project distances in image space into
distances in world space and show the results.
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Chapter 5
Results

In this chapter, we will show the results from running our implemented methods using the
given dataset. The results of the image segmentation is presented, with both successful
and failed segmentations. The advantages of the ASM algorithm will be shown alongside
its disadvantages and this will be discussed thoroughly in Chapter 6. We will also look at
the results from our weight estimation method, but will sadly lack an estimate of precision
of the results since it’s not given how large the fish in the dataset actually are.

5.1 Image Segmentation Results

The results of the image segmentation depends a lot on what threshold we choose for the
acceptance of a valid segmentation. We threshold the Mahalanobis distance metric, which
tells us how well all the landmark points fit in relation to the gray-level profile. If we set
a low threshold we get acceptable segmentations, but very few fishes are found. If we set
a higher value, lots of fish are found but many are false positives and the contour is not
completely accurate. For all segmentation images shown in this chapter, the red dotted
shape is the initial mean shape that guesses where a fish is. The green contour is the final
shape retrieved when the ASM algorithm has finished.

The implementation is not very optimized and timings say that it takes 3-4 seconds
to process a single search for a fish in a single image. The implementation is tested on
a system having an intel i7-3770 Central Processing Unit (CPU) and a NVIDIA GeForce
GTX 980 GPU.

Fig. 5.1 shows a segmented image that has used a very low threshold value for the
Mahalanobis distance. We can see that the fishes found have a very accurate contour, but
there is many fish in the image that doesn’t get segmented. Fig. 5.2 however uses a high
threshold which means that more segmentations pass the validation test. This leads to us
finding more fish, but most of the contour estimates are inaccurate.
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Figure 5.1: Original image, highly smoothed image with potential fishes and segmented image
when using a low threshold for the Mahalanobis metric.
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Figure 5.2: Original image, highly smoothed image with potential fishes and segmented image
when using a high threshold for the Mahalanobis metric.
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Figure 5.3: Importance of the placement of the initial shape.

Fig. 5.3 shows an example of the importance of the initial shape. The top image shows
a successful convergence to the contour of the fish, but the bottom image had a different
initial shape which caused the search to create a false positive of the convergence.

Fig. 5.4 and Fig. 5.5 shows an advantage and a disadvantage of using the ASM algo-
rithm. The advantage is that even though the contour of the fish is not all that clear, the
ASM algorithm is able to find a part of the contour to then estimate the rest, by constrain-
ing the landmarks to a valid shape according to the SSM. A disadvantage is when one fish
partly occludes another. The final contour contains two fishes, but is very similar to only
one.
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Figure 5.4: Advantage of the ASM algorithm.

Figure 5.5: Disadvantage of the ASM algorithm.
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5.2 Weight Estimation Results
Table 5.1 shows the mean distance measured µ, the standard deviation σ, the length, height
and area in pixels Lp, Hp, Ap and the length, height and area in meters L,H,A, of 10
different well segmented fishes.

Table 5.1: Results of doing weight estimation on ten different fishes.
µ σ Lp Hp Ap L H A

2.989 2.261 188 50 6769 0.723 0.192 0.100
2.637 1.837 218 57 9049 0.740 0.193 0.104
3.054 2.281 189 50 6825 0.743 0.197 0.105
2.996 2.243 193 51 7084 0.744 0.197 0.105
2.870 2.203 188 49 6724 0.694 0.181 0.092
2.791 2.008 219 57 9043 0.787 0.205 0.117
2.702 1.994 197 52 7405 0.685 0.181 0.090
3.206 2.477 182 49 6515 0.751 0.202 0.111
3.079 2.349 176 47 6022 0.697 0.186 0.095
2.567 1.848 218 57 8973 0.720 0.188 0.098

The values L,H,A are what we want to use when estimating the weight of a fish.
In the related work from Chapter 2 these values are passed through functions which has
been found through regression analysis. I have decided to not do these measurements on
the data I have found since there is no way to tell what weight the fish in the tank really
are, and therefore no way of telling how accurate the estimation is. What we can observe
however, is that L,H and A comes out to be similar even though Lp, Hp and Ap varies.
This comes down to how accurate the distance µ is, which again is something that needs
to be tested when the filming of the fish is done.
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Chapter 6
Discussion

In this chapter, we will go through our results from Chapter 5 and elaborate on what we
found from running our implementation. We will keep the discussion around the segmen-
tation and its improvements as well as the weight estimation results.

6.1 Image Segmentation

From the results of the image segmentation we can see that it has potential for improve-
ment. If we set the threshold value for the Mahalanobis metric too small, we are only able
to segment a minority of the fishes. If we set the threshold value too high we get a lot of
false positives that has not fully found the contour of the fishes. There are ways of solving
this issue and improving the segmentation method itself is one of them. We can split the
proposed solutions into three categories:

• Incorporate more and better training data into the SSM and the gray-level profile
model.

• A better technique for positioning the initial shape before the beginning of the
search.

• Improving the search algorithm itself

6.1.1 Better Training Data

Labeling datasets are a slow and cumbersome process that takes a lot of time. Good
training data is important for building a SSM that generalizes well across the dataset. The
SSM created for the face segmentation in the original implementation, was built from 228
training shape. The implementation presented in this thesis only had 30, which is few.
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6.1.2 Better Initial Positioning of Mean Shape
The method used to find positions of potential fish, is a very naive approach which was
shown by Fig. 5.3. It is based on the idea of where the most light is reflected back onto
the CMOS sensor of the camera, is where there are the highest probability of being a fish.
This is a reasonable assumption only that we do not know what part of the fish the light
were reflected. It is equally probable that it is the tail than it is the head. This is not
optimal for placing the initial shape to hope for convergence to the contour of the fish. An
interesting idea that I believe is worth looking into, is the combination of ASM search with
deep learning methods like Convolutional Neural Network (CNN). If a CNN could do the
coarse work of finding the bounding box containing a fish, the ASM search could have a
better starting point for the fine work of extracting the contour.

6.1.3 Improving the Search
ASM is a well known segmentation algorithm that has undergone extensive research, and
many improvements to the algorithm has been proposed. The similar method to ASM is
AAM (Cootes et al. (2001)), and is one of these improvement methods. Instead of just
using a SSM and some information of the region around each landmark point, AAM also
uses texture information about the objects.

Another proposed improvement technique by Eguizabal and Schreier (2017). is the
idea of weighting the landmark points that are considered to have a good placement more
than those that do not. This can be done by measuring the Mahalanobis distance metric for
each landmark point in every iteration and make the points with lower scores have higher
influence on the generated shape for the next iteration.

In addition to the ASM algorithm, other methods can be incorporated as well such as
object tracking using the kalman filter (Kalman (1960)). If a shape is detected with high
accuracy in one frame, the kalman filter technique can track the shape’s movement across
the image and estimate where it will be in case the detection score is low in another frame.

6.2 Advantages of ASM
Cootes et al. (1995) mentions that the advantages of the ASM technique is its possibility of
segmenting objects in noisy and cluttered environments. Fig. 5.4 is an example of exactly
this, where not all of the fish is seen in the camera, but the algorithm is still able to estimate
the contour well.

Another advantage is the ability for easily extracting the length and height of a fish
based on known landmark positions. It’s not all segmentation algorithms that is also able
to find this type of information about the segmented object, which means another method
needs to search for both the head and tail tip of a fish to then find the length.

6.3 Disadvantage of ASM
ASM is an edge based segmentation algorithm, which means that we perform our search
on gradients in the image. This loses information about the intensity inside of the contour
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of the object, which means we are not exploiting all of the available information in the
image when performing the segmentation. This is shown by Fig. 5.5 when one fish are
occluding another so both are find to be inside of the contour.

6.4 Weight Estimation
The weight estimation is really a matter of finding relations in lots of data. Ideally it would
be known the exact weight of every fish in every image for then trying to fit a regression
model to the data. This is a process that needs to be done when the fish is at different stages
in life to see how length, height and surface area is related to the weight of a fish. Norsk
Institutt for Naturforskning (NINA) (2016) has done this by not fitting a regression model,
but rather creating a look-up table that maps fish length to fish weight.

It must be emphasized that the equations used for calculating the focal length f in Chap-
ter 3, is not the ideal way of finding this value. Although the formula is correct, it is prone
to error due to small manufacturing inaccuracies. The way to estimate the focal length is
by having the camera look at a known pattern from different angles, and letting existing
software calibrate the camera parameters for us.
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Chapter 7
Conclusions and Future Work

In this thesis, we have investigated the possibility of automating the measurements of fish
weight by the use of the information we can be get from an underwater 3D camera. We
have found that this is a hard problem which have a lot of use out in the industry at fish
breeding facilities. What makes the problem hard is a combination of finding a robust
segmentation algorithm for detecting fish in images, and handling noisy depth information
to project the size of the fish from image space to world space.

7.1 Conclusions
We have proposed an image segmentation method based on active shape models to extract
the contour of fish in images from an underwater range-gated 3D camera. The method
have lots of room for improvement, but can be seen as a proof of concept for segmenting
these types of images.

Even though the weight and size estimations are lacking results to prove that the pro-
posed method can be of use, this thesis can still be of use as a baseline for future research
in this field. Results are lacking due to not knowing the correct camera parameters to
project from image space to world space, and the fact that we do not know exactly how
big the fish in the dataset are in reality.

7.2 Future Work
We proposed several ideas for improving the segmentation algorithm in Chapter 6. One
that is easy to do but takes a lot of time is to label more training data. The training data
used in the implementation for this project is very small, and it would be interesting to
see what would happen to the segmentation with the use of 50, 100 and even 200 more
training shapes.

An optimization of the ASM implementation is possible as described by Smistad
et al. (2015). The suggestion is to exploit the parallelism of the GPU by making use
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of many more processing cores. The update of each individual landmark point can be ran
in parallel with synchronization between iterations. The paper reports that a large amount
of landmark points are needed to gain any significant speedup, but something along these
lines are needed if the algorithm should be used for real-time applications, which is not
strictly needed for the problem this thesis is built on. It would be interesting to test the
possibility of not only parallelize all the landmark points, but also search for several fish
in the same image at the same time.

Another possibility is to work in the same field only on a different project regarding
surveillance of fish in a tank, such as population control by counting the fish or detect if
the Salmon is infested with lice.
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