
Multi-GPU sliding tile puzzle solving with
GA*, Groute and Abstract Zobrist Hashing

Håvard Pettersson

Master of Science in Computer Science

Supervisor: Anne Cathrine Elster, IDI

Department of Computer Science

Submission date: August 2018

Norwegian University of Science and Technology

Problem Description

Multi-GPU systems are more and more prevalent and provide more compute
power than ever. This thesis project will explore how such systems can be
used for graph algorithms. In particular we will look at A*, a core pathfinding
and graph traversal algorithm. A* is an extension of Dijkstra’s algorithm and
has recently gotten renewed interest in the AI literature. It has previously
been developed for multi-threading and the GPU, but we have not seen a
multi-GPU version.

This work will build on Groute, a cutting-edge multi-GPU framework for
asynchronous irregular processing, introduced by Ben-Nun, Sutton, Pai, and
Pingali in 2017. Our work on implementing A* for multi-GPU on Groute
should thus both shed light on how to explore Groute, as well as show how
suitable A* is for multi-GPU implementation.

i

ii

Abstract

The A* algorithm has been a key search algorithm and part of AI literature
for a long time. It has applications in computational biology, natural lan-
guage processing, pathfinding, puzzle solving, and more. The complexity of
some of these applications has brought about many improvements and vari-
ations of the original algorithm, and recent research has shown that using
GPUs to accelerate A* search can achieve substantial speed-ups over con-
ventional CPU-based implementations.

Compute nodes with multiple GPUs have become commonplace, and
techniques and methods for programming such systems is a popular area
of research. We bring to life the first implementation of the A* search al-
gorithm that distributes the search space across multiple GPU devices, and
identify challenges that must be addressed in order to achieve appreciable
performance.

Our implementation is based on the GA* algorithm of Zhou and Zeng,
and builds on the asynchronous multi-GPU programming framework Groute
by Ben-Nun, Sutton, Pai, and Pingali. We use Abstract Zobrist Hashing for
distributing the search space across GPUs. The implementation is bench-
marked by solving sliding tile puzzles, a commonly used benchmark for search
algorithms.

Our multi-GPU version of A* allows for solving more difficult search
problems than a single GPU can handle by utilizing the increased memory
capacity of multiple GPUs. However, it does not in general yield improved
performance in terms of wall-clock runtime when increasing the number of
GPUs used. We propose how to eliminate much of the overhead introduced
when scaling horizontally, and show that if this is done successfully, each
additional GPU added may yield a search rate increase of at least 50% of the
performance of a lone GPU.

iii

iv

Sammendrag

A*-algoritmen har lenge vært en viktig søkealgoritme og del av kunstig
intelligens-litteraturen. Den har anvendelser i beregningsbiologi, naturlig
språkbehandling, stifinning, puslespillløsning med flere. Kompleksiteten til
noen av disse anvendelsene har ledet til mange forbedringer og nye varianter
av den originale algoritmen, og nylig forskning har vist at å bruke GPU-er
for å akselerere A*-søk kan oppnå betydelige forbedringer i ytelse over CPU-
baserte implementeringer.

Beregningsnoder med flere GPU-er har blitt vanlig, og teknikker og metoder
for å programmere slike systemer er et populært forskningsområde. Vi intro-
duserer den første implementeringen av A*-søkealgoritmen som distribuerer
søket over flere GPU-er, og utpeker flere utfordringer som må løses for å
oppnå forbedret ytelse.

Implementeringen vår er basert på GA*-algoritmen til Zhou and Zeng og
bygger på det asynkrone multi-GPU programmeringsrammeverket til Ben-
Nun, Sutton, Pai, and Pingali. For å fordele søkerommet mellom flere GPU-
er benytter vi Abstract Zobrist Hashing. Implementeringen er benchmarket
ved å løse skyvepuslespill, som er et ofte brukt benchmark for

Multi-GPU-versjonen vår av A* lar oss løse vanskeligere søkeproblemer
enn det en enkelt GPU kan håndtere ved å utnytte den økte minnekap-
asiteten til flere GPU-er. Den oppnår derimot ikke generelt bedre ytelse
målt i kjøretid når man øker antallet GPU-er i bruk. Vi foreslår hvordan
store deler av kostnadene som blir introdusert når man skalerer horisontalt
kan elimineres, og viser at hvis dette kan oppnås kan hver ekstra GPU gi en
økning i søkefrekvens på minst 50% av ytelsen til en enkelt GPU.

v

vi

Preface

I would like to thank Dr. Anne C. Elster for supervising this work, and for
providing useful guidance and assistance throughout the entire process.

A big thanks goes to all members of the HPC-Lab directed by Dr. Elster
for continued inspiration and collaboration.

This work was done in collaboration with Dr. Gavin Taylor of the US
Naval Academy. I would like to thank him for his assistance in running
benchmarks on the Yoda supercomputer cluster, and for useful guidance and
advice during his sabbatical at the HPC-Lab in 2017 and 2018.

Finally, I would like to thank NTNU for supporting the HPC-Lab with
high-end GPUs, and IBM for their support of the HPC-Lab, including the
loan of the IBM Minsky system used extensively in this work.

vii

viii

Contents

List of Tables . xi
List of Figures . xiii
List of Algorithms . xv
List of Listings . xvii
List of Abbreviations . xx

1 Introduction 1
1.1 Goals and contributions . 2
1.2 Outline . 2

2 Background 3
2.1 The Graphics Processing Unit 3

2.1.1 The Nvidia GPU architecture 4
2.1.2 The CUDA programming model 5
2.1.3 Multi-GPU programming 8

2.2 The A* search algorithm . 9
2.2.1 Admissibility and optimality of A* 11
2.2.2 The heuristic function 11

2.3 A* on the GPU . 11
2.3.1 Related work . 13

2.4 Distributed A* search . 13
2.4.1 Abstract Zobrist Hashing 14

2.5 The sliding tile puzzle . 16
2.5.1 Applying A* to the sliding tile puzzle 16

3 Multi-GPU A* 21
3.1 GA* with distributed worklist 21

3.1.1 Pattern database heuristic 24
3.1.2 Abstract Zobrist Hashing 24
3.1.3 Memory allocation . 25

3.2 Benchmarking . 26
3.2.1 Hardware . 26

ix

4 Results and Discussion 31
4.1 Benchmark results . 31
4.2 Termination Overhead . 32
4.3 Node expansion rate . 38
4.4 Search and Communication Overhead 38

5 Conclusions and Future Work 43
5.1 Future Work . 44

Bibliography 47

Appendix A Multi-GPU A* code 49

x

List of Tables

3.1 Benchmarked board configurations. 27

4.1 Benchmark results for 24-puzzles on the Minsky system. . . . 33
4.2 Benchmark results for 15-puzzles on the Minsky system. . . . 34
4.3 Benchmark results for the Yoda system. 35

xi

xii

List of Figures

2.1 Overview of the Nvidia Pascal GP100 GPU 4
2.2 Overview of the CUDA thread model 7
2.3 Instances of the 15-puzzle. 17
2.4 Tile patterns in their goal positions. 18
2.5 Disjoint patterns for the 15- and 24-puzzle. 19

3.1 Overview of the Groute DWL implementation and per-thread
open lists from GA*. 22

3.2 AZH feature projections for the 15- and 24-puzzle. 25
3.3 Minsky system overview . 29
3.4 Memory provisioning used for benchmarking on the Minsky

and Yoda systems. 30

4.1 Various metrics of solves of the 5x5-100 on the Yoda system. . 32
4.2 Elapsed time for 24-puzzle solves on the Minsky system. . . . 36
4.3 Node expansion rates for 24-puzzle solves on the Minsky system. 39
4.4 Search and communication overheads of 2-GPUs solves of 24-

puzzles. 41

xiii

xiv

List of Algorithms

2.1 A* best-first search . 10

xv

xvi

List of Listings

2.1 Example CUDA code . 6
A.1 The on_receive callback. 50
A.2 The on_send callback. 50
A.3 The main work loop host code 51

xvii

xviii

List of Abbreviations

A* “A-star”, an extension of Dijkstra’s graph traversal algorithm

AHDA* Hash Distributed A*. (With state space abstraction [3])

AI Artificial Intelligence

APRA* Parallel Retracting A*. (With state space abstraction [3])

AZH Abstract Zobrist Hashing

BPIDA* Block-Parallel Iterative Deepening A*

BSP Bulk Synchronous Parallel

CO Communication Overhead

CPU Central Processing Unit

CTA Cooperative Thread Array

DWL distributed worklist

ECC Error Correcting Code

gcc GNU Compiler Collection

GPGPU General-Purpose computing on Graphics Processing Units

GPU Graphics Processing Unit

HDA* Hash Distributed A*

IDA* Iterative Deepening A*

PCIe PCI Express. (Peripheral Component Interconnect Express)

PE Processing Element. (CUDA processing core)

xix

PRA* Parallel Retracting A*

SIMT single instruction, multiple thread

SM Streaming Multiprocessor

SO Search Overhead

TO Termination Overhead

XOR exclusive or

xx

Chapter 1

Introduction

The persistent demand for increased compute power in the high performance
computing community has lead to the prevalence of compute nodes equipped
with multiple Graphics Processing Units (GPUs) [4]. GPUs provide high
memory bandwidth and parallelism, and are attractive targets for acceler-
ating resource-hungry algorithms. However, these benefits do not come for
free. In order to achieve high memory bandwidth and parallelism, GPUs use
a single instruction, multiple thread (SIMT) execution model, and requires
threads of execution to cooperate in order to fully benefit from the memory
and parallelism capabilities of the hardware. Though this means perform-
ing irregular and sparse computation on GPUs becomes difficult, it is still
possible to achieve substantial speed-ups over CPU-based alternatives.

The proliferation of multi-GPU compute platforms means research and
development has been dedicated to the programming of such systems. Util-
ising resources efficiently on a GPU is challenging, and adding additional
GPUs to the mix does not make it any easier. These difficulties are further
amplified with irregular algorithms, of which A* is an example.

Groute [1] is a programming framework which aims to simplify and quicken
the development of asynchronous, irregular applications for multi-GPU plat-
forms. It implements low-level communication constructs for inter-GPU com-
munication, achieving good performance using techniques like pipelining and
packetisation. It also provides higher-level constructs like distributed work-
lists, easing development of new applications that need them.

A* is an informed search algorithm with applications in planning, schedul-
ing, path-finding, protein design and other biological sequence alignment
problems, natural language processing, and puzzle-solving [5]–[11]. Many
of these problems are very demanding, and much work has been devoted
to improving the performance of the original A* algorithm of Hart, Nilsson,
and Raphael [12]. Recent research has been dedicated to bringing A* search

1

to GPUs, but inherent sequentiality in both the algorithm and the involved
data structures make this a non-trivial effort [2], [9], [13], [14]. Other authors
have looked into distributing A* search across multiple threads, processors,
and even compute nodes [6], [15], [16], working on mitigating issues such as
load balance and communication overhead. Abstract Zobrist Hashing [16] is
a recent technique which combines state space abstraction [3] with the hash-
ing method of Zobrist [17] to achieve a compromise between communication
overhead and load balancing.

1.1 Goals and contributions
Based on these previous efforts in parallelising A* and multi-GPU computing,
we implement the first A* search algorithm distributed across multiple GPUs.
The goal of our research is to provide an initial leap into the multi-GPU
execution of A* search and show that achieving good performance by util-
ising multiple GPU accelerators is possible. We aim to provide a stepping
stone for further research and development, identifying the challenges and
obstacles that arise when performing A* search on multi-GPU platforms,
and proposing approaches to overcome these hurdles.

The problem we focus on solving with the A* algorithm is the sliding tile
puzzle, which has a long history as one the main benchmark problems for A*
algorithm variations. Specific to the sliding tile puzzle, we utilise additive
pattern databases as the heuristic.

1.2 Outline
The remainder of this report is structured as follows.

• In Chapter 2, we present background material relating to GPU pro-
gramming, A* search, and sliding tile puzzles.

• In Chapter 3, we present specifics concerning our multi-GPU imple-
mentation of the A* algorithm.

• In Chapter 4, we present and discuss benchmark results.

• In Chapter 5, we present conclusions and suggestions for future work.

• Finally, in Appendix A, we list some excerpts from our implementa-
tion’s source code.

2

Chapter 2

Background

This chapter will provide an overview of the main background material on
which this work is built, giving an overview of GPU and multi-GPU comput-
ing, the A* algorithm and efforts on parallelising it, and finally an outline of
the sliding tile puzzle problem used to benchmark A*.

2.1 The Graphics Processing Unit1

Traditionally, Graphics Processing Units (GPUs) were exactly that — graph-
ics processing units. The massive parallelism and memory bandwidth they
provide has incentivized researchers and hardware manufacturers to investi-
gate and facilitate General-Purpose computing on Graphics Processing Units
(GPGPU) [18]. GPGPU refers to the practice of solving a wide spectrum of
computational problems, not just graphics problems, on GPUs.

The high parallelism and memory bandwidth of GPUs stem from their
original use as graphics accelerators. Rendering graphics is a highly parallel
problem, where typically each pixel of a scene can be rendered independently
of other pixels. Although early GPUs were specialized for graphics rendering,
the Nvidia GeForce 8800, introduced in 2006, had the first unified graphics
and general purpose computing GPU architecture, and could be programmed
programmed using C and CUDA [19]. Subsequent GPUs have increasingly
improved support for general-purpose computing, including supporting IEEE
754 floating-point operations, ECC memory protection, cached memory, and
most recently, tensor cores [20], [21].

1Adapted from author’s specialization project from fall 2017 at NTNU.

3

Figure 2.1: Overview of the Nvidia Pascal GP100 GPU with 60 SM units.
From Nvidia Corporation [21, Figure 7]. Reprinted with permission.

2.1.1 The Nvidia GPU architecture

Nvidia Corporation is one of the largest GPU designers in the world. In
2008, they introduced the first unified architecture GPU in the GeForce 8800.
They have since introduced the Tesla line of products, which targets GPGPU
specifically.

Pascal is Nvidia’s second most recent microarchitecture, released in 2016,
and succeeded by Volta in 2017 [22]. The highest-end Pascal GPU, the
GP100, has 60 Streaming Multiprocessor (SM) units, each with 64 Processing
Elements (PEs), also known as CUDA processing cores, for a total of 3840
PEs [21]. An overview of the GP100 is shown in Figure 2.1.

The consumer-grade Nvidia TITAN Black GPU is based on the older
Kepler microarchitecture from 2012 [23]. It has a total of 2880 PEs [24].

4

Thread execution

A Pascal multiprocessor can simultaneously schedule and execute 2048 con-
current threads [21]. In order to enable the management and execution of
this many threads, they are executed in a SIMT manner. This means that
threads are grouped together such that conceptually, each thread in the group
either has to execute the same instruction, or some threads must wait, until
the branches re-converge. This makes avoiding branch divergence important
for optimizing performance. Groups of threads executed in this manner are
called warps and consist of up to 32 threads [20], [21].

In addition to the SIMT execution, memory accesses are also optimized
for the warp model [20], [25]. When the threads in a warp access different
memory addresses, the memory system coalesces them into a minimal amount
of accesses. This means that if the 32 threads in a warp access 32 different
4-byte words aligned in a single 128-byte segment, every memory access can
be satisfied by a single physical memory access. However, if the memory
accesses are spread out or unaligned, at worst 32 separate serial accesses
must be performed. It follows that similarly to branch divergence, avoiding
uncoalesced memory accesses is very important to attain good performance.

NVLink

NVLink is Nvidia’s GPU and CPU interconnect technology which allows
GPUs to access other GPUs’ memory and host memory at up to 160GB/s
(Pascal [21]) or 300GB/s (Volta [22]). NVLink enable GPUs to communicate
among themselves and with NVLink-enabled host systems at much higher
rates than the conventional PCI Express (PCIe) bus technology. Individual
NVLink interconnects can be bonded together in gangs, aggregating their
bandwidth.

2.1.2 The CUDA programming model
The CUDA programming framework, released by Nvidia in 2007, enables
general-purpose programming of CUDA-enabled GPUs [19]. CUDA is an
extension to the C and C++ programming languages that provides three key
abstractions: hierarchical groups of threads, shared memories, and barrier
synchronization.

A CUDA program is written very similarly to a regular C program, except
it has a number of parallel kernels that are applied to the GPU as threads and
executed in parallel. The serial part of a CUDA program runs on a host CPU.
Kernels are functions that look like regular, serial code, but are specially

5

Listing 2.1: Example CUDA code for element-wise squaring an array of in-
tegers on a GPU. Some code components omitted for brevity.

1 __global__ void square(int *a, int *b) {
2 int i = blockIdx.x;
3 b[i] = a[i]*a[i];
4 }
5

6 int hostA[32];
7

8 int main() {
9 cudaMalloc((void **)&gpuA, 32*sizeof(int));

10 cudaMalloc((void **)&gpuB, 32*sizeof(int));
11

12 cudaMemcpy(gpuA, hostA, 32*sizeof(int),
cudaMemcpyHostToDevice);

13

14 square<<<1, 32>>>(gpuA, gpuB);
15 }

decorated at call sites to specify that they should be executed in parallel.
The same code is executed by as many threads as specified when the kernel
is called. Listing 2.1 shows an extract of a simple CUDA program, with a
kernel definition on lines 1–4 and a kernel invocation launching a single block
of 32 threads on line 14. The __global__ annotation identifies a kernel that
is called from the CPU and executed on the GPU.

Threads in CUDA are organized as grids of blocks2 of threads [26], vi-
sualized in Figure 2.2. Blocks are sets of threads that can access shared
memory and can cooperate via barrier synchronization. Grids are sets of
blocks that may execute independently, or coordinate via global memory [20].
When threads are executed, they have access to their thread identifier, unique
within a block, the block identifier, unique within a grid, and a grid identifier,
unique across the device. The block and grid identifiers may be one, two or
three-dimensional [19].

Note that the blocks and grids are an abstraction, and do not map directly
to concepts like warps and multiprocessors. It is, however, crucial for the
programmer to know how they both work and relate to each other. Threads
within a block are executed as one or more warps, and making block sizes
multiples of the warp size can be beneficial to performance. The strength
of the grid-of-blocks abstraction is that a CUDA program can execute on a
GPU of any size, exploiting whatever amount of parallelism is available.

2Also called Cooperative Thread Arrays (CTAs).

6

Figure 2.2: Overview of the CUDA thread model with local and shared
memories. From Nvidia Corporation [27, page 6]. Reprinted with permission.

7

2.1.3 Multi-GPU programming
With Multi-GPU programming, we refer to the programming of a single com-
pute node with multiple GPU devices (as opposed to a cluster of nodes
equipped with GPUs). A single compute node can typically handle up to
about 25 GPUs, and a challenge arises when an application requires com-
munication between these devices [1]. As noted by Ben-Nun, Sutton, Pai,
and Pingali [1], there are two traditional approaches to multi-GPU program-
ming: as multiple processes, each controlling a single GPU, or as a single
process using a Bulk Synchronous Parallel (BSP) programming model. Both
of these techniques introduce overhead and potential underutilisation of re-
sources, the former due to the use of message-passing, and the latter due to
synchronisation. These difficulties may be amplified when working with ir-
regular applications with unpredictable work and communication patterns.

Ideally, we would like to develop multi-GPU applications in an asyn-
chronous manner, such that processors and GPUs can work independently
and without waiting for other devices. However, programming such asyn-
chronous applications from scratch turns out to be challenging. The het-
erogeneity of multi-GPU hardware topology, where pairs of GPUs may have
different interconnects and communication speeds, only adds to the difficulty
of asynchronous programming.

Groute

With these challenges in mind, Ben-Nun, Sutton, Pai, and Pingali [1] intro-
duced Groute, a programming model and runtime environment that enables
easier development of asynchronous multi-GPU applications. It takes con-
cepts from computer networking and applies them to multi-GPU systems,
introducing abstractions such as Endpoints (hosts and GPUs), Links, and
Routers. The Groute framework handles all communication between End-
points in an asynchronous manner, and low-level networking concepts such as
packetisation and pipelining ensure responsiveness and improve computation
and communication overlap. Abstract Routers enable effortless programming
of communication patterns such as broadcasting to multiple devices, sending
to the first available device, or gathering data from multiple devices.

Groute also provides high-level reusable constructs such as a distributed
worklist (DWL) implementation. A DWL is essentially a global list of work-
items to perform some computation on. Each peer that participates in the
DWL is typically both a consumer and producer; a work-item may be ex-
tracted from the list, and its processing may produce further work-items,
which are pushed back onto the list. Often, in distributed computation,

8

work-items can only be handled by specific devices, like when the search
space of a search algorithm is partitioned between devices. This requires all
devices to be able to communicate with all others, which the Groute DWL
solves by using a ring topology. The DWL implementation takes care of all
communication and coordination, leaving it to the programmer only to pro-
vide certain callbacks for directing work-items (process locally, send away or
drop) and for the actual processing of work-items.

2.2 The A* search algorithm

The A* algorithm is a best-first (or informed) search algorithm [12]. It uses
a heuristic function to estimate the cost of a solution when deciding which
nodes to expand during search. This enables A* to explore less of the search
space to find a solution, compared to uninformed algorithms like breadth-
first or depth-first search [28].

In order to minimise the number of expanded nodes during search, A*
evaluates an estimator f̂(n) for each node n, and selects the best candidate
for expansion based on the estimator value of each node. The estimated
function is usually defined as

f(n) = g(n) + h(n)

and its estimator as

f̂(n) = ĝ(n) + ĥ(n).

The two functions g(n) and h(n) represent the lowest cost to get from the
start node to node n, and from node n to the goal node, respectively. In
practice, ĝ(n) is the cost of the best path to node n found so far, and ĥ(n) is
the heuristic function, using knowledge of the problem domain to estimate
the cost from n to the goal [12].

Algorithm 2.1 lists pseudocode for the A* algorithm. It maintains two
sets of nodes, usually called the open list and closed list, in which nodes to
be expanded and nodes that have been expanded are kept, respectively. The
open list is actually a priority queue, usually implemented as a heap, while
the closed list is an associative array mapping states to search nodes, typically
implemented as a hash table. Expanding a node here means iterating over its
neighbour nodes, deciding whether to add them to the open list, only update
their ĝ-values, or skip them entirely.

9

Algorithm 2.1. A* best-first search
1: procedure A*(start, goals)
2: OPEN← {start},CLOSED← ∅
3: while OPEN 6= ∅ do
4: node← Extract(OPEN) . Extract node with lowest f̂
5: if node ∈ goals then
6: return path from start to node
7: end if
8: CLOSED← CLOSED ∪ {node}
9: for all node′ ∈ Neighbours(node) do

10: g′ ← ĝ [node] +Cost(node, node′) . Add edge cost
11: if node′ ∈ CLOSED then
12: if g′ < ĝ [node′] then . Reopen if better
13: OPEN← OPEN ∪ {node′}
14: else
15: continue
16: end if
17: else if node′ 6∈ OPEN then
18: OPEN← OPEN ∪ {node′}
19: else if g′ ≥ ĝ [node′] then . Avoid updating if worse
20: continue
21: end if
22: ĝ [node′]← g′

23: f̂ [node′]← g′ +Heuristic(node′)
24: end for
25: end while
26: return failure . No path from start to any node in goals exists
27: end procedure

10

2.2.1 Admissibility and optimality of A*
An algorithm is said to be admissible if it is guaranteed to find an optimal
solution if one exists. The admissibility of A* is contingent on the heuristic
function also being admissible.

The heuristic function is admissible iff for all n, ĥ(n) ≤ h(n) [12], [28].
In other words, it must be optimistic, and never overestimate the actual cost
of a solution path from a given node. Intuitively, if the heuristic function is
overestimating, an optimal solution path could end up unexplored while the
search finishes with a suboptimal solution.

It is also preferable that the heuristic be consistent [12] (ormonotonic [28]).
That is, the heuristic must adhere to the triangle equality, such that the
f̂ -value of nodes does not decrease along a path from the start node. If a
consistent heuristic is used, every node is guaranteed to only be expanded
once, and the algorithm implementation can be slightly simplified, replacing
Lines 12 to 16 in Algorithm 2.1 with a single continue statement [10].

Given an admissible heuristic, A* search is also optimally efficient [12],
[28]. That is, no other admissible algorithm using the same heuristic is
guaranteed to expand fewer nodes than A* search.

Detailed proofs of the admissibility and optimality of A* appear in Hart,
Nilsson, and Raphael [12] and Russell and Norvig [28].

2.2.2 The heuristic function
Given the formal requirements imposed on the heuristic function discussed
in Section 2.2.1, the question then arises: how do we design a good heuristic
function?

The most trivial heuristic, yielding ĥ(n) = 0 for all n, reduces A* search
to an uninformed pseudo-breadth-first search, where nodes are ordered by
ĝ(n) and the shortest paths are expanded first, similar to how breadth-first
search expands nodes by depth level.

In order to expand the least amount of nodes before finding a solution,
we must aim for our heuristic function ĥ(n) to be as close to h(n) as possible
while staying admissible and consistent [12].

2.3 A* on the GPU
A* is not an algorithm that lends itself easily to parallelisation. It is inher-
ently serial, each iteration extracting and expanding a single node from the
open list. This is a requirement for A* to be admissible; we have to process
nodes in sequential order by their f̂ -values.

11

Zhou and Zeng [2] proposed one approach to parallelising A* on GPUs.
The first step toward parallelisation is to calculate the heuristic function in
parallel; this is generally trivial due to the inherent independence between
heuristic calculations. Next, we would like to process multiple nodes simul-
taneously to exploit the parallelism of the GPU. Here we run into a challenge:
the open list is usually implemented as a binary heap, and adding or removing
items are sequential operations taking O(logn) time. Although concurrent,
lock-free priority queues exist, they are not suitable for use on GPUs using
SIMT execution.

The solution of Zhou and Zeng [2] is to replace the single open list with
one open list per CUDA thread in the GPU implementation, each containing
a different, non-overlapping subset of the full open list. This is not a new
idea: Evett, Hendler, Mahanti, and Nau [15] introduced this concept with
their Parallel Retracting A* algorithm.

Zhou and Zeng call their parallel A* search algorithm GA*, and it differs
from the serial A* in Algorithm 2.1 in the following ways:

• On each iteration, each CUDA thread tries to extract a node from its
private queue. When a solution is detected, instead of being imme-
diately returned, it is atomically compared against any previously or
simultaneously discovered solutions, and stored in a shared variable if
the new solution has a lower cost.

• The best found solution is compared against the lowest f̂ -value of any
open list, and if no open node has a lower value, the found solution is
known to be optimal and the algorithm terminates.

• If no optimal solution can be guaranteed, non-solution nodes are ex-
panded, and newly created nodes added to a shared list. Instead of
adding new nodes directly to the open list, duplicates are removed
once all threads have expanded their nodes.

• After node deduplication, heuristics for the remaining nodes are calcu-
lated, and the nodes distributed to the various open lists. It is impor-
tant to note that they do not push expanded nodes to the same open
list as their parents; this ensures good nodes are distributed among
multiple threads and increases the amount of useful work being done.

One major detail still missing is how to perform node deduplication on
GPUs. Zhou and Zeng [2] solve this with a hash table scheme they call Par-
allel Hashing with Replacement [29, Algorithm 3], which is a simplification
of Cuckoo Hashing [30]. Similar to Cuckoo Hashing, it may use multiple

12

hash functions, and primarily differs in the way conflicts are handled. If
an item is being inserted and maps to an occupied slot, the existing item
is dropped. This greatly simplifies implementation on the GPU. The ef-
fect of using this technique for detecting duplicate nodes in A* search is that
we may miss some duplicates and expand some nodes more than once. This
does not affect the admissibility of A*, and so it is safe to use.

2.3.1 Related work
Other authors have worked on A* search problems using the GPU.

Inam [13] applied A* to grid path finding using a simple Manhattan dis-
tance heuristic, showing what is possibly the first implementation of A* on
the GPU. They begin with a basic, sequential implementation of A*, and en-
hance it to improve performance on GPUs. One of these is to parallelise the
expansion of nodes, allowing 8 CUDA threads to work on a single node (be-
cause each node in the grid has potentially 8 valid successor nodes). Only
a single node is extracted from the open list in each iteration, so the paral-
lelism is limited by the out-degree of search nodes.

Hiroki, Naoaki, and Hirokazu [9] presented an iterative version of Inam
[13], focusing on permutation puzzle solving on the GPU, in particular the
solving of Rubik’s cube. They implement a slightly specialized version of Iter-
ative Deepening A* (IDA*) for solving these puzzles, using pattern databases
and domain knowledge to solve cube puzzles.

Horie and Fukunaga [14] introduced Block-Parallel Iterative Deepening
A* (BPIDA*), which assigns search subtrees to CUDA blocks, aiming to
reduce the warp divergence and load imbalance which occurs when assigning
subtrees to individual threads during IDA* search.

2.4 Distributed A* search
In today’s compute landscape, we must often look to scale horizontally. A
single CPU or GPU can only yield a certain amount of processing power
and memory capability before improving performance becomes prohibitively
expensive. Thus, it is interesting to explore algorithms and techniques for
distributing computation across multiple devices. This is particularly inter-
esting for the A* algorithm, which is often limited by its high memory usage.

Parallel Retracting A* (PRA*) [15] its derivative Hash Distributed A*
(HDA*) [6] are two closely related techniques that use a hash function of
search nodes’ state and a modulus operator to divide the search space be-
tween different threads or computation devices. When a thread expands a

13

node, it calculates the hash value of its state and determines whether it should
be processed locally or sent to a different thread. HDA* is an improvement
over PRA* on the communication part of this scheme.

Clearly, the choice of hash function affects the performance of PRA*
and HDA*. If a uniform hash function is used, for N threads or devices,
on average only 1

N
of nodes generated will be processed locally, while N−1

N

will be transferred out. If we can increase the fraction of search nodes that
are processed locally, we can reduce the Communication Overhead (CO) of
these algorithms. Jinnai and Fukunaga [16] define the CO as the fraction

nodes generated
nodes sent away

.

Burns, Lemons, Ruml, and Zhou [3] introduced APRA* and AHDA*
as variants of these algorithms that use state space abstraction instead of
simple hashing to divide the search space among threads. They divide the
search space into blocks, and assign a subset of the blocks to each processing
thread. Generated nodes then have a high probability of falling in the same
block as their parent nodes, and being assigned to the same thread.

While APRA* and AHDA* mitigate the issue of communication over-
head, they introduce a new problem: load balancing. Because of the way
the search space is distributed, some computation threads may spend time
searching in “useless” partitions of the search space, or perhaps not search-
ing at all due to no nodes being assigned to them. Jinnai and Fukunaga [16]
define Search Overhead (SO) as the fraction

nodes expanded in parallel search
nodes expanded in sequential search

.

If the parallel A* implementation does no useless work and expands the same
amount of nodes as a sequential implementation, the SO will be close to or
even equal to 1. However, if a single processing thread becomes a bottleneck,
other threads will spend time expanding worse nodes, resulting in a higher
SO.

Ideally, we would like the best of both worlds: the load balancing of
uniform hashing, and the communication efficiency of state space abstraction.

2.4.1 Abstract Zobrist Hashing
Abstract Zobrist Hashing (AZH) (Jinnai and Fukunaga [16]) combines Zo-
brist hashing, a hashing method introduced by Zobrist [17] intended for game
playing, and the abstraction of Burns, Lemons, Ruml, and Zhou [3] to create a
work distribution technique that has both low communication overhead and
low search overhead.

14

Zobrist hashing

Zobrist hashing [17] is a hashing method suitable for hashing game states
for board games such as checkers, chess, Go, and the sliding tile puzzle. It
satisfies two desired properties of hash functions: a good random distribution,
and fast computation. It works by generating a table of random integers in
advance, denoted S, where each integer in S represents a possible “feature”
of the data being hashed. In the domain of game playing, such features may
“knight on f6” (for chess) or “tile 11 in position 4” (for the 15-puzzle). The
Zobrist hash Z(x) of a certain input set of such features x = {x1, x2, . . . , xn}
then becomes the exclusive or (XOR) sum of all its features:

Z(x) =
n⊕

i=0

S[xi].

Because the XOR of uniformly distributed random integers is also uni-
formly and randomly distributed, so is the Zobrist hash.

Due to some other useful properties of XOR, viz. commutativity (x⊕y =
y⊕x), associativity (x⊕[y⊕z] = [x⊕y]⊕z), self-inversing (x⊕x = 0) and the
identity (x⊕0 = x), incrementally generating hashes for game states becomes
very simple. Suppose we want to calculate the hash of a new state in a game
of chess, where we moved a knight from position f6 to position d5. Due to
the self-inversing and identity property, we can simply XOR in the features
“knight on f6” and “knight on d5” to the parent state’s hash code to get the
hash of the new state. The commutativity and associativity ensures that if
we reverse the move, we go back to the parent state’s hash code.

Zobrist hashing thus gives us an efficient method of hashing search space
states and their successor nodes, particularly for games and puzzles.

Applying state space abstraction

Jinnai and Fukunaga [16] uses Zobrist hashing in combination with state
space abstraction as used by Burns, Lemons, Ruml, and Zhou [3] to form a
hybrid technique that is a compromise between the load balancing of uniform
hashing and the low communication overhead of abstraction. It introduces no
additional overhead during runtime; the only difference from regular Zobrist
hashing is the way the pre-generated integer table S is created.

Let’s imagine we are hashing states of a game where we have tiles num-
bered 1 through 8 on a 3 by 3 board with positions numbered 1 through 9
(i.e. the 8-puzzle, discussed further in Section 2.5). The feature set S con-
sists of integers st,p where t identifies a tile and p its position. If the integers
in S are all random, we have regular Zobrist hashing. However, if we group

15

some of these features together, similar board states in our game will hash
to the same value. To see this, imagine we partition our 3 by 3 board into
rows, thus letting st,1 = st,2 = st,3 for all tiles t, and similar for the second
and third rows. Then, moving a tile laterally would result in the child state
having the same hash as its parent. For example, if we move a tile t from
position 2 to position 1, then

Z(child) = Z(parent)⊕ tt,2 ⊕ tt,1 = Z(parent)⊕ 0 = Z(parent).

This means similar states will be grouped together, resulting in lower
communication overhead if used for state space distribution in A* search.
We also benefit from good load balancing, because whenever the hash value
does change, it is randomly and uniformly distributed.

2.5 The sliding tile puzzle

The sliding tile puzzle is a puzzle game where (n× n− 1) tiles and a blank
space are to be rearranged on an n × n board from a scrambled state to a
given solution state. The puzzles are often named by their number of tiles;
e.g. the 15-puzzle refers to the 4× 4 variant, and the 24-puzzle to the 5× 5
variant. A visualization of the 15-puzzle is shown in Figure 2.3.

The puzzle is solved by “sliding” orthogonally adjacent tiles into the blank
space repeatedly until the tiles have been rearranged to the solution configu-
ration (Figure 2.3b). Solving the puzzle optimally means finding a shortest-
possible sequence of moves that achieves this.

The sliding tile puzzle is simple to define, but difficult to solve algorith-
mically (the 15-puzzle has about 1013 possible configurations; the 24-puzzle
almost 1025 [10], [31]). For this reason, it is often used as a benchmark for
search algorithms, including the A* algorithm [10].

2.5.1 Applying A* to the sliding tile puzzle

The sliding tile puzzle maps naturally to a state-space problem as described
in Fukunaga, Botea, Jinnai, and Kishimoto [10]. Each unique puzzle config-
uration is a state in the problem space, and the possible tile moves represent
transitions between states. We define the cost of each transition to be 1, such
that the total cost of a path through the state space is the number of moves
performed.

16

12 10 13

15 11 9 14

7 3 6 2

4 8 5 1

(a) Scrambled state

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

(b) Solution state

Figure 2.3: Instances of the 15-puzzle.

Manhattan distance

As is customary with A*, the challenge lies in defining the heuristic function
ĥ(n). One of the simplest and most well-known heuristics for the sliding tile
puzzle is the Manhattan distance heuristic [31], [32]. To calculate it, we sum
up the Manhattan distance from each tile to its goal position. The Manhattan
distance is the sum of a tile’s horizontal and vertical displacement from its
goal position. This is an admissible heuristic, because in order to reach the
goal state, each tile has to move at least this distance, and each move only
affects a single tile, making it is a lower bound on the total number of moves
required h(n).

The Manhattan distance heuristic is easy to calculate, but not particu-
larly accurate. It does not account for interactions between tiles, and as-
sumes each tile can move “directly” to its goal position. For a more accurate
heuristic on the sliding tile puzzle we can use pattern databases.

Non-additive pattern databases

The main weakness of the Manhattan distance heuristic is that it does not
take into consideration different tiles’ interaction with each other when esti-
mating the number of moves required to get a tile to its goal position. Pattern
databases improve upon this by considering groups of tiles together, and
how many moves are required to get each of them into their goal position,
while disregarding tiles not part of the group. A pattern refers to a specific
configuration of a group of tiles, and a pattern database records the number
of moves required so solve each permutation of a pattern [33]. Generating
such a database turns out to be quite simple, and amounts to a breadth-first
search backwards from the goal state to each permutation of the pattern.

Figure 2.4 shows two tile patterns used by Culberson and Schaeffer [33]

17

1 2 3 4

5

9

13 E

(a) “Fringe” pattern

1 2 3 4

6 7 8

E

(b) “Corner” pattern

Figure 2.4: Tile patterns in their goal positions.

for the 15-puzzle. Note that the tiles not part of the patterns (blank) and the
empty tile (E) are distinguished. With seven tiles plus the empty tile tracked,
the number of moves needed to solve each permutation of the patterns can
be stored in 495MB of memory or less [32].

Using pattern databases as a heuristic for A* search is quite simple. For
any given puzzle state, we take the pattern of the tiles in the tile group and
the empty tile, and look up the number of moves required to solve them
in the pattern database. Clearly, this is a lower bound on the amount of
moves required to solve the entire puzzle. If we have multiple patterns and
databases, we can take the maximum value among each of them to get an
even better heuristic.

These types of pattern databases are non-additive. That is, we can’t use
the sum of two pattern databases as our heuristic, even if the patterns are
non-overlapping (as in Figure 2.5), as it would not be admissible. This
is because the pattern databases not only count the moves of tiles in the
pattern, but the other tiles as well.

It turns out, however, that adding together multiple databases of a slightly
different type, namely additive pattern databases, is possible.

Statically-partitioned additive pattern databases

Statically-partitioned additive pattern databases [31] (originally introduced
by Korf and Felner [32] as disjoint pattern databases) are created with dis-
joint, or non-overlapping patterns, as exemplified in Figure 2.5. In contrast
with the non-additive pattern databases discussed above, additive databases
only count the moves of tiles that are part of the pattern. In essence, they
treat all non-pattern tiles plus the empty tile as if they are all empty. Because
of this, we are able to add the values for each database together, forming an
even better heuristic than non-additive pattern databases [32].

18

(a) 7-8 partitioning of the 15-puzzle. (b) 6-6-6-6 partitioning of the 24-puzzle.

Figure 2.5: Disjoint patterns for the 15- and 24-puzzle.

The Manhattan distance heuristic turns out to be a trivial example of
an additive pattern database heuristic where each database pattern contains
a single tile [31], [32]. In practice, we use patterns like those in Figure 2.5,
and are mainly limited by the memory the databases occupy. Because we
disregard non-pattern tiles, the 7-tile pattern database of Figure 2.5a will
contain 16!/(16 − 7)! = 57657600 entries, and the 8-tile database 16!/(16 −
8)! = 518918400 entries. If each entry occupies a single byte, this amounts
to about 577MB of memory. The 6-tile databases in Figure 2.5b similarly
require a total of 510MB of storage.

Felner, Korf, and Hanan [31] introduced dynamically-partitioned addi-
tive pattern databases, which are more memory-efficient than statically-
partitioned ones, but yield less effective heuristics. They conclude that the
statically-partitioned databases described above are preferable if sufficient
memory is available.

19

20

Chapter 3

Multi-GPU A*

In this chapter we describe how we develop and implement a multi-GPU A*
sliding tile puzzle solver.

We use the GA* algorithm [2] as the base algorithm with statically-
partitioned additive pattern databases [32] as the heuristic, Abstract Zobrist
Hashing [16] for search space partitioning, and Groute [1] for asynchronous
inter-GPU communication and distributed worklist coordination.

3.1 GA* with distributed worklist
Our implementation uses the Groute DWL system as its foundation. Fig-
ure 3.1 illustrates the DWL implementation with the main CUDA kernels
and data structures present on each GPU device, and shows how work items
flow through the system and to and from other GPUs.

Each GPU runs the GA* algorithm with its own open and closed lists.
However, instead of being pushed directly back to open lists, search nodes
expanded by GA* are fed to the Groute distributed worklist implementa-
tion, which decides whether to process the nodes locally or send them to
a different device by consulting user-implemented callbacks. The callbacks
are essentially parallel CUDA kernels that use the Abstract Zobrist Hashing
of nodes as well as the local closed set to determine which action to take.
At each iteration of the algorithm, nodes are also consumed from the Groute
distributed worklist and distributed among the per-thread open lists.

In Figure 3.1, the local worklist is a circular queue of work items that
either originate from a different GPU (via the SplitReceive kernel), or from
previous iterations of our algorithm (via the SplitSend kernel). The work
items in our implementation are A* search nodes, which contain a compact
representation of the puzzle board state, a pointer to the parent node, the f̂ -

21

ExtractExpand

SplitSend Pass

Take

SplitReceive

Discard

Pass

Take
GPU k − 1

GPU k + 1

Local worklist

Open lists

Remote worklist

Node index

Closed set hash table

Figure 3.1: Overview of the Groute DWL implementation and per-thread
open lists from GA*. Based on Ben-Nun, Sutton, Pai, and Pingali [1, Figure
9].

22

and ĝ-values of the node, and its abstract Zobrist hash. Nodes in the local
worklist are put into the node index, which keeps all discovered search nodes
owned by each device. Pointers into the node index are distributed to and
pushed onto the open lists, of which there are one per CUDA thread. The
open lists are implemented as simple binary heaps.

The ExtractExpand kernel performs the main A* search work, namely
extracting nodes from open lists, expanding and deduplicating them, and
passing them on to the SplitSend kernel. We implement the GA* algo-
rithm [2], using statically-partitioned additive pattern databases [32] for our
heuristic. Our use of pattern databases is expanded upon in Section 3.1.1.

The SplitSend and SplitReceive kernels are responsible for sorting through
work items, deciding whether to keep them in the current device (Take), pass
them on to the next device (Pass), or to filter them out (Discard). They
use callbacks to decide what to do with search nodes. The callback imple-
mentations are quite simple, and their CUDA code is listed in Listings A.1
and A.2. The first step is to determine which device owns the incoming work
item. This is deduced with a modulo operation on the item’s AZH (elabo-
rated on in Section 3.1.2). Any items owned by a different device has to be
passed along; because the local device has no knowledge of closed nodes in
other partitions of the search space, no filtering can be done.

If a work item is owned by the current device, we check if it exists in the
closed set. For this, we use a hash table that maps board values to pointers
into the node index. Note that the hash used for the closed set is not the
same hash used for determining node ownership (AZH). The AZH’s use of
abstraction means many nodes that are close in the search space will have
the same hash value. This is unfitting for a hash table, so for the closed set we
use the compact representation of the puzzle board as the hash value instead.
This is the same method used by Zhou and Zeng [2]. When a node’s slot
in the hash table is occupied, we compare its board with that of the closed
node, to avoid false positives.

If a node owned by the current device does exist in the closed set, it is
simply discarded. If not, it is added to the local worklist.

When a solution node is discovered, its index is atomically stored in a
global variable on the GPU that found it. The host checks the contents
of these variables between each iteration and distributes its values to all
other GPU devices when it is updated. We can not exit immediately when
a solution is discovered, because a better solution may exist unexpanded in
open lists or communication buffers on any device. However, once a solution
has been found, we can begin discarding all nodes with an f̂ -value higher than
that of the solution. This is possible because our heuristic is admissible.
Once all nodes have been discarded or processed, we can exit and return the

23

optimal solution.

3.1.1 Pattern database heuristic
When utilising statically-partitioned additive pattern databases, the main
question becomes: how do we partition the puzzle boards? The general
rule is that we want to group tiles that are near each other in the goal state
together, due to the fact that they interact more with each other than other
tiles [32]. The tile groupings used by our implementation are illustrated in
Figure 2.5, and are the same as used by Zhou and Zeng [2].

The pattern databases are generated on the host prior to running the
main solver program. As the databases are reused for each run, the cost of
generation is amortized. When the main solver runs, each database for the
particular problem (e.g. 15-puzzle, 24-puzzle) is loaded into shared memory
on each GPU device.

3.1.2 Abstract Zobrist Hashing
Similarly to pattern databases, a key question with AZH is how to partition
the search space. We achieve this by using feature projections that have a
high probability of giving derived states the same hash as their parent. The
projections used are the same as those by Jinnai and Fukunaga [16], in addi-
tion to a “split” pattern for the 24-puzzle, and are shown in Figure 3.2. They
can be interpreted as each tile in the puzzles having only two (Figures 3.2a
and 3.2b) or five (Figure 3.2c) possible positions. That is, a single tile will
have the same feature value within each shaded area. Thus, a board state
will only produce a new hash value if a tile crosses the boundaries of the
feature projections, and this gives a good trade-off between search overhead
and communication overhead when distributing nodes among GPUs [16].

In order to set up for AZH, we create an N × (N + 1) array of integers
S (for the N-puzzle). This corresponds to the set S of features discussed
in Section 2.4.1, and gives us a random integer for each tile 1 ≤ t ≤ N ’s
possible position 1 ≤ p ≤ (N + 1). The hash of the initial search node is
then retrieved as

⊕N
i=1 S[ti][pi]. Deriving a hash after moving a tile t from

position p to p′ requires us to XOR two values into the parent hash: S[t][p]
and S[t][p′]. We pre-calculate all these values used for incremental hashing
in an N × (N + 1)2 array S ′, where S ′[t][p][p′] is the value to XOR when a
tile t was moved from p to p′.

On the GPUs, we only need the incremental array S ′, because we calculate
the hash of the initial node on the host. With 32-bit hash values, this array

24

(a) “Split” feature projection for the 15-puzzle.

(b) “Split” feature projection for
the 24-puzzle.

(c) “Block” feature projection for
the 24-puzzle.

Figure 3.2: AZH feature projections for the 15- and 24-puzzle.

requires 15.36 kB of memory for the 15-puzzle, and exactly 60 kB for the 24-
puzzle. We store S ′ in CUDA constant memory, which has a limit of 64 kB.

3.1.3 Memory allocation
A* is a memory-hungry algorithm. We would like to make optimal use of the
memory available on the GPU devices, so that no buffer or data structure
becomes the bottleneck (i.e. becomes prematurely, forcing the algorithm to
exit). This is challenging, because dynamically (re)allocating memory and
growing data structures is not a trivial task on GPUs [34].

It is difficult to know a priori how much memory is required for each of
them, because it depends on problem size, hardware topology, and other fac-
tors. We are faced with the task of pre-allocating all memory our algorithm
will use throughout its lifetime. The principal structures are the node index,
the open lists, the closed set, and Groute buffers for the local, incoming, out-

25

going and pass-through worklists.
For these reasons, we define the sizes of the principal data structures and

buffers as fractions of total free memory on the GPU (after allocating fixed-
sized memory like pattern databases), and allow them to be tweaked as part
of the program input.

3.2 Benchmarking
In order to to evaluate our implementation and identify how parameters such
as hardware, characteristics of the problem being solved, and variations in the
algorithm affect its performance, we run several benchmarks on two different
hardware platforms.

We benchmark our implementation by solving ten different sliding tile
puzzle board configurations, five being 15-puzzles and five 24-puzzles. The
puzzles in question are listed in Table 3.1. They were all generated by ran-
domly shuffling the puzzle and hand-picking ten boards that were of an ap-
propriate difficulty; that is, they are not all too easy to solve, and the im-
plementation was able to successfully find optimal solutions in at least a few
cases. For the 24-puzzles, we benchmarked using both of the AZH feature
projections in Figures 3.2b and 3.2c, while for 15-puzzles we used only the
split projection in Figure 3.2a.

When measuring the runtime of our program, we do not include the time
used for setup. We measure the wall-clock runtime from when the algorithm
starts working and expanding search nodes, discounting any time spent allo-
cating memory and initialising data structures such as pattern databases.

3.2.1 Hardware
We benchmarked our implementation on two systems, which we refer to as
Minsky and Yoda.

The Minsky system is an IBM Power System S822LC (code-named “Min-
sky”) [35], which has two 10-core POWER8 processors and four Nvidia Tesla
P100 GPUs. The Minsky system has NVLink interconnects between some
pairs of GPUs and CPUs, as shown in Figure 3.3. Note the potential bot-
tleneck at the system bus: it is the only way for GPUs on the left to com-
municate with GPUs on the right. Each P100 has 16GB of memory. On
the Minsky system, our code was built and executed with CUDA 8.0 and gcc
5.4.0.

Yoda1 is an EXXACT supercomputer cluster with 6-core Intel Xeon E5-
1TOP500 entry: https://www.top500.org/system/178670

26

https://www.top500.org/system/178670

Table 3.1: Benchmarked board configurations with optimal solution lengths
and sequential node expansions. The number in board names refer to the
number of random moves performed in order to generate them. Tiles are
listed from left to right, top to bottom, with 0 representing the empty space.

Name Moves
Sequential
expansions Configuration

4x4-300 48 129 177 9, 10, 12, 13, 1, 0, 4, 2, 6, 14, 11, 8, 5, 7, 3, 15
4x4-1200 62 67 141 768 4, 3, 10, 1, 12, 7, 11, 0, 9, 14, 6, 5, 2, 8, 15, 13
4x4-1400 60 4 088 545 0, 11, 5, 1, 12, 10, 2, 6, 4, 9, 7, 13, 8, 15, 3, 14
4x4-1600 56 2 586 809 15, 5, 0, 8, 4, 14, 7, 11, 10, 1, 2, 13, 12, 6, 9, 3
4x4-1900 56 5 743 215 11, 9, 4, 8, 15, 5, 13, 10, 0, 2, 12, 7, 14, 3, 6, 1
5x5-100 38 11 447 2, 6, 9, 3, 4, 12, 7, 1 15, 5, 11, 8, 10

13, 19, 16, 17, 14 0, 20, 21, 22, 18, 23, 24
5x5-200 64 22 023 118 7, 1, 13, 19, 0, 2, 6, 14, 8, 9, 4, 5, 17

10, 20, 12, 11, 18, 15, 3, 16, 21, 22, 23, 24
5x5-300 66 154 996 768 11, 2, 7, 13, 9, 1, 4, 8, 20, 6, 12, 23, 3

15, 10, 17, 0, 22, 5, 14, 21, 16, 18, 19, 24
5x5-400 80 239 691 683 1, 12, 9, 19, 20, 13, 5, 10, 4, 23, 11, 7, 0

8, 3, 6, 24, 15, 21, 2, 16, 22, 14, 17, 18
5x5-500 78 247 401 269 7, 16, 2, 9, 8, 22, 0, 12, 21, 10, 13, 1, 5

4, 18, 19, 23, 15, 6, 3, 11, 17, 24, 14, 20

27

2620 v2 processors and eight Nvidia TITAN Black GPUs per node, commu-
nicating over PCIe. Due to some unresolved issues with some nodes, we were
only able to benchmark with up to 7 GPUs. Each GPU on this system has
6GB of memory. On Yoda, we compiled and executed our code with CUDA
7.5 and gcc 4.8.4.

Due to the differences in the hardware capabilities of the two systems,
we use different memory allocation schemes when benchmarking. We try
to allocate data structures and communication buffers proportional to the
utilisation at runtime, such that a single data structure does not fill up long
before the others becoming a bottleneck. By trial and error, we ended up
with the proportions shown in Figure 3.4. The slices are shaded to distinguish
between GA* memory and Groute memory. Note that on Yoda we had to
allocate much more memory to Groute communication buffers, due to the
slower interconnects and increased communication.

28

CPU CPU

GPU

GPU

GPU

GPU

System bus

NVLink PCIe

Figure 3.3: Minsky system overview. Note that NVLinks are bonded together
in gangs of 2. Based on Caldeira, Haug, and Vetter [35, Figure 1-12].

29

Node index (56%)

Open lists (20%)
Closed list (4%)

Outgoing (9%)

Pass (9%)

Incoming (1%)
Local (1%)

(a) Minsky
Node index (35%)

Open lists
(12.5%)

Closed list
(2.5%)

Outgoing (24%)

Pass (24%)

Incoming (1%)
Local (1%)

(b) Yoda

Figure 3.4: Memory provisioning used for benchmarking on the Minsky and
Yoda systems.

30

Chapter 4

Results and Discussion

Here we present the results of our benchmarks described in Section 3.2, and
analyse and discuss the findings. We especially look at wall-clock runtime,
node expansion rate, and the search- and communication overhead of our
program runs, as well as discussing a type of overhead we call Termination
Overhead.

4.1 Benchmark results
The results of the 24-puzzle benchmark runs are listed in Tables 4.1 and 4.3.
Because we only list results where the program was able to successfully find
an optimal solution at least once, some results are missing. Unsuccessful runs
are in virtually all cases caused by the algorithm running out of memory
before finding a solution.

For 15-puzzles, results are listed in Table 4.2. We will focus mainly on
the benchmark results for 24-puzzle solves, as these are the hardest (in terms
of sequential node expansions) problems to solve, and are better at stress-
testing the multi-GPU system.

In Tables 4.1 and 4.3 some patterns immediately stand out. Firstly,
the “split” AZH pattern seems to successfully solve 24-puzzle problems at a
higher rate than the “block” pattern. Further, the number of successful solves
generally decrease as GPUs are added. We also see that some problems can’t
be solved by a single GPU using our implementation, like 5x5-300, 5x5-400
and 5x5-500.

We can also glimpse an alarming pattern in the elapsed time for runs in
both Tables 4.1 and 4.2: it appears to rise by a significant amount when
more GPUs are used! This is illustrated for the easiest 24-puzzle on the
Yoda system in Figure 4.1c, and for the four hardest 24-puzzle problems on

31

1 2 3 4 5 6 7
GPUs

0

250

500

750

1000

Se
ar

ch
O

ve
rh

ea
d

(S
O

)

(a) Search Overhead (SO)

1 2 3 4 5 6 7
GPUs

0.0

0.2

0.4

0.6

0.8

Te
rm

.
O

ve
rh

ea
d

(T
O

)

(b) Termination Overhead (TO)

1 2 3 4 5 6 7
GPUs

0

500

1000

El
ap

se
d

tim
e

(m
s) Total

Adjusted

(c) Elapsed time

1 2 3 4 5 6 7
GPUs

20000

40000

60000
Ex

p.
ra

te
(n

od
es

/m
s)

Total
Adjusted

(d) Node expansion rate

Figure 4.1: Various metrics of solves of the 5x5-100 on the Yoda system.
“Total” is the overall node expansion rate, while “Adjusted” is the rate from
the start of the run until the optimal solution is discovered (i.e. TO is
discounted). Error bars where present represent 95% confidence intervals.

the Minsky system in Figure 4.2.

4.2 Termination Overhead
By monitoring the amount of work in communication buffers, we find the
cause of increased runtime by the addition of GPUs. On double-GPU bench-
marks on the Minsky system, the inter-GPU communication is direct be-
tween the two devices, and not a lot of overhead is introduced. Additionally,
the communication happens over NVLink (Figure 3.3). Using further GPUs
means some communication becomes indirect, going through the ring topol-
ogy of the DWL. Additionally, data now has to flow through the system bus

32

Table 4.1: Benchmark results for 24-puzzles on the Minsky system.

Problem AZH GPUs
Successful
runs (of 15)

Elapsed
time (ms)

Adjusted
time (ms) TO SO CO

5x5-100 block 1 15 17 17 0.01 39.26 0.00
5x5-100 block 2 15 28 27 0.06 63.99 0.29
5x5-100 block 3 15 575 105 0.82 403.96 0.35
5x5-100 block 4 2 56 847 3917 0.93 21 115.06 0.43
5x5-200 block 1 15 3204 3202 0.00 4.43 0.00
5x5-200 block 2 15 3503 3501 0.00 7.11 0.30
5x5-200 block 3 1 11 795 7013 0.41 16.72 0.36
5x5-300 block 2 4 11 541 11 539 0.00 3.23 0.28
5x5-400 block 2 3 10 484 10 481 0.00 2.00 0.24
5x5-500 block 2 9 10 110 10 107 0.00 1.84 0.24
5x5-100 split 1 15 17 17 0.01 39.26 0.00
5x5-100 split 2 15 21 20 0.02 61.01 0.09
5x5-100 split 3 15 51 41 0.19 133.32 0.13
5x5-100 split 4 15 105 71 0.33 355.93 0.13
5x5-200 split 1 15 3766 3764 0.00 5.20 0.00
5x5-200 split 2 15 3309 3306 0.00 6.68 0.11
5x5-200 split 3 15 9148 5812 0.36 14.46 0.14
5x5-200 split 4 14 18 481 8669 0.53 28.17 0.12
5x5-300 split 2 9 9760 9758 0.00 2.77 0.10
5x5-300 split 3 9 16 347 10 735 0.34 3.78 0.15
5x5-300 split 4 5 18 476 8452 0.54 3.84 0.12
5x5-400 split 2 2 11 661 11 659 0.00 2.19 0.08
5x5-400 split 3 2 22 339 11 668 0.48 2.81 0.14
5x5-400 split 4 1 28 857 7824 0.73 2.42 0.10
5x5-500 split 2 8 10 615 10 613 0.00 1.92 0.10
5x5-500 split 3 5 20 093 10 795 0.46 2.43 0.14
5x5-500 split 4 7 46 254 9174 0.80 2.63 0.14

33

Table 4.2: Benchmark results for 15-puzzles on the Minsky system.

Problem GPUs
Successful
runs (of 15)

Elapsed
time (ms)

Adjusted
time (ms) TO SO CO

4x4-300 1 15 19 18 0.01 4.13 0.00
4x4-300 2 15 26 25 0.03 6.69 0.09
4x4-300 3 15 89 54 0.39 18.54 0.13
4x4-300 4 15 484 128 0.74 64.75 0.15
4x4-1200 1 15 6226 6224 0.00 3.13 0.00
4x4-1200 2 15 4180 4178 0.00 2.84 0.12
4x4-1200 3 15 35 321 9170 0.74 7.59 0.13
4x4-1200 4 6 114 935 10 368 0.91 10.96 0.14
4x4-1400 1 15 238 236 0.01 1.97 0.00
4x4-1400 2 15 248 247 0.01 2.65 0.12
4x4-1400 3 15 958 365 0.62 4.64 0.14
4x4-1400 4 15 5663 883 0.84 15.23 0.13
4x4-1600 1 15 161 159 0.01 2.12 0.00
4x4-1600 2 15 156 153 0.02 2.51 0.12
4x4-1600 3 15 474 124 0.74 2.35 0.12
4x4-1600 4 15 1930 89 0.95 2.10 0.14
4x4-1900 1 15 283 281 0.01 1.69 0.00
4x4-1900 2 15 350 348 0.00 2.73 0.12
4x4-1900 3 15 826 335 0.59 3.02 0.13
4x4-1900 4 15 4653 612 0.87 7.60 0.13

34

Table 4.3: Benchmark results for the Yoda system.

Problem AZH GPUs
Successful
runs (of 15)

Elapsed
time (ms)

Adjusted
time (ms) SO CO TO

5x5-100 split 1 15 21 21 31.84 0.00 0.01
5x5-100 split 2 15 22 22 48.51 0.09 0.02
5x5-100 split 3 15 26 25 68.41 0.14 0.04
5x5-100 split 4 15 47 39 132.29 0.13 0.16
5x5-100 split 5 15 162 50 212.12 0.18 0.69
5x5-100 split 6 15 224 52 264.37 0.17 0.77
5x5-100 split 7 15 1156 152 957.09 0.17 0.87
5x5-100 block 1 15 21 21 31.83 0.00 0.01
5x5-100 block 2 15 21 21 39.06 0.29 0.02
5x5-100 block 3 15 29 28 63.25 0.38 0.04
5x5-100 block 4 15 4014 2238 8278.20 0.43 0.44
5x5-100 block 5 5 19 007 4813 21 009.73 0.42 0.75
4x4-300 split 1 15 25 24 3.62 0.00 0.02
4x4-300 split 2 15 25 24 4.90 0.09 0.02
4x4-300 split 3 15 35 32 7.19 0.13 0.08
4x4-300 split 4 15 201 117 40.15 0.14 0.42
4x4-300 split 5 15 335 71 28.51 0.17 0.79
4x4-300 split 6 14 1915 132 68.26 0.17 0.93
4x4-300 split 7 14 752 90 51.81 0.17 0.88

35

10000

20000

30000

40000

50000

El
ap

se
d

tim
e

(m
s)

problem = 5x5-200 problem = 5x5-300

2 3 4
GPUs

10000

20000

30000

40000

50000

El
ap

se
d

tim
e

(m
s)

problem = 5x5-400

2 3 4
GPUs

problem = 5x5-500 Adjusted
Total

Figure 4.2: Elapsed time for 24-puzzle problems on the Minsky system. “To-
tal” shows the total elapsed time for the algorithm to finish, while “Adjusted”
shows the adjusted elapsed time, which disregards Termination Overhead
(TO). Error bars indicate 95% confidence intervals.

36

of the Minsky, instead of NVLink, forming a bottleneck.
The result is that, on 3- and 4-GPU runs on the Minsky, Groute commu-

nication links become backed up with search nodes to be transferred to other
devices. This means a time increase if search nodes on optimal paths spend
a long time queued for transfer, but the main source of increased runtime
appears after the optimal solution has been discovered. In order to achieve
admissibility, we have to guarantee that a discovered solution is optimal.
To do this, we have to examine every search node in the open lists, includ-
ing those in communication buffers, and make sure no node exists with an
f̂ -value lower than the cost of the discovered solution.

Groute’s DWL allows us to discard incoming and outgoing search nodes
in the SplitReceive and SplitSend kernels respectively. However, once a node
has passed SplitSend and is queued for transfer, the next opportunity to
discard it is after it has been moved to the next GPU in the ring. This is the
main source of what we call termination overhead: waiting for queued search
node transfers, only to discard the majority of them immediately. If we
imagine we can deal with this overhead as efficiently on multiple GPUs as on
a single GPU, we can subtract the elapsed time between finding the optimal
solution and program exit, resulting in the adjusted time in Table 4.1. We
measure the fraction of time spent waiting for communication after finding
the solution of the full runtime, and call it the TO.

Figure 4.1b shows how the TO changes with added GPUs on the Yoda
system. We see a massive jump going from four to five GPUs, which can be
attributed to the topology of the system, similarly to the jump in TO when
going from two to three GPUs on the Minsky system. On Yoda, while all
inter-GPU communication happens over PCIe, it is not symmetric. Some
pairs of nodes can communicate traversing only a single PCIe switch, while
communication between the first and second quartet of GPUs passes through
the system bus, creating a similar bottleneck on Yoda as on Minsky.

The TO-adjusted time is more favourable in terms of runtime, and shows
that for more difficult problems (like 5x5-300, 400 and 500), the 4-GPU
run discovers the optimal solution in the shortest amount of time. This
is visualised in Figure 4.2. Simultaneously, we see that TO increases along
with the number of GPUs.

The question becomes: how can we get rid of the termination overhead?
We would like to simply sift through all search nodes in outbound commu-
nication buffers and discard the majority of them, instead of being bottle-
necked by their transmit times. The hindrance here is practical: Groute
DWL communication buffers are highly optimised and are not exposed by
the framework to the higher-level algorithms implemented using it. With
some modifications to the framework, effectivating A* search termination

37

should be feasible; unfortunately, we were not able to explore this properly
in the scope of this work.

4.3 Node expansion rate
While our implementation does not provide a speed-up in terms of wall-
clock elapsed time, we can examine the node expansion rate. That is to say,
how many search nodes is our implementation able to expand per time unit,
and how does this scale with the number of GPUs? This is also measured by
Zhou and Zeng [2] in their single-GPU implementation of the GA* algorithm.

Similarly to the elapsed time metric, the node expansion rate suffers from
Termination Overhead (TO). Very few new nodes are expanded after the
optimal solution has been detected. Thus, we also examine the adjusted
node expansion rate, where we only measure the expansion rate before the
optimal solution was discovered, in order to see how it would scale if we did
not have TO.

The node expansion rates for the four hardest 24-puzzles on the Minsky
system are shown in Figure 4.3. The expansion rates for the easiest 24-puzzle
on the Yoda system are shown in Figure 4.1d. Again, similarly to the elapsed
times shown in Figure 4.2 and Figure 4.1c, the overall rates scale poorly,
and become worse as more GPUs are added. However, if we disregard the
TO, the node expansion rate does improve with additional GPUs. It scales
approximately linearly with added devices, adding around 9000 nodes/ms per
device, or a little over 50% of the performance of a lone GPU. This indicates
that if we can indeed eliminate Termination Overhead, we can achieve good
scaling in terms of node expansion rates.

4.4 Search and Communication Overhead
To gain further insight about our implementation benchmarks, we consider
the Search Overhead (SO) and Communication Overhead (CO), as defined
in Section 2.4, of the algorithm runs. In order to calculate SO, we need to
know how many nodes are expanded by a sequential implementation of the
A* algorithm with the same heuristic. We used a straightforward CPU imple-
mentation of Algorithm 2.1, and its node expansions are listed in Table 3.1.
CO is calculated by keeping track of how many generated search nodes are
kept locally on the same device, and how many are transferred to a different
device. The SO and CO of our benchmark runs are included in Tables 4.1
and 4.2.

38

10000

20000

30000

40000

50000

60000

70000

no
de

s/
m

s

problem = 5x5-200 problem = 5x5-300

2 3 4
GPUs

10000

20000

30000

40000

50000

60000

70000

no
de

s/
m

s

problem = 5x5-400

2 3 4
GPUs

problem = 5x5-500 Adjusted
Total

Figure 4.3: Node expansion rates for 24-puzzle problems on the Minsky
system. “Total” is the overall node expansion rate, while “Adjusted” is the
rate from the start of the run until the optimal solution is discovered (i.e.
TO is discounted). Error bars indicate 95% confidence intervals.

39

Having reaffirmed in the previous section that too much inter-GPU com-
munication is detrimental to performance, it is clear that we should aim to
minimise CO. It is useful to observe SO and CO in conjunction. There is
an intuitive relationship between them: a low CO means we spend little
resources communicating, but could lead to higher SO due to load imbal-
ance [16]. We also have to consider the number of devices when studying
CO; on a two-device run we would expect a CO of 50% using a naive uni-
form hash function, but we expect it to be 75% for a four-device setup.

In Table 4.1, we can compare the CO of the block and split feature
projections used by AZH to distribute search nodes. For two GPUs, the block
abstraction sends between 24% and 30% of generated nodes to the other
device. While this seems good compared to the baseline 50%, it is clearly
not good enough, as the implementation struggles to solve most problems
using this abstraction. The runs using the split abstraction present better
numbers: 15% or fewer of nodes generated are sent to other devices – even
on 4-GPU runs where the baseline is 75%. The improvement is evident, as
using the split abstraction allows us to solve more difficult problems with a
higher number of GPUs without overflowing communication buffers.

However, as already stated, a reduced CO comes at a cost: we also have to
evaluate the accompanying SO. In Figure 4.4, the SO and CO of our 2-GPU
runs for 24-puzzles on the Minsky system are plotted. The SO for the easiest
24-puzzle on Yoda is also shown in Figure 4.1a. We can see how the SO and
CO change for each puzzle with the two different AZH abstractions. The CO
in all cases are more than halved, and nearly divided by three in some. The
SO, however, does not increase by a proportional amount; in one case, it even
decreases. This tells us that the split abstraction is probably preferable, and
this is backed up by the number of successful solves seen in Table 4.1.

The decrease of both SO and CO for the 5x5-200 board can likely be
attributed to the block abstraction solver spending time expanding useless
nodes while the optimal path(s) are stuck in communication buffers.

40

1 2 3 4 5 6 7

Search overhead (SO)

0.10

0.15

0.20

0.25

0.30

C
om

m
un

ic
at

io
n

ov
er

he
ad

(C
O

)

5x
5-

20
0

5x5-3005x5-400

5x5-500

Block
Split

Figure 4.4: Search and communication overheads of 2-GPUs solves of four
24-puzzles with two different AZH abstractions. Solves of the same puzzle
are connected and labelled.

41

42

Chapter 5

Conclusions and Future Work

A* informed search is an interesting algorithm with applications in computa-
tional biology, natural language processing, pathfinding, puzzle solving, and
more. We have implemented a version of it that utilises multiple GPU devices
on a single host for performing the search. Multi-GPU compute nodes are
common in today’s high-performance computing landscape due to the mas-
sive amount of raw compute power they offer. Programming such systems,
however, is challenging, particularly for irregular algorithms such as A*.

We have implemented a multi-GPU-distributed variant of the GA* search
algorithm [2] for sliding tile puzzle solving, using the Groute asynchronous
multi-GPU programming framework [1] to implement inter-GPU coordina-
tion and communication, and Abstract Zobrist Hashing [16] for work distri-
bution and load balancing. This is the first multi-GPU variant of the A*
algorithm, as far as the authors are aware.

We have shown that multi-GPU A* search can solve certain problems
that are too difficult to solve using the same algorithm on a single GPU.
We have also shown that the node expansion rate during search before an
optimal solution has been discovered can scale approximately linearly with
the number of GPUs utilised, and that each additional GPU can increase the
node expansion rate by at least 50% of the performance of a single GPU. This,
combined with the increased memory capacity of multiple GPUs, indicates
that multi-GPU systems may be a good candidate for solving difficult search
problems efficiently.

Our implementation suffers from overhead induced by inter-GPU commu-
nication buffers filling up, something that manifests itself clearly as Termina-
tion Overhead. We have also seen that hardware topology has a significant
impact on performance, and that an asymmetric layout can produce signif-
icant bottlenecks in a ring-based distributed worklist application. Much of
the overhead can conceivably be solved by more careful programming and

43

implementation with the lower level abstractions of Groute, rather than us-
ing out-of-the-box solutions like the DWL implementation.

Our implementation has identified many challenges and hurdles in dis-
tributing A* across GPU devices, but shows potential if these can be over-
come. It serves as a proof-of-concept and jumping-off point for further
multi-GPU A* research.

5.1 Future Work
The largest issue identified with our implementation is the Termination Over-
head (TO) it introduces and how it means adding more GPUs can increase
the runtime of the algorithm drastically, instead of decreasing it. By modi-
fying the Groute distributed worklist implementation [1], or using an ad-hoc
implementation with Groute’s lower-level abstractions, there is a possibility
that TO can be reduced drastically.

Further, it is quite possible that the ring topology is a suboptimal choice
for the DWL, especially considering the typical hardware layout of multi-GPU
systems, where communication between all pairs of devices is not symmetric.
It would be interesting to look into alternative schemes for implementing the
DWL. If more efficient methods can be found, it could reduce the accumu-
lation of search nodes in communication buffers, which would reduce TO,
improve responsiveness of the system, and let us reduce the memory dedi-
cated to communication buffers, freeing memory for use by the central A*
algorithm.

Another possible optimisation is to improve the receiving of search nodes
from other devices. Using Groute, nodes are first placed into a local work-
list, before being copied to open list heaps (Figure 3.1). It may be possible
to move search nodes more efficiently from the SplitReceive and SplitSend
kernels to the A* open lists, eliminating the intermediate local worklist stor-
age.

We have implemented the GA* algorithm of Zhou and Zeng [2], however,
other work on GPU A* algorithms exist [9], [14]. Exploring other A* algo-
rithm variations and techniques in a multi-GPU setting is unquestionably
also a source of future work.

44

Bibliography

[1] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, “Groute: An asyn-
chronous multi-gpu programming model for irregular computations,”
in Proceedings of the 22nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ACM, 2017, pp. 235–248.

[2] Y. Zhou and J. Zeng, “Massively parallel a* search on a gpu.,” in AAAI,
2015, pp. 1248–1255.

[3] E. Burns, S. Lemons, W. Ruml, and R. Zhou, “Best-first heuristic
search for multicore machines,” Journal of Artificial Intelligence Re-
search, vol. 39, pp. 689–743, 2010.

[4] D. G. Spampinato, A. C. Elster, and T. Natvig, “Modelling multi-gpu
systems.,” in PARCO, 2009, pp. 562–569.

[5] R. Barzilay and L. Lee, “Bootstrapping lexical choice via multiple-
sequence alignment,” in Proceedings of the ACL-02 conference on Em-
pirical methods in natural language processing-Volume 10, Association
for Computational Linguistics, 2002, pp. 164–171.

[6] A. Kishimoto, A. S. Fukunaga, A. Botea, et al., “Scalable, parallel best-
first search for optimal sequential planning.,” in ICAPS, 2009, pp. 201–
208.

[7] H. Lien, “Procedural generation of road for use in the snow simulator,”
Department of Computer Science, NTNU, Specialization project, 2011.

[8] Y. Zhou, W. Xu, B. R. Donald, and J. Zeng, “An efficient parallel algo-
rithm for accelerating computational protein design,” Bioinformatics,
vol. 30, no. 12, pp. i255–i263, 2014.

[9] H. Hiroki, I. Naoaki, and M. Hirokazu, “Gpu-acceleration of optimal
permutation-puzzle solving,” in Proceedings of the 2015 International
Workshop on Parallel Symbolic Computation, ACM, 2015, pp. 61–69.

[10] A. Fukunaga, A. Botea, Y. Jinnai, and A. Kishimoto, “A survey of
parallel a*,” arXiv preprint arXiv:1708.05296, 2017.

45

[11] T. Cazenave, “Approximate multiple sequence alignment with a-star,”
[12] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the

heuristic determination of minimum cost paths,” IEEE transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[13] R. Inam, “A* algorithm for multicore graphics processors,” Master’s
thesis, Chalmers University of Technology, 2010.

[14] S. Horie and A. Fukunaga, “Block-parallel ida* for gpus,” in Proceed-
ings of the Tenth International Symposium on Combinatorial Search,
Edited by Alex Fukunaga and Akihiro Kishimoto, 2017, pp. 16–17.

[15] M. Evett, J. Hendler, A. Mahanti, and D. Nau, “Pra*: Massively par-
allel heuristic search,” Journal of Parallel and Distributed Computing,
vol. 25, no. 2, pp. 133–143, 1995.

[16] Y. Jinnai and A. Fukunaga, “Abstract zobrist hashing: An efficient
work distribution method for parallel best-first search,” in Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

[17] A. L. Zobrist, “A new hashing method with application for game play-
ing,” ICCA journal, vol. 13, no. 2, pp. 69–73, 1970.

[18] J. D. Owens, M. Houston, D. Luebke, et al., “Gpu computing,” Pro-
ceedings of the IEEE, vol. 96, no. 5, pp. 879–899, 2008.

[19] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[20] J. Nickolls and W. J. Dally, “The gpu computing era,” IEEE micro,
vol. 30, no. 2, 2010.

[21] Nvidia Corporation, NVIDIA Tesla P100, https://images.nvidia.
com / content / pdf / tesla / whitepaper / pascal - architecture -
whitepaper.pdf, Accessed: 2017-12-13, 2016.

[22] ——, Nvidia Tesla V100 GPU Architecture, http://images.nvidia.
com / content / volta - architecture / pdf / volta - architecture -
whitepaper.pdf, Accessed: 2018-07-29, 2017.

[23] ——, NVIDIA’s Next Generation CUDA Compute Architecture: Kepler
TM GK110, https : / / www . nvidia . com / content / PDF / kepler /
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, Accessed:
2018-07-29, 2012.

[24] ——, GeForce GTX TITAN Black | Specifications | GeForce, https:
//www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-
black/specifications, Accessed: 2018-07-29, 2014.

46

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-black/specifications
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-black/specifications
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-black/specifications

[25] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irreg-
ular programs on gpus,” in Workload Characterization (IISWC), 2012
IEEE International Symposium on, IEEE, 2012, pp. 141–151.

[26] D. Merrill, M. Garland, and A. Grimshaw, “Scalable gpu graph traver-
sal,” in ACM SIGPLAN Notices, ACM, vol. 47, 2012, pp. 117–128.

[27] Nvidia Corporation, Fermi, https://www.nvidia.com/content/
PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_
Whitepaper.pdf, Accessed: 2017-12-14, 2009.

[28] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited, 2016.

[29] Y. Zhou and J. Zeng, Massively parallel a* search on a gpu: Appendix,
http://iiis.tsinghua.edu.cn/~compbio/papers/aaai2015apx.
pdf, 2014.

[30] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122–144, 2004.

[31] A. Felner, R. E. Korf, and S. Hanan, “Additive pattern database heuris-
tics,” Journal of Artificial Intelligence Research, vol. 22, pp. 279–318,
2004.

[32] R. E. Korf and A. Felner, “Disjoint pattern database heuristics,” Arti-
ficial intelligence, vol. 134, no. 1-2, pp. 9–22, 2002.

[33] J. C. Culberson and J. Schaeffer, “Pattern databases,” Computational
Intelligence, vol. 14, no. 3, pp. 318–334, 1998.

[34] M. Steinberger, M. Kenzel, B. Kainz, and D. Schmalstieg, “Scatter-
alloc: Massively parallel dynamic memory allocation for the gpu,” in
Innovative Parallel Computing (InPar), 2012, IEEE, 2012, pp. 1–10.

[35] A. B. Caldeira, V. Haug, and S. Vetter, Ibm power system s822lc
for high performance computing introduction and technical overview,
https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/
redp5405.html, Accessed: 2018-07-24, 2016.

47

https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://iiis.tsinghua.edu.cn/~compbio/papers/aaai2015apx.pdf
http://iiis.tsinghua.edu.cn/~compbio/papers/aaai2015apx.pdf
https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/redp5405.html
https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/redp5405.html

48

Appendix A

Multi-GPU A* code

Here we list some of the code from our multi-GPU implementation of A*
search. The full implementation exists as a Git repository on GitHub under
acelster/Groute-Astar1, and contains instructions on building and run-
ning the code.

Listings A.1 and A.2 show the on_receive and on_send callbacks used by
the Groute distributed worklist system. Note that in Listing A.2, a compile-
time directive MEASURE_CO can be enabled or disabled in order to measure
the Communication Overhead (CO) of the implementation.

Listing A.3 shows the principal components of the main work loop, which
runs in a separate thread for each GPU device. Note the heavy use of C++

templating in Groute components, making it flexible and easy to adapt for
different algorithms. The loop continually processes incoming work items,
passing them to WorkKernel (which corresponds to ExtractExpand in Fig-
ure 3.1). It also checks for new solutions on each iteration, and distributes
any improved solution to all devices.

1Full URL: https://github.com/acelster/Groute-Astar

49

https://github.com/acelster/Groute-Astar

Listing A.1: The on_receive callback.
1 __device__ groute::SplitFlags on_receive(remote_work <N> const &

work) {
2 /* drop work that is definitely worse than the current best

solution */
3 if (work.f_value >= packed_solution_length(d_best_solution))

{
4 return groute::SF_None;
5 }
6

7 if (device_number == work.hash % num_devices) {
8 if (closed_set[work.board.hash_value() %

closed_set_capacity] != UINT32_MAX && nodes[
closed_set[work.board.hash_value() %
closed_set_capacity]].board == work.board) {

9 /* node is owned by this device, and in the closed
set; drop it */

10 return groute::SF_None;
11 } else {
12 /* node is owned by this device, take it */
13 return groute::SF_Take;
14 }
15 } else {
16 return groute::SF_Pass;
17 }
18 }

Listing A.2: The on_send callback.
1 __device__ groute::SplitFlags on_send(local_work <N> work) {
2 if (device_number == work.hash % num_devices) {
3 if (MEASURE_CO)
4 atomicAdd(nodes_kept , 1);
5 return groute::SF_Take;
6 } else {
7 if (MEASURE_CO)
8 atomicAdd(nodes_sent , 1);
9 return groute::SF_Pass;

10 }
11 }

50

Listing A.3: The main work loop host code, with some elements omitted for
brevity.

1 void Work(groute::IDistributedWorklist <TLocal, TRemote> &dwl,
2 groute::IDistributedWorklistPeer <TLocal, TRemote,

DWCallbacks > *const peer,
3 groute::Stream &stream,
4 const WorkArgs &... args)
5 {
6 auto &input_worklist = peer->GetRemoteInputQueue();
7 auto &workspace = peer->GetLocalQueue(0);
8 DWCallbacks callbacks = peer->GetDeviceCallbacks();
9

10 while (dwl.HasWork())
11 {
12 auto input_segs = peer->WaitForInputWork(stream);
13 for (auto subseg : input_segs)
14 {
15 groute::WorkKernel
16 <groute::dev::WorkSourceArray <TLocal>, TLocal,

TRemote, DWCallbacks , TWork, WorkArgs...>
17 <<<grid_dims , block_dims , 0, stream.cuda_stream>>>(
18 groute::dev::WorkSourceArray <TLocal >(subseg.

GetSegmentPtr(), subseg.GetSegmentSize()),
19 workspace.DeviceObject(),
20 callbacks ,
21 args...
22);
23

24 input_worklist.PopAsync(subseg.GetSegmentSize(),
stream.cuda_stream);

25 }
26

27 auto output_seg = workspace.GetSeg(stream);
28 peer->SplitSend(output_seg , stream);
29 workspace.ResetAsync(stream.cuda_stream);
30

31 /* update solution if we found one */
32 dwl.update_best_solution(get_gpu_memory(device_data ->

solution)));
33 }
34 }

51

	List of Tables
	List of Figures
	List of Algorithms
	List of Listings
	List of Abbreviations
	Introduction
	Goals and contributions
	Outline

	Background
	The Graphics Processing Unit
	The Nvidia GPU architecture
	The CUDA programming model
	Multi-GPU programming

	The A* search algorithm
	Admissibility and optimality of A*
	The heuristic function

	A* on the GPU
	Related work

	Distributed A* search
	Abstract Zobrist Hashing

	The sliding tile puzzle
	Applying A* to the sliding tile puzzle

	Multi-GPU A*
	GA* with distributed worklist
	Pattern database heuristic
	Abstract Zobrist Hashing
	Memory allocation

	Benchmarking
	Hardware

	Results and Discussion
	Benchmark results
	Termination Overhead
	Node expansion rate
	Search and Communication Overhead

	Conclusions and Future Work
	Future Work

	Bibliography
	Appendix Multi-GPU A* code

