
High-Performance X-ray Scattering
Simulations

Mathias Havdal

Master of Science in Computer Science

Supervisor: Anne Cathrine Elster, IDI
Co-supervisor: Dag Werner Breiby, Institutt for fysikk (NV, NTNU)

Department of Computer Science

Submission date: August 2018

Norwegian University of Science and Technology

Problem description

In this project, we will analyze and profile an application that does compute-
intensive calculations for X-ray scattering from nanostructures. The project will
focus on one or more of the following topics:

• High-performance computing towards real-time simulations

• Visualization of the phase and amplitude of the X-ray field in nanoscale en-
vironments

• Machine learning applied to phase retrieval from intensity measurements

Machine learning techniques may also be considered once we have access to
sufficient number of images to have both a decent training set as well as data sets
to interpret.

i

ii

Abstract

This thesis is part of a larger project in the field of computational microscopy. Its
main contribution is to facilitate the implementation of high performance tools to
assist in the understanding and simulation of microscopic coherent x-ray imaging of
objects.

The main focus of this thesis is improving the performance of PaXPro, which is
a C++ library focused on solving the paraxial wave equation in 2D and 3D. Some
optimizations are made to an existing solver implementing the Split-Step Fourier
Transform Method on the CPU. A GPU-based implementation of this solver is also
created, using CUDA.

Benchmarking tools for PaXPro are created, and docker is used to measure
performance on a wide range of systems, with a total of 4 different CPUs and 5
GPUs. Optimizations to the CPU-based solver achieve a significant speedup of more
than 6x on an 8-core CPU with SMT. Consumer-grade GPUs achieve a speedup of
around 2-4x when compared with the optimized CPU solver. Professional-grade
GPUs achieve over 10x speedup.

Several ideas for future work that could further increase performance or expand
functionality/usability are also included.

iii

iv

Sammendrag

Denne oppgaven er den del av et større prosjekt innen beregningsmikroskopi. Hov-
edbidraget til oppgaven er å fasilitere for implementasjonen av verktøy med høy
ytelse som kan assistere i å skape bedre forståelse og simuleringer av mikroskopisk
koherent røntgenavbildning av objekter.

Hovedfokuset i oppgaven er å forbedre ytelsen til PaXPro, som er et C++ bib-
lotek med fokus på å løse den paraksiale bølgeligningen. Noen optimaliseringer blir
gjørt på en eksisterende løser som implementerer en splitt-trinns fourier transform
metode på CPU. En GPU-basert implementasjon av denne løseren blir også laget,
med CUDA.

Benchmark vertøy for PaXPro blir laget, og docker brukes for å måle ytelse på
et bredt spekter av systemer, med totalt 4 forskjellige CPUer og 5 GPUer. Optimal-
iseringer på den CPU-baserte løseren oppnår en ytelses-forbedring på over 6x på en
8-kjerners CPU med SMT. Forbruker-rettede GPUer oppnår en ytelses-forbedring
på 2-4x, sammenliknet med den optimaliserte CPU løseren. Proff-rettede GPUer
oppnår over 10x ytelses-forbedring.

Flere ideer for fremtidig arbeid som kan gi ytterligere ytelsesøkninger eller utvidet
funksjonalitet/brukervennlighet blir også foreslått.

v

vi

Acknowledgements

I would like to thank my supervisor Dr. Anne C. Elster for her valuable guidance and
feedback while working on this thesis. I would also like to thank my co-supervisor
from the Department of Physics at NTNU, Prof. Dag W. Breiby, for his aid in
understanding the physics theory needed to make this thesis possible. Also from
the Department of Physics, I would like to thank David Kleiven for his work on
developing the PaXPro library and helping me understand the inner workings and
structure of the codebase for further development.

I am also grateful to have been a part of the HPC-Lab at NTNU, and would
like to thank NTNU and IBM for supporting the lab with the wide range of high-
end GPU equipment that has been essential to the development and benchmarking
aspects of this thesis. Last but not least, I would like to thank my fellow HPC-Lab
members for good discussions and aid in both theoretical and practical topics. They
have helped make the past year an enjoyable and memorable experience.

vii

viii

Contents

1 Introduction 1
1.1 Project goals and contributions . 1
1.2 Report outline . 1

2 GPU Computing 3
2.1 Parallel computing . 3
2.2 General-purpose GPU computing . 5
2.3 NVIDIA CUDA . 6

2.3.1 Programming model . 6
2.3.2 Memory types . 10
2.3.3 Streams and concurrency . 11

3 About PaXPro 13
3.1 X-ray physics . 13
3.2 Codebase structure . 13

4 Improving the Performance of PaXPro 17
4.1 Performance profiling . 17
4.2 Optimizations . 19

4.2.1 FFTW threads . 19
4.2.2 FFTW planning rigor . 20

4.3 CUDA implementation . 21
4.3.1 Challenges . 21
4.3.2 Implementation . 22

5 Benchmarking and Results 25
5.1 Benchmarking method . 25

5.1.1 Problem . 25
5.1.2 Problem sizes and collecting results 29
5.1.3 Running on multiple systems 30
5.1.4 Docker setup . 31

5.2 Systems used . 33
5.3 Docker vs. native performance . 37
5.4 Performance on CPU . 41
5.5 Performance on GPU . 46
5.6 Comparison between CPU and GPU performance 49

ix

6 Conclusions and Future Work 53
6.1 Conclusions . 53
6.2 Future work . 54

References 55

Appendices 59

A Source Code 61

x

List of Figures

2.1 Comparison of how transistors are used in a CPU compared with a
GPU. From CUDA C Programming Guide [7] with permission. . . . 4

2.2 The computational domain of a kernel, represented by a grid of thread
blocks. From CUDA C Programming Guide [7] with permission. . . 7

2.3 Architectural overview of a single SM in the Pascal GP100 GPU.
From NVIDIA Tesla P100 [30] with permission. 8

2.4 Architectural overview of the Pascal GP100 GPU found in the
NVIDIA Tesla P100. From NVIDIA Tesla P100 [30] with permission. 9

2.5 Memory hierarchy for kernel execution. From CUDA C Programming
Guide [7] with permission. 11

3.1 ParaxialSimulation class diagram. 14
3.2 Solver class diagram. 14
3.3 ParaxialSimulation collaboration diagram. 15
3.4 FFTSolver3D collaboration diagram. 16

4.1 Execution instructions in functions called from main(). 18
4.2 Executed instructions in functions called from FFTSolver3D::solveStep().

. 19
4.3 Solver class diagram with CUDAFFTSolver3D. 23

5.1 Visualization of simulation results from a 500 nm sphere. 27
5.2 Visualization of simulation results from a 3000 nm sphere. 28
5.3 Docker vs. native performance for GTX 980. 37
5.4 Docker vs. native speedup for GTX 980. 38
5.5 Docker vs. native performance for Tesla K40. 38
5.6 Docker vs. native speedup for Tesla K40. 39
5.7 Docker vs. native performance for Ryzen 7 1800X. 39
5.8 Docker vs. native speedup for Ryzen 7 1800X. 40
5.9 Speedup when enabling multiple threads in FFTW for Ryzen 7

1800X. Number of FFTW threads equal to default number of
OpenMP threads, 16 in this case. FFTW_ESTIMATE planner flag was
used. 41

5.10 Speedup when using FFTW_MEASURE planner flag compared with
FFTW_ESTIMATE (single thread). 41

5.11 Speedup when using FFTW_MEASURE planner flag compared with
FFTW_ESTIMATE (multithreaded). 42

5.12 Single-thread CPU performance. 43

xi

5.13 Small problem sizes on CPUs. 44
5.14 Medium problem sizes on CPUs. 44
5.15 Large problem sizes on CPUs. 45
5.16 Small, medium and large problem sizes on CPUs. 45
5.17 Small problem sizes on GPUs. 46
5.18 Medium problem sizes on GPUs. 47
5.19 Large and huge problem sizes on GPUs. 47
5.20 Excerpt from P100 profiling timeline showing two steps for sphere

radius 2500 nm (top: memcpy, bottom: kernel execution). 48
5.21 Excerpt from Titan V profiling timeline showing two steps for sphere

radius 2500 nm (top: memcpy, bottom: kernel execution). 48
5.22 All problem sizes on GPUs. 49
5.23 GPU speedup compared to i7 7700k. 50
5.24 GPU speedup compared to Ryzen 7 1800X. 50
5.25 GPU speedup compared to Minsky CPUs. 51
5.26 All problem sizes on all hardware. 52

xii

List of Tables

5.1 Benchmarking problem sizes. 29
5.2 Number of passes per benchmark group. 29
5.3 PaXPro satisfied dependencies on Ubuntu 16.04 LTS. 32
5.4 PaXPro unsatisfied dependencies on Ubuntu 16.04 LTS. 33
5.5 Development system [1][17][40] . 34
5.6 Home system [20][16][3] . 35
5.7 Titan V system [21][39] . 36
5.8 IBM Minsky [42][38] . 36
5.9 Software versions in PaXPro docker container and on development

machine. 37

A.1 Git repositories used for this project. 61

xiii

Chapter 1

Introduction

This thesis is a small part of a larger project in the field of computational micro-
scopy. In this larger project, the objective is to perform microscopic coherent x-ray
imaging of objects. To facilitate understanding in this area and aid in the creation
of simulations, software tools are needed for:

1. Measuring the accuracy of approximations and simplifications of physical phe-
nomena for various scenarios.

2. Performing near real-time simulations to compare with experimental results.

3. Rapidly iterating through parameter adjustments to match experimental res-
ults.

PaXPro is a C++ library created by David Kleiven [23] to help provide these tools.

1.1 Project goals and contributions
PaXPro in its current state has the accuracy needed to fulfill the first task in the
list. To make the second and third tasks possible, high performance is needed in
addition to accuracy. Because of this, the main goal for this thesis is to improve
the performance of the PaXPro library as much as possible in pursuit of making it
useful for implementing the tools for these tasks.

Since PaXPro is currently only able to use the CPU for calculations, the main
approach for achieving the goal of higher performance will be to implement a GPU-
based version of one of the existing solvers. Using GPUs for general-purpose com-
puting has exploded in popularity in the last 10 years and the potential performance
improvements for highly parallel workloads are significant [34][5][18].

1.2 Report outline
Chapter 2 contains a brief historical view of the evolution of architectures for par-
allel computing. The emergence of general-purpose computing on graphics pro-
cessing units (GPUs) is discussed, as well as some of the features and functionality
of NVIDIAs state of the art CUDA toolkit for heterogeneous computing with GPUs.

1

Chapter 3 focuses on the PaXPro library for solving the paraxial wave equation.
A short summary of the physics phenomenon simulated by PaXPro are covered, and
an overview of the structure of the codebase is provided.

Chapter 4 focuses on the work done to improve the performance of PaXPro.
Some profiling is done on the existing implementation, and optimizations are made
to the existing code. A CUDA implementation of one of the solver methods is
discussed and carried out.

Chapter 5 focuses on benchmarking and results attained with the optimizations
and CUDA-based solver implemented in chapter 3. Challenges relating to bench-
marking on different systems with different software configurations are discussed
and docker is used as a solution for obtaining comparable results.

Finally, Chapter 6 summarises the work carried out in this thesis, the results
obtained and the insights gained from benchmarking results. Several candidates for
future work are also outlined.

2

Chapter 2

GPU Computing

This chapter covers a brief history how architectures for parallel computing have
evolved, leading up to the advent of general-purpose GPU computing. Some of the
key features and functionality in the CUDA toolkit for heterogeneous compute with
GPUs is also covered.

2.1 Parallel computing

In parallel computing, there are many different aspects to consider. The most fun-
damental element is the architecture of the hardware itself. According to Flynn [15],
hardware can be divided into four categories:

• Single Instruction, Single Data (SISD)

• Single Instruction, Multiple Data (SIMD)

• Multiple Instruction, Single Data (MISD)

• Multiple Instruction, Multiple Data (MIMD)

Consumer grade processors up until the mid 2000s were mostly SISD architec-
tures, with a single stream of instructions operating on a single stream of data. For
continued year-over-year performance increases, it was apparent that this type of
architecture would no longer be sufficient. Increasing the amount of retired instruc-
tions per clock cycle (IPC) was becoming increasingly difficult, requiring complex
designs with deep pipelines, branch prediction and memory hierarchies with multiple
cache levels. The increasing complexity of these designs gave diminishing returns
for energy efficiency and performance. Some of the techniques developed to improve
IPC (branch prediction, speculative execution) have also been proven to have im-
plications for security, with the most recent examples being the Meltdown [26] and
Spectre [24] exploits.

While improvements in IPC were stagnating, there were also major challenges
in improving the clock frequency. Increasing the clock frequency often requires in-
creasing the voltage to reduce the setup and hold time of the logic circuits [36].
Since the dynamic power of a circuit scales with the frequency multiplied by the

3

square of the supply voltage, frequency can only scale so far before the power con-
sumption becomes prohibitively high both in terms of efficiency and thermals. The
ever-increasing transistor density goes some way to counteract the need for a higher
voltage, but increasing the transistor density also means increasing the power dens-
ity, which again leads to thermal issues [41]. With the performance of SISD ar-
chitectures stagnating, the solution was to add multiple cores to a single processor
chip. Each core is able to execute an independent stream of instructions on an
independent stream of data (MIMD).

While SISD and MIMD architectures are dominant in consumer grade hardware,
SIMD has played an important role in computing in the past and has had a resur-
gence in the last 10 years in the form of graphics processing units (GPUs). SIMD
architectures are based primarily around vector operations, where the exact same
instruction needs to be carried out for several elements of data. An example of this
can be seen in Equation 2.1. On a SIMD architecture, several elements of the vector
c would be calculated by a single “add” instruction.

c1
c2
...
cn

 =


a1
a2
...
an

+


b1
b2
...
bn

 (2.1)

While MIMD architectures proved to be a (temporary) solution to the scaling
issues of SISD architectures, GPUs now seem to be the solution to the scaling lim-
itations of MIMD architectures. By shifting the focus from low-latency operation
for a few parallel tasks to highly parallel throughput, GPUs achieve higher perform-
ance and energy efficiency (for suitable workloads). Figure 2.1 shows the practical
implications of this difference in design philosophy.

Figure 2.1: Comparison of how transistors are used in a CPU compared with a GPU.
From CUDA C Programming Guide [7] with permission.

It should be noted that modern GPUs cannot truly be described as having a
SIMD architecture. In reality they are more of a hybrid approach between SIMD
and MIMD. Individual instructions operate in a SIMD-like fashion, but multiple
separate streams of SIMD-like instructions can operate on separate streams of data.
In the same vein, modern CPUs also support SIMD instructions, albeit with a lower
width (meaning fewer data elements processed per instruction) than what is typically
seen on GPUs.

4

2.2 General-purpose GPU computing

As the name suggests, GPUs were originally created specifically to accelerate real-
time graphics rendering. In real-time graphics, images are composed from thou-
sands, if not millions of geometric primitives. Each primitive is composed of several
vertices, and these vertices must be individually transformed to give a correct sense
of orientation, perspective, position and scale. For a 3D scene, these transform-
ations typically boil down to Equation 2.2 where v is the original vertex in 3D
homogeneous coordinates, v′ is the transformed vertex and A is the transformation
matrix. Because homogeneous coordinates are used, and the fourth component of
v is always 1, A can represent any combination of translation, rotation and scaling
transformations, as well as a perspective transformation.

v′ =


A1,1 A1,2 A1,3 A1,4

A2,1 A2,2 A2,3 A2,4

A3,1 A3,2 A3,3 A3,4

A4,1 A4,2 A4,3 A4,4



vx
vy
vz
1

 (2.2)

In addition to transforming each vertex, some per-vertex calculations are needed
to determine lighting and other visual effects. The operation in Equation 2.2 is
carried out by what is commonly referred to as a vertex shader. Lighting calcula-
tions are mostly carried out in a fragment shader1. Vector-vector and matrix-vector
operations are a core part of this process as well. Vertex and fragment shading
have been a core part of the graphics rendering pipeline in some shape or form since
the early 90s (ex. OpenGL 1.0). In older GPUs, these stages (and essentially every
other stage of the pipeline) had dedicated, fixed-function hardware that only allowed
adjusting the input parameters.

Fixed function graphics processing hardware is obviously not useful for general-
purpose computation. However, in pursuit of enabling more complex 3D graph-
ics, the vertex and fragment shader stages were eventually made programmable.
Early programmable GPUs used separate hardware with different instruction sets
for the vertex and fragment shaders, but this was an important step towards general-
purpose computing. Current GPUs have a so-called “unified shading architecture”,
where all programmable stages of the graphics pipeline run on the same hardware
using the same instruction set. [34]

An individual thread of execution on a modern GPU roughly matches that
of a simple CPU in terms of capabilities. Both integer and floating point arith-
metic are supported, arbitrary memory reads/writes are possible as well as condi-
tional/unconditional branches. The main difference between them lies in the per-
formance characteristics. On a CPU, individual threads execute quickly and with
low latency. Branching has a low penalty, and inter-thread communication is unres-
tricted. Concurrently executing threads are counted in the 10s on high-end systems
and servers. This means that CPUs are suited to workloads that are highly interact-
ive and have significant serial/weakly scaling sections of code. On a GPU, individual
threads execute slowly and with high latency. Branching can be very expensive, and
inter-thread communication is very restricted. However, a modern high-end GPU

1Fragment shader is the term used in OpenGL. DirectX uses the term pixel shader.

5

can have 1000s of threads executing concurrently (and 10000s of threads in-flight).
This means that the overall throughput of a GPU is much higher than a CPU under
ideal circumstances.

The takeaway is that while a GPU is capable of executing programs in much the
same way as a CPU, it achieves high performance in a very different manner. As
a result, only a certain class of problems is suited to a GPU. In real-time graphics
rendering, the exact same operations are performed independently for millions of
elements of data (vertices, pixels, etc.). This is what is commonly referred to as an
“embarrassingly parallel” problem. For a more general problem to be suited to a
GPU, it has to meet this classification to some extent.

2.3 NVIDIA CUDA

CUDA is a state of the art toolkit for heterogeneous compute created by NVIDIA
for use with their GPUs. It was launched in 2007 and today it is one of the two
most widely used platforms2 for leveraging GPUs in general-purpose computing.

2.3.1 Programming model

CUDA allows the user to define kernels that execute on the device3. The same
kernel is executed by hundreds or even thousands of threads over a computational
domain. Typically each thread operates independently on a single unit of data in
one or more large arrays. The dimensionality and size of the computational domain
correspond to the dimensionality and size of the array(s) being operated on.

In CUDA, the computational domain of a kernel is represented as shown in
Figure 2.2. Threads are grouped into blocks, and blocks are grouped into a grid.
Both the blocks and the grid can have up to three dimensions. Each thread has a
unique index within a block, while each block has a unique index in the grid. The
thread and block indices combined with the block dimensions are typically used to
determine which data element(s) a single thread should operate on.

The justification for representing the computational domain as shown in Fig-
ure 2.2 comes down to the underlying hardware architecture of modern NVIDIA
GPUs. The basic building block of the architecture is the streaming multiprocessor
(SM), shown in Figure 2.3. The NVIDIA Tesla P100 GPU has a total of 60 SMs4
as shown in Figure 2.4. When executing a kernel, each thread block in the grid is
assigned to an SM. Because of the hardware limitations of an SM, a block may con-
tain no more than 1024 threads and thread synchronization is only possible between
threads in the same block. For each block, threads are executed in a SIMD-like
fashion in groups of 32 referred to as warps. In the case of the Pascal SM shown in
Figure 2.3, two warps can execute concurrently.

2With the other being OpenCL, also supported by the CUDA toolkit.
3In the CUDA documentation, the GPU is commonly referred to as the device, while the CPU

is referred to as the host.
44 of the SMs are disabled to increase manufacturing yields, resulting in a total of 56 usable

SMs [30].

6

Figure 2.2: The computational domain of a kernel, represented by a grid of thread
blocks. From CUDA C Programming Guide [7] with permission.

NVIDIA refers to warp execution as single instruction, multiple thread (SIMT),
because unlike SIMD the threads can diverge at branches and execute different
instructions. Up until NVIDIAs latest GPU architecture, Volta, warps shared a
single program counter [7]. This meant that divergent branching within a warp
led to serialized execution of each path taken. Threads not on a given path are
masked out. This means that if two different paths with roughly equal amounts of
computation are taken, the effective throughput can be cut in half. In other words,
branching can be very costly if it is not used carefully.

7

Figure 2.3: Architectural overview of a single SM in the Pascal GP100 GPU. From
NVIDIA Tesla P100 [30] with permission.

8

Figure 2.4: Architectural overview of the Pascal GP100 GPU found in the NVIDIA
Tesla P100. From NVIDIA Tesla P100 [30] with permission.

9

2.3.2 Memory types

Figure 2.5 shows the different types of memory that can be accessed by threads
during kernel execution. The largest and slowest memory type is global memory.
Accesses to global memory are coalesced by the SM into 32-, 64- or 128-byte accesses.
This greatly reduces the number of memory accesses needed when threads in the
same warp make contiguous memory accesses. Unfortunately, it can also waste a lot
of memory bandwidth if for instance only a few bytes out of the smallest possible
32-byte memory access is used.

Shared memory is essentially a per-block programmer-controlled L1 cache. It is
much faster than global memory, but also much smaller. Shared memory is ideal to
use for shared data within a thread block. Like with global memory, specific memory
access patterns are required to achieve optimal performance. Shared memory is
divided into equally sized banks that can be accessed in parallel. If two or more
accesses are made to different addresses the same bank, the accesses are serialized
and the effective bandwidth is cut in half or worse.

Variables allocated on the stack in a kernel are usually mapped to per-thread
registers in the SM. In cases where this is not possible (arrays or just too many
variables to fit in registers), per-thread local memory is used. Local memory resides
in device memory and is really just a per-thread variant of global memory, with the
same performance characteristics and coalescing behaviour.

There are two more memory types not shown in Figure 2.5. The first is constant
memory. Constant memory, like global memory, resides in device memory. The
difference between the two is that constant memory has its own cache. Constant
memory is primarily used for kernel launch arguments.

The second type of memory not mentioned in Figure 2.5 is texture memory.
Texture memory is also backed by device memory, and like constant memory it has
its own cache (on some devices). The unique thing about texture memory is that
caching has 2D spatial locality. It also allows the programmer to make use of the
texture interpolation hardware for interpolating values in 1D/2D/3D arrays.

10

Figure 2.5: Memory hierarchy for kernel execution. From CUDA C Programming
Guide [7] with permission.

2.3.3 Streams and concurrency

In addition to the massive parallelism within kernels themselves, CUDA also allows
multiple different kernels to be executed concurrently. This is accomplished with
the use of streams. Streams are essentially work queues, where kernels and other
operations are executed in a given order. Streams can be synchronized with one
another and the host using events. Depending on the capabilities of the device,
operations from several streams can be carried out concurrently. Stream concurrency
is not just limited to kernels, it also applies to memcpy operations.

11

12

Chapter 3

About PaXPro

PaXPro (Paraxial X-ray Propagator) was created by David Kleiven as a part of his
master’s thesis. It is a library written in C++ for solving the paraxial wave equation.
The original purpose of the library was to aid in simulating X-ray waveguides, but it
was later expanded to allow for more general scattering simulations. In this chapter,
we give a short overview of the physics phenomenon simulated by PaXPro as well
as an overview of the structure of the existing codebase.

3.1 X-ray physics

When propagating a plane wave of X-rays through objects with different refractive
indices, the rays are deflected according to the incidence angle and the difference in
refractive index between two mediums [37]. The wave travels at an increased speed
when not in a vacuum, resulting in a phase shift relative to the parts of the plane
wave outside the object. Lastly, some of the wave energy is absorbed by the objects
that it passes through. These are the three main phenomenon simulated by PaXPro
when solving the paraxial wave equation.

3.2 Codebase structure

Running simulations with PaXPro usually directly involves three classes. The first
of the three is the ParaxialSimulation class (or a derivative). This class acts as
a wrapper for the simulation, and is configured for specific parameters/problems by
the user. In this thesis, x-ray scattering simulations are the main focus. This means
that the GenericScattering class, inheriting from ParaxialSimulation as shown
in Figure 3.1, is used.

The ParaxialSimulation and derivative classes do not handle the calculations
for the simulation itself. This is where the Solver class shown in Figure 3.2 comes
into the picture. This class and its derivatives store the relevant simulation data
and handle the calculations, employing a range of different solver methods for both
2D and 3D problems.

13

ParaxialSimulation

GenericScattering WaveGuideFDSimulation

CurvedWaveGuideFD

Figure 3.1: ParaxialSimulation class diagram.

Solver

Solver2D Solver3D

CrankNicholson FFTSolver2D ADI FFTSolver3D ProjectionSolver

FFT3DSolverDebug

Figure 3.2: Solver class diagram.

Although the ParaxialSimulation classes do not handle any of the
calculations directly, there is a two-way communication with the Solver class.
ParaxialSimulation sets problem size and initial conditions in the Solver object.
When running the simulation, the ParaxialSimulation object is queried for the
discretization, position and refractive index moving through the simulation domain.
This interaction is shown in Figure 3.3.

14

ParaxialSimulation

Solver

 guide solver

MaterialFunction

 material

Disctretization

 xDisc
yDisc
zDisc

FarFieldParameters

 farParam

ParaxialSource

 src

Figure 3.3: ParaxialSimulation collaboration diagram.

The MaterialFunction class is always involved for x-ray scattering simulations.
This class has the sole purpose of returning the refractive index for all coordinates
within the simulation domain. MaterialFunction is an abstract class, so the user
must create their own class inheriting from it, to represent the objects within the
simulation domain. The benefit of this solution is that many different representations
of objects in the simulation domain are possible, ranging from a simple inside/outside
test consisting of a few if-statements, to a full voxel-grid.

The FFTSolver3D class (shown in Figure 3.4) is the main focus of this thesis. It
implements the Split-Step Fourier Transform Method for solving the paraxial wave
equation [25]. As the name suggests, fourier transformations are a core part of this
method. The current implementation runs on the CPU, using the FFTW library for
FFTs. FFTs are known to be fast on GPUs[5][18], so the goal is to port this class
to run the entire simulation on a GPU.

15

FFTSolver3D

Solver3D

Solver

ParaxialSimulation

 solver guide

MaterialFunction

 material

Disctretization

 xDisc
yDisc
zDisc

FarFieldParameters

 farParam

ParaxialSource

 src

Figure 3.4: FFTSolver3D collaboration diagram.

16

Chapter 4

Improving the Performance of
PaXPro

This chapter focuses on the work that was done to improve the performance of
PaXPro. First we cover performance profiling and optimization of the existing CPU-
based SSFTM implementation, before moving on to the challenges associated with
adding a GPU-based version of the solver and achieving maximum performance.

4.1 Performance profiling

When attempting to improve the performance of a program, it is important to focus
the parts of the code that have the most impact on the overall performance. Making
a tenfold performance improvement in a part of the code that only represents a few
percent of the total run time still only improves the overall performance by a few
percent. This is especially important to keep in mind when considering the use of
accelerators such as GPUs. As discussed in section 2.2, not all problems are suited
for GPUs. The parts of the code that are suited a GPU must represent a significant
part of the total execution time, or the performance improvement will be too small
to justify the development effort.

To determine how suitable the FFTSolver3D class is for implementation on a
GPU, the performance of a simulation using this solver has been profiled with Val-
grind’s Callgrind tool. Callgrind records function calls and instructions executed by
a program, and uses this information to generate a call-graph. This gives the user a
good indication of where most of the execution time is spent [4]. The data output
by Callgrind can be visualized by the GUI tool KCachegrind. Figure 4.1 shows the
top of the call-graph for main().

Since PaXPro is a shared library and uses OpenMP for multithreading, two en-
vironment variables have been set for the profiling run. The first is LD_BIND_NOW=1.
This tells the dynamic linker, ld, to resolve all symbols from shared libraries when
the program starts, instead of waiting until the first time a function call to a
given shared library is made. This prevents the dynamic linker from showing up
in the call graph at some point under main(). The second enviroment variable
is OMP_NUM_THREADS=1. This is set to prevent OpenMP from creating additional
threads. The problem with the worker threads created by OpenMP is that they

17

follow a different path on the call-graph into parallel regions compared to the main
thread. The result is that instructions executed in worker threads are not attributed
to the functions that led to the OpenMP parallel region. This makes the profiling
results confusing to interpret. As an example, if 60% of the total executed instruc-
tions are executed in OpenMP worker threads, only 40% of the total instructions will
be attributed to main(), which is supposed to be the entry point to the program.
This is especially problematic for parallel regions within functions, because the par-
allel regions show up as similarly named but separate functions1. This means that
functions containing parallel regions can appear to be underrepresented in terms of
their total cost.

Figure 4.1: Execution instructions in functions called from main().

Figure 4.1 shows that nearly 95% of the instructions are executed within
GenericScattering::solve(). This leads to the unsurprising conclusion that
the solver is important to the performance of the simulation. The remaining
5% are attributed to post-processing and saving the simulation output in
ParaxialSimulation::save().

Looking further down the call-graph in Figure 4.2 reveals that FFTW takes up
less than 25% of the total execution time. This means that simply executing the
FFTs on a GPU will not give much of a performance improvement. Due to the
latency involved in transferring data to and from the GPU, the ideal solution is that
all the work done in FFTSolver3D::solveStep() is carried out on the GPU, with
no intermediate processing on the CPU between propagation steps. Because more
than 90% of all the instructions are executed within this function, there should be
potential for a significant speedup with a GPU.

1This is likely compiler-specific to an extent.

18

Figure 4.2: Executed instructions in functions called from
FFTSolver3D::solveStep().

4.2 Optimizations

In the interest of getting a fair comparison between GPU and CPU performance,
an effort was made to optimize the solver in the FFTSolver3D class. A couple of
low hanging fruit related to FFTW were discovered during the development process.
First and foremost, it was discovered that only a single thread was being used for
FFTW plans. Considering that most modern desktop processors have 4 or more
cores (often with SMT), this leaves a lot of performance untapped. The second
issue was that the cheapest planning approach was being used, potentially leading
to plans with sub-optimal performance.

4.2.1 FFTW threads

Unfortunately, enabling multiple threads in FFTW is not entirely straightforward.
FFTW threads have to be initialized with a call to fftw_init_threads() and
cleaned up with fftw_cleanup_threads() before terminating the program. Be-
cause FFTW is used within C++ classes, this is problematic. Multiple objects of
classes using FFTW can exist, which means that initializing and cleaning up FFTW
threads within any class could lead to issues (cleaning up before finished, initializing
multiple times). One option is to force the user to call fftw_init_threads() and
fftw_cleanup_threads() before/after using any classes depending on FFTW. This
is cumbersome, so an alternative solution was chosen where all classes make a call

19

to two global functions before/after using FFTW. These two functions take care of
initializing and cleaning up the FFTW threads, and keep track of how many objects
are currently using FFTW (so that threads are not cleaned up prematurely). The
number of threads used by FFTW is set to be equal to the maximum number of
OpenMP threads (which defaults to the number of logical processors on the ma-
chine). See section 5.4 for benchmark results showing the speedup with multiple
FFTW threads.

4.2.2 FFTW planning rigor

The plan chosen by FFTW has a significant impact on the performance of the CPU-
based solver. FFTW has a few different flags that can be passed when generating a
plan [13]. The planning rigor flags influence how FFTW picks a plan. This allows
the user to make a tradeoff between planning time and performance. The default
behaviour in PaXPro is to use the FFTW_ESTIMATE flag. With this flag, FFTW
creates a plan based on simple heuristics. This results in a short planning time, but
the performance of the plan may not be optimal. Another benefit of this planning
mode is that the data in the arrays used by the plan is not altered during planning.

In an effort to extract the maximum performance from the solver, optional sup-
port for the FFTW_MEASURE planning flag has also been added. This support is
enabled by defining PAXPRO_FFTW_MEASURE=1 when running CMake. When using
this planning mode, FFTW will run actual performance tests to determine a plan
that has close to optimal performance for the problem size and the hardware being
used2. There some drawbacks to this approach. The first is that running tests takes
time, meaning that the overall run time might end up being longer despite the plan
itself being faster. The number of times a plan is run is proportional with the prob-
lem size, so while this is a potential issue for small problem sizes, the investment is
generally worthwhile for larger problem sizes.

Another drawback is that the tests destroy the data in the arrays. Because the
plan is created before the first propagation step is computed (meaning that the initial
conditions are already placed in the array), a temporary copy has to be created so
the initial conditions can be restored. The root cause of this issue is that PaXPro
implements several different solvers and is not designed specifically to cater to the
needs of FFTW.

The final and perhaps most important drawback is that the tests run during
planning are sensitive to background activity from other programs. Background
activity disturbs the timing measurements taken during the tests, and can lead
FFTW to create a plan that performs poorly. In some cases FFTW created plans
that performed worse than the FFTW_ESTIMATE mode. This is the main reason the
FFTW_ESTIMATE mode is the default. FFTW_MEASURE is only suited to environments
where the planner can run undisturbed. See section 5.4 for benchmark results com-
paring the performance of the two planner flags.

2The flags FFTW_PATIENT and FFTW_EXHAUSTIVE work the same way as FFTW_MEASURE, but will
run more tests in an attempt to get closer to optimal performance at the cost of increased planning
time.

20

4.3 CUDA implementation
Other than the obvious goal of improving performance, there were two underlying
goals when developing the CUDAFFTSolver3D class, which is the CUDA-based version
of the FFTSolver3D class. The first was that the codebase should only be extended in
ways that still make it possible to compile and run PaXPro without CUDA support.
Secondly, no breaking changes should be made to the existing functionality and
solvers.

As a computer-science student with no real background in physics other than
the fundamentals, another important focus was to ensure the correctness of the
CUDA implementation. The complexity and depth of the physics theory needed to
implement an accurate X-ray scattering simulation makes it prohibitively difficult
to ensure correctness by any other method than comparing the results with a known
good implementation. For this reason, verification tests comparing results with
the FFTSolver3D class (implemented by physics student Kleiven [23]) were a high
priority.

4.3.1 Challenges

Host/device keywords

CUDA code requires that functions declaration specify whether the function should
be compiled for the host, device or both. This is done using the __host__ and
__device__ keywords (__host__ is the default when unspecified). This is problem-
atic for classes that need to be accessed from plain C++ code and CUDA device
code, when the goal is to avoid making CUDA a required dependency. The solution
to this is to wrap the use of __host__ and __device__ in preprocessor macros.
When nvcc is detected, the macros are set to the respective keywords. When nvcc
is not used, the macros are defined as empty to avoid unknown keyword errors.

Functions in ParaxialSimulation/GenericScattering

FFTSolver3D uses several functions in ParaxialSimulation/GenericScattering
to get parameters and calculate certain values for each propagation step. These
functions can not realistically be made accessible from device code, because passing
the ParaxialSimulation/GenericScattering object to the device is unfeasible
(member variables of types without CUDA support, issues with virtual functions
as outlined below). To get around this issue, the CUDASimulation helper class was
created with all the necessary functions.

Virtual functions in classes

Although CUDA supports many of the modern C++ language constructs, there
are some limitations that apply when passing objects to the device and launching
kernels (among other things). With regards to implementing the FFTSolver3D class
in CUDA, there are some problematic limitations related to classes with virtual
functions. If an object of a class with virtual functions is created in host code and
copied to a device (or vice-versa), calling any of the virtual functions (in device code)

21

will result in undefined behaviour [7]. This happens because the virtual function
pointer table in the object points to host functions, which are not accessible/valid
on the device. Understandably, this issue also applies for arguments to kernels. The
implication of is that accessing the user-implemented MaterialFunction child class
becomes problematic.

The solution to this was to turn CUDAFFTSolver3D and CUDASimulation
into template classes, where the template parameter is the user-implemented
MaterialFunction child class. All kernels invoked by CUDAFFTSolver3D also had
to be templated.

4.3.2 Implementation

The Split-Step Fourier Transform Method (SSFTM) used by FFTSolver3D can be
divided into two parts. For the first part, X-rays are propagated in fourier space.
This involves one FFT, a kernel to handle the propagation and an IFFT back to
real space. The cuFFT library bundled with the CUDA toolkit is used to perform
the FFTs.

The second step consists of computing the refraction integral for elements where
the refractive index changes, meaning that a material boundary has been crossed or
that the x-rays are moving through a non-homogeneous material. This is handled in
a single kernel. There is also an optional third step to tackle the periodic boundary
conditions that are a characteristic of SSFTM. In this step, a transmission function
is applied to make the waves decay at the horizontal/vertical edges of the domain.
This step is also handled by a single kernel.

After computing a step, FFTSolver3D computes a downsampled version of the
result in a 3D array that will eventually contain a downsampled version of the
entire simulation. Depending on the downsampling factor, the size of this array can
be quite significant. On top of that, the values in this array are not used by the
simulation itself. They are only stored for post-processing and output. Due to the
limited amount of memory available on a GPU, it is not desirable to store this array
on the device. This means that for each propagation step, the solution must be
copied back to the host. This must be done asynchronously to avoid a performance
penalty.

Asynchronous memcpy operations in CUDA can only be performed under certain
conditions [27]. For transfers from device to host memory, the host memory must
be pinned. This is done using cudaHostRegister() for memory that has already
been allocated or cudaHostAlloc() for new allocations. When it comes to the
CUDA streams, there are multiple options. The most fundamental requirement
is that the memcpy runs in a different stream from the kernels and cuFFT plans.
When using the legacy default stream3, all events cause implicit synchronization
(events meaning kernel launches, memcpy, etc.). This means that either the kernels
and cuFFT plans must run in their own explicitly created stream, or the memcpy
stream must be created with the cudaStreamNonBlocking flag. Alternatively, the
per-thread default stream4 can be used. In this case, two explicitly created threads

3The “legacy default stream” is the actual default, despite the name suggesting that it is not.
4NVIDIA using the term “default” rather loosely, as the per-thread default stream must be

22

are used, with one thread handling the execution of kernels and cuFFT plans and
the other handling asynchronous memcpy operations.

To enable the GPU to continue solving the next propagation step while the
previous one is copied to the host, three buffers are used. Two of the buffers are
used for computing the next step, while the third holds the solution to the previous
step. At the end of a step, an asynchronous memcpy to host is queued and the buffers
are rotated by swapping the pointers. The kernels and cuFFT plans for the next
step are then queued before waiting for the memcpy to complete.

Solver

Solver2D

Solver3D

CrankNicholson

FFTSolver2D

ADI

CUDAFFTSolver3D< Material
Type >

FFTSolver3D

ProjectionSolver

FFT3DSolverDebug

Figure 4.3: Solver class diagram with CUDAFFTSolver3D.

enabled per-file at compile time.

23

24

Chapter 5

Benchmarking and Results

5.1 Benchmarking method
This section describes the approach used to gauge the performance of the GPU
solver versus the existing CPU solver. A wide range of hardware was tested, which
brings on some challenges.

5.1.1 Problem

The problem used for benchmarking consists of propagating a plane wave of x-rays
through a solid sphere. In physics terms, this is a simple enough problem that it
can be solved analytically. However, it shows the capabilities of the solver and can
be scaled with ease. In this case, there are two parameters that can be used to
scale the problem size in terms of computational demands. The first is the radius
of the sphere itself, given in nm. Increasing the radius of the sphere means that the
computational domain also has to increase in size to encapsulate the entire sphere.
The second parameter is the discretization step, also given in nm. By setting a
smaller step, we increase the resolution and accuracy of the solution along with
the computational demands. Since increasing the sphere radius and reducing the
discretization step has the same effect in terms of the computational demands, only
the sphere size has been varied when generating the benchmarking results in this
chapter. The discretization step has been fixed at 3 nm.

The size of the computational domain D is given by Equation 5.1, where r is the
radius of the sphere. The domain is bigger along the horizontal and vertical (x and
y) axes because the Split-Step Fourier Transform Method, has periodic boundary
conditions [23][25]. This means that x-rays that exit the domain will reappear on
the opposite side.

D =


x ∈ [−1.5r, 1.5r]
y ∈ [−1.5r, 1.5r]
z ∈ [−1.05r, 1.05r]

(5.1)

Determining the number of elements in the computational domain is done by
dividing the length of the domain along each axis by the discretization step s as
shown in Equation 5.2 for the x-axis. Since propagation is done along the z-axis,

25

this means that the number of elements processed in each propagation step nprop is
given by Equation 5.3. The number of elements in the whole domain is given by
Equation 5.4.

xsteps =
xmax − xmin

s
=

1.5r − (−1.5r)
s

=
3r

s
(5.2)

nprop = xsteps · ysteps =
9r2

s2
(5.3)

n = xsteps · ysteps · zsteps =
18.9r3

s3
(5.4)

Each propagation step involves an FFT and an IFFT. This means that the
computational complexity for a single propagation step is O(nprop log(nprop)). That
puts the total computational complexity at O(n log(nprop)). Since we use a constant
discretization step for the benchmarks in this chapter, the computational complexity
can be expressed as O(r3 log(r)).

Memory complexity is divided into two parts. The solver stores the whole solu-
tion (all propagation steps), which has a memory complexity of O(r3) assuming a
constant discretization step. However, the full 3D solution is not always interesting.
For instance, the visualizations in figures 5.1 and 5.2 are computed only from the
output of the very last propagation step. For that reason, the solver allows the user
to set a downsampling factor f applied to each axis in the complete 3D solution1.
This gives a memory complexity of O(r3

f3). In the benchmark, f is set to such a high
value that the memory usage for the 3D solution is insignificant. It is also important
to note that the complete 3D solution is only stored on the host, so it has no impact
on the memory complexity on the GPU itself for the GPU-based solver. If we ignore
the memory complexity for the full 3D solution, the memory complexity is given by
O(r2) (derived from nprop), again assuming a constant discretization step.

In Figures 5.1 and 5.2 we can see a visualization of the data output by the bench-
mark simulation for a 500 nm and 3000 nm sphere respectively. The “Comparison
with form factor” plot shows a comparison with an approximate method that is only
accurate for smaller sphere sizes.

1The downsampling factor can be set individually for each axis, but this is not done for the
benchmark

26

750 500 250 0 250 500 750
x (nm)

600

400

200

0

200

400

600

y
(n

m
)

Exit Intensity

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

750 500 250 0 250 500 750
x (nm)

600

400

200

0

200

400

600

y
(n

m
)

Exit Phase

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.03 0.02 0.01 0.00 0.01 0.02 0.03
qx (nm 1)

0.03

0.02

0.01

0.00

0.01

0.02

0.03

q y
 (n

m
1)

Far field

10 3

10 2

10 1

100

101

102

103

104

0.03 0.02 0.01 0.00 0.01 0.02 0.03
qx (nm 1)

10 4

10 3

10 2

10 1

100

101

102

103

104

In
te

ns
ity

 (a
.u

.)

Comparison with form factor
Num
F(q)

Figure 5.1: Visualization of simulation results from a 500 nm sphere.

27

4000 2000 0 2000 4000
x (nm)

4000

3000

2000

1000

0

1000

2000

3000

4000

y
(n

m
)

Exit Intensity

0.75

0.80

0.85

0.90

0.95

1.00

1.05

4000 2000 0 2000 4000
x (nm)

4000

3000

2000

1000

0

1000

2000

3000

4000

y
(n

m
)

Exit Phase

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.03 0.02 0.01 0.00 0.01 0.02 0.03
qx (nm 1)

0.03

0.02

0.01

0.00

0.01

0.02

0.03

q y
 (n

m
1)

Far field

100

101

102

103

104

105

106

107

108

0.03 0.02 0.01 0.00 0.01 0.02 0.03
qx (nm 1)

10 2

100

102

104

106

108

In
te

ns
ity

 (a
.u

.)

Comparison with form factor
Num
F(q)

Figure 5.2: Visualization of simulation results from a 3000 nm sphere.

28

5.1.2 Problem sizes and collecting results

Table 5.1: Benchmarking problem sizes.

Group Sphere radius Discretization
SMALL 50 nm 3nm
SMALL 100 nm 3nm
SMALL 250 nm 3nm
SMALL 500 nm 3nm
SMALL 750 nm 3nm
SMALL 1000 nm 3nm
MEDIUM 1500 nm 3nm
MEDIUM 2000 nm 3nm
MEDIUM 2500 nm 3nm
LARGE 3000 nm 3nm
LARGE 5000 nm 3nm
LARGE 7500 nm 3nm
HUGE 10 000 nm 3nm
HUGE 12 000 nm 3nm

Benchmarking problem sizes are divided into four groups as shown in Table 5.1.
The small problem sizes are intended to be small enough to run fast (sub-minute)
on CPUs. Medium problem sizes are intended to be challenging for CPUs, with run
times of a few minutes. Large problem sizes should take up to a few hours on CPUs.
Finally, the “huge” problem sizes are only intended for compute-oriented GPUs and
test performance with high memory usage (observed to use >10GB GPU memory).

Table 5.2: Number of passes per benchmark group.

Group Passes Solver
SMALL 5 CPU/GPU
MEDIUM 3 CPU/GPU
LARGE 2 CPU/GPU
HUGE 1 GPU only

Benchmarking results are calculated as the average run time over a number of
passes. Only the solver itself is timed, meaning that initialization, post-processing
and exporting simulation data is ignored. There are two main reasons for this. The
first is that only the solver itself has been implemented in CUDA. The second is
that most of the run time is spent in the solver anyway, with the exception of some
of the smallest problem sizes on GPUs. Initialization and post-processing could also
be sped up with CUDA, but this gives minimal benefit outside of small problem
sizes. Due to the wide range of run times, a different number of passes is used for
each benchmark size group as shown in Table 5.2.

Running the benchmark program is handled through a script (found at
benchmark/run_benchmark.sh in the PaXPro git repo). The script allows the user
to configure a number of options:

29

• Problem size groups to run.

• Use CPU or GPU solver.

• Which GPU to use (if multiple GPUs are present).

• Number of threads used by OpenMP/FFTW.

• On NUMA systems, force running on a specific NUMA node.

For each problem size, the script directs the output of the benchmark program
to a file in a directory structure that follows a hierarchy of:

results/<group>/<sphere_radius>_<discretization>/<pass_number>

For example:

results/LARGE/7500_3/2

To save the user the trouble of digging through the full program output to find out
how long the solver took, another script has been created to parse the results (found
at benchmark/read_results.sh in the PaXPro git repo). This script supports
two different output modes. The first is made to be human readable and shows
the solver time for each pass as well as the average (with time converted to hours,
minutes and seconds as needed) and standard deviation. The second output follows
a CSV (comma separated values) style, and is suited for further processing or use in
LATEX. It is also possible for the user to filter the output based on the size group. A
third script (benchmark/calc_speedup.py) has also been made to calculate speedup
based on two or more CSV outputs.

5.1.3 Running on multiple systems

There is a wide range of hardware available to run benchmarks at the NTNU HPC-
Lab . The challenge is that many of these systems are shared between multiple
users. This means that the operating system and software/libraries must meet the
needs of all the users. For that reason, there is a policy that all shared systems
use the latest Ubuntu LTS (Long-Term Support) release (16.04 at the start of this
thesis).

PaXPro dependencies

Ubuntu 16.04 LTS was released in April, 2016 [35]. However, PaXPro was developed
using a mix of Fedora 25 (released in November, 2016 [10]) and Debian 9 (released
in June, 2017 [9]). As a consequence, PaXPro depends on certain libraries with
versions that are newer than what is available in Ubuntu 16.04 LTS. This means
that several other libraries must be compiled by the user for PaXPro to work. This
also leads to a tedious workflow for compiling PaXPro itself, because CMake must
be manually pointed to the user-compiled libraries.

In addition to the existing dependency issues, the CUDA version bundled with
Ubuntu 16.04 is quite outdated (version 7.5, newest at time of writing is 9.2).

30

NVIDIA officially supports newer CUDA versions on Ubuntu 16.04 through several
different install options, but as with any third-party packages, this is not seamless.
For instance, an incompatible kernel update caused CUDA to stop working on several
machines in the lab.

To get the latest version of CUDA and avoid dependency issues with PaXPro,
Arch Linux (https://www.archlinux.org/) was chosen for the development ma-
chine. Arch Linux is a rolling release distribution, meaning that it generally has the
latest versions of all software.

Docker

While Arch Linux was a viable solution for my personal development machine, it is
not a good solution for any of the shared machines in the lab. The constant version
changes of a rolling release are fine when the system only has one user, because that
user is in control of when updates are installed. On a shared machine, this is no
longer the case, leading to potential unwelcome surprises when a library or some
other software changes.

Docker is a container technology that strikes a middle ground between
native/bare-metal and virtualization. Unlike a virtualized environment, docker
containers run directly on the host OS. Each container is isolated through
functionality in the host kernel, meaning that processes from the host and other
containers are hidden. Containers also have independent filesystems, meaning
that containers can have different configurations, libraries and runtimes. This is
obviously very useful in cases like this one, where an application/library (PaXPro)
has dependencies that are not easily available on the host OS (Ubuntu 16.04). It
also has the advantage of providing the exact same environment, regardless of
the host configuration. This means that performance differences will be down to
hardware as opposed to software optimizations from different library versions and
compilers.

As a part of the isolation from the host, docker containers by default don’t
have access to any of the host hardware/peripherals. This includes GPUs, which
means that CUDA does not work within a normal docker container. Fortunately,
NVIDIA has made their own docker plugin/wrapper that takes care of setting up
the necessary sysfs entries within the container so that GPUs can be accessed for
use with CUDA.

5.1.4 Docker setup

Docker containers are based off images. An image is essentially a snapshot of a
root filesystem. This snapshot usually contains the equivalent of a minimal OS
installation, minus some core components like the kernel. In addition, it includes
dependencies and configuration for a specific application. Images are built from
instructions contained in a dockerfile. The dockerfile essentially specifies a base
image, files to copy from the host and commands to run. Commands consist of
typical things you would do to configure a native OS install for a specific applica-
tion. That includes using the package manager (apt/apt-get in Ubuntu), fetching
configurations and building dependencies.

31

https://www.archlinux.org/

Initially the plan was to base the PaXPro docker image off an image of the newly
released Ubuntu 18.04 LTS. Ubuntu 18.04 has all the dependencies PaXPro needs,
to setting up this image would be a simple matter of installing dependencies through
the package manager and copying over the source files for VISA and PaXPro. Un-
fortunately, NVIDIA only provides CUDA-prepared Ubuntu 18.04 docker images
for x86_64 machines [31]. Since the Minsky (see section 5.2) is a ppc64le machine,
Ubuntu 18.04 was not an option [32].

Fortunately, dealing with the Ubuntu 16.04 dependency issues is easier in a
docker image. The single use-case nature of the image means that you can disregard
some of the best practices for installing and maintaining libraries on the system.
CUDA is pre-installed in the Ubuntu 16.04 images from NVIDIA, and Table 5.3
shows the dependencies that could be installed straight from the package manager.

Table 5.3: PaXPro satisfied dependencies on Ubuntu 16.04 LTS.

Dependency Package name Version
GCC gcc-5 5.4.0
ARPACK libarpack2-dev 3.3.0
BLAS libblas-dev 3.6.0
FFTW libfftw3-dev 3.3.4
GSL libgsl-dev 2.1
SFML libsfml-dev 2.3.2
HDF5 libhdf5-dev 1.8.16

Although the FFTW version found in the official Ubuntu 16.04 is sufficient for
PaXPro, the header file fftw3.h has a bad interaction with the CUDA compiler,
nvcc [14]. This issue has been fixed in FFTW version 3.3.8, but building FFTW
is somewhat complex due to the number of compilation options with a potential
performance impact. To make matters worse, compilation has to work for both
x86_64 and ppc64le systems. It was deemed easier to simply patch the fftw3.h
header provided by the package manager.

The remaining dependencies are shown in Table 5.4. All these libraries are
built from source and installed in system directories by running make install as
root. This is normally seen as bad practice, because there is no easy way to unin-
stall/remove files placed in system directories when using this method. To add to
this, all other files in the system directories are managed by the package manager
(apt/apt-get for Ubuntu). This could lead to conflict if the user installs multiple
versions of the same software, potentially causing serious breakage of the system.
However, because this is a single-use docker image, maintainability is not a concern
like on a normal system.

For CMake, at least version 3.8 is required (3.5.1 is provided in Ubuntu 16.04).
This dependency stems from PaXPro using the first-class language support for
CUDA that was added in CMake version 3.8 [6]. For parity with the Arch Linux
development system, CMake 3.11.4 was used (latest version at the time of creating
the dockerfile).

SuperLU is a dependency of Armadillo. PaXPro uses Armadillo functionality
added in version 7.500. This version of Armadillo in turn depends on Superlu

32

Table 5.4: PaXPro unsatisfied dependencies on Ubuntu 16.04 LTS.

Dependency Git repository Branch/tag
CMake https://gitlab.kitware.com/cmake/cmake.git/ v3.11.4
SuperLU https://github.com/xiaoyeli/superlu.git/ v5.2.1
Armadillo https://gitlab.com/conradsnicta/armadillo-code.git/ 8.500.x
Google Test https://github.com/google/googletest.git/ release-1.8.0
JsonCpp https://github.com/open-source-parsers/jsoncpp.git/ master

version 5.x. Again, for parity with the Arch Linux development system, the latest
versions available at the time were used.

JsonCpp is the only dependency that doesn’t use a versioned branch/tag. The
reason for this is that JsonCpp has a bad interaction with the CUDA compiler
(nvcc) [22]. A fix exists in the master branch, but it is currently not found in any
released version.

NVIDIA provides several Ubuntu 16.04 images with different CUDA versions.
Originally the idea was to use the image with the latest CUDA version (9.2). Un-
fortunately, although the CUDA runtime is decoupled from the host system, the
NVIDIA driver version is not. All CUDA releases have a minimum driver version,
so this means that the CUDA version used in a docker container is restricted by the
drivers on the host. Ubuntu 16.04 officially provides NVIDIA driver version 384.xx,
which only supports CUDA versions up to 9.0. This meant that an Ubuntu 16.04
image with CUDA 9.0 had to be used as a base for the PaXPro docker image.
More specifically, nvidia/cuda:9.0-devel-ubuntu16.04 was used on x86_64 sys-
tems and nvidia/cuda-ppc64le:9.0-devel-ubuntu16.04 was used on ppc64le
systems. For the full dockerfile used to generate a PaXPro image, see the git repo
at https://github.com/acelster/PaxPro-Docker.

5.2 Systems used

Four different systems were used to obtain the benchmarking results in this chapter.
Both the CPU(s) and GPU(s) in each system were tested. The specs of each system
can be found in tables 5.5, 5.6, 5.7 and 5.8.

Table 5.5 shows the specs for my machine at the NTNU HPC-Lab . This machine
was used for most of the development work. There are a couple of things worth
pointing out about this machine. First of all, it has two GPUs: a GTX 980 and a
Tesla K40. The GTX 980 is a typical high-end gaming GPU, while the Tesla K40
is a slightly older compute-oriented GPU. The most obvious difference between the
two is that the K40 has three times as much memory as the GTX 980. Another
important difference is that the GTX 980 has much lower FP64 rate than the K40.
This is typical for a gaming-oriented GPU, because real-time 3D graphics typically
don’t need more than precision than FP32. The second thing to note about this

2Boost must be enabled manually on the Tesla K40.

33

https://github.com/acelster/PaxPro-Docker

Table 5.5: Development system [1][17][40]

System
ISA x86_64
CPU AMD Ryzen 7 1800X

Clock speed 3.6GHz base, 4.0GHz boost
Cores 8 with 2x SMT

Memory 16GB DDR4 @ 2933MHz
GPU 1

Interconnect PCIe 3.0 x8
GPU NVIDIA GTX 980

Architecture Maxwell
Clock speed 1126MHz base, 1216MHz boost
FP64 rate 1/32 FP32

CUDA cores 2048
Memory 4GB GDDR5

Memory bandwidth 224GB/s
GPU 2

Interconnect PCIe 3.0 x8
GPU NVIDIA Tesla K40

Architecture Kepler
Clock speed 745MHz base, 810/875MHz boost2
FP64 rate 1/3 FP32

CUDA cores 2880
Memory 12GB GDDR5

Memory bandwidth 288GB/s
Software

OS Arch Linux
Kernel 4.17.6

NVIDIA driver 396.25
Docker version 18.05.0

system, is that both GPUs are only using 8 lanes of the PCIe 3.0 link3. This is due
to a limitation of the X370 chipset on the motherboard in this system [8]. When
one PCIe 3.0 slot is in use, the full 16 lanes are available. With two slots in use, the
lanes are shared between the two slots, giving 8 lanes per slot.

The machine in Table 5.5 is my home computer. Around 2013, this was a high-
end gaming-PC/workstation. It has been included to give an indication of how
PaXPro performs on older hardware.

A Titan V was newly acquired at the NTNU HPC-Lab . The specs for this GPU
and the system it is installed in can be seen in Table 5.7. With 5120 CUDA cores

3Profiling has shown that the reduced bandwidth is not a performance bottleneck for either
GPU.

4Overclocked to 4.4GHz, normal clocks are 3.5GHz base, 3.9GHz boost.
5This is a factory overclocked ASUS GTX 780, stock clocks for a reference design GTX 780 are

863MHz base, 900Mhz boost.

34

Table 5.6: Home system [20][16][3]

System
ISA x86_64
CPU Intel i7 3770k

Clock speed 4.4GHz4

Cores 4 with 2x SMT
Memory 16GB DDR3 @ 1600MHz

GPU
Interconnect PCIe 3.0 x16

GPU NVIDIA GTX 780
Architecture Kepler
Clock speed 889MHz base, 941MHz boost5
FP64 rate 1/24 FP32

CUDA cores 2304
Memory 3GB GDDR5

Memory bandwidth 288.4GB/s
Software

OS Arch Linux
Kernel 4.17.6

NVIDIA driver 396.25
Docker version 18.05.0

and a memory bandwidth of 653GB/s, the Titan V has by far the most raw compute
power out of the systems tested.

The last system is an IBM “Minsky”, with specs found in Table 5.8. This is
the only non-desktop/workstation system tested, and there are several noteworthy
things about this system. First and foremost, it is the only system that does not
use the x86_64 ISA. Secondly, it is the only NUMA system, with its two POWER8
CPUs. Last but not least, it has four Tesla P100 GPUs connected with NVLink.

6System can also be configured with 4x/8x or no SMT.
7256GB per CPU, non-uniform memory access.

35

Table 5.7: Titan V system [21][39]

System
ISA x86_64
CPU Intel i7 7700k

Clock speed 4.2GHz base, 4.5GHz boost
Cores 4 with 2x SMT

Memory 32GB DDR4 @ 2133MHz
GPU

Interconnect PCIe 3.0 x16
GPU NVIDIA TITAN V

Architecture Volta
Clock speed 1200MHz base, 1455MHz boost
FP64 rate 1/2 FP32

CUDA cores 5120
Memory 12GB HBM2

Memory bandwidth 653GB/s
Software

OS Ubuntu 16.04 LTS
Kernel 4.4.134

NVIDIA driver 384.130
Docker version 18.03.1

Table 5.8: IBM Minsky [42][38]

System
ISA ppc64le

CPUs 2x 8335-GTB POWER8
Clock speed 2.860GHz base, 3.492GHz boost

Cores 10 per CPU with 2x SMT6

Memory 512GB7 DDR4 @ 1600MHz
GPUs

Interconnect NVLink
GPU 4x NVIDIA Tesla P100 SXM2

Architecture Pascal
Clock speed 1328MHz base, 1480MHz boost
FP64 rate 1/2 FP32

CUDA cores 3584 (per GPU)
Memory 16GB HBM2 (per GPU)

Memory bandwidth 720GB/s (per GPU)
Software

OS Ubuntu 16.04 LTS
Kernel 4.4.73

NVIDIA driver 384.66
Docker version 17.09.0

36

5.3 Docker vs. native performance

As established in subsection 5.1.3, docker is needed to get a fair comparison of
the performance running on a wide range of shared systems. To get an idea of how
much overhead/performance penalty is introduced when running CUDA programs in
a docker container, some tests were run on the development machine (see Table 5.5).
It is important to point out that there are significant software differences other than
of just docker vs. native, as shown in Table 5.9.

Table 5.9: Software versions in PaXPro docker container and on development ma-
chine.

Software Docker version Native version
CUDA 9.0.176 9.2.148
GCC 5.4.0 7.3.1
ARPACK 3.3.0 3.6.0
BLAS 3.6.0 3.8.0
FFTW 3.3.4 3.3.8
GSL 2.1 2.5
SFML 2.3.2 2.5.0
HDF5 1.8.16 1.10.2

102 103
10−3

10−2

10−1

100

101

102

103

Sphere size (nm)

So
lv
e
ti
m
e
(s
)

GTX 980 (docker)
GTX 980 (native)

Figure 5.3: Docker vs. native performance for GTX 980.

37

102 103

0.98

1

1.02

1.04

Sphere size (nm)

Sp
ee
du

p
fa
ct
or

Native

Figure 5.4: Docker vs. native speedup for GTX 980.

Figures 5.3 and 5.4 show that there was at most a 5% performance difference
between docker and native for the GTX 980. Considering all the software differences
with a potential performance impact, this is astonishingly close.

102 103 104
10−3

10−2

10−1

100

101

102

103

104

Sphere size (nm)

So
lv
e
ti
m
e
(s
)

K40 (docker)
K40 (native)

K40 (docker, CUDA 9.2)

Figure 5.5: Docker vs. native performance for Tesla K40.

38

102 103 104

1

1.2

1.4

1.6

Sphere size (nm)

Sp
ee
du

p
fa
ct
or

Native
Docker, CUDA 9.2

Figure 5.6: Docker vs. native speedup for Tesla K40.

In figures 5.5 and 5.6, we can see that the story is quite different for the Tesla
K40. For sphere radius 250 nm and 750 nm, the speedup is over 50%. The other
problem sizes are in line with the GTX 980 results. Fortunately, the up-to-date
NVIDIA driver on the development machine meant that it was also possible to test a
docker image with CUDA version 9.2. This revealed that the performance difference
was almost entirely down to the CUDA version. Looking at CUDA changelogs for
versions 9.1 and 9.2, it appears that performance improvements were made to the
cuFFT Bluestein kernels that are used for the problem sizes in question [28][29].

102 103 104

10−2

10−1

100

101

102

103

104

Sphere size (nm)

So
lv
e
ti
m
e
(s
)

Ryzen 7 1800X (docker)
Ryzen 7 1800X (native)

Figure 5.7: Docker vs. native performance for Ryzen 7 1800X.

39

102 103 104
0.9

1

1.1

1.2

Sphere size (nm)

Sp
ee
du

p
fa
ct
or

Native

Figure 5.8: Docker vs. native speedup for Ryzen 7 1800X.

Figures 5.7 and 5.8 show that the Ryzen 7 1800X in the native environment
mostly ranges from 10-15% faster to 5% slower. Part of the performance difference
is likely down to the GCC version. The bulk of the run time of the CPU solver is
spent in either FFTW or OpenMP parallel regions interacting with data in Armadillo
matrices. Armadillo is primarily a template-based library, so there should be a
potential for compiler optimizations to make a difference here. The FFTW version
is also likely to have an impact on the performance, as the FFTW_MEASURE planner
flag was used to obtain these results. This flag does not explore all possible planning
options, so minor changes to the planning strategy between FFTW versions could
have a noticeable impact on performance.

In conclusion, there are some minor performance differences between docker and
native, but they appear to be mostly attributed to version differences in each envir-
onment. Docker is known to have some overhead for I/O heavy workloads, but this
does not appear to be an issue for more compute-oriented workloads running on the
CPU or a GPU [11].

40

5.4 Performance on CPU

0 100 200 300 400 500 600 700 800 900 1,000

1

2

3

4

5

6

Sphere size (nm)

Sp
ee
du

p
fa
ct
or

Figure 5.9: Speedup when enabling multiple threads in FFTW for Ryzen 7 1800X.
Number of FFTW threads equal to default number of OpenMP threads, 16 in this
case. FFTW_ESTIMATE planner flag was used.

102 103

1

1.1

1.2

1.3

1.4

1.5

Sphere size (nm)

Sp
ee
du

p
fa
ct
or

Ryzen 7 1800X
i7 7700k

i7 3770k @ 4.4GHz
Minsky

Figure 5.10: Speedup when using FFTW_MEASURE planner flag compared with
FFTW_ESTIMATE (single thread).

41

102 103 104

1

2

4

6

10

20

3

5

8

30

Sphere size (nm)

Sp
ee
du

p
fa
ct
or

(l
og

sc
al
e)

Ryzen 7 1800X
i7 7700k

i7 3770k @ 4.4GHz
Minsky (1 NUMA node)

Minsky

Figure 5.11: Speedup when using FFTW_MEASURE planner flag compared with
FFTW_ESTIMATE (multithreaded).

Figure 5.9 shows that a large performance improvement is made when enabling mul-
tithreading in FFTW8. This is Amdahl’s law in practice [2]. The massive speedup
for all problem sizes except the smallest indicates that the serial FFT/IFFT was
causing weak scaling.

Figures 5.10 and 5.11 show the speedup achieved by using FFTW_MEASURE com-
pared to FFTW_ESTIMATE. When running the solver on a single thread, the speedup
ranges from fairly minor to just over 50%. The multithreaded scenario paints a very
different picture however. While the Ryzen 7 1800X and the two i7s remain well
below a 100% speedup, the Minsky shows huge fluctuations in speedup. It seems
that the FFTW heuristics do a very inconsistent job of predicting the performance
of multithreaded workloads on this machine. To get a reasonably accurate repres-
entation of the CPU performance of all four systems, the FFTW_MEASURE flag has
been used to obtain all the remaining results in this section.

An interesting thing to note is that in Figure 5.11, the i7s and the Ryzen 7
1800X are slower on the smallest problem size when using FFTW_MEASURE. This is
likely a result of the extra copies made to preserve the initial conditions when the
planner is working. Although the planning cost is also higher, the plan is initially
created when doing a reference run (simulating the propagation of x-rays through a
vacuum). Recreating an identical plan in the timed part of the solver is cheap, so
this should not be much of a factor [12].

8In addition to OpenMP multithreading.

42

50 100 250 500 750 1,000

0

20

40

60

80

100

120

140

Sphere size (nm)

So
lv
e
ti
m
e
(s
)

Ryzen 7 1800X
i7 7700k

i7 3770k @ 4.4GHz
Minsky

Figure 5.12: Single-thread CPU performance.

Looking at the single-thread performance shown in Figure 5.12 clearly shows the
difference between the desktop/workstation oriented processors and the Minsky. A
desktop workload often involves interactive programs where parallelism is limited,
so good single-thread performance is essential. The Minsky clearly lags behind in
this department, but it makes up for this deficit by having two CPUs and a total
number of cores greater than the other three systems combined.

Comparing the overclocked i7 3770k with the similarly clocked i7 7700k, we can
see that Intel has made a total IPC improvement of around 30% in the last four
generations of i7 processors. The 3770k even comes close to the lower clocked Ryzen
7 1800X, although it lags behind as the problem size increases. The 7700k is likely
more closely matched with the Ryzen 7 1800X in terms of IPC, and comfortably
pulls ahead thanks to its superior clock speed.

43

50 100 250 500 750 1,000

0

5

10

15

20

25

Sphere size (nm)

So
lv
e
ti
m
e
(s
)

Ryzen 7 1800X
i7 7700k

i7 3770k @ 4.4GHz
Minsky (1 NUMA node)

Minsky

Figure 5.13: Small problem sizes on CPUs.

As Figure 5.13 shows, bringing multiple threads into the equation changes up the
order quite drastically. As the problem size increases, the i7s are relegated to being
the slowest, limited by only having 4 cores. As expected, the Minsky performs much
better. Due to the low single-thread performance, a single Minsky CPU is slightly
slower than the Ryzen 7 1800X, despite having two more cores. When using both
CPUs, the Minsky takes a clear lead as the problem size increases. For the smallest
problem sizes, the overhead caused by the large number of threads combined with
the non-uniform memory access for the two CPUs is apparent. Up until a sphere
radius of 750 nm, a single Minsky CPU actually performs better.

1,500 2,000 2,500
0

200

400

600

800

Sphere size (nm)

So
lv
e
ti
m
e
(s
)

Ryzen 7 1800X
i7 7700k

i7 3770k @ 4.4GHz
Minsky (1 NUMA node)

Minsky

Figure 5.14: Medium problem sizes on CPUs.

44

3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000 7,500 8,000

0:00

1:00

2:00

3:00

4:00

Sphere size (nm)

So
lv
e
ti
m
e
(h
ou

rs
)

Ryzen 7 1800X
i7 7700k

Minsky (1 NUMA node)
Minsky

Figure 5.15: Large problem sizes on CPUs.

The trends established for the small problem sizes in Figure 5.13 continue in
figures 5.14 and 5.15. As the problem size grows larger, the relative overhead from
the number of threads continues to decrease. For the last of the large problem sizes,
the Ryzen 7 1800X and single Minsky CPU show nearly double the performance of
the i7 7700k. The Minsky is nearly twice as fast using both CPUs compared to a
single CPU. This is Gustafson’s law in action [19].

102 103 104

10−2

10−1

100

101

102

103

104

Sphere size (nm)

So
lv
e
ti
m
e
(s
)

Ryzen 7 1800X
i7 7700k

i7 3770k @ 4.4GHz
Minsky (1 NUMA node)

Minsky

Figure 5.16: Small, medium and large problem sizes on CPUs.

45

5.5 Performance on GPU

50 100 250 500 750 1,000

0

1

2

3

4

5

6

Sphere size (nm)

So
lv
e
ti
m
e
(s
)

P100
Titan V
K40

GTX 780
GTX 980

Figure 5.17: Small problem sizes on GPUs.

For the two smallest problem sizes shown in Figure 5.17, all five GPUs are fast
enough to be practically indistinguishable. From sphere radius 250 nm and up, a
clear pattern starts to emerge. Somewhat surprisingly, the GTX 780 is consistently
faster than its successor, the GTX 980. Looking at the specs in section 5.2, we can
see that the GTX 980 has around 26/29% (base/boost) more clock speed, while the
GTX 780 has just over 12% more CUDA cores. For an FP32 workload, this should
work out in favour of the GTX 980. However, this is an FP64 workload and the
GTX 780 has 1/3 higher FP64 rate than the GTX 980, giving the overall edge to
the GTX 780.

The importance of the FP64 rate is highly apparent when comparing the per-
formance of the professional-grade Tesla K40 with the consumer-grade GTX 780,
both based on the Kepler architecture. They have roughly the same amount of
memory bandwidth, while the K40 has a lower clock speed (roughly 16% lower base
clock), but slightly more CUDA cores (25%). Naively, this would lead you to think
that the performance of the K40 should be around 5% faster than the GTX 780.
The main difference between these two GPUs is the FP64 rate (and memory size),
which is 8 times higher on the K40. This results in the K40 being anywhere from
50% to over 100% faster.

Figure 5.17 also shows a bit of an anomaly for the 750 nm sphere radius, with
the K40, Titan V and P100 being slower than on the 1000 nm sphere radius. This
likely relates directly to the findings in section 5.3, where CUDA 9.2 showed a
significant speedup over CUDA 9.0 for sphere radius 250 nm and 750 nm. In other
words, it is a performance problem with cuFFT. That still leaves the question of why
the GTX 780/980 is not affected. It could be that cuFFT uses a different plan on
these GPUs. Alternatively, it could be that the poor performance is caused by bad
memory access patterns in global or shared memory (lack of coalescing or shared

46

memory bank conflicts). Due to the terrible FP64 rate of the GTX 780/980, these
GPUs might be compute-bound even with bad memory access patterns, effectively
masking the problem.

1,500 2,000 2,500

0

20

40

60

80

100

120

140

Sphere size (nm)

So
lv
e
ti
m
e
(s
)

P100
Titan V
K40

GTX 780
GTX 980

Figure 5.18: Medium problem sizes on GPUs.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

·104

0:00

0:30

1:00

1:30

2:00

2:30

Sphere size (nm)

So
lv
e
ti
m
e
(h
ou

rs
)

P100
Titan V
K40

GTX 780
GTX 980

Figure 5.19: Large and huge problem sizes on GPUs.

While Figure 5.18 does not reveal anything particularly interesting, we can see
that in Figure 5.19, the plots come to an end at different problem sizes. This
is simply a result of running out of GPU memory and not being able to run the
simulation. The GTX 780/980 make it to the 5000 nm radius with respectively
3/4GB of memory. Both the K40 and Titan V make it to 10 000 nm, with both

47

GPUs having 12GB of memory. Finally, the P100 makes it to 12 000 nm before
exhausting its 16GB of memory.

An interesting trend that is present through all problem sizes, is that the P100
and Titan V are very closely matched. Looking at the specs (see section 5.2), it
seems that the Titan V should beat the P100 by a significant margin. Although
the Titan V has a slightly lower base clock, the boost clocks are closely matched.
Memory bandwidth only favours the P100 by around 10%. This means that the
Titan V’s >40% CUDA core advantage should be enough to make a significant
difference. With the P100 and Titan V trading blows in terms of being the fastest,
this is obviously not the case. The intuitive conclusion might be that the workload
is memory-bound, but profiling showed that this was not the source of the problem.

Figure 5.20 shows a timeline of memcpy and kernel execution on the P100. For
every step that is solved, the solution is copied back to the host to be downsampled
and stored for post-processing. This happens asynchronously, so that the next step
can be solved while the previous one is being copied back to the host. For the GTX
780/980, K40 and P100, solving a step takes longer than copying the solution back
to the host. As we can see in Figure 5.21, this is not the case for the Titan V.

Figure 5.20: Excerpt from P100 profiling timeline showing two steps for sphere
radius 2500 nm (top: memcpy, bottom: kernel execution).

Figure 5.21: Excerpt from Titan V profiling timeline showing two steps for sphere
radius 2500 nm (top: memcpy, bottom: kernel execution).

Looking at the memcpy bandwidth for these two profiling runs, the Titan V
achieves an average of 12.68GB/s. Meanwhile, the P100 achieves an average band-
width of 33.24GB/s. This shows the massive difference in bandwidth between
NVLink and PCIe 3.0, and makes it clear that the Titan V is being bottlenecked by
the interconnect. The profiling data for these particular runs shows that the Titan
V spent approximately 13.8 seconds copying data to the host, but only around 7.1
seconds were spent actually executing kernels. This means that a faster intercon-
nect could nearly double the performance. For reference, the P100 spent around 9.9
seconds executing kernels for the same problem size9, meaning that the Titan V is
nearly 40% faster in terms of pure compute. This aligns much better with the specs
of the two GPUs.

9Profiling also showed that they were running the same FFT kernels, meaning that cuFFT
generated identical plans for both GPUs.

48

102 103 104
10−3

10−2

10−1

100

101

102

103

104

Sphere size (nm)

So
lv
e
ti
m
e
(s
)

P100
Titan V
K40

GTX 780
GTX 980

Figure 5.22: All problem sizes on GPUs.

5.6 Comparison between CPU and GPU perform-
ance

Figures 5.23, 5.24 and 5.25 show the speedup each GPU achieves compared to the
i7 7700k, Ryzen 7 1800X and Minsky CPUs, using the FFTW_MEASURE planner flag.
With the exception of the smaller problem sizes where the Minsky struggles, the
overall trend is consistent. All GPUs have a dip in speedup at the 750 nm sphere
radius, which is down to a performance issue with cuFFT in CUDA version 9.0,
as discussed in section 5.3. The best speedup is generally achieved for the problem
sizes ranging from radius 1000 nm to 2500 nm. From 3000 nm and up, performance
appears to drop off relative to the CPUs.

cuFFT typically takes up more than 80% of the execution time of the GPU-
based solver (sometimes more than 90%, depending on the problem size). Because
cuFFT is a closed-source library, there is very little insight into the internal workings
of the planner. This in turn makes it difficult to reason about the performance
characteristics in relation to the problem size.

Speaking in general terms, the key to achieving good performance on GPUs
is to have as many resident warps as possible on each SM (typically referred to
as occupancy). Having many resident warps (high occupancy) makes it possible
for the SM to always stay busy, because there are always warps that are ready to
execute. With only a few resident warps (low occupancy), there may be situations
where all warps are waiting for memory accesses or other dependencies, causing the
SM to sit idle. Each SM has two main resources that are divided between resident
warps: registers and shared memory. If a kernel requires a large amount of registers
or shared memory, this will cause poor occupancy and likely poor performance.
Conversely, if the problem size is small (meaning a small number of blocks and
threads), occupancy will be low regardless of the register and shared memory usage.

49

With these general observations, it makes sense that the speedup of the GPUs
relative to the CPUs increases with the problem size up to a certain limit (reaching
optimal occupancy), before declining again (contention for registers and/or shared
memory hurts occupancy).

A less technical justification for the performance scaling behaviour of cuFFT
could simply be that NVIDIA has spent more time optimizing for a certain range
of problem sizes. As shown in section 5.3, the performance of cuFFT is a constant
work in progress.

102 103 104

1

2

4
6

10

20

40
60

100

3
5
8

30
50
80

Sphere size (nm)

Sp
ee
du

p
fa
ct
or

(l
og

sc
al
e)

P100
Titan V
K40

GTX 780
GTX 980

Figure 5.23: GPU speedup compared to i7 7700k.

102 103 104

1

2

4

6

10

20

40

3

5

8

30

Sphere size (nm)

Sp
ee
du

p
fa
ct
or

(l
og

sc
al
e)

P100
Titan V
K40

GTX 780
GTX 980

Figure 5.24: GPU speedup compared to Ryzen 7 1800X.

50

102 103 104

1

2

4
6

10

20

40
60

100

3
5
8

30
50
80

Sphere size (nm)

Sp
ee
du

p
fa
ct
or

(l
og

sc
al
e)

P100
Titan V
K40

GTX 780
GTX 980

Figure 5.25: GPU speedup compared to Minsky CPUs.

Focusing on the affordable consumer-grade CPUs (i7 7700k, Ryzen 7 1800X)
and high-end gaming GPUs (GTX 780/980), a respectable speedup of at least 2x
is achieved for most problem sizes. For the 7700k, only the smallest problem size
falls significantly below 2x, while the peak speedup is just over 5x. As mentioned in
section 5.5, the FP64 performance is a real weak point for the GTX 780/980. It is
likely they would have a speedup closer to the Tesla K40 if an FP32 version of both
the CPU and GPU-solver was implemented. While the CPUs would likely also get
some speedup with FP32, the difference should not be nearly as dramatic.

At the opposite end of the affordability-spectrum, the Tesla P100 and Titan
V are faster by more than an order of magnitude for many of the problem sizes.
Thanks to the price and consumer availability of these GPUs, it is not entirely fair
to compare them to consumer-grade CPUs. However, even against the dual CPUs in
the Minsky they still manage to be an order of magnitude faster for the moderately
large problem sizes ranging from 1000 nm to 2500 nm. The Minsky CPUs fare better
against the GTX 780/980 and K40, nearly matching and even beating the GPUs
for the largest problem sizes.

51

102 103 104

10−3

10−2

10−1

100

101

102

103

104

Sphere size (nm)

So
lv
e
ti
m
e
(s
)

Ryzen 7 1800X
i7 7700k

i7 3770k @ 4.4GHz
Minsky (1 NUMA node)

Minsky
P100

Titan V
K40

GTX 780
GTX 980

Figure 5.26: All problem sizes on all hardware.

52

Chapter 6

Conclusions and Future Work

6.1 Conclusions

A GPU-based solver implementing the Split-Step Fourier Transform Method
(SSFTM) was successfully implemented in PaXPro. Verification tests comparing
the simulation results with the existing CPU-based implementation were used to
show that the GPU-based implementation was giving correct results.

Tools for benchmarking the CPU and GPU based SSFTM solvers in PaXPro
were created to be able to analyze the performance. The benchmark program itself
was created to allow for a wide range of problem sizes specified at run time. Several
scripts were created to automate running the benchmark for a range of problem
sizes, and help the user analyze the results.

A docker image was created to allow the PaXPro benchmark to run with a near-
identical configuration in terms of dependencies across a wide range of systems. The
overhead added by using docker was shown to be negligible due to the compute-
bound nature of the workload. This allowed a fair comparison between CPUs and
GPUs to be made across a range of different systems, emphasizing the differences
between the hardware and not the software.

The benchmarking results show that a good speedup was achieved for the existing
SSFTM CPU solver through optimizing the usage of FFTW. Performance differences
between the different CPUs tested for single thread and multithreaded benchmarks
indicate that the solver has strong scaling characteristics when increasing the number
of CPU cores available.

GPUs were able to achieve significant speedups, even against the optimized CPU
solver. While the speedup achieved on the consumer-grade GPUs was respectable,
the professional-grade GPUs were significantly more impressive. Considering that
professional-grade NVIDIA GPUs are often an order of magnitude more expensive
than consumer-grade NVIDIA GPUs (in some cases it is not even possible to buy
standalone GPUs) somewhat diminishes these results, as they will not be attainable
for the average user.

An interesting discovery was made for the Titan V GPU. Profiling revealed that
the PCIe 3.0 interconnect was severely bottlenecking the performance. No other
GPUs using PCIe 3.0 had issues with the bandwidth, but the Titan V has far more
compute power than the other GPUs. This shows the importance of NVLink and

53

the coming PCIe 4.0 for future high-end GPUs [33].

6.2 Future work
As discussed in section 5.5, FP64 performance is a severely limiting factor for af-
fordable consumer-grade GPUs. Due to the drastic difference between the FP32
and FP64 rate on these GPUs, it seems likely that a significantly better speedup
could be achieved by reducing the precision. Reducing the precision does of course
reduce the accuracy of the simulation results, and this is a tradeoff that has to be
considered. It may not make sense to reduce the floating point precision if perform-
ance is only an issue for problem sizes large enough that the floating point precision
can cause a noticeable difference in the simulation results.

In this thesis, only one of several solver methods were implemented in CUDA.
Each of the solver methods have different characteristics [23] and may be interesting
for different problems. For this reason, implementing the other solvers in CUDA
could also be a topic for future work.

The NTNU HPC-Lab has several systems available with multiple GPUs. It could
be feasible to extend the current implementation of the GPU-based SSFTM solver
to work with multiple GPUs. This could potentially enable greater speedup and
allow for running even larger problem sizes (assuming the simulation data can be
split evenly across all GPUs).

One of the current weaknesses of the GPU-based SSFTM solver is that the user is
forced to implement their own CUDA compatible MaterialFunction derived class
to represent the refractive index. PaXPro already has the CSGMaterial class that
supports using geometry created in OpenSCAD (http://www.openscad.org/), but
this class in its current state is not compatible with CUDA in the sense that it can
actually be used in device code. There are two main reasons for this. First and
foremost, it uses some functionality from the C++ standard library, none of which
is supported in CUDA device code. This functionality can likely be replaced by
libraries bundled with CUDA. The second issue is that the representation of the
geometry is stored in a tree structure. When copying an object of the CSGMaterial
class to the device, this tree structure must be recreated on the device. This is not
straightforward, because the nodes in the tree are objects of a class with virtual
functions. As discussed in subsection 4.3.1, there are some limitations that apply
when transferring objects with virtual functions from host to device (or vice versa).
This means that the tree structure must be recreated with kernels that create the
correct nodes on the device, as opposed to merely copying the node objects from
the host and updating the pointers.

54

http://www.openscad.org/

References

[1] AMD Ryzen™ 7 1800X Processor. url: https://www.amd.com/en/products/
cpu/amd-ryzen-7-1800x (visited on 24/07/2018).

[2] Gene M. Amdahl. ‘Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities’. In: Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference. AFIPS ’67 (Spring). Atlantic City, New
Jersey: ACM, 1967, pp. 483–485. doi: 10.1145/1465482.1465560.

[3] ASUS GeForce® GTX 780 DirectCU II. url: https : / / www . asus .
com / Graphics - Cards / GTX780DC2OC3GD5 / specifications/ (visited on
24/07/2018).

[4] Callgrind: a call-graph generating cache and branch prediction profiler.
url: http://valgrind.org/docs/manual/cl- manual.html (visited on
01/08/2018).

[5] B. Cloutier, B. K. Muite and P. Rigge. ‘Performance of FORTRAN and C GPU
Extensions for a Benchmark Suite of Fourier Pseudospectral Algorithms’. In:
2012 Symposium on Application Accelerators in High Performance Computing.
July 2012, pp. 145–148. doi: 10.1109/SAAHPC.2012.24.

[6] CMake 3.8 Release Notes. url: https://cmake.org/cmake/help/v3.8/
release/3.8.html (visited on 23/07/2018).

[7] CUDA C Programming Guide. url: https://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html (visited on 01/08/2018).

[8] Ian Cutress. The AMD Zen and Ryzen 7 Review: A Deep Dive on 1800X,
1700X and 1700. 2nd Mar. 2017. url: https://www.anandtech.com/show/
11170/the-amd-zen-and-ryzen-7-review-a-deep-dive-on-1800x-
1700x-and-1700 (visited on 24/07/2018).

[9] Debian “stretch” Release Information. url: https : / / www . debian . org /
releases/stretch/ (visited on 22/07/2018).

[10] Fedora 25 Schedule. url: https://fedoraproject.org/wiki/Releases/25/
Schedule (visited on 22/07/2018).

[11] W. Felter et al. ‘An updated performance comparison of virtual machines and
Linux containers’. In: 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). Mar. 2015, pp. 171–172. doi:
10.1109/ISPASS.2015.7095802.

[12] FFTW FAQ - Section 3: Using FFTW. url: http://www.fftw.org/faq/
section3.html (visited on 29/07/2018).

55

https://www.amd.com/en/products/cpu/amd-ryzen-7-1800x
https://www.amd.com/en/products/cpu/amd-ryzen-7-1800x
https://doi.org/10.1145/1465482.1465560
https://www.asus.com/Graphics-Cards/GTX780DC2OC3GD5/specifications/
https://www.asus.com/Graphics-Cards/GTX780DC2OC3GD5/specifications/
http://valgrind.org/docs/manual/cl-manual.html
https://doi.org/10.1109/SAAHPC.2012.24
https://cmake.org/cmake/help/v3.8/release/3.8.html
https://cmake.org/cmake/help/v3.8/release/3.8.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.anandtech.com/show/11170/the-amd-zen-and-ryzen-7-review-a-deep-dive-on-1800x-1700x-and-1700
https://www.anandtech.com/show/11170/the-amd-zen-and-ryzen-7-review-a-deep-dive-on-1800x-1700x-and-1700
https://www.anandtech.com/show/11170/the-amd-zen-and-ryzen-7-review-a-deep-dive-on-1800x-1700x-and-1700
https://www.debian.org/releases/stretch/
https://www.debian.org/releases/stretch/
https://fedoraproject.org/wiki/Releases/25/Schedule
https://fedoraproject.org/wiki/Releases/25/Schedule
https://doi.org/10.1109/ISPASS.2015.7095802
http://www.fftw.org/faq/section3.html
http://www.fftw.org/faq/section3.html

[13] FFTW3 Docs: Planner Flags. url: http://www.fftw.org/fftw3_doc/
Planner-Flags.html (visited on 28/07/2018).

[14] FFTW3 GitHub Issue #18: " error: identifier "__float128" is undefined "
when using CUDA. url: https://github.com/FFTW/fftw3/issues/18
(visited on 23/07/2018).

[15] M. J. Flynn. ‘Some Computer Organizations and Their Effectiveness’. In:
IEEE Transactions on Computers C-21.9 (Sept. 1972), pp. 948–960. issn:
0018-9340. doi: 10.1109/TC.1972.5009071.

[16] GeForce GTX 780 - Specifications. url: https : / / www . geforce . com /
hardware/desktop-gpus/geforce-gtx-780/specifications (visited on
24/07/2018).

[17] GeForce GTX 980 - Specifications. url: https : / / www . geforce . com /
hardware/desktop-gpus/geforce-gtx-980/specifications (visited on
24/07/2018).

[18] N. K. Govindaraju et al. ‘High performance discrete Fourier transforms on
graphics processors’. In: 2008 SC - International Conference for High Per-
formance Computing, Networking, Storage and Analysis. Nov. 2008, pp. 1–12.
doi: 10.1109/SC.2008.5213922.

[19] John L. Gustafson. ‘Reevaluating Amdahl’s Law’. In: Commun. ACM 31.5
(May 1988), pp. 532–533. issn: 0001-0782. doi: 10.1145/42411.42415.

[20] Intel® Core™ i7-3770K Processor. url: https://ark.intel.com/products/
65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz
(visited on 24/07/2018).

[21] Intel® Core™ i7-7700K Processor. url: https://ark.intel.com/products/
97129/Intel-Core-i7-7700K-Processor-8M-Cache-up-to-4_50-GHz
(visited on 24/07/2018).

[22] JsonCpp GitHub Issue #486: nvcc + gcc -> error. url: https://github.
com/open-source-parsers/jsoncpp/issues/486 (visited on 23/07/2018).

[23] David Kleiven. ‘Simulation of X-ray Propagation in Guiding Structures and
Light Scattering From Coccoliths Using Finite Difference Methods’. MA thesis.
Norwegian University of Science and Technology (NTNU), 2017.

[24] Paul Kocher et al. ‘Spectre Attacks: Exploiting Speculative Execution’. In:
ArXiv e-prints (Jan. 2018). arXiv: 1801.01203.

[25] Mireille Levy. Parabolic equation methods for electromagnetic wave propaga-
tion. 45. IET, 2000.

[26] Moritz Lipp et al. ‘Meltdown’. In: ArXiv e-prints (Jan. 2018). arXiv: 1801.
01207.

[27] NVIDIA CUDA Runtime API. url: https://docs.nvidia.com/cuda/cuda-
runtime-api/index.html (visited on 01/08/2018).

[28] NVIDIA CUDA Toolkit Release Notes (CUDA 9.1). url: https://docs.
nvidia.com/cuda/archive/9.1/cuda-toolkit-release-notes/index.
html (visited on 25/07/2018).

56

http://www.fftw.org/fftw3_doc/Planner-Flags.html
http://www.fftw.org/fftw3_doc/Planner-Flags.html
https://github.com/FFTW/fftw3/issues/18
https://doi.org/10.1109/TC.1972.5009071
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-780/specifications
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-780/specifications
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980/specifications
https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980/specifications
https://doi.org/10.1109/SC.2008.5213922
https://doi.org/10.1145/42411.42415
https://ark.intel.com/products/65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz
https://ark.intel.com/products/65523/Intel-Core-i7-3770K-Processor-8M-Cache-up-to-3_90-GHz
https://ark.intel.com/products/97129/Intel-Core-i7-7700K-Processor-8M-Cache-up-to-4_50-GHz
https://ark.intel.com/products/97129/Intel-Core-i7-7700K-Processor-8M-Cache-up-to-4_50-GHz
https://github.com/open-source-parsers/jsoncpp/issues/486
https://github.com/open-source-parsers/jsoncpp/issues/486
https://arxiv.org/abs/1801.01203
https://arxiv.org/abs/1801.01207
https://arxiv.org/abs/1801.01207
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://docs.nvidia.com/cuda/archive/9.1/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/archive/9.1/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/archive/9.1/cuda-toolkit-release-notes/index.html

[29] NVIDIA CUDA Toolkit Release Notes (CUDA 9.2). url: https://docs.
nvidia.com/cuda/cuda-toolkit-release-notes/index.html (visited on
25/07/2018).

[30] NVIDIA Tesla P100. The Most Advanced Datacenter Accelerator Ever Built.
url: https://images.nvidia.com/content/pdf/tesla/whitepaper/
pascal-architecture-whitepaper.pdf (visited on 02/08/2018).

[31] nvidia/cuda Docker Repository. url: https://hub.docker.com/r/nvidia/
cuda/ (visited on 23/07/2018).

[32] nvidia/cuda-ppc64le Docker Repository. url: https://hub.docker.com/r/
nvidia/cuda-ppc64le/ (visited on 23/07/2018).

[33] Nate Oh. PCI-SIG Finalizes and Releases PCIe 4.0, Version 1 Specification: 2x
PCIe Bandwidth and More. 26th Oct. 2017. url: https://www.anandtech.
com / show / 11967 / pcisig - finalizes - and - releasees - pcie - 40 - spec
(visited on 03/08/2018).

[34] J. D. Owens et al. ‘GPU Computing’. In: Proceedings of the IEEE 96.5 (May
2008), pp. 879–899. issn: 0018-9219. doi: 10.1109/JPROC.2008.917757.

[35] Releases - Ubuntu Wiki. url: https://wiki.ubuntu.com/Releases (visited
on 22/07/2018).

[36] G. Ruhl et al. ‘IA-32 Processor with a Wide-Voltage-Operating Range in 32-
nm CMOS’. In: IEEE Micro 33.2 (Mar. 2013), pp. 28–36. issn: 0272-1732.
doi: 10.1109/MM.2013.8.

[37] Bahaa EA Saleh, Malvin Carl Teich and Bahaa E Saleh. Fundamentals of
photonics. Vol. 22. Wiley New York, 1991. doi: 10.1002/0471213748.

[38] Ryan Smith. NVIDIA Announces Tesla P100 Accelerator - Pascal GP100
Power for HPC. 5th Apr. 2016. url: https://www.anandtech.com/show/
10222/nvidia-announces-tesla-p100-accelerator-pascal-power-for-
hpc (visited on 24/07/2018).

[39] Ryan Smith and Nate Oh. The NVIDIA Titan V Preview - Titanomachy: War
of the Titans. 20th Dec. 2017. url: https://www.anandtech.com/show/
12170/nvidia-titan-v-preview-titanomachy (visited on 24/07/2018).

[40] TESLA K40 GPU ACCELERATOR. Nov. 2013. url: http://www.nvidia.
com/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-Spec-BD-
06902-001_v05.pdf (visited on 24/07/2018).

[41] S. E. Thompson. ‘Power, cost and circuit IP reuse: The real limiter to Moore’s
Law over the next 10 years’. In: Proceedings of 2010 International Symposium
on VLSI Technology, System and Application. Apr. 2010, pp. 88–89. doi: 10.
1109/VTSA.2010.5488936.

[42] Scott Vetter, Alexandre Bicas Caldeira and Volker Haug. IBM Power System
S822LC for High Performance Computing Introduction and Technical Over-
view. 26th Oct. 2016. url: http://www.redbooks.ibm.com/abstracts/
redp5405.html?Open (visited on 24/07/2018).

57

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://hub.docker.com/r/nvidia/cuda/
https://hub.docker.com/r/nvidia/cuda/
https://hub.docker.com/r/nvidia/cuda-ppc64le/
https://hub.docker.com/r/nvidia/cuda-ppc64le/
https://www.anandtech.com/show/11967/pcisig-finalizes-and-releasees-pcie-40-spec
https://www.anandtech.com/show/11967/pcisig-finalizes-and-releasees-pcie-40-spec
https://doi.org/10.1109/JPROC.2008.917757
https://wiki.ubuntu.com/Releases
https://doi.org/10.1109/MM.2013.8
https://doi.org/10.1002/0471213748
https://www.anandtech.com/show/10222/nvidia-announces-tesla-p100-accelerator-pascal-power-for-hpc
https://www.anandtech.com/show/10222/nvidia-announces-tesla-p100-accelerator-pascal-power-for-hpc
https://www.anandtech.com/show/10222/nvidia-announces-tesla-p100-accelerator-pascal-power-for-hpc
https://www.anandtech.com/show/12170/nvidia-titan-v-preview-titanomachy
https://www.anandtech.com/show/12170/nvidia-titan-v-preview-titanomachy
http://www.nvidia.com/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001_v05.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001_v05.pdf
http://www.nvidia.com/content/PDF/kepler/Tesla-K40-PCIe-Passive-Board-Spec-BD-06902-001_v05.pdf
https://doi.org/10.1109/VTSA.2010.5488936
https://doi.org/10.1109/VTSA.2010.5488936
http://www.redbooks.ibm.com/abstracts/redp5405.html?Open
http://www.redbooks.ibm.com/abstracts/redp5405.html?Open

58

Appendices

59

Appendix A

Source Code

The git repositories used in this project are shown in Table A.1. Note that the
docker repository has the PaXPro and VISA repositories as git submodules with
relative URLs. This means that they must have the same parent in the URL (in the
case of GitHub, this means that the same user must host all three repositories).

Table A.1: Git repositories used for this project.

Repository URL
PaXPro https://github.com/acelster/paxpro-ntnu.git/
VISA1 https://github.com/acelster/visa-ntnu.git/
Docker https://github.com/acelster/paxpro-docker.git/

1VISA is a dependency of PaXPro used for visualization in some solvers.

61

https://github.com/acelster/paxpro-ntnu.git/
https://github.com/acelster/visa-ntnu.git/
https://github.com/acelster/paxpro-docker.git/

	Introduction
	Project goals and contributions
	Report outline

	GPU Computing
	Parallel computing
	General-purpose GPU computing
	NVIDIA CUDA
	Programming model
	Memory types
	Streams and concurrency

	About PaXPro
	X-ray physics
	Codebase structure

	Improving the Performance of PaXPro
	Performance profiling
	Optimizations
	FFTW threads
	FFTW planning rigor

	CUDA implementation
	Challenges
	Implementation

	Benchmarking and Results
	Benchmarking method
	Problem
	Problem sizes and collecting results
	Running on multiple systems
	Docker setup

	Systems used
	Docker vs. native performance
	Performance on CPU
	Performance on GPU
	Comparison between CPU and GPU performance

	Conclusions and Future Work
	Conclusions
	Future work

	References
	Appendices
	Source Code

