
Multiple Instance Learning for Car Brand
Classification in the Leboncoin Online
Marketplace

Martin Hallen

Master of Science in Computer Science

Supervisor: Helge Langseth, IDI
Co-supervisor: Ning Zhou, Schibsted ASA

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology



 



Human accuracy is not a point.
It lives on a tradeoff curve.

- Andrej Karpathy





Abstract

This research project applies machine learning to a large-scale dataset of car images from
the marketplace website Leboncoin. The project develops a model that classifies images
from sales ads of cars with the brand of the car. The model combines the predictions of all
the images within an ad to achieve an ad-wise classification.

The motivation behind automatic image classification is to increase accuracy, identify
mislabeled items and guide the user through the registration process of a sales ad. The
methods developed in this project can be applied to a variety of visual classification tasks,
such as other e-commerce sites, medical imagery and video classification.

The project uses transfer learning to obtain faster training and higher accuracy due to a
limited size of the dataset. The combination of predictions draws inspiration from multiple
instance learning and shows that averaging of the predictions is a powerful bag-of-instance
classifier.

The classifier developed in this project gives an accuracy of 0.823 and 0.945 for image-
wise and ad-wise respectively.
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Sammendrag

Dette forskningsprosjektet bruker maskinlæring på et stor-skala datasett av bilannonser fra
markedsplass-nettsiden Leboncoin. Prosjektet utvikler en modell som klassifiserer bilder
fra bilannonser med riktig bilmerke. De inviduelle prediksjonene blir så slått sammen for
å danne en prediksjon for hele annonsen.

Motivasjonen bak automatisk bildeklassifikasjon er å økt nøyaktigheten, identifisere
feilklassifiserte annonser og hjelpe brukeren gjennom registreringsprosessen av en an-
nonse. Metodene som er brukt i dette prosjektet kan overføres til andre visuelle klassi-
fiseringsproblemer, slik som andre markedsplass-nettsider, medisinsk fotografi og video
klassifisering.

Prosjektet bruker overføringslæring for å oppnå kortere treningstid og høyere nøyaktighet.
Dette er begrunnet i en begrenset datasettstørrelse. Sammenslåingen av prediksjoner hen-
ter inspirasjon fra multiinstans-læring og viser at man kan oppnå en kraftig modell ved å
ta gjennomsnittet av prediksjonene.

Klassifiseringsmodellen som er utviklet i dette prosjektet gir en treffprosent på 82.3%
og 94.5% på henholdsvis bilder og annonser.
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Chapter 1
Introduction

1.1 Background and Motivation

The Leboncoin website is a consumer-to-consumer marketplace website located in France.
At the moment of writing, it contains 881 thousands car ads [12]. The site monetizes on
sales between its users. A satisfied user is a prerequisite to increase the number of sales
and is therefore a main priority.

For a user to buy an item, the user has to find the item. Most e-commerce sites have
options to search for an item as well as categories to place the different sales ads in. On
Leboncoin, one of these categories is cars. The categories are hierarchical, where the brand
of a car is a subcategory of the car category. Advanced search options makes it possible
to filter ads on queries, year of making, brand, model and mileage. It is important to keep
ads correctly categorized. Failing to do this can result in dissatisfied users and users that
do not find the item they are looking for.

The users are responsible for correctly categorizing the items they are selling. Consumer-
to-consumer marketplace websites have users that might not have the knowledge to cor-
rectly categorize the ads themselves. Automatic classification tools can guide the user
through this process. However, automatic classification is not trivial and is currently an
active field of research.

When users are looking at a sales ad, they might find themselves wanting a similar
item, but not quite the current one. Sites like Amazon proposes a set of other items fre-
quently bought by users buying the current items. Other sites display items in the same
subcategory. The similar ads are often selected based on category of the current item or
purchases done by other users looking at the same ad. The images in the sales ad often
provide a lot of information, although this information might be difficult to automatically
process.

E-commerce sites are big business. As an example, finn.no was the 6th biggest website
for Norwegian users in 2012. Finn.no was only surpassed by vg.no regarding most visits
by a Norwegian based websites. Finn.no had almost 800.000 daily users in 2012 [17]. The
large scale usage of e-commerce sites does not only generate revenue, but also a lot of
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Chapter 1. Introduction

information.
Big datasets can be difficult and time consuming to manually analyze. Machine learn-

ing has proved useful to extract relevant information from such datasets. Recent advances
in image classification provide a platform for learning features in images. These features
can be used to correctly classify ads based on the images. An image classification system
can generate valuable insight as well as help users.

1.2 Research Goals
Based on our motivation we define the following goal:

Goal: Create an accurate classification model to classify car sales ads based on images
from the Leboncoin e-commerce website.

The categories we are interested in are the brand, model and year model of a car.
An accurate classification model to classify sales ads will make it possible to improve the
current user interface and guide the user through the sales ad registration and sales process.
In addition, the results can give important knowledge to the Schibsted team which can be
generalized and applied to other e-commerce sites in the Schibsted Media Group.

From a scientific standpoint, we are also interested in the methods used to create such
a classification method. We therefore define some research questions that can give a per-
formance measure of the model.

We would like to investigate the challenges with a dataset created by the users of the
website. Can machine learning be used if the dataset is not cleaned. We expect the dataset
to contain noise in form of images which are hard to generalize on. How does this affect
the model? We define this question as RQ1

Research question 1: What are the main challenges with a training dataset created by a
user base?

In addition, we hypothesize that multiple images will improve the accuracy of the model.
We want to utilize the dataset structure in a way to use the full potential. Answering RQ2
is therefor necessary to achieve the goal of the project.

Research question 2: Each sales ad consist of one or more images. How can we utilize
multiple images to improve accuracy of the model?

1.3 Research Scope
Even though image classification seems like a narrow field of research, there are a wide
variety of methods and models which are actively used. Classification tasks span from
video, object detection, object classification and similarity between images. Although the
domains share similarities as well as learning methods, we have to frame the project and
define a scope to restrict the comprehensiveness of the research.

The thesis will give a proof of concept for one specific machine learning method. It
will show the effectiveness of machine learning methods on image classification and how
it can be applied on a dataset without much cleaning.

2



1.4 Research Method

1.4 Research Method

The research of this project is highly data-driven. First of all, it is important to understand
the dataset properly. It is only when we have understood the dataset structure that we can
do research into making a as good classifier as possible.

A research like this one is iterative and open for changes. In the start of the research,
we lacked the knowledge to make a detailed schedule or plan. The research contained
multiple main aspects as listed below.

1. Obtain the dataset: A prerequisite for a data-driven research project is the dataset.
Not all datasets are open and free to use. Therefore, a number of precautions had to
be taken to obtain the dataset. When the dataset is obtained, it also has to be stored
in a secure place, only accessible for people that need access. However, it has to be
easily accessible to the model and analysis platform.

2. Setup of computing platform: A large dataset require a lot of computing power. A
personal computer might therefor lack the ability to run the model and the analysis
of the dataset. This step is therefor crucial to bootstrap the project. The computing
platform should support all necessary software libraries and should be able to store
the dataset.

3. Dataset analysis: The next step is to understand the dataset. This step is a pre-
requisite for most of the following steps. We are interested in the properties of the
dataset, the distributions and the similarity to known datasets.

4. Background research: The background research is the backbone of every research
project. This is the step where we can stand on the shoulders of giants and create a
basis for further investigation.

The first part of the background research was to find the state-of-the art classifier
methods on similar datasets as the one in this project. Then we expanded our knowl-
edge by reading papers that were referenced and relevant.

5. Develop classifier model: The goal of the project is to develop an accurate clas-
sification model. This step is therefore central in the research. The background
research will provide us with a platform which we can expand on.

6. Run benchmarks and analyze the results: The classifier has to be tested to evalu-
ate the model. Analysis of the results are necessary to improve the model in further
iterations.

As the project developed, it was clear that many of the tasks was interleaved. The
dataset analysis and background research was an iterative process. Discovering new fea-
tures in the dataset required more literature to be read.

The development of the classifier is highly connected to analysis of the results. New
results leads to new questions, as well as problems with the current solution. A thorough
analysis helps us to discover weaknesses in the model.

3
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1.5 Contributions
This thesis performs multiple instance image classification on data created by users. The
research shows that combining predictions on multiple input improves the classification
accuracy. It also shows that a naı̈ve averaging of the predications outperforms more com-
plicated approaches. The results presented in this thesis can be applied to other datasets
and improve accuracy in fields such as video classification, image detection in medicine
and e-commerce.

1.6 Thesis Structure
The thesis is divided into six chapters which contributes to the thesis in different ways.
The first three chapters will introduce the problem and the relevant related work to the
thesis.

• Chapter 1 introduces the project. It includes the motivation for the project and
the goals we are set to solve. The chapter explains how the research contributes in
the research field of image classification. Finally it lists what the different chapters
contains.

• Chapter 2 introduces the dataset used in the research. The dataset is introduced
early in the thesis to give an understanding of the challenges and the possibilities in
the research. A good introduction is necessary to understand the relevance of the
background theory as well as the decisions made during the research.

• Chapter 3 contains relevant background information and refers to state-of-the art
research in the domain of image classification. The chapter includes basic theory
about Artificial Neural Networks as well as an into-depth explanation Convolutional
Neural Networks and the building stones of todays state-of-the-art deep learning
libraries. In addition, the chapter explains the concepts of Transfer Learning and
Multiple Instance Learning.

The next two chapters contains the information which are necessary to reconstruct the
project. They describe the complete setup including architecture, constants, research plan
and results.

• Chapter 4 describes the implementation of the model. It includes the architecture
of the neural network used in the research as well as the general structure of the
program.

• Chapter 5 is the chapter describing the conducted experiments. First, it introduces
the experimental plan. It then follows with a complete explanation of the experi-
mental setup, including the hardware and the software libraries used to conduct the
experiments. The last part of the chapter includes the results of the experiments.

The final two chapters discusses the results achieved in the research compared to the
research goals, and concludes if the project was successful and what which could be done
to improve if we were to do the research again.

4



1.6 Thesis Structure

• Chapter 6 compares the results from the experiments and discusses how well the
results are. It draws lines to the research goals as well as state-of-the-art solutions.
It analyses the results and discusses possible shortcomings.

• Chapter 7 is the final chapter. It tries to wrap up the research project and conclude
how it went. Research is not only about results, but also discovering new research
questions. This chapter will describe the aspects that should be investigated further.

5



Chapter 1. Introduction

6



Chapter 2
Problem Dataset

This chapter will help the reader to understand the problem as well as the relevance of the
background theory in Chapter 3. It will focus on the dataset of the project as the project is
highly data-driven. While the dataset looks similar to other large image datasets, such as
ImageNet[7], it has some properties that are worth investigating.

Section 2.1 will define the important properties of the dataset. The challenges and
opportunities of these properties will be discussed in section 2.2.

2.1 Dataset Description
The dataset in this project is based on sales ads of cars from the Leboncoin website. The
dataset consists of 226735 sales ads with a total of 1161748 images. Images are taken
from all angles of the cars, including the interior. All images are taken by users of the
Leboncoin website. Each sales ad is categorized in a hierarchical structure. The categories
available in this project is brand, model and year. The structure is show in Figure 2.1.

Figure 2.1: The structure of the dataset

7
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Figure 2.2: Images per sales ad in the Leboncoin image set

Figure 2.3: Distribution of images per car brand in the Leboncoin dataset.

Each sales ad contain one or more images. The distribution of images per sales ad
is shown in figure 2.2. Note that the y-scale in figure 2.2 is logarithmic. We observe
that most ads has less than 11 images. However, there are some unintuitive spikes at
different numbers. We see that 4, 6 and 11 images per ad are over-represented in the
dataset. Therefor, ads with 4, 6 and 11 images occur at a frequency around 10 times
higher than the surrounding number of images.

Some car brands are more popular than others. We can look at the distribution of
images per car brand shown in Figure 2.3. This plot also has a logarithmic y-scale. This
mean that the classes are not balanced. The biggest class is Renault. It contains more than
10 times as many images as the 20th most popular class.

As the images are uploaded by users, showcasing their car, the viewpoint of the images
in the dataset vary widely. A quick manual analysis of 100 randomly selected images
yields the distribution in table 2.1. While the selected set is too small to statistically state
the distribution, it shows that the images originates from a variety of different angles.

The Leboncoin website allows users to define the display order of the images in a sales
ad. This information is preserved in the dataset and is the same as the images are shown
on the Leboncoin website. It is represented by the order they appear in the metadata file

8



2.2 Dataset Discussion

Viewpoint Count
Front 19
Back 10
Side 31
Front seats 7
Back seats 8
Trunk 4
Dashboard whole 11
Dashboard detail 4
Outside detail 3
Engine 2
No car in image 1
Total 100

Table 2.1: The diversity of viewpoints in dataset. Made by manually labeling 100 images.

describing the dataset. We can define the dataset, X , as a disjunct set-of-sequences shown
in equation 2.1. xnm represent the m’th instance in ad number n. Note that the sequences
are not of the same length. That is, the condition a = b = m does not have to be true.

X = {[x11, x12, . . . , x1a], [x21, x22, . . . , x1b], . . . , [xn1, x12, . . . , xnm]}, (2.1)

2.2 Dataset Discussion
The hierarchical structure of the dataset makes it possible to classify on different granu-
larities. The optimal result would be to successfully classify the brand, model and year of
images in an ad. However, the further we move down the hierarchy, the less examples we
have per class. The difference between bottom-level classes are also small. For instance,
a Volvo V70 2010 model look almost identical to a Volvo V70 2011 model. However, in
some cases, classifying on different on fine-grained levels in the hierarchy makes sense.
Two cars of the type station wagon might look similar, although they originate from two
different brands. Even though we classify on the highest granularity, brands, the classifier
has to learn what separates a Volvo from a Renault. The shape of the vehicle will in many
examples not be representative of the brand.

The hierarchical structure of the dataset also gives the opportunity to combine results
from different granularities. We might not need to decide the precision of classification up
front. A more complex model will decide how confident it is of the prediction. If it is not
confident, it might lessen the precision and tell us the brand instead of the exact model.

The variety is big when it comes to images per ad. We hypothesize that some of these
spikes are originated in the website interface, however there are no clear indications on
why exactly 4, 6 and 11 images per ad is over-represented. One possible explanation
could be that there are 4 images displayed at the same time when you look at an ad at
the Leboncoin website. This can encourage users to add at least 4 images. However, this
hypothesis does not explain the spikes at 6 and 11 images.

9
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(a) Sensor on front of car (b) GPS-system (c) Engine (d) Dashboard

Figure 2.4: Some of the detail-oriented images in the dataset

Even though we do not know the origin of the distribution in figure 2.2, it is valuable
knowledge. Multiple images per sales ad gives us more examples which we can classify
per ad. We know that all images from the same sales ad are from the same vehicle. This
segregates our classification task from the classical image recognition task.

The fact that multiple images come from the same sales ad does not mean that each
individual image correctly corresponds to the label of the ad. Instead we can say that the
images from the same ad share a label. Normally, such a dataset would be called a bag of
instances [33]. However, the term bag of instances usually refers to unordered data. Since
our ads contain ordered instances, we will refer to this as a sequence of instances [38].
Note that all the images in the dataset are not independent. When dividing the dataset into
a training and testing set, there should not exist pictures from the same ad in both sets. In
other words, the training set and test set should be disjunct in regards of sales ads. This
may seem obvious for the experienced reader, but this is not an unusual error made in
machine learning research.

The fact that some of the images show only details of a car is a worth some thoughts. A
model might wrongly learn that a GPS system belongs to one car brand, although the same
GPS-system can be used in a wide range of different brands and models. We hypothesize
that the first images of in the sales ad gives a more general representation of the vehicle that
the successive images. For instance is the first image is often an image from the outside
of the car. The images gets more detail-oriented the further you scroll through the images.
Figure 2.4 shows some examples of very detail-oriented pictures. We would not expect the
model to correctly learn such details. This shows the importance of combining predictions
on images from the same sales ad, explained in section 3.4 and 4.1.4.

The distribution of images per brand as seen in figure 2.3 adds some considerations.
As the classes are not balanced, the model will see many more example of a common class
than an uncommon class. Classes with few examples are also prone to overfitting. The
solution might be to select a balanced subset of the dataset or augment the dataset with
extra examples for the under-represented classes.
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Chapter 3
Background Theory

This chapter will introduce the relevant background theory as well of the state-of-the-art
research within relevance. If first introduces general concepts of machine learning before
it goes more in detail on the specific methods used in this project.

3.1 Machine Learning

The increase of generated data creates the need to do automatic analysis of datasets. One
field of data analysis is machine learning. It is used in applications such as page rank,
collaborative filtering, image classification and language translation. Common for these
applications are big datasets which makes it possible to see patterns that disappear for the
human analyst.

There are two main branches of machine learning, classification and regression. Classi-
fication tries to assign a discrete value to a data sample while regression finds a continuous
value. However, they are often closely related, and regression techniques can be used for
classification [28]. This section will focus on the task of classification, more specifically
multi-class classification.

Multi-class classification takes an input x and tries to assign a label y ∈ {1, 2, 3 . . . , n}
to x. In other words, it tries to learn the function f : x → y. The challenge is to find the
function mapping f such that f(x) = y for all instances of x.

Supervised learning is a field withing machine learning. Assume we have a model
which maps from the domain of x to the domain of y. x can be a multi dimensional input,
while y is a discrete value in the case of classification. The model is given pairs of example
inputs and outputs, (x, y), called training examples. The model will try to generalize and
estimate the true function f . All the training examples form what is known as the training
set.

We can also feed new examples to the model, this time without the correct output. The
model will predict the output from learned experience. This set of samples are known as
the test set.
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Chapter 3. Background Theory

In addition to the training and test set, we have the validation set. The validation set
is used during training to verify the progress of the model. The validation set is not used
to train the model, in the sense that the model does not try to learn from the samples in
the validation set. However, we can use the results on the validation set to make decisions
such as to stop the training. The complete dataset is usually split into these three disjunct
datasets.

Accuracy is defined as the percentage of the samples which are correctly classified.
Similarly, the error rate is the percentage of misclassified samples. When presenting the
results, we should calculate the accuracy on the test set. The training set and validation
set is used during training, and can therefore not tell us how good the model is to predict
unseen data.

3.2 Artificial Neural networks
Artificial neural networks (ANNs) is a term used to describe distributed and parallel pro-
cessing inspired by the structure of the biological neural network in our brain. An ANN is
a structured network of simple computing units, often called neurons. Together they form
a complex network able to do more advanced computing. ANN’s can be seen as a univer-
sal function approximator. They can be trained to solve both supervised and unsupervised
learning problems. This project will focus on the supervised training for classification, and
all further description assumes this [37].

3.2.1 Feedforward Neural Networks
Feedforward neural networks are the most basic kind of ANN’s. It is sometimes described
as the ”vanilla” neural network [10]. The units are organized in a layered structure. The
first layer is the input layer and the last layer is the output layer. In between we have one or
multiple ”hidden” layers. The number of units in the input layer corresponds to the number
of dimensions in the input. For instance will a network which works with 200x200 pixel
color images have 200 · 200 · 3 = 120000 input units, one for each RGB value of each
pixel.

The output yi of an unit xi in a layer is defined in equation 3.1, where σ is the activation
function, wij is the weight to unit xi from unit xj in the previous layer [34].

yi = σ

( N∑
j=1

wijxj

)
(3.1)

The activation function, σ, is often a sigmoid (equation 3.2) or ReLU (equation 3.3)
function. The activation function introduces non-linearity to the network. The sigmoid
function has an advantage where the output is bounded so it does not diverge. However,
the gradient tend to vanish when the activations grow large. ReLu does not have this
problem, but as a result the gradients can blow up. Regularization techniques can be used
to minimize this problem.

S(x) = 1
1 + e−x

(3.2)
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Figure 3.1: Architecture of a ”vanilla” fully connected feed-forward network. Adapted from [34]

R(x) = max(0, x) (3.3)

Each layer in the neural network feeds to the next one, hence the name feedforward
network. The last layer contains the same number of units as we have target classes.
The outputs can be seen as the values y = {y1, y2, . . . , yn} in the case of n target classes.
Instead of using those values directly, we often apply a softmax function to this output. The
softmax has multiple advantages. First of all, it bounds the values in the range (0, 1], where
all the outputs sum up to 1. Additionally, these values can be interpreted probabilistic. The
softmax function is defined in equation 3.4 [18].

hi = eyi∑
j(eyj ) (3.4)

The output corresponds to the predictions of the model. Usually, we assign the label
yj with the maximum value to sample xi, yj = maxj(yj).

We evaluate the output of the network with a cross-entropy loss defined in equation 3.5.
The softmax classifier therefore minimizes the cross entropy loss between the estimated
class probabilities and the true distribution. The true distribution is defined as a distribution
where all the mass is placed at the correct class, such as p = [0, 0, . . . , 0, 1, 0, . . . , 0].
The cross-entropy between the predicted h distribution and the true distribution p is then
defined in equation 3.6.

Li = − log hi (3.5)

H(p, h) = −
∑
x

p(x) log h(x) (3.6)

The loss function is also called the objective function. The challenge is the optimize
the weights of the network as to make the sum of objective function as small as possible.
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3.2.2 Optimizers
Gradient decent optimization algorithms is a method to minimize an objective function.
There are many different versions of gradient descent, and most of them are provided
in machine learning libraries without a proper definition. The basic variant of gradient
decent computes the gradient of the loss with respect to the parameters and updates the
parameters in the model in the opposite direction of the gradient of the objective function.
This will minimize the objective function. The magnitude of the update is defined by a
hyper-parameter we call learning rate. The learning rate of the model decides how fast we
approach the supposed solution. However, in the most basic variant described here, we risk
getting stuck in a local minimum. This means that the gradient increases in all directions
with respect to the parameters. However, it might not be the global minimum. If the
learning rate is too big, we might overshoot the global minimum and oscillate around the
optimal solution. If we select a too small learning rate, the training might be very slow. We
can design a learning rate schedule to overcome these problems. The scheduler changes
the learning rate as the loss stops decreasing. However, it is difficult to select the correct
schedule without excessive testing. In addition, we can use early stopping. Early stopping
monitors the logs of the training and stops it when the training hits some condition.

There are developed a wide variety of gradient decent methods to deal with the dif-
ficulties of selecting hyper-parameters. Some of those will be presented in this section
[26].

Mini-batch Gradient Descent

Mini-batch gradient descent is a combination of batch gradient descent and stochastic
gradient descent (SGD). The former calculates the gradient with respect to the parameters
for the whole training set. While this method is guaranteed to converge to the global
minimum, the training is slow and problematic if the whole dataset does not fit in memory.
SGD works by performing an update for each training sample. The training set is shuffled
between each iteration of the dataset. SGD is fast, but the variety of training examples
makes it difficult to reach the global minimum for the whole dataset.

Mini-batch gradient descent tries to combine batch descent and SGD. It works on
batches of examples from the dataset. Instead of using the whole training set as each
batch, it divides the training set into disjunct mini-batches. It updates the gradient after
each such mini-batch. One complete iteration of the training set is called an epoch.

Mini-batch gradient descent is stochastic in the sense that it shuffles the training data
between each epoch. If we try to minimize the objective function J(θ) with respect to the
parameters θ, we calculate the opposite direction of the gradient∇θJ(θ). We also select a
learning rate η. The parameters are then updated by equation 3.7, where i is the index of a
training example and n is the mini-batch size.

θ = θ − η · ∇θJ(θ;x(i:i+n); y(i:i+n)) (3.7)

The simplicity of stochastic gradient descent is elegant, but it has a few shortcomings.
As the mentioned gradient descent methods, it also suffers from a sensitive selection of
learning rate. A too high learning rate, and the network is going to diverge or oscillate
around the solution. A too small learning rate, and the learning is going to be slow.
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A common addition to mini-batch gradient descent is to add momentum. It does this
by adding a fraction of the last update to the current update. The idea is the same as
pushing a ball down a hill. As the speed increases, it gains momentum. Even if it hits a
flat area or a small uphill, it will continue moving in the same direction for a while.

RMSProp

Root Mean Square Propagation (RMSProp) is a further development of mini-batch gradi-
ent descent with momentum. It is unpublished, but has gained wide popularity due to its
simplicity to use and good results. It is now included in most machine learning libraries. It
was introduced by Geoff Hinton is his Coursera Class on machine learning [16]. RMSProp
has advantages such as adapting the learning rate to how frequent the parameters are. The
update function can be seen in equation 3.8. git is the gradient of the parameter θi at time
step t and E[g2] is a running average of the past squared gradients. η is the learning rate
and γ the momentum.

E[g2]t = γE[g2
i ]t−1 + (1− γ)g2

it

θt+1 = θt −
η√

E[g2
i ]t + ε

git
(3.8)

In effect RMSProp will decrease the learning rate as the training goes on. The sug-
gested values for learning rate and momentum is η = 0.001 and γ = 0.9 respectively.

3.2.3 Regularization
Large neural networks can have millions of parameters. Overfitting is a major problem
in such networks. One method to solve the problem with overfitting is to penalize the
complexity of the model.

L1 and L2 regularization adds a penalty to the objective function for large weights. L2
regularization adds the squared magnitude of all the weights to the objective function. In
effect, this encourages the network to use all its input a little rather than that some of the
inputs does all the work.

L1 regularization is similar, but it does not square the weight magnitudes. The effect
is that the weights gets sparse during training. Both L1 and L2 defines a parameter λ
to decide the strength of the regularization. L1 and L2 regularization can also be used
together. The penalty is then typically λ1|w|+ λ2w

2.
A third regularization method is max-norm. It enforces a maximum magnitude of the

weight vector of each unit. This constraints the weights and make sure that they do not
explode, even when using a high learning rate.

15



Chapter 3. Background Theory

(a) Normal network (b) Dropout network

Figure 3.2: Comparison of a normal network and a dropout network. Adapted from [29]

3.2.4 Dropout

Dropout addresses the problem with overfitting in a different way than the regularization
techniques described above. Dropout prevents units from co-adapting. It works by ran-
domly setting the output of units to zero. This is conceptually the same as temporarily
removing the connection of the node in the network. By making the presence of other
units uncertain, each unit is forced to perform well in many different contexts, it cannot
rely on other units. Because of this, it is hypothesized that each unit better adapts to de-
tects a single feature at a time, as opposed to only a part of a feature or multiple features.
Dropout has proved to significantly reduce the error rate, and has been added to a wide
variety of ANN’s [29].

In effect, dropout is similar to generating a large set of different sparse networks. The
output of these sparse networks can then be averaged to produce the final output. However,
each of the networks has to be trained. This makes the training slow. In addition, each of
the networks has to be tested at test time.

Since the dropout network is a single network, we have to use a different approach.
We do not drop units at test time. However, we scale the weights by a factor to make up
for the missing weights at training time. Assume we set the dropout parameter to p. We
set individual weights to zero with the probability of 1 − p during training of each mini-
batch. At test time, we run the input through the full network, but each weight is scaled by
multiplying it with p. Opposed to the averaging of different sparse networks, we simply
use the full network, scaling the weights to take into account that we have more weights
contributing between each layer.

We can have different dropout rate in different parts of the same network. Actually,
different dropout rate at different layers has proved effective [29]. At test time, each layer
has to be scaled corresponding to the dropout rate of the layer to get the correct output.

Dropout can substitute normal regularization methods in many networks. However,
we can also use a combination of dropout and regularization methods. [29] got the best
result using a combination of dropout and max-norm regularization.
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Figure 3.3: Convolution neural network. Adapted from [14]

3.2.5 Convolutional Neural Networks

Conventional feedforward neural networks performs well in a wide variety of pattern
recognition, including images. However, there are some shortcomings. The fully con-
nected layers suffer from the curse of dimensionality. They also do not factor in the spacial
structure of the data.

Convolutional neural networks introduces some new ideas to solve these problems in
neural networks. They were motivated by neurobiological studies of the receptive field
of animals [14]. The network is spesifically designed to tackle visual tasks, but may also
be used in other domains. A restricted connection scheme helps detecting and combining
local features in an image. Each unit corresponds to a local receptive field, but performs
the same operations on different locations by sharing weights. The same idea can be
applied to subsequent layers as well. Each layer will then combine small features into
more complex and abstract features [20, 21]. A convolutional layer is often followed by
contrast normalization or max-pooling to reduce the number of dimensions [30].

A simplified example of a convolutional neural net is seen in figure 3.3. The input of
the net is a 48x48 pixel gray-scale image of a handwritten number. We want to predict the
number in the image. The first hidden layer is a convolutional layer. In the figure, a kernel
of size 5 x 5 was used to create 4 feature maps. The next layer performs sub-sampling
and local averaging. The receptive field of each neuron is 2 x 2. It is important to note
that this layer also has trainable weights and bias. This helps to reduce the resolution of
the feature maps. The sensitivity of features are hence reduced. This helps with distortion
or small shifts of the kernel [14]. The last convolution reduces the feature maps to 10
different outputs, corresponding to the 10 single digit numbers. The kernel has the same
resolution/size as the feature maps in the last hidden layer. In this example is the size 12 x
12. However, this size is usually smaller as the network is deeper and the size is reduced
gradually.

We can also use max pooling instead of sub-sampling and local averaging. Figure 3.5
shows how this works with a receptive field of 2 x 2, sometimes called stride. Note that
the strides do not overlay each other. Max-pooling works by taking the maximum value
in each non-overlapping stride. While average/sum-pooling uses the same general idea,
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Figure 3.4: Naı̈ve version of inception module. It presents the main idea of the Inception module.
Adapted from [30].

Figure 3.5: Max pooling with receptive field of 2 x 2. Adapted from [18]

max-pooling has historically been preferred as it works better in practice [18].

3.2.6 Inception and Inception-v3
The Inception architecture was first introduced by Google in their GoogLeNet neural net-
work [30]. The main difference from conventional CNN’s is the Inception module. The
Inception module works by combining different-sized convolutions as well as max-pooling
to form a more complex computing unit. A simplified model of the Inception module is
shown in figure 3.4. The implementation differ from this visualization by refactoring the
convolutions to reduce computational complexity. However the concept remains the same.
Multiple Inception-modules is stacked in a similar fashion as convolutional layers in a
normal convolutional network with occasional max-pooling layers between. GoogLeNet
is 22 layers deep, not counting the max-pooling layers.

An modification to the original Inception architecture was presented in [31]. The main
principle of the new architecture is the same, but it focuses more on reducing the com-
putational bottlenecks. They introduced massive refactoring of the Inception unit. The
refactoring made it possible to scale the network to 42 layers deep, only increasing the
computational cost by 2.5 percent. The resulting network is referred to as Inception-v2. In
addition, they added batch normalization auxiliary to form what is known as Inception-v3.
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Figure 3.6: The complete inception architecture. A visual representation of the Inception-v3 archi-
tecture described in [31]

The Inception-v3 model is build up of 5 different Inception modules, in addition to
the standard convolutional layers. The overview of the Inception-v3 model can be seen in
figure 3.6 and the detail of each Inception module in figure 3.7.
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(a) Module A.

(b) Module B. (c) Module C.

(d) Module D.
(e) Module E.

.

Figure 3.7: The five Inception modules building up Inception-v3. All figures adapted from [30] and
changed to represent the implemented Inception-v3 architecture in Tensorflow v1.1.0.
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Type Patch size/stride
or remarks Input size

conv 3x3=2 299x299x3
conv 3x3=1 149x149x32
conv 3x3=1 147x147x32
pool 3x3=2 147x147x64
conv 1x1=1 73x73x64
conv 3x3=1 73x73x80
conv 3x3=1 35x35x192
pool 3x3=2 71x71x192
3xInception As in figure 3.7a 35x35x192
1xInception As in figure 3.7b 35x35x288
4xInception As in figure 3.7c 17x17x768
1xInception As in figure 3.7d 17x17x768
2xInception As in figure 3.7e 8x8x1280
pool 8x8=1 8x8x2048
linear logits 1x1x2048
softmax classifier 1x1x1000

Table 3.1: Inception-v3 architecture. Adapted from [31] and changed to represent the implemented
Inception-v3 architecture in Tensorflow v1.1.0. The two last layers represent the ”Top of network”
in figure 3.6.

3.3 Transfer Learning

Transfer learning is an useful technique to overcome some common problems in training
a CNN, such as deficit of training samples or limited time frame for training [24, 25]. It
aims to transfer knowledge between related source and target domains. Transfer learning is
often used in image domains [24], but is also used in other tasks such as Natural Language
Processing [6]. We will refer to this concept as transfer learning or knowledge transfer.

Transfer learning is not limited to machine learning. Transfer learning is around us
every day. Learning to read Norwegian text will definitely help you with understanding
English. Even though the words are different, the letters are mostly the same. Additionally,
the sentences are built using words with spaces in between. Similarly, learning to play
guitar is indeed going to help you learn the base. It is probably helping you to learn the
piano as well for that matter. The human brain excels in knowledge transfer. It is therefore
not a surprise that knowledge transfer can be used in a model like CNN’s.

Historically, low-level descriptors have been created or selected manually [4], such as
Gabor filters and SIFT descriptors. These features are global and do not try to find the
overall structure of the input. The resulting features are often called low-level features.
Modern CNN’s have proven successful at finding such low-level descriptors automatically
through training [24]. The key idea behind transfer learning is that low- and mid-level
representation of samples from two different domains can be similar [25]. Imagine a large
CNN trained on the ImageNet dataset. The first layers of the CNN will learn representa-
tions of colors, edges, etc.. These low-level features are often identical to features present
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in other image datasets. This is the knowledge we want to transfer to our other domain of
interest.

There are also unsupervised approaches that solves similar issues with a small amount
of training samples. If a large unlabeled dataset is available, it is possible to pre-train a
model using a sparse auto-encoder [22].

3.4 Multiple Instance Learning

When multiple images are known to belong to the same class, we ought to make advantage
of this. Multiple Instance Learning (MIL) tackle this problem. There are two main solu-
tions to do this. One is to make use of the grouping information during training. The other
method omits this step trains a single instance classifier using individual images. At test
time, the model simply combines the predictions for images belonging to the same group.

There are some considerations to take before deciding on the approach. For some
datasets, the individual images cannot be classified individually, simply because they do
not represent the complete object the class label tells us. For instance will an image of a
foot not correctly represent the concept ”person”, although a group of images including
the image of a foot can. For learning problems as this, we say that that a group of images
share a label. Such groups are often called bags of instances in machine learning [33].
Note that individual images does not have a label, the bags have.

Common for all the types of MLP investigated in this project is to connect predictions
of the individual instances of the bag. The most naı̈ve solution is to average the predictions
of all the instances. Xu & Frank [35] assume that all instances in a bag contributes equally
to the prediction. They can then take the average of all the predictions. The results are
promising, but they use a constructed 2D dataset. Their statistical approach to the problem
can be difficult to transfer to more complex domains. They also run some benchmark tests
on their classification algorithm. Not surprisingly, the more instances there are in a bag,
the greater the advantage of the bag approach is. However, it is close to impossible to infer
how many examples which are needed for other domains or algorithms. Although there
are problems with the generality of their approach, it definitely shows that MIL can help
in both classification and regression tasks.

Another approach is to develop a custom loss function which are used during training.
Singh and Garzon [27] develops a loss function that takes the loss over a whole bag of
instances. Because of this, they group the instances that share bag together into its own
mini-batches. The model is then trained on the mini-batches of variable size.

Singh and Garzon uses a dataset where each bag of instances have 0, 1 or multiple
attributes. An attribute is denoted by a. The loss over a bag of instances is defined in
equation 3.9. yija is the loss of training sample j in bag i with the respect of attribute a.

Ltotal,i =
n∑
a=1

{∑
j(yija)2, if a is negative for bag i∑
j(yija − 1)2, if a is positive for bag i

(3.9)

Singh and Garzon also proposes two different methods for combining the predictions
of the samples in a bag of instances. Each instance in the bag is classified using the
classifier. The first method is to iterate through all the target classes. Assume a target
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class a, instance xi in bag Xj and prediction yia on instance xi for each target class. If
one of the instances xi in bag Xj produced a prediction yia which is greater that a given
threshold, then assign class a to yi. The final bag prediction Yia is given by equation 3.10.

Yja = max
i

(
yia
)
,∀yi ∈ Yj (3.10)

The other approach is to assign 1 to a prediction if it is above a threshold and 0 if it’s
not. They then assign label a to bag Xj if a certain percentage of the examples in the bag
were positive. If none of the labels were selected, then the sample is classified with none
of the attributes.

There are other MIL models which are worth mentioning. Babenko et al. [3] and
Viola et al. [33] both uses a boosting approach called MILBoost. They approach is a slight
modification of the AdaBoost algorithm and is out of scope for this project. However, both
uses a prediction combination which is interesting. Instead of averaging the predictions as
in Xu & Frank [35], they adapt the Noisy-OR (NOR) model as seen in equation 3.11. It
weights large positive results more than negative results. This way the ensure that if one
example is very positive of a class, then the bag is probably this class.

p(Yi|Xi) = 1−
∏
j

(
1− p(yi|xij)

)
(3.11)

3.4.1 Ensemble methods
Ensemble methods are learning algorithms that combine predictions from a set of machine
learning classifiers. Instead of getting the result from a single classifier, the predictions
from many classifiers are combined. Usually this is done by averaging or voting (possibly
weighted) to produce the final prediction. For ensemble methods to work, the classifiers
has to be accurate and diverse [13]. In this example, an accurate classifier means that it
is better than random guessing at unseen data. The diversity of the classifiers means that
they have different errors on new data points. Both weak and strong learners can be used
in ensemble methods.
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Chapter 4
Software Architecture and Learning
Model

This chapter will present the architecture of the experiment. This includes the architecture
of the learning program as well as the neural network model.

4.1 Software Pipeline

Figure 4.1 displays the components of the software used in the research. This section
will break down the architecture and explain each individual component. The pipeline
is sequential where each component is dependent on the components preceding it in the
pipeline. Each component is presented in the order they appear in the pipeline.

There are multiple reasons behind the sequential pipeline. The first reason is limited
system memory. Only one instance of the model can be loaded at the same time with-
out exceeding max allowed memory usage. This limitation disallows running different
components in parallel.

The other reason to decouple the components is to enable evaluation for all iterations
and runs of the model as well as compare evaluation between two different runs. This
approach enforces the storage of intermediate data.

4.1.1 Software Dependencies
There are many software dependencies for this research project. This section presents
the most important ones. The program is written in Python, using the high-level machine
learning API Keras [5] with a Tensorflow backend [1]. All of the needed packages can be
installed as Python packages. I chose to use Python virtual environments to easily confine
and manage the dependencies, as well as run the same program on multiple platforms.
I chose Anaconda [8] as my virtual environment manager due to familiarity and Pip as
package manager due to availability of all the necessary packages.

25



Chapter 4. Software Architecture and Learning Model

Figure 4.1: An overview of the main architecture.

Keras

The Keras API includes two different backends, Theano [32] and Tensorflow. The choice
of Tensorflow was arbitrary, although it was influenced by the popularity in media and by
other researchers. Keras serves as a high-level API on top of Tensorflow. A neural network
model can be build by stacking layer of neurons on top of each other. The layers in Keras
corresponds to layers in Tensorflow.

Keras already implements multiple neural network models, including our choice of
Inception-v3. Inception-v3 is designed to classify images in the ImageNet dataset [7].
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There are two main versions of the network. One includes the top layer while the other
does not. The reason to include a model without the classification layer is so other re-
searchers easily can adapt the model to their own learning problem. For instance does the
default model classify images into 1000 classes from ImageNet. Custom datasets might
yield a different number of target classes.

Keras also includes pre-trained versions of the models. As we have seen in section
3.3, transfer learning can speed up the training of the network. The Inception-v3 model
is pre-trained on the ImageNet dataset, achieving a 21.2% top-1 and 5.6% error on the
ILSVRC 2012 classification challenge [31].

Tensorflow

Tensorflow is a software library for numerical computation. It implements the concept of
data flow graphs, where nodes are mathematical functions and edges are flow of multi-
dimensional data arrays. It scales well between platforms, and can be run on everything
from mobile devices to clusters of high-power GPU’s. The Tensorflow architecture makes
it suited for neural network models [1].

CUDA and Tensorflow-GPU

In addition to the standard dependencies for Tensorflow and Keras, we also used CUDA
graphic computing library [23] as well as tensorflow-gpu for the GPU computing. CUDA
is a parallel computing platform created by Nvidia. It enables general-purpose computing
on the GPU and can speed up the training substantially.

iPython Notebook

We would like an interactive platform which provides direct access to the dataset as well
as system and graphing libraries. iPython notebook provides such a solution. The whole
project is placed on a server without a graphic user interface. However, we can forward
the iPython Notebook via ssh to our own computer to cope with the lack of GUI. The
following approach will give and graphical interface for the iPython Notebook on your
own localhost. The necessary commands are in listing 4.1 and 4.2. The command in
listing 4.2 should be run in the projects root folder on the server, while command in listing
4.1 is run on your local computer.

1 user@local_host$ ssh -N -f -L localhost:8888:localhost:8889 \
2 -i .aws/martinhallen.pem username@serveraddress

Listing 4.1: To be run on personal computer

1 user@remote_host ipython notebook --no-browser --port=8889

Listing 4.2: To be run on remote host
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4.1.2 Data Preparation and Analysis
This section will include the metadata and image processing which were used in the
project. All data preparation and analysis was implemented in iPython Notebooks, ex-
cept for image augmentation which are a part of the Keras library.

Data Analysis

The main focus of the analysis is to identify the distributions of the dataset. This is im-
portant to make choices about which subset to use for training and testing, and to explain
possible challenges or problems that appear. There are multiple interesting distributions,
including the different viewpoint of the images as well as the number of images in each
class and sales ad.

The metadata of the dataset includes all the relevant information to correctly parse and
structure the data. Table 4.1 and 4.2 shows the structure of the metadata files.

ad id brand model year ad name
1082999147 Hyundai Matrix 2003 Hyundai matrix 1.5crdi
1082999117 Audi A5 2007 AUDI A5 2.7 v6
1022131942 Nissan Patrol 2002 Nissan patrol gr 3.0
1082999117 Peugeot Partner 2008 Partner Tepee II

Table 4.1: car ads.csv

ad id image id
1082999147 45b2691b3a3dab97603a22540d830c04e7b94de2
1082999147 efaa632b361c85e9c1a75ab0dc6a5e90fd70072f
1082999117 36e28208151421c1dcc58b1ce2ac6db6b8e26279
1082999117 a5c704de4521264ce66603ec9b318eb0750ff4a1

Table 4.2: car images.csv

A full outer join of these tables will provide us with all the metadata-information
we need. However, we need to add the path to the stored image to analysis the view-
points. Each files is stored by the convention /path_to_dataset/38/01/e5/380.
..8a9c.jpg. Note that the folder structure is hierarchical. This is done simply for con-
venience. When browsing the dataset, we avoids big folders. This is identical to using
hash mapping, except that the id of the image works as the unique hash.

Data Preparation

We want our learning module as easily configurable as possible. One of these config-
urations is the selection of the dataset which is used for training. Our approach is to
define a mapping from the images to the label of the images. This approach makes it
possible to change the mapping at any time. These mappings are stored in a file which
is fed to the data-generator explained in section 4.1.3. An example of one such file
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is shown in listing 4.3. Notice that each file path includes the id of the picture, i.e.
3801e5476460ce35d41-070bdc40ac38e55fc8a9c. There are three different
such files, one each for the training, validation and test set.

1 /path_to_dataset/38/01/e5/3801e5476460ce35d41...070.jpg 12
2 /path_to_dataset/cd/fe/e2/cdfee201a6eaa7fd6cd...2a6.jpg 1
3 /path_to_dataset/59/8e/fa/598efa3486eac8307c3...747.jpg 0
4 /path_to_dataset/8e/d5/4c/8ed54c2dd096b73b113...567.jpg 1
5 /path_to_dataset/86/11/ee/8611ee3d51ce5f0881b...4f3.jpg 10
6 /path_to_dataset/99/0f/e1/990fe197cab6f421f07...b7b.jpg 15
7 /path_to_dataset/da/48/dd/da48dd54b2bf808e460...9f3.jpg 16
8 /path_to_dataset/da/01/72/da0172b1b943b0b53e5...b33.jpg 3
9 /path_to_dataset/14/ea/44/14ea4464a2269f74bfb...ea8.jpg 10

Listing 4.3: Example of labels file. The image-hashes are shortened for presentation purposes.

The images in the dataset are of a variety of different sizes, including high resolution
pictures. A resized copy of the dataset was therefore created, each image with a resolution
of 400x400 pixels. There are two main reasons to do resizing of the images.

• Most machine learning libraries requires a fixed input size. This is because of the
fixed definition of the layer sizes in the networks [15].

• Smaller images require fewer pixels to be processed during training, and hence faster
training. A large input floods the network with irrelevant information [2].

The original image is fitted inside the a bounding box of 400x400 pixels, without
preserving the aspect ratio. An illustration can be seen in figure 4.2. Ideally, we should find
a square bounding box of the car in an image. The we could crop and rescale to keep the
aspect ratio. However, the bounding box information is not available. Warping the images
are a common approach to produce fixed sized input, and does not affect classification
accuracy significantly [9, 11].

4.1.3 Learning Software
This section provide an explanation of the architecture responsible for training the model.
The input to the learning software is the mapping between image-paths and class labels.
The learning software saves the model weights and log files when the training finishes.

Dataset generator

The dataset-generator is responsible of feeding the dataset to Keras. The images are read
and augmented by the CPU in a generator function. This makes it possible for the CPU
and GPU to work in parallel. The prepared images are placed in a queue, available for
the Tensorflow library to process. The training and validation images are simultaneously
fed by two different generators to two different queues. Managing the queue size can be
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Figure 4.2: Example of resizing image. Note that the whole original image is fit in the resized
image, not preserving aspect ratio.

crucial. The size of the two queues combined must both fit in main memory. The data
generator is also responsible for the following tasks:

1. Normalize each image to have unit length and be centered at zero. However, cen-
tering does not involve looking at the pixels in the image. We assume that the full
value range is used (0-255) for all colors. This assure that all images are normalized
the same way.

2. Augment the images while preserving resolution. The following operations are per-
formed:

• Random zoom

• Random shear

• Random width shift

• Random height shift

• Random rotation

Learning module

The learning module consists of two parts. One is responsible of building the neural net
model, while the other is responsible of training it. The training program takes data gen-
erator and a model as input, in addition to the parameters of the training. The available
parameters of the model in our implementation are:

• Objective function: The objective function is responsible of calculating the loss
of the model. The loss is a metric to describe how well the model fit the current
mini-batch.

• Optimizer: The optimizer is responsible of minimizing the objective function us-
ing back-propagation to change the model weights. The optimizer takes multiple
parameters, depending on the specific optimizer
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• Callback functions: The callback-functions are called between each batch of the
training. These functions are responsible for logging and/or changing the parameters
of the model during training, such as a learning rate schedule.

4.1.4 Evaluation
The evaluation module is responsible for testing and analyzing the trained model. It takes
the test data and the trained model as input. The evaluations are done in iPython notebook
by the same reasoning as the dataset analysis.

The testing is done by predicting each test sample with the trained model. These
predictions are stores in a table for analysis. Note that we save not only the top predictions,
but also the predicted value for all the labels. The table has size n ∗ m, where n is the
number of samples and m is the number of classes.

Combining images to classify ad

As we have seen in section 3.4, we can enhance our model by combining the predictions
within each subset of the data. The following functions are implemented to combine the
predictions and make the final ad prediction.

• Averaging: The first method is to average the predictions within one bag of in-
stances. Given the set Xi = {x1, x2, · · · , xn} of images in ad i, where P (Yj |Xi) is
the prediction of class label Yj on setXi, and p(yj |xi) is the prediction of class label
yj on instance xi given by our single instance classifier. We calculate the prediction
as in equation 4.1.

P (Yj |Xi) = 1
n

n∑
i=1

(
p(yj |xi)

)
(4.1)

• Weighted averaging: This method is similar to averaging the predictions. The set is
now ordered to define the sequenceXi = [x1, x2, · · · , xn] together with the weights
Wi = [w1, w2, · · · , wn] of same length. The prediction is then defined by equation
4.2.

P (Yj |Xi) = 1
n

n∑
i=1

(
p(yj |xi) · wi

)
(4.2)

• Noisy-or: The noisy-or model is explained in section 3.4 and defined in equation
3.11.

• Majority voting: Each of the individual predictions have n votes for its top n pre-
dictions. The final prediction is defined in 4.3, where U(xi, yj) is 1 if yj is one of
the top n predictions on image xi and 0 otherwise.

P (Yj |Xi) = max
j

∑
i

U(xi, yj) (4.3)
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Figure 4.3: The three top layers of the model. The ”base of network” refers to the base of the
Inception-v3 model described in section 3.2.6.

4.2 Neural Network Model Structure
The model for this project is a deep convolutional neural network (CNN), based on the
Inception-v3 architecture described in section 3.2.6. Table 3.1 and figure 3.6 displays the
original architecture of Inception-v3.

There were two main reasons for selecting the Inception-v3 architecture.

1. Inception-v3 has proven to be a state-of-the-art classifier for image classification
[31].

2. Open source implementations of the Inception-v3 architecture is available in li-
braries such as Tensorflow and Keras. Additionally, pre-trained versions of the
network makes it possible to make use of transfer learning.

The Inception-v3 architecture is designed for the ILSVRC2012 challenge on the Im-
ageNet dataset. Each image would be classified with one out of 1000 classes. Because
of this, the output layer has a total of 1000 nodes. We therefore have to modify it to fit
our own classes. In addition to the difference in number of target classes, the class labels
are different as well. The very last layers of the Inception-v3 model are trained to see the
differences between animals and vehicles, but not the nuances that differ two car brands.
Therefore, we have to substitute the top layers of the model.

We transfer the base of the Inception-v3 model, as defined in 3.6. In addition, we add
a dropout layer, a fully connected layer and a final softmax layer with the same amount of
outputs as we have number of classes.
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Chapter 5
Experiments and Results

This section will describe the experiment process and contain all the necessary steps to
reproduce the results. It can be regarded as a step to step guide to reproduce the results.

5.1 Experimental Plan
We deduced an experimental plan based on the background theory as well as the dataset
analysis.

In the preface of the project, we did not yet have access to the Leboncoin dataset.
Krause et. al. [19] provides a dataset of cars containing 16185 images of 196 classes
of cars. The first tests of the model were therefor done on this dataset. The results are
omitted from the report, mainly due the fact that this part of the research was about making
everything run correctly, and not get good results.

The experimental plan is divided into three parts, the single instance classifier, multi
instance classifier and an improved single instance classifier. We present the background
reason for each experiment as well as the expectations of the experiment.

5.1.1 Single Instance Classifier
The single instance classifier refers to the neural network architecture described in section
4.2. The main experiments are listed below:

• Experiment 1: Train the classifier on the newly added layers of the model.
This experiment freezes the weights for all the original layers of the inception model.
The experiment is originated in the theory of transfer learning (section 3.3). The idea
is that the original neural network has learned the low level features in the images.
Those features are therefore transferable to the new learning task. We are interested
in knowing if the shallow top network is enough to perform at a high accuracy.

The expectations for this experiment is that the model will be able to converge and
classify images to a certain extent. However, there are only two layers that are being
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trained. We can therefor not expect the model to perform as well as the state of the
art models.

• Experiment 2: Train the last 5 inception blocks of the model. 1

The results from Experiment 1 were promising, but did not achieve the accuracy we
want. The hypothesis is that only training the top layers does not improve the model
a lot, as the trained network is too shallow. Deeper training should help the model to
adapt the new dataset better, as mid-level features might be specific to our dataset.

The original intent in experiment 2 and 7 was to train the last 2 inception blocks of the
model. However, an error in the Keras documentation led to more layers being trained.
The error was reported, confirmed and fixed during the project. 2.

5.1.2 Multiple Instance Classifier
The second part of the experiment is to combine the predictions on images originating from
the same ad. The experiments are based on the background theory presented in section
3.4. However, since the images in each sales ad has an order, an additional experiment
was deducted to account for this information.

The experiments in this section is done on the best single instance classification model
found in section 5.1.1. There are four different experiments done to combine predictions.
The experiments are listed below:

• Experiment 3: Average the predictions of images originating from the same
sales ad.

This experiment uses the concept presented by Xu & Frank [35]. We assume that
the individual image predictions are independent and contribute the same amount to
the answer.

The expectation is that averaging the predictions will enhance the results, as we can
see the erroneous predictions as noise in the model. Averaging predictions from
multiple samples will also average the noise. If the noise is random, then the ex-
pected value of the average will converge to uniform as the instance count increases.

• Experiment 4: Use the noisy-or model to combine the predictions of the images
originating from the same ad

The idea of this experiment is similar to the one in Experiment 3. However, as
we have seen in section 3.4, the noisy-or model will increase the importance of
confident predictions. This can also be seen as decreasing the weight of less confi-
dent predictions. The expectations is that the less confident pictures are the detail-
oriented images, such as engine or backseat of the vehicle. These images can be
hard to distinguish between classes.

1More precise, the first 172 layers were frozen, and the rest trained. The trained layers correspond to the last
4.5 inception blocks in addition to the newly added layers. See discussion later in this section.

2Github issue: https://github.com/fchollet/keras/issues/6910 Github pull request:
https://github.com/fchollet/keras/pull/6918
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• Experiment 5: Use weighted average to combine the predictions of the images
originating from the same ad
As we have seen in section 2.1, the images within one sales ad are ordered. We
hypothesize that images earlier in the sequence are easier to classify than than the
last images. This is due to the fact that sales ads often show pictures from the outside
of the car in the beginning of an ad, while the detail-oriented images appear last. In
other words, the difficulty of the classification is not uniformly distributed within a
class.

• Experiment 6: Use voting to combine the predictions of the images originating
from the same ad
This experiment is an attempt to solve some of the problems that appeared because
of the overconfident single instance classifier. We deduce a simple experiment,
where each image contributes with votes towards a final prediction. The final predic-
tion is simply a majority vote between the images. This experiment was inspired for
the multi-attribute image classification problem of Sing and Garzon [27], discussed
in section 3.4.

5.1.3 An Improved Model for Classification
The analysis of the results from Experiments 1-6 showed some possible shortcomings,
as discussed in section 5.3.1 and 5.3.2. The single instance classifier was very confident
of its predictions, which led to problems when the predictions were combined. Also, the
single instance classifier showed a big gap between training accuracy and validation/testing
accuracy. The problems are likely to originate in a slightly overfit model.

• Experiment 7: Train the last 5 inception blocks of the model on augmented
images.
This experiment tries to solve two problems. First, we would not like the model
to overfit. In addition, the gap between training accuracy and validation accuracy
proposes that the model is unable to generalize well.

The proposed solution was to augment the images to produce a more versatile train-
ing set. At the same time, we hypothesize that the training accuracy will increase
slower, as the model can not learn exact inputs. The expectations of this experiment
is therefor increased accuracy on both the single instance classifier and the multi
instance classifier.

5.2 Experimental Setup
This section will break down the setup of the experiments. First, it will introduce the
common setup of all the experiments. Unless stated otherwise, the setup is the same for
all the experiments. Further, the section is divided into the single instance classification
task, the multi-instance classification task and the improved model. These two sections
include all experiments from section 5.1, including all the parameters. The results of the
individual experiments will be presented and discussed in section 5.3.
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5.2.1 Hardware
The demands of processing power in machine learning can be high, especially as the
datasets grow. The complexity of the model also affects the demands. However, hard-
ware is expensive. Selecting the correct hardware is therefore a trade off between comput-
ing power and cost. Managing this balance can be difficult. We were provided with the
opportunity to use Amazon Web Services (AWS) for computation and storage.

Training of deep neural networks has proven to be far more efficient on GPU’s com-
pared to conventional CPU architectures. The presence of GPU was therefore a major
advantage in this project.

Storage space is also a factor that contributes to selecting the correct platform. The
dataset in this project is close to 1TB. In addition, scaling and augmenting the dataset was
a possibility. We therefore need to have the possibility to scale the storage space after
demand.

The program runs on AWS as a P2 Accelerated Computing Instance, spesifically the
p2.xlarge model. It has one NVIDIA K80 GPU with 12GiB of GPU memory. The choice
of computing service and model was made based on price and privacy options. The
datasets was on mounted volumes in computing centers in Ireland. AWS makes it easy
to attach, duplicate and rescale volumes if needed. We used in total 3 attached volumes.
One for the original dataset, one for the scaled dataset and one for all the program code
and log files.

5.2.2 Dataset
We chose to select a subset of the images because of the skewed distribution of ads per
car brand, as represented in figure 2.3. The dataset was filtered by number of images per
brand. Only brands with more than 10000 images were selected. Furthermore, 1500 sales
ads per brand were selected. This was to make a balanced dataset.

The dataset was then divided into training, validation and test set. 60% went to the
training set and 20% in both the validation and test set. All images within the same sales
ad were placed in the same subset.

In total this yielded 19 brands with a total of 19brands · 1500ads/brand = 28500ads.
The sizes of the training, validation and test set were then 17100, 5700 and 5700 respec-
tively. The sets varied slightly in size regarding number of images due to the variable count
of images per sales ad.

All images were prepared according to the description in section 4.1.2.

5.2.3 Single Instance Classifier
The Inception-v3 model was modified as described in section 4.2. The dropout layer in the
model has a probability of retaining a unit of 0.5, as proposed in [29] for the last layers of
the model. The fully connected layer has 1024 units, and uses ReLu as activate function.
The final softmax layer has 19 target classes to fit our dataset.

All the experiments used RMSProp as optimizer with momentum γ = 0.9 as suggested
by the inventors of the function. The loss was calculated as categorical cross-entropy. The
learning rate were set to the specific experiment. Some trail and error led to the learning
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rates, however, no precise grid-search was done due to the time it takes to train a model
and the time frame of the project. Unless stated otherwise, the batch-size was set to 100
and the validation size to 200 3.

• Experiment 1: Train the classifier on the newly added layers of the model
The learning rate of all the layers in the base of the Inception-v3 model was set to
0. This is the same as freezing the layers, as the weights will not change during
training. The learning rate for the top 3 layers were set to 2e−4. The network was
trained for 50 epochs, without an early stopping scheme or learning rate schedule.

• Experiment 2: Train the last 5 inception blocks of the model.
The first 172 layers 4 of the model were frozen and the rest trained. The learning
rate was set to 2e−5 and number of epochs to 50. However, early stopping was
configured to stop the training if the validation loss did not improve for 10 epochs.

5.2.4 Multiple Instance Classifier
All the experiments were set up as describe in section 4.1.4. The evaluations were done
on the complete test set and tested on the model from Experiment 2.

Two of the experiments needs definitions for the hyper-parameters:

• Experiment 5: Use weighted average to combine the predictions of the images
originating from the same ad
The weights used for the weighted average in Experiment 4 and 9 was set linearly in
the range [1, 0.5]. For instance, if the sales ad had 6 images,Wi = [1, 0.9, 0.8, 0.7, 0.6, 0.5].

• Experiment 6: Use voting to combine the predictions of the images originating
from the same ad
Each of the images contribute one vote towards the final prediction. If multiple
classes has the same number of votes, then a random class is selected out of them

5.2.5 An Improved Model for Classification
The setup for this experiment is very similar to Experiment 2. However, there are some
minor differences when it comes to implementation, as we have to pay extra attention to
how the CPU and GPU work parallel. The batch size is therefore slightly smaller.

• Experiment 7: Train the last 5 inception blocks of the model on augmented
images.
The learning rate was set to the same as in Experiment 2. The number of epochs
were set to 20 and no early stopping was configured. The batch size were set to 60.

The images were augmented with the following scheme:

3The whole validation set was not used due to a bug in the software. This will affect early stopping if used.
However, the test results are performed on the complete test set.

4This number is implementation specific. It refers to the model found in Tensorflow 1.1.0.
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– Random zoom: In the range [0.8, 1]
– Random shear: Up to a factor of 0.1
– Random width shift: Up to 5%
– Random height shift: Up to 5%
– Random rotation: Up to 90 degrees in each direction

– Random horizontal flip: 50% of the images were flipped horizontally

We decided not to do color shifting, even though it is often done when augmenting
images for machine learning. The reasoning behind this decision was that some cars
have unique nuances of color. However, there are possible issues with the model
learning a color as a brand, as this might not be a good generalization.
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5.3 Experimental Results

Task Top-1 accuracy Top-5 accuracy

Model from Experiment 2
Single image classification 0.757 0.915
Ad classification (average) 0.901 0.966
Ad classification (noisy-or) 0.898 0.966
Ad classification (weighted average) 0.890 -
Ad classification (voting) 0.868 -

Model from Experiment 7
Single image classification 0.823 0.947
Ad classification (average) 0.945 0.985
Ad classification (noisy-or) 0.944 0.985
Ad classification (weighted average) 0.940 -
Ad classification (voting) 0.865 -

Table 5.1: Accuracy on the different learning tasks.

This section will provide the results of the individual experiments. First, we present the
results of the single image classification task. Then we will show the result for combining
predictions on the different classifiers. We have decided to test the top-1 as well as top-5
classification accuracy, as this is widely done in other classification tasks.

The results in this section is presented in the same order as the experimental plan and
setup. An overview of the results are given in table 5.1.
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5.3.1 Single Instance Classifier
The single instance classifier refers to the neural network model described in section 4.2.

Experiment 1: Train the classifier on the newly added layers of the model

The first experiment of the research was to train the newly added layers. Figure 5.1 shows
the progression through 50 epochs of training. As we can see, the model converges to
about 0.35 validation accuracy. Due to the low accuracy, we have omitted further analysis
of the results.

The low accuracy can be explained by the shallowness of the trained model. The last
two layers can not correctly distinguish the different brands.

Figure 5.1: Experiment 1 training accuracy.

Experiment 2: Train the last 5 inception blocks of the model.

The model trained in Experiment 2 yielded an top-1 classification accuracy of 0.757 and
top-5 classification accuracy of 0.915 on the test set. We can see the training and validation
accuracy in figure 5.2. As we can see, there is a gap between the training and validation
accuracy. The gap tells us that the model learns the input more than generalizing on the
correct concepts.

Furthermore, we can look at figure 5.3. Each subplot shows the predictions for all
images within an ad. As we can see the model seems to be overconfident about its pre-
dictions. The model is confident even when it is wrong. This might be a symptom of
overfitting.
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Figure 5.2: Experiment 2 and 7 training accuracy.

Figure 5.3: Visualization of the predictions of images in two different sales ads. The color represent
the output of the model
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Figure 5.4: Combining predictions on 6 randomly selected sales ads. Each row correspond to an
image from the sales ad, except the last 4 rows which shows the combined predictions. The color
represent the output from the model. The correct class label is shown in the title of each subplot.
The abbreviations stands for average (AVG), weighted average (wAVG), noisy-or (NOR) and voting
(Vote).
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5.3.2 Multiple Instance Classifier
This section will show the results for the four conducted experiments regarding the com-
bination of predictions. An overview of the results can be seen in table 5.1. The results
will be discussed in view of the expectations of the experimental plan in section 5.1. An
visual representation of the experiments in this section can be seen in figure 5.4.

Experiment 3: Average the predictions of images originating from the same sales ad

Averaging the predictions for all the images within the same ad gave a ad-wise top-1
accuracy of 0.901 and top-5 accuracy of 0.966. As expected, this accuracy is higher than
the single instance classifier. As we can see in figure 5.4, the average function does a good
job of catching the essence of the individual predictions.

Experiment 4: Use the noisy-or model to combine the predictions of the images orig-
inating from the same ad

The expectations for the noisy-or function were high. However, it yielded slightly worse
results than the average function, an ad-wise top-1 accuracy of 0.898 and top-5 accuracy
of 0.966. However, the difference is not significant.

Figure 5.4 reveals some possible problems. The bottom right subplot shows the pre-
dictions for a Porsche. As we can see, there are four classes that show a high confidence.
The exact values of the prediction is shown in table 5.2. We have made the high values
bold to clarify the problem.

The problem is a combination of the way the noisy-or model work and the overcon-
fident single instance classifier. If only one of the images are wrongly classified with a
high confidence, the combined prediction will be confident of this class. This means that
a single image can mess up the prediction for the whole ad.

There is no way to tell a wrong confident classification for a correct confident classifi-
cation with the current model. However, the problem is a result of the overconfident single
instance classifier.

Experiment 5: Use weighted average to combine the predictions of the images origi-
nating from the same ad

This experiment is based on the hypothesis that images earlier in the ad are more important
than the last images. However, the results did not improve compared to the uniformly
weighted average in Experiment 3. Experiment 5 gave an ad-wise top-1 accuracy of 0.890.
Different weights were tested, but the more they differed from uniform weights, the worse
the results got.

We can visualize the average accuracy of images at a certain index in the ads. Figure
5.5 shows us that images appearing early in an ad has a higher accuracy than later im-
ages. This confirms our hypothesis, however, it does not explain the low accuracy of the
weighted average.

We can also see that the accuracy increases for high indexes. However, this might be a
result of few data points, and should not contribute to much to the overall accuracy.
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Prediction Class
0.002 Hyundai
0.250 Audi
0.025 Nissan
0.369 Peugeot
0.008 Citroen
0.058 Bmw
0.998 Porsche
0.969 Renault
0.043 Ford
1.000 Fiat
0.131 Mercedes
0.658 Seat
0.035 Mini
0.042 Opel
0.035 Volkswagen
0.003 Dacia
0.581 Toyota
0.001 Kia
0.999 Alfa Romeo

Table 5.2: Noisy-or predictions on a sales ad.

Figure 5.5: Average accuracy versus index in ad.
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Number of images P (X > n/2) P (X ≥ n/2)
2 0.573 0.941
4 0.750 0.953
6 0.841 0.965
8 0.895 0.975
10 0.930 0.983

Table 5.3: Probability of getting 50% of the votes

Experiment 6: Use voting to combine the predictions of the images originating from
the same ad

Voting gave an ad-wise top-1 accuracy of 0.868. The improvement of classification accu-
racy from the single instance classifier was smaller than expected.

We know that each image has a probability of 0.757 for being correctly classified from
the single instance classifier. An ad-wise prediction of a label needs maximum 50% of
the votes to be selected. If we consider the binary classification problem of predicting
the correct label versus the wrong, we can model this as binomial distribution. We are
interested in the probability that more than 50% of the ads are correctly classified. We can
calculate this as in equation 5.1. X is the number of correctly classified images and n is
the total number of images.

Pr(X > n/2) = 1− Pr(Xbn/2c)

= 1−
bn/2c∑
i=0

(
n

i

)
pi(1− p)n−i

(5.1)

Table 5.3 shows the probabilities of getting 50% and more than 50% of the votes.
Note that getting more than 50% of the votes guarantees that the label is selected. This is
a strict calculation, as an ad with 10 images and 4 correctly labeled images still can get
the correct majority vote if the remaining 6 votes are relatively uniformly distributed on
the other labels. We see from the table that voting should yield a higher accuracy than
we expected, considering the distribution in chapter 3. However, there is an assumption in
the calculations that does not hold. The calculations assume that the images are equally
difficult to classify independent on which ad they appear in. Section 5.3.3 addresses this
assumption.
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5.3.3 An Improved Model for Classification
This section will describe the results on the single instance classifier as well as updated
results of the different experiments for the multi instance classifier.

Experiment 7: Train the last 5 inception blocks of the model on augmented images.

As expected, the model trained slower in this experiment than Experiment 2, as we can see
in figure 5.2. However, the validation accuracy stays closer to the training accuracy, and
also surpasses the experiment without augmented images. This behavior shows us that the
model is not overfitting as much as before.

On the single instance classifier, the test accuracy was 0.823 and 0.947 on top-1-
accuracy and top-5-accuracy respectively. This is a significant improvement, and an in-
crease of 6.6 percent point. There were 5700 ads in total, which means that 5388 ads were
correctly classified.

The predicted labels from the test set were plotted in a confusion matrix. The value of
each cell visualize the fraction of images within the true class which were classifier into
the predicted class. We can see the confusion matrix in figure 5.6a.

As we can see, the diagonal is prominent. This means that most of the images were
correctly classified. However, the nuances of the false positives disappear because of the
strong diagonal. Figure 5.6b shows the same confusion matrix without the diagonal. As we
can see, the false positives are relatively uniformly distributed throughout the confusion
matrix. However, some information can be induced. For instance, the model finds it
difficult to distinguish between Kia and Hyundai.

We ran all the multiple instance classifier experiments on the new improved model. All
the results are listed in table 5.1. The results improved for all multi instance experiments
with the new single instance model. As we can see, uniform averaging still gives the best
results, with an ad-wise classification accuracy of 0.945 and 0.985 for top-1 and top-5
respectively. However, noisy-or is only slightly worse.

A manual look at correctly and wrongly images gave an impression that the accuracy
were biased regarding viewpoint. To verify this impression, we manually labeled 400
images (50/50 correct/wrong) by viewpoint from the test set. For each image, we wrote
down if the image were correctly classified or not. The results are shown in table 5.4. Note
that the dataset does not contain viewpoint metadata, so the a priori viewpoint distribution
is unknown. However, we can estimate this distribution from the manually labeled images.

We should be careful to draw any hard conclusions by this analysis, as the sample is
small. Also, stating that images of the front has 12/16 = 3/4 accuracy is wrong, since
images with this viewpoint has different probability of appearing in the two categories
(correct/wrong).

We define B as the viewpoint. We can calculate P (B) as P (B) = P (B|Correct) ∗
P (Correct) + P (B|Wrong) ∗ P (Wrong). We know P (Correct) and P (Wrong) from the
classification accuracy of the model, P (Correct) = 0.823. We infer P (B|Correct) from
the values in the table. We can then use Bayes Theorem to calculate the probability that
an image from a viewpoint is correctly classified, P (Correct|B).

Pictures of trunks and engines are mostly classified wrong. This is also true, not sur-
prisingly, for images that does not contain a car. The accuracy is significantly biased in
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Viewpoint (B) Correct Wrong P (B) P (B|Correct) P (Correct|B)
Front 12 4 0.05 0.06 0.93
Side 13 16 0.07 0.07 0.79
Back 12 2 0.05 0.06 0.97
Front/Side 55 33 0.26 0.28 0.89
Back/Side 32 18 0.15 0.16 0.89
Trunk 1 15 0.02 0.01 0.24
Engine 0 10 0.01 0.0 0.0
Back seat 4 24 0.03 0.02 0.44
Front seat 21 30 0.11 0.11 0.76
Dashboard 30 6 0.13 0.15 0.96
Detail (inside) 16 20 0.08 0.08 0.79
Detail (outside) 4 10 0.03 0.02 0.65
No car in image 0 12 0.01 0.0 0.0
Total 200 200 1 1 -

Table 5.4: The viewpoint’s bias on accuracy. 200 correctly and 200 wrongly classified images were
randomly selected from the test set. ”Front”, ”Side” and ”Back” refers to images taken directly from
the direction. If the viewpoint is slightly different, the image falls into the category ”Front/Side” or
”Back/Side”.

regards of viewpoint.
Another perspective to the results is to see how many correctly classifier images there

are in an ad. Since the ads have different number of images, we plot the fraction of cor-
rectly classifier images in figure 5.7. If the ads were independent and identically in regards
of the difficulties of classifying an image, then we would expect a distribution centered
around the single classifier accuracy of 0.832. However, as we can see in figure 5.7a, most
of the ads have images which were all correctly classified, while other had almost none.
Figure 5.7b is the same histogram, but focused on the ads that had less than 50% correctly
classified images. Almost 200 ads had less than 10% correctly. Not surprisingly, all of
them were wrongly classified.

In addition, we expect the year model of the vehicle to affect the accuracy of the
classification. Figure 5.8 shows the percentage of correctly classified ads in relation to
the year model. As we can see, older cars has a less accuracy than newer cars. This is
probably because there are less data for early years.
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(a) Confusion matrix

(b) Confusion matrix where the diagonal is removed to better see nuances.

Figure 5.6: Confusion matrices for the single instance classification task.

48



5.3 Experimental Results

(a) All the sales ads (b) Zoomed in view of fraction < 50%.

Figure 5.7: Histograms of the fraction of images in an ad that were correctly classified.

Figure 5.8: Accuracy of sales ads correctly classified in regards of model year. A running mean of
10 years is used, since there are few ads with a specific year in years before 1990.

49



Chapter 5. Experiments and Results

50



Chapter 6
Discussion

This section will provide a discussion about the experimental results of the project. It will
discuss possible shortcomings, problems with the classifier and the research process in
total.

6.1 Performance

This section will evaluate the results across all the different experiments and investigate
possible explanations for the results. The section is divided into evaluation of the single
instance classifier and the multi instance classifier. However, the latter refers to the former
section to provide reliable explanations.

6.1.1 Single Instance Learning

It is important to validate the performance of the classifier. It is however difficult to quan-
tify how good the solution is without a good benchmark test. One possible benchmark is
the ILSVR 2012 classification challenge. The inception-v3 model achieved a classification
error of 21.2%, top-1 and 5.6% top-5 error for single crop image [31].

The benchmark results in [31] are comparable to our results of 17.3% and 5.3% classi-
fication error for the single image classification task. However, the results presented for the
Inception-v3 were on the ImageNet ILSVRC 2012 classification task containing a total of
1000 classes. Thus we would expect or model to perform at least as well as the benchmark
test.

The comparison between Experiment 1 and 2 shows that we need to train more layers
than the newly added when we perform transfer learning. This is not surprising. Ideally,
we should fine-tune all the layers after we have trained the network. However, training a
deep network like the Inception-v3 is demanding in regards of computational time.

Another important factor to discuss is the quality of the dataset. Some of the pictures
do not contain a car at all. Table 5.4 is based on a small sample, but around 1% of the
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images are of this type. We cannot expect to correctly classify images without a car. Sim-
ilarly, the images of the trunk and the engine of the car are classified with a low accuracy.
These images are difficult for humans to classify as well. However, the model is good at
picking up small details that humans may overlook.

6.1.2 Multiple Instance Learning
Combining the predictions on the different images improved the results substantially.
There were no significant difference in averaging the predictions and using the noisy-or
method. However, a single instance classification accuracy of 0.823 makes an expectation
that we should be able to classify ads with a higher accuracy than we do.

Although the accuracy for ads were higher than for individual images, it did not in-
crease very much. The explanation for this is probably that some ads are more difficult to
classify than others. In other words, some ads contain difficult images. Combining them is
not going to help. Figure 5.4 visualizes this. 2 of the 6 ads have a much more widespread
predictions than the other 4 ads.

Consider the scenario with a test set of 10 sales ads, each with 10 images. The single
instance classification model has an accuracy of 0.7. If all the wrongly classified images
are placed in 3 of the ads, then the ad-wise classification will also have an accuracy of
0.7. This might explain why combining the images into a multi-instance model did not
improve the result more than it did.

If we look at figure 5.3, we can see that the single instance classifier is very confident
of its predictions. This is true even if the prediction is wrong. This seems to be a case of
overfitting, but the overfitting does not affect the classification accuracy. Usually a certain
amount of overfitting can be tolerated, or even necessary for the model to fully converge.
The problem arises when we try to combine the predictions from different images. A
smoother distribution of the predictions may improve the combined classification. In other
words, the model would be under-fit. The correct class would appear when we average the
different predictions. We hypothesize that it would be preferable to intentionally under-fit
the single instance classifier to produce a better multi-instance classifier.
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Chapter 7
Conclusion and Future Work

This chapter will summarize the research project and conclude on the results and process.
It will highlight the contributions of the project and present some of the aspects that should
be investigated further.

7.1 Conclusion

In this thesis we show that we can classify sequences of images using a single instance
classifier and average the results. Even though the dataset is created by users and contains
noisy images, the classification accuracy is high. Averaging the predictions of individual
images increases the accuracy substantially. We conclude that we can achieve a high
accuracy on sales ad classification, only based on the images.

The dataset contains noise in the sense of unusual images which are hard to classify.
The main challenge is that the noise is not evenly distributed between the ads. This affects
the result when we combine the images.

Averaging the predictions proves to be the most accurate combiner of predictions, as
questioned in Research Question 2. The main challenge when it comes to combining the
images is that some ads contains a statistically higher fraction of difficult images. This
may be because of a vehicle in bad condition, an old vehicle or that the images are not
available.

7.2 Contributions

This theses shows that multiple instance classification can be used with a conventional
single instance classifier and still achieve high accuracy. This method can be applied on
marketplace websites, on medical imagery and video without increasing the complexity
of training the model. If a trained model is already available, the predicted output can be
combined without modifying or retraining the original model.
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7.3 Future Work
There are multiple aspects of the projects that were not investigated due to a limited time
frame for the project. This section will highlight the most prominent possible improve-
ments.

The experiments in this process was simplified by excluding large parts of the dataset.
The subset of the dataset that were selected was done in order to balance the dataset and
make the possible problems fewer. However, more data means that the model can gener-
alize better if the model is designed correctly.

The bias of the viewpoint of the image on accuracy shows us that this information is
valuable. One method to utilize this information is to train an additional model which
identify the viewpoint. This information can be used to weight the average when we
combine the predictions. A model that identify the viewpoint should also identify if there
isn’t a car in the image. We could either train this new model on a different dataset that
already includes viewpoint information, such as [36], or we could manually label our
training set. This could be done using services such as Mechanical Turk from Amazon to
quickly label thousands of images.

Although this project combines bags of instances to an ad-wise prediction, it does not
utilize the information about the groups during training. An interesting addition would be
to extend the model to calculate loss across bags of instances. We hypothesize that this
would increase the ad-wise prediction accuracy.

Consider the following example. Each ad has 10 images. 5 of these images are of the
actual object we try to classify, while the 5 other images are there to simply distract the
model. A custom loss function could potentially understand the underlying structure of the
dataset better, and ignore the random images that are only there to distract. A custom loss
function could calculate bag-wise loss as the average loss for the top 50% of the images.
This would in effect ignore difficult images and make the model only predict the easiest
images.
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Appendix A
Example of Leboncoin car ad
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Figure A.1: An example of how car ads are displayed on the Leboncoin website.
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