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English Abstract

Reinforcement learning is learning to behave optimally with respect to an
external observer through interactions with an environment. An agent re-
peatedly tries to accomplish a goal, each trial yielding some more infor-
mation about the environment. Recent work by Bellemare et al. (2017)
introduce a technique, C51, that extends the point estimate of future reward
to a probability distribution. This opens the door for new action-selection
schemes and exploration strategies. It is also a possible source for intrin-
sic motivation, using uncertainty to generate directed exploration. Recent
work by Moerland et al. (2018) presents promising results when using dis-
tributions to explore in a deterministic MDP setting by way of Thompson
sampling. Their results also prove that this way of representing returns are
a valid option to guide exploration. This thesis introduce a novel way of
computing intrinsic reward based on distributions from the C51 algorithm.
The resulting intrinsic reward enables the agent to quickly explore a new
environment, resulting in a performance on par with Moerland et al. (2018)
in the randomized Chain environment.
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Norwegian Abstract

Forsterkningslæring er å lære oppførsel i et miljø gjennom interaksjoner.
En agent prøver gjentatte ganger å fullføre et miljø, og får en mer presis
mening om konsekvenser for hvert forsøk. Ny forskning gjort av Bellemare
et al. (2017) introduserer en ny teknikk, C51, som forbedrer punktestimatet
av en observasjon. De går fra å bruke ett enkelt tall(forventningsverdien) til
å approksimere den underliggende sannsynlighetsfordelingen. Tilgangen
til en sannsynlighetsfordeling åpner døren for nye væremåter og utforskn-
ingsstrategier. Ved å utnytte usikkerheten i meningene til agenten kan vi
utforske ved hjelp av en indre motivasjon. Dette kan for eksempel være
nysjærrighet eller et ønske om mangfold. Moerland et al. (2018) klarte
nettopp dette. De brukte sannsynlighetsfordelingene til utforskning i et de-
terministisk miljø. Resultatene beviser at distribusjonene kan med fordel
brukes til utforskning. Denne oppgaven bruker også distribusjonene til ut-
forskning, men på en annen måte. Ved å utnytte sannsynlighetsfordelingene
til en C51-basert agent kan vi gi opphav til indre motivasjon. Motivasjonen
brukes som utforskningsmiddel, og lar en agent raskt utforske et nytt miljø.
Resultatene er på lik linje med Moerland et al. (2018).
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Chapter 1
Introduction

An introduction of the thesis starts the chapter. The project formulation and
research question follows. The main contributions are then summarized.
An outline of the remaining thesis concludes the chapter.

1.1 Introduction

Reinforcement learning is acquiring knowledge from interactions with the
world. The field has seen several major advances the last few years. A
computer is now able to compete and supersede humans is a vast num-
ber of games, among them the challenging board game Go (Silver et al.
(2016)). A number of smaller contributions made this achievement possi-
ble, some of them tackling the exploration/exploitation challenge. One of
these contributions is the introduction of a value function. It estimates the
expected world-given goodness of a given game-state. This technique has
in recent work been extended, estimating the underlying probability distri-
bution function rather than only the expectation. The inherent curiosity in
humans has been formalized as intrinsic reward, and is a natural way of
exploring uncharted territory. However, there is no definite way of com-
puting it, leaving a vast open field of research. We set out to investigate
if the recently introduced probability distributions have any merit to direct
the agent when it feels lost.
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1.2 Project formulation

The C51 algorithm Bellemare et al. (2017) takes a new approach to value-
functions. Rather than approximating the expected value, C51 models the
distribution of returns and their probabilities, introducing distributional RL.
However, the algorithm still uses an old method called e-greedy for explo-
ration. Is there room for improvement on exploration in the distributional
RL setting, specifically using intrinsic reward?

1.3 Research Question

This thesis studies intrinsic rewards in the distributional reinforcement learn-
ing setting. First, an overview of the current research is presented. Allow-
ing for putting this work into context. The main contribution will then be
presented, answering the following research question: Can the informa-
tion provided by state-action distributions in distributional reinforce-
ment learning give rise to intrinsic motivation? If so, are they beneficial
to the agent?

1.4 Contributions

The first part of the thesis consists of a literature review and background
in reinforcement learning. A new method for intrinsic motivation is pre-
sented in section 4.1.1. The modifications and specific implementation is
motivated by experiments in section 5.2. Our contributions are:

• Results on several gridworld-type of environments, showing how in-
trinsic and non-intrinsic agents behave in stochastic and deterministic
environments.

• An understanding of probability distributions output by the C51 al-
gorithm.

• A new intrinsic reward function based on said probability distribu-
tions.

2



1.5 Structure
A background section providing essential knowledge on reinforcement learn-
ing is first presented. Distributional reinforcement learning is also pre-
sented in detail. The state of the art in utilizing distributions for explo-
ration are reviewed and set in context with this thesis. Other state of the
art methods on exploration are also discussed. Methods and the resulting
agent are then discussed in detail, giving a thorough understanding of the
new method. Our path to the specific implementation are then told through
the experiments section. Results leading up to an answer to the research
question is then presented. A discussion of the overall work follows. The
conclusion then touches on the main parts of this thesis, summarizing our
findings.
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Chapter 2
Background

This chapter concerns the reinforcement learning problem and how it is
solved. A presentation of the RL setting will be presented, followed by
the environments used in this thesis. The agent is then discussed, and the
process of learning introduced. Then follows how the agent makes a guess
from a guess, by traditional Q-learning and by distributional reinforcement
learning. How to compute intrinsic motivation follows. Different kinds of
uncertainties and how the agent should act accordingly to different uncer-
tainties are then explained. The chapter concludes with an explanation of
the underlying function approximator used in this thesis.

2.1 The Reinforcement Learning Problem
Solutions to many problems are defined only by the desired outcome. In
chess, the task is to win. How to win is not given. Walking is character-
ized by moving forwards (at minimum energy expense). The exact relation
between sensory input and muscle movements is not important. Reinforce-
ment learning (RL) is the search for algorithms solving this class of prob-
lems autonomously.

2.1.1 Environment
In RL, problems are formalized as environments. We define environments
to be a partially observable Markov decision process (POMDP) Thus for
our purposes, an environment consists of a set of states S, set of actions
A, as well as probability distribution for evolved state as a result of each
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action in each state P (·|s, a). The environment defines an observation as a
function of state. If the environment is fully observable, that is, the obser-
vation uniquely identifies the state, the environment is a Markov decision
process (MDP). A reward may be positive, negative, or even zero. The
environment also describes rewards given for each action in each state,
R(s, a) : S × A → R. We call each state transition a step. Consecu-
tive steps form an trajectory. A trajectory is completed when the last state
has all actions guaranteed to lead back to itself. Such a state is called a
terminal state. A trajectory from a start state to a terminal state is called
an episode. The goal is always to maximize the expected cumulative re-
ward of steps in an episode (ECR). Since the goal is to maximize ECR,
an episode is concluded when non-zero rewards can no longer be reached.
The return in an episode of length T is the discounted cumulative rewards,
Gt = rt+1 + γrt+2 + · · ·+ γT−1rT.

This thesis mainly considers three different environments, the NChain
from OpenAI gym Brockman et al. (2016), a slightly modified version
called Chain-n from Osband et al. (2016), and a grid-based environment
the author created during this work.

NChain(figure 2.1) is described on OpenAI’s webpage like so: “This
game presents moves along a linear chain of states, with two actions: For-
ward, which moves along the chain but returns no reward. Backward, which
returns to the beginning and has a small reward. The end of the chain, how-
ever, presents a large reward, and by moving ‘forward’ at the end of the
chain this large reward can be repeated. The observed state is the current
state in the chain (0 to n-1)”. Slight modifications are made to the stan-
dard NChain environment, it isn’t slippery anymore, and the agent has just
enough time to reach the large reward if it always moves ‘forward’.

Chain-n (figure 2.2) bare similarities to the above description of NChain.
However, one action leads to the next link, and the other terminates the
episode with zero reward. The correct action in each state is randomized at
environment initialization, removing the possibility to generalize between
states. A reward of 1 is issued at the final link, and the episode terminates.
Action randomization proved crucial to distinguish between exploration
strategies.

The last environment is the Wall environment, seen in figure 2.3. It is
heavily inspired from gridworld-like environments in OpenAI gym. Here,
the agent observes the current state, and can always walk in the four car-
dinal directions. Actions leading off the map are no-ops. Every transition
yields no reward, except when reaching the goal, yielding a reward of 1. An

6
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sN−1 a1 sN

r = 1

s0

Figure 2.1: The NChain environment. Each state has two possible actions. One
leading to the next link, and one terminating the episode, depicted by a black circle.
Upon reaching the final link in the chain, the agent is rewarded a unit of 1, and the
episode terminates.

a0

a1

a1

s1

a1

sN−1 a0 sN
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s0

Figure 2.2: The Chain-n environment. Each state has two possible actions. One
leading to the next link, and one terminating the episode, depicted by a black
circle. Upon reaching the final link in the chain, the agent is rewarded a unit of 1,
and the episode terminates. All actions are uniformly randomized at environment
initialization.
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S F F F
F F G F
H H H H
F F F F

Figure 2.3: The Wall environment. S is the starting state, F are frozen(walkable)
squares, G is the goal and H are holes in the ice that terminates the episode.

S F F F
F H F H
F F F H
H F F G

Figure 2.4: The FrozenLake-v0 environment. S is the starting state, F are
frozen(walkable) squares, G is the goal and H are holes in the ice that terminate
the episode.

agent can only act in a certain part of the state-space, never experiencing
what is on the other side of the wall, illustrated by the line of Hs in figure
2.3.

The FrozenLake-v0 environment from OpenAI gym was used in the ex-
periment phase. Except for the layout, the environment is almost identical
to Wall. However, the environment is stochastic. Each time the agent takes
an action, there is a 1

3
chance the agent will slide and execute one of the

other three actions.

2.1.2 Agent
An algorithm producing actions is called an agent. A chosen environment
and agent are allowed to interact. The agent receives observations and re-
wards and has a memory it can update. When a terminal state is reached, the
environment is reset to its initial state, and the agent is informed of this by a
special observation. An agent with its memory has solved an environment
when the ECR is maximized (within some margin).

Although an agent may be specialized for the environment, not neces-
sarily improving its performance over interactions, in RL we are interested
in algorithms that learn to maximize the ECR. It is also desirable for the al-
gorithm to be as general as possible with regard to choice of environment.
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Figure 2.5: The agent-environment interaction.

It is worth noting that the agent and environment are isolated from each
other. The environment cannot communicate with or disturb the agent in
any way except for emitting observations and rewards. Likewise, the agent
cannot influence the environment by any other means than observing and
commanding actions. In particular, the environment definition is not in gen-
eral accessible to the agent. This prevents a general agent from saving or
duplicating the environment so as to try different scenarios risk-free. How-
ever, an agent may be specialized, possessing a (possibly parameterized)
a-priori model of the environment. In this report, we do not give our agents
models of the environment.

2.1.3 Structure of an agent
How should an agent choose an action given a particular observation? At
the core of an agent is the policy π, which selects a stochastic action based
on the memory of the agent. A concrete toy example of a policy is ran-
dom selection of action regardless of memory. In some cases random is
the optimal policy, like when playing rock-paper-scisors against an optimal
adversary. In more difficult problems, the agent might perform better if it
can show a preference in action selection. In a mash-the-button environ-
ment, where an agent steps by either idling or pressing a button that gives a
positive reward, an agent that has a preference for pressing the button will
perform better. A singe action is always best in cases like this. In other
environments the most lucrative rewards are not as immediate, but taking a
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specific action could give access to situations with more rewarding actions
later. Here the best choice of action in dependent on the situation.

Suppose the mash-the-button environment is augumented with a lever
that changes the reward of the button. No reward is given when the lever
is adjusted. The causality between an increased reward, the correct lever
position, and the lever adjustment is hidden by many steps. Clearly, the
best action to take depends on the belief about the lever’s position. Belief
is simply any inference from memory.

Let us formalize the ECR for a policy that observes the whole state of
the environment. Given such a policy, ECR is the expected reward for all
possible rollouts from a given state.

An optimal policy will be such that the ECR in every state-action will
be equal or higher that the ECR for other policies. Let π∗ be some policy
that has all ECRs equal or higher to any other policy in that environment.
Under any policy acting on states (not observations), every state will have
a future ECR. One optimal policy, πmaxecr, is the greedy policy applied to
ECR. It simply selects the action with the highest ECR.

2.1.4 Q-learning

We are generally interested in environments with large state-action spaces.
Computing the exact πmacecr is unfeasible in this case, as our agents have
space limitations for their memory. Because of this, we have to resort to
approximations. πmaxecr can be approximated by approximating the ECR.
This approach is called Q-learning by the RL-community, and is the core
problem to solve. The approximation of ECRπ∗(state) is called v(state).
Remember however that the job of the policy is not to evaluate current state,
but to select the best action in current state. The value function is useless
alone, as we cannot predict which state an action will lead to. The chosen
solution is to instead approximate what we are interested in directly. That
is a value for a state-action combination, called the Q-value. Formally, the
value that this Q-function should take is max over actions

E[r(s, a, s′) + v(s′) | action a was taken]

where r is the environment-specific reward-function for doing action a in
state s and evolving to state s′. One approximation to the ECR is to do
random rollouts from a state until episode termination. Given enough time,
this strategy will visit every state-action pair in the current environment.

10



A combination of random rollouts and greedy policy is called ε-greedy. It
selects random actions sometimes, but otherwise is like greedy. This policy
inherits this guarantee of exploring everything given enough time from the
random policy, while being much better at exploring promising actions first
due to its greediness.

As the policy is nearing optimal, the q-values can be approximated as
simple mean values of rollouts. This can be expressed as an iterative update
of the means µ1 µ2 . . . of the sequence xi, x2 . . . as

µk =
1

k

k∑
j=1

xj (2.1)

=
1

k

(
xk +

k−1∑
j=1

xj

)
(2.2)

=
1

k
(xk + (k − 1)µk−1) (2.3)

= µk−1 +
1

k
(xk − µk−1) (2.4)

However, to begin with the policy is not anything like optimal, so results
will drag down the average from the true value. This is alleviated by using
exponential moving average instead. This introduces a parameter called the
learning rate that determines how quickly an agent distrusts old memories.
The best action can be found by iterating over actions, figuring out the
values of each state-action pair, and act so as to maximize the ECR. An
agent’s approximation of ECR will never be exact. be completely sure of
state. Instead, we learn Q for the agent’s best estimation of state from
observation and memory. More formally, we approximate the Q-function
as

Q(mem, a) = E[ECR(s̃, a)|mem]

But because we do not want Q to have all the responsibility of interpret-
ing memories, we fist massage the memory into some belief vector.

Q(belief(mem), a) = E[ECR(s̃, a)|belief(mem)]

We can for simplicity, let belief be the last observation. This is enough
for fully observable environments and environments where the optimal be-
haviour does not depend on non-observable information, such as the previ-
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ous state. Both are true for all environments presented in this thesis.
Operators exists that specifies exactly how to update the agent’s memory
with root in interaction with the environment. One such operator is the Bell-
man operator. This operator makes updates to the Bellman equations(2.5,
2.6) Bellman (2013), central to describe the value functionQ : S×A→ R.

Qπ(s, a) := ER(s, a) + γ E
P,π
Qπ(s′, a′). (2.5)

Q∗(s, a) := ER(s, a) + γE
P
max
a′
Q∗(s′, a′). (2.6)

The Bellman operators(2.7, 2.8) is used to update the Bellman equations. It
also describes the expected behaviour of a Q-learning agent.

T πQ(s, a) := ER(s, a) + γ E
P,π
Q(s′, a′) (2.7)

T Q(s, a) := ER(s, a) + γ EP max
a′∈A

Q(s′, a′) (2.8)

These operators are contraction mappings (Bertsekas and Tsitsiklis (1995)),
making the repeated update from an initial Q0 converge to Qπ or Q∗, re-
spectively .
We now know how to update the Q-function with information from an en-
vironment.

2.1.5 Distributional Reinforcement Learning
We will now discuss how distributional reinforcement learning differs from
Q-based, and what possibilities there are. Specifically, we will focus our
discussion on the work by Bellemare et al. (2017). The following also ap-
plies to other distributional RL work.
Among practitioners of RL, it has been usual to approximate the Q-value
with a point estimate(it’s expectation). This is very natural, as the agent
only needs the expected value of each action to compare the actions and
choose the best one. However, estimating the underlying distribution opens
up a new range of opportunities to take advantage of. An agent could let
uncertainty in the estimate impact action selection. Using distributions has
proved useful for risk-sensitive agents by Morimura et al. (2012). The re-
turn distribution can also guide exploration, letting the agent take actions
that it learns the most from. This is discussed in chapter 3.
An example of a risk-based scenario would be if the agent needed to catch
a plane using modes of transport with stochastic travel times. Actions are

12



choosing which mode of transport of getting to the airport. As the agent
doesn’t want to miss the plane it must consider this possibility, and take
the appropriate action thereafter. This would incentivize the agent to pick
a sound mode of transport, minimizing the possibility of missing the plane
while still arriving on time. Bellemare et al. (2017) develops a categorical
distribution for which to approximate value distributions. Using this ap-
proach, an agent has information on the variance and possible multimodal
state-action distributions, allowing for complex action selection as seen in
Moerland et al. (2018). We can treat the q-value function as a random vari-
able that we so far have only known the expectation of, and of which we
now can approximate the full value distribution.
A new update rule is needed to represent the state-action-values as a dis-
tribution, and not as a single point-estimate. Bellemare et al. (2017) pre-
sented the distributional bellman update. This update rule projects updates
to state-action values onto a categorical probability distribution, which rep-
resents the random return. Regular Q-based agents use the well known
Bellman operator T : Q → Q for learning. Bellemare et al. defines a
policy evaluation operator as T π : Z → Z where the reward function is a
random vector R ∈ Z , under policy π.

As we did in Q-learning, we need both an optimality operator 2.9 to
learn the best policy, and the operator to update under the current policy
2.10. Bellemare et al. (2017) defines the distributional Bellman operator
T π : Z → Z as

T πZ(x, a)
D
:= R(x, a) + γP πZ(s, a) (2.9)

T Z := T πZ for some greedy policy π, (2.10)

T π is also a contraction, converging to Zπ by iterative application from an
initial Z0 ∈ Z . There are many ways to represent the resulting probability
distributions. We focus now on the specific implementation in the paper,
namely the categorical representation. It uses a number of supports for the
state-action value. These supports zi are evenly spread within the limits
of parameters Vmin and Vmax: {zi = VMIN + i∆z : 0 ≤ i < N},∆z :=
VMAX−VMIN

N−1 , effectively being the received returns. A parametric model θ :
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S× A→ R gives atom probabilities pi:

Zθ(s, a) = zi

pi(s, a) :=
eθi(s,a)∑
j e

θj(s,a)

The updated value function is then projected onto the support after each
application of T π. This step crucially reduces the Bellman update from
regression to multiclass classification. To update the underlying function
approximator(a neural network in this case), a sample loss of categorical
cross-entropy is used between the updated projected value distribution, and
the old one. Calculating the expected value of Z(s, a) yields Q(s, a), re-
sulting in usage of well known indirect policies, such as the greedy policy.

2.1.6 Off-and on-policy

An agent can learn by interacting with the environment. It can also learn by
observing other agents acting in same environment. These ways of learn-
ing are called on-policy and off-policy, respectively. “In off-policy learning
we seek to learn a value function for a target policy π, given data due to a
different behaviour policy b” Sutton et al. (1998). The off-policy agent can
learn from other agents, or from non-learning processes like a machine or
repetitive task done by a human. Q-learning assume that the best action was
taken in each step. It is an off-policy algorithm that calculates a guess from
the guess about the next state, which is the focus of section 2.1.7. It does
not assume that the action took was the best action according to the current
policy, which would result in an on-policy algorithm. The same argument
goes for distributional learning.
Off-policy learning lets us store all agent-environment interactions in a re-
play buffer in the form of transition-tuples starting at st, taking action at
resulting in reward rt and next state st+1, (st, at, rt, st+1). This buffer is
then sampled from, usually uniformly, and the agent learns the samples. As
we are focused on off-policy learning, we can still use these tuples in a later
update even though the current policy may be vastly different than the ac-
countable policy. This results in a dataset the agent repeatedly learns from,
and adds to in each training phase. Using an experience replay buffer brings
considerable advantages. The same transition tuple might be used several
weight updates, improving data efficiency. Sampling uniformly decorre-
lates the strong intra-episode data correlation. This technique reduces vari-
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ance in the update, resulting in a better function approximator Mnih et al.
(2013). An experience-replay also reduces parameter divergence and oscil-
lations Tsitsiklis and Van Roy (1997).

2.1.7 Bootstrapping

Bootstrapping is to “learn a guess from a guess” Sutton et al. (1998). The al-
gorithm for Q-learning described above is a prime example, it only accounts
for the momentary, or temporal difference from the next guess. Joining the
current state’s evaluation and the next is done by the update rule

Q(s, a)← Q(s, a)

+ α (r(s, a) + γ max
a′

Q(s′, a′)−Q(s, a))︸ ︷︷ ︸
δTD(s,a)

. (2.11)

Which is known temporal-difference zero, or TD(0). The one-step stochas-
tic look-ahead introduce low variance because of a relatively small outcome
space. However it inhibits high bias from it’s guess in the next state.
Using the immediate next state to approximate the value function is only
one possible way of learning in the RL setting. There are options to move
away from bootstrapping and use ground-truth instead, namely Monte-
Carlo(MC) methods. MC methods learn directly from experience with no
bootstrapping involved. This is done by considering the mean return from
a state as that state’s value:

Q(s, a)← Q(s, a) (2.12)

+ α

[ T∑
t=0

γtr(st, at)−Q(s, a)

]
︸ ︷︷ ︸

δMC(s,a)

(2.13)

This technique has the advantage that the estimates was once actually given
from the environment, resulting in no bias. However, as the episode get pro-
gressively longer, the resulting trajectory becomes decreasingly probable.
This makes MC methods have high variance in their estimates. Combining
different ways of approximating the value for a state leads to lower approx-
imation error and better learning efficiency (Sutton et al. (1998), Tsitsiklis
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and Van Roy (1997)). One way is the mixed Monte-Carlo update (MMC):

Q(s, a) = Q(s, a) + α((1− βMMC)δTD(s, a) + βMMCδMC(s, a)) (2.14)

Weighting the one-step update TD(0) and the rollout-based Monte-Carlo
by a hyperparameter βMMC this way has been crucial to several RL appli-
cations(Ostrovski et al. (2017), Bellemare et al. (2016)). There are many
other ways of combining different look-ahead methods, as explained by
Sutton et al. (1998) and are out of scope for this thesis.

2.1.8 Intrinsic Reward

So far we have restricted our discussion to extrinsic rewards, that is rewards
given to the agent by the environment. Extrinsic reward moves the agent
regardless of the agent’s own belief. The rewards can be points in a game,
failing or succeeding to stack bricks, or some other external metric. Intrin-
sic reward is the polar opposite, arising form the agent’s own beliefs about
the world. It moves the agent to act so as to maximize enjoyable topics
such as diversity and curiosity. There is no set way of computing intrinsic
reward, and is an active area of research. However, it is often added to the
target update, changing it from 2.15 to 2.16.

Q(st, at) = (1− α)Q(st, at) + α(rt + γmax
a
Q(st+1, a)) (2.15)

Q(st, at) = (1− α)Q(st, at) + α(rt + r+t + γmax
a
Q(st+1, a)) (2.16)

One successful way of computing intrinsic reward is the count-based in-
trinsic reward. Count-based intrinsic motivation dates back to Strehl and
Littman (2008). The idea is simple, given an environment with a discrete
state space, count the visits to each state. The state-count is held in agent
memory, usually by the map data structure. Intrinsic reward is then com-
puted directly from the state count:

r+t :=
β√
n(st)

Where n(st) is the current number of visits to state s and β is a hyperpa-
rameter controlling the intrinsic motivation, usually around 0.01. This type
of reward encourages visiting less-visited states.
Given two states with the same reward and next states with predicted re-
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ward of 0 by a greedy agent. State one and two has been visited one and
two times respectively. The states are reached from two distinct actions, a1
and a2. Calculating the update would then result in 2.17 for state one, and
2.18 for state two.

r+ :=
β√
1

(2.17)

r+ :=
β√
2

(2.18)

Using the intrinsic rewards to update the Q-function looks like

Q(s0, a1) = α(β + γmax
a
Q(s1, a))

= α(β) = 0.0001 ∗ 0.01

= 1 ∗ 10−6

Q(s0, a2) = α
( β√

2
+ γmax

a
Q(s2, a)

)
= α

( β√
2

)
= 0.0001 ∗ (0.007)

= 7 ∗ 10−7

resulting in different values for each state-action pair, with a1 being the
highest. As the policy selects actions greedily, it will compare all actions
available in s0 and choose to execute a1. This is the exact behaviour we
want with the count-based IR, visiting less visited states.

2.1.9 Aleatory and Epistemic Uncertainty

As distributional RL discussed in this thesis models uncertainty, it is im-
portant to know which uncertainty is modeled, and what it means in this
setting.
In reinforcement learning, the agent interacts with an environment, and
produces data like state-observations and actions. If the environment is
stochastic, it has inherent aleatory uncertainty. Aleatory uncertainty, or
statistical uncertainty, represents the unknowns that vary each time we run
an experiment. We might not know exactly the reward from a given state,
because we might either reach the goal, or fall into a hole.
When the agent interacts with the environment, the epistemic uncertainty
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is decreased for every timestep. Epistemic, or statistical uncertainty, is re-
duced as more samples are available, and better guesses can be made by
the agent. The epistemic uncertainty is highly desirable, because it tells us
something about how far we are from the true value distribution. An agent
equipped with this knowledge would be able to take actions as to maximize
it’s information-gathering potential Tang et al. (2016).

2.1.10 Acting on the expectation of distributional RL

The return distribution as approximated in this thesis may be impacted by
two sources of uncertainty: a stochastic policy, and a stochastic environ-
ment. This point is stressed by Bellemare et al. (2017), saying that “We
emphasize that Zπ describes the intrinsic randomness of the agent’s in-
teractions with its environment, rather than some measure of uncertainty
about the environment itself”. Removing uncertainty induced by the envi-
ronment only leaves room for the agent’s policy to introduce uncertainty.
As this policy is updated, it can shift the return, in way of maximizing ac-
cumulated reward. The epistemic uncertainty is used to compute intrinsic
motivation. That is why this thesis will primarily focus on deterministic
environments. A stochastic environment would induce additional noise to
the return distribution, for which an agent shouldn’t act on the expectation.

2.2 Deep Reinforcement Learning

So far we haven’t talked about the approximator to Q(s, a). We started off
the chapter by saying that large spate-action spaces are lucrative, leading to
an approximation of ECR. In smaller environments however, we can in fact
compute the exact value, by using a lookup table, where each discrete state
is updated separately form each other. This method is unfeasible when it
comes to larger state spaces. In that case, we need a function approcimator
that can generalize from states. The current well-used approximator is the
artificial neural network LeCun et al. (2015). Artificial neural network are
trainable and is especially suited to the RL setting, where data is abundant.
Agents trained in from-pixel environments like the Arcade Learning Envi-
ronment Bellemare et al. (2012) often relies on neural networks to distill
the actions from states. Artificial neural networks consists of nodes that are
non-linear functions of the sum of it’s inputs and form a directed weigthed
graph. The nodes are stacked in layers, each layer connecting to the next
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by trainable parameters. An all-to-all connection is common between one
layer and the next. There might be several nodes in each layer. Other archi-
tectures that stack nodes differently exists, but we only use the feed-forward
neural network in this thesis. The feed-forward network suits our problem
perfectly, as other architectures tackle the problem of image recongnition
and temporal data, of which we have none.

2.2.1 Double Q Network
Q-learning use the same function approximator to decide on the best action
in a state, as well as approximate the state-action value. A problem arise if
a state-action pair is overestimated. If an action’s value is overestimated, it
is more likely to be chosen as the best action. The action’s overestimated
value is then used as a target in the next update, inducing bias in the function
approximator. The overestimation thought to occur because the expectation
of a maximum is greater than or equal to the maximum of an expectation
van Hasselt (2013). The idea is to introduce a second set of parameters van
Hasselt et al. (2015), used to approximate the state-action value. Given two
sets of parameters, θ and θ′, for a function approximator, we can rewrite the
Q-learning update rule from equation 2.19 to equation 2.20, utilizing the
bias-reducing network:

Qθ(s, a)← Qθ(s, a) + α(r(s, a) + γ max
a′

Qθ(s
′, a′)−Qθ(s, a)) (2.19)

Qθ(s, a)← Qθ(s, a)

+ α(r(s, a) + γ Qθ′(s
′, argmax

a′
Qθ(s

′, a′))−Q(s, a)) (2.20)

Notation of the Q-function parameters is introduced as Qθ. The regular
update rule as introduced earlier is written here with the parameters θ in
equation 2.19. Inclusion of second set of parameters θ′ and target network
in equation 2.20. The rewriting is motivated by a reduction in bias, ex-
pecting that biases of the two networks cancel out(assuming the second
approximator don’t inhibit the exact same noise as the first), resulting in
zero bias. It is the author’s belief that this reduction in bias will result in
better exploration.
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Chapter 3
State of the Art

This chapter discerns the current state of research on distributional rein-
forcement learning and intrinsic motivation. Approaches that directly use
distributions as a source of exploration are reviewed first. Methods that use
traditional Q-learning and other intrinsic methods follow.

3.1 Distributional view on reinforcement learn-
ing

Using distributional reinforcement learning to guide exploration is a rela-
tively new idea. The distinction between uncertainty originating from lim-
ited data(epistemic) and uncertainty from the environment(aleatory) was
first discussed and used to guide exploration in Moerland et al. (2017).
Epistemic uncertainty is computed by applying dropout masks to a neural
network, which approximates the posterior predictive distribution. Aleatory
uncertainty is captured by a distributional action-value function that as-
sumes the returns from the environment are Gaussian. This is unlike Belle-
mare et al. (2017) that use a categorical distribution as output.
The authors create a function approximator that combines both uncertain-
ties, allowing for exploration based on a mix of the two. This works by
propagating the return distribution weighted over the parametric uncer-
tainty at the next timestep.

Z(s, a) = r + γ

∫
Zφ(s′, a′)p(φ|H)dφ (3.1)
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where φ are the parameters of the neural network,H is the observed dataset,
and p(φ|H) is the posterior distribution. The study only considers deter-
ministic environments, as the agent shouldn’t act on the expectation on the
value function in a stochastic environment, explained in chapter 2.

Moerland et al. (2018) has concurrently with this work used the return
distributions for exploration in a deterministic MDP. The paper identifies
the potential of the return distribution for informed(directed) exploration.
A deterministic MDP offers the ability to act optimistically on the return
distribution in the face of uncertainty. This is because in such a setting, the
modeled uncertainty only originates form the policy itself. Meaning that if
some reward is seen once, it is possible to consistently achieve it. This idea
is explored for both categorical, Gaussian and Gaussian mixture models.
Specifically, their method initialize all PDFs as uniform distributions, and
take action by using Thompson sampling or UCB. This combination leads
to a lot of exploration in the start of training, and smoothly transitions to
exploitation as the PDFs narrow over time. The action-selection scheme
is interesting, as it isn’t governed by the standard epsilon, needing no hy-
perparameters or decay schedule. Like Moerland et al. (2017) they train
their agents in the Chain environment, described in chapter 5.1. Their new
method outperforms the old uncertainty-based method by more than a ten-
fold, behaving optimally after 6 hundred episodes in stead of 10 thousand.
Using the return distribution to compute intrinsic rewards is not explored.

3.2 Intrinsic motivation

Intrinsic motivation has in recent work been generalized beyond count-
based exploration and tabular environments. Bellemare et al. (2016) pro-
vides a technique allowing for significantly improved exploration in hard
from-pixel environments, such as Atari 2600-games. This is achieved by
what they call pseudo-counts. They first introduce a density model ρn(s) :=
ρ(s | s1:n) that provides a probability distribution for a state given a trajec-
tory. A CTS model Bellemare et al. (2014) approximates the densities. It is
then used in the pseudo-count function:

N̂n(s) = n̂ρn(s)
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Where N̂n(s) is the pseudo-count of state s and n̂ is the pseudo-count total.
The resulting intrinsic motivation bonus takes the form of the scalar value

r+n (s, a) :=
β√

(N̂n(s) + 0.01)
(3.2)

The hyperparameter β was introduced in chapter 2 and controls the amount
of intrinsic motivation. Their agent does not need to learn the environment
as a whole to have meaningful intrinsic rewards. Regular count-based-
rewards and -exploration via learned hashing(Tang et al. (2016)) also hold
this property. Distance-based exploration as proposed in this work relies
on the same function to take actions and to provide motivation. There is no
obvious advantage for using one or the other, and this is an active area of
research.

Ostrovski et al. (2017) extends upon the previously mentioned work,
improving accuracy and expressiveness in the density model while pre-
serving the overall ideas. The CTS density model is replaced by a neural
density model for images, using neural network approaches just as in chap-
ter 4. Specific training is required by the new approach, and changes is
made to how hte pseudo count is computed. However, the intrinsic reward
is familiar and expressed as r+n (s, a) := (N̂n(s))−1/2.

Count-based exploration has recently been extended to high-dimensional
state spaces. The method was previously restricted to discrete state-action
spaces, introduced in section 2. Tang et al. (2016) managed to general-
ize the state-count by domain-dependent learned hash codes. The hash
φ : S → Z discretizes the state space, and is used to calculate the ex-
ploration bonus, defined as

r+(s) =
β√

n(φ(s))
. (3.3)

Note how this is slightly different from the original count-based approach,
using φ(·) to reduce the state space considerably. The authors introduce
both a static method and a learned hash, the latter performed best. A com-
plex autoencoder constitutes the learned hash code, providing a latent space
of 512 sigmoidal activations. A binarization is then applied to the activa-
tions, resulting in a binary representation of the state space. Transforming
the state space this way is a lossy compression, and will group states that
are close to each other in the same representation. The representations are
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directly used as the keys in the regular count-based map.
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Chapter 4
Methods

Probability distributions produced by the distributional approach is pre-
sented. The chapter then focuses on how to compute intrinsic motivation
from said distributions. Afterwards, I combine the discussed methods into
an agent that learned the Chain-n environment.

4.1 Visualizing the output Distributions
We set out to conduct a series of experiments to address the possibility of
using the C51 algorithm for exploration. A presentation of the progress
follows in this section. We are looking at the implementation by Bellemare
et al. (2017)

The implementation is based on the approach and algorithm described
in Bellemare et al. (2017), i.e the C51 algorithm. The algorithm outputs
PDFs for all state-action pairs and is described in chapter 2. The expecta-
tion Commentof those PDFs is referred to in literature as the Q-value. Prop-
erties of these PDFs could be used in different action selection strategies, be
it the variance, kurtosis, or other moments. Experiments were conducted on
using such properties as action-selection strategies for guided exploration.
However, the experiments turned out negative.

First, we wanted to understand what the distributions themselves looked
like under various circumstances, such as in the beginning of training and
when an environment is learned. It is also interesting to look at the distribu-
tion at various points in between, and with different distance from the goal
state. Doing this would help us understand how the C51 algorithm could be
used to guide exploration. A categorical distribution allows for multimodal
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distributions. As interesting as using such distributions to guide actions
selection, it has not been in focus of this report.

A C51-agent was set out to learn the NChain environment, recording
probability distributions during the learning phase. Resulting graph is seen
in figure 4.1. The network has no initial bias to the value of a state. It starts
out as a quasi-uniform distribution within the boundaries as mentioned in
chapter 3. By inspecting our PDFs, we can observe the mass move noisily
towards the expected value of the state-action pair as in figure 4.1b. The
noise is hypothesized to originate from updates in the neural network and
a changing policy. Over time the distribution usually takes the shape of
a Gaussian, seen in figure 4.1c. A narrow Gaussian only appears when
the agent has experienced consistently the same return for a state-action.
This is because acting optimistically on the distribution in a deterministic
environment lowers the variance. This crucial property is used for intrinsic
motivation.

4.1.1 Intrinsic Motivation from output distributions

From the exploration of distributions (figure 4.1) we see that the PDFs for
a state-action pair change over time. That is, as the agent repeatedly visit
a given state and select a given action at that state, the corresponding PDF
changes. The group wondered if this fact could be exploited. Specifically,
we wondered whether we could exploit the difference between the PDF at
times t and t + 1 to determine that a state has already been visited and a
given action already tried in that state. To achieve this, an agent would need
to keep track of the PDF for each action-pair for recent time steps. This is
unfeasible for high-dimensional state spaces, unless we applied techniques
to encode states, as in the papers reviewed in chapter 4. Instead of com-
paring the PDF of a state-action pair with itself to determine whether it
changes over time, we could also compare it with a reference distribution.
Looking again at the results from exploring of the distributions (figure 4.1),
we notice that the PDFs start as a uniform distribution and as time pass
by, they move away from the uniform distribution and closer to a Gaussian
distribution. Based on this fact, an agent could compare the PDF of a state-
action pair with the uniform distribution to determine if it is changing over
time. This information could induce intrinsic reward.
From the above remark, the group hypothesized that the PDFs of a less
visited state-action pair would be closer in terms of a divergence to the
uniform than a frequently visited state. The hypothesis led to an exper-
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(a) At the start of learning.
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(b) In the middle of training.
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(c) Environment is learned.

Figure 4.1: State-action distributions at different stages of learning in the NChain
environment for the last state. Each colour represents one distinct action.
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iment where the agent could only act and observe a subset of the state-
space, using the environment in figure 2.3. Here, Only two thirds of the
environment is available for exploration. The last third is hidden behind
a wall, never presented to the learner. The agent recorded the Kullback-
Leibler divergence(KL-divergence (Kullback and Leibler (1951)) for all
state-action distributions in the entire state-action space at certain inter-
vals during training. Meanwhile, the average distance to both observed
and unobserved state-actions was measured and recorded. The distance to
an unobserved state proved to be higher than to the observed states, both
during and after training. This is crucial and identical with the discussion
above. It allows for an intrinsic reward with root in the chosen distance
function.
Different distance functions were tried. As the C51 algorithm defines a
range for it’s atoms, we also wanted the distance function to inhibit the
same properties, and KL-divergence is unbounded. A distance-function
that better suits our needs is the Hellinger distance (equation 4.1) for dis-
crete probability distributions Hellinger (1909), bounded in the range [0, 1]:

H(P,Q) =
1√
2

√√√√ k∑
i=1

(
√
pi −
√
qi)2 (4.1)

Where P = (p1, p2, . . . , pk) and Q = (q1, q2, . . . , qk) are two discrete
probability distributions. Hellinger distance worked comparably to KL-
divergence, and is our chosen distance metric between the PDFs.

Results from the Wall-experiment described in chapter 2 lead the group
to device an intrinsic reward method based on the distance from a uniform
distribution to a state-action distribution.

A distance metric was implemented to quantify the difference between
two probability distribution functions. This metric and it’s usage is the
central part of this report, as it eventually evolved into determining the
intrinsic reward in a state. Remember, count-based reward is defined as
r+(s) := β√

n(s)
, the distance metric could be used as a proxy for the visit-

count(n(s)). Defining the distance function for one PDF to be

d(s, a) = DHellinger(Z(s, a)|uniform), (4.2)

we need a sum that takes all actions into account for a given state. Let
d(s) =

∑N
i=0 d(s, ai) where N is the number of allowed actions, a in s. An
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exploration bonus r+ : S → R is added to the reward function, defined as

r+(s) =
β

n(s)
(4.3)

where β ∈ R≥0 is a hyperparameter controlling the amount of exploration
bonus, and n(s) = ed(s) is the count-proxy. The distance d(s, a) starts out
close to zero, leading to especially high exploration at the start of interac-
tion with the environment.
The choice of denominator proved crucial as the Hellinger distance for a
PDF is maximum of 1. d(s) will therefore have a maximum value equal
to the number of possible actions in a state. This is undesirable, as we
want our distance function to decay rapidly for a well-visited state. Chang-
ing the state-count proxy to ed(s) is needed to obtain the desired behaviour.
Our chosen scaling moves away from the proven inverse-square-root de-
pendence Strehl and Littman (2008). However, β

N(s)
is also a well used

exploration bonus Kolter and Ng (2009).
Mixed Monte-Carlo Backup is used to speed up the learning process,

as explained by Ostrovski et al. (2017) and chapter 2. The nature of this
backup makes state-action distributions change faster, resulting in better
exploration and earlier exploitation. The MMC backup is proven to be cru-
cial when learning difficult exploration games like Montezuma’s Revenge
(Bellemare et al. (2016), Ostrovski et al. (2017)).

4.1.2 The resulting agent
The above methods are all combined to an agent capable of solving MDP-
like environments, described in chapter 2. As the methods are distilled by
themselves, we shall now focus on how they are assembled to an agent. It
should be noted that this work is an extension of Bellemare et al. (2017),
and the algorithms here are extensions of that work. A standard agent-
environment loop, described in chapter 2, can be seen in Algorithm 1. At
each timestep the agent takes an action, and observes the impact on the
environment. This interaction-data is recorded as an episode, eventually
placed in the agent’s replay memory. Notice that the replay memory D
consists of episodes, not SARS-tuples that a one-step TD learned would.
Every so often, the agent starts training from it’s replay memory, paus-
ing the interaction loop for better estimates about the future. As the agent
inhibits two architecturally equally function approximators, but parametri-
cally different, the target network is sometimes updated with new learned
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information from the primary network. The exploration factor ε is decayed
inverse exponentially, with a cutoff χ, letting it reach 0 faster.

Training is similar to Bellemare et al. (2017), but with three modifica-
tions from the original algorithm: 1) the agent now use a MMC backup,
2) intrinsic rewards are added to the target, 3) a double network model is
employed.
Given an episode consisting of (st, at, rt, st+1, done)-tuples and a greedy
policy π w.r.t EZθ, the MMCtarget and Bellman update is computed T̂zj :=
r+(s) + γMMCtarget for each atom zj . The target network’s atom probabili-
ties p′j(st+1, π(st+1)) is distributed to the value network in lines 18 and 19.
Intrinsic reward is directly computed from the primary network output as
shown in equation 4.2 and added to the target value T̂ zj . The neural net-
work is trained with a cross-entropy loss and the Adam optimizer Kingma
and Ba (2014). [·]ba bounds the argument between a and b in algorithm 2.
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Algorithm 1 The Distance-based agent
Initialize agent with replay memory D and capacity N
Initialize state-action function Z with quasi-random weights
Initialize environment

1: st ← reset state
2: for game in games do
3: done = False
4: episode = [ ]
5: while not done do
6: t← 0
7: action← agent.get action(st)
8: st+1, rt, done← environment.step(action)
9: episode← [episode, (st, acion, rt, st+1, done)]

10: st ← st+1

11: t← t+ 1
12: if t (mod agent.timestep per training cycle) ≡ 0 then
13: train the agent from replay memory . Seen in Algorithm 2
14: if t (mod agent.update target frequency) ≡ 0 then
15: update target weights to current weights
16: end if
17: if t (mod agent.update epsilon frequency) ≡ 0 then
18: agent.epsilon= ε0e

−λt − χ
19: end if
20: end if
21: end while
22: D← [D, episode]
23: st ← reset state
24: end for
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Algorithm 2 Categorical algorithm using intrinsic reward, MMC update
and a double network architecture.

input An episode sampled from replay memory
1: Randomly discard the first n tuples in the episode
2: s0, a0, r0, s1, ← episode[0]
3: r+ ← β

ed(s1)

4: Q(s1, a)← EZ(s1, a)
5: a∗ ← arg maxaQ(s1, a)
6: mi ← 0, i ∈ 0, . . . , N − 1
7: MCtarget ← 0
8: for i in range(episode) do
9: ( , , r, , )← episode[i]

10: MCtarget ← MCtarget + γir
11: end for
12: for j ∈ 0, . . . , N − 1 do
13: TDtarget ← r0 + γzj
14: MMCtarget ← (1− β)TDtarget + βMCtarget

15: T̂ zj ←
[
r+ + MMCtarget]

VMAX
VMIN

16: bj ← (T̂ zj − VMIN)/∆z
17: l← bbjc, u← dbje
18: ml ← ml + p′j(st+1, a

∗)(u− bj)
19: mu ← mu + p′j(st+1, a

∗)(bj − l)
20: end for

output −
∑

imi log pi(st, at) . Cross-entropy loss
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Chapter 5
Experiments, Results and
Discussion

This chapter will expand upon how the group as a whole undertook small
steps to arrive at the agent implementation in section 4.1.2. We set out not
knowing the characteristics of PDs and their potential for use in exploration.
Each propelling experiment will be described in detail, with hypothesis,
testing, result and conclusion. From the conclusion we will discuss our
findings which propel us to the next experiment.
A discussion on the overall thesis follow. It answers the research question
and justifies the research. Lastly, I critically evaluate the study.

5.1 Experiments

The first experiment was simply to understand how variance of PDs be-
haved in an environment, as we only had an intuition of how PDs behaved
at the start of research.
All experiments in this section are easily repeatable. Every experiment
behaved the same over repeated trials. Hyperparameters are seen in the
Appendix.

5.1.1 Experiment 1: Goal-test

H0 : The PDs have high variance at start of learning. Lower variance will
be observed during and after learning.
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Testing: Test an agent on a 20*20 gridworld environment with a goal in
the middle and starting position in the top left corner. At certain intervals,
record the variance of all actions in all states.

Result: We observe high variance extremely close to the goal, low vari-
ance elsewhere.

The high variance is because one action leads to the goal state, while the
others don’t. This results in a difference in return for the agent, producing
variance in the PDs. Figure 5.1 show that variance ’propagates’ out from
goal to other states, but not too far. The propagation is likely due to the
propagating nature of one-step returns, explained in section 2.1.7.

Conclusion: As the values of each state is propagated from the goal, so
is the variance. The variance is firstly lowered around the goal state, letting
other neighboring states reduce their variance as well.

The observed variance behaviour motivated us know how the PDs be-
have with respect to the starting distribution(quasi-uniform). The rate and
magnitude of change is interesting, as it lets us look into how the agent’s
belief changes during learning.

5.1.2 Experiment 2: Higher variance on unseen states
The group had been experimenting on gridworlds from OpenAI, but also
other self-made gridworlds. It was natural in this stage to rapidly exploit
our knowledge and get results.

H0:Given a learned agent, it will have higher distance from a uniform
distribution to visited states, than from a uniform to unvisited states. Dis-
tance is measured with KL-distance, as explained in section 4.1.1.

Testing: Make a gridworld environment where agent can’t explore the
complete environment. Measure the average distance for all actions from
visited and unvisited states to the uniform at certain intervals. The Wall
environment described in section 2.1.1 was created for this purpose.

Results: We observe that DKL(observed|uniform) = 11.046 and
DKL(unobseved|uniform) = 10.55 The experiment was also conducted us-
ing Hellinger distance, with the same results. The distance to observed and
unobserved states was measured during and after training.

Conclusion: Preliminary results on gridworlds show that unvisited states
require less amount of bits to code than seen states, given a coding for a uni-
form probability distribution.

These results were a breakthrough in our research, and allowed the
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Figure 5.1: Plots of the variance of output distributions in each state in the 20*20
environment. All squares are walkable, goal in the center, and agent starts in the
top left corner. Colourbar is a number line of the variance in each state.
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Figure 5.2: DKL(s|uniform) over time in the FrozenLake-v0 environment. Sharp
jumps in value are caused by training the function approximator. The four actions
are represented as 0 through 4 starting clockwise from 0 being the North action.
Other states in the same environment look the same.

group to build an intrinsic reward function based on distance. I believe the
function approximator is good at generalization. As the PDs start out uni-
form, the PDs of seen states will rapidly converge to their “correct” values.
Updates on seen states will also affect the belief on unseen states because
of the mentioned generalization. However, as these states aren’t trained on,
only the initial uniformness and generalization affect the agent’s predic-
tions, resulting in a more uniform distribution on unseen states. Our next
question is how much the network changes between two visits to the same
state.

5.1.3 Experiment 3: Small updates on consecutive visits
to the same state

H0: Consecutive visits to the same state won’t change the distance to uni-
form much when using Dkl(s|uniform) as distance function.

Testing: Create FrozenLake-v0. Register the distance to uniform for all
actions in each state visit. Plot distance-history to spot drastic updates in the
PDs. The FrozenLake-v0 environment was used in to test the hypothesis.

Results: We observe modest change in the distribution for a state from
figure 5.2.

Conclusion: DKL(s|uniform) does not change much for a single update
to a state-action pair in one update. The distance function needs additional
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scaling to rapidly decrease like the count-based approach by Strehl and
Littman (2008)to serve as a count-proxy.

This experiment sparked a discussion to concretize the intrinsic reward.
We knew the count-based intrinsic reward decreases rapidly with more vis-
its to a state. We want out intrinsic reward to exhibit the same behaviour.
The intrinsic reward as presented in section 4.1.1 was implemented, albeit
without the scaling(using e as base and distance as exponent). The updated
agent with an intrinsic reward based on distance would be tested of grid-
world environments. We thought that using a greedy policy from the start
would let the intrinsic motivation-based agents stand out, as their motiva-
tion drives them to unfamiliar places.

5.1.4 Experiment 4: Greedy and intrinsic agents
H0: Doing greedy policy on FrozenLake-v0 is enough to let the intrinsic
motivated agent reach the goal substantially faster than the non-intrinsic
agent.

Testing: Run different versions of the FrozenLake-v0 environment. De-
terministic and stochastic, 4 by 4(the usual) and 8 by 8 versions of the
world. Use a greedy policy from the get-go. Record performance at certain
intervals.

Results: Learning curves are seen in figure 5.3.
Conclusion: There is no real significant distinction between the agents

in these environments. This implies the need for a set of environments
where we know that the intrinsic reward significantly benefits the agent.
The results disprove our hypothesis.

We thought this experiment was enough to set the intrinsic and non-
intrinsic agents apart. An environment that highlighted good exploration
methods is needed to determine if our intrinsic method has any merit. The
work on environments from OpenAI Gym proved nothing, as results were
inconclusive. The problem was also discussed by Moerland et al. (2018),
Moerland et al. (2017) and Osband et al. (2016). They use the Chain-s
environment.

5.1.5 Experiment 5: The Chain-n environment
H0: Intrinsically motivated agents explore the environment faster than a
non-intrinsic agent. In turn leading to faster consistent good score in the
environment.
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Figure 5.3: Learning curves for different gridworld environments. The agents has
a one in three chance to slip and do one of the other three actions in a stochastic
environment.
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Testing: Run all three agents on different lengths of Chain-n. Record
performance of all three agents in the different chain lengths.

Results: Both intrinsically motivated agents vastly outperforms the non-
intrinsic agent. Learning curves can be seen in figure 5.4.

Conclusion: Through the testing we verifiedH0, intrinsically motivated
agents do explore the environment faster than non-intrinsic agents in the
Chain-n environment.

5.2 Results from Experiment 5

We set out to discover if action-distributions are suited as a source for in-
trinsic motivation. Experiments were conducted and paved they way for
where we should focus our attention. This resulted in an distance metric
used to generate intrinsic rewards. The method was tested on the Chain-n
environment as described in chapter 4. Three different agents were com-
pared in this environment. Specifically the ε-greedy agent, the count-based
agent, and the distance-based agent. The only difference between the agents
is the intrinsic reward function, where the ε-greedy agent has no intrinsic
reward.

The distance-based agent performs on-par with the count-based agent,
outperforming the ε-greedy agent by a large margin on longer chains. Per-
formance on Chain domain has been consistently showing the same results
during the experiment phase, only with slight but unimportant differences.
The reliability of these results is undisputed as the apparent behaviour is
exhibited in 16 repetitions for the same agent, with no specific seed set to
initialize a random generator.

5.3 Discussion

5.3.1 Behaviour of the intrinsic distance

We will interpret and explain our results, answer the research question and
justify our approach in this section. In the end we will critically evaluate
our study.

39



0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

c51_distance_intrinsic
c51_count_intrinsic
c51_non_intrinsic

R
et

ur
n

(a) n = 25

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

c51_distance_intrinsic
c51_count_intrinsic
c51_non_intrinsic

(b) n = 50

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0 c51_distance_intrinsic
c51_count_intrinsic
c51_non_intrinsic

Hundred episode

R
et

ur
n

(c) n = 100

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0 c51_distance_intrinsic
c51_count_intrinsic
c51_non_intrinsic

Hundred episode

(d) n = 125

Figure 5.4: Learning curves for the Chain domain using distance-based intrinsic
reward, count-based intrinsic reward and no intrinsic reward. Results are averaged
over 16 repetitions.
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5.3.2 Interpretation and explanation
The introduction stated that this thesis aims at using PDFs from the C51
algorithm to produce intrinsic reward. Following the logical process one
step at a time, we arrived at the intrinsic reward described in chapter 4.
Results show that this method performs comparably with count-based in-
trinsic rewards, and vastly outperforms the non-intrinsic method. Results
for the non-intrinsic agent is consistent Moerland et al. (2018), who also
had the same outcome. As expected, the intrinsic reward doesn’t matter too
much in environments where ε-greedy is a good enough exploration strat-
egy, as all agents behave equally when n = 25, and rather equally when
n = 50. The big difference is for longer lengths of the chain, forcing the
agent to perform 100 or even 125 actions subsequent correct actions. Here,
agents using intrinsic rewards both perform comparably as well and outper-
forming non-intrinsic agents, as is to be expected. Following results from
the Wall environment in chapter 4, the agent’s state-action distributions will
appear more uniformly for states longer down the chain, for which the agent
has not(or rarely) visited. Upon reaching such a state, our intrinsic reward
function directs the agent into exploring the unknown.

5.3.3 Answer to Research Question
The apparent behaviour is beneficial to the agent, enabling it to explore
otherwise near-impossible environments. With this in mind, the author con-
cludes that distributional reinforcement learning can induce intrinsic moti-
vation.

5.3.4 Justification
The current approach emerged from the failure of others. Distance-based
intrinsic reward takes the old concept of count-based intrinsic rewards, ex-
tending it to the new technique distributional reinforcement learning. Com-
bining the two approaches was showing to be promising, and was stated as
a future direction of research in Bellemare et al. (2017).

5.3.5 Critical evaluation of study
As we are focusing our attention on the performance of agents, it is cruical
to also have a look at the tested environments. This thesis only consid-
ers one environment in the main result, albeit on different difficulty levels.
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Training the agents on several environments is a good way of discovering
any shortcomings of the proposed method.
No hyperparameter search has been completed, and parameters are primar-
ily gathered from other work and what seemed sensible at the time of imple-
mentation. An exhaustive search of parameters for all three agents might
provide different results. However, seeing as a non-intrinsic agent didn’t
manage to learn the environment at hand in Moerland et al. (2018) nor Os-
band et al. (2016), this is doubtful.
Our first methods based on statistical moments were discarded because of
no significant improvement upon the non-intrinsic agent. However, at the
time they were tested on both deterministic and stochastic environments. It
was a wrong approach, as the nature of C51 can only be used for explo-
ration purposes in deterministic environments, as mentioned in chapter 2
and Moerland et al. (2018). Chain-n is a toy environment. The agent does
not need to extract meaning from an image, nor remember temporal infor-
mation. Those are some of the characteristics of real-world applications. It
is yet to be seen if the method is beneficial to an agent set in these types of
environments. A new method for computing intrinsic reward was presented
in chapter 4. This intrinsic reward was then beneficially applied to a C51
agent, making it capable of exploring in difficult environments. We want
the distance based intrinsic distance behave rather similarly to the count-
based one. Reason being that count-based is well proven, and is what we
want to improve upon with this implementation.
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Chapter 6
Conclusion

We show that probability distributions output from a categorical reinforce-
ment learning agent act as a good source of intrinsic motivation. Results in
figure 5.4 show that intrinsicly motivated agents outperform non-intrinsic
agents. Our method performs on par with the count-based baseline. Sur-
prising and new states to the agent proved to be more uniform in terms of
the state-action PD distribution in a small gridworld environment.
As Bellemare et al. (2017) didn’t themselves investigate how their tech-
nique could induce new exploration methods, this research is important, as
it explores a hitherto uncharted territory, bridging the gap between intrinsic
motivation and distributional reinforcement learning.

Looking back at my research question, we tackled the research ques-
tion with a multistep process. First, the author got an overview of current
research and methods on intrinsic reward and distributional RL. Note that
Moerland et al. (2018) wasn’t published at this point. We then shifted our
view to utilize from PDs for exploration, with motivation from the field.
Experiments and critical evaluation eventually led the author on the path of
developing an intrinsic motivation. Further experiments refined and proved
it to be working.

Further work can look at how different distributions(a Gaussian or a
mixture of Gaussians, Moerland et al. (2018)) lead to contrasting behaviors.
There is no evidence of mixed Monte Carlo and double Q-networks having
any real impact on performance, and should be investigated further.
Extending the intrinsic reward to from-pixel environments like Atari (Mnih
et al. (2013)) is also a natural path for further research.
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Chapter 7
Appendix

Hyperparameters of all agents ran in experiments chapter is listed here.
Sorted after experiment number. All agents run the same code. Behaviour
solely is controlled by the parameters listed.
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Hyperparameter/Agent Non-intrinsic
γ 0.99
βMC 0.0
βdistance NA
βcount NA
α 0.001
e0 0.2

VMAX 2
VMIN -1

Number of Atoms 51
Batch size 8

Memory size 5000
Update e frequency 1000

Update target frequency 400
Timestep per training loop 100

Figure 7.1: Hyperparameters for experiment one.

Hyperparameter/Agent Non-intrinsic
γ 0.99
βMC 1.0
βdistance NA
βcount NA
α 0.001
e0 0.2

VMAX 2
VMIN -1

Number of Atoms 51
Batch size 8

Memory size 50 000
Update e frequency 400

Update target frequency 400
Timestep per training loop 100

Figure 7.2: Hyperparameters for experiment two.
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Hyperparameter/Agent Distance-based
γ 0.99
βMC 0.0
βdistance 0.01
βcount NA
α 0.0005
λ 0.00001
χ 0.0005
e0 0.2

VMAX 2
VMIN -1

Number of Atoms 51
Batch size 128

Memory size 50 000
Update e frequency 4

Update target frequency 400
Timestep per training loop 10

Figure 7.3: Hyperparameters for experiment three.
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Hyperparameter/Agent Distance-based Count-based Non-intrinsic
γ 0.99 0.99 0.99
βMC 0.0 0.0 0.0
βdistance 0.01 0.0 0.0
βcount 0.0 0.01 0.0
α 0.0001 0.0001 0.0001
λ 0.001 0.001 0.001
χ 0.0005 0.0005 0.0005
e0 0.0 0.0 0.0

VMAX 2 2 2
VMIN -1 -1 -1

Number of Atoms 51 51 51
Batch size 16 16 16

Memory size 500 500 500
Update e frequency 4 4 4

Update target frequency 400 400 400
Timestep per training loop 1 1 1

Figure 7.4: Hyperparameters for experiment four.
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Hyperparameter/Agent Distance-based Count-based Non-intrinsic
γ 0.995 0.995 0.995
βMC 0.05 0.05 0.05
βdistance 0.01 0.0 0.0
βcount 0.0 0.01 0.0
α 0.0001 0.0001 0.0001
λ 0.005 0.005 0.005
χ 0.0005 0.0005 0.0005
e0 0.2 0.2 0.2

VMAX 2 2 2
VMIN -1 -1 -1

Number of Atoms 51 51 51
Batch size 32 32 32

Memory size 50 000 50 000 50 000
Update e frequency 4 4 4

Update target frequency 400 400 400
Timestep per training loop 1 1 1

Figure 7.5: Hyperparameters for experiment 5, learning the Chain-n environment.
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