
Top-K Item Recommendations Using
Social Media Networks
Using Twitter Profiles as a Source for

Recommending Movies

Trong Huu Nguyen

Master of Science in Computer Science

Supervisor: Herindrasana Ramampiaro, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

Abstract

The advent of internet has served as an offspring for the significant growth of online ser-
vices and businesses such as e-commerce, entertainment, or social media. A common
element among these industries is the process of tailoring the offered services or products
towards their users’ interests and preferences, also known as personalization. Related to
this is the cold start problem, wherein systems may not have sufficient data on new users
or customers in order to provide reasonable, personalized recommendations.

In an attempt to overcome said challenge, this thesis investigates the use of user data
available from social media - in this case public Twitter profiles. A two-step recommender
system is proposed and implemented, using the aforementioned data as input and basis
for its predictions. The first step of our approach involves classifying and filtering Tweets
based on their expressed sentiment, using Artificial Neural Networks to achieve state-of-
the-art classification performance. Following this, we experiment with various combina-
tions of recommender algorithms in order to match a specific user’s preferences with the
aspects of any movie.

The experiments examine the impact of numerous variables, including preprocessing
techniques, feature extraction, similarity measures, word embeddings, entity matching and
social circles with regards to the systems predictions. The results produced from the rec-
ommender system for any given user is a ranked list of movie titles with corresponding
similarity scores.

We evaluate the proposed system on a larger set of Tweets annotated with sentiments,
a set of Twitter user profiles, as well as a set of movies with associated data from IMDb. A
prediction accuracy of 65% in the most successful case was reached, in which user-based
collaborative filtering was utilized.

Overall, the results of our experiments indicate that the use of social media profiles has
merit in the task of movie recommendations, and may have applications in other domains
as well.

i

ii

Sammendrag

Internettets frammarsj har åpnet for en betydelig vekst i tjenester og bedrifter med nettet
som basis, for eksempel innen e-handel, underholdning eller sosiale medier. Felles for
disse industriene er fokuset på å skreddersy tjenester eller produkter til brukernes interesser
og preferanser, en prosess som også er kjent som personalisering. Et problem som er
relatert til dette er kaldstartproblemet (cold-start problem) der systemer ikke kan tilby
tilpassede anbefalinger til nye brukere grunnet mangel på data om brukerne.

I et forsøk på å løse nevnte utfordring, vil vi i denne oppgaven undersøke om en kan
bruke data som er tilgjengelig på sosiale medier - i vårt tilfelle av offentlige brukere
på Twitter. Vi presenterer og implementerer et to-stegs anbefalingssystem der vi bruker
tidligere nevnte data som grunnlag for anbefalinger. Det første steget involverer å klassi-
fisere og filtrere Twitter-meldinger basert på deres uttrykte følelser eller sentimenter, der
vi bruker kunstige nevrale nettverk til å oppnå ytelse tilsvarende løsninger som er rådende
innen feltet. Deretter eksperimenterer vi med ulike kombinasjoner av anbefalingsalgorit-
mer for å kunne skreddersy spesifikke brukeres preferanser i forhold til en hvilken som
helst film.

I eksperimentene undersøker vi kombinasjoner av en rekke variabler og deres in-
nvirkninger på systemets forutsigelser, deriblant preprosessering, ekstrahering av egen-
skaper, sammenligningsmetoder, matching av enheter og sosiale sirkler. For enhver bruker
vil anbefalingssystemet produsere en rangert liste av filmtitler med tilhørende sannsyn-
lighet.

Det foreslåtte systemet evalueres mot et større sett av Twitter-meldinger kategorisert
etter uttrykte følelser, en samling av Twitter-brukerprofiler, samt et mindre sett med filmer
og tilhørende data fra IMDb. I det beste tilfellet oppnår løsningen en nøyaktighet på 65%
der anbefalingene er basert på likhet mellom brukere (user-based collaborative filtering).

Alt i alt indikerer resultatene fra eksperimentene våre at bruken av data fra sosiale
medier kan ha nytte for seg når det gjelder filmanbefalinger. I tillegg kan den foreslåtte
løsningen ha tilsvarende bruksområder innen andre domener.

iii

iv

Preface and Acknowledgements

This thesis project serves as the final fulfillment towards the requirements needed to con-
clude the Master of Science degree at the Norwegian University of Science and Tech-
nology (NTNU) in Trondheim, Norway. The thesis project was supervised by Heri Ra-
mampiaro, Associate Professor at the Department of Computer Science (IDI). I would like
to thank Heri for the initial project proposal, as well as valuable feedback and excellent
guidance throughout the entire process.

The work presented is a result of an initial specialization project conducted during the
fall semester of 2016 which served as a basis for the continued work and refinement in the
spring semester of 2017. However, due to the unfulfillment of certain formal requirements
needed to officially begin work on the thesis, I was not allowed to deliver the thesis for
that semester. Work on the thesis was resumed and finalized during the spring semester of
2018.

Finally, I would like to thank my close friends and family, as well as my fellow students
and colleagues for their continued encouragement and support.

Trong Huu Nguyen
Trondheim, June 2018

v

vi

Table of Contents

Abstract i

Preface v

Table of Contents ix

List of Tables xi

List of Figures xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 3

1.2.1 Twitter . 3
1.2.2 Movie Recommendations . 3
1.2.3 Feature Engineering . 3
1.2.4 Sentiment Analysis . 4

1.3 Research Questions . 4
1.4 Thesis Outline . 4

2 Background & Theory 7
2.1 Traditional- vs Microblog-Information Retrieval 7
2.2 Twitter . 8

2.2.1 Obtaining Datasets . 8
2.2.2 Challenges . 8

2.3 Recommender Systems . 10
2.3.1 Collaborative Filtering . 11
2.3.2 Content-Based Filtering . 13

2.4 Sentiment Analysis . 14
2.4.1 Document level sentiment classification 14
2.4.2 Sentence level sentiment classification 15

vii

TABLE OF CONTENTS

2.4.3 Aspect-based opinion mining 15
2.4.4 Sentiment lexicon generation . 16
2.4.5 Challenges . 17

2.5 Information Extraction . 17
2.5.1 Named Entity Recognition . 18
2.5.2 Feature Engineering . 19

2.6 Classification . 21
2.6.1 Traditional Approaches . 22
2.6.2 Artificial Neural Networks . 22

3 Related Work 25
3.1 Recommendations in Social Networks 25
3.2 Feature Extraction for Sentiment Analysis 27
3.3 Sentiment Analysis in Twitter . 28
3.4 Named Entity Recognition in Twitter . 29
3.5 Summary . 30

4 The Two-Step Recommender Approach 33
4.1 Theoretical Approach . 33

4.1.1 Feature Extraction for User Profiles 33
4.1.2 Feature Extraction for Movie Profiles 34
4.1.3 Two-Step Recommender . 35

4.2 Sentiment Analysis . 36
4.2.1 Word Representations . 37
4.2.2 Classifiers . 39
4.2.3 Evaluation and Results . 43

4.3 Final System Overview . 45
4.3.1 Datasets . 45
4.3.2 Preprocessing . 49

4.4 Recommender System . 51
4.4.1 Feature Extraction for Profile Construction 51
4.4.2 Similarity Measures . 52
4.4.3 Recommender Techniques . 52

4.5 Evaluation . 53
4.6 Summary of Experimental Setup . 54

5 Results and Discussion 55
5.1 Preprocessing . 55

5.1.1 Output . 55
5.1.2 Text Processing . 55
5.1.3 Part-of-Speech Tagging . 57
5.1.4 Named Entity Extraction . 57
5.1.5 Sentiment Analysis . 57

5.2 Recommender System . 58
5.2.1 Results . 58
5.2.2 Movie Profile . 60

viii

TABLE OF CONTENTS

5.2.3 Similarity Measures . 60
5.2.4 Social Circles . 61
5.2.5 User Profile . 61
5.2.6 Word Embeddings . 63
5.2.7 Feature Extraction . 64
5.2.8 Entity Matching . 65
5.2.9 Recommender Techniques . 65

5.3 Significance of Results . 69
5.3.1 Sentiment Filtering . 69
5.3.2 Power of Word Embeddings . 69
5.3.3 Twitter Profiles for Recommendation 69
5.3.4 The Social Aspect . 70

6 Conclusion and Future Work 71
6.1 Conclusion . 71

6.1.1 Goal Achievements . 71
6.2 Future Work . 73

6.2.1 Improvements to the Current System 73
6.2.2 Feature Selection . 75
6.2.3 Social Circles . 75
6.2.4 Machine Learning Classifiers & Recommender Systems 75
6.2.5 Other Domains . 76
6.2.6 User-Based Evaluation . 76

Bibliography 77

ix

x

List of Tables

4.1 Summary of pre-trained word embedding models used in our experiments 38
4.2 Overview of classifiers for sentiment analysis experiments 39
4.3 F1-scores for combinations of sentiment classifiers and word representations 45
4.4 Comparison of named entity recognition tools, from Jiang et al. [78] . . . 50

5.1 Variable combinations for the recommender system experiments 59

xi

xii

List of Figures

2.1 Example of usage of hashtags in a Tweet 10

4.1 The overall general two-step recommender system approach 34
4.2 The multilayer perceptron network . 40
4.3 The convolutional neural network . 41
4.4 The convolutional neural network with a long short-term memory layer

appended . 42
4.5 The long short-term memory network 43
4.6 The bidirectional long short-term network 43
4.7 The overall view of the system and its components 46

5.1 Comparison of results for variations of sources for movie profiles 61
5.2 Comparison of results for variations of similarity measures 62
5.3 Comparison of results when including features from the social circle . . . 62
5.4 Comparison of results for variations of sources for user profiles 63
5.5 Comparison of results for variations of pre-trained word embedding models 64
5.6 Comparison of results for variations of feature extraction methods 65
5.7 Comparison of results when including named entity matching 66
5.8 Comparison of results for variations of recommender techniques 66

xiii

Chapter 1
Introduction

This thesis aims to explore the possibility of providing users with recommendations based
on social media. A collection of data of users and their networks, as well as a collection
of products with their corresponding information (e.g. comments or reviews) will serve as
a basis for the proposal of a text and data mining method and a machine learning method
to produce good recommendations.

1.1 Motivation
Over the past decade or so, social media has become a staple of the modern society’s
daily routine. Services such as Twitter connect millions of users, most of which share
status updates and photos among their own social circles at a daily rate. The sheer scale of
data generated is thus enormous. For example, Twitter had over 500 million daily status
updates (henceforth referred to as Tweets) back in 20131. Though often informal and short
(sometimes even incomplete without contextual clues), the textual content can be valuable
sources of information for both businesses and people alike. Social media enables the
convenience of sharing thoughts and having conversations from anywhere, at any time - as
long as you have Internet access.

The emergence of services such as Netflix, Amazon, and Spotify have also made their
impact on the digital life. Advertisement and recommendations have moved from being
general and impersonal to aggressively utilizing each individual’s activity, and perceived
tastes and preferences. While such systems will usually elicit a user’s preference explicitly
and/or implicitly, they usually do not use other sources of data other than their own. A
new user in the system would then have little to no personalized recommendations until
the system has collected enough data to make accurate predictions. This is called the cold
start problem.

For example, a user could be looking to find a restaurant while visiting a new city, say
New York. Instinctively, he would seek for recommendations (reviews or opinions from

1https://blog.twitter.com/2013/new-tweets-per-second-record-and-how

1

https://blog.twitter.com/2013/new-tweets-per-second-record-and-how

Chapter 1. Introduction

other people) of restaurants, whether online or not. He finds several websites containing
reviews, but is overloaded with reviews and information. Believing that he could get
personalized recommendations, he registers on one of the websites. However, being a new
user with no previous ratings, the system fails to provide any useful recommendations.
Given this scenario for any average user, having online services take advantage of their
existing social media profile(s) would be an interesting and potentially useful addition. The
impact of which would be significant if it enabled more and better personalized content
while also circumventing the cold start problem if the user is new to the service. As for
existing users, their social profiles could also be used in conjunction with their existing
system profiles to potentially provide better recommendations. All in all, users would
benefit from having a more pleasant and streamlined experience, while businesses would
find their customers more satisfied which in turn could improve their reputation and result
in increased revenue.

Ethically speaking, there is a trade-off in terms of privacy when providing services
access to their personal profiles. Would users be comfortable with sharing their entire
profile with third party businesses even if it results in a better user experience? Perhaps
if they were able to control exactly what was shared, or were given guarantees that their
information would not be abused or used in a way that the user did not intend it to be.
Ultimately, it comes down to what each individual person is comfortable with sharing, as
well as their trust in a given service/business/website. However, it is not unreasonable to
assume that a significant amount of users would be interested in using their profiles for the
option of personalized content, especially when considering that many users today leave
their social media profiles open to the public. We will not consider the aspects of privacy
and entrustment for the rest of the thesis, though we felt they were worth mentioning as
they are important aspects to consider when working with user data.

With all of this in mind, is it possible to use a user’s social media profile as basis for
good recommendations? An active user of Twitter may have a lot of valuable data on
their historical timeline which could provide insights that otherwise would be unavailable
through traditional means. Explicit and varied opinions, places visited, and social circles
are all examples of information a service like Netflix usually does not have access to, but
if available have the potential to provide better recommendations. This is essentially the
main motivation for this thesis, where we will specifically explore the movie recommender
domain using data from Twitter. The development of a method for extracting information
from a user’s Twitter profile, and a method for using said information in terms of recom-
mending movies given a set of movies will be the main contributions of this thesis, which
will be demonstrated with a implementation of a prototype system incorporating these
methods in a pipeline. While we do focus on the movie domain in terms of recommenda-
tion, we hope to be able to develop methods that can produce recommendations for other
domains as well with minor adjustments.

2

1.2 Context

1.2 Context

1.2.1 Twitter
Twitter is one of the largest news and social networking services, serving more than 300
million active users monthly as of early 20172. The service is a so-called microblog ser-
vice, in which posts by the users are short in terms of length. In fact, Twitter enforces
a limit of 140 characters per Tweet3. Every user has their own timeline, where they es-
sentially maintain their own personal blog. Additionally, revolving around the social net-
working aspect, every user also has their own dashboard consisting of Tweets published
by users they follow or are subscribed to, henceforth referred to as followees. A user can
analogously be followed by other users, henceforth referred to as followers. Any user can
also mention or reply to other users in a Tweet, enabling public conversations between two
or more users.

With social media being an informal platform for expressing thoughts and sentiments
and the availability of Tweets in the public domain, Twitter data is increasingly used in a
wide range of research fields4. Twitter also provides APIs for accessing their data, further
incentivizing both researchers and developers alike to access and use their data.

1.2.2 Movie Recommendations
With the rise of the information and communication technology era, accelerated with the
advent of Internet, the studies of recommender systems to help aggregate and summarize
information have been prominent and thoroughly explored. In particular, the Netflix Prize
competition (2006-2009)5 sparked significant interest in improving algorithms for recom-
mender systems, looking at the movie domain with users, movies and their related ratings.
Since then, a host of sophisticated algorithms and systems have emerged, taking into ac-
count more information about users and items. With large datasets such as MovieLens
publicly available, movies have typically been one of the commonly explored domains in
the field of recommender systems.

The appearance and explosive growth of social media in the recent years has also
brought new dimensions and possibilities in terms of personalization of recommendations.
Taking individual utterances into account when eliciting preferences is a valuable aspect,
especially in terms of personalized recommendations.

1.2.3 Feature Engineering
Many recommender systems rely on using features or attributes to represent both users
and items, often depending on domain. Determining and extracting these features are
computationally and architecturally demanding tasks. Considering the Twitter domain,
the textual content itself is likely one of the most important sources for features. However
with Tweets often being short and the content quite variable, representing the words using

2https://about.twitter.com/company
3https://dev.twitter.com/basics/counting-characters
4https://blog.twitter.com/2015/twitter-data-research
5http://www.netflixprize.com/

3

https://about.twitter.com/company
https://dev.twitter.com/basics/counting-characters
https://blog.twitter.com/2015/twitter-data-research
http://www.netflixprize.com/

Chapter 1. Introduction

traditional methods such as vectors or matrices may not be feasible in terms of sparsity
and scaling. Additionally, there are associated metadata with each Tweet, providing a host
of possible features for analysis, e.g. data pertaining to spatial or temporal dimensions, or
social circles.

1.2.4 Sentiment Analysis
Closely related to the notion of recommender systems is sentiment analysis. People and
businesses alike have always been invested in the opinions of other people. Finding out
what people like and dislike is valuable, e.g. in terms of eliciting user preference, or dis-
covering aspects in which a product or business is lacking. This has become important
with the rise of social media platforms and online discussion forums where users can eas-
ily express their opinions. Determining the sentiment of an utterance is however a difficult
task for machines, due to the ambiguous nature of human languages. This problem is mag-
nified by the often short, informal and noisy language of online text, especially on Twitter
with its character limit. Common characteristics of such language include abbreviations,
acronyms, slang, as well as erroneous grammar or spelling. Historically, methods of sen-
timent analysis were developed with the assumption of text being formal and complete,
while in the case of online text this can no longer be a reasonable assumption, and adap-
tations or development of new methods for analysis may be needed. In terms of Twitter,
using sentiment analysis to filter Tweets by their sentiment could prove useful, especially
when eliciting user preference for recommendation.

1.3 Research Questions
In our exploration of the possibilities of improving recommender systems by utilizing the
valuable data contained within Twitter and development of methods to do so, we will
attempt to answer two main research questions:

RQ 1 How can we use Twitter profiles to recommend movies?

RQ 2 How viable is it to leverage Twitter profiles for recommendation with regards to
the cold start problem?

Answering the first question involves answering the following subquestions:

RQ 1.1 How can we identify and extract important features from a user’s Twitter profile?

RQ 1.2 How does a user’s social circle affect these features?

RQ 1.3 How can we use these features to recommend movies to users?

1.4 Thesis Outline
This thesis begins with Chapter 1, introducing the motivation and field of research it
aims to explore as well as presenting the work’s context and research questions. The

4

1.4 Thesis Outline

background and theory for the topics treated in this thesis are established in Chapter
2, further elaborating on research and challenges with regards to Twitter, recommender
systems, sentiment analysis, and information retrieval in general. In Chapter 3, a survey
of literature pertaining to information retrieval in social media is presented. Following
this is Chapter 4, where we present and explain the project’s overall approach to the
acquisition of a dataset as well as the implementation of a prototype system. The results
outputted from the system are showcased and reviewed in Chapter 5. Finally, in Chapter
6 we conclude our findings and contributions, and present our achievements with regards
to the research questions. Propositions for future work are also presented here.

5

6

Chapter 2
Background & Theory

This chapter presents the background and theory related to the context and scope of this
thesis. Section 2.1 compares and presents the differences between information retrieval in
the traditional versus the microblog domain. Following this is an elaboration of the char-
acteristics and challenges of information retrieval in the context of Twitter in section 2.2.
Sections 2.3 and 2.4 present established theory within the fields of recommender systems
and sentiment analysis, respectively. In section 2.5, we look at the field of information
extraction, addressing specific subtasks relevant to our thesis. Lastly, in section 2.6, we
look at traditional methods and approaches in classification tasks, with a short introduction
to artificial neural networks and deep learning.

2.1 Traditional- vs Microblog-Information Retrieval
While information retrieval (IR) is a thoroughly studied field within Computer Science,
the basis for such studies have historically been restricted to longer, formal texts such as
news articles, journals, and other literature. Most social media on the other hand can be
viewed as microblogs, which are a series of usually short status updates with often infor-
mal language and structure. In this context, traditional methods of retrieving information
may not always be applicable or efficient, as they might not consider contextual clues or
noisy aspects of the written language (e.g. abbreviations, hyperlinks, emoticons, sarcasm,
or orthographic errors). Additionally, a lot of the data might just be spam, generated by
bots with the purpose of enticing users to click on links, or perhaps attempt to sway pub-
lic opinion by spreading propaganda. Twitter reported back in 2014 that 23 million of
their 271 million active users were in fact bots, amounting to around 8.5% of its active
userbase1. A more recent study focusing on the detection of Twitter bots estimates that
roughly 9% to 15% of active Twitter accounts are bots, amounting to figures between 27
million and 45 million bots as of 2017 [1].

1http://www.techtimes.com/articles/12840/20140812/twitter-acknowledges-14-percent-users-

bots-5-percent-spam-bots.htm

7

http://www.techtimes.com/articles/12840/20140812/twitter-acknowledges-14-percent-users-bots-5-percent-spam-bots.htm
http://www.techtimes.com/articles/12840/20140812/twitter-acknowledges-14-percent-users-bots-5-percent-spam-bots.htm

Chapter 2. Background & Theory

Another aspect to consider is the notion of relevance. While articles often have clear
topics and structure, microblog posts tend to be ambiguous and lack conventional struc-
tures due to their informal and short nature. Deciding whether a post is relevant or not
with regards to a topic or query is thus a difficult task. As users often have the ability to
share or forward other users’ posts to their own social circle, one should also consider the
relevance and strength of such posts with regards to the user’s personal sentiments.

2.2 Twitter

2.2.1 Obtaining Datasets
Very large and detailed datasets from Twitter are usually not available in the public do-
main, largely due to Twitter’s developer policy of respecting a user’s control and privacy
of their Tweets2. Most datasets available are thus often either anonymized or purged of any
data that may violate user privacy. The methods and explorations in this project requires
certain data not usually provided, such as data related to a user’s timeline, their follow-
ers as well as the users they follow. In addition to this, there are no publicly available
datasets specifically for the movie domain that satisfies our needs at the time of this thesis.
Obtaining our own dataset was thus deemed necessary.

Fortunately, Twitter makes a subset of its data available from two separate endpoint
APIs, the Search API3 and the Streaming API4. These endpoints provide recent data from
Tweets published in the last 7 days and as a constant incoming stream of Tweets as they
are published, respectively. Additional parameters such as querying (e.g. restricting data
to match certain keywords and/or hashtags), Tweet language and geolocalization are also
available.

Of course, certain restrictions are in place to hinder abuse and stress on Twitter’s
servers. For our purposes, these limits range between 15 to 900 requests per 15 minutes5.
Obtaining a substantial amount of data is thus a time-consuming task. Another issue with
accessing data through these official APIs is the limit of data available. A user’s personal
timeline may have tens or hundreds of thousands of Tweets, however the Search API only
allows for the user’s 3200 most recent Tweets to be returned.

2.2.2 Challenges
As mentioned in section 2.1, there are many challenges to consider when working with
data from Twitter, as opposed to more traditional sources.

Sparsity The length of Tweets are limited to 140 characters as mentioned previously, a
restriction that leads to interesting effects. As with many social media posts, Tweets are of-
ten informal, short and concise [2]. One could argue that the short length does not provide
a sufficient basis for extracting information, especially when considering recommending

2https://dev.twitter.com/overview/terms/policy.html#c-respect-users-control-and-privacy
3https://dev.twitter.com/rest/public/search
4https://dev.twitter.com/streaming/public
5https://dev.twitter.com/rest/public/rate-limits

8

https://dev.twitter.com/overview/terms/policy.html#c-respect-users-control-and-privacy
https://dev.twitter.com/rest/public/search
https://dev.twitter.com/streaming/public
https://dev.twitter.com/rest/public/rate-limits

2.2 Twitter

movies based on Tweets. Detecting features and sentiments may not be feasible given the
short length.

In the context of recommending movies, we would be interested in looking for Tweets
expressing sentiments about movies. While a traditional movie review would represent
a user’s composite sentiment on several aspects and features of a movie, a user’s Tweet
might only express a single sentiment pertaining to a single aspect or feature. On one
hand, a Tweet can be a well-defined representation of a single sentiment. A user is thus
able to express multiple sentiments on multiple aspects over a series of Tweets. On the
other hand, the length restriction could encourage users to express complex sentiments
using a single Tweet.

Noise, Spam and Retweets In section 2.1 we saw that around 8.5% of Twitter’s user
base in 2014 consisted of active bots. The spam generated from these would likely consti-
tute a substantial amount. While it would be interesting and useful to detect and filter out
Tweets that are generated by bots, this has not been a priority in this thesis.

Another challenge with Tweets is that they can revolve around any topic of the user’s
choice. Finding data pertaining to the movie domain thus involves filtering out uninter-
esting and mundane Tweets. The usage of hashtags6 to categorize Tweets is helpful here,
as well as using named entity recognition methods for additional support. Domain spe-
cific mundane Tweets should also be filtered out, e.g. in the movie domain there might be
Tweets reporting on premieres, box office results, trailers, external movie reviews, etc.

A unique functionality of Twitter is the ability to Retweet a Tweet. In essence, a user
re-posts or shares another user’s Tweet to their own timeline. While a Retweet could
imply a shared sentiment with its original poster, a dataset consisting of a high amount of
Retweets is redundant and does not provide much information or unique insights.

Language The language used on social media poses another challenge. As mentioned
earlier, Tweets, like most social media posts, are often short and informal in nature. As
a consequence grammar and spelling are usually not a priority, often leading to uncon-
ventional or incomplete sentences. Using classic natural language processing systems
designed and trained on "proper" corpora, i.e. books, journals or articles, could thus prove
difficult.

With Tweets being so short in nature it could be reasonable to assume that the Tweets
are easier to classify as the restriction encourages terseness in the language. On the other
hand, complex and compact forms of expressions may rise. In recent years the usage
of emojis to express feelings and sentiments have become ubiquitous. In fact, Oxford
Dictionary announced an emoji as the 2015 Word of the Year7 and over 110 billion emojis
were present in Tweets between 2014 and 20168.

In terms of the domain of movie recommendations, using emojis to determine senti-
ments could be an interesting approach. Some works exploring the meanings and usage
of emojis exist. Kralj et al. [3] looked at determining the emotional content of emojis and

6https://support.twitter.com/articles/49309
7http://blog.oxforddictionaries.com/press- releases/announcing- the- oxford- dictionaries-

word-of-the-year-2015/
8https://blog.twitter.com/2016/introducing-emoji-targeting

9

https://support.twitter.com/articles/49309
http://blog.oxforddictionaries.com/press-releases/announcing-the-oxford-dictionaries-word-of-the-year-2015/
http://blog.oxforddictionaries.com/press-releases/announcing-the-oxford-dictionaries-word-of-the-year-2015/
https://blog.twitter.com/2016/introducing-emoji-targeting

Chapter 2. Background & Theory

proposed an emoji sentiment lexicon, mapping 751 emojis to their corresponding senti-
ment polarities. Such a lexicon could have potential use in automated sentiment analysis
of text in social media.

Hashtags As with many social media platforms, a characteristic of Twitter is the widespread
usage of hashtags. While mostly used to help categorize Tweets by topic or theme, certain
users might replace words in their Tweets with hashtags as seen in figure 2.1.

Figure 2.1: Example of usage of hashtags in a Tweet

The use of compound hashtags (i.e. hashtags consisting of multiple words, illustrated
in figure 2.1) also poses as a challenge in terms of automatically identifying and split-
ting individual words. Splitting these by detecting uppercase letters is a naive solution,
but fails when considering hashtags in e.g. all lowercase. Some research on compound
splitting exist, with Koehn and Knight [4] and Macherey et al. [5] among the most promi-
nent. Research within this area still appears to be in its infancy, with efficient methods for
splitting not widely available.

2.3 Recommender Systems
With increased availability of online information, users may find it difficult to search for
and recognize items that may be of interest to them. A recommender system aims to help
with managing this information overload by tailoring recommendations to individual users
by exploiting available data (e.g. user preferences, item characteristics, popularity, ratings,
reviews, context).

Typically, the system attempts to provide the user with a serendipitous experience by
recommending largely unknown or less popular items (i.e. items from the long tail). De-
pending on the domain and purpose, a user might already know what they are looking for.
In that case the system should also be able to provide the user with the correct proposals.

Historically, as described in Zafarani et al. [6], Rajaraman and Ullman [7], Jannach et
al. [8], and Sarwar et al. [9], there have been three types of approaches to recommender
systems:

Collaborative filtering identifies users with similar rating profiles and recommends items
based on this neighborhood. This can also be used as a basis

10

2.3 Recommender Systems

for predicting a user’s rating of an item based on similar users’
ratings.

Content-based systems are based on the properties associated with the content
and a user’s preferences. The content recommended is similar to
the ones the user has previously liked or rated highly, or alterna-
tively matching the user profile.

Hybrid approach where multiple different recommendation techniques
can be used to combine predictions. Combining different recom-
menders may help in overcoming their respective shortcomings.

These techniques have been widely used over the past few decades, and through time
enhanced with other information (e.g. demographics, tags, social context).

In recent years, personality-based systems have been proposed where a user’s person-
ality is taken into consideration when eliciting user preferences. In psychology, personal-
ity is believed to be a critical influence on preferences. Thus researchers believe it can be
used to enhance both prediction quality and user experience. Buettner [10] also proposes a
personality-based recommender framework in which a user’s personality is predicted using
social media data. Product preferences is subsequently derived based on this personality.

2.3.1 Collaborative Filtering
Collaborative filtering (CF) is based on the assumption that users who have previously
agreed on ratings will likely agree in the future. Additionally, one can also assume that
items that have received similar ratings in the past will receive similar ratings in the future.
A user-item matrix is usually the basis for collaborative filtering techniques. This is used to
calculate the similarity of either the users or the items and subsequently calculate missing
entries and recommend the highest rated predictions.

Similarity Similarity can be calculated using different measures, commonly one of ei-
ther Jaccard similarity, Cosine similarity, or Pearson correlation. Typically, the predictions
are calculated using either historical data directly, or by assuming that an underlying model
can be approximated and learned. These approaches are called memory-based and model-
based collaborative filtering, respectively.

Memory-based collaborative filtering A distinction between two forms of memory-
based CF is made here, user-based CF and item-based CF. In the former, similarities and
predictions are calculated based on the users. That is, given a user u and an item i which
u has not rated, find other users whom have rated i while also having similar previous
ratings as u. A rating for item i by user u can thus be inferred using an aggregation of the
other similar users’ ratings. A ranked set of recommendations could then be produced by
finding the N highest predicted ratings for the user.

However, new users often lack ratings. Whenever new ratings are added the system
must recompute the similarities, which scales poorly for a business with millions of users
and items. Another issue is the diverse and complex nature of humans. Even though two

11

Chapter 2. Background & Theory

users may coincidentally like the same two different genres of e.g. music, they may still
have diverging preferences otherwise.

An item-based CF makes predictions using the similarity between items instead. Gen-
erally, items are simpler which means their similarities are more stable and require less
frequent recalculations. With systems generally having more users than items, the items
also tend to have more ratings than an individual user, and as such the average rating for
an item will seldom change, relatively speaking. The general idea behind the item-based
approach is to first construct an item-item matrix, in which the similarity between each
pair of items is determined. The approach to calculating similarities vary, from using cor-
relation between rating to calculating the cosine similarity between the items using their
set of ratings as vectors. When the matrix is constructed, one can find and recommend
other items which are similar to an item i that a user u has rated highly.

Model-based collaborative filtering Rather than using the rating matrix directly at
run time, a model can be learned offline and used to make predictions when needed.
While building and updating the model can be computationally expensive, using the model
for predictions at run time is much cheaper than the alternative memory-based filtering.
There are a number of approaches to learning a model, including matrix decomposition
(an instance of the more general Singular Value Decomposition), probabilistic methods
(Bayesian classifiers), association rules, and clustering.

Challenges A number of challenges with the collaborative filtering approach exist:

• Collaborative filtering approaches depending on nearest neighbor algorithms face
scalability issues with a high number of users and items.

• Another issue is data sparsity. There is often a large amount of users, however
most will only have rated a fraction of the available items. Again, nearest neighbor
algorithms are unable to find similar users and as a result may recommend items
with poor accuracy. A common solution strategy for recommender systems is to
gather data either explicitly by e.g. asking users to rate items or provide a ranked
list of their preferred items, or alternatively inferred implicitly by e.g. observing
user behavior (historical purchases, product page views, viewing times) or analyzing
their social profiles.

• Related to the sparsity problem is the cold start problem where new users and items
have no or few ratings, leading to the system being unable to accurately calculate
predictions.

• Being based on neighbors, certain algorithms may be prone to popularity bias. A
possible solution might be to give more weight to items with high variance.

• As collaborative filtering does not require any actual knowledge of the items recom-
mended, the approach also lacks explanation of the results presented to the users.

12

2.3 Recommender Systems

2.3.2 Content-Based Filtering
The previously discussed collaborative filtering methods do not exploit the information
about the items, even though it might prove useful. Content-based recommenders are
based on an item profile representing important features of the item as well as a user profile
describing the user’s preferences. An item is thus recommended based on the similarity of
an item profile and the user profile.

Item profiles An item profile is a set of important features, e.g. information such as
genre, actors, directors for a movie domain, usually found through keyword descriptions
or through the content itself. There are many approaches to finding the features of an
item. A common approach is using tf-idf (term frequency-inverse document frequency)
to create a vector of weighted terms. Improvements here include using domain or lexical
knowledge, or various natural language processing techniques such as removal of stop
words, stemming and lemmatization. More advanced techniques utilizing topic modeling
to group synonyms also exist.

User profiles Creating a content-based user profile that describes a user’s preferences
usually involves creating a vector of weighted features that they may prefer, using previ-
ously observed interactions with the system. A possible user profile could be a weighted
average of previously rated item profiles.

Recommending items There are many approaches to recommending items based on
content. From simple algorithms such as k-nearest neighbors using cosine similarity be-
tween the user and item profile vectors, to more sophisticated methods utilizing machine
learning algorithms for classification of items using the user and corresponding item pro-
files as training data. Examples of such classifiers include Rocchio, Naive Bayes, decision
trees, and Support Vector Machines (SVMs).

Challenges As with collaborative filtering, there are a number of limitations with content-
based recommender systems:

• Finding appropriate features for an item is difficult. Keywords may be irrelevant,
the content might be lacking in length or depth, or is difficult for machines to extract
meaningful information from (e.g. multimedia).

• Constructing a user profile for a new user with few or no ratings is also an issue.
Gathering explicit and implicit feedback during the ramp-up phase is a possible
remedy. Alternatively looking at other sources of information such as social media
is also a possibility.

• Algorithms may be prone to overspecialization, or in other words only recommend
items matching the user’s content profile.

13

Chapter 2. Background & Theory

2.4 Sentiment Analysis
Another aspect of the web is the increasing amount of user-generated content. With a
plethora of platforms available for users to express their opinions and experiences about
anything, the threshold for sharing is significantly reduced. Businesses and individuals
alike may find others’ opinions valuable or influential, especially whenever a decision is
to be made. Sentiment analysis or opinion mining is concerned with the computational
study of the opinions or sentiments about entities expressed in a text. According to Liu
[11], an entity is a product, person, event, organization, or topic. The entity itself can be
represented as a hierarchy of components (e.g. an iPhone) and parts of said component
(e.g. screen, battery), each with their own set of attributes (e.g. call quality, battery life).
For simplicity, both components and attributes will be referred to as aspects. An opinion
can be expressed on any aspect, and either targets a single entity or compares more than
one entity with shared aspects. The concepts of subjectivity and emotion are also closely
related to sentiments and their strength.

Sentiment analysis is a difficult problem, touching on many aspects of natural lan-
guage processing (NLP). Early naive approaches have been dependent on the occurrence
of keywords, which do not consider context and domain, and are especially weak to nega-
tions. Approaches in the recent times have used more sophisticated techniques including
machine learning (convolutional/recurrent neural networks, deep learning, naive Bayes
classifiers, support vector machines), statistical methods, lexicons, and knowledge bases.

Historically the analysis has had three levels of granularity: document-level, sentence
level and entity/aspect-level, with the research trends moving towards the finer-grained
levels of analysis.

2.4.1 Document level sentiment classification
At this level the task is to classify the entire document, i.e. to determine the overall senti-
ment expressed. This also assumes that the document only addresses a single entity, and
is expressed by a single opinion holder. Most techniques here use some form of learning,
either supervised (Naive Bayes, Support Vector Machines) or unsupervised. Features and
techniques used here include part-of-speech tagging, tf-idf, semantic shifters, syntactic
relations, and lexicons.

An unsupervised approach described by Turney [12] identifies phrases matching cer-
tain patterns using a part-of-speech tagger, calculates the semantic orientation of the phrases
using Pointwise Mutual Information, and finally calculates the average orientation for the
entire review.

Another unsupervised approach using a lexicon was proposed by Kreutzer and Witte
[13]. The approach involves expanding a semantic lexicon with domain-independent
sentiments. Sentiment-carrying words is then extracted from the text, assigned a three-
sentiment score (positive, negative, objective), and finally the scores are aggregated for the
entire document.

14

2.4 Sentiment Analysis

2.4.2 Sentence level sentiment classification
Going deeper into the document, this level classifies each sentence. While offering more
detail of the expressed sentiments of the document, the specific entity or aspect the opin-
ion targets still remains unknown. The assumption that a sentence holds a single senti-
ment from a single opinion holder is also a limitation, ruling out analysis of comparative
or complex sentences. Classification is usually either a two-step problem, or alternatively
a 3-class problem. The first step is to classify the subjectivity of the sentence (i.e. opin-
ionated or not). This has been done with known supervised learning methods, as well as
unsupervised learning using pattern learning with syntactic templates. The second step
is of course to classify the sentiment of the sentence, in which methods similar to the
ones used in the document-level classification can be used. Davidov et al. [14] studied
sentiment classification of Twitter posts (or tweets), using features such as hashtags, punc-
tuation, emojis and frequent patterns among them.

2.4.3 Aspect-based opinion mining
The problem with the previous levels of classification is that neither could find exactly
what the opinion holder liked or disliked, which for many applications is insufficient. In
aspect-based sentiment analysis the opinion target is decomposed to entities and aspects.

Liu [11] defines an opinion as a quintuple:

(ei, aij , hk, tl, sijkl) (2.1)

where ei is the name of an entity, aij is an aspect of ei, hk is the opinion holder, tl is
the time when the opinion is expressed by hk, and sijkl is the sentiment of aspect aij of ei
by hk at tl.

The task is to find all opinion quintuples in the document. For the quintuple definition
of opinion, we can break this task down into five separate subtasks:

Entity extraction and categorization An entity may be referred to using var-
ious expressions. All synonymous ex-
pressions extractions should be grouped
into the same category, resulting in the
representation of a unique entity. This
is related to a classic problem within in-
formation extraction called named entity
extraction.

Aspect extraction and categorization Analogous to entity extraction and cate-
gorization. An aspect expression, which
may be implicit, e.g. "expensive" which
refers to the aspect "price", or explicit
e.g. "battery life", indicates the aspect
category, while each category represents
a unique aspect of an entity.

15

Chapter 2. Background & Theory

Opinion holder extraction and categorization This task is also analogous to the pre-
vious tasks. Discover and categorize all
opinion holders in the document.

Time extraction and standardization Analogous to previous tasks, extract the
times of opinion statements and standard-
ize them.

Aspect sentiment classification Determine whether the sentiment of an
opinion of an aspect is positive, neutral,
or negative. Alternatively assign a nu-
merical value indicating sentiment.

Two of the most important subtasks will be elaborated upon below.

Aspect extraction and categorization Numerous approaches to aspect extraction have
been proposed. One approach is based on finding frequent nouns and noun phrases in a
data set, assuming that most reviews will refer to a converging set of aspect expressions.
Non-frequent nouns is thus assumed to be irrelevant or less important.

Another approach involves exploiting the relations between an opinion and its target.
Knowing that sentiment words describe or modify aspect expressions, one can find the
aspect by finding the nearest noun or noun phrase. These dependency relations have been
exploited by researchers, e.g. in a double propagation approach by Qiu et al. [15]. This
approach uses known sentiment words to identify aspects, both of which are then used
to identify more sentiment words and aspects, and so on. Extraction is performed using
dependency relation rules.

Recent approaches for clustering the extracted aspects exploit prior or lexical knowl-
edge. Examples include Expectation-Maximization (EM) [16] and constrained Latent
Dirichlet Allocation (LDA) [17].

Aspect sentiment classification Determining the aspect sentiments involves identifying
words that convey positive or negative sentiments. Approaches may for example be based
on supervised learning (which depends on the training data), or apply sentiment lexicons in
an unsupervised manner. A simple approach is to aggregate opinion words of each aspect
in a sentence, taking into account sentiment shifting (e.g. negations) and coordinating con-
junctions (e.g. and, or, but). Other rules can also be exploited to determine the sentiment
of an opinion, e.g. production/consumption of resources or waste, decreased/increased
positive or negative.

2.4.4 Sentiment lexicon generation
Sentiment words, phrases and idioms are an instrumental part of sentiment analysis. These
are collectively called lexicons, which indicate the sentiment, subjectivity, or emotion of
words. Compiling such lexicons can be done manually, or automated by using either a
dictionary-based or corpus-based approach.

16

2.5 Information Extraction

Dictionary-based approach This approach exploits a dictionary’s structure, using an
initial seed set of words with known sentiments which can be collected manually. The
set is then iteratively expanded by an algorithm that searches and adds the synonyms and
antonyms of the words. Variations of this approach has been suggested by researchers,
ranging from the usage of machine learning to probabilistic methods. Although this ap-
proach enables the ease of compiling large sentiment lexicons quickly, the main disadvan-
tage of this approach is that the words found are general. Context- or domain-dependent
words are thus difficult to find.

Corpus-based approach While the dictionary-based approach does not handle domain-
or context-dependent words, a corpus-based approach can use a seed set of general-purpose
sentiment words to find more sentiment words from a domain corpus using e.g. syntactic
or co-occurrence patterns. An early key approach by Hatzivassiloglou and McKeown [18]
uses connectives (i.e. and, but, either-or, neither-or) to identify more sentiment words as
well as their orientations. A learning step produces a graph with links between adjectives
indicating same- or different-orientations, the result of which is used in a clustering step
to produce sets of positive and negative words.

2.4.5 Challenges
Although much research has been done there are still many issues and challenges that
remain.

• Dealing with complex sentences, e.g. sentences with conceptual rules, factual sen-
tences implying opinions, or sarcasm.

• A significant amount of the data available on social media is noisy, i.e. the data may
include irrelevant content, interactions with other users, and contain grammatical
errors. Preprocessing the data for analysis is thus a very important step.

• There are also difficulties in handling domains with little training data, as well as the
diverse nature of each domain in their unique, context-dependent ways to express
positive or negative sentiments.

• Cross-domain and -language analysis is also a problem. Learning a classifier for a
particular set of training data results in poor performance when applied to data from
another context or domain. The same applies to language as syntaxes and semantics
usually differ. Additionally, there may be a lack of labeling and resources such as
lexicons in non-English languages.

2.5 Information Extraction
The field of information extraction involves automatically extracting knowledge of un-
structured nature from a large data collection. The case of natural language processing
(NLP) is an example of this, concerning the automated processing and management of
human language texts. While earlier research focused on extracting text from documents

17

Chapter 2. Background & Theory

with a well-defined structure, the emergence of social media and informal domains has
sparked interest in researching and solving the problems of processing such informal and
noisy text. For example, Freitag [19] studied the use of machine learning for informa-
tion extraction in informal domains, proposing a combination of multiple approaches and
learners as a strategy yielding performance on par or better than the state-of-the-art at the
time.

Typically, the goal of information extraction is to simplify and structure the informa-
tion found in a semi-structured or unstructured text in order to enable machines to read
and process the text. There are many subtasks in information extraction, depending on the
domain and context, though we will only address the most relevant ones in the following
subsections.

2.5.1 Named Entity Recognition
The problem of named entity recognition was originally defined in Grishman and Sund-
heim [20], a task which involves identifying names and types of entities, e.g. people,
organizations, locations. They also included the annotation of numerical expressions (cur-
rency and percentages) in their task specification. Hua et al. [21] categorizes most of the
previous work into two approaches: rule-based, and statistical approaches.

Rule-based Approach Rule-based approaches identify named entities within given do-
mains by using heuristic rules. In early approaches these were handcrafted and built by
domain experts, while in later years the use of machine learning for automatic induction
of rules. The premise of applying such machine learning techniques is of course the usage
of features describing the characteristics or attributes of words. Nadeau and Sekine [22]
present some typical features. These range from word-level features (e.g. case, punctu-
ation, digits, character, morphology among others), to list lookups (using e.g. lexicons,
gazetteers, dictionaries or other sources of domain knowledge), and document/corpus fea-
tures (looking at occurrences, syntax, frequencies or meta-data).

An advantage with these types of approaches is the efficiency and low cost of compu-
tation. The manual addition or modification of rules to optimize and adapt to the domain is
also an advantage. It is however difficult to generate all rules so that they cover all possible
cases.

Statistical approach The statistical approach involves decomposing the unstructured
texts into tokens or chunks and then labeling these decomposed parts. Machine learning
is also used here to train models for automatic classification, and may use the features
described previously in the rule-based approach. A severe disadvantage however is the
requirement of manually annotated data for training, an often time-consuming and labori-
ous task. These datasets also affect the result and performance of the trained models, and
producing the

Approaches have ranged from using Support Vector Machines with Hidden Markov
Models, as proposed by [23], [24], to more advanced models in later years such as Con-
ditional Random Fields (CRFs) [25], [26]. Current state-of-the-art approaches use these
CRFs in combination with recurrent and convolutional neural networks; examples include
Chiu and Nichols [27], Ma and Hovy [28], and Lample et al. [29]. These approaches

18

2.5 Information Extraction

typically use word embeddings (mappings of vocabulary to vectors of real numbers) and
effectively eliminate the need for traditional feature engineering.

2.5.2 Feature Engineering
An important aspect of the application of machine learning is the notion of feature en-
gineering. Typical machine learning tasks, such as classification, requires input that are
represented in a convenient manner. However, data gathered from real-world scenarios are
usually convoluted and variable. Feature engineering is thus the task of extracting use-
ful features or representations from raw data in order to be utilized in machine learning
tasks. In the context of text, this usually involves somehow mapping or embedding the
vocabulary to numerical representations, e.g. in vectors or matrices.

Bag-of-words A common baseline approach of extracting of these features in terms of
text is the bag-of-words (or n-grams) approach, representing documents as a vector that
describes occurrences of the words. From a set of text documents we extract the set of
unique words or terms into a dictionary with an associated mapping of each word to an
index. In its simplest form, the model then converts each document into a list of terms,
represented as a numerical vector. The i’th entry in the vector will thus correspond to the
term and index pair in the dictionary representation of the vocabulary extracted earlier,
with the entry value representing the frequency or weight of the term. As a consequence,
the bag-of-words model ignores the order in which the words appear in the documents. To
address this shortcoming is the usage of the n-gram model, in which text units of length
n are stored in the set rather than just single words. This approach is advantageous in the
sense that it captures the spatial context in which words are used, e.g. to discover words
that typically precede or follow another word. In this sense, we can also observe that the
bag-of-words model is a special case of the n-gram model, with n = 1.

tf-idf While the bag-of-words approach represent textual units in documents by their
frequency, this is not necessarily the best approach in determining the importance of a
word. Common words that carry little lexical meaning are likely to appear with high
frequencies, known within IR as stop words, e.g. the, is, and [7]. The rarer terms are
likely to be better indicators of the topics addressed in the documents, especially when
domain specific words are used, e.g. "inning" which would refer to a concept within
baseball or similar sports. A remedy is to add weighting to the terms using the inverse
of the document frequency, effectively diminishing the highly frequent words while also
increasing the weights of words that appear more rarely. This statistic is known as tf-idf,
or term frequency-inverse document frequency, which reflects the combination of the two
statistics as a product.

The calculations for the two respective statistics can be determined in multiple ways.
Term frequency can be the raw count of occurrences as presented in the bag-of-words
approach earlier, or use a more sophisticated scheme where the frequency is normalized
with regards to the document length, as defined in Rajaraman and Ullman [7]:

tf(t, d) =
ft,d

maxu(fu,d)

19

Chapter 2. Background & Theory

which is the frequency of term t in document d divided by the frequency of the most
frequent term u in document d.

The inverse document frequency measure also has its own variations, though the com-
mon denominator is the appearance of a logarithmically scaled inverse fraction. The sim-
plest weighthing scheme involves dividing the total number of documents N by the number
of documents the term t appears in, nt, and then taking the logarithm of that:

idf(t) = log(
N

nt
)

One can see from this formula that as a term appears in more documents, the ratio
inside the logarithmic function will slowly approximate 1 and the total idf, and thus tf-idf
as a whole, will reach 0.

Using these two metrics, tf-idf is calculated by taking the product of them. A term with
a high tf-idf weight will therefore be a reasonably good indicator of the topic addressed in
the document.

An issue with this approach is the high dimensionality and sparsity of the vectors when
working with a large and varied corpus. This is especially apparent when working with
Twitter with its issues in terms of language (as discussed back in section 2.2.2).

Feature hashing As an alternative to the bag-of-words (and analogously, tf-idf) ap-
proach of vectorizing term features, the feature hashing approach formulated by Wein-
berger et al. [30] attempts to alleviate the dimensionality and sparsity issue by skipping
the construction and maintenance of a dictionary. Instead, the feature vectors are built and
updated by passing the feature through a hash function, the result of which is directly used
as the index in the vector. This results in increased throughput and reduced memory usage,
with the trade-off of not being able to transform the vectors back to the input features due
to hash functions generally being one-way functions.

Topic Modeling Another form of statistical modeling for analyzing and finding im-
portant terms within a set of texts is topic modeling. Generally building on the vec-
tors/matrices outputted from the bag-of-words or tf-idf approaches, a topic model attempts
to extract and cluster together words that commonly co-occur in the texts and may be se-
mantically similar. These clusters of similar words then form a topic. The model itself
opens for documents in a corpus to be inspected and the distribution of topics (and thus
important terms) to be discovered. Historically, the most commonly used models include
Latent Dirichlet Allocation [31], Non-negative matrix factorization [32], and Latent se-
mantic analysis/indexing [33]. We will not examine these models in greater detail, and
rather resort to using these models in a black-box-manner. The interested reader may refer
to their respective publications.

Word Embeddings In recent years, the use of artificial neural networks has become
an increasingly popular approach. Instead of using one word per dimension as with previ-
ously described methods, the concept of word embeddings involves embedding these word
into a vector space of significantly reduced dimension [34]. Each unique word is then as-
signed a vector within this space, effectively forming an embedding space. An advantage

20

2.6 Classification

with word embeddings is the language agnostic aspect, in which the model can capture
both semantic and syntactic relationships and regularities without the need for external an-
notation. Similar words will thus be close to each other in the vector space. These vectors
can for instance be used as feature inputs for machine learning classifiers, which can then
be applied to tasks such as sentiment analysis and named entity recognition.

Mikolov et al. [35] present two different unsupervised approaches to compute vector
representations of words, which resulted in Google’s open-source word2vec tool. These
two methods both share the architecture of being fully connected neural networks, us-
ing only a single hidden layer consisting of linear neurons, and using backpropagation
in combination with stochastic gradient descent (SGD) during training. What differs be-
tween the two is the underlying model, namely skip-gram and continuous bag-of-words
(CBOW), both with their respective advantages and disadvantages. Skip-gram takes in a
single word wi and attempts to predict its context, i.e. the preceding and following words
(...wi−2, wi−1, wi+1, wi+2...). Conversely, CBOW uses a given context as input to predict
the target word. We refer the interested reader to [36] for a more thorough presentation of
these concepts. In terms of performance, Mikolov notes that the skip-gram model works
well with smaller amounts of training data, and performs well in representing rare words
or phrases. CBOW is faster to train, and performs slightly better on frequent words. This
makes sense because creating large amounts of contexts for training using limited data is
possible in the case of skip-gram, while CBOW usually needs more data due to depending
on contexts for input.

An interesting consequence of the vectors generated is the preservation of linguistic
relationships, allowing for algebraic operations on vectors to produce meaningful results
[37]. For instance, vector(’Paris’) - vector(’France’) + vector(’Italy’) results
in a vector representation very close to vector(’Rome’). Other relationships such as verb
tense, male-female, capital-country can also be observed.

In a similar fashion to word2vec, Pennington et al. [38] demonstrate GloVe (Global
Vectors for Word Representation) as an alternative approach to word embedding. Both
of these models produce embedded word vectors, however word2vec is a predictive model
while GloVe is a count-based model attempting to exploit statistical properties. Essentially,
a co-occurrence matrix is built before factorization using SGD to reduce dimensionality,
effectively yielding the word embedding vectors.

2.6 Classification
In the context of both sentiment analysis and recommendation, classification is the task
of identifying and assigning a new observation or instance (in the case of text, a new
document) to a specific category or class. Classification is usually considered as a form
of supervised learning for pattern recognition, i.e. the basis for predictions involve using
a prior set of training data of observations with their respective classes already known and
assigned. In the case of Twitter, a classifier could be used to automatically predict the
sentiment of Tweets [39], or to differentiate between spammers and legitimate users [40].

21

Chapter 2. Background & Theory

2.6.1 Traditional Approaches
Traditionally, probabilistic algorithms such as Naive Bayes have been used as baseline
approaches in classification due to their simplicity in implementation, efficient scaling, as
well as reasonable quality of results [41]. The usage of linear models such as Support
Vector Machines (SVMs) have also been popular baseline approaches for classification
tasks. While SVMs generally have been considered state-of-the-art, some studies have
shown Naive Bayes to have comparable performance with appropriate feature engineering,
preprocessing and fine-tuning [42], and in some cases even outperforming SVMs [43].

2.6.2 Artificial Neural Networks
Artificial neural networks (ANNs) have been around since the the 1950’s with the concep-
tion of the perceptron algorithm [44], but never gained much traction until several decades
later with the emergence of deep learning, though the term today usually just refers to an
ANN with more than a single layer.

Basic Concepts Conceptually, an artificial neural network is a computational model
within machine learning, consisting of a number of simply, highly connected units called
artificial neurons - which themselves are simple, mathematical functions mimicking the
functions of their biological counterparts. This is inspired by the structure and proper-
ties of biological neural systems. Each network is typically organized in layers, with the
first and the final layer accepting input and producing outputs, respectively. Any layers
between these are referred to as hidden layers, and contain a number of neurons. The neu-
rons in each layer are typically interconnected, depending on the design of the network.
Each neuron also has an activation function which is a non-linear function defining the
output(s) to the following layer given input(s) from the previous layer, effectively adding
bias/weights and non-linearity into the neural network itself. Without an activation func-
tion the output would just be a linear transformation of the input, effectively turning a
"complex" multi-layer neural network into a form of simple linear regression.

Network Types In the simplest form of neural networks the output from a layer is used
as an input to the next layer, which is a type of neural networks known as feed-forward
neural networks. The most well-known example of such an ANN model is the multilayer
perceptron, popularized by Rumelhart et al. [45] with the application of the backpropaga-
tion algorithm.

Other notable classes include convoluational neural networks (CNNs or ConvNets)
and recurrent neural networks (RNNs), the latter of which introduce feedback loops within
neurons and layers. An early example was the Hopfield Network [46]. A shortcoming
of RNNs is the significant amount of time needed to learn long-term information due to
decaying error back flow, referred to as the vanishing gradient problem. This was later
addressed with the introduction of the Long short-term memory (LSTM) architecture by
Hochreiter and Schmidhuber [47], which introduced units which excels at memorizing
values for longer as well as shorter durations of time, which in the context of text is useful
for learning sequence dependencies. A variant called bidirectional LSTM increases the in-
put information to the network by splitting neurons into two directions of time, providing

22

2.6 Classification

access to both past and future states [48]. Gated recurrent units (GRUs) are a fairly recent
type of recurrent units introduced by Chung et al. [49], also addressing the vanishing gra-
dient problem akin to LSTMs. Studies have found that the performance was comparable
to LSTM, however more computationally efficient in terms of the required CPU time for
training and convergence depending on the task [50]. GRU was favored in terms of smaller
datasets, but otherwise fairly equivalent.

CNNs are variations of multilayer perceptrons, making use of convolution9 operations
to filter the input data for useful information (feature extraction). Largely inspired by the
visual cortex in animals CNNs are usually used in tasks where the recognition of patterns
across space is learned, such as in image recognition. Combinations of CNNs and RNNs
exist, e.g. by applying a CNN followed by an RNN [51].

Properties, Usage and Prominence While the performance of traditional approaches
heavily rely on feature engineering, the usage of ANNs attempts to obviate the need for
manual feature engineering by learning the features as well as learning how to solve a
task using these features - ultimately allowing for a wide range of applicable tasks e.g.
recommender systems, natural language processing, or computer vision.

Even though the theory and research of deep learning have been around for a while, the
popularity growth of deep learning in recent years are largely owed to multiple factors: the
increased availability of data for training, advances in hardware (exploiting the power of
graphical processing units, parallelization), as well as better, scalable algorithms to name
a few.

9https://en.wikipedia.org/wiki/Convolution

23

https://en.wikipedia.org/wiki/Convolution

24

Chapter 3
Related Work

This chapter presents, summarizes and compares a selection of closely related works to
the topics discussed in this thesis. We will mainly examine those pertaining to movie
recommendations in social media in section 3.1. Following this in section 3.2 is a survey
of works related to feature extraction for sentiment analysis, which is an important step
in eliciting user preferences and opinions for recommendations. Section 3.3 examines the
work done with regards to sentiment analysis in the Twitter domain. Finally, in section
3.4, selected works exploring named entity recognition in Twitter are presented.

3.1 Recommendations in Social Networks
Yang et al. [52] present a study where they attempt to improve accuracy for the top-k
recommendation task by using social networks. They propose two approaches; a matrix
factorization model enhanced with social trust features, and a nearest neighbor method that
also uses the trust network to enhance the users’ neighborhoods. The authors find that the
use of social networks can have significant improvements to the recommendation accu-
racy, especially in the case of cold start users. However, an important difference between
the paper and this thesis is the chosen datasets and platforms as premise for recommen-
dation. The paper bases itself on using datasets where users may assign ratings to items.
Furthermore, the users may assign trust values to other users’ reviews and/or ratings. Thus,
the approach assumes that one already has access to explicit ratings and social trust rela-
tionships - also forming the basis for further recommendation. In our case however, we
aim to utilize the user’s Twitter data in its entirety, which will capture the individual user
in a more general manner rather than pertaining to captured ratings or sentiments towards
specific items or entities. In other words, we do not have any guarantees of the existence
of explicit ratings for any given user. Thus, we cannot infer that the usage of the same
recommendation methods presented in the paper will be applicable for our case.

Another approach to incorporating social information is explored by Silva et al. [53],
where they introduce Poisson Matrix Factorization with Content and Social trust informa-
tion (PoissonMF-CS). Three sources of information are combined in the model, and used

25

Chapter 3. Related Work

as basis for its recommendations: item textual content, user social network, and user–item
interactions, effectively adding social and content features to existing Poisson factorization
models. The authors evaluate the model on a dataset containing both content and social
side information and find:

[...] that joint modeling of social and content features using Poisson models
improves the recommendations, can have scalable inference and generates
more compact latent features.

Again, similarly to the work presented by Yang et al. [52], the problem tackled by Silva
et al. [53] is evaluated using a dataset where user-item interactions or ratings are readily
available and quantifiable, as well as being restricted to a specific domain in terms of
content and social features. In our case however, the problem of inferring such preferences
from Twitter profiles must also be taken into consideration - especially as Twitter is not
a specialized platform with explicit, well-defined relationships between users and items.
Instead, the data available from a Twitter user will aid in representing the user’s preferences
in a broader, general range covering many domains. As such, one might observe a stronger
effect of homophily between users, i.e. users with similar characteristics or preferences are
more likely to have established social connections. Nevertheless, the proposed model is
very much relevant to the task of recommendation, and may serve as inspiration for future
work although the approaches explored are outside of the scope of this thesis.

Armentano et al. [54] present an approach that leverages Twitter as a source for in-
formation in terms of recommending movies. They evaluate and use a classifier that de-
termines the opinion and polarity expressed in a Tweet before finally extracting the sen-
timent of Twitter users with regards to a given movie. This is then used as basis for the
recommendation of said movie. The paper explores and evaluates different tokenization,
preprocessing techniques and algorithms for building a classification model. For tokeniza-
tion, they experiment with different combinations of n-grams, and concluded that the use
of both unigrams and bigrams led to the best results when combined with SVMs. In terms
of preprocessing, they also examine different strategies, e.g. stemming, removal of stop-
words, hashtags, URLs, conversion of slang language, feature selection with information
gain. They found that there were no significant differences in terms of accuracy when ap-
plying the different preprocessing strategies. In terms of classifiers, they explored the use
of SVMs, Bayesian Networks and Decision Trees, and conclude that an approach based
on SVMs and employing both uni- and bigrams combined with feature selection using
information gain provide the best results, with the choices of tokenization and classifier
having the largest impact. While the paper only considers the movie domain in terms of
recommendation, the authors emphasize the possibility of their findings to be extended or
adapted to other domains.

Similarly, Gupta et al. [55] also explore the use of social networks as a source for
information to produce automatic movie recommendations. They evaluate three differ-
ent classifying algorithms, but focus on Facebook profile information targeting a specific
individual unlike Armentano et al. [54] who focused on general recommendations based
on public opinion. In particular, Gupta et al. analyze and experiment with the use of
personal/social features and characteristics as features for improved recommendations, in-
cluding gender, location, age, and tastes in book and music. They implement and train

26

3.2 Feature Extraction for Sentiment Analysis

three different algorithms (SVM, K-Means Clustering, and Ranking SVM), attempting to
produce scores for each movie given a user. The results from their tests showed that clus-
tering was effective and that stereotypes to a certain extent could be used to predict the
attractiveness of a movie. As for using user profile features, a high correlation between
a user’s tastes in books and music and taste in movies was found. The use of gender
and location however did not appear to have any significant impact, other than reducing
performance. The authors also note that improvements are possible, for example by incor-
porating movie specific features from IMDb1, as well as user activity and interests from a
user’s Facebook profile.

While not pertaining to the movie domain nor Twitter specifically, Zhang and Lei [56]
explore the modeling of user interests (both long- and short-term) to recommend content
in microblogs. In particular, they explore the social friendship aspect of microblogs, hy-
pothesizing the notion of social tie-strength as a factor in user interests. That is, users
who follow the same people will like have similar or common interests. The thesis defines
tie-strength between two users as the similarity of their respective interests. Results from
their study shows that the usage of tie-strength in combination with other users’ interests
can improve content recommendations.

In a similar fashion, Chen et al. [57] experiment on recommending URLs for Twitter
users, looking at three separate dimensions: content sources, topic modeling and social
voting. They implement and evaluate 12 different proposed algorithms on real Twitter
users. Topic modeling was performed by creating a bag-of-words profile for each user,
modeling the interests of a user given the content they have previously created or interacted
with. Social voting exploits a user’s social circle by giving URLs scores depending on
their mentions in the user neighborhood. In essence, a URL mentioned often by followees
are more likely to be appealing to a user. Results from the study showed that the use of
topic modeling and social voting were especially helpful in providing recommendations
and noted that while their approach was general, better performance could be achieved if
adapted with domain-specific features.

3.2 Feature Extraction for Sentiment Analysis
Related to recommender systems is the field of sentiment analysis. One is usually inter-
ested in recommending items or content similar to the ones a user likes, especially in a
social media contexts that enables users to express opinions and sentiments. Finding and
extracting features and determining sentiments are thus very relevant tasks.

Hamdan et al. [58] presents the implementation of a logistic regression classifier, ex-
perimenting with different groups of features: sentiment lexicons, semantic role labeling,
topic modeling and Z-score ("a standardization of the term frequency using multi-nomial
distribution") among the most noteworthy. Their experiments show that addition of sen-
timent lexicon features had the largest impact in terms of accuracy, and suggested future
work to focus on the automatic construction of such lexicons using Z-scores as a metric
for the association between a term and its sentiment label. A possible issue with such an
approach is the amount of data needed for the construction, especially so with the highly

1http://www.imdb.com/

27

http://www.imdb.com/

Chapter 3. Related Work

variable and noisy language of Twitter. While unique misspellings or the use of sym-
bols are semantically understandable for humans, the decipherment of such language is a
demanding task for machines.

Zhao et al. [59] study comparisons of two similar products and propose a system to
mine opinions from Twitter in order to extract the product features referred to in said
Tweets. Following this, sentiment analysis is performed on the mentioned features, so that
user preference to the products can be elicited, as well as enabling the system to explain
why a user prefers the product. The authors use a bag-of-words approach with tf-idf for
feature extraction, and create a tree structure to represent a hierarchy of concepts. Rec-
ommendation is produced by similarity comparisons between user-preferred features with
identified products and their associated features. While the study showed good effective-
ness in terms of eliciting features for predefined product queries, it is uncertain how useful
the approach would be in terms of finding features or concepts related to an individual
Twitter user’s timeline (the content of which is often highly variable).

3.3 Sentiment Analysis in Twitter
In terms of actually performing sentiment analysis, many novel approaches have been
proposed over the years. As mentioned earlier, the use of ANNs has been a popular field
of research, also within natural language processing. Analogously to traditional methods
of sentiment analysis, the proposed approaches have generally been applied to datasets
of relatively formal nature. For instance, Kim [60] concluded that their proposed use of
CNNs were on par with or improved upon the (at the time) state-of-the-art approaches
in several tasks, including sentence-level sentiment analysis. Similarly, Zhang et al. [61]
compare character-level (using encoded sequences of characters as inputs) CNNs to tradi-
tional models as well as other forms of neural networks in the task of text classification.
The results presented show comparable performance, with traditional models having an
upper edge on smaller datasets, while the neural networks show their strength when the
amount of training samples reach millions.

As for the case of application of ANNs to shorter texts such as those in social media,
research in this direction was largely hindered due to the lack of substantial (in terms
of size), annotated datasets for training and testing systems. This has changed in recent
years however, with the proposed approaches having shown promising results. dos Santos
and Gatti [62] present a neural network architecture exploiting character-level features and
word embeddings to perform sentiment analysis on short texts, including Tweets. By using
both sets of features, the approach achieves slightly improved accuracy (between 2%-4%)
compared to established classifier methods when applied to the Stanford Twitter Sentiment
dataset. While they use word2vec for learning word embeddings and perform training
using Wikipedia as a source, using pre-trained, general purpose embeddings such as those
available from Stanford’s GloVe could be an improvement. The pre-trained embeddings
are usually trained on even larger datasets, and consequently have larger vocabularies.
Embeddings trained using specific sources, such as on Tweets also exist.

The series of Semantic Evaluation2 (SemEval, organized by SIGLEX, a group within

2https://en.wikipedia.org/wiki/SemEval

28

https://en.wikipedia.org/wiki/SemEval

3.4 Named Entity Recognition in Twitter

the Association for Computational Linguistics3) workshops have in recent years also in-
cluded exercises involving Twitter analysis, including the task of sentiment analysis. Specif-
ically, the task of predicting whether a Tweet carries positive, negative, or neutral senti-
ment is of interest to this thesis. Severyn and Moschitti [63], participated in SemEval 2015
and were among the top performing teams in the Twitter sentiment analysis tasks by using
word embeddings with a CNN. The authors highlight the notable improvement of using
word embeddings trained on a large amount of Tweets, and an even further improvement
with distant supervision with the use of positive emoticons in Tweets as loose labels.

Results from SemEval 2016 [64] and 2017 [65] show a trend of many teams using
deep learning techniques, including either general purpose or trained, task-specific word
embeddings. These were also often used in combination with deep learning models such
as CNNs and LSTM (RNNs) being the most common among the top performing teams. It
is evident that the use of neural networks has come to stay in natural language processing,
though further research may reveal refinements and improvements.

3.4 Named Entity Recognition in Twitter
Also related to recommender systems and sentiment analysis is the field of named entity
recognition (NER), in which we wish to identify and label the named entities referenced
in Tweets. While being a well-studied field in traditional text, with tools such as the
Stanford NER capable of achieving fairly good performance, but falls short when applied
to Tweets. Ratinov and Roth [66] found that the average F1-score of the Stanford NER
which is trained on the CoNLL03 shared task data set, drops from 90.8% to 45.8% when
applied to Tweets.

Liu et al. [67] propose a solution to tackle the challenges of identifying named entities
in the context of Twitter. Using a combination of a k-Nearest Neighbor (k-NN) algorithm
and a CRF model in a semi-supervised framework, they aim to capture and exploit both
the global coarse evidence and the fine-grained evidence within individual Tweets, respec-
tively. The semi-supervised framework also allows the classifier to be retrained using the
its confidently labeled outputs. The authors generally found that the inclusion of gazetteer
and lexical features for the CRF model significantly improved performance. Additionally,
experimenting with the replacement of the k-NN classifier with others such as Maximum
Entropy and Support Vector Machines revealed comparable performance, though k-NN
was superior in terms of retraining. They also found that CRF performed considerably
better than its competitors. Results from their study showed positive effects of using CRF
and semi-supervised learning, though remarked that the short and noisy nature of Tweets
were problematic, and suggested future development of Tweet normalization (i.e. normal-
izing the textual content) to alleviate the issue.

Li et al. [68] also examine named entity recognition in Tweets, and propose an un-
supervised approach exploiting information from web resources to build local and global
contexts instead of relying on linguistic features. Essentially the approach is a 2-step ap-
proach, the first step using the global context to segment a Tweet, producing candidate
named entities. The second step involves using a random walk model to exploit the local

3https://www.aclweb.org/portal/sigs

29

https://www.aclweb.org/portal/sigs

Chapter 3. Related Work

context. Results from their study show comparable performance with other state-of-the-art
solutions, however does not address the problem of labeling the named entity type. For
most applications, including ours, having a named entity without an associated label is not
of much use. A solution could be to use a knowledge base to detect and elicit entity types
and variations.

Ritter et al. [69] address the challenges of Twitter by rebuilding the NLP pipeline,
from part-of-speech tagging to chunking and finally named entity recognition. Their study
shows that the use of features generated from POS tagging and chunking aid in segmenting
named entities, and that their approach in training on Tweets show significant improvement
compared to existing state-of-the-art tools trained on traditional corpora. An obvious issue
though is the substantial amount manual annotation needed to be effective, as Tweets are
highly diverse (in terms of topics as well as language) and contain many different types
of entities. Additionally, named entities occur rather infrequently in Tweets, requiring an
even larger amount of Tweets to be collected and analyzed.

3.5 Summary
While all of the closest related works examine the task of recommendation in social me-
dia, they all tackle slightly different subtasks or have differing premises or assumptions.
For example, the works of Yang et al. [52] and Silva et al. [53] experiment with datasets
where explicit ratings for items are readily available. However, for Twitter data or social
media networks in general, one cannot make the same assumptions. Thus, the methods
suggested by the authors might not be applicable in the domain of Twitter or within the
scope of the tasks that this thesis aims to explore. Armentano et al. [54] focus on generally
recommending a movie given public Tweets about the movie, which is somewhat close to
our objective. However, the main objective of our thesis is to examine the possibility of
using any arbitrary user’s entire Twitter profile to infer a set of movies that user would
(hopefully) like. Considering this, Gupta et al. [55] appears to have a more similar objec-
tive, although pertains to the use of Facebook instead of Twitter. While Facebook users
can explicitly list content (e.g. movies, music, people) they like, this information must
be either explicitly or implicitly found on a user’s Twitter timeline. That is, a user must
either have Tweeted about the entity that they like, or must in some way have an implicit
connection to the entity so that we can infer their likes. This connection could for instance
be a followee related to the entity (or being the entity itself), or someone in their social
circle themselves having Tweeted about the entity. Additionally, accessing the needed data
from the Facebook API requires explicit permission from the users involved, while user
timelines on Twitter are usually open to the public. For our thesis the work of Gupta et
al. [55] is thus very relevant, though we require more information to be inferred. Using
movie specific features from IMDb as they suggest is also something we will explore in
our approach. The works of Zhang and Lei [56] and Chen et al. [57] also have similar
objectives, with the exploration of social circles being especially relevant to our work.

Having reviewed the studies regarding the task of recommendation in social media,
we see that there is a variety of tasks and approaches explored - ranging from general to
specific domains. However, while some are close, none of the works directly address the
objective of our thesis: to attempt to recommend an entity or product to a user given their

30

3.5 Summary

Twitter profile. Furthermore, most of these are a couple of years old or older. It would
be interesting to see new studies utilizing general approaches and improvements devised
since then.

The other works mentioned showcase state-of-the-art approaches with regards to other
tasks relevant to our thesis, and may prove useful when combined for our experimentation
and proposed approach.

31

32

Chapter 4
The Two-Step Recommender
Approach

This chapter starts with section 4.1, detailing our overall theoretical approach. Section 4.2
describes the experiments and findings with regards to choosing an appropriate sentiment
analysis method. The final approach to creating and implementing the system and its
modules are detailed in sections 4.3, which also includes the acquisition and details of the
data to be used in our system for development and testing. Finally, the approaches and
experiments to be performed with the recommender system itself are defined in section
4.4.

4.1 Theoretical Approach
As introduced in section 1.3, the main objective of this thesis is to provide personalized
movie recommendations given on a user’s Twitter profile. This section describes a theo-
retical approach for producing recommendations.

4.1.1 Feature Extraction for User Profiles
By having access to a user’s timeline on Twitter, one gains insight to the topics and themes
that the user may find important or interesting. This information is valuable as it potentially
enables a recommender system to elicit user preferences based on the content available
from prior Tweets, which can enhance an existing user or act as the basis for a new user in
the recommender system - alleviating the common cold start problem in the latter case.

With Twitter, we can also exploit the social networking aspect. A user may share pref-
erences with their followers or followees, or vice versa, representing a possible network
effect. As with much of human preferences, this is highly complex and dependent on
domain and individual - although the bandwagon effect is very much a real phenomenon
in society. Additionally, these effects might be stronger if the users are mutually follow-

33

Chapter 4. The Two-Step Recommender Approach

Sentiment
Filtering

Ranked set
of movies

Recommender
Twitter
profile

Positive + Negative Tweets

Neutral Tweets

Figure 4.1: The overall general two-step recommender system approach

ing each other, i.e. they are friends. Zhang and Lei [56] showed that user satisfaction
of accuracy in recommendations were higher when considering the followees’ interests.
They also suggested using tie-strength (i.e. measuring the similarity between two users’
interests), as well as considering common connections’ tie-strength of interests.

As discussed earlier, eliciting features for a given user on Twitter might be difficult due
to the sparsity and short nature of Tweets. Adding features using data from a user’s social
circle could help remedy this. A novel system could attempt to detect users with more
expressed or explicit opinions. A followee with a profile consisting just Retweets would
have less effect on a user than a followee with many self-authored Tweets. Additionally,
even stronger weights could be given to followees with high levels of interaction with the
user, e.g. Retweeting or liking the user’s Tweets, or mentioning the user in their Tweets.

An approach for eliciting user features could be to use the user’s (as well as their top-k
influential followees in their social circle) Tweets pertaining to or related to any movies,
filtering for Tweets with sentiments classified as positive only, using these as basis for
creating top-k feature vectors of user preferences. Alternatively, one could also consider
using negative Tweets to map user dislikes as well. Multiple Tweets about a particular
topic or movie could also imply stronger sentiments, a form of implicit feedback that
could be worth looking at.

4.1.2 Feature Extraction for Movie Profiles
What features of a movie can constitute the movie profile to be used for recommendation?
Examples include plot summaries, synopses, keywords, cast members, or (aggregated)
user reviews - most of which are available on online databases and communities.

For the longer texts, such as the user reviews, one could use topic modeling or tf-idf
to elicit the important aspects related to the movie. Using sentiment analysis to cluster
the aspects is also a possibility. Effects of decay in the temporal dimension, as well as
popularity could also be interesting to examine. Reviews immediately after release may
be biased or generally positive due to expectations or hype. Often the most dedicated fans
will be early to watch and be vocal about their opinions. With time, a movie might show a
downward trend in ratings, although the converse could be true as well.

34

4.1 Theoretical Approach

4.1.3 Two-Step Recommender
With the theoretical approach to feature extraction in mind, we propose our two-step rec-
ommender approach illustrated in figure 4.1. By taking a Twitter profile and its associated
Tweets as input, we perform analysis and matching with regards to a prepared database of
products (in our case, movies), and produce a ranked set of results as output.

While other steps and components are involved in the pipeline, we will focus our
experiments on the two steps we hypothesize as the main points of interest for our research.

Step 1: Sentiment Filtering Due to the nature of Tweets having content of high variety,
it is desirable to keep only the Tweets expressing sentiments and discard those of neutral
nature as they do not express any aspects that the user either likes or dislikes. These
neutral Tweets would generally have content of mundane or irrelevant nature, for example
news reports or advertisements. The rationale behind this step is that by filtering out the
neutral information, while the remaining (positive and negative) is expected to be a better
representation of the user’s preferences.

Step 2: Recommendation With the information filtered for neutral aspects, the recom-
mender system can now match the user’s likes with movies containing such aspects, or at
least closely related ones. Conversely, the system can also perform matching of negative
aspects to assign a factor of dissimilarity. Ideally then, the movies closest to the user likes
while having the lowest dissimilarity score will be ranked higher. The actual calculation
of similarity is an implementation detail. What we have described here is essentially a
content-based recommender system. Listing 1 summarizes the overall approach to recom-
mending a set of movies in pseudocode.

We extend the similarity calculation phase of the recommender by including a Named
Entity Recognizer to extract named entities referenced by the user. Analogously to finding
user features, we then have to analyze these Tweets to elicit positive and negative aspects
related to these entities, as well as the overall expressed sentiment on the entity. Direct
matching to the referenced and related entities is then performed, e.g. a user having ex-
pressed positive sentiment towards an actor is likely to also be positive to a movie featuring
said actor.

The use of features extracted from the user’s social circle is also factored in. Rather
than using the entire social circle, the approach uses a subset of k followees, extracts
features from this set, and adds them to the user’s existing feature set for enrichment.

A variation of the recommender method is to use collaborative filtering. Matching is
then performed by calculating similarity between a user and all other users, with the re-
quirement that the other users must have expressed sentiments towards at least one movie.
This is known as user-based CF, with the intuition being that similar users will like simi-
lar movies. Another alternative we examine is item-based CF, given that the user fulfills
the same requirement as defined in the case of user-based CF. Rather than finding similar
users, we compare movies to find those similar to the one(s) they already like. Finally,
a hybrid approach implementing a combination of the aforementioned methods is also a
recommender technique we experiment with.

35

Chapter 4. The Two-Step Recommender Approach

1 # Create user profile

2 for user in users:

3 for tweet in user.tweets:

4 # Label Tweets by their sentiments

5 tweet.sentiment = sentiment(tweet.text)

6 # Create user profile by extracting likes and dislikes of user

7 if tweet.sentiment == ’positive’:

8 # user.likes is initially empty

9 user.likes += extract_features(user.tweet)

10 elif tweet.sentiment == ’negative’:

11 # user.dislikes is initially empty

12 user.dislikes += extract_features(user.tweet)

13 # Add features/aspects of social circle

14 if include_social_circle_interests:

15 # Find top-k most influential followees (based on e.g. interaction)

16 top_friends = find_top_friends(max_users=k, user.friends)

17 for friend in top_friends:

18 # Extract and add their likes/dislikes to the user’s set

19 # Possibly add some form of factoring in

20 # (so that friends’ features will not take precedence)

21 user.likes += extract_likes(friend.tweets)

22 user.dislikes += extract_dislikes(friend.tweets)

23

24 # Recommend movies using profiles created

25 for user in users:

26 # Initialize empty dictionary

27 scores = {}

28 for movie in movies:

29 # Calculate similarity between user and movie

30 # Method should factor in for dissimilarities

31 # i.e. decrease score if the movie contains any user dislikes

32 scores[movie] = similarity(user, movie)

33 # Return set of movies and their associated scores

34 # (should sort by descending score)

35 return scores

Listing 1: Pseudocode for a theoretical, content-based recommendation strategy

4.2 Sentiment Analysis
In order to filter Tweets for the first step of our approach, we must first be able to label
them by sentiment. Due to the magnitude of data we are working with, it is desirable to
perform this task automatically. Thus we choose to experiment with and compare different
machine learning classifiers as well as simpler lexicon and/or rule-based tools.

Preliminary work [70] showed that the use of VADER, "a lexicon and rule-based sen-

36

4.2 Sentiment Analysis

timent analysis tool that is specifically attuned to sentiments expressed in social media"
[71] proved satisfactory, though with certain limitations due to the nature of ambiguous
Twitter language. Hutto and Gilbert [71] evaluated their tool against other baseline ma-
chine learning models and found that their approach outperformed these in most domains,
especially when applied to a Twitter corpus. We will however perform our own evaluation
of the tool compared to some of these same baseline classifiers, as well as a selection of
neural network models.

4.2.1 Word Representations
As detailed in section 2.5, machine learning classifiers require a representation of raw text
to be able to perform tasks. In other words, we need to transform the texts into a machine-
readable format - a numerical vector. We implement a method that takes raw text as input,
tokenizes it before passing it on to the feature extractors and vectorizers, and finally returns
a numerical vector representation. Multiple variations are available here, with the specific
methods experimented with described in the following sections.

Tf-idf Vectorizer The baseline approach is to use tf-idf term weights, as mentioned
earlier. This approach has been shown to be fairly simple, yet effective in various domains,
though might not be as useful in the Twitter setting due to the large possible variety in
terms of vocabulary. A possible disadvantage of this method could be the poor scalability
with the growing set of documents and vocabulary, as the mapping from term indices
to term strings are stored in memory. We will utilize the Python machine learning library
scikit-learn [72] to transform (preprocess, tokenize) a collection of Tweets into a sparse,
tf-idf-weighted document-term matrix.

In terms of specific parameters, we will extract both unigrams and bigrams. The mini-
mum cut-off during vocabulary generation, min_df is set to 5, i.e. any terms not appearing
in at least 5 documents are ignored. Analogously, the maximum cut-off max_df is set to
80%, i.e. any terms appearing in more than 80% of the documents are ignored. The ratio-
nale behind these choices is to reduce the vocabulary and ignore terms of low importance
e.g. misspelled terms or common stop-word terms. Additionally, we apply normalization
using the L2 norm (also known as an Euclidian norm1) to account for documents being of
different lengths.

Hashing Vectorizer (HV) Using the feature hashing method described in section 2.5
alleviates the scability problem of the vectorizer method described earlier, though with the
downside of not being able to perform inverse transformations on the numerical features
to reveal the original strings. Again, we use scikit-learn to implement this method,
and extract both unigrams and bigrams here as well. This method does not apply tf-idf
transformation to the resulting document-term matrix, which opens for the possibility of
examining of whether such a transformation has a significant effect when applied to a set
of short documents such as Tweets.

1https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm

37

https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm

Chapter 4. The Two-Step Recommender Approach

Table 4.1: Summary of pre-trained word embedding models used in our experiments

Model Tokens Vocab Description
word2vec-
GN

∼100 billion 3 million Trained on Google News dataset

GloVe-6B ∼6 billion 400k Trained on Wikipedia 2014 + Giga-
word 5

GloVe-42B ∼42 billion 1.9 million Trained on Common Crawl Dataset
GloVe-840B ∼840 billion 2.2 million Trained on Common Crawl Dataset
GloVe-
Twitter

∼27 billion 1.2 million Trained on 2 billion Tweets

ConceptNet
Numberbatch

n/a 426k Ensemble model, combination of
data from ConceptNet, word2vec
and GloVe

Word Embeddings While the previous methods produce sparse matrices, it may be
desirable to use dense vector representations instead, especially in the case of scalability.
As discussed earlier, word embeddings have been shown to be able to capture relationships
and regularities in language and represent these aspects in the vector space. A consequence
of this is the property of better resilience against noise due to the ability of learning unique
words and the context in which they are used. While it is advantageous to train a custom
model on data within a specific domain, which in our case is Twitter, we would need
substantial amounts of data to train on. Fortunately, there are several pre-trained models
available for use, trained using either word2vec or GloVe on various sources of data.

Using these models, a term can then be transformed into a dense n-dimensional vector
representation by lookup on a trained model. The transformation of a document or Tweet
of variable length into a single, uniform-length feature vector has multiple approaches. A
simple solution would be to use the average of the term vectors, setting out-of-vocabulary
terms to a zero vector. Another would be to find the maximum and minimum term vectors
and concatenate them, which would result in a feature space twice as large. It is uncertain
if this approach leads to loss of information as we essentially discard all words except
two, though this is beyond the scope of this thesis. We opt to use the averaged vector to
represent a Tweet.

As for the pre-trained models, we will evaluate the performance of 6 different models,
summarized in table 4.1. The selection of models vary in terms of underlying model, the
amount of tokens/data constituting the training foundation, the resulting vocabulary, as
well as the source or domain of the training data. We see that the models from word2vec2,
and GloVe3 are trained on a significant amount of data, using various sources. ConceptNet
Numberbatch4 [73] takes an interesting approach to the word embedding models by using
an ensemble of models as well as linking to a semantic network (ConceptNet5). With
the authors reporting improved performance compared to some of the other models, the

2https://code.google.com/archive/p/word2vec/
3https://nlp.stanford.edu/projects/glove/
4https://github.com/commonsense/conceptnet-numberbatch
5http://conceptnet.io/

38

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://github.com/commonsense/conceptnet-numberbatch
http://conceptnet.io/

4.2 Sentiment Analysis

inclusion of the model in our experiments is warranted.

4.2.2 Classifiers
After passing data through the previous methods, the resulting word representations are
ready for the machine learning classifiers for training and evaluation. We will experiment
with multiple baseline classifiers, as well as comparing them to variations of neural net-
work classifiers. An overview of the different classifiers can be found in table 4.2.

Table 4.2: Overview of classifiers for sentiment analysis experiments

ID Classifier Description
1 VADER Lexicon and rule-based classifier
2 LinearSVC SVM with a linear kernel
3 GaussianNB Gaussian Naive Bayes, compatible with continuous values
4 LogRes Logistic regression
6 MLP Multi-layer perceptron neural network
7 CNN Convolutional neural network

8 CNN-LSTM
Neural networ consisting of a convolutional layer followed
by a long short-term memory layer

9 LSTM Long short-term memory (recurrent neural network)
10 LSTM-bi Bidirectional LSTM

The VADER classifier (ID 1) is used in a black-box manner, taking raw text as input
and returning a sentiment as output. Classifiers 2-4 are our baselines, being the tradition-
ally used machine learning classifiers. A specific choice of the Gaussian Naive Bayes
variant is to support the usage of continuous values from the word embeddings. scikit-
learn provides modules and classes implementing these, with adjustable parameters. For
our usage however, we will keep them at their default values. The inputs to these classifiers
are either averaged word embedding vectors, or output sparse matrices from the tf-idf or
hashing vectorizer.

Classifiers 6-10 are different variations of neural networks. Usage of the Keras [74]
library will help us implement these networks. All Tweets are first tokenized and vector-
ized with tf-idf applied, yielding a sequence of word indices where the word of rank i in
the dataset (starting at 1) has index i. In order to use the word embeddings with the neural
networks, we have to normalize the inputs by reshaping them into the fixed dimensions
the network expects. We choose to set the size of sequences to 100, roughly reflecting the
mean length of Tweets in our dataset. Sequences shorter than this are padded with zeros
at the end, while those longer are truncated.

All of the networks are trained over 2 epochs6 each, with the exception of the MLP
network which is trained for 100 epochs. These numbers are chosen to prevent overfitting
the training data to the models.

We will now describe the models, and unless elaborated upon, the common layers such
as the Dense, Dropout, or input and output layers have the same function regardless of net-
work. The input numbers beside each layer in the figures indicate the number of neurons

6An epoch is a single pass or iteration through all of the training examples.

39

Chapter 4. The Two-Step Recommender Approach

in that layer. Dense layers are fully connected (that is, every input neuron is connected
to every output neuron) layers of neurons, typically used to transform the dimension of
the vectors. The Dropout layers represent the regularization technique which randomly
disables neurons with a probability p in the hidden layers to prevent overfitting.

MLP The multilayer perceptron network is a simple network with 2 hidden, fully con-
nected layers (the Dense layers). Figure 4.2 illustrates the model. It takes in a series of
vectors of length 300, matching the dimension of our word embedding models. The final
output layer (as for all of the neural networks) has an output of length 3, representing the
number of classes for our classification task.

Figure 4.2: The multilayer perceptron network

CNN Illustrated in figure 4.3 is the convolutional neural network. Similarly to the MLP
network, the first layer takes in a sequence of length 100. Following this is an Embedding

layer, effectively embedding the sequences into the word embedding space of the pre-
trained models. The convolution operation is then performed, with a max pooling layer
to down-sample the data. Recall that the convolution essentially reduces the sequence
into smaller features by sampling the surrounding spatially correlated parts (in our case,
words). A series of fully connected Dense layers with Dropout regularization follows
before being outputted.

CNN-LSTM Similar to the CNN architecture with an LSTM layer appended, shown
in figure 4.4. The MaxPooling1D layer reduces the feature size from 96 to 24 (25% of
the original size). This pooling layer selects the largest values from each feature map
(convoluted feature), producing a subsample of the previous layer - effectively reducing the

40

4.2 Sentiment Analysis

Figure 4.3: The convolutional neural network

41

Chapter 4. The Two-Step Recommender Approach

dimensionality and outputting a fixed size output matrix. Using the LSTM layer generally
aids in encoding and representing the sequence information.

Figure 4.4: The convolutional neural network with a long short-term memory layer appended

LSTM (Recurrent Neural Network) The LSTM model is illustrated in figure 4.5. As
Keras is a high-level API, the specific implementation of the long short-term network is
not visible, though follows the architecture as defined by Hochreiter and Schmidhuber
[47].

LSTM-bi This model is similar to the LSTM model, however, it adds a bidirectional
wrapper. See figure 4.6. The wrapper essentially creates a second, LSTM in the other
direction which processes the input backwards and outputs the reversed sequence, and
merges the output of both layers by concatenation.

42

4.2 Sentiment Analysis

Figure 4.5: The long short-term memory network

Figure 4.6: The bidirectional long short-term network

4.2.3 Evaluation and Results
Evaluation For evaluation of the sentiment analysis classifiers we use the manually an-
notated dataset available from SemEval 2017, task 47 [65]. This set is comprised of manu-

7Available at http://alt.qcri.org/semeval2017/task4/data/uploads/download.zip

43

http://alt.qcri.org/semeval2017/task4/data/uploads/download.zip

Chapter 4. The Two-Step Recommender Approach

ally annotated data used in previous years, which after the removal of duplicate and deleted
Tweets amount to a total of 40027 Tweets. Of those, 6004 are labeled as ’negative’,
18201 are ’neutral’, and 15822 are ’positive’.

Datasets for SemEval 2018 are also available [75]. However, the related tasks here
pertain to regression or ordinal sentiment classification. To limit the scope of this thesis,
we choose to quantify the Tweets within the three aforementioned classes in the SemEval
2017 dataset: positive, negative, and neutral.

To prevent overfitting during the assessment of our classifiers, cross-validation will be
used. More specifically, we will be using stratified k-fold cross-validation. In essence,
the dataset is randomly partitioned into k (in our case, k = 10) equally sized subsets,
such that the proportion of class samples is representative of the entire dataset. During
validation, one of these subsets are used for testing the prediction accuracy of the classifier,
while the rest are used for training. The process is repeated for the remaining folds so
that every subset is used exactly once for testing. scikit-learn provides interfaces to
make this process convenient. Predicted test samples along with their real values from
each non-overlapping fold are concatenated and returned as a single set of predictions. A
classification metric such as the F1 score (the harmonic mean of precision and recall, see
equation 4.1) can then be computed for each label.

F1 = 2× precision× recall

precision+ recall
(4.1)

where

precision =
true positive

true positive + false positive
, recall =

true positive
true positive + false negative

As we perform the task of multi-class classification with an imbalanced set of samples,
the output F1-scores for each class are weight-averaged into a single score, taking the class
imbalance into account.

Results The results are summarized in table 4.3, showing the weight-averaged F1-scores
for combinations of classifiers and word representations. Highlighted are the best classi-
fiers for each type of word representation where applicable.

Due to long training times and comparable performance to the other classifiers, the
LSTM classifiers (9 and 10) were not tested with all of the pre-trained word embedding
models, but rather just the best performing ones based on tests with the other classifiers.
The neural network classifiers were also not tested with the tf-idf and hashing vectorizers
due to issues with compatibility.

From the results we see that the baseline approaches (SVM, NB, LogRes) all perform
best with the standard tf-idf and hashing vectorizer representations, though shows compa-
rable performance with certain word embeddings. However, the neural network classifiers,
with the exception of the MLP classifier, consistently outperform the baseline approaches
- which is a fairly expected outcome.

Three embedding models stand out, namely word2vec-GoogleNews, GloVe-840B, and
ConceptNet Numberbatch (CNNB). Though they are very close, the largest model pro-
duces the best results. However, CNNB performs surprisingly well considering the much

44

4.3 Final System Overview

Table 4.3: F1-scores for combinations of sentiment classifiers and word representations

Word Representation

Classifier None tf-idf HV w2v-
GN

GloVe-
6B

GloVe-
42B

GloVe-
840B

GloVe-
Twitter

CNet
Nbatch

VADER 0.56
SVM-linear 0.61 0.62 0.61 0.58 0.60 0.62 0.59 0.60
GaussianNB 0.56 0.56 0.49 0.48 0.48 0.51 0.49 0.46
LogRes 0.62 0.60 0.61 0.58 0.60 0.62 0.59 0.59
MLP 0.61 0.57 0.59 0.61 0.63 0.61
CNN 0.64 0.63 0.64 0.64 0.63 0.65
CNN-LSTM 0.64 0.62 0.64 0.64 0.64 0.65
LSTM 0.63 0.63 0.63 0.65
LSTM-bi 0.63 0.64 0.64 0.63

smaller vocabulary size, and consistently edges out the other models for the neural network
classifiers.

The other three models (GloVe-6B, GloVe-42B, GloVe-Twitter) perform slightly worse,
likely due to being trained on fewer samples. The only exception being the model trained
on Twitter having the overall best performance, presumably due to being trained on a
similar domain.

For comparison, the top scoring system for the equivalent task during SemEval 2016
achieved an F1 score of 0.633. However, it should be noted that the system was likely
evaluated using only the dataset for that year, while in our case we used all the datasets
from previous years.

Results from SemEval 2017 [65] show an improvement in scores, with the best per-
forming system achieving an F1 score of 0.685. The authors also noted the increased usage
of deep learning techniques (e.g. CNN and LSTM) by the participating teams compared
to previous years, as well as the use of external datasets as lexicons or word embeddings.
Nevertheless, our results exhibit state-of-the-art performance in terms of classifying Tweet
polarities.

4.3 Final System Overview
Figure 4.7 shows the overall view of the system and pipeline. The data is piped in from
either the Search or Stream API, depending on the data needed. Each Tweet is then run
through the steps of preprocessing, the output of which will be the basis for recommen-
dation. Most of the system is implemented in Python8. Each part will be detailed in the
following sections.

4.3.1 Datasets
Obtaining Movie Datasets from IMDb To create a movie profile, we need reliable data.
The Internet Movie Database (IMDb) is one of the largest online databases for information

8https://www.python.org/

45

https://www.python.org/

Chapter 4. The Two-Step Recommender Approach

Input

Twitter
Search API

Preprocessing

Data Removal

Filter

Raw Twitter data

User ID (user to fetch)
Retweets discarded

Text Processor Tokenizer Lemmatizer

Part-of-speech
tagger

Named Entity
Recognizer

Sentiment
Analyzer

Stopword Filter

Recommender System

Storage

User DB

Output

IMDb Interface Movie DBFilter

Movie ID (movie to fetch) Irrelevant data discarded
Store user reviews, keywords,
synopses,and summaries

Results

Ranked set of top-k movies

Similarity Measure

Recommender
Algorithm

Entity Matching

Sentiment Filtering

Feature Extraction

Profile Construction

Source Selection Social Circle

User Profile

Figure 4.7: The overall view of the system and its components

46

4.3 Final System Overview

related to movies and television. While they do not provide an open API for accessing their
data, a subset is made available to download from their website9. We use data related to
the top 250 English movies (as of February 2017), including cast, movie keywords, plot
summaries, synopses, and user reviews.

Obtaining and Labeling User Datasets from Twitter Ideally, we would gather a set of
genuine Twitter users for usability testing of the system as the output from recommender
systems can be measured on multiple subjective qualities, e.g. user satisfaction, serendip-
ity, or diversity. However, due to restrictions with regards to time, the selection of such a
set of users is an unattainable task. Therefore, we will evaluate our recommender system
automatically using a representative and annotated set gathered from Twitter with asso-
ciated preference labels assigned manually. This results in the aforementioned qualities
being difficult to evaluate, as we do not have access to user feedback with regards to the
output associated with that user. We elaborate on the evaluation scheme in section 4.5.

As mentioned in section 2.2.1, the Twitter APIs have certain limitations in terms of
extracting data. Generally, for our system, the Search API is used to fetch previously
published Tweets matching certain parameters, as well as specific user timelines with ac-
companying information i.e. users they follow and users they’re being followed by. The
Streaming API is set up to listen and store incoming Tweets as they are published, also fil-
tered by given parameters. The API is accessed using the Tweepy10 library, which provides
convenience methods for simplified access and error handling.

To be able to evaluate our system, we need annotated data. However, with the chal-
lenges and ambiguity of Tweets, the task of automatically and accurately detecting entities
or movies a user likes is difficult. Therefore, we manually annotate and create our own
set of users for our experiments. After choosing 35 random movies from the collection of
movies, we set to find 10 users for each movie having explicitly expressed positive senti-
ments towards the movie. That is, we manually searched for users using the Twitter Search
API for Tweets containing both the name of a movie, as well as the phrases favorite, or
love. These search criteria results in finding users whom definitely like the given movie
and have explicitly expressed so, i.e. we expect a user who has Tweeted e.g. "Inception
is my favorite movie of all time" to find this movie at the top of the results from a recom-
mender system. Two human annotators were involved in the selection of a representative
set of users using this methodology, which resulted in a set of 348 users, with all of the
users having at least one movie they like, and two of these users having two movies. The
users were selected using majority voting between the two annotators, discarding samples
receiving diverging or disagreeing votes. A total of 717 566 Tweets were extracted from
the profiles.

We also extract information related to each user’s social circle for our experiments.
Ideally, we would only use a smaller selection of followees with high importance, which
in most cases are close friends. This would however require us to download and analyze
the profiles of all the followees, which for some users can be up to thousands of users.
This is a task that scales poorly especially with our data access to Twitter being restricted.
Nevertheless, it could be argued that users only follow other users whom they have some

9Information courtesy of IMDb (http://www.imdb.com). Used with permission.
10http://www.tweepy.org/

47

http://www.imdb.com/interfaces
http://www.tweepy.org/

Chapter 4. The Two-Step Recommender Approach

form of interest in following and thus would likely have similar interests. Assuming this is
true, we therefore randomly choose 10 followees for each user to represent the user’s set of
friends for our experiments, and extract these users’ profiles the same way we extracted the
annotated set of users. The amount of users for this set totals to 3301 users, a ways from
the theoretical 3500 unique followees due to some users having overlapping followees.
Nevertheless, the set of Tweets associated with these followees amount to a total of 5 118
208 Tweets.

1 {

2 "text": "OMG DOCTOR STRANGE WAS SO GOOD",

3 "created_at": "Fri Nov 11 15:47:46 +0000 2016",

4 "user": {

5 "id_str": "2330335434",

6 "created_at": "Thu Feb 06 14:01:08 +0000 2014",

7 "time_zone": "Singapore",

8 "utc_offset": 28800,

9 "friends_count": 60,

10 "followers_count": 81

11 },

12 "favorite_count": 0,

13 "retweet_count": 0,

14 "in_reply_to_status_id_str": null,

15 "in_reply_to_user_id_str": null,

16 "geo": null,

17 "coordinates": null,

18 "entities": {

19 "hashtags": [],

20 "symbols": [],

21 "urls": [],

22 "user_mentions": []

23 }

24 }

Listing 2: Truncated sample Tweet returned from the Twitter API

Data Format The data returned from either Twitter API are formatted using JSON. A
truncated example Tweet can be seen in listing 2. There is a substantial amount of data
sent and associated with each Tweet, and the truncated example lists the most interesting
ones. Obviously we are most interested in the text property containing the actual Tweet
update. However, other properties such as created_at, geo, coordinates and in_reply_-

to_user_id_str can potentially provide interesting data for analysis and insight in terms
of temporal, spatial, or social dimensions.

48

4.3 Final System Overview

4.3.2 Preprocessing
After the raw Tweet is fetched from Twitter, categorized according to its associated user
and stored, it is ready for the preprocessing module. The collection of Tweets for each
user is loaded sequentially, and every single Tweet goes through processing. First it is
stripped of any unnecessary or irrelevant data, before being run through a natural language
processing pipeline before being stored in the database. This pipeline will be detailed in
the following subsections.

Text Processing The Tweet text itself is first stripped of any URLs and username men-
tions as these are assumed to not be important for analyzing the text. Problems with using
hashtags and converting them to regular text were elaborated on back in section 2.2.2. We
will however attempt to use hashtags by removing the hashtag character, and splitting the
compounded words if they exist using regular expressions, though this only works tags
where the combination of terms are delimited with capital letters.

The Python library Textacy11 is then used to clean and normalize the text. Multiple
spaces are replaced by a single one, and the text is also stripped of leading and trailing
whitespace. Failing Unicode is fixed, and English contractions are replaced by their un-
shortened forms. This text will be the basis for the subsequent processing steps, and will
be referred to as text_filtered.

The normalized text is then tokenized using the spaCy12, a high performance Python
library for Natural Language Processing. Its tokenization standards are based on the
OntoNotes 5 corpus13. Each token is lemmatized and converted to lowercase. Lemmatiza-
tion data is taken from WordNet14. Any token with a match in a specified set of stopwords
or symbols are discarded. The set of stopwords include the ones defined in the NLTK [76]
and scikit-learn [72] libraries, as well as our own set of defined stopwords for the movie
domain specifically. These include words such as movie, director, premiere, the-

atre, review, starring which bear no significant meaning or importance with regards
to features or statistics, at least for our purposes.

The output here is stored as text_preprocessed. For the purpose of feature extraction
later we also store a copy of the list of tokens where only tokens with the tag NOUN are kept,
stored as text_nouns.

As for the data related to movies, not much preprocessing is required. Only the user
reviews are sent through the text processing and sentiment analysis labeling steps similarly
to the Tweets as described previously, while the synopses and summaries are text processed
only.

Named Entity Extraction Extraction of the named entities from text_filtered is per-
formed using spaCy, implementing a custom algorithm for entity recognition, the details
of which are described by the author on GitHub15. Essentially it uses a greedy linear model
with weights learned using an implementation of the Averaged Perceptron algorithm as

11https://github.com/chartbeat-labs/textacy
12https://spacy.io/
13https://spacy.io/docs/api/annotation#tokenization
14https://spacy.io/docs/api/annotation#lemmatization
15https://github.com/explosion/spaCy/issues/491#issuecomment-245702851

49

https://github.com/chartbeat-labs/textacy
https://spacy.io/
https://spacy.io/docs/api/annotation#tokenization
https://spacy.io/docs/api/annotation#lemmatization
https://github.com/explosion/spaCy/issues/491#issuecomment-245702851

Chapter 4. The Two-Step Recommender Approach

originally described by Collins [77].
The model is trained on the OntoNotes 516 corpus consisting of data from a variety of

sources with accompanying annotations (word sense disambiguation, with some connected
to an ontology and coreference). There are approximately 1.3 million English words in the
corpus with sources from news, broadcasts, conversations, and the Web.

Jiang et al. [78] compares the named entity recognition models provided in spaCy
as well as other publicly available tools (e.g. Stanford’s CoreNLP17, NLTK), showing
that spaCy’s model was the 2nd best performing model when evaluated against a set of
Wikipedia articles in CoNLL format (IOB). Table 4.4 shows the results of their evalua-
tion.

Table 4.4: Comparison of named entity recognition tools, from Jiang et al. [78]

System Precision Recall F-measure
spaCy 0.724 0.6514 0.6858
CoreNLP 0.7914 0.7327 0.7609
NLTK 0.5136 0.6532 0.575
LingPipe 0.5412 0.5357 0.5384

We also discard recognized entities with tags pertaining to temporal or numerical types
as these have no value for our purposes, specifically the tags ’TIME’, ’CARDINAL’, ’DATE’,
’PERCENT’, ’MONEY’, ’QUANTITY’, and ’ORDINAL’.

Part-of-Speech Tagging spaCy is also used to assign part-of-speech tags on text_-

filtered, and are then stored as text_pos_tags. The tagger18 implemented in spaCy
uses a greedy Averaged Perceptron trained on the OntoNotes 5 corpus, similarly to the
Named Entity Recognizer described earlier. It is mapped to the Universal Dependencies19

tag set. The part-of-speech tags are useful for filtering out words matching certain tags.
While our system only uses the tags to filter for nouns with regards to feature extraction,
the possibility of using other tags for other purposes exist, e.g. finding commonly used
adjectives in the dataset as a means of describing public opinion or sentiment.

Sentiment Analysis Based on the results presented in 4.2, we choose to use one of the
neural network classifiers with the ConceptNet Numberbatch (CNNB) word embedding
model. As there were no significant differences between the classifiers in terms of accu-
racy, we select the fastest (in terms of training, prediction times are similar), namely the
convolutional neural network (CNN). The network is trained on the entirety of the Se-
mEval dataset used for testing, and is stored for fast predictions. Labeling and predictions
are performed on the text_filtered data, which does include stopwords. The reasoning
behind this is to keep any contextual clues that the neural network can use due to it being
trained on complete Tweets, which in turn leads to improved predictions.

16https://catalog.ldc.upenn.edu/LDC2013T19
17http://stanfordnlp.github.io/CoreNLP/
18https://spacy.io/docs/api/annotation#pos-tagging
19http://universaldependencies.org/u/pos/

50

https://catalog.ldc.upenn.edu/LDC2013T19
http://stanfordnlp.github.io/CoreNLP/
https://spacy.io/docs/api/annotation#pos-tagging
http://universaldependencies.org/u/pos/

4.4 Recommender System

4.4 Recommender System
This section details the experimental setup for the recommender step, following the labeled
data outputted from the sentiment analysis step in the preprocessing module. We describe
the various possibilities and selection of modules in which our experiments and results
will be based on.

4.4.1 Feature Extraction for Profile Construction
While we can use features such as genre or named entities in our construction of user
and movie profiles, the actual text content of the Tweets are of high interest as they have
potential to represent a user’s variety in preferences. To extract features (i.e. important
terms, keywords) from the collection of Tweets, we wish to compare the use of tf-idf and
topic modeling. Analogously, we do the same experiments for the extraction of movie
features from the collection of user reviews, synopses, and/or summaries. These features
can also be clustered into groups of positive and negative associations using the results
from the sentiment analysis step as mentioned earlier.

Tf-idf The tf-idf transformation is fairly straight forward, and is set up like the tf-idf vec-
torizer described in section 4.2. We use the entire collection of raw Tweet texts, tokenize
the texts, apply tf-idf transformation, and output a sorted list of (term, weight)-pairs. We
further restrict this set to only return the top 100 features.

Topic modeling Alternatively, after the tf-idf transformation, we can use topic modeling
to discover topics and commonly found terms used within said topics. scikit-learn is
used to implement the latent Dirichlet allocation20 model, which we use to detect up to
10 different topics with the top 100 (term, weight)-pairs for each topic. A set of the non-
overlapping terms is constructed, and again a list of the top 100 terms sorted by weight is
returned.

Social Circles To increase the feature space, we can extract and use the aforementioned
features from the user’s followees’ profiles. These features can be weighted based on e.g.
interaction or similarity between the user and the followee, though these weights are not
implemented for our system. The features extracted from the followees are added to the
user’s profile, with no specific weighting applied, i.e. features from both the user and the
followee have the same importance, and overlapping features have their scores averaged.

Part-of-Speech Tagging As an additional step to the previous methods, we can use part-
of-speech tagging to filter for candidate words to represent a user or movie. In our case we
wish to experiment with the use of only words tagged as NOUN (i.e. text_nouns, the list
of tokens we stored during the preprocessing step) to restrict the candidate set of features.
This does however rely on the quality of the POS-tagger mentioned earlier.

20https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

51

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

Chapter 4. The Two-Step Recommender Approach

4.4.2 Similarity Measures
To produce recommendations, we must define some form of method to compare the user
and movie profiles. For features like named entities extracted from a user’s Tweets, we can
do a comparison with the entities in the movie profile to check their existence. Matches
can be added to construct a similarity score if the named entities referenced are associated
with positive sentiments expressed by the user. Conversely, a negative factor can be added
for named entities with negative association. Similarly, matching can also be performed
between users, or between movies.

As for the comparison of text features extracted previously, we can exploit the use of
word embeddings to calculate similarity. A user or movie profile can then be represented
using a single vector, the creation of which can be done by averaging word vectors for the
set of terms. Cosine similarity can then be performed between any two vectors. Ideally
then, a user will like a movie where their vectors have high similarity. Equivalently, two
movies with similar content or features will have vectors whose similarity is high.

Equally to the sentiment analysis step, we can also compare the pre-trained word em-
beddings here. However, initial testing exhibited similar results to the ones found in section
4.2: while some models were consistently worse, the difference between the top perform-
ing models were miniscule.

Another potential measure of similarity is the word mover’s distance (WMD) intro-
duced by Kusner et al. [79]. This approach exploits word embeddings to measure simi-
larity between any two documents by comparing the amount of distance required to move
(in terms of Euclidean distance in the embedding space) from the terms in one document
to the ones in the other document, taking into account terms with similar semantics even
though the documents do not share any exact terms. The calculation of this distance is
then interpreted as an instance of the well-studied earth mover’s distance21 transportation
problem. For our system we use the gensim [80] library which provides a readily available
implementation of WMD.

4.4.3 Recommender Techniques
In terms of recommending movies to users, we have multiple approaches. While we briefly
described some of these previously in section 4.1, the approaches shall be reiterated and
further detailed next.

Content-based We compare the profiles of users and movies directly, and calculate sim-
ilarity between the two. The approach is the same as the one defined in listing 1.

User-based collaborative filtering Let the set of users Ul = {u | l(u) > 0}, where
l(u) is the amount of movies that a user u likes, and let U be the set of all users. For any
user u ∈ U , calculate similarity between u and all users ui where ui ∈ Ul, u 6= ui. Then,
add the movies liked by ui, as well as the similarity score between u and ui to produce a
ranked set of (movie, score)-pairs.

21https://en.wikipedia.org/wiki/Earth_mover%27s_distance

52

https://en.wikipedia.org/wiki/Earth_mover%27s_distance

4.5 Evaluation

Item-based collaborative filtering Again, we use the set of users Ul as defined earlier.
Let M be the set of movies. For any user ui ∈ Ul, there exists at least one movie mj ∈M
which ui likes. Then, for all mk ∈ M,mk 6= mj , calculate similarity scores between mj

and mk. The movies with their associated similarity scores are added to the set of ranked
results for the user ui.

Hybrid As a combination of the user- and item-based collaborative filtering techniques,
our hybrid approach first uses the results outputted from the user-based CF as foundation,
of which the set of movies in the results are defined as Mu. Building on top of this, we
apply the item-based collaborative filtering for each movie ml ∈Mu, where Mu is sorted
by score in descending order. This effectively expands the existing result set by adding
(movie, score)-pairs produced by the item-based CF. If the set already contains a movie,
the existing and new scores are weight-averaged, with the existing score having a weight
of 0.9 and the other score with 0.1. The reasoning here is that the first round of expansions
are added from the item-based CF using the most similar user. As the similarity of users
decrease with each round of expansion, the importance of their movies scores are also
reduced accordingly.

4.5 Evaluation
The assessment of a recommender system is a difficult task. Results from the system are
curated for each user, and thus the quality of results are subjective to the user in terms
of multiple factors. Ideally, they should capture and reflect the wide range of a user’s
preferences, while still providing serendipitous suggestions. Evaluation of such qualitative
factors requires us to have a set of real users to test the system on and inquire in terms of
user satisfaction. Unfortunately, we do not have a means of receiving feedback from our
set of users for evaluation.

However, to quantify the performance of our system, we can use the "liked movie"
label assigned to each user. Theoretically, given that the system returns a ranked top-k set
of movies for a user, the user’s liked movie(s) should be among the top results. A form
of recall can then be measured, i.e. the amount of relevant items (which in our case is
either one or two) which are selected and returned in the set. Precision on the other hand
cannot be measured reliably, as we do not know how many items of the returned set are
truly relevant to the user. The selection of k is thus critical for the evaluation: too large
and we end up with too many results, too small and the label is less likely to appear.

We select k to be 20, which we believe is a fair number of results to return. The metric
for performance assessment is defined to be the existence of the label within the ranked
set of movies for each user, i.e. 1 if true and 0 if false, divided by the number of users
in our dataset. In other words, for each user, if the liked movie label for the user exists
in the predicted recommender set for that user, the "accuracy" or hit ratio would by our
definition be 1.0 (i.e. 100%). While this is not an ideal measure to evaluate our system,
it does provide some indication of how well the system performs, at least in terms of
recognizing a movie that we know a user likes. Equation 4.2 summarizes the evaluation
metric used.

53

Chapter 4. The Two-Step Recommender Approach

∑N
u∈N f(u)

|N |
(4.2)

where N is the set of users, and

f(u) =

{
1 if the user labels for u are found in the set of top-20 returned results
0 otherwise

4.6 Summary of Experimental Setup
We now summarize the different variables laying the foundations for our experimental
setup.

Sentiment Filtering There are four possible choices for the sentiment filtering: no fil-
tering, filtering for likes only, dislikes only, or both likes and dislikes.

User Profile The basis for feature extraction can be either text_filtered, text_pre-
processed, or the part-of-speech tag filtered text_nouns.

Movie Profile This is equivalent to User Profile when the user reviews are the source
for feature extraction. However, in cases where the sources are either keywords, synopses
or summaries, the sentiment labeling is disabled, due to these sources being objective
descriptions of the movie. Combinations of sources are also possible options.

Feature Extraction Feature extraction can be applied after the sources for the profiles
are selected. Choices here are the tf-idf or the topic modeling approaches.

Social Circles For the user profiles, we can include their followees’ features, with the
sentiment filtering options applicable here as well. That is, we can choose to only include
the followees’ likes and/or dislikes, or all the features with no filtering.

Similarity Measures After extracting the features, we can use word mover’s distance or
alternatively cosine similarity to calculate similarities between any two sets of features. In
the latter case, the set of features must be converted to an averaged term vector. Addition-
ally, we use named entity recognition to extract positively as well as negatively associated
entities for the users. We match these entities with the movie cast, and accordingly assign
a positive or negative factor to the similarity score. Moreover, we also experiment with the
top three pre-trained word embedding models found during the sentiment analysis experi-
ments, i.e. the ConceptNet Numberbatch, GloVe-840B, and GloVe-Twitter models.

Recommender Techniques The four different recommender algorithms (content-based,
item-based CF, user-based CF, hybrid) are tested and evaluated with the various combi-
nations of the variables described earlier. Additionally, for each combination of recom-
mender and variables, we also measure the impact of the sentiment filtering options.

54

Chapter 5
Results and Discussion

In this chapter the different results outputted from the system are showcased and discussed.
In particular, we will be examining the output after the preprocessing in section 5.1. Fol-
lowing this is section 5.2, where we evaluate the results of our experiments with the rec-
ommender system. Finally, in section 5.3, we summarize and discuss the significance of
our results.

5.1 Preprocessing

5.1.1 Output
A truncated example of the results after the preprocessing can be seen in listing 3, the
results of which are discussed in the following subsections.

5.1.2 Text Processing
Looking at text_preprocessed compared to the original text, we see that all the steps
in the text processing pipeline have been applied. The text is now a list of lowercased,
lemmatized tokens (e.g. from don’t to do not, and the hashtags have been removed as
well as the punctuation. Stopwords have also been removed (e.g. with, is, a, top,

all, time, not, me). These steps are all important for the feature extraction, as we want
to discover and cluster important terms together, even though they have minor variances,
e.g. Gladiator, GLADIATOR!, gladiator, gladiator!

text_nouns has Gladiator as the only entry, as movie and time are filtered stopwords.
While this describes the Tweet’s overall topic well, a fair amount of contextual information
is lost during the filtering. text_preprocessed is similar, though with the inclusion of
Russel and Crowe. The overall impact of the loss of information is uncertain, and will be
subject to experimentation in our recommender system later, though one could hypothesize
that having these keywords as well as the associated sentiment label would be sufficient
and that additional information (at least in this case) would increase noise.

55

Chapter 5. Results and Discussion

1 {

2 "id": "828852778885750784",

3 "named_entities": [{"label": "PERSON", "text": "Russel Crowe"}],

4 "sentiment_label": "positive",

5 "text": "Gladiator with Russel Crowe is a top 5 all time movie don’t @ me",

6 "text_filtered": "Gladiator with Russel Crowe is a top 5 all time movie do not me",

7 "text_preprocessed": [

8 "gladiator",

9 "russel",

10 "crowe"

11],

12 "text_nouns": [

13 "gladiator"

14],

15 "text_pos_tags": [

16 [

17 ["Gladiator", "NOUN"], ["with", "ADP"], ["Russel", "PROPN"], ["Crowe", "PROPN"],

["is","VERB"], ["a", "DET"], ["top", "ADJ"], ["5", "NUM"], ["all", "DET"], ["time",

"NOUN"], ["movie", "NOUN"], ["do", "VERB"], ["not", "ADV"], ["me", "PRON"]

↪→

↪→

18]

19]

20 }

Listing 3: Truncated example Tweet after preprocessing

56

5.1 Preprocessing

5.1.3 Part-of-Speech Tagging
The part-of-speech tagger does a fair job in classifying all the tokens, although it labels
Gladiator as a noun when in this context it refers to the proper noun referencing the movie
starring Russell Crowe. Such contextual and domain specific information is difficult for a
pre-trained model to recognize and utilize. Similar edge cases appear when working with
text of informal nature, especially in social media such as Twitter. A possible improvement
would be to train up a model on a social media corpus so that such cases are detected,
although it would require either a significant amount of annotated data or advances in
technology in order to automatically detect and understand such implied or incomplete
sentences.

5.1.4 Named Entity Extraction
As seen in the named_entities field, the system correctly recognizes Russell Crowe as
an entity as well as providing the correct associated labeling. Though as mentioned previ-
ously, it fails to recognize Gladiator as an entity due to the ambiguity of the word in this
case, in which it may be interpreted as either a gladiator from ancient Rome or as the name
of the popular movie. While it is trivial for humans to deduce the correct interpretation
using the contextual information, machines generally have more difficulties with this. In
other instances, typically when the word does not appear at the start of a sentence and is
properly capitalized, the method correctly recognizes and labels it as a proper noun. This
shows that the recognition and accuracy of the Named Entity Recognition method highly
depends on the input Tweets. Analogous to the part-of-speech tagger, improvements could
be made with more training.

5.1.5 Sentiment Analysis
In the case of sentiment analysis, we see in the sentiment_label field that the neural net-
work has assigned the Tweet a positive label, which for this case is correct. The original
text ends with "don’t @ me", which is a somewhat common Twitter phrase used when
the original author has made an adamant statement, disregarding opinions or mentions
from other users with regards to said statement. This demonstrates the power of using a
trained classifier for sentiment analysis. While a rule-based sentiment classifier may have
assigned the entire Tweet a negative factor due to phrase containing a negative adverb (i.e.
not), the trained classifier has learned that such phrases usually do not correlate with the
associated sentiment of the phrase it follows.

As with the Named Entity Recognition method, there are cases where the sentiment
analysis method has provided erroneous sentiment ratings. Two examples of this are
shown in listing 4. In the first Tweet we see the system having classified the Tweet as
neutral, though closer inspection of the text reveals that the Tweet itself actually expresses
a negative sentiment as it compares the movie to Green Lantern, a movie that received
generally unfavorable reviews1. Additionally, the author of the Tweet uses the phrase
save your cash, a somewhat ambiguous phrase implying that the movie was not worth the

1https://en.wikipedia.org/wiki/Green_Lantern_(film)#Reception_2

57

https://en.wikipedia.org/wiki/Green_Lantern_(film)#Reception_2

Chapter 5. Results and Discussion

money spent on the admission ticket. It is worth noting that this example is a fairly difficult
sentence to analyze with very domain specific references and ambiguous language.

1 [

2 {

3 "sentiment_label": "neutral",

4 "text": "Just saw #DoctorStrange save your cash! Except for 3D & effects,

DoctorStrange is the Green Lantern of Marvel movies! Review coming soon!"↪→

5 },

6 {

7 "sentiment_label": "positive",

8 "text": "Much to do today and I’m so glad because it will keep my mind off of the

inauguration of the worst. #boycotttheinauguration"↪→

9 }

10]

Listing 4: Examples of Tweets with erroneous sentiment ratings

The second Tweet showcases another case of ambiguity. While the first part of the
sentence ("Much to do today and I’m so glad") can be interpreted as positive, the second
part ("because it will keep my mind off of the inauguration of the worst") involves the
main topic of the Tweet, as well as implicitly expressing negative sentiments towards the
subject to be inaugurated by referring to him as "the worst". The neural network sentiment
classifier however believes the Tweet expresses an overall positive sentiment. A human
annotator would likely classify it as negative.

Unfortunately, such edge cases are difficult to identify and classify, and the only rem-
edy is to adapt and create new rules or provide annotations on similar cases for training.
Nevertheless, our classifier performs adequately in most cases. The actual impact of this
sentiment labeling in terms of filtering for our recommender system will be explored in
the following section.

5.2 Recommender System

5.2.1 Results
In section 4.4 we defined the different variables to experiment with in our recommender
system. As it would take an inordinate amount of time to test every single combination
of those variables, we rather start with a base set of selections and gradually changed
variables while attempting to maximize the accuracy. The tested combinations are shown
in table 5.1.

For each of these combinations, we calculate the impact of sentiment filtering. We
either include all the Tweets or reviews for the user and movie profiles respectively, and
filter by either positive label, negative label, or a combination of both. Analogously, the
filtering also affects entity matching by matching all entities, positively associated enti-
ties, negatively associated entities, or both positive and negative. We elaborate upon and

58

5.2 Recommender System

Table 5.1: Variable combinations for the recommender system experiments

Variables

ID User
Profile

Movie
Profile

Feature
Extraction

Social
Circles

Similarity
Measures

Recommender
Technique

1 text_preprocessed reviews tfidf no
cosine +
no entities +
CNNB

content-based

2 " summaries " " " "
3 " keywords " " " "

4 "
summaries +
synopses " " " "

5 "
summaries +
synopses +
keywords

" " " "

6 "
summaries +
synopses " "

word mover’s +
no entities +
CNNB

"

7 " " " yes
cosine +
no entities +
CNNB

"

8 text_nouns " " " " "
9 text_filtered " " " " "

10 text_preprocessed " " "
cosine +
no entities +
GloVe-840B

"

11 " " " "
cosine +
no entities +
GloVe-Twitter

"

12 " " topic modeling " " "

13 " " tfidf "
cosine +
entity matching +
CNNB

"

14 " " " " " user-based CF
15 " " " " " item-based CF
16 " " " " " hybrid

59

Chapter 5. Results and Discussion

discuss the results in the following subsections, which showcase the accuracy scores for
each combination listed in table 5.1. Calculation of these accuracy scores was described
back in section 4.5. The results presented are the averaged accuracy scores of 10 runs for
each combination. The process of defining an evaluation metric for assessing the recom-
mender system performance was outlined in section 4.5. We will now recall and apply the
definition of accuracy as defined in equation 4.2.

5.2.2 Movie Profile
Initially, our experiments begin with the base combination, i.e. the combination with ID 1.
The sources for movie profile generation in this combination are the user reviews extracted
earlier. For combinations 2-6 we then vary the sources used, and measure their impact on
our accuracy scores. Figure 5.1 shows and compares the scores for each of the different
sources and combinations thereof. Testing with synopses only was not possible due to
some movies missing this entry. The combination of summaries and synopses (ID 4)
yields the best scores. Using only keywords result in fairly poor accuracy scores, likely
due to the loss or lack of information compared to the other sources. Interestingly enough,
the addition of keywords to the combination of summaries and synopses (ID 5) results in
reduced performance, which indicates that the keywords may be inaccurate or less suitable
as features.

As for the user reviews (ID 1), these perform better than the summaries alone, yet
proves to be inadequate when compared to ID 4. It is worth noting that in the case of
positive sentiment filtering, the user reviews do perform better. This is likely due to the
generally positive sentiments associated with these reviews as the movies they concern are
among the top rated of all time. We can also observe how the sentiment filtering have no
positive impact for the other sources, due to these generally being objective descriptions
of a given movie while user reviews are subjective most of the times.

Nevertheless, we choose the combination of summaries and synopses as the best source
for our movie profiles for the rest of the experiments.

5.2.3 Similarity Measures
Building further on the best combination found previously (ID 4), we now compare the
use of cosine similarity and word mover’s similarity (WMS, ID 6), the results of which
are shown in figure 5.2. Word mover’s similarity generally edges out the cosine similarity
measure, however the difference is insubstantial when considering that processing times
are increased by a factor of hundreds. Processing takes mere minutes when using cosine
similarity, while taking hours when using the WMS. This may be due to library used for
word mover’s distance calculation being inefficient, however the slight improvement in
accuracy is not worth the increase in time complexity.

An interesting observation is the sentiment filtering having a larger effect on the WMS
measure compared to the cosine measure, especially for the positive terms. This could
indicate that the pre-trained word embedding model used for vector creation and conse-
quently cosine similarity is less fit for capturing positive terms, but rather performs better
on fairly neutral sources of text.

60

5.2 Recommender System

ID1: Reviews
ID2:

Summaries
ID3:

Keywords

ID4:
Summaries +

Synopses

ID5:
Summaries +
Synopses +
Keywords

No Filtering 10,9 % 5,7 % 4,3 % 14,6 % 11,5 %

Positive Matching 11,8 % 6,6 % 4,9 % 10,6 % 8,9 %

Negative Matching 10,9 % 7,2 % 5,2 % 14,6 % 14,3 %

Positive + Negative Matching 9,7 % 6,3 % 4,3 % 12,3 % 10,3 %

0,0 %

2,0 %

4,0 %

6,0 %

8,0 %

10,0 %

12,0 %

14,0 %

16,0 %
A
cc
u
ra
cy

No Filtering Positive Matching Negative Matching Positive + Negative Matching

Figure 5.1: Comparison of results for variations of sources for movie profiles

Due to the comparable performance and issues with time complexity, we continue with
ID 4 as our preferred combination.

5.2.4 Social Circles
Figure 5.3 illustrates the difference in results when adding features from a user’s social
circle to said user’s profile. We see an increase in accuracy scores across the board when
including the social circle. While we hypothesized this outcome earlier, it is still an in-
teresting result as the user’s social circle in our case is defined to be any 10 randomly
selected followees. If the social circle was found using a more novel approach, we would
likely observe even better results. A possible approach could be to measure the strength
of connection between the user and each followee, e.g. the amount of interaction (likes,
retweets, -mentions), and find the most influential or close followees for that user.

In our case however, the random selection of followees to constitute a user’s social
circle appears to be effective enough, and the addition of features from said social circle
has been shown to be an improvement at the very least. Thus, the addition of social circles
in our combination serves as the preferred one for the coming experiments.

5.2.5 User Profile
As for the user profiles, our initial baseline combination uses the preprocessed text as the
source. The other two possibilities is to either use the filtered text (ID 8), which only
removes URLs, hashtags and other symbols - closely resembling the original texts in the

61

Chapter 5. Results and Discussion

ID4: Cosine Similarity
ID6: Word Mover's

Similarity

No Filtering 14,6 % 12,4 %

Positive Matching 10,6 % 14,6 %

Negative Matching 14,6 % 14,3 %

Positive + Negative Matching 12,3 % 13,8 %

0,0 %

2,0 %

4,0 %

6,0 %

8,0 %

10,0 %

12,0 %

14,0 %

16,0 %
A

cc
u

ra
cy

No Filtering Positive Matching Negative Matching Positive + Negative Matching

Figure 5.2: Comparison of results for variations of similarity measures

ID4: No Social Circles
ID7: Include Social

Circles

No Filtering 14,6 % 16,9 %

Positive Matching 10,6 % 12,3 %

Negative Matching 14,6 % 15,8 %

Positive + Negative Matching 12,3 % 15,2 %

0,0 %
2,0 %
4,0 %
6,0 %
8,0 %

10,0 %
12,0 %
14,0 %
16,0 %
18,0 %

A
cc

u
ra

cy

No Filtering Positive Matching

Negative Matching Positive + Negative Matching

Figure 5.3: Comparison of results when including features from the social circle

62

5.2 Recommender System

ID7:
Text_Preprocessed

ID8: Text_Filtered ID9: Text_Nouns

No Filtering 16,9 % 10,9 % 4,6 %

Positive Matching 12,3 % 9,7 % 6,6 %

Negative Matching 15,8 % 8,9 % 8,6 %

Positive + Negative Matching 15,2 % 10,0 % 4,3 %

0,0 %

2,0 %

4,0 %

6,0 %

8,0 %

10,0 %

12,0 %

14,0 %

16,0 %

18,0 %
A

cc
u

ra
cy

No Filtering Positive Matching Negative Matching Positive + Negative Matching

Figure 5.4: Comparison of results for variations of sources for user profiles

Tweets, or to use the part-of-speech filtered text (ID 9) which only includes nouns used in
the Tweets. The effects of these various sources used are shown in figure 5.4.

Using only nouns result in the poorest scores, which is expected due to the loss of
information. It could be hypothesized that the nouns are more descriptive or indicative
of the themes or topics concerning a collection of documents than other classes of words.
Ideally then, with the removal of non-nouns we ultimately reduce the amount of noise and
stopwords which generally bear no meaning. Our experiments however reveal that this is
not the case, and that other classes of words bear importance as well.

We also observe the reduced accuracy when using the near-original text when com-
pared to the stopword-filtered sources, which exhibits the significance of stopword filtering
effectively removing noise without sacrificing information.

5.2.6 Word Embeddings
Figure 5.5 compare the different pre-trained word embedding models used for converting
the set of extracted features into a single averaged term vector. Similarly to the results
found during testing of the neural network sentiment classifiers in section 4.2.3, we see the
ConceptNet Cumberbatch model outperforming the other two overall, with GloVe-840B
edging out the Twitter-trained GloVe model. The latter observation is not surprising, given
that GloVe-840B is trained on a significantly larger amount of samples and consequently
has a larger vocabulary.

CNNB being an ensemble model proves to be more effective at capturing semantic
similarities. An interesting observation however is the significantly reduced performance
when filtering for positive sentiments, at least relative to the other types of filtering. It

63

Chapter 5. Results and Discussion

would seem that the model is less effective at embedding positive terms, being surpassed
by the other two models. The Twitter-trained GloVe model also performs considerably
better in the case of positive filtering, relative to the other types of filtering. This is pre-
sumably because the positive terms used in the Tweets are unique to social media, which
the model has been trained on.

We continue using CNNB for the remaining tests as it is the overall best performing
model. While it performs relatively worse with positive sentiment filtering, the general
trend so far has shown the sentiment filtering to rather reduce accuracy than increase it.

ID7: CNNB
ID10: GloVe-

840B
ID11: GloVe-

Twitter

No Filtering 16,9 % 14,6 % 11,5 %

Positive Matching 12,3 % 13,5 % 12,9 %

Negative Matching 15,8 % 13,8 % 9,5 %

Positive + Negative Matching 15,2 % 12,9 % 10,3 %

0,0 %

2,0 %

4,0 %

6,0 %

8,0 %

10,0 %

12,0 %

14,0 %

16,0 %

18,0 %

A
cc

u
ra

cy

No Filtering Positive Matching Negative Matching Positive + Negative Matching

Figure 5.5: Comparison of results for variations of pre-trained word embedding models

5.2.7 Feature Extraction
So far, the features for the user and movie profiles in our experiments have been extracted
using tf-idf. The alternative is to use topic modeling and extract important features from
there. As seen in figure 5.6 however, using the topic model results in substantially worse
accuracy. The lack of proper selection and tuning of hyperparameters for optimal modeling
is likely the culprit, leading to less than optimal features found and possibly ignoring many
important terms that the tf-idf method captured. Another possibility is the short length of
Tweets impacting the effectiveness of the statistical modeling. Ideally, we would observe
an improvement in accuracy using topic modeling, though this requires more time devoted
to fine-tuning the model. As this would extend outside the scope of this thesis, the use of
tf-idf for feature extraction is the better choice in our case.

64

5.2 Recommender System

ID7: tf-idf ID12: Topic Modeling

No Filtering 16,9 % 6,9 %

Positive Matching 12,3 % 6,9 %

Negative Matching 15,8 % 7,5 %

Positive + Negative Matching 15,2 % 6,0 %

0,0 %

2,0 %

4,0 %

6,0 %

8,0 %

10,0 %

12,0 %

14,0 %

16,0 %

18,0 %
A

cc
u

ra
cy

No Filtering Positive Matching Negative Matching Positive + Negative Matching

Figure 5.6: Comparison of results for variations of feature extraction methods

5.2.8 Entity Matching
Earlier, we proposed the matching of named entities to produce a scoring factor, depending
on the amount of positively or negatively named entity matches between a given user and a
candidate movie. Ideally, positive matches would lead to a positive factor, and conversely
negative matches add a negative factor to the similarity score. Figure 5.7 shows that the
impact of the matching is minimal. There are multiple possible causes for this. One being
the matching factor being too small to make any significant jump, although this is offset by
the rationale of the factor being increased for each positive match - a small factor would
mean that there were simply too few matches or a proportionate amount of positive and
negative matches. It is also very likely that the users in our dataset generally did not Tweet
about the named entities associated with the movies, as well as the named entity recognizer
method failing to recognize named entities in the set of Tweets.

As the entity matching does not negatively impact the accuracy, and ideally would
show an improvement for users displaying more explicit opinions with regards to named
entities, we choose to include the entity matching.

5.2.9 Recommender Techniques
Having selected the variables that maximize the accuracy in the earlier steps, we now
compare the recommender techniques in figure 5.8.

Content-based The baseline content-based approach leads to a maximum accuracy of
around 17%, a rather unremarkable result. User preference elicitation is difficult when

65

Chapter 5. Results and Discussion

ID7: No Entity Matching ID13: Entity Matching

No Filtering 16,9 % 17,2 %

Positive Matching 12,3 % 12,3 %

Negative Matching 15,8 % 15,8 %

Positive + Negative Matching 15,2 % 14,9 %

0,0 %

2,0 %

4,0 %

6,0 %

8,0 %

10,0 %

12,0 %

14,0 %

16,0 %

18,0 %

20,0 %
A

cc
u

ra
cy

No Filtering Positive Matching Negative Matching Positive + Negative Matching

Figure 5.7: Comparison of results when including named entity matching

ID13: content-
based

ID14: user-
based CF

ID15: item-
based CF

ID16: hybrid

No Filtering 17,2 % 65,0 % 0,0 % 26,4 %

Positive Matching 12,3 % 64,5 % 0,0 % 21,2 %

Negative Matching 15,8 % 59,0 % 0,0 % 19,5 %

Positive + Negative Matching 14,9 % 63,3 % 0,0 % 24,9 %

0,0 %

10,0 %

20,0 %

30,0 %

40,0 %

50,0 %

60,0 %

70,0 %

A
cc

u
ra

cy

No Filtering Positive Matching Negative Matching Positive + Negative Matching

Figure 5.8: Comparison of results for variations of recommender techniques

66

5.2 Recommender System

the data available is restricted, i.e. in the sense of both size (Twitter’s retrieval restriction
of 3200 recent Tweets) as well as the content of those Tweets themselves. Unless a user
is genuinely interested in movies, the proportion of movie-related Tweets is minuscule -
likely in the range of 1-20 Tweets for a sample size of 3200 Tweets. Additionally, such
Tweets are generally non-specific in terms of movie aspects. A typical Twitter user will
want to express their sentiments towards a movie, but will often not elaborate further.
Attempting to elicit user preferences with regards to movies is thus a difficult task.

Using other aspects extracted for similarity comparisons works to some extent, though
the results ultimately show that the amount of movie-related Tweets are too scarce for the
content-based recommender to be effective in our case. Filtering for said Tweets is cer-
tainly a possibility, however would just lead to more similar movies being recommended
rather than returning results providing the user with a serendipitous experience.

User-based collaborative filtering Using collaborative filtering between users result in
quite the jump in accuracy, reaching 65% at the highest. While attempting to compare fea-
tures between users and movies proved quite ineffective, comparing users to users on the
other hand appears to be a superior approach. This is likely due to our features capturing
a user’s personality and preference, the comparison of which is more compatible than in
the case of the movie profiles. A caveat with this approach is the requirement of labeling
or otherwise detecting a user’s liked movies.

Item-based collaborative filtering This is an interesting technique, as the results dis-
played show a 0% accuracy overall. In this approach we compare movie profiles to find
the most similar ones, in which we compare a user’s liked movie(s) to all the movies, and
return the most similar ones. Any given movie will be most similar to itself, so it would
always be at the top of the returned results. However, this is an undesirable behaviour,
and thus we rather exclude the liked movie(s) from the comparison set of movies with the
consequence of our evaluation metric being reduced to 0.

Listing 5 shows a sample output for a random user whose liked movie is Star Wars:
Episode V - The Empire Strikes Back. The top 3 results are other movies in the Star Wars
series, closely followed by other similar movies in terms of genre as well as style style,
e.g. The Lord of the Rings which is also an epic fantasy series. The other movies found are
also in related genres, e.g. war, adventure, sci-fi. This demonstrates the effectiveness of
using word embedding vectors, and shows how such embeddings can recognize and cluster
related genres on the basis of just the movies’ plot summaries and synopses. By averaging
a movies features into a single vector, this resulting vector effectively maps the movie into
the embedding space - empowering simple comparison measures such as cosine similarity.

Hybrid While the item-based CF method excels at finding similar movies, this might
not be ideal in terms of producing serendipitous or diverse recommendations. Our hybrid
approach combines the user-based and item-based collaborative filtering methods to ad-
dress all of the aforementioned concerns. We observe that this leads to an overall reduced
accuracy compared to using only user-based CF, however this is due to caveat of exclusion
with the item-based method. Properly balancing the weighting of scores between the two
methods into a single score is also a likely issue. The approach still performs better than

67

Chapter 5. Results and Discussion

1 ID Title Score

2 --

3 tt0086190 Star Wars: Episode VI - Return of the Jedi 0.9962

4 tt0076759 Star Wars 0.9366

5 tt2488496 Star Wars: Episode VII - The Force Awakens 0.8940

6 tt0167261 The Lord of the Rings: The Two Towers 0.8024

7 tt1392190 Mad Max: Fury Road 0.7975

8 tt0167260 The Lord of the Rings: The Return of the King 0.7921

9 tt0090605 Aliens 0.7878

10 tt2015381 Guardians of the Galaxy 0.7864

11 tt0848228 The Avengers 0.7624

12 tt0325980 Pirates of the Caribbean: The Curse of the Black Pearl 0.7591

13 tt0078788 Apocalypse Now 0.7508

14 tt1201607 Harry Potter and the Deathly Hallows: Part 2 0.7431

15 tt0032553 The Great Dictator 0.7400

16 tt0120737 The Lord of the Rings: The Fellowship of the Ring 0.7395

17 tt0172495 Gladiator 0.7366

18 tt0097576 Indiana Jones and the Last Crusade 0.7360

19 tt0082971 Raiders of the Lost Ark 0.7318

20 tt0056172 Lawrence of Arabia 0.7311

21 tt0468569 The Dark Knight 0.7280

Listing 5: Sample recommender output for item-based collaborative filtering method

68

5.3 Significance of Results

the pure content-based recommender however, though evaluating the degree of diversity
or serendipity for the produced recommendations is impossible without access to feedback
from the test users.

5.3 Significance of Results
Having seen the results of our experiments and discussed them briefly, we now further
elaborate on their significance and summarize. Although the content-based recommender
was rather ineffective in our case, we observed potential in the user-based collaborative
filtering approach, though with the requirement of user profile labeling.

5.3.1 Sentiment Filtering
While we hypothesized that sentiment filtering would have a positive impact on our results,
the general trend throughout the experiments showed that accuracy was actually lowered
when applying filtering. The choice of word embedding model had an impact as shown
earlier, as well as the sentiment analysis module being imperfect. Nonetheless, the filter-
ing of Tweet sentiments generally resulted in reduced accuracy, likely due to the loss of
information. The concept of sentiment filtering is still an interesting one, and may have
potential for future experiments.

5.3.2 Power of Word Embeddings
The use of word embeddings proved to be a very effective means of representing individual
terms, as well as providing an efficient embedding space for both the user and movie
profiles. Experiments showed that the effectiveness of the embedding models were highly
dependant on the training sources as well as the size of these. The Twitter-trained model
we used is an older one, and we predict that a newer model trained on an even larger
amount of Tweets would be an improvement in terms of capturing semantic and syntactic
relationships despite the intricacies of Twitter language.

5.3.3 Twitter Profiles for Recommendation
One of the goals of this thesis was to examine the possibility of using Twitter profiles as
a means of providing insight to a user’s likes and preferences, addressing the cold start
problem of the recommender system. As Twitter users often Tweet about their immedi-
ate events and interests in their lives, one can deduce that they will seldom Tweet about
movies unless they are specifically interested. Using Twitter timelines to detect aspects
and entities related to movies they express opinions about is thus a difficult task due to the
sparse frequency of such Tweets. By modeling a user’s interest and preference in general
rather than just those pertaining to movies, we observed that the comparison of similarity
between the user and the set of movies was effective to some extent, however the approach
would need more refinements for accurate predictions.

69

Chapter 5. Results and Discussion

5.3.4 The Social Aspect
The addition of features from the social circle also proved successful in terms of increased
accuracy. Even though the definition of social circle was quite loosely defined for our
experiments, we were able to demonstrate the potential of exploiting such information for
recommendation - while also potentially addressing the cold start problem in the case of a
user having insufficient content for the elicitation of features or preferences.

70

Chapter 6
Conclusion and Future Work

In section 6.1 we conclude our findings and contributions and present our achievements
with regards to the research questions introduced earlier. Finally, in section 6.2 we present
propositions for future work.

6.1 Conclusion
Exploring the possibility of recommending content using social media as a source has
been the driving motivation for this project. The primary focus of the project has been on
examining and evaluating Twitter as a source for recommending movies. We gathered and
categorized datasets by manually labeling users by their explicitly liked movies, as well as
using a subset of an existing movie database for producing recommendations. A prototype
system was implemented, handling everything from text processing to displaying mean-
ingful data. Our two-step recommender approach processes the users’ Tweets, extracts
and aggregates features as well as named entities for profile representation and similar-
ity comparisons, and ultimately attempts to produce a set of movies that any given user
would like. These results would then ideally be presented to an end-user to interpret and
aid in their personal decision-making with regards to finding a suitable movie to watch.
While we were not able to perform usability testing with an actual set of Twitter users,
the manual labeling of users provided us with a quantifiable measure of performance for
the experiments with our system - showing considerable potential given that certain re-
quirements are met, i.e. labeling users with their preferred or liked movies (expressed
either implicitly or explicitly). Additionally, we showcased the system’s capability of per-
forming state-of-the-art classification on Tweets for automated labeling using supervised
learning.

6.1.1 Goal Achievements
This section summarizes how the research questions introduced in section 1.3 have been
answered.

71

Chapter 6. Conclusion and Future Work

Recall that we initially introduced two main research questions:

RQ 1 How can we use Twitter profiles to recommend movies?

RQ 2 How viable is it to leverage Twitter profiles for recommendation with regards to
the cold start problem?

Answering the first question involves answering the three following subquestions:

RQ 1.1 How can we identify and extract important features from a user’s Twitter profile?

The task of identifying and extracting features using the retrospective content from
a Twitter profile aims to alleviate the cold start problem typically found for new users
in recommender systems. In chapter 5, we saw that identifying and extracting features
pertaining to a Twitter user was possible, though with varying results. Our approach of
using tf-idf transformation on the collection of Tweets followed by extracting the most
important terms was a simple one, though proved effective when compared to a more
novel approach using topic modeling in our case. The use of named entities and part-of-
speech tagging unfortunately did not have any significant impact in our experiments. In
the former case, we found that the proportion of relevant named entities mentioned for our
set of users was too sparse, as well as the automatic named entity recognizer likely missing
certain entries. Eliciting movie-related features from Tweets was also problematic, mostly
due to the general lack of Tweets pertaining to movies for the average user, which is further
compounded by the restriction of only the most recent 3200 Tweets for any user from the
Twitter API.

RQ 1.2 How does a user’s social circle affect these features?

For our experiments, the definition of social circle was rather loose: comprising of
only 10 randomly selected followees for each user with no specified requirement to the
relationship between the user and the followee. Despite this, we observed an overall in-
crease in recommender accuracy when including features from the users’ social circles,
showing great potential for further research. This improved accuracy implies that users
follow people whom they share preferences or similarities with, or that these followees are
influential with regards to these users. In general, we would expect peers within the same
social circle to have similar interests to a certain extent. Conversely, humans are complex
individuals with equally complex sets of interests and hobbies.

We predict that a more novel approach would improve upon our results, e.g. by exploit-
ing relationships between the user and followee to find a subset of influential followees.
The level of influence could be calculated using factors such as level of interaction between
the users: retweets, likes, mentions; whether the user and followee are mutual followers -
implying that they are friends or otherwise know each other to some degree. Again, this
assumes that a user is likely to share many, if not all, of the preferences with the influential
people in their social circle.

RQ 1.3 How can we use these features to recommend movies to users?

72

6.2 Future Work

Using the set of candidate terms extracted earlier as features, we then needed a way to
compare users and movies based on said features. Word mover’s distance was shown to
be a fairly accurate method of calculating the similarity between two such sets of features,
however the time complexity of the method was multiple orders of magnitude higher when
compared to the baseline approach of using word embeddings with cosine similarity with
comparable accuracy. Various well-studied recommender techniques were experimented
with, using the metadata available to enhance their performance - though with the require-
ment of having a reliable movie database at our disposal. We also considered multiple
factors when comparing profiles for recommendation: sentiment filtering, named entity
matching, using information from a user’s social circle. While not all of these proved to
be beneficial for the outcome, most showed potential for further refinements.

The content-based recommender approach of comparing user and movie profiles was
effective to some extent, however was severely limited due to the general lack of movie-
related Tweets. We observed that collaborative filtering performed considerably better
than the content-based counterpart, though requires automatic labeling of users or explicit
feedback or information from users pertaining to movies that they like.

RQ 2 How viable is it to leverage Twitter profiles for recommendation with regards to
the cold start problem?

One of the main motivations for the works presented in this thesis was to explore the
possibility leveraging Twitter profiles in order to elicit user preference and interest.

The results demonstrated by our prototype implementation of a two-step recommender
system has shown that using social media profiles as an initial starting point for recommen-
dation indeed is a viable approach to tackle the classic cold start problem, at least to some
degree. As briefly mentioned in section 5.3, the attempt to detect and model preferences
to specific entities (in our case, movies) was difficult due to the sparseness and diversity
of a typical Twitter user’s data basis. However, we found that modeling for general user
interest and preference showed improved results, likely due to the larger amount of data
available. Furthermore, the issue of users with low amount of participation or engagement
(e.g. small social circles, few or even no Tweets) may also impact the feasibility of the
aforementioned approach.

Ultimately, while we have found promising results, we still believe that further refine-
ment and experimentation with real user feedback is needed to properly assess the viability
of using these profiles in real world scenarios.

6.2 Future Work
The following subsections describe proposals for future work on our system. These in-
clude suggestions for improvements, extensions, or other approaches.

6.2.1 Improvements to the Current System
From the results in chapter 5, we see the potential for several improvements to our system.
The preprocessing pipeline can be improved, particularly the named entity recognition and
sentiment analysis modules, as these are integral parts of the system. The named entity

73

Chapter 6. Conclusion and Future Work

recognition model needs more training to improve, and in an ideal world it would be able
to detect and correctly label all named entities in any Tweet. If that were reality we could
automatically filter and categorize any movie or entity given a Tweet, as well as aiding
in the task of annotating user profiles with movies or entities that they have expressed
sentiments about. Connecting to an external semantic knowledge base for the detection of
entities and concepts is also a possible extension.

As for the sentiment analysis, it would also be ideal to achieve a higher classification
accuracy. Even with significant advances within natural language processing, machines
still struggle to understand the human language with all of its intricacies - a trait that
is intensified by the informal and short nature of Tweets, which encourages users to be
creative with expressions and semantics within the limitations of character length. We
observed that the current state-of-the-art approach with artificial neural networks and word
embeddings for text representation could capture syntactic and semantic relationships in
text, although results depend on having access to a sizable set of training data as is the
case for most machine learning methods. While we used pretrained word embedding
models, it would be interesting to examine the effects of retrieving and training a custom
model on a more recent set of Tweets in order to capture new contexts and terms that may
have appeared among the Twitterverse. Another thing we did not consider was the use of
emoji in terms of determining sentiment polarities and strength. It would be interesting to
study the impact these have in terms of determining sentiments and polarities. Hashtags
were also features largely ignored due to difficulties with regards to splitting compound
hashtags, however it could be interesting to examine the significance of these similarly to
the case of emojis.

Detecting and filtering spam and mundane/irrelevant Tweets could also have signifi-
cant effects. Preliminary work ([70]) showed that a substantial amount of Tweets had no
significance in terms of expressing subjective opinions, as well as negatively affecting the
features and named entities extracted and suggested that eliminating these would likely
lead to more informative and valuable results. While we experimented with sentiment fil-
tering to filter out Tweets with no associated sentiment polarity, results showed little to
no improvement in most cases. Filtering for spam and mundane Tweets is however open
for further research. For instance, Pitsilis et al. [81] propose a detection scheme for dis-
tinguishing Tweets containing offensive language from normal text using an ensemble of
RNN classifiers. Similarly to how we utilized deep learning methods for sentiment classi-
fication, one could apply such an approach to the task of filtering out spam and irrelevant
Tweets.

Improvements performance-wise are also possible. Currently, the system performs
several steps of redundant, offline batch processing (for experimental purposes) instead
of calculating and aggregating results in real-time. The system could be adapted to do
so however, and could be extended with e.g. Apache Spark1 for scalability and paral-
lel processing, handling both offline processing as well as real-time processing of data
piped directly from a stream. Additionally, this enables the possibility of providing users
with near real-time recommendations that could improve through the user’s continued use.
Adding a feedback loop from the users enabling them to rate the system’s suggested rec-
ommendations could also serve as a basis for further improvements.

1http://spark.apache.org/

74

http://spark.apache.org/

6.2 Future Work

6.2.2 Feature Selection
The user profiles we constructed for comparison and recommendation used key terms
extracted from the user’s collection of Tweets as features. We also factored in named en-
tity matching as well as sentiment analysis in these comparisons. However, a significant
amount of metadata available from Twitter were never explored in our experiments, e.g.
user location, time zone, preferred language, or geotagged Tweets (coordinates). Recom-
mendation based on such geographical data is an interesting approach, though is restricted
by the user’s willingness and consent to provide such information. Using other character-
istics such as demographics or behavior for the analysis and elicitation of user needs and
preference are also potential perspectives to examine. The temporal dimension would also
be worth looking at. Tastes may change with time, such that an older Tweet might have
less relevancy or be less representational of a user’s current taste or preference.

Another unexplored aspect is examining the context of Tweets, e.g. replies, conversa-
tion threads, or attached media such as images or videos. The text of the Tweets may not
make sense without considering the context. The same can be said in the case of media,
where there is a possibility of the media itself containing text or be a form of implicit re-
action or expression. It would be interesting to extract the features from such media, e.g.
by using optical character recognition or other image processing methods.

6.2.3 Social Circles
As discussed in section 6.1, the usage of features elicited from a user’s social circle had a
positive effect on the accuracy during testing despite our loose definition of social circle.
The possibility of continuing with this idea using a more novel method such as the one
outlined earlier to select the influential followees in the user is an interesting one - fully
utilizing the social network data available from Twitter.

6.2.4 Machine Learning Classifiers & Recommender Systems
Various machine learning classifiers including ANNs were experimented with for the sen-
timent analysis step, though we reverted to more traditional, well-studied methods of com-
parison for producing recommendations. While we to some extent had embedded user
preference in a vector space and were able to implement a model for training and evalua-
tion of a neural network classifier for our set of movies, there were certain details hindering
this theoretical approach. One is the lack of extensive labeling that the training and testing
of machine learning classifiers requires; our annotated dataset is too small for a classifier to
be effective. Given that a dataset of satisfactory size is obtained, using a machine learning
classifier for recommendation is a possible approach for further studies.

A possible approach would be to use ANNs for the entire process. For instance, one
could use the user and item embeddings (i.e. the real-valued vectors that represent a user or
item) presented earlier as a basis for the input layers. A combination of ANNs could then
be utilized to model both static preferences as well as dynamic ones, in the latter case using
networks such as RNNs to learn time-variant features. Deriving features from the social
circle information and using these as inputs is also a possible approach, e.g. clustering

75

Chapter 6. Conclusion and Future Work

or categorization of similar users based on demographics. In that way, one could capture
both user-item similarities as well as user-user similarities in the feature vectors.

One could also look into more elaborate methods within NLP for understanding as
well as eliciting structured information from Tweets. It would be interesting to be able to
cluster and categorize sentiments and preferences with regards to items. Approaches using
deep learning for understanding and parsing textual content, even in noisy contexts such
as Tweets are interesting subjects for further research. Prominent examples here include
the works of the Google NLU team2 and the Snips NLU library3.

6.2.5 Other Domains
While this thesis has primarily been focused on recommending products in the movie do-
main, the method of extracting features from a user’s Twitter profile is a fairly general one,
with the exception of the usage of domain-specific stopword filtering. Consequently, our
suggested method recommendation is also a general one, and thus we believe that the two-
step recommender approach could be adapted to other domains with minor modifications,
given that a database of the products is available for feature extraction. Using a different
social network such as Facebook for user profile construction is also a possibility, although
taking advantage of the available data should be further experimented with, e.g. extracting
information from liked pages, or using listed interests, places visited, demographic data as
features.

6.2.6 User-Based Evaluation
As mentioned earlier in section 4.5, the evaluation of the recommender system involves
qualities which are not easily judged without user feedback. Ideally, we would gather a
set of representative Twitter users to test the recommender system and provide feedback
on the results in terms of variety, serendipity, and relevance, among others. While we
were not able to perform such an evaluation for our thesis due to time restrictions, it
would be interesting to have user feedback to examine the effects of the various approaches
experimented with with regards to the aforementioned properties.

2https://ai.google/research/teams/nlu
3https://github.com/snipsco/snips-nlu

76

https://ai.google/research/teams/nlu
https://github.com/snipsco/snips-nlu

Bibliography

[1] O. Varol et al., “Online human-bot interactions: Detection, estimation, and charac-
terization,” CoRR, vol. abs/1703.03107, 2017. [Online]. Available: http://arxiv.
org/abs/1703.03107.

[2] M. Efron, “Information search and retrieval in microblogs,” Journal of the American
Society for Information Science and Technology, vol. 62, no. 6, pp. 996–1008, 2011,
ISSN: 1532-2890. DOI: 10.1002/asi.21512. [Online]. Available: http://dx.doi.
org/10.1002/asi.21512.

[3] P. N. Kralj et al., “Sentiment of emojis,” PLOS ONE, vol. 10, no. 12, pp. 1–22,
Dec. 2015. DOI: 10.1371/journal.pone.0144296. [Online]. Available: http:
//dx.doi.org/10.1371%5C%2Fjournal.pone.0144296.

[4] P. Koehn and K. Knight, “Empirical methods for compound splitting,” in Proceed-
ings of the Tenth Conference on European Chapter of the Association for Com-
putational Linguistics - Volume 1, ser. EACL ’03, Budapest, Hungary: Associa-
tion for Computational Linguistics, 2003, pp. 187–193, ISBN: 1-333-56789-0. DOI:
10.3115/1067807.1067833. [Online]. Available: http://dx.doi.org/10.3115/
1067807.1067833.

[5] K. Macherey et al., “Language-independent compound splitting with morphologi-
cal operations,” in Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies - Volume 1, ser. HLT
’11, Portland, Oregon: Association for Computational Linguistics, 2011, pp. 1395–
1404, ISBN: 978-1-932432-87-9. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2002472.2002644.

[6] R. Zafarani et al., Social media mining: An introduction. Cambridge University
Press, 2014.

[7] A. Rajaraman and J. D. Ullman, Mining of Massive Datasets. New York, NY, USA:
Cambridge University Press, 2011, ISBN: 9781107015357.

[8] D. Jannach et al., Recommender Systems: An Introduction, 1st. Cambridge Univer-
sity Press, 2010, ISBN: 9780521493369.

77

http://arxiv.org/abs/1703.03107
http://arxiv.org/abs/1703.03107
http://dx.doi.org/10.1002/asi.21512
http://dx.doi.org/10.1002/asi.21512
http://dx.doi.org/10.1002/asi.21512
http://dx.doi.org/10.1371/journal.pone.0144296
http://dx.doi.org/10.1371%5C%2Fjournal.pone.0144296
http://dx.doi.org/10.1371%5C%2Fjournal.pone.0144296
http://dx.doi.org/10.3115/1067807.1067833
http://dx.doi.org/10.3115/1067807.1067833
http://dx.doi.org/10.3115/1067807.1067833
http://dl.acm.org/citation.cfm?id=2002472.2002644
http://dl.acm.org/citation.cfm?id=2002472.2002644

[9] B. Sarwar et al., “Item-based collaborative filtering recommendation algorithms,” in
Proceedings of the 10th International Conference on World Wide Web, ser. WWW
’01, Hong Kong, Hong Kong: ACM, 2001, pp. 285–295, ISBN: 1-58113-348-0. DOI:
10.1145/371920.372071. [Online]. Available: http://doi.acm.org/10.1145/
371920.372071.

[10] R. Buettner, “Predicting user behavior in electronic markets based on personality-
mining in large online social networks,” Electronic Markets, pp. 1–19, 2016, ISSN:
1422-8890. DOI: 10.1007/s12525-016-0228-z. [Online]. Available: http://dx.
doi.org/10.1007/s12525-016-0228-z.

[11] B. Liu, Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers,
2012, ISBN: 9781608458844.

[12] P. D. Turney, “Thumbs up or thumbs down?: Semantic orientation applied to unsu-
pervised classification of reviews,” in Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ser. ACL ’02, Philadelphia, Pennsylva-
nia: Association for Computational Linguistics, 2002, pp. 417–424. DOI: 10.3115/
1073083.1073153. [Online]. Available: http://dx.doi.org/10.3115/1073083.
1073153.

[13] J. Kreutzer and N. Witte, Opinion mining using sentiwordnet, 2013.

[14] D. Davidov et al., “Enhanced sentiment learning using twitter hashtags and smi-
leys,” in Proceedings of the 23rd International Conference on Computational Lin-
guistics: Posters, ser. COLING ’10, Beijing, China: Association for Computational
Linguistics, 2010, pp. 241–249. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1944566.1944594.

[15] G. Qiu et al., “Expanding domain sentiment lexicon through double propagation,” in
Proceedings of the 21st International Jont Conference on Artifical Intelligence, ser.
IJCAI’09, Pasadena, California, USA: Morgan Kaufmann Publishers Inc., 2009,
pp. 1199–1204. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1661445.1661637.

[16] X. Zhang et al., “Sentiment analysis by augmenting expectation maximisation with
lexical knowledge,” in Web Information Systems Engineering - WISE 2012: 13th
International Conference, Paphos, Cyprus, November 28-30, 2012. Proceedings,
X. S. Wang et al., Eds. Springer Berlin Heidelberg, 2012, pp. 30–43, ISBN: 978-3-
642-35063-4. DOI: 10.1007/978-3-642-35063-4_3. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-35063-4_3.

[17] Z. Zhai et al., “Constrained lda for grouping product features in opinion mining,”
in Proceedings of the 15th Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining - Volume Part I, ser. PAKDD’11, Shenzhen, China:
Springer-Verlag, 2011, pp. 448–459, ISBN: 978-3-642-20840-9. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=2017863.2017907.

78

http://dx.doi.org/10.1145/371920.372071
http://doi.acm.org/10.1145/371920.372071
http://doi.acm.org/10.1145/371920.372071
http://dx.doi.org/10.1007/s12525-016-0228-z
http://dx.doi.org/10.1007/s12525-016-0228-z
http://dx.doi.org/10.1007/s12525-016-0228-z
http://dx.doi.org/10.3115/1073083.1073153
http://dx.doi.org/10.3115/1073083.1073153
http://dx.doi.org/10.3115/1073083.1073153
http://dx.doi.org/10.3115/1073083.1073153
http://dl.acm.org/citation.cfm?id=1944566.1944594
http://dl.acm.org/citation.cfm?id=1944566.1944594
http://dl.acm.org/citation.cfm?id=1661445.1661637
http://dl.acm.org/citation.cfm?id=1661445.1661637
http://dx.doi.org/10.1007/978-3-642-35063-4_3
http://dx.doi.org/10.1007/978-3-642-35063-4_3
http://dx.doi.org/10.1007/978-3-642-35063-4_3
http://dl.acm.org/citation.cfm?id=2017863.2017907

[18] V. Hatzivassiloglou and K. R. McKeown, “Predicting the semantic orientation of ad-
jectives,” in Proceedings of the Eighth Conference on European Chapter of the As-
sociation for Computational Linguistics, ser. EACL ’97, Madrid, Spain: Association
for Computational Linguistics, 1997, pp. 174–181. DOI: 10.3115/979617.979640.
[Online]. Available: http://dx.doi.org/10.3115/979617.979640.

[19] D. Freitag, “Machine learning for information extraction in informal domains,”
Mach. Learn., vol. 39, no. 2-3, pp. 169–202, May 2000, ISSN: 0885-6125. DOI:
10.1023/A:1007601113994. [Online]. Available: http://dx.doi.org/10.1023/A:
1007601113994.

[20] R. Grishman and B. Sundheim, “Message understanding conference-6: A brief his-
tory,” in Proceedings of the 16th Conference on Computational Linguistics - Volume
1, ser. COLING ’96, Copenhagen, Denmark: Association for Computational Lin-
guistics, 1996, pp. 466–471. DOI: 10.3115/992628.992709. [Online]. Available:
http://dx.doi.org/10.3115/992628.992709.

[21] W. Hua et al., “Information extraction from microblogs: A survey,” Int. J. Software
and Informatics, vol. 6, pp. 495–522, 2012.

[22] D. Nadeau and S. Sekine, “A survey of named entity recognition and classification,”
Lingvisticae Investigationes, vol. 30, no. 1, pp. 3–26, 2007, ISSN: 0378-4169. DOI:
doi:10.1075/li.30.1.03nad. [Online]. Available: http://www.ingentaconnect.
com/content/jbp/li/2007/00000030/00000001/art00002.

[23] D. M. Bikel et al., “An algorithm that learns what‘s in a name,” Mach.
Learn., vol. 34, no. 1-3, pp. 211–231, Feb. 1999, ISSN: 0885-6125. DOI: 10.1023/
A : 1007558221122. [Online]. Available: http : / / dx . doi . org / 10 . 1023 / A :

1007558221122.

[24] K. Takeuchi and N. Collier, “Use of support vector machines in extended named
entity recognition,” in Proceedings of the 6th Conference on Natural Language
Learning - Volume 20, ser. COLING-02, Association for Computational Linguis-
tics, 2002, pp. 1–7. DOI: 10.3115/1118853.1118882. [Online]. Available: http:
//dx.doi.org/10.3115/1118853.1118882.

[25] J. D. Lafferty et al., “Conditional random fields: Probabilistic models for segment-
ing and labeling sequence data,” in Proceedings of the Eighteenth International
Conference on Machine Learning, ser. ICML ’01, Morgan Kaufmann Publishers
Inc., 2001, pp. 282–289, ISBN: 1-55860-778-1. [Online]. Available: http://dl.
acm.org/citation.cfm?id=645530.655813.

[26] J. R. Finkel et al., “Incorporating non-local information into information extraction
systems by gibbs sampling,” in Proceedings of the 43rd Annual Meeting on Associ-
ation for Computational Linguistics, ser. ACL ’05, Ann Arbor, Michigan: Associ-
ation for Computational Linguistics, 2005, pp. 363–370. DOI: 10.3115/1219840.
1219885. [Online]. Available: http://dx.doi.org/10.3115/1219840.1219885.

[27] J. P. C. Chiu and E. Nichols, “Named entity recognition with bidirectional lstm-
cnns,” CoRR, vol. abs/1511.08308, 2015. [Online]. Available: http://arxiv.org/
abs/1511.08308.

79

http://dx.doi.org/10.3115/979617.979640
http://dx.doi.org/10.3115/979617.979640
http://dx.doi.org/10.1023/A:1007601113994
http://dx.doi.org/10.1023/A:1007601113994
http://dx.doi.org/10.1023/A:1007601113994
http://dx.doi.org/10.3115/992628.992709
http://dx.doi.org/10.3115/992628.992709
http://dx.doi.org/doi:10.1075/li.30.1.03nad
http://www.ingentaconnect.com/content/jbp/li/2007/00000030/00000001/art00002
http://www.ingentaconnect.com/content/jbp/li/2007/00000030/00000001/art00002
http://dx.doi.org/10.1023/A:1007558221122
http://dx.doi.org/10.1023/A:1007558221122
http://dx.doi.org/10.1023/A:1007558221122
http://dx.doi.org/10.1023/A:1007558221122
http://dx.doi.org/10.3115/1118853.1118882
http://dx.doi.org/10.3115/1118853.1118882
http://dx.doi.org/10.3115/1118853.1118882
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
http://dx.doi.org/10.3115/1219840.1219885
http://dx.doi.org/10.3115/1219840.1219885
http://dx.doi.org/10.3115/1219840.1219885
http://arxiv.org/abs/1511.08308
http://arxiv.org/abs/1511.08308

[28] X. Ma and E. H. Hovy, “End-to-end sequence labeling via bi-directional lstm-cnns-
crf,” CoRR, vol. abs/1603.01354, 2016. [Online]. Available: http://arxiv.org/
abs/1603.01354.

[29] G. Lample et al., “Neural architectures for named entity recognition,” CoRR, vol.
abs/1603.01360, 2016. [Online]. Available: http://arxiv.org/abs/1603.01360.

[30] K. Weinberger et al., “Feature hashing for large scale multitask learning,” in Pro-
ceedings of the 26th Annual International Conference on Machine Learning, ser.
ICML ’09, Montreal, Quebec, Canada: ACM, 2009, pp. 1113–1120, ISBN: 978-1-
60558-516-1. DOI: 10.1145/1553374.1553516. [Online]. Available: http://doi.
acm.org/10.1145/1553374.1553516.

[31] D. M. Blei et al., “Latent dirichlet allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–
1022, Mar. 2003, ISSN: 1532-4435. [Online]. Available: http://dl.acm.org/
citation.cfm?id=944919.944937.

[32] P. C. Barman et al., “Non-negative matrix factorization based text mining: Feature
extraction and classification,” in Neural Information Processing: 13th International
Conference, ICONIP 2006, Hong Kong, China, October 3-6, 2006. Proceedings,
Part II, I. King et al., Eds. Springer Berlin Heidelberg, 2006, pp. 703–712, ISBN:
978-3-540-46482-2. DOI: 10.1007/11893257_78. [Online]. Available: http://dx.
doi.org/10.1007/11893257_78.

[33] T. K. Landauer et al., “An introduction to latent semantic analysis,” Discourse Pro-
cesses, vol. 25, no. 2-3, pp. 259–284, 1998. DOI: 10.1080/01638539809545028.
eprint: http://dx.doi.org/10.1080/01638539809545028. [Online]. Available:
http://dx.doi.org/10.1080/01638539809545028.

[34] W. Rui et al., “Unsupervised feature selection for text classification via word em-
bedding,” in 2016 IEEE International Conference on Big Data Analysis (ICBDA),
2016, pp. 1–5. DOI: 10.1109/ICBDA.2016.7509787.

[35] T. Mikolov et al., “Distributed representations of words and phrases and their com-
positionality,” CoRR, vol. abs/1310.4546, 2013. [Online]. Available: http://arxiv.
org/abs/1310.4546.

[36] X. Rong, “Word2vec parameter learning explained,” CoRR, vol. abs/1411.2738,
2014. [Online]. Available: http://arxiv.org/abs/1411.2738.

[37] T. Mikolov et al., “Linguistic regularities in continuous space word representa-
tions,” in Human Language Technologies: Conference of the North American Chap-
ter of the Association of Computational Linguistics, Proceedings, June 9-14, 2013,
Westin Peachtree Plaza Hotel, Atlanta, Georgia, USA, 2013, pp. 746–751. [Online].
Available: http://aclweb.org/anthology/N/N13/N13-1090.pdf.

[38] J. Pennington et al., “Glove: Global vectors for word representation,” in Empirical
Methods in Natural Language Processing (EMNLP), 2014, pp. 1532–1543. [On-
line]. Available: http://www.aclweb.org/anthology/D14-1162.

[39] A. Go et al., “Twitter sentiment classification using distant supervision,” Process-
ing, pp. 1–6, 2009. [Online]. Available: http://www.stanford.edu/~alecmgo/
papers/TwitterDistantSupervision09.pdf.

80

http://arxiv.org/abs/1603.01354
http://arxiv.org/abs/1603.01354
http://arxiv.org/abs/1603.01360
http://dx.doi.org/10.1145/1553374.1553516
http://doi.acm.org/10.1145/1553374.1553516
http://doi.acm.org/10.1145/1553374.1553516
http://dl.acm.org/citation.cfm?id=944919.944937
http://dl.acm.org/citation.cfm?id=944919.944937
http://dx.doi.org/10.1007/11893257_78
http://dx.doi.org/10.1007/11893257_78
http://dx.doi.org/10.1007/11893257_78
http://dx.doi.org/10.1080/01638539809545028
http://dx.doi.org/10.1080/01638539809545028
http://dx.doi.org/10.1080/01638539809545028
http://dx.doi.org/10.1109/ICBDA.2016.7509787
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1411.2738
http://aclweb.org/anthology/N/N13/N13-1090.pdf
http://www.aclweb.org/anthology/D14-1162
http://www.stanford.edu/~alecmgo/papers/TwitterDistantSupervision09.pdf
http://www.stanford.edu/~alecmgo/papers/TwitterDistantSupervision09.pdf

[40] M. McCord and M. Chuah, “Spam detection on twitter using traditional classifiers,”
in Proceedings of the 8th International Conference on Autonomic and Trusted Com-
puting, ser. ATC’11, Berlin, Heidelberg: Springer-Verlag, 2011, pp. 175–186, ISBN:
978-3-642-23495-8. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2035700.2035717.

[41] C. D. Manning and H. Schütze, Foundations of Statistical Natural Language Pro-
cessing. Cambridge, MA, USA: MIT Press, 1999, ISBN: 0-262-13360-1.

[42] J. D. M. Rennie et al., “Tackling the poor assumptions of naive bayes text clas-
sifiers,” in In Proceedings of the Twentieth International Conference on Machine
Learning, 2003, pp. 616–623.

[43] S. Wang and C. D. Manning, “Baselines and bigrams: Simple, good sentiment and
topic classification,” in Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Short Papers - Volume 2, ser. ACL ’12, Stroudsburg,
PA, USA: Association for Computational Linguistics, 2012, pp. 90–94. [Online].
Available: http://dl.acm.org/citation.cfm?id=2390665.2390688.

[44] F. Rosenblatt, “The perceptron: A perceiving and recognizing automaton,” Project
PARA, Cornell Aeronautical Laboratory, Ithaca, New York, Report 85-460-1, Jan.
1957.

[45] D. E. Rumelhart et al., “Parallel distributed processing: Explorations in the mi-
crostructure of cognition, vol. 1,” in, D. E. Rumelhart et al., Eds., Cambridge, MA,
USA: MIT Press, 1986, ch. Learning Internal Representations by Error Propaga-
tion, pp. 318–362, ISBN: 0-262-68053-X. [Online]. Available: http://dl.acm.
org/citation.cfm?id=104279.104293.

[46] J. J. Hopfield, “Neural networks and physical systems with emergent collective
computational abilities,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 79, no. 8, pp. 2554–2558, Apr. 1982, ISSN: 0027-
8424. [Online]. Available: http://view.ncbi.nlm.nih.gov/pubmed/6953413].

[47] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput.,
vol. 9, no. 8, pp. 1735–1780, Nov. 1997, ISSN: 0899-7667. DOI: 10.1162/neco.
1997.9.8.1735. [Online]. Available: http://dx.doi.org/10.1162/neco.1997.
9.8.1735.

[48] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,” Trans. Sig.
Proc., vol. 45, no. 11, pp. 2673–2681, Nov. 1997, ISSN: 1053-587X. DOI: 10.1109/
78.650093. [Online]. Available: http://dx.doi.org/10.1109/78.650093.

[49] J. Chung et al., “Empirical evaluation of gated recurrent neural networks on se-
quence modeling,” CoRR, vol. abs/1412.3555, 2014. arXiv: 1412.3555. [Online].
Available: http://arxiv.org/abs/1412.3555.

[50] W. Yin et al., “Comparative study of CNN and RNN for natural language process-
ing,” CoRR, vol. abs/1702.01923, 2017. arXiv: 1702.01923. [Online]. Available:
http://arxiv.org/abs/1702.01923.

[51] A. Karpathy and F. Li, “Deep visual-semantic alignments for generating image de-
scriptions,” CoRR, vol. abs/1412.2306, 2014. [Online]. Available: http://arxiv.
org/abs/1412.2306.

81

http://dl.acm.org/citation.cfm?id=2035700.2035717
http://dl.acm.org/citation.cfm?id=2035700.2035717
http://dl.acm.org/citation.cfm?id=2390665.2390688
http://dl.acm.org/citation.cfm?id=104279.104293
http://dl.acm.org/citation.cfm?id=104279.104293
http://view.ncbi.nlm.nih.gov/pubmed/6953413]
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1109/78.650093
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1702.01923
http://arxiv.org/abs/1702.01923
http://arxiv.org/abs/1412.2306
http://arxiv.org/abs/1412.2306

[52] X. Yang et al., “On top-k recommendation using social networks,” in Proceedings of
the Sixth ACM Conference on Recommender Systems, ser. RecSys ’12, Dublin, Ire-
land: ACM, 2012, pp. 67–74, ISBN: 978-1-4503-1270-7. DOI: 10.1145/2365952.
2365969. [Online]. Available: http://doi.acm.org/10.1145/2365952.2365969.

[53] E. d. S. da Silva et al., “Content-based social recommendation with poisson ma-
trix factorization,” in Machine Learning and Knowledge Discovery in Databases,
M. Ceci et al., Eds., Cham: Springer International Publishing, 2017, pp. 530–546,
ISBN: 978-3-319-71249-9.

[54] M. G. Armentano et al., “Movies recommendation based on opinion mining in twit-
ter,” in Advances in Artificial Intelligence and Its Applications: 14th Mexican Inter-
national Conference on Artificial Intelligence, MICAI 2015, Cuernavaca, Morelos,
Mexico, October 25-31, 2015, Proceedings, Part II, O. Pichardo Lagunas et al.,
Eds. Cham: Springer International Publishing, 2015, pp. 80–91, ISBN: 978-3-319-
27101-9. DOI: 10 . 1007 / 978 - 3 - 319 - 27101 - 9 _ 6. [Online]. Available: http :

//dx.doi.org/10.1007/978-3-319-27101-9_6.

[55] A. Gupta et al., Movie recommendations using social networks, 2008.

[56] J. Zhang and Y. Lei, “Improving content recommendation in social streams via in-
terest model,” in Computer and Information Science, R. Lee, Ed. Springer Interna-
tional Publishing, 2015, pp. 57–70, ISBN: 978-3-319-10509-3. DOI: 10.1007/978-
3-319-10509-3_5. [Online]. Available: http://dx.doi.org/10.1007/978-3-
319-10509-3_5.

[57] J. Chen et al., “Short and tweet: Experiments on recommending content from infor-
mation streams,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ser. CHI ’10, Atlanta, Georgia, USA: ACM, 2010, pp. 1185–
1194, ISBN: 978-1-60558-929-9. DOI: 10.1145/1753326.1753503. [Online]. Avail-
able: http://doi.acm.org/10.1145/1753326.1753503.

[58] H. Hamdan et al., “Lsislif: Feature extraction and label weighting for sentiment
analysis in twitter,” in Proceedings of the 9th International Workshop on Semantic
Evaluation (SemEval), 2015.

[59] P. Zhao et al., “Feature extraction from micro-blogs for comparison of products
and services,” in Web Information Systems Engineering – WISE 2013: 14th Inter-
national Conference, Nanjing, China, October 13-15, 2013, Proceedings, Part I,
X. Lin et al., Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 82–
91, ISBN: 978-3-642-41230-1. DOI: 10.1007/978-3-642-41230-1_7. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-41230-1_7.

[60] Y. Kim, “Convolutional neural networks for sentence classification,” CoRR, vol.
abs/1408.5882, 2014. [Online]. Available: http://arxiv.org/abs/1408.5882.

[61] X. Zhang et al., “Character-level convolutional networks for text classification,”
in Advances in Neural Information Processing Systems 28, C. Cortes et al., Eds.,
Curran Associates, Inc., 2015, pp. 649–657. [Online]. Available: http://papers.
nips.cc/paper/5782-character-level-convolutional-networks-for-text-

classification.pdf.

82

http://dx.doi.org/10.1145/2365952.2365969
http://dx.doi.org/10.1145/2365952.2365969
http://doi.acm.org/10.1145/2365952.2365969
http://dx.doi.org/10.1007/978-3-319-27101-9_6
http://dx.doi.org/10.1007/978-3-319-27101-9_6
http://dx.doi.org/10.1007/978-3-319-27101-9_6
http://dx.doi.org/10.1007/978-3-319-10509-3_5
http://dx.doi.org/10.1007/978-3-319-10509-3_5
http://dx.doi.org/10.1007/978-3-319-10509-3_5
http://dx.doi.org/10.1007/978-3-319-10509-3_5
http://dx.doi.org/10.1145/1753326.1753503
http://doi.acm.org/10.1145/1753326.1753503
http://dx.doi.org/10.1007/978-3-642-41230-1_7
http://dx.doi.org/10.1007/978-3-642-41230-1_7
http://arxiv.org/abs/1408.5882
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf

[62] C. dos Santos and M. Gatti, “Deep convolutional neural networks for sentiment
analysis of short texts,” in Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers, Dublin, Ireland: Dublin
City University and Association for Computational Linguistics, 2014, pp. 69–78.
[Online]. Available: http://www.aclweb.org/anthology/C14-1008.

[63] A. Severyn and A. Moschitti, “Twitter sentiment analysis with deep convolutional
neural networks,” in Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, ser. SIGIR ’15, New York,
NY, USA: ACM, 2015, pp. 959–962, ISBN: 978-1-4503-3621-5. DOI: 10.1145/
2766462.2767830. [Online]. Available: http://doi.acm.org/10.1145/2766462.
2767830.

[64] P. Nakov et al., “Semeval-2016 task 4: Sentiment analysis in twitter,” in Proceed-
ings of the 10th International Workshop on Semantic Evaluation, SemEval@
NAACL-HLT 2016, San Diego, CA, USA, June 16-17, 2016, S. Bethard et al., Eds.,
The Association for Computer Linguistics, 2016, pp. 1–18. [Online]. Available:
http://aclweb.org/anthology/S/S16/S16-1001.pdf.

[65] S. Rosenthal et al., “SemEval-2017 task 4: Sentiment analysis in Twitter,” in Pro-
ceedings of the 11th International Workshop on Semantic Evaluation, ser. SemEval
’17, Vancouver, Canada: Association for Computational Linguistics, Aug. 2017.

[66] L. Ratinov and D. Roth, “Design challenges and misconceptions in named en-
tity recognition,” in Proceedings of the Thirteenth Conference on Computational
Natural Language Learning, ser. CoNLL ’09, Boulder, Colorado: Association for
Computational Linguistics, 2009, pp. 147–155, ISBN: 978-1-932432-29-9. [On-
line]. Available: http://dl.acm.org/citation.cfm?id=1596374.1596399.

[67] X. Liu et al., “Recognizing named entities in tweets,” in Proceedings of the 49th An-
nual Meeting of the Association for Computational Linguistics: Human Language
Technologies - Volume 1, ser. HLT ’11, Portland, Oregon: Association for Compu-
tational Linguistics, 2011, pp. 359–367, ISBN: 978-1-932432-87-9. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=2002472.2002519.

[68] C. Li et al., “Twiner: Named entity recognition in targeted twitter stream,” in Pro-
ceedings of the 35th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, ser. SIGIR ’12, Portland, Oregon, USA: ACM,
2012, pp. 721–730, ISBN: 978-1-4503-1472-5. DOI: 10.1145/2348283.2348380.
[Online]. Available: http://doi.acm.org/10.1145/2348283.2348380.

[69] A. Ritter et al., “Named entity recognition in tweets: An experimental study,” in
Proceedings of the Conference on Empirical Methods in Natural Language Process-
ing, ser. EMNLP ’11, Edinburgh, United Kingdom: Association for Computational
Linguistics, 2011, pp. 1524–1534, ISBN: 978-1-937284-11-4. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2145432.2145595.

[70] T. H. Nguyen, “Recommendations in social media,” Specialization Project in Com-
puter Science (TDT4501), Dept. of Computer, Information Science, Norwegian
University of Science, and Technology, 2016.

83

http://www.aclweb.org/anthology/C14-1008
http://dx.doi.org/10.1145/2766462.2767830
http://dx.doi.org/10.1145/2766462.2767830
http://doi.acm.org/10.1145/2766462.2767830
http://doi.acm.org/10.1145/2766462.2767830
http://aclweb.org/anthology/S/S16/S16-1001.pdf
http://dl.acm.org/citation.cfm?id=1596374.1596399
http://dl.acm.org/citation.cfm?id=2002472.2002519
http://dx.doi.org/10.1145/2348283.2348380
http://doi.acm.org/10.1145/2348283.2348380
http://dl.acm.org/citation.cfm?id=2145432.2145595

[71] C. J. Hutto and E. Gilbert, “Vader: A parsimonious rule-based model for sentiment
analysis of social media text,” in Eighth International Conference on Weblogs and
Social Media (ICWSM-14), Ann Arbor, MI, 2014.

[72] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[73] R. Speer et al., “Conceptnet 5.5: An open multilingual graph of general knowl-
edge,” in Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-
gence, February 4-9, 2017, San Francisco, California, USA., S. P. Singh and S.
Markovitch, Eds., AAAI Press, 2017, pp. 4444–4451. [Online]. Available: http:
//aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972.

[74] F. Chollet et al., Keras, https://github.com/fchollet/keras, 2015.

[75] S. M. Mohammad and S. Kiritchenko, “Understanding emotions: A dataset of tweets
to study interactions between affect categories,” in Proceedings of the 11th Edition
of the Language Resources and Evaluation Conference, Miyazaki, Japan, 2018.

[76] S. Bird et al., Natural Language Processing with Python. O’Reilly Media, 2009.

[77] M. Collins, “Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms,” in Proceedings of the ACL-02 Con-
ference on Empirical Methods in Natural Language Processing - Volume 10, ser.
EMNLP ’02, Stroudsburg, PA, USA: Association for Computational Linguistics,
2002, pp. 1–8. DOI: 10.3115/1118693.1118694. [Online]. Available: http://dx.
doi.org/10.3115/1118693.1118694.

[78] R. Jiang et al., Evaluating and combining named entity recognition systems, 2016.

[79] M. J. Kusner et al., “From word embeddings to document distances,” in Proceed-
ings of the 32Nd International Conference on International Conference on Machine
Learning - Volume 37, ser. ICML’15, Lille, France: JMLR.org, 2015, pp. 957–966.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3045118.3045221.

[80] R. Řehůřek and P. Sojka, “Software framework for topic modelling with large cor-
pora,” English, in Proceedings of the LREC 2010 Workshop on New Challenges for
NLP Frameworks, http://is.muni.cz/publication/884893/en, Valletta, Malta:
ELRA, May 2010, pp. 45–50.

[81] G. K. Pitsilis et al., “Detecting offensive language in tweets using deep learning,”
CoRR, vol. abs/1801.04433, 2018. arXiv: 1801.04433. [Online]. Available: http:
//arxiv.org/abs/1801.04433.

84

http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
https://github.com/fchollet/keras
http://dx.doi.org/10.3115/1118693.1118694
http://dx.doi.org/10.3115/1118693.1118694
http://dx.doi.org/10.3115/1118693.1118694
http://dl.acm.org/citation.cfm?id=3045118.3045221
http://is.muni.cz/publication/884893/en
http://arxiv.org/abs/1801.04433
http://arxiv.org/abs/1801.04433
http://arxiv.org/abs/1801.04433

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Context
	Twitter
	Movie Recommendations
	Feature Engineering
	Sentiment Analysis

	Research Questions
	Thesis Outline

	Background & Theory
	Traditional- vs Microblog-Information Retrieval
	Twitter
	Obtaining Datasets
	Challenges

	Recommender Systems
	Collaborative Filtering
	Content-Based Filtering

	Sentiment Analysis
	Document level sentiment classification
	Sentence level sentiment classification
	Aspect-based opinion mining
	Sentiment lexicon generation
	Challenges

	Information Extraction
	Named Entity Recognition
	Feature Engineering

	Classification
	Traditional Approaches
	Artificial Neural Networks

	Related Work
	Recommendations in Social Networks
	Feature Extraction for Sentiment Analysis
	Sentiment Analysis in Twitter
	Named Entity Recognition in Twitter
	Summary

	The Two-Step Recommender Approach
	Theoretical Approach
	Feature Extraction for User Profiles
	Feature Extraction for Movie Profiles
	Two-Step Recommender

	Sentiment Analysis
	Word Representations
	Classifiers
	Evaluation and Results

	Final System Overview
	Datasets
	Preprocessing

	Recommender System
	Feature Extraction for Profile Construction
	Similarity Measures
	Recommender Techniques

	Evaluation
	Summary of Experimental Setup

	Results and Discussion
	Preprocessing
	Output
	Text Processing
	Part-of-Speech Tagging
	Named Entity Extraction
	Sentiment Analysis

	Recommender System
	Results
	Movie Profile
	Similarity Measures
	Social Circles
	User Profile
	Word Embeddings
	Feature Extraction
	Entity Matching
	Recommender Techniques

	Significance of Results
	Sentiment Filtering
	Power of Word Embeddings
	Twitter Profiles for Recommendation
	The Social Aspect

	Conclusion and Future Work
	Conclusion
	Goal Achievements

	Future Work
	Improvements to the Current System
	Feature Selection
	Social Circles
	Machine Learning Classifiers & Recommender Systems
	Other Domains
	User-Based Evaluation

	Bibliography

