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Abstract 

Dye sensitized solar cells (DSSC) represent a potential low-cost alternative to the traditional 

silicon solar cells. DSSC’s do not have the need for ultra-pure semiconductor material, and 

they are easy to assemble. However, they need very specialized dyes to work well. These dyes 

have typically been dependent on the expensive noble metal ruthenium. Recently however, 

there has been a new category of promising ruthenium-free dyes emerging.  It is important to 

understand how the DSSC’s and the new dyes work, so that they can be improved further. 

One way to understand this, is to use photo-electrochemical methods in combination with 

numerical modelling.  

Current-potential characteristics were recorded, and intensity modulated photocurrent 

spectroscopy (IMPS), intensity modulated photovoltage spectroscopy (IMVS), and 

electrochemical impedance spectroscopy (EIS) was performed on two DSSC’s. The two 

DSSC’s were made identical, except that one was made with a well-known ruthenium dye 

(N719), and the other one with a novel ruthenium-free purely organic dye (AFB5-098, 

abbreviated AFB8). Anta et al.’s numerical version of the diffusion model[1] was extended to 

include small amplitude perturbation and used to interpret the experimental data. This made a 

basis from which the solar cells could be characterized and compared, and suggestions for 

ways to improve the cells were presented. 

The extended numerical model reproduced both the experimental IV-characteristic and the 

IMPS and IMVS spectra with good, if not perfect, accuracy. It was further revealed by the 

model that the N719- DSSC had poor charge capture efficiency, but excellent injection and 

absorption efficiency. The AFB8-DSSC on the other hand, had excellent charge collection 

efficiency, but seemed to have sub-optimal injection and/or absorbance efficiency.  There 

were strong indications that the N719-DSSC could benefit significantly from decreased 

thickness of the titanium dioxide layer and quicker diffusion. There were some indications 

that the AFB8- DSSC could increase its efficiency moderately from a thicker titanium dioxide 

layer. Both cells would gain a higher potential from slower recombination, while the N719-

DSSC would also gain increased current density from it. All in all, the combination of the 

numerical modelling and the photo-electrochemical experimental work was successful at both 

characterizing and suggesting ways to optimize the solar cells. 
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Sammendrag 

Fargestoffbaserte solceller (DSSC) er et potensielt lavprisalternativ til dagens silisiumbaserte 

solceller. De har ikke det samme behovet for ultra-høy renhet i halvledermaterialet, og de er 

enkle å produsere. Derimot er et problem med de fargestoffbaserte solcellene at de har vært 

og til dels er avhengige av kostbare fargestoff som inneholder det dyre og sjeldne edelmetallet 

ruthenium. Det er i midlertidig mange nye lovende rutheniumfrie fargestoff som er under 

utvikling. For å kunne utvikle disse fargestoffene videre, er det viktig å ha metoder for å 

kunne karakterisere de fargestoffbaserte solcellene. En måte å gjøre slik karakterisering, er 

ved hjelp av foto-elektrokjemiske målinger i kombinasjon med numerisk modellering. 

Strøm-spenningskarakteristikker ble målt, og intensitetsmodulert fotostrøm-spektroskopi 

(IMPS), intensitetsmodulert fotospenning-spektroskopi (IMVS) og elektrokjemisk impedans-

spektroskopi ble gjennomført på to forskjellige fargestoff-baserte solceller. De to solcellene 

var identiske, bortsett fra at den ene ble laget med et godt kjent rutheniumfargestoff (N719), 

mens den andre ble laget med et nyutviklet ruteniumfritt fargestoff (AFB5-098, forkortet til 

AFB8). Anta et al. sin numeriske versjon av diffusjonsmodellen[1] ble utvidet til å inkludere 

lav-amplitude perturbasjon, for så å bli brukt til å tolke eksperimentelle data. Dette utgjorde et 

fundament som ble brukt til å karakterisere, sammenligne og foreslå måter å optimalisere 

solcellene på. 

Den utvidede numeriske modellen lyktes bra i å gjenskape strøm-spenningskarakteristikker, 

samt IMPS og IMVS-spektre. Solcellen laget med N719 viste seg å ha utmerket injeksjon- og 

absorbsjons-virkningsgrad, men hadde stort forbedringspotensial på ladningsoppsamlings-

virkningsgraden. Solcellen som ble laget med AFB8 derimot, viste seg å ha utmerket 

ladningsoppsamlings-virkningsgraden, men hadde sub-optimal injeksjon og/eller absorbsjons-

virkningsgrad. Videre, så var det sterke indikasjoner på at solcellen laget med N719 kunne 

oppnå betydelig økning i virkningsgrad hvis den ble laget med et tynnere titandioksidlag, eller 

hvis diffusjonshastigheten kunne blitt økt. Det var noen indikasjoner på at solcellen laget med 

AFB5-098 kunne øke sin virkningsgrad moderat, hvis den ble laget med tykkere 

titandioksidlag. Begge solcellene vil kunne levere høyere potensial om rekombinasjonen ble 

tregere, mens N719-solcellen også vil kunne levere økt strømtetthet. Alt i alt lyktes de foto-

elektrokjemiske målingene i kombinasjon med den utvidede numeriske modellen i å 

karakterisere og i å foreslå forbedringer for solcellene. 
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Abbreviations  

and terms 

 Description 

AFB8 

DSSC 

EIS 

FTO 

HOMO 
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IPCE 

IV 

LUMO 

N719 

TCO 

 

 A purely organic dye, whose full name is AFB5-098 

Dye Sensitized Solar Cell 

Electrochemical Impedance Spectroscopy 
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Current-Voltage 

Lowest Unoccupied Molecular Orbital 

A Ruthenium based dye 

Transparent Conducting Oxide. This is where the current is collected. The 

TCO is situated at 𝑥 = 0 in the model. 

 

Symbol Units                         Description 

0   Subscript indicating reference state. The reference state chosen in 

this work is a solar cell with no illumination, i.e. in the dark. 

𝑎  - (1 − 𝛼)/𝛼  

𝑏  - (𝛽 − 𝛼)/𝛼  

𝑐  m. s−1  Speed of light 

𝐶  F Capacitance 

𝐶0  F Capacitance at a reference state 

𝑑  m Thickness of the active titanium dioxide layer, ref Figure 2.4. 

𝐷𝑛  m2. s−1  Density dependent diffusion “constant” for electrons in 

conduction band of TiO2 

𝐷𝑟𝑒𝑓  m2. s−1  𝐷𝑛 for a given reference state 

𝐷0 m2. s−1  𝐷𝑛 for the reference state of a DSSC in the dark 
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D*  Dye molecule with an electron excited into the LUMO 

𝑒   Eulers number 

E - Indicating that the axis shows Energy 

𝑓 Hz Frequency of modulation 

𝑓𝑚𝑖𝑛,𝐼𝑀𝑃𝑆 Hz The frequency at the minimum in an IMPS-spectrum 

𝑓𝑚𝑖𝑛,𝐼𝑀𝑉𝑆 Hz The frequency at the minimum in an IMVS-spectrum 

𝐹  𝐾𝐷𝑛𝑎 𝜕𝑛

𝜕𝑥 
  

𝐹𝐼𝑚   
𝐾𝐷𝑛𝑠𝑠

𝑎
𝜕𝑃𝐼𝑚

𝜕𝑥 
+ 𝐾𝐷𝑃𝐼𝑚𝑎𝑛𝑠𝑠

(𝑎−1) 𝜕𝑛𝑠𝑠

𝜕𝑥 
 

𝐹𝑅𝑒  𝐾𝐷𝑛𝑠𝑠
𝑎 𝜕𝑃𝑅𝑒

𝜕𝑥 
+ 𝐾𝐷𝑃𝑅𝑒𝑎𝑛𝑠𝑠

(𝑎−1) 𝜕𝑛𝑠𝑠

𝜕𝑥 
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Symbol Units                         Description 

ℎ m2. kg. s−1  Planck Constant 

𝑖   Imaginary number 

𝐼  A. m−2  Current density 

𝐼𝐼𝑚  A. m−2  Imaginary part of the current response. Measured in IMPS 

𝐼𝑠𝑐  A. m−2   Short circuit current 

𝐽𝐷  C. m−3. s−1   The diffusion term  

𝐽𝐺   C. m−3. s−1   The generation term 

𝐽𝑅  C. m−3. s−1   The recombination term 

𝑘0  s−1  𝑘𝑟𝑒𝑓 for the reference state of a DSSC in the dark 

𝑘𝑙  s−1  
𝑘𝑟𝑒𝑓 (

𝑛

𝑛𝑟𝑒𝑓
)

𝑏

  

𝑘𝑟𝑒𝑓  s−1  The recombination rate constant, at a given reference state 

𝑘𝐵  J. K−1  Boltzmann constant 

𝐾𝐷   𝐷0/𝑛0
𝑎  

𝐾𝐺  A. W−1  Constant stating how many amperes there is in one watt of light 

with 453 nm wavelength. 

𝐾𝑅   (𝛽𝑘0)/(𝛼𝑛0
𝑏)  

𝑛 mol. m−3  Electron concentration in TiO2’s conduction band 

𝑛0 mol. m−3  𝑛 for the DSSC in the dark. 

𝑛𝐴  mol. m−3  Amplitude for the time dependent part of n 

𝑛𝑠𝑠  mol. m−3  The steady state part of n 

𝑛𝑡  mol. m−3  The time dependent part of 𝑛  

𝑛𝑟𝑒𝑓 mol. m−3  𝑛 for the DSSC at a reference state 

𝑝  - Constant used in describing injection rate 

𝑃𝐼𝑚   𝑛𝐴sin (𝜙)  

𝑃𝑅𝑒   𝑛𝐴 cos(𝜙)  

𝑞  C Elementary charge 

𝑅𝑟  Ω  Recombination resistance 

𝑅𝑟0
  Ω  Recombination resistance at a reference state 

𝑅𝑠  Ω  Series resistance 

𝑅𝑠ℎ  Ω  Shunt resistance 

T K Temperature 

𝑉  V Potential 

𝑉𝐼𝑚  V Imaginary part of the potential response. Measured in IMVS 

𝑉𝑙𝑜𝑠𝑠  V  Potential loss 

𝑉𝑜𝑐 V Potential over the DSSC at open circuit 

𝑥  m  Variable indicating the distance from the TCO in the titanium 

dioxide. Can have values from 𝑥 = 0 to 𝑥 = 𝑑 

𝑍𝐼𝑚  Ω  Imaginary part of impedance 

𝑍𝑅𝑒  Ω  Real part of impedance 

𝛼  - A parameter related to the energy and distribution of trap states 

𝛽  - A parameter related to the recombination reaction rate order 

𝜂𝑎𝑏𝑠 - Absorption efficiency 

𝜂𝑐𝑐 - Charge capture efficiency 

𝜂𝑖𝑛𝑗 - Injection efficiency 

𝜂𝑖𝑛𝑗0
  - Injection efficiency when the potential in the 𝑇𝑖𝑂2 is zero 

𝜂𝑝𝑐  - Power conversion efficiency. Often called just “efficiency” 
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Symbol Units                         Description 

𝜖  m−1  Absorption coefficient 

𝜆 m Wavelength 

𝛬(𝑥)   ηinjKGϵ(e−ϵx + ηrefle
ϵ(x−2d))  

𝜏𝑟𝑒𝑐  s Recombination time constant 

𝜏𝑡𝑟𝑎𝑛𝑠  s Transport time constant 

𝜙  - The phase difference between Φ and 𝑛 

𝛷  W. m−2  Intensity of the light shining on the DSSC. 

𝛷𝐴  W. m−2  Amplitude for the time dependent part of Φ 

𝛷𝑡  W. m−2  The time dependent part of Φ 

𝛷𝑠𝑠  W. m−2  The steady state part of Φ 

𝜔  s−1  Angular velocity 

𝜔𝑚𝑎𝑥  s−1  Angular velocity giving the largest 𝑍𝐼𝑚 
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1 Introduction 

The Paris Agreement was signed in 2015, and one aim of it is “Holding the increase in the 

global average temperature to well below 2 °C above pre-industrial levels and to pursue 

efforts to limit the temperature increase to 1.5 °C above pre-industrial levels, recognizing that 

this would significantly reduce the risks and impacts of climate change;”[2]. The CO2 

emissions needs to be drastically reduced for this goal to be reached, and one way to do so is 

to replace fossil fuels with renewable energy sources. 

The renewable energy source with the largest potential is the sun. The energy received from 

the it is approximately 10 000 times the worlds energy needs[3, 4]. Currently, traditional 

silicon solar cells represent the most widely adapted technology for harvesting the radiative 

power from the sun.  These cells are durable and efficient, but they also depend on silicon of 

ultra-high purity (99.9999%) to work[5]. Vast amounts of energy are required in the 

production of the very pure silicon, contributing to a relatively high cost.  

Dye sensitized solar cells (DSSC’s) may represent a low-cost alternative to the traditional 

silicon solar cells. They consist of a dye, a semiconductor, an electrolyte, and two electrodes. 

The semiconductor does typically have a bandgap in the UV-range, and does not absorb any 

light. Instead the dye absorbs the light, and injects electrons into the semiconductor. DSSC’s 

do not contain any p-n junction, and thus do not have the same demands on material purity as 

the traditional solar cells. They are however very dependent on specialized dyes to capture the 

light. Not only does a good dye need strong absorption, but it also needs to be tailored to go 

well along with the electrolyte and the semiconductor.[6] 

One of the main obstacles before commercialization of the DSSC’s is that there is no dye 

which is both effective and inexpensive. The best dyes have typically been organo-metallic 

molecules with ruthenium. They can give efficiencies of ~13%[7], but they are costly both 

because of a complex synthesis and because ruthenium is an expensive noble metal. 

Ruthenium-free dyes giving high efficiencies are needed if DSSC’s are to become a low-cost 

alternative. Purely organic dyes present a promising alternative to the ruthenium dyes, and are 

currently approaching the ruthenium dyes’ efficiencies at 13%[8], while 15% has been 

considered necessary for commercialization of DSSC’s[9].  

It is important to know how the dyes perform in a DSSC, both so that better dyes can be 

developed, and so that the DSSC’s can be tailored to work as well as possible for a given dye. 

A common way to investigate this is by using photo-electrochemical methods in combination 

with numerical models[10]. The models can estimate important parameters like the charge 

collection efficiency and predict the power conversion efficiency for different thicknesses of 

the titanium dioxide. 
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This thesis has three main objectives:  

- The first goal is to see whether the diffusion model as presented by Anta et al.[1] can be 

extended to include small amplitude perturbations. This would enable a model were all the 

parameters are determined experimentally. The model could be controlled up against 

experimental results from both small amplitude perturbation techniques and current-potential 

characteristics.   

-The second goal is to see whether this model can give useful information on how two 

DSSC’s made with different dyes work and compare. One of the dyes is a well-known 

ruthenium dye, namely N719. The other dye is AFB8, a novel purely organic dye made at the 

department of chemistry at NTNU, which shows similar efficiency as N719.  

-The third goal is to see whether the model can be used for optimization of the two cells 

which were investigated. 

The diffusion model by Anta et al[1] was extended and implemented in MATLAB, and fit to 

experimental data obtained from Intensity modulated photo-current spectroscopy (IMPS), 

intensity modulated photo-voltage spectroscopy (IMVS), electrochemical impedance 

spectroscopy (EIS) and current voltage characteristics (IV-characteristics). The model was 

used to interpret the experimental results, so that information on the charge collection 

efficiency 𝜂𝑐𝑐, the injection efficiency 𝜂𝑖𝑛𝑗, and the absorption efficiency 𝜂𝑎𝑏𝑠 could be 

achieved. Finally, the model was used to suggest whether the cells had the optimal thickness, 

and whether there were transport or recombination limitations. This is summarized in Figure 

1.1: 
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Figure 1.1: A summary of the workflow presented in this thesis. First, the short 

circuit current 𝑰𝒔𝒄, the open circuit potential 𝑽𝒐𝒄 and IMPS, IMVS and EIS spectra were 

obtained. A model was used to interpret these experimental results, giving information 

on the charge collection efficiency 𝜼𝒄𝒄, the injection efficiency 𝜼𝒊𝒏𝒋, and the absorption 

efficiency 𝜼𝒂𝒃𝒔. The model was also used to suggest how the DSSC’s could be optimized, 

by giving information on optimal thickness of titanium dioxide layer and recombination 

and transportation limitations. 
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2 Theory of dye sensitized solar cells 

2.1 Basic working principle 

There are different types of DSSC’s, but they are most commonly made from four parts: At 

least one dye, a semiconductor with a bandgap in the ultra violet range, two electrodes made 

from glass coated with a transparent conducting oxide (TCO), and an electrolyte[6]. The cells 

treated in this thesis are made with nanoporous titanium dioxide as the semiconductor, an 

electrolyte based on the redox couple I−/I3
−, and a cathode with platinum catalyst. This 

combination of four parts enables the DSSC’s to convert radiative energy to electric work. 

The way a DSSC does this is best explained in several steps[6, 11], as shown in Figure 2.1. 

First, a photon is absorbed by a dye molecule. This will cause an electron in the dye to be 

excited. If the dye molecule is designed properly, the excited electron will be injected into the 

titanium dioxide, instead of falling back to the ground state. The dye molecule is oxidized in 

this process, but quickly regains an electron from the electrolyte. The electrolyte will in turn 

be regenerated at the cathode. The electron which was injected into the titanium dioxide will 

be transported by diffusion through the titanium dioxide and collected at the TCO anode. 

However, bear in mind that the working principles presented here are greatly simplified. A 

more thorough explanation can be found in [6]. Figure 4.2 shows a picture of what an 

assembled DSSC can look like. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: The basic principle of a DSSC with 𝐓𝐢𝐎𝟐 semiconductor and 𝐈−/𝐈𝟑
− 

based electrolyte. To the left is the anode, composed of dye-coated 𝐓𝐢𝐎𝟐 deposited on 

glass. Though not shown in the figure, the 𝐓𝐢𝐎𝟐 is typically nanoporous to increase the 

area which the dye can adsorb on. To the right is the cathode, which consists of glass 

coated with catalytic platinum. The glass at both sides is coated with a transparent 

TiO2 

ℎ𝜈 

hν + D ⇒ D∗ (a) 

D∗ ⇒ D+ + e(CB)
−  (b)  

 D+ +
3

2
I− ⇒

1

2
I3

− + D (c)  

1

2
I3

− + e− ⇒ +
3

2
I− (d) 

𝑒− 𝑒− 

𝑒− 

Glass Pt coated glass 

Load 
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conducting oxide (TCO), giving it electrical conductivity The arrow coming in from the 

right illustrates the light shining on the DSSC. Reaction (a) is a dye molecule (D) 

absorbing a photon (hν), resulting in excitation of the dye molecule (D*). Reaction (b) is 

the excited dye molecule injecting an electron into the conduction band of the 𝐓𝐢𝐎𝟐. 

Reaction (c) is the oxidized dye molecule being regenerated by reacting with the 

electrolyte. Reaction (d) is the regeneration of the electrolyte at the cathode.  

 

Figure 2.2 shows the same as Figure 2.1, just with names for the different processes, and 

indications of the energy levels.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: The processes in a DSSC labeled with names. The arrows indicate 

how the electron is transported through the cell. The energy levels are indicated, but are 

not to scale.  

 

An electron is raised in potential when the dye absorbs a photon. For all other processes in the 

cell, there will be a potential loss. This results in that the potential which is measured over the 

cell is lower than the potential which would be expected from the energy of the photon 

absorbed alone. This is shown in Figure 2.3: 
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Figure 2.3: The energy levels in a DSSC. The blue arrow is the potential 

difference which would be measured over an illuminated cell connected to a load. The 

energy levels are not to scale. 

 

It is the losses in the anode (the titanium dioxide) which is the focus of this work. The other 

potential losses can often be assumed negligible[1], especially for the moderate light 

intensities which has been utilized[9, 12].  

The anode is greatly simplified in Figure 2.1, Figure 2.2 and Figure 2.3. A more correct 

description of the anode can be found in Figure 2.4. Figure 2.4 shows that the titanium 

dioxide layer is nanoporous. This increases the surface area, so that more dye can be 

adsorbed. This does again enable more light to be absorbed by the DSSC.  
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Figure 2.4: The DSSC, illustrated with emphasis on the nanoporous titanium 

dioxide layer. The white circles are nanoporous titanium dioxide, which is coated with a 

dye (light red). The purple area illustrates the electrolyte. The glass anode is in contact 

with both the titanium dioxide and the electrolyte. The thickness of the titanium dioxide 

layer is denoted with 𝒅. There is often a porous reflective layer to the right of the 

titanium dioxide layer, which is not shown in this figure. 

 

2.2 The dye and the electrolyte 

A good dye for a DSSC needs to fulfill several requirements. First of all, it needs to be 

effective at absorbing photons. The thickness of the titanium dioxide layer is limited, and thus 

is also the amount of the surface area which the dye can adsorb onto. It is therefore important 

that the limited amount of adsorbed dye can absorb as much of the light as possible. Next, the 

dye needs to absorb photons with the right energies. An ideal dye for a single dye DSSC 

would absorb all photons from the near infrared region and up [6]. This combination of both 

broad and strong absorption is however hard to achieve, since strong absorption typically also 

means narrow absorption[13]. Though if ideal absorption is achieved, then that would enable 

a theoretical maximum efficiency slightly above 30% [6]. This is the same theoretical 

efficiency as of a traditional single junction solar cell, as given by the Shockley-Queisser limit 

[14]. The cells which are examined in this thesis are made with a single dye, but it can be 

mentioned that DSSC’s can be made with multiple dyes with different absorption as well. 

This would be analogous to tandem cells, and would allow even higher efficiencies [6].  

There are also structural requirements for a good dye. First, it needs an anchoring group[12]. 

That is, a part of the molecule must be designed to attach to the titanium oxide, ensuring good 

adsorption. It is useful to introduce the terms HOMO and LUMO to understand the other 

structural requirements. Highest occupied molecular orbital, abbreviated HOMO, is the orbital 

in a molecule where the electron highest in energy resides. Lowest unoccupied molecular 

orbital, abbreviated LUMO, is the orbital with lowest energy that is unoccupied. Simplified, it 

can be said that an electron is excited from HOMO to LUMO when a photon is absorbed by 

TiO2-layer Glass Glass 

𝑑 
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the dye [12]. The excited state with an electron in LUMO is not stable, and in a ruthenium-

dye the electron will fall back into the HOMO in the timespan of 10−8s[6]. What makes dyes 

used for DSSC’s special, is the spatial position of the HOMO and LUMO. LUMO should 

preferably be close to or at the anchoring group, while the HOMO should be separate from the 

LUMO. This is shown in Figure 2.5 for the ruthenium-free dye AFB8. When an electron is 

excited to the LUMO orbital, it will have a shorter distance to the titanium dioxide than to the 

HOMO. Thus, it will have a kinetic favoring of going to the titanium dioxide. This kinetic 

favoring needs to be considerably stronger than the energetic favoring of the electron falling 

back to HOMO. The electron is said to be “injected” into the titanium dioxide when it goes 

from LUMO to the titanium dioxide. The fraction of electrons in LUMO that are injected, 

instead of falling back to HOMO, is called the injection efficiency. For a ruthenium-dye, the 

injection process happens in the timespan of 10−11 to 10−13 s[12], considerably faster than de 

de-excitation. This is contributed to the short distance between the titanium dioxide and the 

LUMO, and ensures high injection efficiency. The whole process, from a dye absorbing a 

photon to it injects an electron is illustrated in Figure 2.5. DSSC’s can be made with natural 

dyes. For instance, something as simple as blackberry dye can be used [15, 16]. However, 

even though natural dyes can have strong absorption, they typically do not meet the structural 

requirements, and have not achieved efficiencies higher than ~2% as of 2015[17]. This 

illustrates the importance of the dye’s structure. 
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Figure 2.5: The structure of the organic dye AFB8 used in a DSSC in this work. 

To the right is 𝐓𝐢𝐎𝟐 which the dye is attached to the surface of. The blue circle to the left 

indicated the position of the HOMO. The blue circle to the right is the position of the 

LUMO and the anchoring group. To the right is also the titanium dioxide which the 

anchoring group is attached to. The green arrow symbolizes a photon which is absorbed 

by the dye. This results in an electron being excited to the LUMO, before being injected 

into the titanium dioxide. This figure is based on information from Audun Formo Buene 

at the department of chemistry, NTNU.  

 

The injection efficiency is often treated as independent of the potential in the titanium dioxide 

[6]. This is only true up to a certain potential however. The energy for electrons in the 

titanium dioxide needs to be lower than the energy for an electron in LUMO, for injection to 

occur. It is not enough that the injection process is kinetically favored, it must also be 

energetically possible. The needed energy difference is indicated in Figure 2.2. However, 

even at potentials over the DSSC as high as 1070 mV, the decrease in injection efficiency was 

only found to be from 83% to 76% for a N719-based DSSC [18]. To comparison, the highest 

potentials measured in this thesis were around 600 mV. This indicates that the potential 

dependence can be neglected, at least for the moderate light intensities used in this work. 

The energy level of HOMO needs to match with the electrolyte, both when the dye molecule 

is ionized and in its neutral state. This is so that the dye is stable in contact with the 

electrolyte, and so that the electrolyte will be able to regenerate the dye, as shown in Figure 

2.1 c). This can also be looked at the other way around, by saying that the electrolyte needs to 

have an energy level which matches well with the dye’s energy level.[6] 

Three criteria for a good electrolyte are high conductivity, quick transportation of 𝐼−/𝐼3
−, and 

fast kinetics for reaction c) and d) in Figure 2.1. These criteria need to be fulfilled to avoid 

potential losses between the cathode and the anode, as shown in Figure 2.3. It is especially for 

high current densities in DSSC’s which are made with thick nanoporous anodes that the 

TiO2 

HOMO 

𝑒− 

ℎ𝜈 

𝑒− 

CO2H 
NC 

LUMO 
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aforementioned criteria are of high importance. The kinetic overpotential at the anode is often 

minimized by using a platinum catalyst at the cathode. The transport overpotential can be 

minimized by using a thin titanium dioxide layer, but this will also decrease the absorption. A 

thick nanoporous anode on the other hand, will be able to absorb much of the light, but have 

increased transport overpotential due to a longer distance for the 𝐼−/𝐼3
− to diffuse through the 

nanoporous titanium dioxide. Thus, there is a tradeoff between potential loss and absorption 

efficiency. However, for low enough current densities in properly designed cells, both ohmic, 

kinetic and transport overpotentials are assumed neglectable[1].[6] 

2.3 Transport and recombination in the titanium dioxide 

An electron which has been injected into the titanium dioxide can either be transported to the 

TCO and collected, or it can recombine. The transportation in the titanium dioxide is mainly 

diffusion driven. This is because the electrolyte shields the electrons from electrical fields in 

the nanoporous titanium dioxide. With negligible electrical fields to cause drift, it is only the 

concentration gradient which will fuel the transportation. The average time it takes for an 

electron to diffuse through the titanium dioxide and be collected, is often denoted with a time 

constant[19]. This characteristic time is in this work labeled 𝜏𝑡𝑟𝑎𝑛𝑠. 

Recombination is the process of the injected electron reacting from the titanium dioxide and 

back into the electrolyte or with the oxidized dye. This is shown in Figure 2.6 The electrons in 

the conduction band will be at a higher potential than the electrolyte, and it is thus 

energetically favorable to recombine with the electrolyte or the oxidized dye. A good DSSC is 

dependent on unfavorable kinetics for this back reaction. In the same way as for 

transportation, a time constant can be defined for recombination[20]. In this work, it is labeled 

𝜏𝑟𝑒𝑐. It is a measure of the average time an electron resides in the titanium dioxide before it 

recombines. The more kinetically unfavorable the recombination, the higher the 

recombination time constant will be. The recombination with the electrolyte is the dominant 

reaction for DSSC’s with 𝐼−/𝐼3
−-based electrolytes, because the  oxidized dye is regenerated 

by the electrolyte very quickly[6]. 
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Figure 2.6: The same as Figure 2.2, but with recombination included as well.  

Electrons in the conduction band can recombine with both the electrolyte and the 

oxidized dye. It is only shown recombination with the electrolyte in this figure. 

 

The ratio of the recombination time constant and the transportation time constant gives a 

qualitative indication of how effectively electrons are collected at the anode. A large time 

constant for recombination and a small time constant for transportation implies that most 

electrons will be transported before they get time to recombine. The transportation is quicker 

than the recombination in this case. The ratio between injected electrons and collected 

electrons is an important parameter in the evaluation of a DSSC. This ratio is called the 

charge collection efficiency, and will be discussed further in the next section. The charge 

collection efficiency is however somewhat complicated to calculate, because the 

recombination and transportation rates are nonlinear with respect to electron 

concentration[10].[21] 

The nonlinearity of both transportation and recombination arises due to trapping of electrons 

in the titanium dioxide. Once injected into the titanium dioxide, most of the electrons fall into 

trapped states. There is an equilibrium between the trapped states and the free states in the 

titanium dioxide. Electrons in trapped states cannot diffuse nor recombine, but the free 

electrons can. Thus, the state of the equilibrium between free and trapped states greatly 

influences both recombination and transportation dynamics. This equilibrium is for instance 

dependent on the illumination of the DSSC.[1, 6] 

2.4 Incident photon to electron conversion efficiency 

The theory of DSSC’s which has been presented so far, can be summarized to a large degree 

in the “incident photon to electron conversion efficiency”, commonly abbreviated IPCE. The 

IPCE can be expressed as[22]: 

ℎ𝜈 

Light absorption 

Injection 

Regeneration of dye 

Regeneration of 
electrolyte 

Transport 
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 𝐼𝑃𝐶𝐸 = 𝜂𝑎𝑏𝑠𝜂𝑖𝑛𝑗𝜂𝑐𝑐 (1) 

Where 𝜂𝑎𝑏𝑠 is the absorbance efficiency, 𝜂𝑖𝑛𝑗 is the injection efficiency, and 𝜂𝑐𝑐 is the charge 

capture efficiency. The absorption efficiency is the amount of photons which are absorbed by 

the dye, divided by the amount which enters the DSSC. 𝜂𝑎𝑏𝑠 = 1 would be the case of all the 

light shining on the DSSC being absorbed by the dye at some point. Thick nanoporous 

titanium dioxide layers will have much surface area, enabling large amounts of dye to be 

absorbed by the titanium dioxide. The stronger absorption of the dye molecules, the more of 

the absorption of photons. Thus, DSSC’s with thick nanoporous titanium dioxide layers, 

stained with dyes with strong absorption, will give high absorption efficiencies. 

The injection efficiency is the fraction of absorbed photons which result in an electron being 

injected into the titanium dioxide. 𝜂𝑖𝑛𝑗 = 1 corresponds to the case of one electron being 

injected into the titanium dioxide for every photon which is absorbed. As previously 

mentioned, a high 𝜂𝑖𝑛𝑗 is dependent on a carefully designed molecular structure. It is also 

dependent on that the potential is low enough in the titanium dioxide. The structure makes the 

injection process kinetically favorable, while the potential needs to be low enough so that the 

injection process is energetically possible. 

The charge capture efficiency, 𝜂𝑐𝑐, is the fraction of injected electrons which are successfully 

transported through the titanium dioxide and collected at the TCO. 𝜂𝑐𝑐=1 is the case when 

every injected electron ends up being collected at the TCO. Quick transportation and slow 

recombination promotes high charge capture efficiency.  

The IPCE can be measured experimentally by using the relation: 

 𝐼 = 𝐼𝑃𝐶𝐸 ∗ Φ ∗ 𝐾𝐺  (2) 

Where 𝐼 is the current, Φ is the light intensity shining on the cell, and 𝐾𝐺 is a constant. These 

are explained in more detail in section 3. From equation (2) it can be seen that the IPCE has to 

be zero for the case of open circuit. This will typically be because the recombination limits the 

build-up of electrons in the titanium dioxide, and thus the potential. For an ideal DSSC 

however, the recombination would be zero. The IPCE would still have to be zero at open 

circuit. This would then be due to the injection efficiency going towards zero as the energy 

difference between LUMO in the dye and the potential in the titanium dioxide goes toward 

zero. For all other potentials, the IPCE would be 100% for the case of ideality.  
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3 Mathematical models 

Modelling of DSSC’s stretches back to the 90’s. One of the first publications on the topic was 

Sødergrens paper “Theoretical Models for  the Action Spectrum and the Current-Voltage 

Characteristics  of Microporous Semiconductor Films  in  Photoelectrochemical Cells”[23] 

from 1994. Here it was established that an analytical model for the IV-characteristics of 

DSSC’s could be developed by considering the electron transport in the semiconductor as 

purely diffusion driven. This model is hereafter described as the “diffusion model”. The 

original diffusion model treated diffusion and recombination as linear processes in the 

DSSC’s. However, it is now known that neither transportation nor diffusion behaves linearly, 

due to trapping and de-trapping, as mentioned in section 2.3. The diffusion model has been 

expanded and adjusted several times [24-26], to account for these non-linearities.  

A numerical variant of the diffusion model was presented by Anta et al. in the paper “A 

continuity equation for the simulation of the current–voltage curve and the time-dependent 

properties of dye-sensitized solar cells”[1]. Being numerical, the model can consider both 

non-linear diffusion and non-linear recombination, and also predict the transient in the cell 

when the light intensity is switched from one steady illumination to another. It can however 

not predict the small amplitude perturbation behavior for a DSSC. This behavior is of great 

interest for the common characterization techniques IMPS and IMVS, as will be explained in 

subsection 3.3. The goal with this section, is to show how Anta et al.’s variant of the diffusion 

model can be expanded to include small amplitude perturbation in the form of IMPS- and 

IMVS-spectra. 

An analytical model for the IMPS-spectra has been presented by Dloczik [27], and an 

analytical model for IMVS-spectra has been presented by Kern [20]. A numerical model that 

treats the non-linear recombination and calculates the EIS-spectra of a DSSC has been 

presented by Cappellutti [28]. But a variant of the diffusion model which considers the non-

linear behavior of both  recombination and diffusion, and also predicts IMPS- and IMVS-

spectra, has as far as the author knows not been presented before.  
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3.1 The diffusion model as presented by Anta et al. [1] 

Anta et al.’s variant of the diffusion model rests on mainly eight assumptions and 

approximations which are given in Table 3.1: 

Table 3.1: Assumptions and approximations as written in Anta et al.’s model. 

  

Approximation 1  

Approximation 2  

Approximation 3  

Approximation 4  

Assumption 1 

Assumption 2 

 

Assumption 3 

Assumption 4 

-Charge transport occurs only by diffusion 

-Electron density and Fermi level are related by Boltzmann statistics 

-The I–V curve is determined by the electronic part only 

-A quasi-static equilibrium holds between free and trapped electrons 

-Electron traps exist in the nanostructured semiconductor 

-Traps in the semiconductor fit to an exponential distribution of 

energies 

-Electron transport occurs according to the multiple-trapping model 

-Effective diffusion coefficient, pseudo-first order recombination 

constant, and electron diffusion length correspond to quantities 

measured by small-perturbations techniques 

 

Based on these approximations, the following equations are presented by Anta for describing 

the electron concentration in a DSSC. The model treats the DSSC as one dimensional, since 

the thickness of the cell is in the micrometer range and is a lot smaller than the length and 

height which is in the mm range or more.  The first equation presented below, equation (3), 

states that the change in electron concentration at a given point will equal the sum of three 

different terms. This equation is called the continuity equation, and makes the fundament for 

the diffusion model. It is by solving it numerically for steady state condition that Anta et al 

calculates the current voltage characteristics. 

 
𝜕𝑛(𝑥, 𝑡)

𝜕𝑡
= 𝐽𝐷 + 𝐽𝐺 − 𝐽𝑅 (3) 

Where 𝑛 is the total electron concentration at a given point in the cell. The total electron 

concentration is the sum of both free electrons and trapped electrons. 𝑡 is the time, 𝑥 is the 

position in the cell, where 𝑥 = 0 is defined as the boundary between the TCO anode and the 

titanium dioxide.  𝐽𝐷 is a term describing the net diffusion of electrons, 𝐽𝐺  is a term describing 

how many electrons which are generated/injected, and 𝐽𝑅 is a term describing how many 

electrons which recombine. 𝐽𝐷, 𝐽𝐺  and 𝐽𝑅 are all functions of 𝑥, and can also be functions of 𝑡.  

The diffusion term in equation (3) is expressed as [1]: 

 𝐽𝐷 =
𝜕

𝜕𝑥
(𝐷𝑛(𝑛)

𝜕𝑛

𝜕𝑥 
) (4) 

 

Where 𝐷𝑛 is a diffusion “constant” which depends on the total electron concentration. This 

dependency is expressed as [1]:  
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 𝐷𝑛 =   𝐷𝑟𝑒𝑓 (
𝑛

𝑛𝑟𝑒𝑓
)

1−𝛼
𝛼

 (5) 

Where 𝐷𝑟𝑒𝑓 is the diffusion constant at a reference state, 𝑛𝑟𝑒𝑓 is the electron concentration at 

the same reference state, and 𝛼 is an experimentally accessible parameter, reflecting the 

average energy of the trap states below the conduction band.  

The recombination rate is expressed as quasi first order [1]: 

 𝐽𝑅 =
𝛽

𝛼
𝑘𝑙(𝑛)𝑛 (6) 

Where 𝛽 is an experimentally accessible parameter, and 𝑘𝑙(𝑛) is the recombination reaction 

rate “constant” which depends on the electron concentration in the following way [1]: 

 𝑘𝑙(𝑛) = 𝑘𝑟𝑒𝑓 (
𝑛

𝑛𝑟𝑒𝑓
)

𝛽−𝛼
 𝛼

  (7) 

Where 𝑘𝑟𝑒𝑓 is the reaction rate constant at a given reference state. This reference state should 

be the same as the reference state for 𝐷𝑟𝑒𝑓 and 𝑛𝑟𝑒𝑓. It is set to be the DSSC when it is in the 

dark, in both this work and in the work by Anta et al. This state with no illumination, is 

denoted with the subscript 0. 𝐷𝑟𝑒𝑓, 𝑘𝑟𝑒𝑓 and 𝑛𝑟𝑒𝑓  is therefore replaced with 𝐷0, 𝑘0 and 𝑛0 

for the rest of this thesis. 

The time constant for recombination 𝜏𝑟𝑒𝑐, i.e. the average lifetime for electrons in the 

conduction band of the titanium dioxide, can according to Anta et al. be expressed as [1]: 

 𝜏𝑟𝑒𝑐 = 𝑘𝑙
−1 = (𝑘0 (

𝑛

𝑛0
)

𝛽−𝛼
 𝛼

)

−1

 (8) 

The time constant for transportation 𝜏𝑡𝑟𝑎𝑛𝑠, i.e. the average time it takes from an electron is 

injected into the titanium dioxide until it is collected at the anode, can according to Anta et al. 

be expressed as [1]: 

 𝜏𝑡𝑟𝑎𝑛𝑠 =
𝑑2

2.77𝐷𝑛
 (9) 

The potential in the anode can be expressed as [1]: 

 𝑉(𝑥) =
𝑘𝐵𝑇

𝛼𝑞
ln (

𝑛(𝑥)

𝑛0
) (10) 

Where 𝑉 is the potential, 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, and 𝑞 is the 

elementary charge.  

The generation term is given as [1]:  
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 𝐽𝐺 = ∫ 𝜂𝑖𝑛𝑗𝐼0(𝜆)𝜖𝐴𝑛𝑡𝑎(𝜆)(1 − exp[−𝜖𝐴𝑛𝑡𝑎(𝜆)𝑑]) exp[−𝜖𝐴𝑛𝑡𝑎(𝜆)𝑥] 𝑑𝜆
𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

 (11) 

Where 𝜂𝑖𝑛𝑗 is the injection efficiency, 𝐼0(𝜆) is the solar spectrum, and 𝜖𝐴𝑛𝑡𝑎 is the absorption 

coefficient used in Anta et al.s work for a given dye in the DSSC. The injection efficiency is 

treated in two different ways. It is either set to 1, or it is calculated from [1]: 

 𝜂𝑖𝑛𝑗 =
𝜂𝑖𝑛𝑗0

1 − 𝑝(𝑛/𝑛0)
 (12) 

Where 𝑝 is a constant, and 𝜂𝑖𝑛𝑗0
 is the injection rate in the dark.  

Equation (3) is solved numerically for 𝑛, with the help from equation (4), (5), (6), (7) and 

(11). The current voltage characteristic can be calculated if  𝑛 is known for several different 

potentials over the DSSC. Anta et al. does this by using equation (10) to calculate the 

potential in the titanium dioxide. The potential used in the IV-characteristic will then be the 

potential at the contact between the titanium dioxide and the TCO (at 𝑥 = 0), minus potential 

loss due to series resistance. It is assumed that Anta et al. used resistive potential loss of the 

form: 

 𝑉𝑙𝑜𝑠𝑠,𝑅𝑠
= 𝐼𝑅𝑠 (13) 

Where 𝑉𝑙𝑜𝑠𝑠,𝑅𝑠
 is the resistive potential loss, 𝐼 is the current generated by the DSSC and going 

through the circuit, and 𝑅𝑠 is the series resistance, resulting from resistive losses in the TCO, 

the electrolyte, and in wires and leads. The current going through the circuit is calculated from 

the gradient in the electron concentration 𝑛 at the contact (x=0). 

Anta et al. needs to determine several parameters to solve equation (3) and obtain the current 

voltage characteristic. These parameters are 𝛼, 𝛽, 𝑘0, 𝐷0, 𝑛0, 𝑅𝑠, 𝜂𝑖𝑛𝑗, 𝑝 and 𝜖𝐴𝑛𝑡𝑎. To 

determine 𝛼 and 𝛽, Anta et al. used the following expressions [1]: 

 𝐶(𝑉) = 𝐶0 exp (
𝛼𝑉

𝑘𝐵𝑇
) (14) 

 𝑅𝑟(𝑉) = 𝑅𝑟0
exp (−

𝛽𝑉

𝑘𝐵𝑇
) (15) 

Where 𝐶 is the capacitance, 𝐶0 is the capacitance at a reference state, 𝑅𝑟 is the recombination 

resistance and 𝑅𝑟0
 is the recombination resistance at a reference state. The capacitance and 

recombination resistance were measured as functions of the potential, by using 

electrochemical impedance spectroscopy on the DSSC’s in the dark. They were then plotted 

semi logarithmically to give a straight line, and 𝛼 and 𝛽 was determined from linear 

regression. This is explained in more detail in section 3.4.2.1. 

It was somewhat unclear how Anta et al. determined 𝐷0, but it seemed that an analytical 

model in [27] was used together with IMPS-measurements at different potentials. 𝑘0 was 

estimated by adjusting 𝑘0 so that the open circuit potential, 𝑉𝑜𝑐, matched with experimental 
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results. 𝜖𝐴𝑛𝑡𝑎 was estimated from the short circuit current, 𝐼𝑠𝑐, by assuming that there were no 

recombination losses at short circuit conditions. 𝑅𝑠 was estimated from the point on the IV-

characteristic giving the largest power. 𝑝 was determined in the same way as 𝑅𝑠. Anta et al. 

neglected 𝑅𝑠 when calculating 𝑝, and vice versa. How 𝑛0 was determined, was never stated in 

the article, nor in the supplementary material for the article. This is strange, since 𝑛0 

influences the IV-characteristic greatly, and there is no straight forward way to determine it 

experimentally that the author is aware of. 

3.2 Numerical solution of the steady state equations 

This section proposes how a set of two first order differential equations describing the steady 

state behavior of a DSSC can be achieved, by using the equations in section 3.1 with some 

minor modifications. The two differential equations which are obtained can be solved to find 

the electron density in the titanium dioxide as a function of both position and for the potential 

applied over the DSSC. This makes the basis for modeling the IV-characteristics of a DSSC. 

The starting point is the same as in section 3.1, namely equation (3), which for steady state is 

written: 

 𝐽𝐷 + 𝐽𝐺 − 𝐽𝑅 = 0 (16) 

Next, equation (6) and (7) are combined, the notation  
𝛽−𝛼

𝛼
= 𝑏 is introduced and the reference 

state is set to be the DSSC with no illumination. The recombination can then be written: 

 𝐽𝑅 =
𝛽

𝛼
𝑘0 (

𝑛

𝑛0
)

𝑏

𝑛 (17) 

 By combining equation (4) and (5), and defining  
1−𝛼

𝛼
= 𝑎, the following expression is 

achieved for the diffusion term: 

 𝐽𝐷 =
𝜕

𝜕𝑥
(𝐷0 (

𝑛

𝑛0
)

𝑎 𝜕𝑛

𝜕𝑥 
) (18) 

The current being collected at the TCO can be found from: 

 𝐼 = 𝐷0 (
𝑛

𝑛0
)

𝑎 𝜕𝑛(𝑥 = 0)

𝜕𝑥 
 (19) 

The generation term, 𝐽𝐺 , in this thesis differs from the generation term used in Anta et al.’s 

work. There are two reasons for this. The first is that monochromatic light was used in all the 

measurements in this work, and thus there is no need for wavelength dependent absorption 

coefficient. Next, the DSSC’s which were tested in this work were equipped with a 

backscatter layer. That is, a layer designed to reflect the light which is not absorbed back 

though the solar cell. This increases the absorption efficiency, or alternatively permits a 

thinner titanium dioxide layer to be used in the cell. If Beer-Lambert profile for the light 

absorbance is assumed, then the generation term can be expressed as: 
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 JG = ηinjΦssKGϵ(e−ϵx + ηrefle
ϵ(x−2d)) (20) 

Where Φ𝑠𝑠 is the steady state intensity of the light shining on the cell, 𝜖 is the absorption 

coefficient, 𝜂𝑟𝑒𝑓𝑙 is the reflection efficiency of the reflective backscatter layer, and 𝑑 is the 

thickness of the nanoporous titanium dioxide layer. For the above equation to be valid, all the 

light shining on the cell must have an equal absorption, which will be the case for 

monochromatic light. 𝐾𝐺 is a constant defined 𝐾𝐺 =
𝜆𝑞

ℎ𝑐
, where 𝜆 is the wavelength of the 

monochromatic light shining on the cell, 𝑞 is the elementary charge, ℎ is Planck’s constant, 

and 𝑐 is the speed of light. 𝐾𝐺 has unit C. j−1  and is introduced so that the unit for the 

generation term becomes C. m−3. s−1.  

 

Next, the following abbreviations are introduced: 

 𝜂𝑖𝑛𝑗𝐾𝐺𝜖(𝑒−𝜖𝑥 + 𝜂𝑟𝑒𝑓𝑙𝑒
𝜖(𝑥−2𝑑)) = 𝛬(𝑥) (21) 

 

 

𝛽

𝛼

𝑘0

𝑛0
𝑏  = 𝐾𝑅  (22) 

 
𝐷0

𝑛0
𝑎 = 𝐾𝐷 (23) 

The generation term, recombination term and diffusion term can then be written 

 𝐽𝐺 = Φ𝑠𝑠Λ(𝑥) (24) 

 

 
𝐽𝑅 = 𝐾𝑅𝑛(𝑏+1) (25) 

 𝐽𝐷 =
𝜕

𝜕𝑥
(𝐾𝐷𝑛𝑎

𝜕𝑛

𝜕𝑥 
) (26) 

By combining equation (16), (24), (25) and (26) the following expression is achieved: 

 0 =
𝜕

𝜕𝑥
(𝐾𝐷𝑛𝑎

𝜕𝑛

𝜕𝑥 
) + Φ𝑠𝑠Λ(𝑥) − 𝐾𝑅𝑛(𝑏+1) (27) 

Equation (27) is split into two first order differential equations by defining a variable 𝐹 as: 

 𝐹 = 𝐾𝐷𝑛𝑎
𝜕𝑛

𝜕𝑥 
 (28) 

Giving the set consisting of 

 
𝝏𝒏

𝝏𝒙 
=

𝑭

𝑲𝑫𝒏𝒂
 (29) 

 𝝏𝑭

𝝏𝒙 
= −𝚽𝒔𝒔𝚲(𝒙) + 𝑲𝑹𝒏(𝒃+𝟏) 

(30) 
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This system of two first order differential equations needs two boundary conditions to be 

solved. One comes from the fact that there cannot be any current flowing at the right side 

boundary of the titanium dioxide, regardless of the potential over the cell. This implies that 

the right-side boundary condition must be: 

 
𝑑𝑛(𝑥 = 𝑑, 𝑡)

𝑑𝑥
= 0 (31) 

The left-side boundary condition will depend on what potential is applied to the cell. It is 

assumed that the electron concentration at the boundary between the TCO and the titanium 

dioxide is given by equation (10). This leads to the right side boundary condition being 

expressed as: 

 
𝑛(𝑥 = 0, 𝑡)

𝑛0
= exp (

𝑉𝛼𝑒

𝑘𝐵𝑇
) (32) 

For the special case of open circuit, the boundary condition at the left side can be expressed 

as: 

 
𝑑𝑛(𝑥 = 0, 𝑡)

𝑑𝑥
= 0 (33) 

for the same reasons as to why the right-side boundary condition is based on the derivative. 

For the special case of short circuit equation (32) becomes: 

 
𝑛(𝑥 = 0, 𝑡)

𝑛0
= 1 (34) 

3.3 Extension to a model for small amplitude perturbations 

Two common small amplitude perturbation techniques used for characterizing dye sensitized 

solar cells are IMPS (intensity modulated photocurrent spectroscopy) and IMVS (intensity 

modulated photovoltage spectroscopy). These techniques are based on illuminating the 

DSSC’s with modulated light on the form: 

 Φ = Φ𝑠𝑠 + 𝛷𝑡 = Φ𝑠𝑠 + 𝛷𝐴𝑒𝑖𝜔𝑡 (35) 

Were Φ𝐴 is a constant giving the amplitude to the modulation of the light, 𝜔 is the angular 

velocity and 𝑖 is the imaginary number. Φ𝐴 is typically between 1-10% of Φ𝑠𝑠, hence why it 

is called small amplitude perturbations. IMPS is based on measuring the current response for 

different frequencies/angular velocities. IMVS is based on measuring the potential response 

for different frequencies/angular velocities. IMVS is typically performed at open circuit while 

IMPS is typically performed at short circuit. The IMPS/IMVS response will to a varying 

degree be out a phase with the modulated light, dependent on the angular velocity. A practical 

way of presenting this effect, is to divide the response into a real part which is completely in 

phase, and an imaginary part which is completely out of phase. The frequency which gives the 

largest imaginary response is often of interest, and it is common to plot the imaginary 
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response as a function of frequencies (Bode plot). These plots are called the IMVS and IMPS 

spectra in this thesis.  

This section proposes how a set of four first order differential equations can be developed 

from Anta et al.’s equations in section 3.1, to describe small amplitude perturbation. These 

four equations can be solved numerically to obtain 𝑛(𝑥, 𝑡), which can give either the potential 

response or the current response for a DSSC for different angular velocities/frequencies. In 

other words, IMVS and IMPS spectra can be produced from this extended model. The 

motivation for doing this is to gain more information from experimental IMPS and IMVS 

spectra.   

This model is based on solving the time dependent case of the continuity equation, equation 

(3), in contrast to the steady state model shown in section 3.2.  

First it is assumed that the electron concentration can be written on the same form as Φ, just 

with a phase difference: 

 𝑛 = 𝑛𝑠𝑠 + 𝑛𝑡 = 𝑛𝑠𝑠 + 𝑛𝐴𝑒𝑖(𝜔𝑡+𝜙) (36) 

Were 𝜙 is the phase difference, 𝑛𝑠𝑠 is the steady state part of the electron concentration, 𝑛𝑡 is 

the time dependent part, and 𝑛𝐴 is the amplitude of the time dependent part. The generation 

term, diffusion term, and recombination term is then rewritten with the help of equation (35) 

and (36), giving: 

 𝐽𝐺 = (Φ𝑠𝑠 + 𝛷𝑡)Λ(𝑥) (37) 

 

 𝐽𝑅 = 𝐾𝑅(𝑛𝑠𝑠 + 𝑛𝑡)(𝑏+1) (38) 

 

 𝐽𝐷 =
𝜕

𝜕𝑥
(𝐾𝐷(𝑛𝑠𝑠 + 𝑛𝑡)𝑎

𝜕𝑛

𝜕𝑥 
) (39) 

 

Next, (𝑛𝑠𝑠 + 𝑛𝑡)(𝑏+1) and (𝑛𝑠𝑠 + 𝑛𝑡)𝑎 are Taylor expanded and truncated after the two first 

terms, giving: 

 𝑛𝑏+1 ≅ 𝑛𝑠𝑠
𝑏+1 + 𝑛𝑡(𝑏 + 1)𝑛𝑠𝑠

𝑏    (40) 

 

 𝑛𝑎 ≅ 𝑛𝑠𝑠
𝑎 + 𝑛𝑡𝑎𝑛𝑠𝑠

(𝑎−1)
 (41) 

The recombination and diffusion term can then be approximated to: 
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 𝐽𝑅 ≅ 𝐾𝑅(𝑛𝑠𝑠
𝑏+1 + 𝑛𝑡(𝑏 + 1)𝑛𝑠𝑠

𝑏 )  (42) 

 

 𝐽𝐷 ≅
𝜕

𝜕𝑥
(𝐾𝐷(𝑛𝑠𝑠

𝑎 + 𝑛𝑡𝑎𝑛𝑠𝑠
(𝑎−1)

)
𝜕𝑛

𝜕𝑥 
) (43) 

 

By rewriting the recombination and diffusion term the following expressions are achieved: 

 𝐽𝑅 ≅ 𝐾𝑅(𝑛𝑠𝑠
(𝑏+1)

+ 𝑛𝑠𝑠
𝑏 𝑛𝑡 + 𝑛𝑡𝑏𝑛𝑠𝑠

𝑏 ) (44) 

   

 𝐽𝐷 ≅ 𝐾𝐷

𝜕

𝜕𝑥
(𝑛𝑠𝑠

𝑎
𝜕𝑛𝑠𝑠

𝜕𝑥 
+ 𝑛𝑠𝑠

𝑎
𝜕𝑛𝑡

𝜕𝑥 
+ 𝑛𝑡𝑎𝑛𝑠𝑠

(𝑎−1) 𝜕𝑛𝑠𝑠

𝜕𝑥 
+ 𝑛𝑡𝑎𝑛𝑠𝑠

(𝑎−1) 𝜕𝑛𝑡

𝜕𝑥 
) (45) 

The last term in equation (45) is of higher order than the other terms, and if the amplitude of 

the light is small enough, giving a small enough 𝑛𝑡, then it is assumed safe to approximate it 

equal to zero, giving: 

 𝐽𝐷 ≅ 𝐾𝐷

𝜕

𝜕𝑥
(𝑛𝑠𝑠

𝑎
𝜕𝑛𝑠𝑠

𝜕𝑥 
+ 𝑛𝑠𝑠

𝑎
𝜕𝑛𝑡

𝜕𝑥 
+ 𝑛𝑡𝑎𝑛𝑠𝑠

(𝑎−1) 𝜕𝑛𝑠𝑠

𝜕𝑥 
) (46) 

The equation describing the steady state solution to the system, Equation (27), enables the 

steady state terms of equations (37), (44) and (46) to be removed. This is because the sum of 

the steady state parts cancel each other out. Combining equations (37), (44) and (46) and 

removing the steady state terms yield: 

 

 

𝜕𝑛

𝜕𝑡
= 𝐾𝐷

𝜕

𝜕𝑥
(𝑛𝑠𝑠

𝑎
𝜕𝑛𝑡

𝜕𝑥 
+ 𝑛𝑡𝑎𝑛𝑠𝑠

(𝑎−1) 𝜕𝑛𝑠𝑠

𝜕𝑥 
) + Φ𝑡Λ(𝑥) − 𝐾𝑅𝑛𝑠𝑠

𝑏 𝑛𝑡(1 + 𝑏) (47) 

The term to the very left can be written: 

 

 

𝜕𝑛

𝜕𝑡
=

𝜕(𝑛𝑠𝑠 + 𝑛𝐴𝑒𝑖𝜔𝑡𝑒𝑖ϕ)

𝜕𝑡
= 𝑖𝜔𝑛𝐴𝑒𝑖𝜙 (48) 

by applying the relationship 𝑛𝑡 = 𝑛𝐴𝑒𝑖𝜔𝑡𝑒𝑖𝜙 from equation (36). Applying the same 

relationship to equation (47) and rearranging gives: 

 
𝑖𝜔𝑛𝐴𝑒𝑖𝜙 = 𝐾𝐷

𝜕

𝜕𝑥
(𝑛𝑠𝑠

𝑎 𝜕(𝑛𝐴𝑒𝑖𝜙)

𝜕𝑥 
+ 𝑛𝐴𝑒𝑖𝜙𝑎𝑛𝑠𝑠

(𝑎−1) 𝜕(𝑛𝑠𝑠)

𝜕𝑥 
) +

Λ(𝑥)𝛷𝐴 − 𝐾𝑅𝑛𝑠𝑠
𝑏 𝑛𝐴𝑒𝑖𝜙(1 + 𝑏)   

(49) 

Equation (49) is relatively simple to solve, because all the time dependent terms cancelled out 

during the rearrangement. This could be done because every term had the same dependence 

on the time, namely 𝑒𝑖𝜔𝑡. Next, the following notation is introduced: 
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 𝑛𝐴𝑒𝑖𝜙 = 𝑛𝐴 cos(𝜙) + 𝑖𝑛𝐴sin (𝜙) = 𝑃𝑅𝑒 + 𝑖𝑃𝐼𝑚 (50) 

 

This allows equation (49) to be split into a real part: 

 
−𝜔𝑃𝐼𝑚 = 𝐾𝐷

𝜕

𝜕𝑥
(𝑛𝑠𝑠

𝑎
𝜕𝑃𝑅𝑒

𝜕𝑥 
+ 𝑃𝑅𝑒𝑎𝑛𝑠𝑠

(𝑎−1) 𝜕𝑛𝑠𝑠

𝜕𝑥 
)

+ Λ(𝑥)𝛷𝐴− 𝐾𝑅𝑛𝑠𝑠
𝑏 𝑃𝑅𝑒(1 + 𝑏) 

(51) 

And an imaginary part: 

 𝑖𝜔𝑃𝑅𝑒 = 𝑖𝐾𝐷

𝜕

𝜕𝑥
(𝑛𝑠𝑠

𝑎
𝜕𝑃𝐼𝑚

𝜕𝑥 
+ 𝑃𝐼𝑚𝑎𝑛𝑠𝑠

(𝑎−1) 𝜕𝑛𝑠𝑠

𝜕𝑥 
) − 𝑖𝐾𝑅𝑛𝑠𝑠

𝑏 𝑃𝐼𝑚(1 + 𝑏) (52) 

 

Next, the notation 𝐹𝑅𝑒 and 𝐹𝐼𝑚 is introduced: 

 𝐹𝑅𝑒 = 𝐾𝐷𝑛𝑠𝑠
𝑎

𝜕𝑃𝑅𝑒

𝜕𝑥 
+ 𝐾𝐷𝑃𝑅𝑒𝑎𝑛𝑠𝑠

(𝑎−1) 𝜕𝑛𝑠𝑠

𝜕𝑥 
 (53) 

 

 𝐹𝐼𝑚 = 𝐾𝐷𝑛𝑠𝑠
𝑎

𝜕𝑃𝐼𝑚

𝜕𝑥 
+ 𝐾𝐷𝑃𝐼𝑚𝑎𝑛𝑠𝑠

(𝑎−1) 𝜕𝑛𝑠𝑠

𝜕𝑥 
 (54) 

 

Equation (51) and (52) is then split into four first order differential equations which can be 

solved by Matlab: 

 
𝝏𝑷𝑹𝒆

𝝏𝒙 
= −𝑷𝑹𝒆𝒂𝒏𝒔𝒔

−𝟏
𝝏𝒏𝒔𝒔

𝝏𝒙 
+

𝑭𝑹𝒆

𝒏𝒔𝒔
𝒂

  (55) 

 

 
𝝏𝑭𝑹𝒆

𝝏𝒙
=  −𝚲(𝒙)𝜱𝑨 + 𝐊𝐑  𝒏𝒔𝒔

𝒃 𝑷𝑹𝒆(𝟏 + 𝒃) − 𝝎𝑷𝑰𝒎 (56) 

 

 
𝝏𝑷𝑰𝒎

𝝏𝒙 
=

𝑭𝑰𝒎

𝒏𝒔𝒔
𝒂

− 𝑷𝑰𝒎𝒂𝒏𝒔𝒔
−𝟏

𝝏𝒏𝒔𝒔

𝝏𝒙 
 (57) 

 

 
𝝏𝑭𝑰𝒎

𝝏𝒙
= 𝐊𝐑 𝒏𝒔𝒔

𝒃 𝑷𝑰𝒎(𝟏 + 𝒃) + 𝝎𝑷𝑹𝒆 (58) 
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Four boundary conditions are needed to solve this system of first order differential equations. 

For the right boundary, the conditions are the following regardless of the potential over the 

cell: 

 
𝑑𝑃𝑅𝑒(𝑥 = 𝑑, 𝑡)

𝑑𝑥
=

𝑑𝑃𝐼𝑚(𝑥 = 𝑑, 𝑡)

𝑑𝑥
= 0 (59) 

For open circuit, the left-side boundary is the same as the right-side boundary: 

 
𝑑𝑃𝑅𝑒(𝑥 = 0, 𝑡)

𝑑𝑥
=

𝑑𝑃𝐼𝑚(𝑥 = 0, 𝑡)

𝑑𝑥
= 0 (60) 

For all potentials except for circuit, the left-side boundary condition is given by: 

 𝑃𝑅𝑒(𝑥 = 0, 𝑡) = 𝑃𝐼𝑚(𝑥 = 0, 𝑡) = 0 (61) 

 

Equations (55) to (58) must be solved with the right boundary conditions for all desired values 

of 𝜔, before the IMVS spectra be calculated from equation (10): 

 𝑉𝐼𝑚(𝜔) =
𝑘𝐵𝑇

𝛼𝑞
ln (

𝑃𝐼𝑚(𝑥 = 0, 𝜔) + 𝑛𝑠𝑠

𝑛𝑠𝑠
) (62) 

Where 𝑉𝐼𝑚(𝜔) is the imaginary part of the potential response. Similarly, by noticing that 𝐹𝐼𝑚 

is the imaginary part of the diffusion term in equation (49), can the IMPS spectra be 

calculated from: 

 𝐼𝐼𝑚(𝜔) = 𝐹𝐼𝑚(𝑥 = 0, 𝜔) (63) 

Where 𝐼𝐼𝑚(𝜔) is the imaginary part of the current response. 

 

3.4 Implementation in Matlab 

3.4.1 The basics 

The equations in section 3.2 and 3.3 were solved in Matlab. The built-in solver bvp4c was 

used. The thickness of the titanium dioxide layer was discretized into 100 points. The points 

were generated in such a way that the distance between them increased quadratically. This 

ensured that the density of grid points increased towards the boundary between the TCO and 

the titanium dioxide. This was because the numerical solution had a large gradient at the 

boundary between the titanium dioxide and the TCO, and the grid needed to be extra fine 

close to the boundary for bvp4c to be able to solve the equations.  The error tolerance was 

0.1%, meaning that the error in the numerical solution was less than 0.1% from the true 

solution for every grid point. 

The steady state solution was calculated before the small perturbations solution. The steady 

state solution was calculated for open circuit, short circuit, and at 98 potentials spread evenly 

between open circuit and short circuit. These 100 solutions were used to generate the IV-

characteristic. The initial guess had to be good for bvp4c to find the right solution. The steady 
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state solution for open circuit proved to be the simplest one to guess, and was therefore 

calculated first. Then, the solution for open circuit was used to guess the solution for the 

potential just below open circuit, and so on. It was thus avoided having to guess directly what 

all other solutions except the open circuit looked like. The open circuit solution was guessed 

by assuming that the diffusion was so quick that the concentration profile would be flat, so 

that 𝐽𝑅 = 𝐽𝐺  could be solved for 𝑛. This value for n proved sufficient for bvp4c to find the true 

non-flat concentration profile. 

The solution for small amplitude perturbations can only be calculated after the steady state 

solution is known. The initial guess does once again have to be good if bvp4c was to succeed. 

Equation (55), (56), (57) and (58) in section 3.3 were first solved for the smallest angular 

velocities. For small enough angular velocities, the phase difference between the current and 

potential response and the light source will be negligible. This ensures that the imaginary part 

of the response will be negligible, and the initial guess for both 𝐹𝐼𝑚 and 𝑃𝐼𝑚 will thus be zero 

at every grid point. For 𝑃𝑅𝑒 the initial guess was estimated based on two separate steady state 

solutions. One solved for the case of Φ = Φ𝑠𝑠, the other one for Φ = Φss + Φ𝐴. The initial 

guess was set equal to the solution for Φss + Φ𝐴minus the solution for Φ𝑠𝑠. The initial guess 

for 𝑃𝑅𝑒 was set to zero, in lack of any better method. This combination of initial guesses 

proved sufficient for bvp4c to find the solution. Setting all the initial guesses to zero was 

however not sufficient. 

 

3.4.2 Determination of parameters 

This section describes how the parameters 𝛼, 𝛽, 𝑘0, 𝐷0, 𝑛0 and 𝜖 were determined. 𝛼 and 𝛽 

were determined in the same way as in Anta et al.’s work, namely from EIS measurements of 

the cells in the dark. 𝑘0 and 𝐷0 were determined from IMVS and IMPS respectively. 𝑛0 and 𝜖 

were determined from 𝑉𝑜𝑐 and 𝐼𝑠𝑐 respectively. 𝑘0, 𝐷0, 𝑛0 and 𝜖 had to be iterated on, because 

they could not be determined independently from each other. A summary of all the parameters 

and their values can be found in Table 3.2, and a flowchart showing how 𝑘0, 𝐷0, 𝑛0 and 𝜖 

were determined can be found in Figure 3.1. 

3.4.2.1 Determination of 𝜶 and 𝜷 

Equation (14) and (15) were rewritten to: 

 ln(𝐶) =
𝛼𝑉

𝑘𝐵𝑇
+ ln (𝐶0) (64) 

 

ln(𝑅𝑟) =
−𝛽𝑉

𝑘𝐵𝑇
+ ln (𝑅𝑟0

) (65) 

It can now be seen that plotting ln(𝐶) as a function of 𝑉/𝑘𝐵𝑇 should give a straight line with 

a slope equal to 𝛼. In the same way will a plot of ln(𝑅) as a function of 𝑉/𝑘𝐵𝑇 give a straight 

line with slope equal to −𝛽. Both 𝑅𝑟 and 𝐶 was found from data obtained with EIS of the 

DSSC in the dark for different potentials. This data is shown in Figure 5.4. 𝑅 was found as the 
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radius of the half circle Figure 5.4 [29], estimated to be the same as the height of the half 

circle. 𝐶 was found from the relation 𝐶 = (𝑅𝜔𝑚𝑎𝑥)−1 [29], where 𝜔𝑚𝑎𝑥 is the angular 

velocity giving the top of the half circle in Figure 5.4. ln (𝐶) and ln (𝑅𝑟) were plotted versus 

𝑉/𝑘𝐵𝑇 as shown in Figure 5.5 and Figure 5.6, and linear regression was performed to give 𝛼 

and 𝛽. 

3.4.2.2 Determination of initial guesses for 𝒌𝟎, 𝑫𝟎, 𝝐 and 𝒏𝟎 

The first step in the iterative scheme for determining of 𝑘0, 𝐷0, 𝜖 and 𝑛0, was to get initial 

guesses. The guess for 𝑘0 was estimated from the experimental IMVS spectrum and 

simplified equations. The value Anta et al. used for  𝐷0 was used as the initial guess for 𝐷0 in 

this work. The guess for 𝜖 was estimated from the short circuit current, and 𝑛0 was simply set 

to 1 in lack of any way to estimate it. 

A common approximation was used to obtain the initial guess for 𝑘𝑜. This approximation is 

that the time constant for recombination can be expressed as [20]: 

 𝜏𝑟𝑒𝑐 =
1

2𝜋𝑓𝑚𝑖𝑛,𝐼𝑀𝑉𝑆
 (66) 

Where 𝑓𝑚𝑖𝑛,𝐼𝑀𝑉𝑆 is the frequency which give the largest imaginary potential response during 

an IMVS measurement. Next, equation (8), (10) and (66) are combined to obtain: 

 𝑘0 = 2𝜋𝑓𝑚𝑖𝑛,𝐼𝑀𝑉𝑆 (exp (
𝛼𝑉𝑜𝑐𝑒

𝑘𝐵𝑇
))

−𝑏

 (67) 

By inserting 𝑓𝑚𝑖𝑛,𝐼𝑀𝑉𝑆 from the experimental IMVS spectrum and 𝑉𝑜𝑐 from the experimental 

IV-characteristic an initial value for 𝑘0 is obtained. As previously mentioned, the initial value 

for 𝐷0 was obtained by using the value that Anta et al. used for 𝐷0, namely 10−14 m2. s−1. 

The initial guess for 𝜖 was made by assuming that there is no recombination during short 

circuit and that 𝜂𝑟𝑒𝑓𝑙 = 0. No recombination implies that all the injected electrons will 

contribute to the short circuit current. This results in the following expression: 

𝐼𝑠𝑐 = ∫ 𝛷𝐾𝐺𝜖𝑒−𝜖𝑥
𝑥=𝑑

𝑥=0

𝑑𝑥 = 𝐾𝐺𝛷(1 − 𝑒−𝜖𝑑) (68) 

Which can be solved for 𝜖: 

 𝜖 = − 𝑑−1𝑙𝑛 (1 −
𝐼𝑠𝑐

𝛷𝐾𝐺
) (69) 

3.4.2.3 Iteration to find consistent values for 𝒌𝟎, 𝑫𝟎, 𝝐 and 𝒏𝟎 

This subsection describes how the parameters were adjusted during the iteration to ensure that 

the model agreed with the experimental IMPS and IMVS spectra and the IV-characteristic. As 

explained in the previous section, initial guesses for 𝑘0, 𝐷0, 𝜖 and 𝑛0 were chosen, and the 

other parameters were set to the values indicated in Table 3.2. After this, k0, D0, ϵ and n0 was 

iterated on, as shown in Figure 3.1.  
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Figure 3.1: Flowchart illustrating how the parameters 𝐤𝟎, 𝐃𝟎, 𝛜 and 𝐧𝟎 were 

determined through iteration. Notice that each parameter is fitted based on a unique 

experimental value or figure.  

 

 

 

Initital guesses for 

𝑛0,  𝜖,  𝑘0 𝑎𝑛𝑑 𝐷0  

Calculate IV-characteristic 

ห𝑉𝑜𝑐,𝑚𝑜𝑑 − 𝑉𝑜𝑐,𝑒𝑥𝑝ห < 10−5 ? 

|𝐼𝑠𝑐,𝑚𝑜𝑑 − 𝐼𝑠𝑐,𝑒𝑥𝑝 | < 10−1? 

Calcualate IMVS. 
Good fit? 

Calcualate IMPS. 
Good fit? 

Finished. 𝑛0,  𝜖,  𝑘0 and 𝐷0 has 

been determined 

𝑛0 = 𝑛
𝑛0

𝑛
  

𝜖 = 𝜖 + 𝜖 (1 −
𝐼𝑠𝑐,𝑚𝑜𝑑

𝐼𝑠𝑐,𝑒𝑥𝑝
) 

Manually guess new 𝑘0  

Manually guess new 𝐷0  

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 
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First, the IV-characteristic is calculated based on the initial guesses, as shown in Figure 3.1. 

This includes the steady state solution for 𝑛(𝑥) at open circuit. Then a new value for 𝑛0 was 

calculated by utilizing equation (10) and the calculated 𝑛(𝑥 = 0):  

 𝑛0,𝑖+1 = 𝑛
𝑛0,𝑖

𝑛
= 𝑛(𝑥 = 0)𝑒𝑥𝑝 (

𝛼𝑉𝑜𝑐𝑒

𝑘𝐵𝑇
) (70) 

This new value for 𝑛0 was used to calculate a new 𝑛(𝑥), which again was used to calculate a 

new 𝑛0. This continued, until the iterations converged. The criteria for sufficient convergence 

was based on the potential which the steady state solution gave: 

 |𝑉𝑜𝑐,𝑚𝑜𝑑 − 𝑉𝑜𝑐,𝑒𝑥𝑝| < 10−5 (71) 

 Where 𝑉𝑜𝑐,𝑚𝑜𝑑 is the potential calculated by the model from equation (10) with 𝑛(𝑥 = 0), 

and 𝑉𝑜𝑐,𝑒𝑥𝑝 is the potential which was measured experimentally over the DSSC.  

𝜖 was iterated on once 𝑛0 was determined. This was done by: 

 𝜖𝑖+1 = 𝜖𝑖 + 𝜖𝑖 (1 −
𝐼𝑠𝑐,𝑚𝑜𝑑

𝐼𝑠𝑐,𝑒𝑥𝑝
) (72) 

With the criteria of convergence set to: 

 ห𝐼𝑠𝑐,𝑚𝑜𝑑 − 𝐼𝑠𝑐,𝑒𝑥𝑝ห < 0.1 (73) 

Where 𝜖𝑖+1 and 𝜖𝑖 is the next and current calculated absorbance coefficient respectively. 

𝐼𝑠𝑐,𝑚𝑜𝑑 and 𝐼𝑠𝑐,𝑒𝑥𝑝 is the short circuit current provided by the model and from experimental 

data. This iteration is needed, since it was shown that the recombination was significant at 

short circuit, and that equation (69) thus was invalid. It was iterated on 𝑛0 again for every 

time a new 𝜖 was calculated. Thus, the IV-characteristic had to be calculated anew several 

times for each iteration of 𝜖. 

Both 𝑛0 and 𝜖 converged such that 𝐼𝑠𝑐 and 𝑉𝑜𝑐 were the same for the experimental IV- 

characteristic and the modelled IV-characteristic. The iteration on 𝑛0 and 𝜖 was performed 

automatically within the script. Next, 𝑘0 was adjusted such that the minima in the modelled 

IMVS spectrum matched the experimental IMVS spectrum. This was done “manually”, and 

took some time, because 𝑛0 and 𝜖 had to be iterated on again for every value of 𝑘0 that was 

tried. The IMPS spectrum was calculated once the experimental and modelled IMVS spectra 

were considered to match as good as possible. 𝐷0 was adjusted manually as well, until a good 

fit was obtained. This last step was the most time consuming, since all the three previous 

parameters had to be iterated on again. This can be seen in Figure 3.1.   

 



      
 

28 

 

3.4.2.4 𝛈𝐢𝐧𝐣 and 𝛈𝐫𝐞𝐟𝐥 

The injection efficiency, 𝜂𝑖𝑛𝑗, assumed to be independent of the potential over the DSSC, as 

described in section 2.2. The equipment at the lab did not permit higher intensities than 190 

W. m−2. This is a relatively low intensity compared to the often-used standard of one sun, 

which equals about 1000 W. m−2. The potential over the cells depends on the light intensity, 

and was never more than ~0.6 V. It was thus assumed that the assumption of the injection 

efficiency being constant was good. The injection efficiency was also set equal to 1, due to 

lack of any good way to determine it. This assumption is discussed in section 6.2. A lower 

limit for the 𝜂𝑖𝑛𝑗 can however be calculated by rearranging equation (1) into: 

 𝜂𝑎𝑏𝑠𝜂𝑖𝑛𝑗 = 𝐼𝑃𝐶𝐸/𝜂𝑐𝑐 (74) 

By inserting values for IPCE from Table 5.1 and using the common assumption that 𝜂𝑐𝑐 = 1 

at short circuit, it is achieved that the product of the absorption and injection efficiency is 55% 

and 70% for the N719 and AFB8 cell respectively. It follows that this is the lower limit for the 

injection efficiency since the absorption efficiency cannot be more than 100%. It was 

however not managed to determine which of 𝜂𝑎𝑏𝑠 and 𝜂𝑖𝑛𝑗 that result in the loss in the IPCE, 

and it was chosen to assume that it was only 𝜂𝑎𝑏𝑠. The assumption of 𝜂𝑐𝑐 = 1 was however 

tested, and found to be invalid for the 719-DSSC, ref section 6.2. 

A way for estimating 𝜂𝑟𝑒𝑓𝑙 was not known. It was therefore tried mainly with the values of 

𝜂𝑟𝑒𝑓𝑙 = 0 and 𝜂𝑟𝑒𝑓𝑙 = 0.5.   

 

Table 3.2 shows a summary of all the parameters and their values. Notice that the initial guess 

values are quite far from the final values. 

Table 3.2: The parameters used to simulate the IV-characteristic for a DSSC 

based on N719-dye and a DSSC based on AFB8-dye 

Parameter Initial guess Final value N719 Final value AFB8 Unit 

𝐷0  

𝑘0  

𝜖  

𝑛0  

d 

𝛼  

𝛽   

𝜙𝑠𝑠  

Φ𝐴  

𝜂𝑖𝑛𝑗  

𝜂𝑟𝑒𝑓𝑙   

𝜆  

10−14  

0.87 

5.4 ∗ 104 

1 

- 

- 

- 

- 

- 

- 

- 

- 

2.8 ∗ 10−15  

0.14  

3.0 ∗ 105    
17 

15 

0.43 

0.63 

190 

0.05Φ𝑠𝑠 

1 

0 

453 

2.1 ∗ 10−11 

0.24 

8.9 ∗ 104 

5.3 

10 

0.43 

0.63 

190 

0.05Φss 

1 

0.5 

453 

m2. s−1  

s−1  

m−1  

C. m−3  

μm  

- 

- 

W. m2  

W. m2  

- 

- 

nm 
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3.5 Limitations and adjustments of the model 

The presented model has some limitations. One is that it does not include potential losses 

from processes at the cathode, nor potential losses in the electrolyte. These potential losses are 

assumed, as described previously, to be small because for the relatively low intensity of the 

light used. However, they can be treated to some extent by introducing a series resistance, 𝑅𝑠, 

as mentioned in section 3.1. This resistance is a simple way to describe all potential losses, by 

assuming that they are on the form [1]:  

 𝑉𝑙𝑜𝑠𝑠,𝑅𝑠
= 𝐼𝑅𝑠 (75) 

Where 𝑉𝑅𝑠
 is the potential loss due to various mechanisms that are not included in the model, 

such as losses in the electrolyte and at the cathode. The IV-characteristic calculated from the 

model can be adjusted by subtracting 𝑉𝑙𝑜𝑠𝑠,𝑅𝑠
. 𝑅𝑠 can be adjusted so that experiemental IV-

characateristic and modelled IV-characteristic match as good as possible. 

The model does not include current losses apart from those included in the IPCE. 

Experimental data will however often fit better if a shunt resistance, 𝑅𝑠ℎ, with accompanying 

leakage currents is introduced [6]: 

 
𝐼𝑙𝑜𝑠𝑠,𝑅𝑠ℎ

=
𝑉

𝑅𝑠ℎ
 

 

(76) 

Where 𝐼𝑙𝑜𝑠𝑠,𝑅𝑠ℎ
 is the current lost to leakage due to non-infinite shunt resistance. The IV-

characteristic can then be modified to better fit experimental data, by subtracting the 𝐼𝑙𝑜𝑠𝑠,𝑅𝑠ℎ
 

from the 𝐼 predicted by the model. The physical meaning behind the shunt resistance would 

be that the current collected at the TCO has an alternate way to go to the cathode. This 

alternate way is characterized by a resistance, which ideally should be infinite. This alternate 

way could be that the current goes from the TCO and into the electrolyte. 

3.6 Comparison to work by Anta et al. 

There are some differences from the diffusion model presented by Anta et al, and the 

diffusion model used in this work. These are summarized in Table 3.3. The main difference 

would be that the model in this thesis includes both steady state behavior and the small 

amplitude perturbation behavior. This enables calculation of the IMVS and IMPS spectra, in 

addition to the IV-characteristic. Anta et al.’s model calculates the IV-characteristic, and 

stepped light transients (not of interest in this thesis).  A major advantage with calculating the 

IMVS and IMPS spectra, is that they can be used to determine 𝑘0 and 𝐷0.  

Anta et al. states that IMPS is used to calculate 𝐷0, and that 𝑘0 is calculated from 𝑉𝑜𝑐. Anta et 

al. does not explain how 𝐷0 is calculated from IMPS, except for referring to [27]. In [27], 

several approaches to determine the diffusion constant are discussed and demonstrated. It is 

not possible to know which one that was used by Anta et al., but all the approaches were 

analytical and treated the recombination, transportation and electron concentration simpler 

than in the work of Anta et al. 
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The perhaps most striking difference lies in the treatment of 𝑛0 (the electron concentration in 

the titanium dioxide in the dark). Anta et al. does not state how 𝑛0 is calculated, while in this 

thesis 𝑛0 is calculated from 𝑉𝑜𝑐. Anta et al. cannot have calculated 𝑛0 from 𝑉𝑜𝑐, since they 

used 𝑉𝑜𝑐 to determine 𝑘0. It thus seems that 𝑛0 was a free variable in Anta et Al’s work. It is 

considered strange that the value used for 𝑛0 was not even mentioned, while values for the 

other parameters were both given and explained. This was done even though 𝑛0 significantly 

affects the IV-characteristic. Being able to determine every parameter from experimental data 

was considered a significant advantage with this work.  

Table 3.3: How the parameters were determined in this work and in the work by 

Anta et al. 

Parameter Way of determination 

in this work 

Way of determination Anta et al. 

𝐷0  

𝑘0  

𝜖  

𝑛0  

𝛼  

𝛽   

IMPS  

IMVS 

Isc 

Voc  

EIS in dark 

EIS in dark 

IMPS and an analytical model [27] 

Voc 

Isc 

Unknown 

EIS in dark 

EIS in dark 
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4 Experimental 

4.1 Manufacture of the dye sensitized solar cells 

The DSSC’s were manufactured by PhD-candidate Audun Formo Buene at the department of 

organic chemistry at NTNU. The first step in making a DSSC is to make the anode and the 

cathode. The cathode is made by depositing a catalyst on a piece of TCO-coated glass. This 

catalyst is typically a layer of platinum that is so thin that it cannot be seen by the human eye. 

It can also be based on graphite if state of the art efficiency is not needed[15]. The anode is 

prepared by depositing a nanoporous titanium dioxide layer with at thickness in the 

micrometer range. The anode is then sintered. The anode is then submerged in a staining 

solution, typically for several hours. The solution contains the dye(s) and possibly some 

additives. The additives are for increasing the performance of the cell, for example by 

reducing recombination. The anode is ready for being connected to the cathode once the 

staining is done. The dyes which were used for staining can be seen in Figure 4.3 and Figure 

4.4. 

The anode is connected to the cathode by melting a plastic gasket between them. This is done 

as shown in Figure 4.1. The electrolyte is then injected into the compartment made between 

the electrodes and the gasket. The electrolyte is typically injected through a small predrilled 

hole in the cathode, which is not shown in Figure 4.1. The cell is sealed afterwards, and is 

then ready for use. Audun Formo Buene’s own detailed description of the manufacturing 

process can be found in Appendix A. 

The cells were made with five active layers of titanium dioxide. Audun Formo Buene 

measured one of the layers with a profilometer, and based on this assumed a thickness of all 

the layers to be 15 μm. However, Audun Formo Buene stated that it was a rough estimate, 

and a lower bound for the thickness was given at 10 μm. 

It is standard to equip DSSC’s with masks, to ensure that the area of the cell is as exact as 

possible. It was extra important to mask Audun Formo Buene’s DSSC’s since the size of the 

titanium dioxide was somewhat uneven, as can be seen in Figure 4.2. Therefore, all the cells 

were equipped with a circular mask with diameter of 3.5 mm. This ensured that all the 

DSSC’s had the same active area of 9.62 mm2. This was done by drilling holes into black 

electrical tape. The tape was adhered to cardboard for mechanical support when the drilling 

was performed. Care was taken to ensure that the holes in the black electrical tape were 

drilled as similarly as possible. A masked cell can be seen fastened in the apparatus in Figure 

4.5.  
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Figure 4.1: The main parts of a DSSC. First from the left: The mask which has a 

diameter of 3.5 mm. Second from the left: The anode which consists of a glass plate 

coated with TCO. The TCO is again coated with titanium dioxide which has been 

stained with a dye. The stained titanium dioxide layer is the red circular area with a 

diameter of 5.5 mm. Third from the left: The gasket, used to separate and connect the 

electrodes. To the very right is the cathode, which also consists of a glass plate coated 

with TCO and a catalyst. Neither the catalyst nor the TCO can be seen by the eye, and 

are therefore omitted from the figure. Figure 4.2 shows what a DSSC looks like when 

assembled. 
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Figure 4.2: A DSSC fabricated by the methods detailed in the text. The anode is 

the smaller glass plate at the top. The cathode is the larger glass plate at the bottom. The 

dark red area is the stained titanium dioxide. The yellow area is excess electrolyte. The 

gasket can only be seen indirectly, as the border where the yellow area ends. The 

cathode and anode are both painted with metallic paint to increase conductivity.  
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Figure 4.3: The purely organic dye AFB5-098, abbreviated AFB8. Notice that it is 

purely organic, with no metals. 

 

Figure 4.4: The ruthenium dye N719. Notice that it contains a ruthenium atom in 

the center of the anion. 

CO2H 
NC 
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4.2 Experimental setup and characterization 

The experimental setup for the photo-electrochemical measurements consisted of the DSSC 

connected to a potentiostat, while a light source illuminated the DSSC. The light source used 

in the photo-electrochemical setup was a Zahner TLS03 tunable light source. The light source 

was connected to a Zahner XPOT which again was attached to a Zahner IM6ex potentiostat. 

The Zahner IM6ex was used to measure and control current and potential over the DSSC. A 

special setup for fastening the DSSC was put together, allowing careful adjustment in both x, 

y and z-direction, and adjusting the inclination of the cell to the light source. Some of this 

setup can be seen in Figure 4.5. The setup was used to place the DSSC at only 1 mm distance 

from the light source during the measurements. This was a condition for the light intensity 

reading from the TLS03 to be correct. The whole setup was placed inside a box which was 

painted black and could be closed to prevent unwanted light from entering. 

 

 

Figure 4.5: The experimental setup for doing photo-electrochemical 

measurements on DSSC’s. To the left is the light source, seen as a short glass rod. In the 

middle is a masked DSSC, with two crocodile clips attached to it. The DSSC is attached 

to rails and levers which enable the careful adjustment of positioning, so that it can be 

moved very close to the light source. Notice that the distance from the DSSC and the 

light source is much larger than during measurements. 
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The IV-curves were recorded from open circuit to zero potential and back to open circuit 

potential. This was done to control that there was negligible hysteresis. The light illuminating 

the DSSC was monochromatic with a wavelength at 453 nm and an intensity of 190 W. m−2. 

The sweep rate was set to 10 mV.s−1. 

The Incident photon to electron conversion efficiency (IPCE) was recorded from 300 nm to 

700 nm. Built in software in the Zahner TLS03 setup was used to perform the measurement 

automatically. The only output was the IPCE for every wavelength, and thus the intensity of 

the light used was not known. It is suspected that it was considerably lower than 190 Wm−2, 

and that it varied considerably at different wavelengths. This was suspected from visual 

inspection of the light source while it operated. The resolution was given to be 10 nm by the 

software. A built-in monochromator was used in the range of 410 to 700 nm. From 300-410 

nm there were no monochromator, and the wavelength was selected by switching between 

different diodes. This resulted in a somewhat lower resolution for the wavelengths from 300 

nm to 410 nm, but it was not possible to know how much lower. 

The absorbance measurements were performed by Audun Formo Buene. They were 

performed with 2 ∗ 10−5 M solutions. AFB8 was solved in dichloromethane and N719 was 

solved in ethanol. The solutions were measured in a U-1900 spectrophotometer. 

Three different spectroscopic methods were used: Electrochemical impedance 

spectroscopy(EIS), Intensity modulated photocurrent spectroscopy (IMPS) and intensity 

modulated photovoltage spectroscopy (IMVS)[14]. EIS was performed with 5 mV amplitude 

on the potential over the DSSC. IMPS and IMVS was performed with 10 mA amplitude over 

the light source. There was however ambiguity in the Zahner documentation, as to whether 

the amplitude indeed was 10 mA. EIS was performed with no illumination. IMPS and IMVS 

was performed with monochromatic with a wavelength at 453 nm and an intensity of 190 

W. m−2. The current going through the lightsource was ~200 mA for this intensity. 
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5 Results 

In this section, both results from experimental measurements and from the modelling are 

presented.  

5.1 Experimental characterization  

5.1.1 Comparison of the dyes 

Figure 5.1 shows the absorbance of the dyes AFB8 and N719, plotted as a function of the 

wavelength of the light. Notice how the AFB8 dye performs twice as good as N719 at 453 

nm.   

 

 

Figure 5.1: Plot showing the absorbance of the dyes AFB8 and N719 plotted as a 

function of the wavelength. The blue vertical line indicates light with a wavelength of 

453 nm. 

  



      
 

38 

 

Figure 5.2 shows the incident photon to electron injection efficiency (IPCE) as a function of 

wavelength. Notice how the AFB8-dye perform considerably better than the N719 dye. Also 

notice how the profiles of the dyes in Figure 5.1 are considerably different from the profiles in 

Figure 5.2.  

 

 

Figure 5.2: Plot showing the IPCE of the AFB8-DSSC and the N719-DSSC 

plotted as a function of the wavelength. The blue vertical line indicates light with a 

wavelength of 453 nm. 
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Figure 5.3 shows the current-potential characteristic for the AFB8-DSSC and the N719-

DSSC. The AFB8-cell performs best, especially with respect to the current. It does however 

appear to have a somewhat lower fill factor. 

 

Figure 5.3: Plot showing the current density for two different DSSC’s plotted as a 

function of the potential. This is often called current-potential characteristics, or the IV-

characteristic. The DSSC’s were made the same way, except for the dye. The dyes which 

were used for the cells are indicated. The stars represent the potential giving the 

maximum power for each cell. The characteristics were recorded under 190 𝐖. 𝐦−𝟐 453 

nm light. 
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Table 5.1 presents the most important experimental results. AFB8 performs better than N719 

at every parameter except 𝑓𝑚𝑖𝑛,𝐼𝑀𝑉𝑆 and the fill factor (FF). Also notice that the IPCE 

calculated from the short circuit current and the IPCE obtained from Figure 5.2 differ greatly, 

especially for the N719-cell. It is also remarkable that the 𝑓𝑚𝑖𝑛,𝐼𝑀𝑃𝑆 is a factor 28 larger for 

AFB8 compared to N719.  The complete IMVS and IMPS spectra are presented in section 

5.2.1, while only the frequencies giving the minimum imaginary response is given in Table 

5.1.  

Table 5.1: Key experimental results for the two DSSC’s which were modelled. 𝑽𝒐𝒄 

is the open circuit potential. 𝑰𝒔𝒄 is the short circuit current. 𝒇𝒎𝒊𝒏,𝑰𝑴𝑽𝑺 is the frequency 

giving the minimum in the IMVS spectrum, and 𝒇𝒎𝒊𝒏,𝑰𝑴𝑷𝑺 is the frequency giving the 

minimum in the IMPS spectrum. 𝑨𝒃𝒔𝒃𝒍𝒖𝒆 is the absorbance at 453 nm measured for 

solutions of the dyes, ref Figure 5.1. 𝑰𝑷𝑪𝑬𝒃𝒍𝒖𝒆,𝑰𝑽 is the IPCE for 453 nm illumination 

calculated from the 𝑰𝒔𝒄 in the IV-characteristics. 𝑰𝑷𝑪𝑬𝒃𝒍𝒖𝒆 is the IPCE for 453 nm 

illumination as automatically generated by the Zahner setup, ref Figure 5.2. 𝑭𝑭 is the fill 

factor.  𝜼𝒑𝒄 is the power conversion efficiency. 

Parameter Value N719 Value AFB8 Unit 

𝑉𝑜𝑐  0.595 0.607 V 

𝐼𝑠𝑐  38.5 49 A 

𝑓𝑚𝑖𝑛,𝐼𝑀𝑉𝑆  5.9 7.2 Hz 

𝑓𝑚𝑖𝑛,𝐼𝑀𝑃𝑆  18.5 513 Hz 

𝐴𝑏𝑠𝑏𝑙𝑢𝑒  16% 36% - 

𝐼𝑃𝐶𝐸𝑏𝑙𝑢𝑒,𝐼𝑉  55% 70% - 

𝐼𝑃𝐶𝐸𝑏𝑙𝑢𝑒  20% 55% - 

FF 73% 66% - 

𝜂𝑝𝑐  8.7% 10.3% - 

5.1.2 Spectroscopic methods 

Figure 5.4 shows the imaginary part of the impedance as a function of the real part of the 

impedance, for the cell made with N719-dye. The data is shown for four different potentials 

applied to the cell in the dark. It can be worth noticing that the data points are rather sparse, 

and that the half-circles have a rather elliptical shape. 
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Figure 5.4: Plot showing the imaginary impedance as a function of the real 

impedance, at four different potentials. The data is from a DSSC made with N719 dye. 

There was no illumination of the cell during the measurement.  

 

Figure 5.5 and Figure 5.6 shows the recombination resistance and the capacitance, 

respectively, plotted against the potential of the cell made with N719. The potential was 

divided by a factor 𝑇𝑘𝐵.  Notice that there are only four data points, and that they are spread 

close to linearly, but not quite. The same measurements were done for AFB8, and yielded the 

same slope at two decimals precision for both capacitance and recombination resistance plots. 

The plots for AFB8 are thus not included, due to practically being identical.  
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Figure 5.5: Plot showing the natural logarithm of the recombination resistance as 

a function of 𝑽/(𝑻 ∗ 𝑲), where V is the potential, T is the temperature in kelvin, and 𝒌𝑩 

is the Boltzmann constant. 

 

Figure 5.6: Plot showing the natural logarithm of the capacitance as a function of 

𝑽/(𝑻 ∗ 𝑲), where V is the potential, T is the temperature in kelvin, and 𝒌𝑩 is the 

Boltzmann constant. 



      
 

43 

 

5.2 Results from the model 

In this section, results obtained from the model (described in section 3) are presented. The 

parameters in Table 5.2 were used for the modelling unless stated otherwise. Both the cell 

made with AFB8 and the cell with N719 was modelled. The cells were made identical, except 

for the dye. The thickness parameter 𝑑 should have been identical, since the cells were made 

with the same thickness of the titanium dioxide layers. However, the parameter was set to 10 

μm for the cell with AFB8, and 15 μm for the cell with N719. The reason for this is explained 

in section 5.2.1. 

The parameters 𝑘0, 𝐷0, 𝜖 and 𝑛0 can give information on how the cells compare. Notice that 

𝐷0 is almost a factor 104 larger for the AFB8-cell than for the N719-cell. Also notice that the 

absorption coefficient, 𝜖, and the electron concentration the dark, 𝑛0, is largest for N719. 𝑘0 is 

somewhat larger for the AFB8-cell than for the N719-cell. The differences in the parameters 

in Table 5.2 are larger than what might be expected from the small difference in power 

conversion efficiency, ref Table 5.1. 

Table 5.2: The default parameters used to model the N719 and AFB8 cell.  

Parameter N719 AFB8 Unit 

𝐷0  

𝑘0  

𝜖  

𝑛0  

𝑑  

𝛼  

𝛽   

𝜙𝑠𝑠  

Φ𝐴  

𝜂𝑖𝑛𝑗  

𝜂𝑟𝑒𝑓𝑙   

𝜆  

2.8 ∗ 10−15  

0.14  

3.0 ∗ 105    
17 

15 

0.43 

0.63 

190 

0.05Φ𝑠𝑠 

1 

0 

453 

2.1 ∗ 10−11 

0.24 

8.9 ∗ 104 

5.3 

10 

0.43 

0.63 

190 

0.05Φss 

1 

0.5 

453 

m2. s−1  

s−1  

m−1  

C. m−3  

μm  

- 

- 

W. m2  

W. m2  

- 

- 

nm 

 

It has been reported earlier that the recombination rate is dependent on the dye which is used 

[6], and it was as expected that 𝑘0 was somewhat different for the two different dyes. 

However, it has also been reported that the transportation in the semiconductor is independent 

of the dye [6]. Therefore, it was unexpected to see the vast difference in the 𝐷0 for the two 

dyes. Another cell with a very similar dye to AFB8 was tested to see whether the high 𝐷0 

could be reproduced, and yielded roughly the same large value for 𝐷0. This is a very 

interesting result. There is no clear consensus on the theory of the transportation and the trap 

states in the titanium dioxide, nor is there theory that can explain how the transportation is so 

dependent on the dye which is adsorbed as far as the author knows. This thesis does however 

not seek to try to explain the differences in the parameters, and this difference in 𝐷0 will thus 

largely be untouched. Never the less should this striking difference be noticed as an 

interesting finding.  
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5.2.1 Modelling of small amplitude perturbations  

In this section, experimental and modelled IMPS and IMVS spectra are presented for the cell 

made with N719. The experimental results were multiplied by a factor ranging from 1-15 to 

facilitate the comparison between modelled and experimental data. The need for this was 

attributed to ambiguity in the Zahner documentation.  

5.2.1.1 IMPS 

Figure 5.7 shows the experimental and modelled IMPS spectrum for the N719-based DSSC. 

Notice that the experimental spectrum is broader than the modelled one, and that it does not 

flatten out for frequencies of above 1 kHz. Also notice that there is a “dent” in the lowest part 

of the experimental IMPS-spectrum where the broadening occurs, and that the slope is 

slightly steeper at the left than to the right. The experimental results are similar to what has 

been reported earlier [30], except for the way that the current response does not flatten out, 

and the dent. It is however hard to tell for sure that there is absolutely no dent in the figure 

reported by [30]. The modelled IMPS-spectrum looks similar to previous analytically 

modelled IMPS-spectra [27]. 

 

Figure 5.7: Plot showing the experimental and modelled IMPS spectrum for the 

DSSC made with N719. The parameter 𝒅 is set to 15 𝛍𝐦 in the model.  
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Figure 5.8 shows the experimental and modelled IMPS spectrum for the cell based on N719, 

when the thickness is set to 10 μm. 𝐷0, 𝑘0, 𝜖 and 𝑛0 was adjusted anew for this thickness with 

the procedure described in section 3.4.2.3. The model has a pronounced dent in its lowest 

part, and the width of the two spectra is more similar than in Figure 5.7. However, the 

experimental data still deviates from the model at the highest frequencies, and the fit is not 

excellent at the lowest part. 

 

Figure 5.8: Plot showing the experimental and modelled IMPS spectrum for the 

DSSC made with N719. The parameter 𝒅 is set to 10 𝝁𝒎 in the model.  
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Figure 5.9 shows the modelled IMPS spectra for the cases of 𝑑 = 9, 𝑑 = 10 and 𝑑 = 11 μm. 

The same 𝐷0, 𝑘0, 𝜖 and 𝑛0 as used for Figure 5.8 were used for each thickness. The plots vary 

greatly at the bottom part. The smaller the thickness, the flatter the profile becomes. It can 

also be noticed that the plot for 𝑑 = 9 is not completely flat, but has a small bump in the 

middle. This dependency on 𝑑 has not been reported previously as far as the author knows. 

 

Figure 5.9: Plot showing modelled IMPS spectra for the DSSC made with N719. 

The parameter 𝒅 is varied from 9 to 11 𝛍𝐦.  
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5.2.1.2 IMVS 

Figure 5.10 shows the experimental and modelled IMVS spectrum for the cell based on N719-

dye. The fit is good, with only a relatively small deviation in width. The shapes of the 

experimental and modelled curve are more similar than in the case of IMPS in Figure 5.7. The 

experimental curve matches well with what has been reported before [20, 30], and the 

modelled curve matches with previous analytical models [20]. 

 

Figure 5.10: Plot showing the experimental and modelled IMVS spectrum for the 

DSSC made with N719. The parameter 𝒅 is set to 15 𝛍𝐦 in the model.  
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Figure 5.11 shows the experimental and modelled IMVS spectrum for the cell based on N719. 

The thickness was set to 10 μm in the model, and 𝐷0, 𝑘0, 𝜖 and 𝑛0 were the same newly 

adjusted values as used in Figure 5.8 and Figure 5.9.  Notice that there is no significant 

change in the shape of the modelled IMVS spectrum, when comparing Figure 5.10 and Figure 

5.11. This contrasts to the case of modelled IMPS spectra, which have varying shape with 

varying 𝑑, as seen in Figure 5.7 and Figure 5.8. 

 

 

Figure 5.11: Plot showing the experimental and modelled IMVS spectrum for the 

DSSC made with N719. The parameter 𝒅 is set to 10 𝛍𝐦 in the model.  

 

Varying 𝜂𝑟𝑒𝑓𝑙 for both IMPS and IMVS spectra was also studied. It gave practically no 

difference in neither shape nor amplitude for the N719-cell, and is therefore omitted. 

The modelled and experimental IMPS and IMVS spectra for the AFB8-cell are omitted from 

this thesis, due to time limitations. They were however similar to that of the N719-cell. The 

IMVS had a good fit, while the IMPS had a somewhat poorer fit for the AFB8-cell. The shape 

of the IMPS-spectrum was dependent on the thickness parameter 𝑑. One dissimilarity 

between the AFB9-cell and the N719-cell was however that the modelled IMPS spectra to the 

AFB8-cell was dependent on the reflection parameter 𝜂𝑟𝑒𝑓𝑙.ix This dependency was however 

only on the frequency giving the IMPS minima, and not on the shape of the spectrum.  
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5.2.2 Details on a cell made with N719-dye 

In this section, details on the cell made with N719 are presented. The details are extracted 

from the model for two different cases. One case for the measured thickness of 15 μm, and 

one case for the calculated optimum thickness of 4 micrometer. 

5.2.2.1 Details on a 15 𝛍𝐦 thick cell made with N719-dye 

Figure 5.12 shows the experimental and modelled IV-characteristics of the DSSC made with 

N719. The parameters used are given in Table 5.2. Notice that the experimental curve has a 

somewhat lower fill factor than the modelled curve. Figure 5.12 resembles the results reported 

by Anta et al [1]. The modelled IV-characteristic is the result of the numerical solution of the 

steady state equations as described in section 3.2.  

 

Figure 5.12: Plot showing the modelled and experimental current-potential 

characteristic of the DSSC made with N719. 
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Figure 5.13 shows the experimental IV-characteristic and two versions of the modelled IV-

characteristics. One of the models is the default model, and the other is the default model 

which has been adjusted by introduction of shunt resistance and series resistance. Notice that 

the adjusted model fits the experimental results better than the default model. 

 

Figure 5.13: Plot showing the experimental IV-characteristic of the DSSC made 

with N719, the modelled IV-characteristic, and the modelled IV-characteristic with 

series resistance and shunt resistance included.  
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Figure 5.14 shows IV-characteristics from experimental results and the (default) model, for 4 

different light intensities. The model fits best at 190 W. m−2, as expected. This is because the 

parameters for the model were calculated from experimental data obtained with 190 W. m−2. 

The 𝐼𝑠𝑐 is underestimated by the model at 136 and 74 W. m−2. On the other hand, the 𝑉𝑜𝑐 fits 

very well for these intensities. The model which is applied at 9 W. m−2 however, fits good 

with 𝐼𝑠𝑐, but has a large difference in 𝑉𝑜𝑐. The fill factor is systematically larger for the model 

than for the experimental results.  

 

Figure 5.14: Plot showing the experimental and modelled IV-characteristic of the 

DSSC made with N719 for different light intensities. The Intensities of the light are 

respectively 190, 136, 74 and 9 𝐖. 𝐦−𝟐, from outermost curve and inwards. The dotted 

line is the experimental IV-characteristic and the whole drawn line is the model. 
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Figure 5.15 shows the relative electron concentration as a function of 𝑥, for potentials ranging 

from short circuit to open circuit. As previously mentioned, 𝑥 = 0 is the contact between the 

titanium dioxide and the TCO. As expected, Figure 5.15 shows that the electron concentration 

increases with increasing potential over the cell. The increased steepness of the slope at 𝑥 = 0 

is as expected and explains that the current increases as the potential is lowered. An 

interesting feature, is that the concentration profile for open circuit is substantially higher at 

𝑥 = 0 than at 𝑥 = 𝑑. This is not as expected, since it is commonly assumed that the 

concentration profile is flat at open circuit. Lastly, it can be noticed that the concentration 

gradient changes sign at around 4 μm for most potentials, implying that the electrons residing 

deeper than 4 μm will diffuse away from the TCO. Figure 5.15 is strikingly different from the 

much flatter profiles reported by Anta et al. [1]. It should however be kept in mind that the 

cell modelled in [1] was 9 μm and with a different ruthenium dye. 

 

 

Figure 5.15: Plot showing the modelled relative electron concentration, 𝒏/𝒏𝟎, as a 

function of 𝒙, for different potentials. The curve at the top is 𝒏/𝒏𝟎 during open circuit, 

while the curve closest to the x-axis is 𝒏/𝒏𝟎 during short circuit. The other curves are 

𝒏/𝒏𝟎 for potentials spread evenly from open circuit to short circuit. The figure is 

calculated for the N719-cell, with 𝒅 = 𝟏𝟓 𝛍𝐦. 
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Figure 5.16 shows the amount of electrons which are injected into the titanium dioxide, as a 

function of 𝑥. The amount is divided into two parts, one part which is the electrons that are 

injected when the light travels through the cell from left to right. The other term, labeled 

“𝐽𝐺extra”, is the electrons which are injected if the light is reflected from right to left by a 

reflective layer at the very right of the titanium dioxide. However, in Figure 5.16 the term 

𝐽𝐺extra can barely be seen, because it is so small. This is because almost all the light is 

absorbed during its travel from left to right, and there is therefore practically no light which 

can be reflected. 

 

Figure 5.16: Plot showing the modelled generation term, 𝑱𝑮, as a function of 𝒙. 𝑱𝑮 

extra is the extra gain in 𝑱𝑮 that results if 𝜼𝒓𝒆𝒇𝒍 is 0.75. It is so small that it cannot be 

seen. The figure is calculated for the N719-cell, with 𝒅 = 𝟏𝟓 𝛍𝐦. 
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Figure 5.17 shows the three main terms of the continuity equation, namely the generation 

term 𝐽𝐺 , the recombination term 𝐽𝑅, and the diffusion term 𝐽𝐷, plotted as functions of 𝑥 for the 

case of short circuit. Notice that it is the negative of the diffusion term that is plotted, and that 

all the terms add up to zero as expected from equation (16). The recombination term is larger 

than the injection term for 𝑥 > 7 μm. The diffusion term changes sign at about the same 

place, indicating that the net diffusion into a grid point for 𝑥 > 7 μm is positive. The 

recombination term resembles the concentration profile in Figure 5.15 just flattened out. 

 

Figure 5.17: Plot showing the modelled generation term ( 𝑱𝑮), recombination term 

( 𝑱𝑹) and diffusion term ( 𝑱𝑮), as a function of 𝒙. The terms are modelled for short 

circuit. The figure is calculated for the N719-cell, with 𝒅 = 𝟏𝟓 𝛍𝐦. 
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Figure 5.18 shows the generation term 𝐽𝐺 , the recombination term 𝐽𝑅, and the diffusion term 

𝐽𝐷, plotted as functions of 𝑥 for the case of open circuit. Notice that both the diffusion term 

and recombination term have significantly different profiles than in  Figure 5.17. 

 

 

Figure 5.18: Plot showing the modelled generation term ( 𝑱𝑮), recombination term 

( 𝑱𝑹) and diffusion term ( 𝑱𝑮), as a function of 𝒙. The terms are modelled for the case of 

open circuit. The figure is calculated for the N719-cell, with 𝒅 = 𝟏𝟓 𝛍𝐦. 
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Figure 5.19 shows how many percent of the incident light which has been absorbed and 

injected into the titanium dioxide for a given 𝑥. The figure shows that the amount of absorbed 

light increases only slightly from 10 μm to 15 μm. 

 

Figure 5.19: Plot showing how many percent of the incident light which has been 

absorbed at a given depth in the cell, given by 𝒙. The figure is calculated for the N719-

cell, with 𝒅 = 𝟏𝟓 𝛍𝐦. 
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Figure 5.20 shows the area for each term in Figure 5.17 and Figure 5.18 for different 

potentials. Another way to describe Figure 5.20 is that it shows the total amount of electrons 

that recombine, the total amount of electrons that is injected, and the current. The sum of the 

recombination and the current equals the injection, as expected from the continuity equation 

for steady state, ref equation (16). The current plot in Figure 5.20 is the same as the modelled 

IV-characteristic in Figure 5.12. What is perhaps most important to notice in Figure 5.20 is 

that as much as ~40% of the injected electrons recombine at short circuit.  

 

Figure 5.20: Plot showing how many electrons that are injected into the cell, how 

many which result in a current going out from the cell and how many which recombine 

as a function of the potential over the cell. The figure is calculated for the N719-cell, with 

𝒅 = 𝟏𝟓 𝛍𝐦. 
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Figure 5.21 shows the modelled power conversion efficiency as a function of 𝑑, for two 

different cases. One case is that the cell is made without a reflective layer. The other case is 

that there is a reflective layer reflecting 75% of the light which is not absorbed on its first time 

passing though the DSSC. The DSSC will have an improved efficiency by reducing the 

thickness of the titanium dioxide for both cases. The gain in efficiency is larger for the cell 

with a reflective layer, and the optimum thickness is also thinner. 

 
Figure 5.21: Plot showing the predicted power conversion efficiency as a function 

of the titanium dioxide layer thickness, 𝒅. The figure is calculated for the N719-cell, for 

the cases of 𝜼𝒓𝒆𝒇𝒍 = 𝟎 and 𝜼𝒓𝒆𝒇𝒍 = 𝟎. 𝟕𝟓.    

 

 

 

 

 

 

 

 

 



      
 

59 

 

5.2.2.2 Non-default thickness and reflection 

This section presents the same figures as the previous section, apart from that they are 

calculated from the model with 𝑑 set to 4 μm, and 𝜂𝑟𝑒𝑓𝑙 to 75%. All other parameters are as in 

the previous section, and given in Table 5.2. It is the same dye as in the previous section, 

namely N719. 

Figure 5.22 shows the modelled IV-characteristic for a N719-cell which is 4 μm thick and 

with a reflective layer, and the experimental IV-characteristic. The model predicts that the 

DSSC will perform considerably better if the thickness is reduced from 15 to 4 μm. Both the 

potential and the current is higher. 

 

Figure 5.22: Plot showing the experimental IV-characteristic of the cell based on 

N719, and the modelled IV-characteristic if the cell had been made with a thickness of 4 

𝛍𝐦 and a reflective layer with 𝜼𝒓𝒆𝒇𝒍 = 𝟎. 𝟕𝟓. 
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Figure 5.23 shows the relative electron concentration as a function of 𝑥, for potentials ranging 

from short circuit to open circuit. The electron concentration is considerably higher and the 

profiles much flatter in Figure 5.23 compared to Figure 5.15.  It is also worth noticing that the 

gradient in Figure 5.23 never changes sign for almost all the potentials except for the highest 

ones. The slope in Figure 5.23 favors diffusion towards the TCO to a much larger extent than 

in Figure 5.15. Figure 5.23 shows similar profiles to those reported by Anta et al. [1].  

 

Figure 5.23: Plot showing the modelled relative electron concentration, 𝒏/𝒏𝟎, as a 

function of 𝒙, for different potentials. The curve at the top equals 𝒏/𝒏𝟎 during open 

circuit, while the curve closest to the x-axis equals 𝒏/𝒏𝟎 during short circuit. The other 

curves are 𝒏/𝒏𝟎 for potentials spread evenly from open circuit to short circuit. The 

figure is calculated for the N719-cell, with 𝒅 = 𝟒 𝛍𝐦. 
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Figure 5.24 shows the amount of electrons which are injected into the titanium dioxide, as a 

function of 𝑥. The amount is divided into two terms. One term is the electrons which are 

injected when the light travels through the cell from left to right. The other term, labeled 

𝐽𝐺extra, is the electrons which are injected if the light is reflected from right to left by a 

reflective layer at the very right of the titanium dioxide.  The 𝐽𝐺  term is the largest one, but the 

𝐽𝐺extra does still contribute significantly. Especially when compared to Figure 5.15 and the 

cell which is 15 μm thick. 

 

 

Figure 5.24: Plot showing the modelled generation term, 𝑱𝑮, as a function of 𝒙. 𝑱𝑮 

extra is the extra gain in 𝑱𝑮 that results if 𝜼𝒓𝒆𝒇𝒍 is 0.75. The figure is calculated for the 

N719-cell, with 𝒅 = 𝟒 𝛍𝐦. 

 

  



      
 

62 

 

Figure 5.25 shows the three main terms of the continuity equation, namely the generation 

term 𝐽𝐺 , the recombination term 𝐽𝑅, and the diffusion term 𝐽𝐷, plotted as functions of 𝑥 for the 

case of short circuit. The diffusion term is always positive, indicating that net diffusion from 

every grid point is negative. This contrasts with Figure 5.16, where the sign of the diffusion 

term changes. The diffusion term is considerably larger than the recombination term for all 

values of 𝑥. 

 

 

 

Figure 5.25: Plot showing the modelled generation term ( 𝑱𝑮), recombination term 

( 𝑱𝑹) and diffusion term ( 𝑱𝑮), as functions of 𝒙. The terms are modelled for short circuit. 

The figure is calculated for the N719-cell, with 𝒅 = 𝟒 𝛍𝐦. 
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Figure 5.26 shows the generation term 𝐽𝐺 , the recombination term 𝐽𝑅, and the diffusion term 

𝐽𝐷, plotted as functions of 𝑥 for the case of open circuit. The recombination term is as 

expected flat. This expectation is because the concentration profile is flat as shown in Figure 

5.23. The diffusion term has a shape that is very similar to the generation term, explaining the 

flat concentration profile for open circuit. 

 

 

Figure 5.26: Plot showing the modelled generation term ( 𝑱𝑮), recombination term 

( 𝑱𝑹) and diffusion term ( 𝑱𝑮), as functions of 𝒙. The terms are modelled for the case of 

open circuit. The figure is calculated for the N719-cell, with 𝒅 = 𝟒 𝛍𝐦. 
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Figure 5.27 shows how much of the incident light which has been absorbed and injected into 

the titanium dioxide for a given 𝑥. The profile is almost linear compared to Figure 5.18. 

Slightly more than 80% of the light is captured, which is lower than the almost 100% capture 

efficiency in Figure 5.18. However, the thickness of the titanium dioxide is only a third of that 

in Figure 5.18. 

 

 

 

Figure 5.27: Plot showing how many percent of the incident light which has been 

absorbed at a given depth in the cell, given by 𝒙. The plot is extracted from the model. 

The figure is calculated for the N719-cell, with 𝒅 = 𝟒 𝛍𝐦. 
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Figure 5.28 shows the total amount of electrons that recombine, are injected, and the current 

from the DSSC. The recombination term is considerably lower than in Figure 5.19, but still 

significant, even at short circuit. The current term is considerably higher, and the injection 

term is somewhat lower compared to Figure 5.19. The increase in the current term is larger 

than the decrease in the injection term.  

 

Figure 5.28: Plot showing how many electrons that are injected into the cell, how 

many which result in a current going out from the cell and how many which recombine, 

as a function of the potential over the cell. The figure is calculated for the N719-cell, with 

𝒅 = 𝟒 𝛍𝐦. 
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5.2.3 Details on a cell made with AFB8-dye 

All the figures in this section are calculated from the model, with the parameters for the 

AFB8-dye. These parameters are given in Table 5.2. Notice that the thickness parameter 𝑑 is 

set to 10 μm. This is because of the IMPS-measurements in section 5.2.1 had a better fit for 

10 μm, and because of the high uncertainty in the profilometer measurement of the thickness. 

Figure 5.29 shows the modelled IV-characteristic for a AFB8-based DSSC which is 10 μm 

thick and with a reflective layer, and the experimental IV-characteristic. The modelled IV-

characteristic has a higher fill factor than the experimental one, as was the case for the N719 

based cell in Figure 5.12. 

 

Figure 5.29: Plot showing the modelled and experimental current-potential 

characteristic of the DSSC made with AFB8. 
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Figure 5.30 shows the relative electron concentration as a function of 𝑥, for potentials ranging 

from short circuit to open circuit. The concentration profiles are significantly flatter than for 

the cases with the N719 based DSSC’s, ref Figure 5.15 and Figure 5.23. It is only for the very 

lowest potentials that a gradient in the concentration profiles can be seen.  

 

 

Figure 5.30: Plot showing the modelled relative electron concentration, 𝒏/𝒏𝟎, as a 

function of 𝒙, for different potentials. The curve at the top equals 𝒏/𝒏𝟎 during open 

circuit, while the curve closest to the x-axis equals 𝒏/𝒏𝟎 during short circuit. The other 

curves are 𝒏/𝒏𝟎 for potentials spread evenly from open circuit to short circuit. The 

figure is calculated for the DSSC made with AFB8-dye. 
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Figure 5.31 shows the amount of electrons which are injected into the titanium dioxide, as a 

function of 𝑥. The 𝐽𝐺  term is the largest one, but the 𝐽𝐺extra also contributes. It is possible to 

see that the reflection efficiency is 50%, and that an increase in reflection efficiency could 

generate significantly more injected electrons. 

 

 

Figure 5.31: Plot showing the modelled generation term, 𝑱𝑮, as a function of 𝒙. 𝑱𝑮 

extra is the extra gain in 𝑱𝑮 that results if 𝜼𝒓𝒆𝒇𝒍 is 0.5.  The figure is calculated for the 

DSSC made with AFB8-dye. 
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Figure 5.32 shows the three main terms of the continuity equation, namely the generation 

term 𝐽𝐺 , the recombination term 𝐽𝑅, and the diffusion term 𝐽𝐷. They are plotted as functions of 

𝑥 for the case of short circuit. The recombination term is so small that it barely can be seen, 

and it is hard to distinguish the diffusion term from the generation term. Practically all the 

injected electrons diffuse out from the titanium dioxide. This is in great contrast to the figures 

for the N719 based cell, shown in Figure 5.17 and Figure 5.25, where the recombination term 

is significant.  

 

Figure 5.32: Plot showing the modelled generation term ( 𝑱𝑮), recombination term 

( 𝑱𝑹) and diffusion term ( 𝑱𝑮), as a function of 𝒙. The terms are modelled for short 

circuit. The figure is calculated for the DSSC made with AFB8-dye. 
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Figure 5.33 shows the generation term 𝐽𝐺 , the recombination term 𝐽𝑅, and the diffusion term 

𝐽𝐷, plotted as functions of 𝑥 for the case of open circuit. The diffusion term and the generation 

term have nearly identical shapes, explaining why the concentration profile is flat in Figure 

5.30. The flat concentration profile in Figure 5.30 also explains the flat recombination profile 

in Figure 5.33. Lastly, it can be noticed that Figure 5.33 and Figure 5.26 are very similar, and 

considerably different from Figure 5.18. 

 

Figure 5.33: Plot showing the modelled generation term ( 𝑱𝑮), recombination term 

( 𝑱𝑹) and diffusion term ( 𝑱𝑮), as a function of 𝒙. The terms are modelled for the case of 

open circuit. The figure is calculated for the DSSC made with AFB8-dye. 
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Figure 5.34 shows how much of the incident light which has been absorbed and injected into 

the titanium dioxide for a given 𝑥. The profile is almost linear compared to Figure 5.18, and is 

quite similar to Figure 5.27. As expected, ~70% of the light is captured. This was as expected 

because the injection efficiency was set to 1, the IPCE was measured to 70%, and the 

previous figures in this section have shown that there is little recombination. 

 

Figure 5.34: Plot showing how many percent of the incident light which has been 

absorbed at a given depth in the cell, given by 𝒙. The plot is calculated from the model 

for the DSSC made with AFB8-dye. 
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Figure 5.35 shows the total amount of electrons that recombine, are injected, and the current 

from the DSSC. There is practically no recombination for potentials below 0.4 V, in contrast 

to Figure 5.20 and Figure 5.28. All the electrons that are injected at short circuit results in a 

current. 

 

Figure 5.35: Plot showing how many electrons that are injected into the cell, how 

many which result in a current going out from the cell and how many which recombine 

as a function of the potential over the cell. The figure is calculated for the DSSC made 

with AFB8-dye. 
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Figure 5.36 shows the modelled power conversion efficiency as a function of 𝑑. The AFB8 

DSSC will have an improved efficiency by increasing the thickness. The optimum thickness 

appears to be thicker than 35 μm according to the model. It can seem like the efficiency goes 

asymptotically towards about 15 % with increasing thickness. 

 

Figure 5.36: Plot showing the efficiency for a DSSC based on AFB8 as a function 

of the titanium dioxide layer thickness, for the case of 𝜼𝒓𝒆𝒇𝒍 0.5.   
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5.2.4 Selected parameters’ effect on the IV-characteristic 

The effect on the IV-characteristic when the parameters 𝑘0, 𝐷0, α and β are varied is studied 

in this section. The model for both the AFB8-cell and the N719-cell is studied. The 

parameters are set as shown in Table 5.2. 

Figure 5.37 shows the effect of varying 𝑘0 by a factor of 100 in the model for the AFB8-cell. 

All other parameters were kept constant. Decreasing 𝑘0 by a factor of 10 results in a 

considerably higher obtainable potential, but no change in the maximum obtainable current. 

Increasing 𝑘0 by a factor of 10, results in a somewhat lower current, and a considerably lower 

potential. 

 

Figure 5.37: Plot showing the modelled IV-characteristic for a DSSC based on 

AFB8, for three different values for 𝒌𝒐.  
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Figure 5.38 shows the effect of varying 𝐷0 by a factor of 100 in the model for the AFB8-cell. 

All other parameters were kept constant. Decreasing 𝐷0 by a factor of 10 results in a barely 

noticeable decrease in the maximum current. Increasing 𝐷0 by a factor of 10 has no visible 

effect. 

 

Figure 5.38: Plot showing the modelled IV-characteristic for a DSSC based on 

AFB8, for three different values for 𝑫𝟎.  
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Figure 5.39 shows the effect of varying 𝑘0 by a factor of 100 in the model for the N719-cell. 

All other parameters were kept constant. Decreasing 𝑘0 by a factor of 10 results in greatly 

increased current and potential. Increasing 𝑘0 by a factor of 10, results in greatly reduced 

current and potential. 

 

Figure 5.39: Plot showing the modelled IV-characteristic for a DSSC based on 

N719, for three different values for 𝒌𝟎.  
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Figure 5.40 shows the effect of varying 𝐷0 by a factor of 100 in the model for the N719-cell. 

All other parameters were kept constant. Decreasing 𝐷0 by a factor of 10 results in a slight 

increase in potential, and a large decrease in current. Increasing 𝐷0 by a factor of 10 gives a 

slight decrease in potential, and a large increase in current. 

 

Figure 5.40: Plot showing the modelled IV-characteristic for a DSSC based on 

N719, for three different values for 𝑫𝟎.  
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Figure 5.41 shows the experimental IV-characteristic, the default model, and the model where  

𝛽 has been varied from 0.33 to 0.75. The parameters 𝜖, 𝑛0, 𝑘0 and 𝐷0 were adjusted anew as 

described in section 3.4.2.3. Decreasing 𝛽 decreased the fill factor, but not in such a way that 

the experimental curve and the modelled curve ended up overlapping. The model became 

unstable if 𝛽 was set larger than 0.75 or lower than 0.33.  

 

Figure 5.41: Plot showing the modelled IV-characteristic for a DSSC based on N719, 

for four different values of 𝜷.  The values used for 𝜷 were 0.33, 0.5, 0.75, in addition to 

the original value of 0.63. The curves for 𝜷 = 0.33 and 0.5 can be seen to the left of the 

original model, with 0.33 being to furthest to the left. The value of 0.74 can hardly be 

distinguished from the original model. 

𝛼 was also varied slightly, in the same way as 𝛽. However, it did not influence the shape of 

the IV-characteristic, and the figure is therefore omitted. 
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6 Discussion 

6.1 Extension of model to include small amplitude perturbation 

This section discusses whether the extension of the diffusion model to include small 

amplitude perturbation was successful or not. Both experimental and modelled results are 

discussed to do so.  

 

6.1.1 Experimental and modelled small amplitude perturbation  

This sub-section discusses how the modelled IMPS and IMVS spectra compare to the 

experimental IMVS and IMPS spectra. 

Both the modelled IMPS spectrum and the modelled IMVS spectrum fit well with 

experimental data for the N719-cell, but the IMVS spectrum has the best fit, ref Figure 5.7 

and Figure 5.10. Both spectra fit better when the titanium dioxide thickness 𝑑 is reduced to 10 

μm, ref Figure 5.8 and Figure 5.11. The IMVS spectrum becomes slightly narrower with the 

reduction of 𝑑, while the IMPS spectrum broadens and has a change of shape at its lower part, 

as can be seen in Figure 5.9. The model manages to reproduce the non-symmetrical shape of 

the experimental IMPS spectrum, except for at the highest frequencies. The mismatch at the 

highest frequencies is however attributed to experimental error, since positive IMPS response 

has not been reported in the literature earlier as far as the author knows. 

The modelled IMPS spectra fit better with 10 μm than with 15 μm, but still not excellently. 

This might be due to simplifications in the model, or it could be because neither 10 nor 15 μm 

is the correct value for the thickness parameter. It is however hard to know which of these 

reasons is the correct one. One way to determine whether it is the model or the thickness, 

would be to perform profilometer measurements with a higher accuracy. The accuracy of the 

thickness measurement used in this work is too low to conclude why the fit is not better, when 

the measured thickness of 15 μm has an uncertainty giving a lower bound at 10 μm. Another 

way to determine whether it is the simplifications in the model or the uncertain thickness that 

cause the non-perfect fit, would be to calculate the IMPS-spectrum for all relevant values of 

𝑑. It would then be possible to see whether any of the spectra give a very good fit.  

Calculating IMPS-spectra for many values of 𝑑 might also prove to be an indirect way of 

estimating 𝑑. If the spectra for the different values of 𝑑 are distinct in shape, and only one 

matches the experimental spectrum, then that would give an indication of what the value of 𝑑 

is. Figure 5.7, Figure 5.8 and Figure 5.9 show that the shape of IMPS-spectra have a large 

dependency on 𝑑, suggesting that the shape might be used as a “fingerprint” to find the 

correct 𝑑. Calculating the IMPS-spectrum for a given value of 𝑑 does however demand a 

complete fitting of all the parameters. This is a time consuming process, and was therefore 

only done with 10 μm and 15 μm. The process in Figure 3.1 would need to automated before 

it would be practical to use the model to determine 𝑑.  

The parameter 𝜂𝑟𝑒𝑓𝑙 was unknown, and was a potential source of uncertainty. It was briefly 

investigated, as mentioned at the end of section 5.2.1.2. Varying 𝜂𝑟𝑒𝑓𝑙 had practically no 
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effect on neither the modelled IMVS nor the modelled IMPS spectrum for the N719-cell. This 

can be explained from considering Figure 5.16. Figure 5.16 shows that practically all the light 

is absorbed on its way through the titanium dioxide layer, and putting on a reflective layer 

will have minimal effect, because there is a minimal amount of light that can be reflected.  

On the AFB8-cell however, based on brief measurements, varying 𝜂𝑟𝑒𝑓𝑙 had the same effect 

as varying Φ𝑠𝑠 or 𝜖. The minimum of the IMPS and IMVS spectrum was moved horizontally 

to higher frequencies when 𝜂𝑟𝑒𝑓𝑙 was increased. This was as expected, since Figure 5.31 

shows that an increase in 𝜂𝑟𝑒𝑓𝑙 will increase the generation term. These details on 𝜂𝑟𝑒𝑓𝑙 are 

unfortunately not prioritized in this thesis. What is worth noticing about 𝜂𝑟𝑒𝑓𝑙 is however that 

it did not influence the shape nor the width of the IMPS and IMVS-spectra. This is important, 

as that it increases the likelihood that the shape of the spectra can be used to determine 𝑑. If 

both 𝜂𝑟𝑒𝑓𝑙 and 𝑑 were unknown, and both influenced the shape of the spectra, then it would 

be a chance that several combinations of 𝜂𝑟𝑒𝑓𝑙 and 𝑑 that could give the same shape. When 

only 𝑑 influences the shape however, then there is a much higher chance that a certain value 

of 𝑑 can be linked to a certain shape of the spectra, so that 𝑑 can be determined. 𝜂𝑟𝑒𝑓𝑙 on the 

other hand, seems hard to separate from 𝜖, because they have same effect on all the 

experimental data presented in this thesis. 

All in all, the model seems capable of reproducing experimental IMVS and IMPS spectra. 

This supports that the extension of the model presented by Anta et al. to include small 

amplitude perturbation was successful. The slight mismatch between experimental and 

modelled IMPS-spectra may be due to the large uncertainty in the thickness parameter 𝑑. The 

shape and width of the IMPS-spectrum showed an interesting and somewhat unexpected 

dependency on 𝑑. This dependency might be possible to utilize to determine the value of 𝑑 

from IMPS. This would however demand a faster way of fitting the model to the parameters, 

and more experimental data would be needed to investigate it further. 

6.1.2 Electrochemical impedance spectroscopy 

The EIS-measurements gave half-ellipse curves instead of the expected half-circle curves, 

when 𝑍𝐼𝑚 was plotted versus 𝑍𝑅𝑒, as can be seen in Figure 5.4. This is however a common 

aberration, and it was ignored. The recombination resistance was determined from the 

maximum value of 𝑍𝐼𝑚, as if the curve had been a half circle[29]. The elliptical shape 

suggests that the theory which is used is incomplete or too simplified to describe the DSSC. 

The error which is gained from this is assumed to be tolerable. 

The values for 𝛼 and 𝛽 that were calculated for the N719 and AFB8-based cells, ended up 

being identical to two digits, ref Table 5.2. This might be due to the relatively low resolution 

used in the experimental measurement, as can be seen in Figure 5.4. The lower the resolution, 

the higher can the difference in two cells be, while still ending up having their maximum 

value at the same frequency. This might have caused the two different cells to be measured 

with more similar values than what they actually have. This also suggests that the uncertainty 

in the measured 𝛼 and 𝛽 can be significant. 
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6.1.3 Current-potential characteristics  

This sub-section discusses how well the model compares to the experimental current-potential 

characteristic for the DSSC based on N719. 

The modelled IV-characteristic fits well with the experimental IV-characteristic, as evident 

from Figure 5.12. The model has a fill factor that is a little too high, but this can to a good 

extent be corrected by introduction of a shunt resistance and a series resistance, ref Figure 

5.13. The fit is still not perfect however. This can in part be because the fill factor and shunt 

resistance was used to correct the model, instead of being part of the model. A proper 

implementation of the resistances into the model, would yield slightly different corrections 

than simply subtracting the potential loss and current loss as described in section 3.5. The 

series and shunt resistance should preferably be determined experimentally as well, and not 

simply left as open parameters as was the case for the correction. Further, as discussed in 

section 6.1.2, there are some uncertainties in the experimental basis for 𝛼 and 𝛽. As seen in 

Figure 5.41, an uncertainty in 𝛽 implies an uncertainty in the fill factor as well. Lastly, there 

is also an extra uncertainty in both 𝑘0 and 𝐷0, especially due to the uncertainty in 𝑑. This is 

because the value of 𝑑 influences the value the 𝑘0 and 𝐷0 end up with when a complete fit 

with all the parameters is performed. And both 𝑘0 and 𝐷0 can influence the fill factor. Thus, a 

better experimental foundation for 𝛽 and 𝑑, together with proper introduction of shunt and 

series resistance might give a better fit between experimental and modelled IV-characteristics. 

It is assumed that the uncertainties in the measurements of 𝑑, 𝛼 and 𝛽 are considerably larger 

than the other experimental uncertainties. It is hard to quantify how large the uncertainties of 

𝑑, 𝛼 and 𝛽 are. Therefore, the validation of the model in this thesis is built on the fact that it 

can reproduce the IV-characteristic and the IMPS and IMVS spectra to a large degree. The 

validity of the model is further increased by the fact that it does a decent job at predicting 

light intensities lower than 193 W. m−2, as evident from Figure 5.14. However, further 

validation could be obtained by performing EIS with higher resolution, and measuring 𝑑 more 

accurately, and see whether the model fits the experimental data better. 

6.2 Characterization, comparison, and optimization 

6.2.1 N719-dye 

This sub-section discusses how the model can be used to characterize and optimize the DSSC 

made with N719. The connection between the recombination, the absorption, the electron 

concentration, and the thickness of the titanium dioxide is examined to do so. 

6.2.1.1 Power conversion efficiency 

The cell made with N719 would be more efficient if it had a thinner titanium dioxide layer, 

according to Figure 5.21. Several other figures must be examined, to understand why it is so. 

First, Figure 5.15 shows that the electron concentration profile is unfavorable. Whether the 

gradient of the profile is positive or negative determines which way the electrons diffuse. In 

an ideal cell, there would be no recombination, and every electron would have to diffuse 

towards the TCO. This implies that the gradient would be positive over the whole system, 

leading all electrons to the TCO. The concentration profiles in Figure 5.15 on the other hand, 
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contain both negative and positive gradients. The concentration profile has a peak value 

somewhere between 𝑥 = 0 and 𝑥 = 𝑑, and all the electrons which are injected to the right of 

this peak will experience a gradient which makes them diffuse away from the TCO, and they 

will thus not be collected. Thus, it can be suspected that the N719 cell has considerable room 

for improvement, already from judging the concentration profile. 

The N719-cell has a strikingly different concentration profile when its thickness is reduced to 

4 μm, ref Figure 5.23. The gradient is approximately zero for the highest potentials, and 

positive for the rest. This implies that all the electrons which are injected into the 4 μm cell 

will diffuse towards the TCO to be collected. There is still a chance though that the electron 

will recombine during the timespan it takes to diffuse to the TCO and be collected. However, 

it is guaranteed that the electron will end up recombining if it diffuses away from the TCO. 

Figure 5.20 and Figure 5.28 shows that for potentials up to 0.5 V there is less than half as 

much recombination for the cell with 4 μm thick titanium dioxide, compared to the cell with 

15 μm thick titanium dioxide. However, the figures also show that the generation rate reduces 

from about 70 A. m−2 to 60 A. m−2. This illustrates the tradeoff between the absorption and 

the recombination. A thicker layer of dye-coated titanium dioxide will absorb more light, but 

it will also have increased recombination. Figure 5.17 illustrates this further for the N719 cell. 

The generation and recombination term equal each other at 𝑥 = 7 μm. For 𝑥 > 7 μm, the 

recombination term is larger than the generation term. In other words, the amount of electrons 

which is injected at the backmost half of the cell, is smaller than the amount that recombines. 

This would suggest that the optimal thickness would be 7 μm, by keeping the part of the cell 

where the generation term is larger than the recombination term.  However, it is not quite that 

simple. Both the recombination term and generation term depends on the thickness 𝑑, and 

Figure 5.17 is only valid for open circuit. 

The only way which was considered good enough to find the optimal thickness, was to 

calculate the IV-characteristic for several values of 𝑑. The power conversion efficiency was 

then calculated for each 𝑑 from the potential and current giving the largest power in the IV-

characteristic. The result can be seen in Figure 5.21 for the cell made with N719. The 

optimum thickness is 6 and 4 μm for the case with 0% reflection and 75% reflection 

respectively, in both cases considerably less than the 15 μm which was used under 

manufacture. The optimum thickness is as expected shorter for the case with reflection, than 

for the case without reflection. A titanium dioxide layer with reflection can be thinner than a 

layer without reflection and still capture the same amount of light. And as already explained, a 

shorter layer will have less recombination, thus giving the highest power conversion 

efficiency. Too short a titanium dioxide layer will however capture too little of the light, and 

give a very low efficiency. All in all, there are strong indications that the N719-cell would 

gain higher efficiency with smaller 𝑑, though it is hard to tell how small the optimum 

thickness 𝑑 would be, as long as the reflection efficiency is unknown.  

6.2.1.2 Other efficiencies and the effect of 𝒌𝟎 and 𝑫𝟎 

The power conversion efficiency is perhaps the most important parameter for a DSSC. 

However, three other important efficiencies are the charge collection efficiency, the injection 
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efficiency, and the absorption efficiency, which combined make up the IPCE, ref equation (1). 

The IPCE of the N719-cell was measured to 55%, ref Table 5.1. The charge collection 

efficiency that is calculated by the model is only 57%, due to the high recombination. It 

follows from equation (1)  that the product of the injection efficiency and the absorbance 

efficiency must be 96%. This suggests that the assumption of the injection efficiency being 

100% is good. It also means that the cell cannot have significant benefit from increased 

thickness, since it already absorbs at least 96% of the incoming light, which indeed is what 

the model predicts. 

Figure 5.39 and Figure 5.40 shows that the DSSC made with N719 will benefit from both 

slower recombination and quicker diffusion, respectively. This is as expected. There are 

significant recombination problems with the cell, leading to large current losses. Providing a 

quicker diffusion through a higher 𝐷0, lowers the average time it takes for an electron to 

diffuse to the TCO, as explained in section 2.3. And the less time an electron spends in the 

titanium dioxide, the less is the chance for recombination. This reduced recombination results 

in the cell providing considerably higher current, ref Figure 5.40. However, there is a slight 

decrease in the maximum potential. This can be understood from looking at Figure 5.15. The 

potential is measured at the junction between the TCO and the titanium dioxide, namely at 

𝑥 = 0. This is also were the electron concentration is highest in the cell. There is a build up of 

electrons at the junction due to the slow diffusion, and the fact that the generation term is 

largest at 𝑥 = 0, ref Figure 5.16. This build up will flatten out when the diffusion is increased, 

thus lowering the measured potential slightly. The average potential in the titanum dioxide 

may be the same though, it is only the measured potential at the junction which is lowered. 

This lowering of potential is far smaller than the increase in current due to reduced 

recombiantion. 

Slowing down the recombination increases both the potential and the current significantly, as 

evident from Figure 5.39. The increased current from slower recombination, can be explained 

the same way as the increased current from quicker diffusion. The average timespan an 

electron can “live” in the titanium dioxide increases when 𝑘0 is lowered. Thus, more electrons 

get enough time to diffuse to the TCO, increasing the charge capture efficiency and the 

current. Lowering 𝑘0 increases the potential also, ref Figure 5.39. This can be explained from 

equation (16) and  (17). The recombination must equal the diffusion and generation for a 

given current in the IV-characteristic. And the lower the 𝑘0, the higher the electron 

concentration 𝑛 must be. The electron concentration which is in equilibrium with diffusion 

and generation increases with decreasing 𝑘0, leading to higher potential, ref equation (10).  

Overall, the most important finding is that the cell made with N719 has a problem with low 

charge capture efficiency. Alternatively, it can be said that it has a too high fraction of 

electrons recombining. The simplest way to reduce this problem would be to reduce the 

thickness parameter 𝑑, as suggested by several figures drawn from the model. Another way to 

reduce the problem would be to lower 𝑘0 or increase 𝐷0, though this is not done as easily as 

changing the thickness. 
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The assumption that the injection efficiency is 100% is considered good, because the 

measured IPCE and calculated charge capture efficiency implies that the injection efficiency 

must be at least 97%. There was a high uncertainty in the measured thickness of the titanium 

dioxide layer 𝑑. From section 4.1 it was suggested that the value for 𝑑 might in fact be as low 

as 10 𝜇𝑚. The predicted optimum thickness in Figure 5.21 might have been different if the 

figure had been calculated with a smaller 𝑑. This uncertainty comes in addition to the 

uncertainty due to the reflection efficiency being unknown. The optimum thickness for the 

cell is thus hard to accurately determine, except for that it should be shorter than in its current 

state. A more accurately determined 𝑑 could increase the usefulness of the model. However, 

experimental data from several cells made with different thicknesses would be the only way 

to know whether the model works at predicting efficiencies. 

6.2.2 AFB8-dye 

The AFB8 cell exhibits a strikingly different behavior than the N719-cell. Figure 5.30 shows 

that the electron concentration profile is flat for almost all potentials, indicating a very quick 

diffusion. The recombination is negligible, except for the highest potentials, ref Figure 5.35. 

This is as expected, because the IMPS spectrum has its minimum at a considerably higher 

frequency than the IMVS spectrum, as summarized in Table 5.1. A minimum at a high 

frequency, suggests that it is a fast process. And the amount of electrons that recombine will 

be low when the diffusion is much faster than the recombination process, as discussed in 

section 2.3. The low recombination rate also helps explain the high IPCE of 70%, ref Table 

5.1. Practically no recombination at short circuit means that the charge collection efficiency 

must be ~100%. The product of the injection efficiency and the absorption efficiency must 

then equal the IPCE, as a consequence of equation (1). This sets the lower limit for the 

injection efficiency and recombination efficiency at 70%. It has not been found a way in this 

work to determine whether it is insufficient absorption, insufficient injection or both that 

results in the 30% loss in the IPCE. It could be assumed that the absorption efficiency should 

be approximately 100%, because the absorption measurement shows that AFB8 has a stronger 

absorption than N719, ref Figure 5.1. And since it was shown that N719’s absorption 

efficiency was 97% or higher in the previous section, it follows that AFB8 should have a 

higher absorption efficiency than 100%. This is however not a valid way to estimate the 

absorption efficiency of the cell with AFB8. A dye needs both to absorb light well, and adsorb 

well onto the titanium dioxide. Thus, it is impossible to know whether it is the injection 

efficiency or the adsorption/absorption properties that needs to be improved. It can however 

be asked whether a very large difference in adsorption might explain the very unexpected 

result that the diffusion coefficients were a factor 104 different, ref Table 5.2. But this 

amounts to nothing more than speculation, and will not be discussed further. 

The efficiency as a function of titanium dioxide thickness 𝑑 was computed for the AFB8 cell 

in the same way as for the N719 cell. The assumption of 100% injection efficiency was used, 

and the result is given in Figure 5.36. It shows that the AFB8 cell benefits from increased 

thickness, in contrast to the N719 cell in Figure 5.21. This suggests that the benefit from 

increased absorption with increasing 𝑑 outweighs increased recombination. The efficiency 

seems to flatten out. This could be explained from assuming that the AFB8 cell’s absorption 
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goes towards 100% in the same way as the N719 cell did in Figure 5.19. It is also worth 

noticing that there is no optimal thickness for the range of thicknesses in figure Figure 5.36. 

An explanation could be that the diffusion is so quick, that even though the recombination is 

increased with increasing 𝑑, it still amounts to practically nothing.  

Figure 5.38 further supports that the diffusion is indeed quicker than what is strictly necessary 

to avoid recombination. It can barely be seen in the IV-characteristic when 𝐷0 is lowered by a 

factor of 10. Increasing 𝐷0 by a factor 10 does not give any noticeable difference in the IV-

characteristic, further suggesting that quick diffusion is only beneficial up to a certain point. 

Lowering 𝑘0 a factor 10 gives a slightly lower current, suggesting some recombination, while 

increasing 𝑘0 a factor 10 has no effect on the current. The potential is however widely 

dependent on 𝑘0, presumably for the same reasons as discussed in the end of section 6.2.1. 

All in all, it seems clear that the cell made with AFB8-dye has an excellent charge collection 

efficiency. The model predicts that the charge collection efficiency is so good, that there will 

be no recombination penalty from increasing the thickness. It can however be a gain from 

increased absorption, if the thickness is increased. This is however uncertain, since it is 

unclear how good the injection efficiency is. The measured IPCE is high at 70%, and the 

increase in efficiency from increased absorption is therefore limited to go from 70% to 100%. 

The model predicts that the thicker the titanium dioxide, the closer to 100% absorption 

efficiency is achieved. However, a very thick titanium dioxide layer might start to make the 

potential losses in the electrolyte substantial. As with the N719-cell, it would be very useful to 

have AFB8 cells made with varying thickness. From this it would be possible to gain more 

information as to whether it is the injection efficiency or the absorption efficiency that limits 

the performance. It might also make it possible to estimate  𝜂𝑟𝑒𝑓𝑙, if Figure 5.36 had an 

experimental counterpart which could be used to adjust 𝜂𝑟𝑒𝑓𝑙. 

6.3 The absorbance and the incident photon to electron conversion efficiency 

There is a discrepancy between the IPCE in Figure 5.2 and the IPCE calculated from the short 

circuit current in Figure 5.3. The IPCE for N719 is only 20% according to Figure 5.2, while it 

is 55% based on the IV-characteristic in Figure 5.3. The value for the IPCE for the N719-cell 

is reported to be approximately 55% in [28], suggesting that the values in Figure 5.2 are 

misleading or wrong. One reason for this could be that the IPCE might have been recorded 

with very low light intensities, and that the IPCE is considerably lower for such low 

intensities. However, this cannot be known, since it was impossible to access the intensity 

used for the IPCE measurement. 

The absorbance measurement and the IPCE have different profiles, ref Figure 5.1 and Figure 

5.2. If it is assumed that the IPCE measurement can be trusted, then this suggests that the 

charge collection efficiency or injection efficiency is dependent on the wavelength in ways 

that are not treated in this work.  

The N719-cell was calculated to have approximately 100% absorption, even though Figure 

5.1 shows that the 453 nm is a wavelength where N719-dye has a relatively poor absorption. 

This would suggest that the N719-cells’ titanium dioxide layer could be made even thinner 
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than suggested previously, if it is to be optimized for wavelengths were the dye has a larger 

absorption. This is because the higher absorption the dye has, the less dye is needed, and a 

smaller 𝑑 implies less dye. It would be the opposite with the AFB8-dye, since it has a 

relatively high absorption at 453 nm. This means that if the absorption efficiency is poor at 

453, then it would be even more critical with a thicker titanium dioxide layer to enhance 

absorption at other wavelengths. Thus, Figure 5.1 suggests that the necessity of decreased 

thickness for the N719-cell and increased thickness for the AFB8-cell might be even more 

beneficial than suggested in section 6.2.1 and 6.2.2, if the cells are to be used for other 

wavelengths than 453 nm.   

The quantitative optimization presented in section 6.2.1 and 6.2.2 is thus not necessarily valid 

if the DSSC is to be optimized for the solar spectrum, which contains significant energy over 

the whole visible spectrum. The simplest way to optimize a DSSC for the solar spectrum 

would be to use illumination with the solar spectrum when conducting the measurements. 

Another way would be to measure the DSSC’s several times with different wavelengths of 

monochromatic light. 
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7 Conclusion 

Anta et al.’s numerical version of the diffusion model was successfully implemented for 

steady state and extended to small amplitude perturbations. It reproduced the experimental 

IV-characteristics well, but had a somewhat lower fill factor. This was mostly contributed to 

the lack of series resistance and shunt resistance in the model, but may also be due to 

somewhat low accuracy in the EIS-measurements and the measurement of the titanium 

dioxide layer’s thickness. The modelled and experimental IMVS spectra fitted excellently, 

while the IMPS spectra had a good fit. The non-excellent fit of the IMPS spectra was 

attributed to uncertainties in the measurement of the titanium dioxide layer’s thickness. 

The interpretation of the model gave useful information, ref Figure 1.1. The DSSC made with 

the ruthenium dye N719 had a low charge collection efficiency at 57% at short circuit, while 

the injection and absorption efficiencies were 97% or greater. This contrasted to the DSSC 

made with the ruthenium-free dye AFB8, which had a 100% charge collection efficiency at 

short circuit. The superior charge collection efficiency of the AFB8-cell was attributed to its 

superior diffusion properties over the N719-cell. The AFB8-cell did however have inferior 

absorption efficiency and/or injection efficiency. It was determined that the product of the 

efficiencies was 70%, but it was not possible to determine how much each of the efficiencies 

contributed to the loss. 

The model did also suggest ways for which the DSSC’s could be optimized, ref Figure 1.1. 

The cell made with N719 would benefit from decreased titanium dioxide layer thickness. It 

would also benefit from increased diffusion coefficient (𝐷0) in the form of increased current, 

and benefit from lower recombination coefficient (𝑘0) in the form of both increased current 

and potential. The cell made with AFB8 might benefit from increased titanium dioxide layer 

thickness, in contrast to the N719-cell. The AFB8-cell would not benefit from increased 

diffusion coefficient, but it would benefit from lower recombination coefficient in the form of 

increased potential. The model would be able to give more precise predictions for both cells if 

experimental data for cells with varying thickness had been accessible.  

All in all, the model shows great promise. It reproduces experimental results well, and 

provides useful information on how the DSSC’s behave differently, and how they might be 

optimized.  
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8 Further work 

Suggestions for further work, both with the model and with the experimental techniques, is 

summarized below: 

-The model would be both more useful and practical if the fitting of IMVS and IMPS spectra 

was done automatically. Automatic fitting would enable to investigate the model further, and 

perhaps enable determination of 𝑑 without profilometer. And of course, it would be very time 

saving. 

-The model could quite easily be modified to include shunt resistance and series resistance. 

This could especially be useful if experimental techniques are used to determine what the 

resistances are. 

-The model could also be modified to include a potential dependent injection efficiency. This 

would however introduce a free parameter, or the problem of finding a way to determine how 

the potential dependency is. 

-The model could be expanded to include specific losses at the cathode and in the electrolyte. 

-The model does only work for small amplitude perturbation, due to the simplification which 

was done from equation (45) to (46). It would be interesting to solve the same equations 

without the approximation, and see whether the model can be used to simulate large 

amplitude perturbation. 

-It would be interesting to compare the presented model versus the analytical models in [20] 

and [27]. 

-The EIS-measurements should be done with significantly higher resolution, to further 

investigate whether the 𝛼 and 𝛽 parameters are as similar for the two different dyes as it 

seems. 

-The profilometer measurements should be done with a much higher accuracy. This would be 

of great help in further validation of the model. 

-The work in this thesis should be tried on several identical DSSC’s, to confirm 

reproducibility of the results. 

-The model could be further validated if cells made with different thicknesses were 

investigated. This might also lead the model to give information on the reflection efficiency, 

the injection efficiency or the absorption efficiency. 

-The IMPS-spectrums dependency on the thickness parameter 𝑑 should be further 

investigated, both experimentally and with modelling. 

-The model was only tested with blue light with relatively low intensity. The measurements 

would be more valuable if the same measurements were done with a solar simulator as a light 

source. 

-And last, but not least, should the very interesting result that the diffusion coefficients were 

so different be investigated further. 
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Appendix A : Experimental work by Audun Formo Buene 

This section contains the experimental procedure of assembling the DSSC’s used in this 

thesis, as written by Audun Formo Buene: 

 

“TEC-8 FTO glass supplied by Dyenamo was washed with Deconex 21 (2 g/L H2O) in an 

ultrasonic bath for 45 min, and then rinsed with deionized water and ethanol before air drying. 

  

Five layers of transparent TiO2 paste (20 nm, 18NR-T, Dyesol) were screen printed on the 

FTO glass (mesh count 250, active area diameter 5.5 mm). Between each layer the electrodes 

were heated to 125 °C for 5 min. Finally, a scattering layer (WER2-O, Dyesol) was screen 

printed, and the electrodes were sintered at 500 °C for 30 minutes. Determining the thickness 

of the sintered layer was done with a profilometer (Veeco, Dektak 150). 

  

When cooled to 80 °C, the electrodes were placed in the staining solution, which had a dye 

concentration of 5 × 10-4 M and 5 mM of CDCA in a mixture of acetonitrile/THF (47:53, 

v/v). Staining times were 16-18 hours, before the electrodes were rinsed in ACN and air dried 

before sealing with counter electrodes from Solaronix (Platinum electrodes, predrilled). 

DuPont Surlyn (25 μm thick) was used for sealing. 

  

The electrolyte (Iodolyte HI-30, Solaronix) was injected by vacuum backfilling before the 

filling hole was sealed with DuPont Surlyn and a circular glass disc. The contacts for the 

anode and cathode were painted with a conductive silver paint (Electrolube, SCP) before 

characterization.” 

 

Appendix B : Additional information on the thickness parameter 𝒅 

One day before this thesis was submitted, new and more exact measurements of the active 

titanium dioxide layer was performed by Audun Formo Buene. The measurements were done 

with profilometer, and determined the thickness parameter 𝑑 to be 12.75 +/- 1 μm. 

Appendix C : MATLAB code 

The scripts presented below should work if it is run in MATLAB 2016a, and if the functions 

below are saved. There are mainly four scripts, one for IMPS, one for IMVS, one for the IV-

characteristic, and one for automatic iteration on 𝑛0 and 𝜖. 

The functions used in the scripts for calculating IV, IMPS and IMVS 

% Z_Re=F_Re, Z_Im=F_Im, C is used instead of n for electron   

% concentration 

% ya=[C_Re, Z_Re, C_Im, Z_Im] [C_Re, dC_Redx, C_Im, dC_Imdx] 

% yb=[C_Re, Z_Re, C_Im, Z_Im] [C_Re, dC_Redx, C_Im, dC_Imdx] 

  

function res=ANTA_bcs_IMPS(ya,yb) 

res=[ya(1)-0; ya(3)-0; yb(2)-0; yb(4)-0]; 

 

function res=ANTA_bcs_IMVS(ya,yb) 

res=[ya(2)-0; ya(4)-0; yb(2)-0; yb(4)-0]; 
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function dYdx=ANTA_deriv_ss_v2(x,Y) 

  

global k_0 e Phi_ss b a Beta Alpha D_0 C_0 n_inj n_refl d K_G 

dYdx(1)=Y(2)/(D_0*(Y(1)/C_0).^a); 

dYdx(2)=Beta/Alpha*k_0*(Y(1)/C_0)^b*Y(1)    -

n_inj.*K_G.*e*Phi_ss*(exp(-e*x)+n_refl*exp(e*(x-2*d)));  

end 

 

function dYdx=ANTA_deriv_t_v2(x,Y) 

global k_0 e Phi_ss b a D_0 omega K_G Phi_A sol_ss C_0 K_D K_R 

n_inj n_refl d 

P_Re=Y(1);   

Z_Re=Y(2); 

P_Im=Y(3); 

Z_Im=Y(4); 

  

y=deval(sol_ss,x); 

C_ss=y(1,:); 

Z_ss=y(2,:); 

dC_ssdx=Z_ss/(D_0*(C_ss/C_0)^a); 

 

dYdx(1)=-P_Re*a*C_ss.^-1*dC_ssdx + Z_Re/C_ss.^a; 

dYdx(2)= -Phi_A*n_inj*e*K_G*(exp(-e*x)/K_D+n_refl*exp(e*(x-

2*d)))   +    K_R/K_D*C_ss^b*P_Re*(1+b)-omega*P_Im/K_D; 

dYdx(3)=Z_Im/C_ss^a - P_Im*a*C_ss^-1*dC_ssdx; 

dYdx(4)=K_R/K_D*C_ss^b*P_Im*(1+b)+omega*P_Re/K_D; 

   

end 

 

function res=bcs_ss_IV(ya,yb) 

global n_LB 

res=[ya(1)-n_LB; yb(2)-0]; % open circuit 

 

 

Code for calculating the IV-characteristic 

clear y omega_grid save_alpha save_V_mod save_Z save_C x 

save_x_IV n_omega_mesh J_R_int V_IV 

global e Phi_ss C_0 d Beta Alpha n_LB n_refl n_inj b a D_0 k_0 

K_G guess_LB K_D K_R omega Phi_A sol_ss  

n_xmesh=100;  

IV_mesh=100; 

plot_on=0;  

iv_on=1; 

IV_plot_on=1; 
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d=10*10^-6; 

%The following 4 lines creates the mesh in x 

direction/thickness of TiO2 

x1=(0:n_xmesh); 

x=x1.^4+1; %How much denser mesh at the LeftBoundary? exp(x1) 

is extremely dense, x.^3 less dense, x.^2 even less dense and 

so on 

x=x/max(x)*d;  

x=[0, x]; %x does now starts at x=0, and ends at x=d, with 

most gridpoints close to x=0. 

%Pre allocating 

save_C_Re=zeros(n_omega_mesh,length(x)); 

save_Z_Re=zeros(n_omega_mesh,length(x)); 

save_C_Im=zeros(n_omega_mesh,length(x)); 

save_Z_Im=zeros(n_omega_mesh,length(x)); 

V_Re_mod=zeros(n_omega_mesh,length(x)); 

V_Im_mod=zeros(n_omega_mesh,length(x)); 

save_omega=zeros(1,n_omega_mesh); 

save_C=zeros(IV_mesh+1,length(x)); 

save_Z=zeros(IV_mesh+1,length(x)); 

save_x_IV=zeros(IV_mesh+1,length(x)); 

  

%% steady state 

I_sc_mod=38.5; 

save_C(1)=1; 

Phi_ss=190; 

R_shunt=0.1;     

R=2*10^-3; 

Alpha=0.4344; 

Beta=0.6274; %Recombination %0.6 (målt til 0.72(3pkt) og 

0.46(4pkt), ) 

a=(1-Alpha)/Alpha; %Since (1-Alpha)/Alpha is used mostly 

b=(Beta-Alpha)/Alpha; % Since (Beta-Alpha)/Alpha is used 

mostly 

%%eksp input: 

K_boltzmann= 1.38064852*10^-23;  

e_charge=1.60217662*10^-19; 

t_rec=0.027; 

omega_eksp_IMVS=t_rec^-1; 

t_trans=0.00862; 

V_eksp=0.595; 

I_sc_eksp=38.5; 

  

n_refl=0; 

n_inj=1; 

Phi_A=Phi_ss*0.05; 

  

K_D=D_0/C_0^a; 

K_R=Beta*k_0/(Alpha*C_0^b);  

K_G=0.3654; %Antall coloumb per watt 
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guess_LB= (K_G*Phi_ss*(1-exp(-e*d))/(d*K_R))^(1/(1+b)); % 

Guess for value of c at left boundary. Needs to be good. 

guess_RB= (K_G*Phi_ss*(1-exp(-e*d))/(d*K_R))^(1/(1+b));% Guess 

for value of c at right boundary 

  

for i=1:IV_mesh+1 %preallocating  

save_x_IV(i,:)=x; 

end 

  

%THE CORE------------------------------------------ 

solinit = bvpinit([0,d],[guess_LB, guess_RB]); %edit, hvorfor 

er ikke gjett_b global? 

solinit.x=x; %[x x x x x x x x] 

solinit.y=[0*x+(guess_LB+guess_RB)/2 ; 0*x]; %[c c c c c c c 

c; z z z z z z z ] 

sol_ss=bvp4c(@ANTA_deriv_ss_v2,@bcs_ss_Voc, solinit); 

y=deval(sol_ss,x); 

save_C(1,:)=y(1,:); 

save_Z(1,:)=y(2,:); 

C_ss=y(1,:); 

Z_ss=y(2,:); 

%The core end 

  

if plot_on==1  

    figure 

plot(x,save_C(1,:),'k-*') 

xlabel('x') 

ylabel('c') 

end 

  

%kontroll 

J_R_tot=Beta/Alpha*k_0*(save_C(1)/C_0)^b*save_C(1)*d; 

J_G_tot=n_inj*Phi_ss*K_G*(1-exp(-e*d));%trapz(-

n_inj.*K_G.*e*Phi_ss*(exp(-e*x))); 

n_n_0_ratio=save_C(1)/C_0; 

V_mod_oc=log(save_C(1)/C_0)*K_boltzmann*298/(Alpha*e_charge); 

t_rec_anta_k_0=(k_0*(save_C(1)/C_0)^b*save_C(1))^-1; 

v__omega=(k_0*(save_C(1)/C_0)^b*save_C(1)); 

v__C1=save_C(1); 

  

%% END STEADY STATE 

   

%% IV-CURVE 

if iv_on==1 %% finne resten av IV-kurven 

  

temp=1:1:IV_mesh; 

V_IV=V_mod_oc-temp/IV_mesh*V_mod_oc; 

  

for i=1:IV_mesh 

     

    n_LB=C_0*exp(Alpha*e_charge*V_IV(i)/K_boltzmann/298); 
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    solinit = bvpinit([0,d],[guess_LB, guess_RB]);  

    solinit.x=x; %[x x x x x x x x] 

    solinit.y=[y(1,:) ; y(2,:)]; %[c c c c c c c c; z z z z z 

z z ] 

    sol_ss=bvp4c(@ANTA_deriv_ss_v2,@bcs_ss_IV, solinit); 

    y=deval(sol_ss,x); 

    save_C(i+1,:)=y(1,:); 

    save_Z(i+1,:)=y(2,:); 

end 

I_sc_mod=save_Z(end,1); 

  

end 

V_IV=[V_mod_oc V_IV];  

I_IV=save_Z(:,1); 

  

  

%% plot IV 

if IV_plot_on==1 

figure 

plot(V_IV,I_IV,'b-') 

xlabel('V [V]') 

ylabel('I [A.m^-^2]') 

  

hold on 

plot(x_IV_eksp,y_IV_eksp,'k-') 

xlabel('V [V]') 

ylabel('I [A.m^-^2]') 

set(gca,'FontSize',font_size_axis) 

xlim([0,V_eksp*1.2]); 

ylim([0, 40]) 

 

 

Code for calculating the IMVS-specter 

%% 

clear y omega_grid save_alpha save_V_mod save_Z save_C x 

save_x_IV n_omega_mesh 

global e Phi_ss C_0 d Beta Alpha n_LB n_refl n_inj b a D_0 k_0 

K_G guess_LB K_D K_R omega Phi_A sol_ss %k_rec k_abs phi_0 

Beta Alpha D_0 gjett_a_2 omega Phi_x sol_ss 

n_xmesh=100; %grid points x 

n_omega_mesh=100; %grid points IMVS 

    

omega_min=2*pi*10^-1; %start"frekvens" 

omega_max=2*pi*10^4;  

plot_on=0; %PLot over steady state elektronkonsentrasjon 

iv_on=0;   %This cannot be turned on if IMVS is to be turned 

on. EDIT 

IMVS_on=1;  
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d=10*10^-6; 

%The following 4 lines creates the mesh in x 

direction/thickness of TiO2 

x1=(0:n_xmesh); 

%x=exp(x1); 

x=x1.^4+1;  

x=x/max(x)*d;  

x=[0, x];  

save_C_Re=zeros(n_omega_mesh,length(x)); 

save_Z_Re=zeros(n_omega_mesh,length(x)); 

save_C_Im=zeros(n_omega_mesh,length(x)); 

save_Z_Im=zeros(n_omega_mesh,length(x)); 

V_Re_mod=zeros(n_omega_mesh,length(x)); 

V_Im_mod=zeros(n_omega_mesh,length(x)); 

save_omega=zeros(1,n_omega_mesh); 

save_C=zeros(IV_mesh+1,length(x)); 

save_Z=zeros(IV_mesh+1,length(x)); 

save_x_IV=zeros(IV_mesh+1,length(x)); 

  

Phi_ss=190; 

R=2*10^-3; 

Alpha=0.4344; 

Beta=0.6274; %Recombination %0.6 (målt til 0.72(3pkt) og 

0.46(4pkt), ) 

a=(1-Alpha)/Alpha; %Since (1-Alpha)/Alpha is used mostly 

b=(Beta-Alpha)/Alpha; % Since (Beta-Alpha)/Alpha is used 

mostly 

%%eksp input: 

K_boltzmann= 1.38064852*10^-23;%8.617*10^-5;   

e_charge=1.60217662*10^-19; 

t_rec=0.027;%0.027; 

omega_eksp_IMVS=t_rec^-1; 

t_trans=0.00862; 

V_eksp=0.595; 

I_sc_eksp=39; 

n_n_0=exp(Alpha*e_charge*V_eksp/(K_boltzmann*298)); %0.6 ble m 

  

  

n_refl=1; 

n_inj=1; 

Phi_A=Phi_ss*0.05;%*0.0115; 

  

K_D=D_0/C_0^a; 

K_R=Beta*k_0/(Alpha*C_0^b);  

K_G=0.3654; %Antall coloumb per watt 

  

guess_LB= (K_G*Phi_ss*(1-exp(-e*d))/(d*K_R))^(1/(1+b));   

guess_RB= (K_G*Phi_ss*(1-exp(-e*d))/(d*K_R))^(1/(1+b));% Guess 

for value of c at right boundary 
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for i=1:IV_mesh+1  

save_x_IV(i,:)=x; 

end 

  

%% steady state V_oc 

  

%THE CORE------------------------------------------ 

solinit = bvpinit([0,d],[guess_LB, guess_RB]); %edit, hvorfor 

er ikke gjett_b global? 

solinit.x=x; %[x x x x x x x x] 

solinit.y=[0*x+(guess_LB+guess_RB)/2 ; 0*x]; %[c c c c c c c 

c; z z z z z z z ] 

sol_ss=bvp4c(@ANTA_deriv_ss_v2,@bcs_ss_Voc, solinit); 

y=deval(sol_ss,x); 

save_C(1,:)=y(1,:); 

save_Z(1,:)=y(2,:); 

C_ss=y(1,:); 

Z_ss=y(2,:); 

%The core end 

  

if plot_on==1  

    figure 

plot(x,save_C(1,:),'k-*') 

xlabel('x') 

ylabel('c') 

end 

  

%kontroll 

J_R_tot=Beta/Alpha*k_0*(save_C(1)/C_0)^b*save_C(1)*d; 

J_G_tot=n_inj*Phi_ss*K_G*(1-exp(-e*d));%trapz(-

n_inj.*K_G.*e*Phi_ss*(exp(-e*x))); 

n_n_0_ratio=save_C(1)/C_0; 

V_mod_oc=log(save_C(1)/C_0)*K_boltzmann*298/(Alpha*e_charge); 

t_rec_anta_k_0=(k_0*(save_C(1)/C_0)^b*save_C(1))^-1; 

v__omega=(k_0*(save_C(1)/C_0)^b*save_C(1)); 

v__C1=save_C(1); 

  

  

%% END STEADY STATE V_oc 

%% Calculate IMVS-"STEADY STATE" 

%The same as earlier, excpet that the light intensity is a 

little bit higher 

Phi_ss=Phi_ss+Phi_A; 

solinit = bvpinit([0,d],[guess_LB, guess_RB]);  

solinit.x=x; %[x x x x x x x x] 

solinit.y=[0*x+(guess_LB+guess_RB)/2 ; 0*x]; %[c c c c c c c 

c; z z z z z z z ] 

sol_IMVS=bvp4c(@ANTA_deriv_ss_v2,@bcs_ss_Voc, solinit); 

y=deval(sol_IMVS,x); 

C_m=y(1,:); 
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Z_m=y(2,:); 

Phi_ss=Phi_ss-Phi_A; 

  

%% END IMVS-"STEADY STATE" 

 

 if IMVS_on==0 

  

     return 

 end 

 telle_omega=0; 

%% IMVS 

temp=(0 : log(omega_max/omega_min)/n_omega_mesh : 

log(omega_max/omega_min)); 

omega_grid=omega_min*exp(temp); 

  

for i=1:n_omega_mesh+1 

    omega=omega_grid(i); 

    telle_omega=telle_omega+1; 

     

if i==1 %må ha omega såpass lav at C_Re=C_Im=~0 

    solinit = bvpinit([0,d],[guess_LB, guess_RB]); %edit 

,spiller ingen rolle hva som står her 

    solinit.x=x; %[x x x x x x x x] 

    solinit.y=[C_m-C_ss; 0*x; 0*x ; 0*x]; %[P_Re ; Z_Re; P_Im  

    sol=bvp4c(@ANTA_deriv_t_v2,@ANTA_bcs_IMVS, solinit); 

    y_first=deval(sol,x); 

    y=deval(sol,x); 

    C_Re_guess=y_first(1,:);  

    dC_Redx_guess=y_first(2,:); 

    C_Im_guess=y_first(3,:); 

    dC_Imdx_guess=y_first(4,:); 

     

else 

    solinit = bvpinit([0,d],[C_Re_guess(1), C_Re_guess(end)]); 

%edit ,spiller ingen rolle hva som står her 

    solinit.x=x; %[x x x x x x x x] 

    solinit.y=[C_Re_guess ; dC_Redx_guess; C_Im_guess ; 

dC_Imdx_guess]; %[C_Re ; dC_Redx; C_Im ; dC_Imdx;][C_Re C_Re 

C_Re C_Re; Z_Re Z_Re Z_Re Z_Re ; C_Im C_Im C_Im C_Im C_Im;  

Z_Im Z_Im Z_Im Z_Im ]  

    sol=bvp4c(@ANTA_deriv_t_v2,@ANTA_bcs_IMVS, solinit); 

    y=deval(sol,x); 

    y_first=deval(sol,x); 

    C_Re_guess=y(1,:);  

    dC_Redx_guess=y(2,:); 

    C_Im_guess=y(3,:); 

    dC_Imdx_guess=y(4,:); 

end 

save_C_Re(i,:)=y(1,:); 

save_Z_Re(i,:)=y(2,:); 

save_C_Im(i,:)=y(3,:); 
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save_Z_Im(i,:)=y(4,:); 

save_omega(i)=omega; 

V_Re_mod(i,:)=log((save_C_Re(i,:)+C_ss)./C_ss)*K_boltzmann*298

/(Alpha*e_charge); 

V_Im_mod(i,:)=log((save_C_Im(i,:)+C_ss)./C_ss)*K_boltzmann*298

/(Alpha*e_charge); 

  

end 

 

figure 

semilogx(omega_grid/(2*pi),V_Im_mod(:,1),'-k') 

xlabel('Frequency [Hz]') 

ylabel('Im(Potential) [V.W^-^1.m^-^2]') 

hold on 

semilogx(x_IMVS,y_IMVS*3.5,'ok-

','LineWidth',line_width,'MarkerFaceColor','k') 

xlim([10^-1,10^4]) 

set(gca,'FontSize',font_size_axis) % bruker 14 i rapport 

  

f_min_eksp=Beta/Alpha*k_0*(C_ss(1)/C_0)^b*1/(2*pi); 

 

  

 

Code for calculating the IMPS-specter 

%% 

clear y omega_grid save_alpha save_V_mod save_Z save_C x 

save_x_IV n_omega_mesh J_R_int 

global e Phi_ss C_0 d Beta Alpha n_LB n_refl n_inj b a D_0  

k_0 K_G guess_LB K_D K_R omega Phi_A sol_ss %k_rec k_abs phi_0 

Beta Alpha D_0 gjett_a_2 omega Phi_x sol_ss 

  

figure 

for w=1:1 

n_xmesh=100; %antall gridpunkter  

n_omega_mesh=100; %antall frekvsener som brukes i IMVS 

IV_mesh=10; 

omega_min=2*pi*10^-1; %start"frekvens" 

omega_max=2*pi*10^4;  

plot_on=0;  

iv_on=1; 

IMPS_on=1;  

IV_plot_on=0; 

  

d=10*10^-6; 

x1=(0:n_xmesh); 

x=x1.^4+1; %How much denser mesh at the LeftBoundary? exp(x1) 

is extremely dense, x.^3 less dense, x.^2 even less dense and 

so on 

x=x/max(x)*d;  
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x=[0, x]; %x does now starts at x=0, and ends at x=d 

save_C_Re=zeros(n_omega_mesh,length(x)); 

save_Z_Re=zeros(n_omega_mesh,length(x)); 

save_C_Im=zeros(n_omega_mesh,length(x)); 

save_Z_Im=zeros(n_omega_mesh,length(x)); 

V_Re_mod=zeros(n_omega_mesh,length(x)); 

 

save_omega=zeros(1,n_omega_mesh); 

save_C=zeros(IV_mesh+1,length(x)); 

save_Z=zeros(IV_mesh+1,length(x)); 

save_x_IV=zeros(IV_mesh+1,length(x)); 

  

%% steady state 

save_C(1)=1; 

Phi_ss=190; 

     

R=2*10^-3; 

Alpha=0.4344; 

Beta=0.6274; %Recombination %0.6 (målt til 0.72(3pkt) og 

0.46(4pkt), ) 

a=(1-Alpha)/Alpha; %Since (1-Alpha)/Alpha is used mostly 

b=(Beta-Alpha)/Alpha; % Since (Beta-Alpha)/Alpha is used 

mostly 

%%eksp input: 

K_boltzmann= 1.38064852*10^-23;%8.617*10^-5;   

e_charge=1.60217662*10^-19; 

t_rec=0.027;%0.027; 

omega_eksp_IMVS=t_rec^-1; 

t_trans=0.00862; 

omega_eksp_IMPS=t_rec^-1; 

V_eksp=0.595; 

I_sc_eksp=39.5; 

n_n_0=exp(Alpha*e_charge*V_eksp/(K_boltzmann*298)); %0.6 ble m 

  

n_refl=0; 

n_inj=1; 

Phi_A=Phi_ss*0.05; 

  

K_D=D_0/C_0^a; 

K_R=Beta*k_0/(Alpha*C_0^b);  

K_G=0.3654; %Antall coloumb per watt 

  

guess_LB= (K_G*Phi_ss*(1-exp(-e*d))/(d*K_R))^(1/(1+b)); % 

Guess for value of c at left boundary. Needs to be good. 

guess_RB= (K_G*Phi_ss*(1-exp(-e*d))/(d*K_R))^(1/(1+b));% Guess 

for value of c at right boundary 

  

for i=1:IV_mesh+1  

save_x_IV(i,:)=x; 

end 
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%THE CORE------------------------------------------ 

solinit = bvpinit([0,d],[guess_LB, guess_RB]); %edit, hvorfor 

er ikke gjett_b global? 

solinit.x=x; %[x x x x x x x x] 

solinit.y=[0*x+(guess_LB+guess_RB)/2 ; 0*x]; %[c c c c c c c 

c; z z z z z z z ] 

sol_ss=bvp4c(@ANTA_deriv_ss_v2,@bcs_ss_Voc, solinit); 

y=deval(sol_ss,x); 

save_C(1,:)=y(1,:); 

save_Z(1,:)=y(2,:); 

C_ss=y(1,:); 

Z_ss=y(2,:); 

%The core end 

  

if plot_on==1  

    figure 

plot(x,save_C(1,:),'k-*') 

xlabel('x') 

ylabel('c') 

end 

  

%kontroll 

J_R_tot=Beta/Alpha*k_0*(save_C(1)/C_0)^b*save_C(1)*d; 

J_G_tot=n_inj*Phi_ss*K_G*(1-exp(-e*d));%trapz(-

n_inj.*K_G.*e*Phi_ss*(exp(-e*x))); Edit, mangler refleksjon 

n_n_0_ratio=save_C(1)/C_0; 

V_mod_oc=log(save_C(1)/C_0)*K_boltzmann*298/(Alpha*e_charge); 

t_rec_anta_k_0=(k_0*(save_C(1)/C_0)^b*save_C(1))^-1; 

v__omega=(k_0*(save_C(1)/C_0)^b*save_C(1)); 

v__C1=save_C(1); 

  

  

%% END STEADY STATE 

  

Phi_ss=Phi_ss+Phi_A; 

solinit = bvpinit([0,d],[guess_LB, guess_RB]);  

solinit.x=x; %[x x x x x x x x] 

solinit.y=[0*x+(guess_LB+guess_RB)/2 ; 0*x]; %[c c c c c c c 

c; z z z z z z z ] 

sol_IMVS=bvp4c(@ANTA_deriv_ss_v2,@bcs_ss_Voc, solinit); 

y=deval(sol_IMVS,x); 

C_m=y(1,:); 

Z_m=y(2,:); 

Phi_ss=Phi_ss-Phi_A; 

  

 

%% IV-CURVE 

if iv_on==1 %% finne resten av IV-kurven 

  

temp=1:1:IV_mesh; 

V_IV=V_mod_oc-temp/IV_mesh*V_mod_oc; 
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for i=1:IV_mesh 

     

    n_LB=C_0*exp(Alpha*e_charge*V_IV(i)/K_boltzmann/298); 

     

    solinit = bvpinit([0,d],[guess_LB, guess_RB]);  

    solinit.x=x; %[x x x x x x x x] 

    solinit.y=[y(1,:) ; y(2,:)]; %[c c c c c c c c; z z z z z 

z z ] 

    sol_ss=bvp4c(@ANTA_deriv_ss_v2,@bcs_ss_IV, solinit); 

    y=deval(sol_ss,x); 

    save_C(i+1,:)=y(1,:); 

    save_Z(i+1,:)=y(2,:); 

end 

  

V_IV=[V_mod_oc V_IV]; %Få med spenningen ved åpen krets også 

if IV_plot_on==1 

figure 

plot(V_IV,save_Z(:,1),'ksq') 

xlabel('V [V]') 

ylabel('I [A.m^-^2]') 

  

hold on  

V_ny=V_IV-save_Z(:,1)'*R; 

plot(V_ny,save_Z(:,1),'m*') 

xlim([0,V_eksp*1.2]); 

  

figure 

plot(save_x_IV',save_C','r-') 

xlabel('x') 

ylabel('C') 

  

%Calculating how much of the injected electrons recombine 

Y=save_C; %Pre allocating 

for i=1:IV_mesh+1 

Y(i,:)=K_R*save_C(i,:).^(b+1); 

J_R_int(i)=trapz(x,Y(i,:)); 

end 

  

%Plotting a comparison to see that recombination is neglible 

at sc. 

figure 

hold on 

plot(V_IV,J_R_int,'r*') 

plot(V_IV,save_Z(:,1),'c*') 

plot(V_IV,V_IV*0+J_G_tot,'g*') 

plot(V_IV,J_R_int+save_Z(:,1)','k-') 

end  

end 

%% END IV-CURVE 
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 if IMPS_on==0 

  

     return 

 end 

  

%% IMPS 

temp=(0 : log(omega_max/omega_min)/n_omega_mesh : 

log(omega_max/omega_min)); 

omega_grid=omega_min*exp(temp); 

  

for i=1:n_omega_mesh+1 

    omega=omega_grid(i); 

     

if i==1  

    solinit = bvpinit([0,d],[guess_LB, guess_RB]);  

    solinit.x=x; %[x x x x x x x x] 

    solinit.y=[C_m-C_ss; Z_m-Z_ss; 0*x ; 0*x]; %[P_Re ; Z_Re; 

P_Im ; Z_IM;]  

    %edit, fix over 

    sol=bvp4c(@ANTA_deriv_t_v2,@ANTA_bcs_IMPS, solinit); 

    y_first=deval(sol,x); 

    y=deval(sol,x); 

    C_Re_guess=y_first(1,:);  

    dC_Redx_guess=y_first(2,:); 

    C_Im_guess=y_first(3,:); 

    dC_Imdx_guess=y_first(4,:); 

     

else 

    solinit = bvpinit([0,d],[C_Re_guess(1), C_Re_guess(end)]);  

    solinit.x=x; %[x x x x x x x x] 

    solinit.y=[C_Re_guess ; dC_Redx_guess; C_Im_guess ; 

dC_Imdx_guess]; %[C_Re ; dC_Redx; C_Im ; dC_Imdx;][C_Re C_Re 

C_Re C_Re; Z_Re Z_Re Z_Re Z_Re ; C_Im C_Im C_Im C_Im C_Im;  

Z_Im Z_Im Z_Im Z_Im ]  

    sol=bvp4c(@ANTA_deriv_t_v2,@ANTA_bcs_IMPS, solinit); 

    y=deval(sol,x); 

    y_first=deval(sol,x); 

    C_Re_guess=y(1,:);  

    dC_Redx_guess=y(2,:); 

    C_Im_guess=y(3,:); 

    dC_Imdx_guess=y(4,:); 

end 

save_C_Re(i,:)=y(1,:); 

save_Z_Re(i,:)=y(2,:); 

save_C_Im(i,:)=y(3,:); 

save_Z_Im(i,:)=y(4,:); 

save_omega(i)=omega; 

 

end 
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I_Im_plot=K_D*save_Z_Im(:,1); 

semilogx(omega_grid/(2*pi),K_D*save_Z_Im(:,1),'k-') 

xlabel('Frequency [Hz]') 

ylabel('A.W^-^1.m^-^2') 

hold on 

  

f_min_Anta_way_model=Beta/Alpha*k_0*(C_ss(1)/C_0)^b*1/(2*pi); 

  

end 

%% END IMVS 

semilogx(x_IMPS,10.5*y_IMPS/(9.62*10^-6),'k-o') 

set(gca,'FontSize',font_size_axis) 

xlim([10^-1, 10^4]) 

 

 

Iterative scheme for determination of 𝝐 and 𝒏𝟎 

clear y omega_grid J_G_int save_alpha save_V_mod save_Z save_C 

x save_x_IV n_omega_mesh J_R_int V_IV 

global e Phi_ss C_0 d Beta Alpha n_LB n_refl n_inj b a D_0 k_0 

K_G guess_LB K_D K_R omega Phi_A sol_ss %k_rec k_abs phi_0 

Beta Alpha D_0 gjett_a_2 omega Phi_x sol_ss 

n_xmesh=100; %antall gridpunkter  

n_omega_mesh=100; %antall frekvsener som brukes i IMVS 

IV_mesh=10; 

omega_min=2*pi*10^-1; %start"frekvens" 

omega_max=2*pi*10^4;  

plot_on=0; %PLot over steady state elektronkonsentrasjon 

iv_on=1; 

IMPS_on=0; %Regne ut IMVS-spekter? 

IV_plot_on=0; 

  

  

d=10*10^-6; 

x1=(0:n_xmesh); 

%x=exp(x1); 

x=x1.^4+1; %How much denser mesh at the LeftBoundary? exp(x1) 

is extremely dense, x.^3 less dense, x.^2 even less dense and 

so on 

x=x/max(x)*d;  

x=[0, x]; %x does now starts at x=0, and ends at x=d, with 

most gridpoints close to x=0. 

%preallokere plass 

save_C_Re=zeros(n_omega_mesh,length(x)); 

save_Z_Re=zeros(n_omega_mesh,length(x)); 

save_C_Im=zeros(n_omega_mesh,length(x)); 

save_Z_Im=zeros(n_omega_mesh,length(x)); 

V_Re_mod=zeros(n_omega_mesh,length(x)); 

V_Im_mod=zeros(n_omega_mesh,length(x)); 

save_omega=zeros(1,n_omega_mesh); 

save_C=zeros(IV_mesh+1,length(x)); 
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save_Z=zeros(IV_mesh+1,length(x)); 

save_x_IV=zeros(IV_mesh+1,length(x)); 

  

  

%% steady state 

I_sc_mod=38; 

%e=9.1702*10^4;%2.2331*10^5;%1*3*5.4316*10^4;  

I_sc_eksp=38.5; 

e_0=0; 

C_0_old=0; 

V_mod_oc=0; 

  

save_C(1)=1; 

telle_C_0=0; 

telle=0; 

while abs(I_sc_mod-I_sc_eksp)>10^-1 

telle=telle+1; 

Phi_ss=190; 

     

R=2*10^-3; 

Alpha=0.4344; 

Beta=0.6274; %Recombination %0.6 (målt til 0.72(3pkt) og 

0.46(4pkt), ) 

a=(1-Alpha)/Alpha; %Since (1-Alpha)/Alpha is used mostly 

b=(Beta-Alpha)/Alpha; % Since (Beta-Alpha)/Alpha is used  

K_boltzmann= 1.38064852*10^-23;%8.617*10^-5;   

e_charge=1.60217662*10^-19; 

t_rec=0.027;%0.027; 

omega_eksp_IMVS=t_rec^-1; 

t_trans=0.00862; 

V_eksp=0.595; 

  

n_n_0=exp(Alpha*e_charge*V_eksp/(K_boltzmann*298)); %0.6 ble m 

  

V_mod_oc=10000; 

  

while abs(V_mod_oc-V_eksp)>10^-5 

C_0_old=C_0; 

C_0=save_C(1)*n_n_0^-1;%n_n_0^-1 * I_sc_eksp*t_rec*Alpha/Beta 

;%0.001;% 

telle_C_0=telle_C_0+1; 

  

n_refl=0; 

n_inj=1; 

Phi_A=Phi_ss*0.01; 

  

K_D=D_0/C_0^a; 

K_R=Beta*k_0/(Alpha*C_0^b);  

K_G=0.3654; %Antall coloumb per watt 
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guess_LB= (K_G*Phi_ss*(1-exp(-e*d))/(d*K_R))^(1/(1+b)); % 

Guess for value of c at left boundary. Needs to be good. 

guess_RB= (K_G*Phi_ss*(1-exp(-e*d))/(d*K_R))^(1/(1+b));% Guess 

for value of c at right boundary 

  

for i=1:IV_mesh+1  

save_x_IV(i,:)=x; 

end 

  

%THE CORE------------------------------------------ 

solinit = bvpinit([0,d],[guess_LB, guess_RB]); %edit, hvorfor 

er ikke gjett_b global? 

solinit.x=x; %[x x x x x x x x] 

solinit.y=[0*x+(guess_LB+guess_RB)/2 ; 0*x]; %[c c c c c c c 

c; z z z z z z z ] 

sol_ss=bvp4c(@ANTA_deriv_ss_v2,@bcs_ss_Voc, solinit); 

y=deval(sol_ss,x); 

save_C(1,:)=y(1,:); 

save_Z(1,:)=y(2,:); 

C_ss=y(1,:); 

Z_ss=y(2,:); 

%The core end 

  

if plot_on==1  

    figure 

plot(x,save_C(1,:),'k-*') 

xlabel('x') 

ylabel('c') 

end 

  

%kontroll 

J_R_tot=Beta/Alpha*k_0*(save_C(1)/C_0)^b*save_C(1)*d; 

J_G_tot=n_inj*Phi_ss*K_G*(1-exp(-e*d));%trapz(-

n_inj.*K_G.*e*Phi_ss*(exp(-e*x))); 

n_n_0_ratio=save_C(1)/C_0; 

V_mod_oc=log(save_C(1)/C_0)*K_boltzmann*298/(Alpha*e_charge); 

t_rec_anta_k_0=(k_0*(save_C(1)/C_0)^b*save_C(1))^-1; 

v__omega=(k_0*(save_C(1)/C_0)^b*save_C(1)); 

v__C1=save_C(1); 

  

%% END STEADY STATE 

end 

  

%% IV-CURVE 

if iv_on==1 %% finne resten av IV-kurven 

  

temp=1:1:IV_mesh; 

V_IV=V_mod_oc-temp/IV_mesh*V_mod_oc; 

  

for i=1:IV_mesh 
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    n_LB=C_0*exp(Alpha*e_charge*V_IV(i)/K_boltzmann/298); 

     

    solinit = bvpinit([0,d],[guess_LB, guess_RB]); %edit, 

hvorfor er ikke gjett_b global? 

    solinit.x=x; %[x x x x x x x x] 

    solinit.y=[y(1,:) ; y(2,:)]; %[c c c c c c c c; z z z z z 

z z ] 

    sol_ss=bvp4c(@ANTA_deriv_ss_v2,@bcs_ss_IV, solinit); 

    y=deval(sol_ss,x); 

    save_C(i+1,:)=y(1,:); 

    save_Z(i+1,:)=y(2,:); 

end 

I_sc_mod=save_Z(end,1); 

e_0=e; 

e=e+(1-I_sc_mod/(I_sc_eksp))*(e);   %Beregnet  

  

end 

V_IV=[V_mod_oc V_IV]; %Få med spenningen ved åpen krets også 

  

end 

  

%% plot IV 

if IV_plot_on==1 

figure 

plot(V_IV,save_Z(:,1),'ksq') 

xlabel('V [V]') 

ylabel('I [A.m^-^2]') 

  

hold on  

V_ny=V_IV-save_Z(:,1)'*R; 

plot(V_ny,save_Z(:,1),'m*') 

xlim([0,V_eksp*1.2]); 

  

figure 

plot(save_x_IV',save_C','r-') 

xlabel('x') 

ylabel('C') 

  

%Calculating how much of the injected electrons recombine 

Y=save_C; %Pre allocating 

Y_G=Y; 

for i=1:IV_mesh+1 

Y(i,:)=K_R*save_C(i,:).^(b+1); 

Y_G(i,:)=n_inj*Phi_ss*K_G*e*(exp(-e*x)+n_refl*exp(e*(x-2*d))); 

J_R_int(i)=trapz(x,Y(i,:)); 

J_G_int(i)=trapz(x,Y_G(i,:)); 

end 

  

figure 

hold on 

plot(V_IV,J_G_int,'g*') 
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plot(V_IV,J_R_int,'r*') 

plot(V_IV,save_Z(:,1),'c*') 

plot(V_IV,J_R_int+save_Z(:,1)','k-') 

end  

%% END IV-CURVE 


