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Abstract. A model for calculation of core-ionization energies is
developed within the equations-of-motion coupled cluster frame-
work with application of the CVS approximation. The model
deviates from EOM-CCSD by inclusion of triple projection man-
ifold and triple excitation operators, as well as triple excitation
amplitudes. However, the triple projection manifold is restricted
to only include states involving a specific core excitation, namely
an excitation to a super-diffuse orbital. As the super-diffuse or-
bital does not interact with the molecule orbitals, the model pro-
duces core-ionization energies. The truncation level of the cluster
operator remains as in EOM-CCSD, but a trivial zero triple clus-
ter operator is added. There are still some minor errors present
in the pilot code, but it is expected that the model produces re-
sults at an accuracy level close to EOM-CCSDT. The computa-
tional cost, however, is reduced to n7 compared to EOM-CCSDT,
which scales as n8, and could be further reduced to n6, n denot-
ing the number of basis functions. Since the proposed model is
the theoretical equivalent to the experimental procedure XPS, it
is named XPS-CCSD. Theoretical spectra may be constructed
by core-ionization energies obtained by the XPS-CCSD model,
where these are helpful in the interpretation of their experimen-
tal counterpart.





Sammendrag. En modell for beregning av kjerneioniseringsen-
ergier er utledet ved hjelp av equations-of-motion coupled cluster
teori hvor CVS approksimasjonen er benyttet. Forskjellen mel-
lom denne modellen og eksisterende metoder som EOM-CCSDT
og EOM-CCSD er størrelsen p̊a projeksjonsmanifoldet og trunk-
eringsniv̊aet av cluster-operatoren. Modellen inkluderer de samme
elektroninteraksjonene som CCSD, men tar ogs̊a høyde for trip-
peleksitasjoner som resulterer i kjerneionisering. En superdiffus
orbital er inkuldert i basissettet, slik at kjerneeksitasjon til denne
orbitalen resulterer i kjerneionisering. Pilotkoden innholder fremde-
les noen små feil, men det er forventet at modellen vil gi resul-
tater som er sammenliknbare med EOM-CCSDT n̊ar det kommer
til nøyaktighet. Beregningskostnaden er imdilertid redusert til n7

sammenlignet med EOM-CCSDT som skalerer som n8, og kan yt-
terligere reduseres til n6, hvor n betegner antall basisfunksjoner.
Modellen kan brukes til å konstruere teoretiske spekter, hvor et
eksperimentelt spekter fra XPS-metoden kan tolkes ved hjelp av
det teoretiske spekteret. Derfor har modellen f̊att navnet XPS-
CCSD.
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1. Introduction

Quantum mechanical methods yield an accurate description of many-body sys-
tems, which includes descriptions of molecular systems and chemical phenom-
ena. A tool for obtaining information about the electronic structure of atoms
and molecules is the Schrödinger equation, proposed by Erwin Schrödinger in
1926 [1]. Since it is only possible to obtain exact solutions of the Schrödinger
equation for the simplest of systems, there have been developed a number of
approximate models with different trade-offs between accuracy and computa-
tional cost. In this context, chemical accuracy is the warranted goal of accuracy
in order to achieve predictive quantum chemical models, and involves theoreti-
cal values within the range of ± 1 kcal/mol, or equivalently ± 0.043 eV, of the
corresponding experimental values [2]. However, this goal is in most cases not
achieved, such that models tend to only have high accuracy and not fulfil the
requirement of being predictive models.

Coupled cluster theory is the foundation of a number of ab initio models for
electronic structure calculations, where the associated accuracy and computa-
tional cost of each model compete. Based on the work on electron correlation
by Sinangolu [3] and inspired by the exponential ansatz Coester and Kümmel
proposed in connection with nuclear physics [4], the framework of the coupled
cluster models was first introduced by Ćıžek in 1966 [5], where equations for
the simplest model was derived, and later together with Paldus and Shavitt
in 1972 [6]. Further development of the framework has since produced models
that are widely used for calculation of ground state energies and excitation
energies [7–20].

Description of electron correlation in atoms and molecules is considered one of
the challenges within the field of quantum chemistry [21], and coupled cluster
theory was developed in order to handle this problem. Coupled cluster models
retrieve dynamic correlation well, but since the models are based on a single
Slater determinant, the description of static correlation is poorer [7;22–24]. Con-
sequently, the coupled cluster models produce accurate results for molecules
in the vicinity of their equilibrium geometry, while dissociation energies do
not achieve the same level of accuracy. In addition, systems with degenerate
or near-degenerate states are also of multireference character, hence coupled
cluster models handle such systems poorly as well. There exists an approach
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that tries to overcome the multireference issue, namely multireference coupled
cluster, abbreviated to MRCC, but this approach is still in development [23;24].

The coupled cluster method involves projection of the coupled cluster
Schrödinger equation where the exponential ansatz leads to both connected
and disconnected excitation amplitudes. In the resulting equations, the oper-
ator used is called the cluster operator and it is parted into terms that induce
single excitations, double excitations, triple excitations and so forth, where the
non-truncated operator consists of N terms, N denoting the number of elec-
trons, and use of this operator leads to an exact result. The non-truncated
operator produces results equal to the results obtained by the full interaction
configuration model, FCI, while models with a truncated operator can be as-
sociated with the truncated configuration interaction models, CIS, CISD and
so forth. In this case, the space used for calculations is not equal to the full
space [7;25;26]. However, the computational cost of the coupled cluster model
with a non-truncated operator limits it to description of the simplest systems,
therefore, the operator is usually truncated, leading to a hierarchy of models,
where the computational cost of each model increases with the inclusion of
excitation operators in the cluster operator.

The simplest coupled cluster model is called coupled cluster singles, CCS, where
the cluster operator is truncated after the first term, corresponding to excita-
tions of a single electron. Including the second term of the cluster operator
leads to the CCSD model, where simultaneous excitations of two electrons are
considered as well. Continuing in the same manner, the CCSDT model emerges,
where the cluster operator consists of the single, double and triple cluster opera-
tors. As touched upon earlier, the computational cost of these models increases
as the accuracy increases, thus CCSDT will produce more accurate results than
CCS and CCSD, which is expected as it includes more electron interactions.
The drawback of CCSDT is the computational cost, the model scales as n8,
while CCS scales as n4 and CCSD as n6, n denoting the number of basis func-
tions [13;26]. The level of accuracy of CCSDT is often aimed for, but as noted
the model is too impractical for application on large systems, creating room for
alternative models such as CC3, CCSD(T) and CCSDT-1/2/3 [13;16;17].

CC3 is a hybrid model that make use of both coupled cluster theory and pertur-
bation theory, where the coupled cluster wave function is obtained by simplify-
ing the projected coupled cluster amplitude equations by perturbation theory.
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The higher order terms, in this case higher than second order, of the perturba-
tion is disregarded in the amplitudes and the determination of the wave function
proceeds in the same iterative manner as for CCSDT [13;14;27].

CCSD(T) is not an iterative model such as the rest of the coupled cluster mod-
els, it simply adds an correction obtained by perturbation theory to the CCSD
energy, thus approximating the CCSDT energy. The correction corresponds to
the fourth and fifth order perturbative corrections that contain connected triple
amplitudes projected onto the single or double space [14;15;27].

The CCSDT-1/2/3 models include variations of the cluster operator when con-
sidering different excitations, for the CCSDT-1 model the exponential cluster
operator is approximated by eT̂1+T̂2 + T̂3, while for CCSDT-2 both T̂1 and T̂3 are
neglected when considering the triple excitation amplitude equations and for
CCSDT-3 only T̂3 is neglected when considering the triple excitation amplitude
equations [16;17].

All of the mentioned models that consider the triple contribution to some ex-
tent, CC3, CCSD(T) and CCSDT-1/2/3, scale as n7, and are often more accu-
rate than CCSD [13–17;27]. CC2 is worth mentioning as an alternative to CCSD,
where energies are obtained similarly as for CC3, but in this case the double
excitation amplitudes are obtained by perturbation theory, leading to a scaling
of n5 [13;27]. The mentioned coupled cluster models are summarised in Table 1.

One approach for describing excitation energies within the coupled cluster
framework is to make use of the equations-of-motion theory, EOM-CC, where a
parameterization similar to the parameterization in the CI model allows descrip-
tion of excited states [26]. This model was first derived from a time-dependent
linear response framework by Monkhorst [28], and later discussed by Emrich [29]

and Sekino and Bartlett [30]. A biorthonormal basis and the application of the
variational principle results in eigenvalue problems where the solutions provide
a good description of the electronic structure. EOM-CC has proved to be one
of the most accurate techniques for excited states, and the framework is widely
used [31–36].
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Table 1. Hierarchy of the coupled cluster methods [13–17;26;27]. T̂ denotes
the cluster operator, while T̂i denotes the cluster operator containing exci-
tation operators for i electrons.

Model Cluster operator Scaling

CCS T̂ = T̂1 n4

CC2
T̂ = T̂1 + perturbative approximations

to double excitations
n5

CCSD T̂ = T̂1 + T̂2 n6

CC3
T̂ = T̂1T̂2 + perturbative approximations

to triple excitations
n7

CCSD(T)
T̂ = T̂1 + T̂2 + perturbative approximations

added to the CCSD-energy
n7

CCSDT-1/2/3
eT̂ ≈ eT̂1+T̂2 + T̂3/eT̂ ≈ eT̂2/eT̂ ≈ eT̂1+T̂2

(the latter two only for triple excitation amplitudes,

for single and double eT̂1+T̂2+T̂3 is used)

n7

CCSDT T̂ = T̂1 + T̂2 + T̂3 n8

Another model for description of excited states is the coupled cluster lin-
ear response model, abbreviated to CCLR. This approach is based on the
time-dependent expectation value of a Hermitian operator where the time-
independent coupled cluster linear response function is identified upon expan-
sion [37–39]. In addition to excitation energies, properties such as polarizabilities
and oscillator and transition strengths may be obtained by CCLR [40–42].

In order to obtain the eigenvalues of an eigenvalue problem, the Davidson al-
gorithm is often used, this algorithm determines the lowest eigenvalues of large
matrices by diagnolising part of the full matrix and projecting onto a suitable
subspace [43]. However, other algorithms may be applied as well, for instance
the Lanczos algorithm presented by Cornelius Lanczos in 1950 [44]. Application
of the Davidson algorithm on the EOM-CC eigenvalue problem yields eigenval-
ues corresponding to the states with the lowest energy, which have emerged by
excitation of valence electrons. In order to obtain core excitation energies, the
mentioned algorithm is impractical since these final states are of high energy.
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Corani and Koch proposed the core valence separation model, abbreviated to
CVS, which only takes into account the excitations that involve at least one core
orbital in the projection manifold and disregard the other excitations, making
determination of the core excitation energies achievable [45].

Introducing a super-diffuse orbital in the basis set, as done by Stanton and
Gauss [46], by setting the exponent of the corresponding basis function to nearly
zero, makes it possible to determine core-ionization energies. When a core-
excited electron excites to the super-diffuse orbital, the final state of the mol-
ecule is consisting of one less negative charge, and the molecule is considered
ionized. Combining the EOM-CC approach and the CVS model in addition to
including a super-diffuse orbital in the basis set introduces an accurate model
for core-ionization, which is described in the following chapters.

Table 2 displays core-ionization energies for a selection of coupled cluster mod-
els, where experimental values are noted as well. The CCSD(T)(a) model
approximates the triple excitation amplitudes differently than what is done in
CCSD(T), and corrects the single and double amplitudes as well, which leads
to another energy correction added to the CCSD energy as what is the case for
CCSD(T), and the model scales as n7 [47].

Table 2. Comparison of core-ionization energies for different coupled cluster
models. CCSDT numbers are due to Lan Chang at Johns Hopkins, while the rest
of the numbers are due to Dr. D. A. Matthews at University of Texas. The basis
set used is aug-cc-pCVTZ and energies are given in eV. For the CO molecule,
excitations form both core orbitals are considered, denoted by the parenthesis.

CC2 CCSD CC3 CCSD(T)(a) CCSDT
Experimental

values [48]

H2O 537.98 541.48 538.87 539.62 539.61 539.8
CO (O) 540.32 544.27 541.57 542.21 542.26 542.5
CO (C) 297.66 297.62 296.44 296.57 296.43 296.2

NH3 405.10 407.03 405.17 405.49 405.47 405.6

As observed in Table 2, the core-ionization energies of the different molecules
are best described by the CCSDT model, deviation from experimental values
is less than 1 eV in every case. The more accurate description provided by
CCSDT is expected considering the position of CCSDT in the coupled cluster
hierarchy. However, the computational cost of CCSDT is a drawback, and
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the perturbative triple excitation models, CC3 and CCSD(T)(a), are both of
less computational cost, but both are also less accurate than CCSDT, although
CCSD(T)(a) provides energies close to the CCSDT-energies. With this in mind,
a model with computational cost less than, or equal to n7, and that produces
as accurate core-ionization energies as CCSDT is warranted.

The theoretical ionization process is equivalent to experimental procedures such
as X-ray photoelectron spectroscopy, where the atom or molecule is bombarded
by X-rays of the frequency leading to ejection of core-electrons. Construction
of such experimental spectra is essential in the determination of molecular and
electronic structure, and properties such as charge transfer, geometry, dipole
moments, bond angles, bond lengths, and hybridization may be obtained by
this approach [45;49]. Such spectra have also been studied theoretically by lin-
ear response theory [50;51], density functional theory [52], EOM-CC [53] and other
methods [54–56].

The proposed approach contains the single and double projection manifold as in
CCSD, but limits the triple projection manifold to only include core-ionizations.
Thus, the model includes excitations of a higher level than CCSD, but not all
triple excitations are present as in CCSDT. In addition, the cluster operator is
truncated after the second term as for CCSD, but the specific triple excitations
are present in an additional term added to the truncated operator. However,
this term is not equal to the full three-electron part of the cluster operator and
is equal to zero as the specific ground state triple excitation amplitudes are
equal to zero.

Theoretical preliminaries are covered in Chapter 2, beginning with the second
quantization followed by the foundation of coupled cluster theory along with the
equations-of-motion technique. Chapter 3 provides a more detailed explanation
of the CVS model and the inclusion of a super-diffuse orbital, in addition to a
brief overview of the experimental procedures XPS and NEXAFS. While chap-
ter 4 contains the set-up of the derived equations, where the derived equations
corresponds to the elements of the Jacobian matrix of the proposed model. The
scaling of the proposed model is discussed in Chapter 4. Chapter 5, provides an
insight in the implementation of the proposed model, while preliminary results
when the model is applied to simple molecules are given in Chapter 6.



2. Theoretical Background

The wave function, Ψ, describes a quantum chemical system and contains in
principle all possible information about the system. In order to obtain the
wave function, the Schrödinger equation must be solved, here given in its time-
independent form,

ĤΨ = EΨ,

where Ĥ is the Hamiltonian operator and E the energy of the system. An exact
solution of this eigenvalue problem is impractical when applied to molecular
systems, except for the simplest of systems, and approximations must be made.

2.1. The Second Quantization Representation. When describing many-
body systems, a method that accurately describes changes in the number of par-
ticles in the system and particle motion within the system is favourable [57;58].
The second quantization representation is a well-established formalism for this
purpose [57;59]. In this representation, the observables and the wave function
are both expressed by operators, contrary to the first quantization formulation
in quantum chemistry where observables are represented by operators and the
wave function has explicit coordinate dependence.

Consider the set of M orthonormal spin orbitals, {φP (x) | P = 1, ...,M},
where the spin orbitals may be written as a Slater determinant, which is an
anti-symmetric product and thus have fulfilled the anti-symmetry of the wave
function according to the Pauli principle [60]. A normalized Slater determinant
may be written as

|φP1φP2 · · ·φPN
| = 1√

N !

∣∣∣∣∣∣∣∣∣∣∣∣

φP1(x1) φP2(x1) · · · φPN
(x1)

φP1(x2) φP2(x2) · · · φPN
(x2)

... ... . . . ...
φP1(xN) φP2(xN) · · · φPN

(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
,

for a system of N electrons. In this notation x is a coordinate that contains
the spatial coordinates, r, and the spin function, σ, of the electron.
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Each Slater determinant can be represented by an occupation number vector,
|k〉, in an abstract linear vector space called the Fock space [61]. The occupa-
tion number vectors are basis vectors of the Fock space and contain no spatial
structure, and have the form

|k〉 = |k1, k2, ..., kM〉 , kP =

1 if φP is occupied

0 if φP is unoccupied.

The number of electrons in the system, N , is thus the sum of the occupation
numbers such that N ≤ M . As a consequence of the orthonormality of the
spin orbitals, the inner product of two occupation number vectors produces the
Kronecker-delta function [61].

The fundamental building blocks within the second quantization representation
are the creation and annihilation operators, and all operators are defined from
these [61]. As noted, the state of the system is described by the occupation
number vectors, operating the creation operator on such a state for the fermion
case yields

a†P |k〉 = δkP 0Γk
P |k1, ..., 1P , ..., kM〉 , (1)

where Γk
P = ∏P−1

Q=1(−1)kQ denotes a phase factor. The creation operator, a†P ,
creates an electron in spin orbital P by changing the occupation number on
site P from 0 to 1. Likewise, the effect of the annihilation operator is

aP |k〉 = δkP 1Γk
P |k1, ..., 0P , ..., kM〉 . (2)

As observed in the above expression, the annihilation operator reduces kP from
1 to 0 if spin orbital P is occupied. If the mentioned orbital is not occupied
the annihilation operator produces zero, since there is no electron to annihi-
late. The anti-commutation relations of these operators follow from the above
relations [57–59;61–63],

[a†P , a
†
Q]+ = 0,

[aP , aQ]+ = 0,

[a†P , aQ]+ = δPQ. (3)
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As observed in Equations (1) and (2), the creation and annihilation operators
alter the number of electrons in the state they operate on. However, when a
string of an equal number of the creation and annihilation operators operate on
a state the procedure is number preserving. The resulting operators are called
excitation operators, where the singlet excitation operator, Epq, and the double
excitation operator, epqrs, have the form

Epq = a†pαaqα + a†pβaqβ, (4)

epqrs = EpqErs − δqrEps =
∑
στ

a†pσa
†
rτasτaqσ, (5)

which are linear combinations of strings of creation and annihilation operators.
The permutation symmetry epqrs = erspq follows from the definition. Note that
the upper case letters in a subscript denote spin orbitals, a combination of
spatial and spin part, while lower case letters denote the spatial part such that
φP (x) = φpσ(r,ms) = φp(r)σ(ms), and σ and τ denote general spin functions.
In other words, the spin orbital in non-relativistic theory exists in the spin-
orbital space, which is spanned by the direct product of a basis for the orbital
space and a basis for the spin space. φp(r) is the spatial part of the spin
orbital with spatial coordinate r and σ(ms) is the spin part of the spin orbital
with spin coordinate ms, where ms is either equal to 1

2 or −1
2 for the fermion

case, corresponding to α or β-spin, respectively. Thus, the anti-commutation
relation, see Equation (3), may be written as

[a†pσ, aqτ ]+ = δpσ,qτ = δpqδστ ,

where creation operator a†pσ is associated with the spin orbital φpσ.

Based on the definitions of the creation and annihilation operators, see Equa-
tions (1) and (2) respectively, the electronic Hamiltonian in the second formal-
ism may be expressed as

Ĥ =
∑
pq

hpqEpq + 1
2
∑
pqrs

gpqrsepqrs + hnuc.

The operator is valid for the Born-Oppenheimer approximation, such that
Ψ = ψnucψel where ψnuc designates the nuclear wave function and ψel desig-
nates the electronic part of the wave function Ψ. The Hamiltonian in the above
expression is also considered non-relativistic, spin-free and in the absence of
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external fields [61]. Expressions of the one-integral and two-integral in the ex-
pression of the Hamiltonian may be written as

hpq =
∫
φ∗p(r)

(
− 1

2∇
2 −

∑
I

ZI
rI

)
φq(r) dr, (6)

gpqrs =
∫ ∫ φ∗p(r1)φ∗r(r2)φq(r1)φs(r2)

r12
dr1dr2. (7)

The expression of the nuclear-repulsion energy, hnuc, in the second formalism is
equal to that of the first and is given as

hnuc = 1
2
∑
I 6=J

ZIZJ
RIJ

, (8)

where ZI denotes the nuclear charge of nucleus I, rI the distance between an
electron and the nucleus, r12 the distance between electron 1 and electron 2 and
RIJ the distance between nucleus I and nucleus J . Note that the symmetry of
the one- and two-electron parameters, see Equation (6) and (7) respectively, is

hpq = hqp,

gpqrs = gqprs = gpqsr = gqpsr.

for real spin orbitals.

2.2. Coupled Cluster theory. Coupled cluster models are extensively used
and provide a relatively accurate approach for description of electronic struc-
ture, depending on the level of electron interactions included in the utilised
operator [7–12;23;26]. When compared to experimental results, coupled cluster
models produce highly accurate results, however, the computational cost is
also high. Therefore, these models are only practical for application on small
to medium sized molecules. Since the theory is based on a single determinant,
as mentioned in Chapter 1, it works well around equilibrium geometry for closed
shell systems where it retrieves most of the dynamic correlation [7;22]. Gener-
ally, coupled cluster models are size-extensive, due to the exponential cluster
operator that guarantees correct scaling with the number of electrons, and few
problems concerning optimization occurs [7;26].

The coupled cluster wave function, |CC〉, is retrieved by the exponential ansatz,
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|CC〉 = eT̂ |HF〉,

where the Hartree-Fock state is used as a reference state, which is often the case
since coupled cluster models describe correlation, thus coupled cluster models
are regarded as post Hartree-Fock models [26]. T̂ is called a cluster operator
and is a linear combination of excitation operators τ̂µ, where the expansion
coefficients, tµ, are called excitation amplitudes and are a probability measure
of the associated excitation. Gathering all single excitations in one operator
noted as T̂1, all double excitations in another operator noted as T̂2, and so forth,
the cluster operator may be written as a sum of these operators,

T̂ = T̂1 + T̂2 + T̂3 + . . .+ T̂N ,

where N is the number of electrons in the system, and T̂N is an N electron clus-
ter operator containing excitation operators that excite N electrons simultane-
ously. Truncation of the cluster operator consequently leads to an approximate
method, and a hierarchy of approximations is established. All possible electron
interactions are taken into account when the non-truncated cluster operator is
used, yielding a result equal to that of the full configuration interaction model,
FCI [7;26;60].

The truncation level of the cluster operator and its associated models are given
in Table 1 in Chapter 1, as well as the scaling of the models, which indicates
computational cost. As observed, the computational cost increases with the
level of excitations included, n denoting the number of basis functions.

Although the truncation level of CCSD involves no higher than double exci-
tations in the cluster operator, higher level excitations are implicitly included
through disconnected excitation amplitudes [7]. Due to the exponential cluster
operator, terms on the form T̂1T̂2 and T̂ 3

1 emerges when considering the CCSD
model, where both terms contribute to an excitation level corresponding to
triple excitations. Hence, the triple excitation in CCSD is a process generated
by two distinct mechanisms. The associated excitation amplitudes are called
disconnected excitation amplitudes and are on the form tai t

bc
jk and tai t

b
jt
c
k, re-

spectively. a, b, c, . . . denote virtual orbitals, while i, j, k, . . . denote occupied
orbitals. In contrast, the connected triple excitation amplitude in CCSDT has
the form tabcijk and corresponds to simultaneously excitation of three electrons
within three orbital pairs. With this in mind, the advantage of the coupled
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cluster model is clearly visible; namely the disconnected excitation amplitudes,
which give rise to contributions to higher level excitations not directly included
in the truncated operator.

As the coupled cluster model is a non-linear parametrization, the variational
method results in too complicated expressions for the coupled cluster model.
However, within the CI model the variational minimization of the energy is
equal to the solution of the projected Schrödinger equation, which indicates an
alternative way to obtain an equivalent expression for the non-linear coupled
cluster method [26].

Projecting the coupled cluster Schrödinger equation onto the reference state
〈R| and onto a general projection manifold, 〈µ| = 〈R| τ̂ †µ, yields

〈R| e−T̂ ĤeT̂ |R〉 = E, (9)

〈µ| e−T̂ ĤeT̂ |R〉 = 0, (10)

where multiplication of eT̂ was conducted prior to projection due to simplifi-
cation. The above expressions remain valid when the cluster operator is trun-
cated [26]. As observed, this alternative scheme introduces the operator e−T̂ ĤeT̂ ,
which is regarded as the similarity transformed Hamiltonian, designated as ĤT.
Note that a similarity transformation does not change the eigenvalues, and that
two cluster operators commute, [T̂ni

, T̂nj
] = 0 for ni, nj = 1, . . . , N . Since the

variational principle is not applied in the coupled cluster method, the calculated
energy is not an upper bound for the ground state energy.

Upon projection of the coupled cluster Schrödinger equation onto the reference
state followed by expansion of the exponential cluster operator, it is established
that only the single and double excitation amplitudes contribute to the coupled
cluster energy, regardless of the truncation level of the cluster operator. Both
the Brillouin theorem and the effect of the Hamiltonian as a two-particle oper-
ator enable this result [26]. Nonetheless, the higher level excitation amplitudes
contribute indirectly to the energy since all amplitudes are coupled by the pro-
jected equations, see Equation (10). For instance, when considering the same
system for CCSD and CCSDT, the single and double excitation amplitudes
in CCSD may not be equal to the single and double excitation amplitudes in
CCSDT, thus the energy may differ as well.
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The similarity transformed Hamiltonian is not Hermitian due to that the cluster
operator is not anti-Hermitian. Nevertheless, another property of the Hamilton-
ian is exploited to achieve practical expressions; due to the rank of the operator,
a BCH-expansion, see Equation (B.1) in Appendix B, truncates after the fifth
term [28]. The truncation level is in accordance with the criterion for surviving
commutators given in Appendix D, see Expression (D.1). As a consequence,
the non-truncated cluster operator in the projected coupled cluster Schrödinger
equation, Equation (10), yields at most quadratic expressions in the excitation
amplitudes [26].

Working within the closed-shell CCSD framework, both T̂1 and T̂2 are of singlet
symmetry, leading to a spin-adapted method. Compared to the level of excita-
tions included, the CCSD model is a simple method with accurate results, since
it is only the single and double excitation amplitudes that contribute directly to
the energy, as mentioned earlier. Considering the Brillouin theorem the double
excitation amplitudes are the most influential contributors to the total energy,
but both the single and double excitation amplitudes are central in obtaining
molecular properties, such as the dipole moment [26]. The closed-shell coupled
cluster singles and doubles wave function has the form

|CCSD〉 = eT̂1+T̂2 |R〉,

where the one- and two-electron terms of the cluster operator are given in terms
of singlet excitation operators, defined in Equation (4),

T̂1 =
∑
ai

taiEai, (11)

T̂2 = 1
2
∑
aibj

tabijEaiEbj. (12)

Note that the double excitation amplitudes have the symmetry tabij = tbaji . In
the CCSD model the similarity transformed Hamiltonian may be written as

ĤT = e−T̂2H̃eT̂2 (13)

where H̃ is called the T̂1-transformed Hamiltonian. This transformation pre-
serves the particle rank of the Hamiltonian, but there is a loss of symmetry of
the one- and two-electron integrals,
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h̃pq 6= h̃qp,

g̃pqrs = g̃rspq 6= g̃qprs 6= g̃pqsr 6= g̃qpsr.

The above relations hold for both complex and real orbitals. e−T̂2H̃eT̂2 can be
expanded by the BCH-expansion, and in this case the non-zero nested com-
mutators of the singlet excitation operators and the electronic Hamiltonian
applied to the Hartree-Fock state are useful expressions, see Appendix C. The
T̂1-transformed Hamiltonian is expressed as

H̃ =
∑
pq

h̃pqEpq + 1
2
∑
pqrs

g̃pqrsepqrs + hnuc,

where the one- and two-electron integrals are also T̂1-transformed, the trans-
formation of the excitation operators are encapsulated by the integrals [26]. The
T̂1-transformed creation operator is a linear transformed standard creation op-
erator where the two are equal for the unoccupied case. Likewise, the T̂1-
transformed annihilation operator is a linear transformed standard annihilation
operator where the two are equal for the occupied case.

2.3. Equation-of-Motion Coupled Cluster theory. The coupled clus-
ter framework was originally developed in order to describe the ground state,
whereas the goal of the equation-of-motion coupled cluster model, EOM-CC,
is to describe the electronic structure of the excited states as accurate as the
structure of the ground state. Consequently, the model is widely used to obtain
excitation energies [8;31–33;36], but it may also be applied for ionization poten-
tials [8;46;64–68] and electron attachments [8;68–70]. The model provides an accurate
spin-adapted final state wave function when applied to a closed-shell reference
state, and as long as the cluster operator is not truncated the EOM-CC method
is an exact procedure [31].

The basis of the EOM-CC model is a CI-type linear parameterization of the
excited states on the form

|c) =
∑
µ

cµτ̂µ |CC〉 = eT̂
∑
µ

cµτ̂µ |R〉,

where the ground state is also included in the summation. In the EOM-CC
model the bra and ket states form a biorthonormal set, where a biorthonormal
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set consists of two sets that are orthogonal to each other, but the two sets are
not orthogonal among themselves [31]. The biorthonormal set may be written
as

|µ) = eT̂ |µ〉 , (14)

(µ| = 〈µ| e−T̂ , (15)

in the EOM-CC basis. The orthonormality of the determinants in the spin-
orbital basis leads to biorthnormality [31],

〈µ|ν〉 = (µ|ν) = δµν .

In the EOM-CC model the energy can be expressed as a pseudo-expectation
value, which is minimized in accordance with the variational principle in order
to determine the states. Thus, the following eigenvalue equations are produced

Hc = Ec, (16)

cTH = cTE, (17)

where the elements of the non-symmetric real matrix H is given by Hµν =
(µ|Ĥ|ν) and c and c are column vectors containing the expansion coefficients
cν and cµ. Since the bra- and ket-coefficients are numerically different, the bra-
states are denoted with overbars. It is possible to choose the eigenvectors such
that they are orthogonal, cT

i cj = δij. Thereby, the calculation of the EOM-CC
states is reduced to diagonalising a non-symmetric matrix. The eigenvalues may
become complex since the similarity transformed Hamiltonian is not Hermitian.
Nevertheless, when the biorthonormal set of expansion coefficients, which car-
ries information about the excitation structure of the electronic states, provides
a good representation the eigenvalues will be real [26].

For the optimized coupled cluster ground state, with energy E0, the Hamilton-
ian matrix has a special structure,

(µ|Ĥ|R) =

E0 µ = 0

0 µ > 0,
(18)

where the first case is in accordance with definitions given in Equation (14) and
(15). While the second case is valid due to orthogonality. An element of the
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non-symmetric matrix H that corresponds to the excited projection manifold
may be written as

Hµν = (µ|Ĥ|ν) = 〈R| τ̂ †µ[ĤT, τ̂ν ] |R〉+ 〈R| τ̂ †µτ̂νĤT |R〉

= (µ|[Ĥ, τ̂ν ]|R) + δµνE0.

Thereby the EOM-CC Hamiltonian matrix may be expressed as a block struc-
tured matrix,

H =
0 ηT

0 A

+ E01,

for an optimized coupled cluster state [26]. The elements of the column vector η

is given as (R|Ĥ|µ). While the elements of the coupled cluster Jacobian matrix
A is given as

Aµν = (µ|[Ĥ, τ̂ν ]|R). (19)

Note that this matrix is also a non-symmetric matrix. The eigenvalue equations,
Equations (16) and (17), may be simplified by level-shifting, where the the
ground state energy is subtracted, such that ∆H = H − E01 and ∆E = E −
E0

[26]. As a consequence, the non-zero eigenvalues correspond to the excitation
energies while the eigenvectors of ∆H are the same as for H. Considering an
excited state K, the following eigenvalue equations are obtained

AtK = ∆EKtK , (20)

tT
KA = tT

K∆EK , (21)

by multiplying the emerging matrices. tK is a column vector containing co-
efficients for the excited states, thereby, the excitation energies are the eigen-
values of the coupled cluster Jacobian. As noted previously the eigenvalues
may become complex since the Jacobian is a non-symmetric matrix. However,
whenever a suitable ground state wave function is used this is not a problem.
There is one drawback of the above eigenvalue problems, the first column of
the shifted Hamiltonian matrix, ∆H, have to vanish in order for the EOM-CC
equations for the excited states to work properly. For CCSD and CCSDT this
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criteria is fulfilled since the first column vanish due to the that the amplitude
equations, see Equation (10), are satisfied. However, this criterion makes the
EOM-CC model limited in use [26].

In closed-shell CCSD the Jacobian matrix, ACCSD, has the form

ACCSD =
(
〈µ1| [ĤT , τ̂ν1 ] |HF〉 〈µ1| [ĤT , τ̂ν2 ] |HF〉
〈µ2| [ĤT , τ̂ν1 ] |HF〉 〈µ2| [ĤT , τ̂ν2 ] |HF〉

)
, (22)

as in accordance with Equation (19). In this case, τ̂ν1 = Ebj and τ̂ν2 = EbjEck,
as observed in Equation (11) and Equation (12), respectively. The Jacobian
matrix for the closed-shell CCSDT model has the form

ACCSDT =


〈µ1| [ĤT , τ̂ν1 ] |HF〉 〈µ1| [ĤT , τ̂ν2 ] |HF〉 〈µ1| [ĤT , τ̂ν3 ] |HF〉
〈µ2| [ĤT , τ̂ν1 ] |HF〉 〈µ2| [ĤT , τ̂ν2 ] |HF〉 〈µ2| [ĤT , τ̂ν3 ] |HF〉
〈µ3| [ĤT , τ̂ν1 ] |HF〉 〈µ3| [ĤT , τ̂ν2 ] |HF〉 〈µ3| [ĤT , τ̂ν3 ] |HF〉

, (23)

as in accordance with Equation (19). In the above matrix the triple excitation
operator τ̂ν3 equals EbjEckEdl, while τ̂ν1 and τ̂ν2 are equal to the corresponding
terms for the CCSD case.

Note that the Hamiltonian matrix is non-symmetric within EOM-CC theory,
subsequently the left and right eigenvectors differ. As a consequence, the EOM-
CC model is not size-intensive when considering transition properties such as
dipole transition strengths, oscillator strengths and rotational strengths, and
CCLR and EOM-CC will thus provide different results [41;42]. When considering
the FCI-limit, however, EOM-CC will produce the same result as CCLR. Both
EOM-CC and CCLR are size-intensive when considering excitation energies,
thus the two models provide the same results in this case.





3. Background on the proposed model and link to
experimental procedures

EOM-CC is a model designed for obtaining excitation energies of a molecular
system, where the Davidson algorithm is utilised in order to obtain valence exci-
tation energies. The Davidson algorithm is a procedure for obtaining the lowest
eigenvalues of a large real-symmetric matrix [43], but a generalized version may
be applied to non-symmetric matrices, which might produce complex eigenval-
ues. Thus this approach can be applied to the Jacobian eigenvalue problem,
see Equations (20) and (21), in order to calculate the lowest excitation ener-
gies. With this in mind, the Davidson algorithm is not applicable for obtaining
excitation energies when considering core excitations, since such excitations are
of high energy and the Davidson algorithm applies a bottom-up approach.

In order to retrieve core excitation energies the CVS model has proved an ac-
curate approach [45;71;72]. The foundation of the CVS model is a core-valence
separation consisting of projecting out all excitations that do not contain at
least one core excitation. Separation of core and valence-electrons was first
proposed by Cederbaum, Domcke and Schirmer [73] where the Hamiltonian was
split into two terms that treated core and valence electrons separately. The
justification of this separation is the large difference in both energy and local-
ization in space between the core and valence electrons.

Stanton and Gauss added a super-diffuse orbital to the set of unoccupied molec-
ular orbitals and recognised that an excitation of an electron to the super-diffuse
orbital portrayed an ionization process. Core-ionization energies were obtained
by applying the approach for several CCSDT methods [46]. The resulting ion-
ization energies proved to be in agreement with experimental values, thus a
simple method for obtaining ionization energies was presented. A final state
containing N−1 electrons, which corresponds to the diagonal representation of
ĤT in the N − 1 electron Hilbert space, can be demonstrated to be identical to
a restricted N electron excited state treatment when a super-diffuse orbital is
included in the basis set [46;64]. Likewise, an electron attachment process can be
described by EOM-CC where the final state contains N + 1 electrons [64]. This
method is often called EA-EOM-CC and is among others presented by Nooijen
and Bartlett [69].

Adding a super-diffuse orbital to the basis set and applying the CVS technique
in addition to restricting the core excitations to only involve excitations to the
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mentioned orbital, makes it possible to obtain core-ionization energies within
the EOM-CC framework. Restricting the triple excitations to only include the
specific core excitation, leads to a Jacobian matrix with more elements than
the CCSD Jacobian matrix, but the elements will differ from the elements of
the CCSDT Jacobian matrix, which is the case for the proposed model.

3.1. Spectroscopy. The field of spectroscopy is based on the interaction of
electromagnetic radiation with matter, where absorption and emission proper-
ties of molecules or atoms make it possible to obtain an accurate description of
the molecular or atomic structure [49;74]. Transition between two states of a par-
ticle may be induced by electromagnetic radiation and this process is described
theoretically by quantum mechanics, where the Franck-Condon principle states
that the momentum and position of the nuclei will not change significantly due
to an electronic transition since such transitions are so fast compared to the
motion of the nuclei [74]. As a consequence, the turning point belonging to the
vibrational state vertically above the internuclear equilibrium separation of the
ground state will give rise to the most intense absorption.

An example of the corresponding Franck-Condon diagram is visualized in Fig-
ure 1, where the green arrow represents the vertical transition, the energy of
such a transition is called the vertical excitation energy, and these energies are
usually considered when estimating excitation energies since the assumption
of no geometrical changes simplifies the calculation. The excitations in the
proposed model are considered vertical, leading to a vertical ionization energy.
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Figure 1. An illustration of a vertical excitation, adapted after
figures in chapter 5 of Symmetry and Spectroscopy [74]. The green
arrow visualises the vertical excitation from vibrational state ν0

to the excited vibrational state ν ′3. Along the vertical axis the
energy of the system is noted, while the internuclear separation is
noted along the horizontal axis, whereR0 denotes the internuclear
equilibrium separation.

There exists a wide range of experimental spectroscopic procedures, based on
what kind of system that is studied and what the property in question is. In
X-ray photoelectron spectroscopy, abbreviated to XPS, the atom or molecule
is bombarded by monochromatic photons of the frequency leading to ejection
of core-electrons, where an ejected electron is called a photoelectron [49]. This
process is visualised schematically in Figure 2.
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Figure 2. The XPS process visualised schematically, adapted
after figure 8.1 in chapter 8 of Modern Spectroscopy [49]. An elec-
tron initially in the core orbital is ejected from the atom or mol-
ecule, illustrated by the green arrow, when the system is subject
to X-rays of energy hν illustrated by the yellow arrow. h denotes
the Planck constant and ν the frequency, while e− denotes an
electron.

Separating the photoelectrons in relation to their kinetic energy and measuring
the number of electrons per unit time trough a slit, makes it possible to con-
struct a spectrum. Similarly, the NEXAFS, near edge X-ray absorption fine
structure, technique studies the electronic structure of molecules close to the
absorption edge, where the structure is subject to weak fluctuations due to the
absorption of photon energy. When bombarded by photons of higher energies
than the ionization energy, core-electrons will eject as photoelectrons, as in
XPS [75], leading to core-holes in the K shell. Two distinct relaxation mecha-
nisms may occur, which involve annihilation of the mentioned core-hole, one
resulting in emission of fluorescence while the other ends in a final state consist-
ing of two electron-holes. The latter phenomena is known as the Auger-effect,
where an electron de-excites to the K shell transferring the additional energy
to another electron, which thereby leaves the molecule and is then called an
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Auger-electron. However, when the molecule is exposed to hard X-rays, the de-
excitation of an electron to the K shell results in emission of energy, known as
fluorescence. Both of these mechanisms are measured by the EXAFS technique,
extended X-ray absorption fine structure [75].

XPS and NEXAFS provide description of the electronic structure of atoms or
molecules by construction of emission and absorption spectra, however, these
experimental techniques are expensive in use and theoretical spectra are there-
fore of great value. In addition, theoretical spectra have proven as a helpful
tool for interpretation of experimental spectra [76–78].





4. Method

Consider the ionization process described in the previous chapter, namely ex-
citation of core-electrons to a super-diffuse orbital that is included in the basis
set. Employing this approach for core-ionization together with the EOM-CC
framework and the CVS technique, results in a model for core-ionization ener-
gies. Restriction of the triple projection manifold such that the core excitations
to the diffuse orbital are the only excitations taken into account, leads to a de-
crease in computational cost when compared to EOM-CCSDT, as the scaling
of EOM-CCSDT is the same as for CCSDT. Furthermore, the level of accuracy
of the proposed model remains close to the accuracy of CCSDT. Thus, the
computational cost is reduced with respect to EOM-CCSDT, while the accu-
racy of the model is at level with the accuracy of CCSDT, two factors that lay
the foundation of a promising model. The model is called XPS-CCSD since
the experimental equivalent is the process occurring in XPS, as mentioned in
Chapter 3.1.

In order to only include the triple excitations involving the specific core ex-
citation, the triple cluster operator is a summation only over two virtual and
two occupied orbitals. The initial core orbital, denoted I, and the final super
diffuse orbital, denoted A, are thus considered as fixed molecular orbitals. A
restricted projection manifold is utilised, where the single and double projec-
tion manifolds are included in their completeness, while the triple projection
manifold is restricted as mentioned.

The XPS-CCSD model constitutes a Jacobian matrix where the triple excita-
tion operator, τ̂XPS

ν3 , includes the two terms τ̂ (1)
ν3 and τ̂ (2)

ν3 . These triple excitation
operators are given as

τ̂
(1)
AIbjck = EAIEbjEck, (24)

τ̂
(2)
AjbIck = EAjEbIEck. (25)

In comparison, the CCSDT Jacobian matrix, see Matrix (23) in Chapter 2.3,
includes the full triple cluster operator, T̂3, with the corresponding triple ex-
citation operator τ̂ν3 . The Jacobian matrix for the XPS-CCSD model may be
written as
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AXPS =


〈µ1| [ĤT , τ̂ν1 ] |HF〉 〈µ1| [ĤT , τ̂ν2 ] |HF〉 〈µ1| [ĤT , τ̂XPS

ν3 ] |HF〉
〈µ2| [ĤT , τ̂ν1 ] |HF〉 〈µ2| [ĤT , τ̂ν2 ] |HF〉 〈µ2| [ĤT , τ̂XPS

ν3 ] |HF〉
〈µXPS

3 | [ĤT , τ̂ν1 ] |HF〉 〈µXPS
3 | [ĤT , τ̂ν2 ] |HF〉 〈µXPS

3 | [ĤT , τ̂XPS
ν3 ] |HF〉

 , (26)

where
〈
µXPS

3

∣∣∣ denotes the triple projection manifold only involving excitations
from core orbital I to the super-diffuse orbital A, and consists of the states{〈

Abc
Ijk

∣∣∣} and
{〈

Abc
jIk

∣∣∣}. Note that the elements belonging to the CCSD part of
this matrix will be equal to the CCSD Jacobian matrix, see Matrix (22). The
triple excitations will not give a contribution to the ground state as

〈
µXPS

3

∣∣∣ ĤT
∣∣∣HF

〉
= 0,

since all the triple excitation amplitudes are equal to zero, tXPS = 0, due to the
final state containing N−1 electrons, which is one less electron than the ground
state. That the above equation is equal to zero is a criteria for the EOM-CC
model to work properly, see Chapter 2.3. The cluster operator is truncated
after the second term in the XPS-CCSD model, as is the case for CCSD, but
the cluster operator may be seen as T̂ = T̂1 + T̂2 + T̂XPS, where the triple cluster
operator is equal to zero due to that the triple excitation amplitudes are equal
to zero. However, note that the triple excitation operator τ̂XPS

ν3 is present in the
elements of the XPS-CCSD Jacobian matrix.

Biorthogonality is obtained from the overlap integrals

〈 ai | ck 〉 = δai,ck,〈
ab
ij

∣∣∣ cdkl 〉 = P cd
kl δai,ckδbj,dl = P ab

ij δai,ckδbj,dl,〈
abc
ijk

∣∣∣ def
lmn

〉
= P abc

ijk δai,dlδbj,emδck,fn,

where the biorthogonal bra states are denoted with an overbar. P ab
ij denotes the

double permutation operator and P abc
ijk the triple permutation operator, which,

respectively, induces six states for the triple projection manifold and two states
for the double projection manifold, as follows
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P ab
ij A

ab
ij = Aabij + Abaji , (27)

P abc
ijk A

abc
ijk = Aabcijk + Aacbikj + Abacjik + Abcajki + Acabkij + Acbakji. (28)

Where Aabij and Aabcijk denote general integrals. From the biorthogonal states,
the double projection manifold of the biorthonormal states may be written as

〈
ãb
ij

∣∣∣∣ = 1
1 + δai,bj

〈
ab
ij

∣∣∣ = 1
∆aibj

〈
ab
ij

∣∣∣ ,
where the tilde denotes the biorthonormal bra-state. Likewise, the biorthonor-
mal basis for the triple case yields

〈
ãbc
ijk

∣∣∣∣ = 1
1 + δai,bj + δai,ck + δbj,ck

〈
abc
ijk

∣∣∣ = Nabc
ijk

〈
abc
ijk

∣∣∣ .
In order to solve the eigenvalue problem, see Equations (20) and (21), a linear
transformation is performed where the coefficients are given as column vectors
and written as

c = c1 + c2 + c3
(1) + c3

(2) =


c1

0
0
0

+


0
c2

0
0

+


0
0
c

(1)
3

0

+


0
0
0
c

(2)
3

 =


c1

c2

c
(1)
3

c
(2)
3

 .

The linear transformed system is denoted as σ, and has the form

σ = AXPSc = AXPSc1 + AXPSc2 + AXPSc3
(1) + AXPSc3

(2)

= σ1 + σ2 + σ3, (29)

where

σγ = σγ,ai + σγ,aibj + σγ,aibjck, γ = 1, 2 (30)

σ3 = σ3,ai + σ3,aibj + σ3,aibjck

= ρ
(1)
3,ai + ρ

(2)
3,ai + ρ

(1)
3,aibj + ρ

(2)
3,aibj + ρ

(1)
3,aibjck + ρ

(2)
3,aibjck. (31)
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Notation-wise, the terms belonging to triple excitations are further divided into
two terms, designated as ρ(1)

3,... and ρ(2)
3,..., as observed above. Note that for terms

emerging from τ̂ (2)
ν3 there is a loss of symmetry for the linear transformation

coefficients, as mentioned in Appendix G. In other words, CAI
bj,ck = CAI

ck,bj, but
BAI
b,j,dl 6= BAI

d,l,bj, thereby the c(1)
3 -coefficients consist of a symmetric matrix, while

the c(2)
3 -coefficients consist of a non-symmetric matrix. This non-symmetry of

the BAI
b,j,dl is also emphasized in the notation by the two commas in the subscript.

The superscript of a matrix element denotes the fixed orbitals, for instance the
fixed orbitals for Baj

b,i,dl are a and j.

Expressions for σ1,aibjck, σ2,aibjck and σ3,aibjck were derived in accordance with
the procedure given in Appendix E, and the final expressions are presented in
Appendix F. Note that the triple projection manifold is written on the general
form in the following expressions for σ1,aibjck, σ2,aibjck and σ3,aibjck. In other
words, the triple projection manifold is not yet restricted to only involving the
specific core excitation. In addition, the two-electron integrals, the contracted
two-integrals and the elements of the inactive Fock matrix are written without
tilde even though they are T̂1-transformed.

4.1. Difference from EOM-CCSD and EOM-CCSDT. Considering the
modifications mentioned above, the difference of XPS-CCSD when compared to
EOM-CCSDT is the restriction of the triple projection manifold and the trun-
cation level of the cluster operator. The XPS-CCSD model includes excitations
of a higher level than CCSD, but not all excitations included in CCSDT are
present. This feature results in more cumbersome expressions than what is the
case for the EOM-CCSD model, however, when compared to EOM-CCSDT the
expressions are not as numerous. Application of the CVS technique ensures that
core excitations are the only ones taken into account, while further restriction
of the triple excitations results in that only core excitations to the super-diffuse
orbital are occurring. In addition, note that the ground state triple excitation
amplitudes are equal to zero, tAbcIjk = tAbcjIk = 0, due to the ionized state contain-
ing N − 1 electrons, while the ground state is containing N electrons. Such
that the N − 1-state is not represented in the Slater determinants included in
the ground state wave function.

Furthermore, the cluster operator is truncated after the second term, not the
third as is done in the EOM-CCSDT model. However, a zero contribution is
added to the truncated cluster operator, representing the triple cluster operator.
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Note that the two triple excitation operators τ̂ (1)
ν3 and τ̂ (2)

ν3 in the XPS-CCSD
Jacobian matrix, see Matrix (26), still contribute even though the triple clus-
ter operator is equal to zero, accordingly including a higher level of electron
interactions than what is the case for CCSD.

4.2. The super-diffuse orbital. As proposed by Stanton and Gauss, an or-
bital with super-diffuse character is included in the basis set [46], more precisely,
the super-diffuse orbital is included in the set of virtual molecular orbitals.
The exponent of a Gaussian basis function added to the basis set is set to
nearly zero. In this manner the super-diffuse orbital has no interactions with
the molecular or atomic orbitals, which is warranted in order to describe an
ionization process.

For a more general treatment, bath-orbitals may be used. Introduction of such
orbitals means to add orbitals that do not interact with the molecular orbitals
and all integrals involving such bath-orbitals are explicitly set to zero. In this
manner, instabilities regarding the integral code that can arise from very small
orbital exponents are avoided.





5. Implementation

Final expressions of the linear transformed XPS-CCSD Jacobian matrix, see
Equation (29) and Matrix (26), are given in Appendix F. These expressions,
except the expressions corresponding to the CCSD Jacobian matrix, see Ma-
trix (22), were implemented in a coupled cluster program developed at the
quantum chemistry group at NTNU. The pilot code is object oriented and
was implemented using Fortran 2008. Expressions for σ1,ai, σ1,aibj, σ2,ai and
σ2,aibjck in Appendix F are not included in the implementation of the linear
transformed XPS-CCSD Jacobian, as the XPS-CCSD class inherits from the
already implemented CCSD class. All together the submodule containing the
XPS-CCSD-expressions contains over 20 000 lines of code.

The expressions were implemented as they appear in Appendix F, meaning that
the triple permutation operator was not unwrapped in the implemented terms,
but applied afterwards. As a consequence, every possible term was calculated,
also the ones not involving a core-ionization. However, only the terms belonging
to the mentioned projection manifold were allowed to contribute to the sigma
vectors. In that manner, the projection manifold was restricted.

Terms involving integrals with the diffuse orbital are equal to zero, since the
diffuse orbital does not interact with any of the other molecular orbitals, as
mentioned in Chapter 4.2. For instance, the terms including gmAld, which
belongs to ρ(2)

3,aibjck, or LbdlA, which belongs to ρ(2)
3,aibj, are all equal to zero. Both

of the mentioned expressions are given in Appendix F.

5.1. Debugging. An EOM-CCSDT calculation where the ground state triple
excitation amplitudes were set equal to zero was performed by Dr. Devin A.
Matthews at University of Texas in Austin. Hence, the CCSD wave function
was used as the ground state function and the truncation level of the cluster
operator is the same as what is used in the XPS-CCSD model. In addition,
all excitations not involving the specific core excitation to the super-diffuse
orbital were neglected. In this manner, the CCSDT-calculation takes the same
excitations as the XPS-CCSD model into account, and the results obtained by
these two models should therefore be equal.

Dr. Matthews’s calculations proved useful in debugging the pilot code, since
the obtained result was compared to the corresponding result obtained by Dr.



32 � 5. Implementation

Matthews. Note that since a CCSDT calculation was performed, the computa-
tional cost corresponded to a scaling of n8, while XPS-CCSD currently scales
as n7.

The coefficient matrices for the triple excitations, CAI
bj,ck and BAI

b,j,ck, contain
some of the same elements. As a consequence, linear dependence emerged and
the result became equal to zero. This problem was explicitly handled in the
code.

5.2. Computational Cost. The XPS-CCSD model scales as n7, but would
scale as n6 if only the terms belonging to the restricted projection manifold were
calculated, which could be done by writing out all the terms emerging when
operating the triple permutation operator, P abc

ijk , and only including the relevant
terms. Relevant terms are in this case terms that involve the core-ionization.
This was not done due to the amount of work and limitation of time, as the
triple permutation operator leads to six terms for each term and both ρ

(1)
3,aibjck

and ρ
(2)
3,aibjck already consist of numerous terms.

Although the scaling of the XPS-CCSD model, when only including terms as
described above, is n6, the approach may lead to greater computational cost
than EOM-CCSD, which also scales as n6. The most expensive contribution
in the EOM-CCSD model scales as n2

occn
4
vir

[26], nocc denoting the number of
occupied orbitals and nvir denoting the number of virtual orbitals, while the
most expensive contribution in the XPS-CCSD model may involve a greater
power of the number of virtual orbitals. In addition, depending on the ratio
between nocc and nvir there might be several terms that deserve the name ”the
most expensive contribution”, while in EOM-CCSD there is only one term
scaling as n2

occn
4
vir.



6. Preliminary Results

Table 3 displays core-ionization energies for H2O, CO and NH3 obtained us-
ing the coupled cluster methods CCSD, CC(2,3), XPS-CCSD, CCSD(T)(a)
and CCSDT for different basis sets. The discrepancies from the CCSDT-
energies when compared to energies obtained by CCSD, CC(2,3), XPS-CCSD
and CCSD(T)(a) are noted in the columns named ∆CCSD, ∆XPS-CCSD and
∆CCSD(T)(a), respectively. CC(2,3) denotes the modified CCSDT-calculation
performed by Dr. Matthews, as mentioned in Chapter 5.1.

The augmented correlation-consistent polarized core-valence set, aug-cc-pCVXZ,
of Woon and Dunning [79] was utilized for all four molecules, where the triple
zeta and quadruple zeta sets were applied. Inclusion of core, core-valence and
valence correlations are represented by the core-valence part of the basis set,
where core correlations are important for describing core excitations properly.

Note that the column named ∆CCSD contains the greatest energy differences,
which is in accordance with the accuracy of the model when compared to the
other models presented in the table. Compared to models that includes triple
contributions, CCSD takes less electron interactions into account and therefore
provides a poorer description of the electronic structure.

In addition, large orbital relaxation effects will occur due to promotion of core-
electrons since the screening effect of the nucleus weakens [71;80;81]. These effects
will not be described sufficiently by only double excitations, as excitation of
one of the electrons is saved for promotion of a core-electron to the diffuse
orbital. Thus, in order to properly describe the orbital relaxation, at least
triple excitations are needed.

As observed in Table 3, the values of CC(2,3) and XPS-CCSD differ, which
is most apparent, when considering energies obtained by using basis set aug-
cc-pCVTZ, for CO when the excited core-orbital belongs to oxygen. These
energies differ by 0.0003121 eV, as observed in Table A.1 in Appendix A where
the deviations of these two calculations are given. Comparison of the rest of
the energies for the same basis set, prove a difference in the fourth decimal,
a deviation of magnitude close to 10−4 eV, where the XPS-CCSD energies are
greatest in each case. This implies that the XPS-CCSD pilot code still contains
some minor errors, as the CC(2,3) model and the XPS-CCSD model should
produce the same energies.
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In addition, it appears that the error increases with increasing basis set size,
as observed in Table A.1. For energies given in Table 3, the three decimals
included for the XPS-CCSD ionization energy for H2O, for instance, in the aug-
cc-pCVQZ basis set differs from the corresponding CC(2,3) energy. Meanwhile,
the error is not visible for the decimals included for the aug-cc-pCVTZ basis
set, and values in Table A.1 proves that the error is close to a magnitude of
10−2 eV for the aug-cc-pCVQZ basis set. Notice that the XPS-CCSD energies
are greater than the CC(2,3) energies when the aug-cc-pCVTZ basis set is
utilized, while the energies obtained by XPS-CCSD are of less magnitude than
the CC(2,3) energies for the aug-cc-pCVQZ basis set. Such an error increase
may suggest that a summation over the virtual orbitals is erroneously truncated.

Inclusion of triple excitations in the XPS-CCSD model results in core-ionization
energies closer to experimental values than the EOM-CCSD model provides,
as observed in Tables 2 and 3. This is to be expected due to the level of
excitations included in the CCSD model and the large orbital relaxation effects
that emerges, as mentioned previously. In addition, in order to obtain accurate
ionization energies it has been proven that the CCSD-level does not suffice,
as the inclusion of triple contributions usually decrease the CCSD ionization
energies [67]. All together, it is safe to say that inclusion of triple excitations
improves the core-ionization energies.

The CCSD(T)(a) approach provides core-ionization energies closest to the
CCSDT-energies, as observed in Table 3, as the values of the ∆CCSD(T)(a)-
column clearly are of the smallest magnitude compared to the other columns
containing discrepancies. As for XPS-CCSD-calculations, the computational
cost of CCSD(T)(a)-calculations corresponds to a scaling of n7, but remember
that the cost of the XPS-CCSD model could be reduced to n6.

As observed in Table 3, the ionization energies obtained by the XPS-CCSD
model are close to the CCSDT-energies, as the deviations are in the range of
0.222-0.304 eV. Even though the level of electron interactions included in the
model is not as high as for what is included in CCSDT, the interactions which
contribute significantly to the core-ionization energy are taken into account.
The XPS-CCSD model thus performs at a level of accuracy comparable to
CCSDT, which was expected due to the inclusion of significant excitations.

Values in the column named ∆XPS-CCSD are of equal magnitude; approx-
imately 0.2-0.3 eV, and for the basis set aug-cc-pCVTZ the difference from
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CCSDT is approximately 0.222-0.269 eV, while for the aug-cc-pCVQZ the dif-
ference is larger, approximately 0.267-0.304 eV. Further calculations on other
molecules may prove that the deviation will remain within these intervals. In
that case, the model might prove to be a useful tool for estimating CCSDT
core-ionization energies, as XPS-CCSD-calculations have lower computational
cost than CCSDT-calculations. That the deviation from CCSDT increases with
basis set size might be that there are less electron interactions included in the
model than what the case is for CCSDT, such that the following error enlarges
when the system is more accurately described.

Comparing the XPS-CCSD model and the CCSDT model, the advantage of
XPS-CCSD is the reduction in computational cost. Although the accuracy is
reduced as well, the reduction of the computational cost triumphs the loss of
accuracy. When the computational cost is decreased, the model can be applied
on larger systems that are too large for the CCSDT model to be practical.

Coriani and Koch calculated core-ionization energies by applying the CVS
technique within the EOM-CCSD framework and restrict the core excitations
to only involving excitation to a super-diffuse orbital [45]. The obtained core-
ionization energies proved to be in line with previous findings, which confirmed
the validity of the approach for obtaining core-ionization energies.

The CVS approach is also an approximation which affects the accuracy of the
results. However, as stated by Coriani and Koch, this approach has proved as
an accurate approximation, where the excitation energies differ by less than
0.05 eV when compared to application of the full Lanczos algorithm [45]. Fur-
thermore, Myhre et al. constructed theoretical NEXAFS spectra for ethanal,
propenal and butanal where both the Lanczos algorithm and the Davidson algo-
rithm with the CVS approximation were applied, and the error due to the CVS
approximation remained minor in all cases [71]. Similarly, when applying the
CVS approximation with the CC3 model [72], the error remained small. In con-
clusion, even though application of the CVS technique does induce errors, the
approximation is valid when calculating core-ionization energies as the errors
are non-significant.

Finally, note that the XPS-CCSD model is an EOM-CC model, such that the
properties of EOM-CC models apply, see Chapter 2.3.



7. Concluding remarks and further work

Introducing a super-diffuse orbital in the basis set and making use of the CVS
technique within the EOM-CC framework results in a model for core-ionization
energies. Further restriction of triple excitations to only include states corre-
sponding to core excitations to the super-diffuse orbital leads to a model in-
volving a higher degree of electron interactions than CCSD, but not as high
as a full CCSDT model. Note that the truncation level of the cluster operator
remains as in CCSD. The model corresponds to the experimental XPS process
and it is not a full CCSDT model, thereof the name XPS-CCSD.

Expressions of the linear transformed Jacobian matrix for the XPS-CCSD
model were derived and implemented. Preliminary testing of the pilot code
was performed on H2O, CO and NH3 for the two basis sets aug-cc-pCVTZ and
aug-cc-pCVQZ. Comparison of the obtained results with results of a modified
CCSDT calculation proved that the pilot code still contains minor errors. The
modification of the CCSDT calculation involved neglecting all excitations not
corresponding to promotion of a core electron to the super-diffuse orbital, such
that the XPS-CCSD model and the modified CCSD-calculation should pro-
duce equal core-ionization energies. Further work includes debugging the pilot
code and eliminate all errors such that the modified CCSDT calculations and
the XPS-CCSD model produce exactly the same results. In addition, the pilot
code could become more efficient by evaluation of the structure and contraction
choices.

The XPS-CCSD model scales as n7, but the scaling could be further reduced
to n6 by writing out the emerging terms when the permutation operator is
applied and only including the terms involving core excitation to the super-
diffuse orbital in the model. Note, however, that the most expensive terms
might be numerous and of a greater power of the number of virtual orbitals
than what is the case for CCSD.

Calculated core-ionization energies for H2O, CO and NH3 obtained by a bug-free
XPS-CCSD calculation differ from energies obtained by CCSDT by 0.22-0.29
eV. These discrepancies are a result of a comparison of the modified CCSDT
model with the full CCSDT model. Thus, the accuracy of the proposed model
is at level with CCSDT. The great advantage of the model, however, is this level
of accuracy combined with a possibility of a computational cost corresponding
to a scaling of n6. This factor widens the range of the selection of molecules
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where the model is applicable, the selection now consisting of larger molecules
than what the case is for CCSDT calculations.

Further testing of the XPS-CCSD model when applied to a range of molecules
may prove that the model can be used as an estimation for CCSDT core-
ionization energies, if the discrepancies between CCSDT calculations and XPS-
CCSD calculation remains within the specific range. There should also be fur-
ther testing with different basis sets in order to outline how the model behaves
and how large basis sets that are needed for a proper description.

The combination of the accuracy and the computational cost of n7, which could
be reduced to n6, makes the proposed model a well functioning and promising
model for core-ionization energies.
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List of symbols

Symbol Definition Description
N Number of electrons
n Number of basis functions
T̂ Cluster operator

T̂ni

ni = 1, 2, . . . , N ,
i = 1, 2, . . . , k

ni cluster operator

k see Appendix D Number of nested commutators
Ĥ Hamilton operator
Ψ Wave function
E Energy
M Number of spin orbitals
P P = 1, . . ., M General spin orbital
φP φP (x) = φp(r)σ(ms) Spin orbital number P

x
Coordinate containing spatial
and spin part

r Spatial coordinate
σ(ms) Spin function
ms ms = α or β Spin coordinate
α, β 1

2 , −1
2 for fermions Up or down spin

p, q, r, s General orbitals
σ, τ General spin functions
|k〉 Occupation number vector
kP Occupation number
a†P Equation (1) Creation operator
δij Kronecker δ-function
Γk
P Phase factor
aP Equation (2) Annihilation operator
Epq Equation (4) Singlet excitation operator
epqrs Equation (5) Double excitation operator
hpq Equation (6) One-integral
gpqrs Equation (7) Two-integral
hnuc Equation (8) Nuclear-repulsion
∇2 Nabla operator squared
ZI Charge of nucleus I



48 � List of symbols

Symbol Definition Description

rI
Distance from an electron
to nucleus I

r12 Distance between electron 1 and 2

RIJ

Separation between nucleus I
and nucleus J

ψnuc Nuclear wave function
ψel Electronic wave function
|CC〉 Coupled cluster wave function
|HF〉 Hartree-Fock state
|R〉 Reference state
τ̂ν General excitation operator
tν General excitation amplitude
|µ〉 General projection manifold
ĤT e−T̂ ĤeT̂ Similarity transformed Hamiltonian
|CCSD〉 CCSD wave function
tabij double excitation amplitude

a, b, c, . . . Virtual orbitals
i, j, k, . . . Occupied orbitals

H̃ e−T̂1ĤeT̂1 T̂1-transformed Hamiltonian
h̃pq T̂1-transformed one-integral
g̃pqrs T̂1-transformed two-integral
|c) Linear expansion of excited states
H Hµν = (µ|Ĥ|ν) Hamiltonian matrix

|µ)
General biorthonormal
projection manifold

c, c cµ, cµ
Column vectors containing
expansion coefficients

E0 Ground state energy
η (R|Ĥ|µ) Column vector
A Jacobian matrix
Aµν Equation (19) Elements of Jacobian matrix
∆H H− E01 Level-shifted Hamiltonian matrix
∆E E − E0 Level-shifted energy
K An excited state

tK , tK
Column vectors containing expan-
sion coefficients for excited states
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Symbol Definition Description
ACCSD Matrix (22) Jacobian matrix for CCSD
ACCSDT Matrix (23) Jacobian matrix for CCSDT
AXPS Matrix (26) Jacobian matrix for proposed model
τ̂XPS
ν3 τ̂ (1)

ν3 + τ̂ (2)
ν3 Restricted triple excitation operator〈

µXPS
3

∣∣∣ Restricted triple projection manifold

tXPS
Excitation amplitudes for
core excitation to
super-diffuse orbital

T̂XPS Restricted triple
contribution to T̂

A, I
Fixed orbitals, core and
super-diffuse orbital

P ab
ij , P abc

ijk Equation (27), (28)
Double and triple
permutation operators

Aabij , Aabcijk General integrals
∆aibj 1 + δai,bj Constant〈
ab
ij

∣∣∣ Biorthogonal states〈
ãb
ij

∣∣∣∣ Biorthonormal states

Nabc
ijk

Normalization constant for
triple projection manifold

ci i = 1, 2, 3
Column vectors for linear
transformation coefficients

σ Equation (29) Linear transformation (LT)

σ3,ai ρ
(1)
3,ai + ρ

(2)
3,ai

LT of triple excitation,
single projection manifold

σ3,aibj ρ
(1)
3,aibj + ρ

(2)
3,aibj

LT of triple excitation,
double projection manifold

σ3,aibjck ρ
(1)
3,aibjck + ρ

(2)
3,aibjck

LT of triple excitation,
triple projection manifold

CAI
bj,ck LT constants belonging to τ̂ (1)

ν3

BAI
b,j,dl LT constants belonging to τ̂ (2)

ν3

LbdlA 2gbdlA − gbAld Contraction of two-integrals
nocc Number of occupied orbitals
nvir Number of virtual orbitals



50 � List of symbols

Symbol Definition Description
Â, B̂, Ĉ General operators
Fmn hmn +∑

i(2gmnii − gmiin) Element of inactive Fock matrix
P abcd
ijkl Quadruple permutation operator
s−
Â

Down rank of operator Â
s+
Â

Up rank of operator Â

ncv
Number of virtual
creation operators

nao
Number of occupied
annihilation operators

nco
Number of occupied
creation operators

nav
Number of virtual
annihilation operators

mÂ Particle rank of Â
sÂ Excitation rank of Â

Ω̂
Operator containing
nested commutators

Cbj LT constants belonging to τ̂ν1

Cbj,ck LT constants belonging to τ̂ν2

C̃bj,ck ∆aibjCai,bj Constant
C̃AI
bj,ck ∆aibjC

AI
ai,bj Constant

cij i, j = 1, 2, 3, . . . Elements of matrix Cbj,ck



Appendix A. Discrepancies between core-ionization energies for
the CC(2,3) and the XPS-CCSD model

Table A.1 displays deviations in core-ionization energies for the modified
CCSDT model, CC(2,3), and the XPS-CCSD model for molecules H2O, CO and
NH3 in basis sets aug-cc-pCVTZ and aug-cc-pCVQZ. The modified CCSDT cal-
culation was performed by setting all ground state triple excitation amplitudes
equal to zero and neglecting all excitations not involving at least one core ex-
citation to a super-diffuse orbital. The CC(2,3) calculation was performed by
Dr. D. A. Matthews at University of Texas, and the core-ionisation energies of
both CC(2,3) and XPS-CCSD are given in Table 3.

Table A.1. Discrepancies between the CC(2,3) ionization energies and
XPS-CCSD ionization energies for H2O, CO and NH3 for basis sets aug-cc-
pCVTZ and aug-cc-pCVQZ. Energies are given in eV.

Basis set Molecule
Difference CC(2,3)

and XPS-CCSD
H2O

aug-cc-pCVTZ 0.0003116
aug-cc-pCVQZ 0.0237476

CO (C)
aug-cc-pCVTZ 0.0001711
aug-cc-pCVQZ 0.0094327

CO (O)
aug-cc-pCVTZ 0.0003121
aug-cc-pCVQZ 0.0142748

NH3

aug-cc-pCVTZ 0.0002334
aug-cc-pCVQZ 0.0280239

i





Appendix B. Commutator relations and the BCH-expansion

When Â, B̂ and Ĉ denote operators, the following commutation relations are
valid

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ],

[Â, B̂] = −[B̂, Â].

In addition, when Epq denotes a singlet excitation operator, H̃ the electronic
T̂1-transformed Hamiltonian and δpq the Kronecker δ-function, the nested com-
mutator [Eck[H̃, Edl], Ebj] may be written as

[Eck[H̃, Edl], Ebj] = −([Ebj, Eck][H̃, Edl] + Eck[Ebj, [H̃, Edl]])

= Eck[[H̃, Edl], Ebj] + [Eck, Ebj][H̃, Edl]

= Eck[[H̃, Edl], Ebj].

The last equality in the above expression is due to that [Eck, Ebj] = Ecjδbk −
Ebkδcj = 0 since δbk = 0 and δcj = 0. An occupied orbital and a virtual orbital
can not be the same orbital.

According to Helgaker et al. the BCH-expansion, where BCH is an acronym
for Baker-Campbell-Hausdorff [82], is defined as the following

e−ÂB̂eÂ = B̂ + [B̂, Â] + 1
2[[B̂, Â], Â] + 1

3! [[[B̂, Â], Â], Â] + . . . . (B.1)

iii





Appendix C. Non-zero commutators of the Hamiltonian and the
single excitation operators applied to the

Hartree-Fock state

The non-zero commutators of the Hamiltonian and the single excitation opera-
tors applied to the Hartree-Fock state is given below. These relations are given
in Box 13.2 of Molecular Electronic-Structure Theory [26].

H̃ |HF〉 =
∑
i

(hii + Fii) |HF〉+
∑
ai

FaiEai |HF〉+1
2
∑
aibj

gaibjEaiEbj |HF〉

[H̃, Eai] |HF〉 = 2Fia |HF〉+
(∑

b

FbaEbi −
∑
j

FijEaj +
∑
bj

LbjiaEbj

)
|HF〉

+
(∑

bjc

gbjcaEbjEci −
∑
bjk

gbjikEbjEak

)
|HF〉

[[H̃, Eai], Ebj] |HF〉 = 2Liajb |HF〉

− P ab
ij

(
FibEaj +

∑
k

LikjbEak −
∑
c

LcajbEci

)
|HF〉

− P ab
ij

(∑
ck

gibckEajEck +
∑
ck

gikcbEakEcj

)
|HF〉

+
(∑

kl

gikjlEakEbl +
∑
cd

gcadbEciEdj

)
|HF〉

[[[H̃, Eai], Ebj], Eck] |HF〉 = −P abc
ijk LjbicEak |HF〉

P abc
ijk

(∑
l

giljcEalEbk −
∑
d

gibdcEajEdk

)
|HF〉

[[[[H̃, Eai], Ebj], Eck], Edl] |HF〉 = P abc
ijk (gkbidEclEal + glbicEdjEak |HF〉

= 1
2P

abcd
ijkl gidjcEalEbk |HF〉

v



H̃ denotes the T̂1-transformed electronic Hamiltonian, |HF〉 the Hartree-Fock
state, which is used as a reference state, hpq the one-electron integral, Fmn =
hmn + ∑

i(2gmnii − gmiin) the inactive Fock matrix, Epq the singlet excitation
operator, gpqrs the two-electron integral, where Lpqrs = 2gpqrs − gpsrq. While
P ab
ij , P abc

ijk and P abcd
ijkl denote permutation operators.

vi



Appendix D. Rank

In order to determine whether a nested commutator is equal to zero or not, the
rank of the operator can be used. The down rank of an operator Â, s−

Â
, and

the up rank of the same operator, s+
Â

, are defined as the following

s+
Â

= 1
2(ncv + nao),

s−
Â

= 1
2(nco + nav),

where ncv denotes the number of virtual creation operators that Â consists of and
nao the number of occupied annihilation operators that Â consists of. Likewise,
nco and nav denote the number of occupied creation operators and the number
of virtual annihilation operators in Â. The particle rank, mÂ, and excitation
rank, sÂ, of the operator Â are defined as

mÂ = s+
Â

+ s−
Â
,

sÂ = s+
Â
− s−

Â
.

It follows that the numbers of nested commutators, k, have to be less than 2
two times the down rank of the operator,

2s−
Â
≥ k, (D.1)

for the expression not to be equal to zero. This means that the nested commu-
tator on the form

Ω̂ = [[..[[Â, T̂n1 ], T̂n2 ], ...], T̂nk
],

vanishes if the number of nested commutators is greater than two times the
down rank of the operator [26]. T̂ni

denotes terms of the cluster operator, where
ni = 1, 2, . . . , N and i = 1, 2, . . . , k. N denoting the number of electrons in the
system.
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Appendix E. Procedure used to derive the elements of the
Jacobian matrix for the XPS-CCSD case

The following procedure is made use of when determining expressions of the
linear transformed XPS-CCSD Jacobian matrix, see Equation (29) and Matrix
(26). The procedure is given below.

(1) The linear transformation of the XPS-CCSD Jacobian matrix is given in
Equation (29) and was further partitioned in Equations (30) and (31).
Note that for each of the excitation operators, the projection manifold
is single, double and the restricted triple manifold. In addition, the
Hamiltonian is the similarity transformed Hamiltonian, ĤT = e−T̂ ĤeT̂ .

(2) The Hamiltonian is T̂1-transformed, see Equation (13), and expanded in
accordance with the BCH-expansion, see Expression (B.1) in Appendix
B.

(3) The expansion is inserted into the expression of the linear transformed
elements, and the expression is further developed by noting that the
nested commutators at some point in the expansion vanish to due the
rank of the Hamiltonian, see Appendix D.

(4) The commutators that survive are rewritten to the form of the com-
mutators in Appendix C in order to make use of the relations given in
this appendix. This step involves making use of the relations given in
Appendix B.

(5) When the commutators are on the warranted form the relations given
in Appendix C are made use of. Note that the bra-projection manifold
is biorthonormal, such that the biorthonormal states produce a normal-
ization constant and a permutation operator, for instance it produces
Nabc
ijk P

abc
ijk for the triple projection manifold, as mentioned in Chapter 4.

ix



(6) The terms of the expression are now contracted by using the properties
of the Kronecker δ-functions that appear in the expressions. Thereby
the expression is further contracted by switching dummy indices and
collecting terms that sums over the same indices.

(7) The final expression for a linear transformed Jacobian matrix element
is obtained by adding all the terms that emerge from all the surviving
commutators.
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Appendix F. Elements of the Jacobian matrix for the
XPS-CCSD model

The derived expressions of the XPS-CCSD Jacobian matrix, see Equation (29)
and Matrix (26) in Chapter 4, are given below. Note that a linear transforma-
tion is conducted by multiplying the Jacobian matrix, AXPS, with coefficients
matrix c. This transformation is denoted as σ and has the form

σ = AXPSc = AXPSc1 + AXPSc2 + AXPSc3
(1) + AXPSc3

(2) = σ1 + σ2 + σ3,

where

σγ = σγ,ai + σγ,aibj + σγ,aibjck, for γ = 1, 2

σ3 = σ3,ai + σ3,aibj + σ3,aibjck

= ρ
(1)
3,ai + ρ

(2)
3,ai + ρ

(1)
3,aibj + ρ

(2)
3,aibj + ρ

(1)
3,aibjck + ρ

(2)
3,aibjck.

There are two possible projection operators and projection manifolds for the
triple excitation process, thereby σ3,ai, σ3,aibj and σ3,aibjck are parted into two
terms denoted by ρ(1)

3,... and ρ
(2)
3,.... The starting point for σ1,ai is∑

bj 〈 ãi |[ĤT , Ebj] |HF〉Cbj in accordance with the linear transformation, the def-
inition of the Jacobian elements, see Equation (19), and the projection mani-
fold. Making use of the BCH-expansion given in Appendix B and commutator
relations given in Appendix C, the first term may be written as

σ1,ai =
∑
b

FabCbi −
∑
j

FjiCaj +
∑
bj

LaijbCbj

+
∑
bjck

(
uacikCbj − tcbkiCaj − tacjkCbi

)
Lkcjb.
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In the same manner, the second term of σ1 has staring point∑
ck 〈 ãbij |[ĤT , Eck] |HF〉Cck and may be written as

σ1,aibj = 1
∆aibj

P ab
ij

[∑
c

gaibcCcj −
∑
k

gaikjCbk −
∑
ck

Fkc(tacijCbk + tabikCcj)

+
∑
ckl

(
gkilc(tabklCcj + tbcljCak + tackjCbl)− Lkjlc(tabikCcl + tacil Cbk)

)

−
∑
ckd

(
gkdbc(tadkiCcj + tdcijCak + tackjCdi)

− Lkdbc(tacijCdk + tadikCcj)
)]
.

The last term of σ1 is single excitation within three occupied and three unoc-
cupied orbitals and is expressed as ∑dl 〈 ãbcijk |[ĤT , Edl] |HF〉Cdl. This term takes
the form

σ1,aibjck = Nabc
ijk P

abc
ijk

[
−
∑
dn

(
gndck(tabinCdj + tadij Cbn) + gnjcd(tabinCdk + tadikCbn)

)

+
∑
ln

tabingnjlkCcl +
∑
df

tafij gbfcdCdk

+
∑
dlfn

(
glfnd(tcfnjtbali Cdk + tcbnlt

fa
ji Cdk + tcfnjt

da
kiCbl + tbflj t

ca
niCdk

+ tcflk t
da
ji Cbn + tdfjkt

ca
li Cbn)− Lnfld(tfbnjtcali Cdk + tfbnjt

da
kiCcl

+ tcbnjt
fa
kiCdl)

)]
.

The first term of σ2 has starting point ∑bj≥ck 〈 ãi |[ĤT , EbjEck] |HF〉Cbj,ck and
have the form

σ2,ai =
∑
bj

Fjb(2C̃ai,bj − C̃aj,bi)−
∑
bjk

LkijbC̃bj,ak +
∑
bjc

LacjbC̃bj,ci,

where C̃ai,bj = ∆aibjCai,bj.
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In the same manner, the second term of σ2 may be written as∑
ck≥dl 〈 ãbij |[ĤT , EckEdl] |HF〉Cck,dl and can be expressed as

σ2,aibj = 1
∆aibj

P ab
ij

[∑
d

FbdC̃ai,dj −
∑
l

FljC̃ai,bl

+
∑
dl

(LbjldC̃ai,dl − gldbjC̃al,di − glibdC̃al,dj)

+ 1
2

(∑
kl

gkiljC̃ak,bl +
∑
cd

gacbdC̃ci,dj

)

+
∑
ckdl

(
1
2gkcld(t

bc
li C̃ak,dj + tbalk C̃ci,dj + tcaik C̃bl,dj

+ tbdkiC̃cj,al + tbdlj C̃ci,ak + tcdij C̃bl,ak)

− Lkcld(tadil C̃cj,bk + tacij C̃bk,dl + tabik C̃cj,dl + tbclkC̃ai,dj

+ tcdjl C̃ai,bk + tbckjC̃ai,dl − 2tbcjkC̃ai,dl)
)]
.

The last term of σ2 may be written as ∑dl≥em 〈 ãbcijk |[ĤT , EdlEem] |HF〉Cdl,em and
in the same manner as the previous terms, this term may be expressed as

σ2,aibjck = Nabc
ijk P

abc
ijk

[∑
d

gbjcdC̃dk,ai −
∑
l

gbjlkC̃cl,ai

−
∑
dl

Fld(tcblj C̃ai,dk + tdbkjC̃ai,cl)

+
∑
dln

(
gnjld(tbaniC̃cl,dk + tdaki C̃bn,cl + tbcnlC̃ai,dk

+ tcali C̃bn,dk + tbdnkC̃ai,cl + tdckl C̃ai,bn)

− Lnkld(tcbnjC̃ai,dl + tdblj C̃ai,cn)
)

−
∑
dlf

(
gcfld(tbali C̃dj,fk + tfaki C̃bl,dj + tdaji C̃bl,fk

+ tbdlj C̃ai,fk + tbflk C̃ai,dj + tfdkj C̃ai,bl)

− Lcfld(tfbkjC̃ai,dl + tdblj C̃ai,fk)
)]
.
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Remember that σ3,ai is divided into two terms in order to simplify the notation,
σ3,ai = ρ

(1)
3,ai + ρ

(2)
3,ai. The first term is expressed as∑

bj≥ck 〈 ãi |[ĤT , EAIEbjEck] |HF〉CAI
bj,ck and may be written as

ρ
(1)
3,ai = −

∑
bj

(LIAjbC̃AI
bi,aj − 2LIAjbC̃AI

ai,bj)−
∑
jck

LkcjAC̃
Ai
aj,ck

−
∑
bjc

LjbIcC̃
aI
ci,bj +

∑
bjck

LjbkcC̃
ai
bj,ck,

where C̃AI
bi,aj = ∆biajC

AI
bi,aj. ρ

(2)
3,ai is on the form∑

bjck 〈 ãi |[ĤT , EAjEbIEck] |HF〉BAI
b,j,ck and may be expressed as

ρ
(2)
3,ai = −

∑
bjck

LkcjbB
ai
b,j,ck +

∑
bjc

LIbjc(2BAI
b,i,cj −BAI

b,j,ci)

+
∑
bjk

LjAkb(2BAi
a,j,bk −BAi

b,j,ak)−
∑
bk

(LIbkA(BAI
b,i,ak +BAI

a,k,bi − 2BAI
b,k,ai)

+ LkbIAB
AI
a,i,bk).

The second term of σ3 is also divided into two terms, σ3,aibj = ρ
(1)
3,aibj + ρ

(2)
3,aibj,

where the first term may be written as ∑ck≥dl 〈 ãbij |[ĤT , EAIEckEdl] |HF〉CAI
ck,dl

and may be rewritten as

ρ
(1)
3,aibj = 1

∆aibj

P ab
ij

[∑
dl

Fld(2C̃ai
bj,dl − C̃ai

bl,dj)−
∑
kdl

LkjldC̃
ai
dl,bk +

∑
cdl

LbcldC̃
ai
dl,cj

−
∑
cd

gIcbdC̃
aI
ci,dj −

∑
dl

(LIildC̃aI
bj,dl − gIildC̃aI

bl,dj − gljIdC̃aI
bl,di)

−
∑
d

FIdC̃
aI
bj,di +

∑
kl

gkilAC̃
Aj
ak,bl

−
∑
dl

(glAadC̃Aj
bl,di + gldbAC̃

Aj
al,di − LbAldC̃

Aj
ai,dl)

−
∑
l

FlAC̃
Aj
ai,bl +

∑
d

LbdIAC̃
AI
ai,dj −

∑
l

LljIAC̃
AI
ai,bl + FIAC̃

AI
ai,bj

]
.
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ρ
(2)
3,aibj is written as ∑ckdl 〈 ãbij |[ĤT , EAkEcIEdl] |HF〉BAI

c,k,dl and may be rewritten
as

ρ
(2)
3,aibj =

P ab
ij

∆aibj

[
− FIABAI

b,j,ai −
∑
d

(gIdbABAI
a,j,di − LbAIdBAI

d,j,ai + gIAbdB
AI
a,i,dj)

+
∑
l

(gIilABAI
a,j,bl + gljIAB

AI
a,i,bl − LIjlABAI

b,l,ai)

+
∑
dl

Fld((2Baj
b,i,dl −B

aj
d,i,bl)−Bbi

a,l,dj)

−
∑
ckd

(gkdbcBaj
c,k,di − LbckdB

aj
c,i,dk) +

∑
dkl

(gkildBaj
d,k,bl − LkildB

aj
b,k,dl)

−
∑
dl

FldB
bj
d,l,ai −

∑
ckd

gkcadB
bj
c,k,di +

∑
dkl

glikdB
bj
d,k,al

+
∑
d

FId(2BbI
d,j,ai −BbI

a,j,di) +
∑
dl

(gljIdBbI
a,l,di − LljIdBbI

d,l,ai)

+
∑
cd

LadIcB
bI
c,j,di +

∑
dl

(gIildBbI
a,l,dj − LliIdBbI

d,j,al − LIildBbI
a,j,dl)

+
∑
l

FlA(2BAj
b,l,ai −B

Aj
b,i,al)−

∑
dl

(glAbdBAj
d,i,al + gldaAB

Aj
d,i,bl

− LaAldBAj
b,i,dl − LbdlAB

Aj
d,l,ai − LadlAB

Aj
b,l,di)−

∑
kl

LlikAB
Aj
b,k,al

]
.
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The last term of σ3, where triple excitations involving three occupied and three
unoccupied orbitals occur, is parted in the following manner σ3,aibjck = ρ

(1)
3,aibjck+

ρ
(2)
3,aibjck. The first term is expressed as ∑dl≥em 〈 ãbcijk |[ĤT , EAIEdlEem] |HF〉CAI

dl,em

and may be rewritten as

ρ
(1)
3,aibjck = Nabc

ijk P
abc
ijk

[
1
2

(
FcAC̃

Ak
ai,bj − FIkC̃cI

ai,bj + LckIAC̃
AI
ai,bj

)

+
∑
e

(
FceC̃

ai
bj,ek − gIeckC̃bI

ai,ej − gIjceC̃bI
ai,ek + gbAceC̃

Aj
ai,ek

)

−
∑
m

(
FmkC̃

ai
bj,cm + gmAckC̃

Aj
ai,bm + gmjcAC̃

Ak
ai,bm − gIjmkC̃bI

ai,cm

)

−
∑
em

(
gmeckC̃

ai
bm,ej + gmjceC̃

ai
bm,ek − LckmeC̃ai

bj,em

+ LIAme(tbcjmC̃AI
ai,ek + tbejkC̃

AI
ai,cm + 1

2t
ce
mkC̃

AI
ai,bj − tcekmC̃AI

ai,bj)
)

+ 1
2

(∑
lm

gljmkC̃
ai
bl,cm +

∑
de

gbdceC̃
ai
dj,ek

)

+
∑
dle

(
gIdle(tacil C̃bI

dj,ek + tadij C̃
bI
cl,ek + taeij C̃

cI
dk,bl + tcdlj C̃

bI
ai,ek

+ tbelj C̃
cI
ai,dk + tedjkC̃

cI
ai,bl)− LldIe(tbejkC̃cI

ai,dl + tbdjl C̃
cI
ai,ek + 1

2t
de
lk C̃

cI
ai,bj)

)

+
∑
dlm

(
gmAld(tabimC̃

Aj
cl,dk + tadik C̃

Aj
cl,bm + tacil C̃

Aj
bm,dk + tbcmlC̃

Aj
ai,ek

+ tcdmjC̃
Ak
ai,bl + tcdlk C̃

Aj
ai,bm)− LmdlA(tbcjl C̃Ak

ai,dm + tbdjmC̃
Ak
ai,cl + 1

2t
cd
lmC̃

Ak
ai,bj)

)

+
∑
dlem

(
gldme(tcdmjC̃ai

bl,ek + tdbjl C̃
ai
cm,ek + 1

2(tcbmlC̃ai
dj,ek + tedjkC̃

ai
cl,bm)

− Lldme(tcdmlC̃ai
bj,ek + tedkl C̃

ai
bj,cm + tbcjl C̃

ai
dk,em + tbdjkC̃

ai
cl,em

+ tbdjl C̃
ai
cm,ek + C̃ai

bj,em(tcdlk − 2tcdkl ))
]
.
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The last term, ρ(2)
3,aibjck, is expressed as∑

dlem 〈 ãbcijk |[ĤT , EAlEdIEem] |HF〉BAI
d,l,em and may be rewritten to an enormous

term that stretches over two pages

ρ
(2)
3,aibjck = Nabc

ijk P
abc
ijk

[
FcAB

Ai
a,k,bj − FIkBaI

c,i,bj − gIAckBAI
b,j,ai − gIjcABAI

b,k,ai

+
∑
e

(
Fce(Baj

b,i,ek +Bak
e,i,bj)− gIeckBaI

b,i,ej − gIjceBaI
b,i,ek

+ gbAce(BAk
e,j,ai −BAi

a,j,ek) + LckIeB
aI
e,i,bj

)

−
∑
m

(
Fmk(Baj

b,i,cm +Bci
a,m,bj)− gIjmkBaI

b,i,cm + gmAckB
Ai
a,j,bm

+ gmjcAB
Ai
a,k,bm − gmjIkBbI

c,m,ai − LckmABAi
a,m,bj

)

−
∑
em

(
gmeck(Bbi

a,m,ej +Baj
e,i,bm +Bbj

e,m,ai)

+ gmjce(Bbi
a,m,ek +Bak

e,i,bm +Bbk
e,m,ai)− LckmeB

aj
b,i,em

− gIAme(tacimBAI
b,j,ek + taeijB

AI
c,k,bm + tcemkB

AI
b,j,ai)

− gmAIe(tabimBAI
c,j,ek + taeikB

AI
c,j,bm + tcemjB

AI
b,k,ai)

+ LIemA(tbcjmBAI
e,k,ai + tbejkB

AI
c,m,ai) + LmeIAt

be
jmB

AI
c,k,ai

)
+
∑
de

gbdceB
aj
d,i,ek +

∑
lm

gljmkB
bi
a,l,cm

+
∑
dle

(
gIdle(tcdljBaI

b,i,ek + tebjlB
aI
c,i,dk + taeijB

bI
c,l,dk

+ tadij B
cI
b,l,ek + tedjkB

aI
c,i,bl + tdejkB

cI
b,l,ai)

− LIdle(tbcjlBaI
d,i,ek + tbdjkB

aI
c,i,el + tbejkB

aI
d,i,cl + tbejlB

aI
c,i,dk

+ tedlkB
aI
c,i,bj +BaI

d,i,bj(tcelk − 2tcekl) + tbejkB
cI
d,l,ai)

)
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+
∑
dlm

(
gmAld(tacil BAk

d,j,bm + tacimB
Aj
d,k,bl + tcdlkB

Ai
a,j,bm

+ tcblmB
Ai
a,j,dk + tcdmjB

Ai
a,k,bl + tcblmB

Ak
d,j,ai)

− LmAld(BAi
a,m,bj(tcdlk − 2tcdkl ) + tcdmlB

Ai
a,k,bj + tbcjlB

Ai
a,m,dk

+ tbdjkB
Ai
a,m,cl + tbdjlB

Ai
a,k,cm + tbcjmB

Ai
a,k,dl + tbcjlB

Ak
d,m,ai)

)

+
∑
dlem

(
gldme(tedjkBci

a,l,bm + tdbjlB
ci
a,m,ek + tacimB

bj
d,l,ek + taeijB

ck
d,l,bm

+ tabimB
cj
e,l,dk + tadikB

cj
e,l,bm + tcbmlB

aj
d,i,ek + tcemkB

aj
d,i,bl

+ tceljB
ak
d,i,bm + tbemjB

ck
d,l,ai + tcdmj(Bbk

e,l,ai +Bbi
a,l,ek))

− Lldme(Baj
b,i,em(tcdlk − 2tcdkl ) + tcdkiB

aj
b,l,em + tcekm(Baj

d,i,bl +Baj
b,l,di) + tebmlB

aj
d,i,ck

+ tbejmB
ai
d,l,ck + tcbklB

aj
d,i,em + tdclmB

aj
b,i,ek + tedmiB

aj
b,l,ck + tdelkB

aj
b,i,cm)

)]
.
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Appendix G. The linear transformation constants

In the case of a linear transformation where the double excitation operator is
involved, τ̂ν2 is for instance equal to EckEdl, the linear transformation constants
are denoted as Cbj,ck. These constants can be unwrapped as a symmetric matrix
as

Cbj,ck =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 . (G.1)

Since this matrix is a symmetric matrix, it means that c12 = c21, c13 = c31 and
c23 = c32. Thus, Cbj,ck is equal to Cck,bj. Due to the symmetry property, the
summation over bj ≥ ck denotes all the elements in either the upper or lower
triangle of Matrix (G.1). In order to rewrite the summation, note that

1
2
∑
bjck

Cbj,ck = 1
2(c11 + c22 + c33) + c21 + c23 + c31,

which almost gives the lower triangle of the matrix. When modifying this result
in order to give all the elements of the lower triangle, note that

1 + δbj,ck
2 =


1
2 if bj 6= ck

1 if bj = ck.

Thereby, the summation over bj ≥ ck may be rewritten as the following

∑
bj≥ck

Cbj,ck =
∑
bjck

1 + δbj,ck
2 Cbj,ck =

∑
bjck

∆bj,ck

2 Cbj,ck. (G.2)

When considering the linear transformation constants belonging to the triple
excitation operator τ (1)

ν3 , see Equation (24), these constants may be unwrapped
as a symmetric matrix as in accordance with the constants for the double
excitation, since the summation is only over bj ≥ ck in this case as well. Thus
the same rewriting as in Equation (G.2) may be used. Considering the triple
excitation operator τ (2)

ν3 , see Equation (25), the constantsBAI
c,k,dl emerge. It is not

possible to unwrap these constants as a symmetric matrix, thus BAI
b,j,ck 6= BAI

c,k,bj.
This non-symmetry is also emphasised in the notation of BAI

b,j,ck, note the two
commas in the subscript.
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