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Abstract

Today, piezoelectric ultrasound transducers are used extensively for under-
water applications such as sonar. In such transducers, operating in thickness
mode, the active part is often a 1-3 piezocomposite, usually made of lead-
zirconate-titanate rods embedded in a passive polymer/epoxy matrix. One
or several matching layers can be connected to the piezocomposite for in-
creased acoustic transmission into water. Upon electrical and/or mechanical
excitation, the transducer will heat up due to mechanical, dielectric and
piezoelectric losses.

In this thesis, the heat generation in 1-3 piezocomposite transducers was
investigated following three steps. First, the heat generation in 1-3 piezo-
composites due to material energy loss mechanisms was investigated through
the use of the finite element method for varying lead-zirconate-titanate vol-
ume fractions and square lateral rod sizes. For both composite materials, the
losses were represented through complex material coefficients. The compos-
ites were electrically excited by a sinusoidal voltage. The simulations were
built in the COMSOL Multiphysics software and run over frequency inter-
vals extending over the fundamental thickness resonance and anti-resonance
frequency of the composites.

Second, one of the composites was connected to a quarter-wavelength match-
ing layer with losses incorporated through complex material coefficients. A
water load was applied to the front face of the matching layer.

Finally, the resultant spatial heat generation was used as the heat source
in a steady-state heat transfer model of the same structure. A constant
temperature boundary condition was applied to the interface between the
matching layer and water load, and convective heat transfer between an air
backing layer and the composite was assumed. It was found that the resultant
spatial temperature distribution was homogeneous in planes normal to the
thickness direction to a very high degree, both in the composite and in the
matching layer. Using a peak voltage of 200 V, a maximum temperature rise
of approximately 24 ◦C was obtained.
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Sammendrag

Piezoelektriske ultralydtransdusere blir i dag benyttet i et stort omfang til
undervannsformål som sonar. I slike transdusere, som opererer rundt res-
onans i tykkelsesretningen, er den aktive delen ofte en 1-3-piezokompositt.
Denne består vanligvis av piezoelektriske staver laget av blyzirkon-titanat
innkapslet i en polymer-/epoxy-matrise. Ett eller flere match-lag kan kobles
til 1-3-piezokompositten for forbedret akustisk transmisjon inn i vannet. Når
piezokomposittene utsettes for mekanisk og/eller elektrisk spenning, vil dette
resultere i varmeutvikling som følge av mekaniske, dielektriske og piezoelek-
triske tap.

I denne masteroppgaven ble varmeutviklingen i 1-3-piezokompositt-transdusere
undersøkt i tre steg. Først ble varmeutviklingen i 1-3-piezokompositter som
følge av de nevnte tapsmekanismene undersøkt ved bruk av endelig element
metoden for ulike volumfraksjoner av blyzirkon-titanat og kvadratiske lat-
erale stavdimsjoner. Tapene i begge komposittmaterialene ble representert
gjennom komplekse materialkoeffisienter. Komposittene ble utsatt for en vek-
selspenning. Simuleringene ble utført i programvaren COMSOL Multiphysics
og foretatt over frekvensintervall som dekket den fundamentale resonansen
og antiresonansen i tykkelsesretningen.

Deretter ble én av komposittene koblet til et match-lag med tap innført
ved komplekse materialkoeffisienter. Den øvre overflaten ble belastet med
vann.

Til slutt ble den resulterende romlige varmeutviklingen brukt som varmekilde
i en stasjonær varmestrømsimulering av den samme strukturen. En grense-
betingelse med konstant temperatur ble tillagt grenseflaten mellom match-
laget og vannet, og varmetransport ved konveksjon mellom luften i baklaget
og baksiden av kompositten ble antatt. Den resulterende temperaturdis-
tribusjonen var i høy grad homogen i plan normalt på tykkelsesretningen,
både i kompositten og i match-laget. Med en spenningsamplitude på 200 V
var den maksimale temperaturøkningen 24 ◦C.
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Chapter 1

Introduction

The piezoelectric effect was discovered in 1880 by Jacques and Pierre Curie
[1]. They found that crystals such as quartz were electrically polarized under
applied mechanical stresses and mechanically deformed under application of
an electric field. The former effect is called the direct piezoelectric effect and
the latter, the inverse piezoelectric effect [2].

In the 1950s, the modern era of piezoelectric transducers began with the
discovery of the strong piezoelectric effect in lead-zirconate-titanate ceramics,
also knows as PZTs. Today, it is still being used extensively in piezoelectric
ultrasonic transducers, which convert the energy of sound waves propagating
at frequencies beyond the human hearing threshold, to electrical signals and
vice versa. Typical applications are medical diagnostics, SONAR (SOund
Navigation And Ranging) and underwater communication.

A common problem when PZT is used in ultrasonic transducers for medical or
underwater applications is the significant characteristic acoustic impedance
mismatch between the tissue/water (∼ 1.5 Mrayls) and the PZT (∼ 20 Mrayls
to 30 Mrayls). This reduces the efficiency of the transducer due to poor acous-
tic transmission. One solution is to add an acoustic matching layer between
the water and the PZT. Furthermore, so-called piezoelectric composites in-
troduced in the 1970s, often shortened to piezocomposites, tend to display
more appropriate properties for some applications and are chosen instead of
pure PZT. As the name suggests, a piezocomposite consists of a piezoelectric
material, such as PZT, embedded in a piezoelectric inactive material, such as
an epoxy or a polymer. 1-3 piezocomposites, which are made of PZT pillars
surrounded by an epoxy/polymer, are known to convert acoustic energy to
electrical energy and vice versa more efficiently than pure PZT [3]. Another
advantage is that, depending on the application, material parameters of the
piezocomposite can be changed by varying the PZT volume fraction and di-
mensions of the PZT pilars. This makes it possible to build composites for
a wide range of applications.
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1-3 piezocomposites have been studied experimentally and numerically [4, 5].
Numerical investigation is often desired before fabrication to predict the
frequency behaviour when the composite is electrically excited by a sinu-
soidal voltage and oscillates along the thickness direction of the rods. One of
the most widely used methods is the Finite Element Method (FEM), which
may be used to analyze finite or infinite structures by specifying appropriate
boundary conditions. Analytical models also exist, where the composite is
described as one homogeneous medium with effective material parameters
[3]. These depend on the PZT volume fraction and the material properties
of both the PZT and the piezoelectrical inactive material. It can be used as
long as the lateral spatial scale of the composite is sufficiently fine compared
to all relevant wavelengths of waves propagating in the composite.

When the piezocomposite is electrically and/or mechanically excited, it heats
up due to dielectric, mechanical and piezoelectric losses. Its material prop-
erties may change depending on the magnitude of the voltage and resulting
temperature increase. In ultrasound diagnostics, it is essential that either suf-
ficient cooling is provided or a low enough voltage is applied to prevent the
tissue from overheating. The same applies to underwater applications, where
severe temperature rises may reduce the capability of the device to trans-
mit/receive ultrasonic waves. Therefore, transducer manufacturers would
benefit from accurate predictions of the temperature rise for a given voltage
and frequency in order to keep the transducers within a safe temperature
range. Such predictions rely on accurate models for the heat generation due
to the energy loss mechanisms and for the heat transfer within the piezocom-
posite, which is mainly limited by relatively low thermal conductivities.

In the first part of this thesis, the heat generation in AC-driven 1-3 compos-
ites with fixed material properties and thicknesses but varying PZT volume
fractions and lateral square PZT pillar sizes will be investigated using the
finite element method over frequency domains including the fundamental
thickness resonance and anti-resonance frequency of the composites. Due to
limited computational resources, unit cell models are established, described
in Section 3.1. In the next section, a quarter-wavelength matching layer with
an applied water load will be added to one of the composite models. Finally,
the extended model of a composite with its resultant spatial heat genera-
tion is imported into a steady-state heat transfer model with appropriate
boundary conditions to compute the temperature distribution throughout
the entire structure. All simulations will be performed in the FEM software

7



COMSOL Multiphysics [6].

The theoretical background is presented in Chapter 2. This Chapter is fol-
lowed by Chapter 3 on aspects of the FEM modeling. Next, Chapter 4
presents the results, before they are discussed in Chapter 5. Finally, conclu-
sions are drawn in Chapter 6.

For tensors/matrices, index notation will sometimes be used. Greek (Roman)
indices will range from 1-6 (1-3), unless otherwise stated. A Roman index
following a comma means spatial partial derivative. Einstein’s summation
convention applies for repeated indices unless otherwise stated.
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Chapter 2

Theoretical background

This Chapter gives an overview of the theoretical aspects of this thesis. In
each Section, a brief outline and motivation will be given before the relevant
material is presented.

2.1 Wave propagation in linear elastic materi-
als

This Section 2.1 starts with the symmetry of linear elastic materials. Lin-
ear elastic isotropic materials will also be considered as the epoxy of the
1-3 piezocomposites and the matching layer are described as such materials.
Then, the elastic wave equation is derived to see how the elastic stiffness for
a linear elastic material comes to display in the wave velocities of the waves
propagating in such a medium. Furthermore, reflection of pressure waves on
material boundaries will be reviewed. This will prove to be very helpful for
FEM modeling purposes. In the last Subsection, the basis for attenuation of
elastic waves is derived, which will be used extensively in the FEM modeling
to incorporate mechanical losses of the epoxy of the 1-3 piezocomposites and
the matching layer.

2.1.1 Linear elastic materials

The strain tensor Sij of rank-2 for a solid is defined in terms of the displace-
ment vector ξi. It reads [2]

Sij =
1

2
(ξi,j + ξj,i), (2.1)
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reminding the reader that in the subscript notation, Roman indices after a
comma amount to spatial partial derivatives. This tensor is readily symmet-
ric:

Sij = Sji. (2.2)

An elastic material has the ability to return to its initial state after being
deformed by external forces [2]. If the material also is linear, Hooke’s law
applies, which reads

Tij = cijklSkl ≡
3∑

k=1

3∑
l=1

cijklSkl, (2.3)

where Tij is the stress (rank-2 tensor) and cijkl is the elastic stiffness (rank-4
tensor). Einstein’s summation convention applies for repeated indices as is
shown explicitly here. It can be shown that Tij is also symmetric and hence,
both of the rank-2 tensors have at most 6 independent coefficients and may
be written as 6×1 matrices, that is, column vectors of length 6 [2]. Then, cijkl
can be represented by a 6×6 matrix. Invoking Voigt notation [2], Hooke’s
law can be rewritten to [2]

~T = c~S, (2.4)

defining

~T =


T11

T22

T33

T23

T13

T12

 ≡

T1

T2

T3

T4

T5

T6

 and ~S =


S11

S22

S33

2S23

2S13

2S12

 ≡

S1

S2

S3

S4

S5

S6

 . (2.5)

The elastic compliance matrix s is defined as the inverse of the elastic stiffness
matrix:

s = c−1. (2.6)

Thus, Hooke’s law can also be expressed as

Sα = sαβTβ. (2.7)
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For a linear elastic isotropic material, the elastic stiffness matrix c has only
two dependent variables:

c =


c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c66 0 0
0 0 0 0 c66 0
0 0 0 0 0 c66

 , (2.8)

where c66 = (c11 − c12)/2.

Consider the stress vector in Eq. (2.5). The first three components corre-
spond to the normal stresses, while the last three give the tangential stresses.
The latter are better known as shear stresses. Correspondingly, the first
three components of the strain vector relate to normal relative displacements,
whereas the last three are shear relative deformations. Furthermore, the non-
zero non-diagonal components of the elastic stiffness matrix in Eq. (2.8) act
as transverse coupling coefficients. For instance, consider

T1 = c11S1 + c12 (S2 + S3) . (2.9)

Here, the normal stress on a face with normal vector pointing in the 1-
direction is not only related to the strain component parallel to the 1-
direction, but also to the strains in the other two directions perpendicular to
the 1-direction.

2.1.2 The elastic wave equation

Newton’s 2nd law gives the equation of motion for an elastic solid. When
applied on a medium of uniform mass density ρ and body forces per unit
volume fi, it reads [2]

Tij,j + fi = ρ
∂2ξi
∂t2

, (2.10)

where the second order partial derivative on the right hand side is with
respect to time t. Under the assumption of no volume forces and linear
elasticity, the definition of the strain tensor Eq. (2.1) and Hooke’s law Eq.
(2.3) give

cijklξk,jl = ρ
∂2ξi
∂t2

. (2.11)
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This Equation can be seen as a generalized form of the scalar elastic wave
equation for pressure waves propagating in a fluid with sound speed v [2]:

∂2ξ(x, t)

∂x2
=

1

v2

∂2ξ(x± vt)
∂t2

, (2.12)

whose plane wave solution is

ξ(x, t) = ξ+e
i(wt+kx) + ξ−e

i(wt−kx). (2.13)

Subscript + denotes backward-propagating wave, − forward-propagating
wave. ω is the angular frequency and k is the wavenumber.

Eq. (2.11) implies that the deformation along a direction is a result of prop-
agation of both pressure waves (longitudinal) and shear waves (transverse).
For a linear elastic isotropic solid, the respective wave velocities read

vl =

√
c11

ρ
(2.14)

and
vs =

√
c66

ρ
. (2.15)

2.1.3 One-dimensional propagation of pressure waves in
a free medium

Consider one-dimensional propagation of plane waves in a medium of thick-
ness L. In the case of free boundary conditions on both ends, the acoustic
pressure p must be zero at these boundaries. As the acoustic wave equation
is analogous to the wave equation Eq. (2.12) in terms of displacement, it
is straightforward to show that with these boundary conditions, the wave
equation implies that

sin knL = nπ =⇒ λn =
2L

n
, n ∈ {1, 2, 3, . . . }, (2.16)

where the wavelength λn of the nth harmonic was introduced.
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2.1.4 Reflections on boundaries between semi-infinite
and finite-sized media

Above, propagation in one medium was assumed. Now, consider a plane
wave propagating in a semi-infinite medium with density ρ0 and sound speed
v0 normally incident on a finite-sized medium of thickness L with material
parameters ρ1 and v1. At the boundary between the media, the incident wave
will be partly reflected back into medium 0 and transmitted into medium 1.
Imagine that the transmitted wave is normally incident upon another semi-
infinite medium 2 with material parameters ρ2, v2. Define the characteristic
acoustic impedance of medium i as Zi = ρici, i ∈ {0, 1, 2}. Then, the re-
flection coefficient R, defined as the ratio of the amplitude of the reflected
pressure wave at the second boundary to the amplitude of the incident pres-
sure wave, reads [7]

R =

(
1− Z0

Z2

)
cos k1L+ j

(
Z1

Z2
− Z0

Z1

)
sin k1L(

1 + Z0

Z2

)
cos k1L+ j

(
Z1

Z2
+ Z0

Z1

)
sin k1L

. (2.17)

For k1L = (n− 1/2)π and Z1 =
√
Z0Z2, R vanishes, giving perfect transmis-

sion. Meanwhile, for k1L � 1, when the finite-sized medium is very small
compared to the wavelength, R simplifies to

R ≈
1− Z0

Z2
+ j

(
Z1

Z2
− Z0

Z1

)
k1L

1 + Z0

Z2
+ j

(
Z1

Z2
+ Z0

Z1

)
k1L
≈

1− Z0

Z2

1 + Z0

Z2

. (2.18)

This means that the finite-sized medium has a negligible impact on the acous-
tic transmission into the second semi-infinite medium.

2.1.5 Losses

In an ideal elastic solid, a wave could in principle propagate infinitely far. In
real solids however, attenuation of waves occurs, mainly due to absorption
and dissipation [8]. The first phenomena involves the conversion to thermal
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energy, while dissipation takes place in media with heterogeneities on which
the incident wave is scattered.

One way to incorporate losses into the wave equation Eq. (2.12) is to intro-
duce a complex wavenumber with a real part k′ and an imaginary part α > 0
called the attenuation coefficient [9]:

k = k
′ − iα. (2.19)

If one considers pure longitudinal (shear) waves, the displacement ~ξ of the
solid will be parallel (normal) to the direction of propagation. For simplicity,
consider a plane wave propagating along the 3-direction, i.e. the z-direction.
Say that the displacement ξ3 has a local maximum at z = zm. Then, after
propagating one wavelength λ further, the displacement will have a new local
maximum, but due to the attenuation coefficient, ξ3 is reduced by a factor
of

ξ3(zm + λ, t)

ξ3(zm, t)
= exp(−αλ) ≡ exp(−π/Q), (2.20)

defining the quality factor Q. Accordingly,

Q =
π

αλ
=

k
′

2α
. (2.21)

The solution Eq. (2.13) inserted into the scalar wave equation Eq. (2.12)
yields, with the complex k Eq. (2.19),

v =
ω

k
=

ω/k
′

1 + ( α
k′

)2

(
1 + i

α

k′

)
=

ω/k
′

1 + ( 1
2Q

)2

(
1 + i

1

2Q

)
. (2.22)

For Q� 1, or equivalently α� k
′ ,

v ≈ ω

k′

(
1 + i

1

2Q

)
≡ v

′
(

1 + i
v

′′

v′

)
, (2.23)

introducing the real and imaginary part of the complex velocity for suffi-
ciently high Q. Relating the complex velocity to the complex stiffness

c = c
′
+ ic

′′
= c

′
(

1 +
i

Qm

)
(2.24)
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via Eq. (2.14) (longitudinal) or Eq. (2.15) (shear), one finds that the me-
chanical quality factor Qm can be expressed in terms of Q by [9]

Qm = Q− 1

4Q
≈ Q, (2.25)

where the last equality is valid as long as Q� 1.

2.2 Piezoelectricity

This Subsection starts with an introduction to linear dielectrics. The epoxy
of the 1-3 piezocomposites will be electrically described as such a material.
The piezoelectrical equations are reviewed along with the material coeffi-
cients. Next, the theory behind piezoelectric ceramics is given, along with
the symmetry of poled PZTs to express the material coefficient matrices.
Then, using Richard Holland’s approach [10], the power dissipation den-
sity Pd in AC-voltage driven piezoelectrics due to mechanical, dielectric and
piezoelectric losses is derived. It will be shown that the power dissipation
density can be written as a sum of three terms, one for each energy loss
mechanism. The terms related to the mechanical and dielectric losses are
also valid for description of the power dissipation density in the piezoelectric
inactive materials. This is because the matching layer and the epoxy of the
1-3 piezocomposites are both linear elastic isotropic materials. As the epoxy
will also be modeled electrically as a linear dielectric, the dielectric losses
applies to it as well. Ultimately, the power dissipation density in the piezo-
composite and matching layer amounts to the heat generation that will be
imported and used as the heat source in the steady-state heat transfer FEM
model.

2.2.1 Linear dielectrics

In contrast to a conductor where charges may flow freely in the material, the
charges of the atoms/molecules in a dielectric medium are confined to their
nuclei, hence called bound charges [11]. When an external electric field is
applied, the charge configuration of the atoms/molecules is shifted so that
microscopic dipole moments appear. On a macroscopic scale, the microscopic
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contributions averaged over the volume of the solid give rise to a polarization
~P . For linear dielectrics, ~P is proportional to the total electric field ~E, that
is, the sum of the external field and the field as a result of polarization. The
constant of proportionality is the vacuum permittivity ε0 times the electric
susceptibility matrix χe:

~P = ε0χe
~E. (2.26)

Accordingly, the electric displacement ~D in a linear dielectric is [11]

~D = ε0 ~E + ~P = ε0 (I3 + χe) ~E ≡ ε ~E, (2.27)

defining the permittivity matrix ε in the last equality. I3 is the 3 × 3 iden-
tity matrix. Under the assumptions that no free charges are present in the
dielectric and that ε is spatially independent, Gauss’ law in differential form
for a linear dielectric reads [11]

Di,i = εijEj,i = 0. (2.28)

Here, the Einstein summation convention applies and subscript after the
comma denotes partial derivative. Moreover, Faraday’s law of induction and
Ampere’s circuit law read [11]

∇× ~E = −∂
~B

∂t
(2.29)

and

∇× ~H =
∂ ~D

∂t
(2.30)

for non-conducting media, where ~B is the magnetic field and ~H is the mag-
netic field strength. The relation between ~H and ~B for a non-magnetic
medium is

~B = µ0
~H, (2.31)

where µ0 is the permeability of free space.

2.2.2 The piezoelectric effect

If a solid is electrically polarized due to applied mechanical stresses and
is also mechanically deformed under application of an electric field, it is
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characterized as a piezoelectric solid [2]. The former phenomenon is called the
direct piezoelectric effect while the latter is named the inverse piezoelectric
effect.

For a linear piezoelectric material, the piezoelectric effect is manifested through
the constitutive Equations Eqs. (2.32) and (2.33):

Tα = cEαβSβ − eiαEi, (2.32)

Di = eiαSα + εSijEj. (2.33)

Here, eiα is a 3×6 matrix representation of the piezoelectric coefficient tensor
(rank-3). In these Equations, one sees similarities with the Eqs. (2.4) and
(2.27). However, there are two more terms which couple the stress to the
electric field and the electric displacement field to the strain, respectively. In
accordance with the definition of a piezoelectric solid, the coefficients eαi are
called piezoelectric coefficients. Moreover, the direct effect appears in Eq.
(2.33) and the inverse effect in Eq. (2.32).

The constants of proportionality in Eqs. (2.32) and (2.33) may be expressed
as

cEαβ =

(
∂Tα
∂Sβ

)
E

, (2.34)

eαi = −
(
∂Tα
∂Ei

)
S

=

(
∂Di

∂Sα

)
E

, (2.35)

εSij =

(
∂Di

∂Ej

)
S

. (2.36)

This clarifies the superscript notation.

Since there are four variables (Ei, Di, Sα and Tα) and there can only be
two independent variables for one pair of piezoelectric equations of which
one is electrical and the other is mechanical, there exist three other pairs
of piezoelectric equations. These are presented in Appendix A along with
their respective coefficients and interrelations between these. In Subsection
3.2.6, some of these relations will be needed to convert between material
coefficients. Eqs. (2.32) and (2.33) are called the e-form of the piezoelectric
equations since the piezoelectric coefficient used here is e. The other forms
are named the h-form, d-form and g-form.
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In the next Subsection, an overview of piezoelectric ceramics will be given
along with the form of the dielectric, mechanical and piezoelectric property
matrices.

2.2.3 Piezoelectric ceramics

Polycrystalline materials consist of crystalline regions that are randomly ori-
ented, thus macroscopically giving zero polarization [12]. If the material is
ferroelectric, it will have a spontaneous polarization in each of these domains
for temperatures below the Curie temperature. Applying a sufficiently strong
electric field may change the orientation of the domains so that a non-zero
macroscopic polarization is achieved. A ferroelectric material with a strong
coercive force will be able to keep a remnant polarization even when the
strong electric field, known as a polarization field or bias, is turned off [1].
Still, the temperature has to be below the Curie temperature - else, the
solid may transition into a paraelectric state, meaning that the spontaneous
polarization vanishes along with the the remnant polarization.

At temperatures close to the Curie temperature, the ferroelectric material
may be poled through the application of a bias. It is known that poled
polycrystalline ferroelectric materials display the same crystal symmetry as
piezoelectrics [1]. In particular, the ferroelectric materials BaTiO3 (barium
titanate) and Pb[ZrxTi1–x]O3, 0 ≤ x ≤ 1 (lead zirconate titanate, or PZT)
have the symmetry of the crystal group C6v = C∞ when poled. As both also
have the properties of a ceramic, they are called piezoelectric ceramics, or
just piezoceramics.

The crystal group C∞ contains crystals that are dihexagonal pyramidal,
meaning that these crystals have a 6-fold rotational axis and two perpendicu-
lar mirror planes [13]. The poling direction is chosen to be in the 3-direction
by convention. It should also be mentioned that this symmetry implies trans-
verse isotropy with respect to the poling direction, the 3-direction. Then, the
representation of the piezoelectric, permittivity and elastic compliance tensor
in matrix form for piezoceramics poled in the 3-direction read

d =

 0 0 0 0 d15 0
0 0 0 d15 0 0
d31 d31 d33 0 0 0

 , (2.37)
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ε =

ε11 0 0
0 ε11 0
0 0 ε33

 = β−1 (2.38)

and

s =


s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s13 s13 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s66

 = c−1, (2.39)

respectively. Here, the inverse permittivity, also known as the impermittivity,
β was defined, while c is recognized as the stiffness matrix. Also note that
s66 = 2(s11 − s12). In other words, there are 3 independent piezoelectric
coefficients, 2 independent electric coefficients and 5 independent mechanical
coefficients, resulting in 10 independent material parameters in total.

2.2.4 Power dissipation density

When considering the energy balance equation for a piezoelectric, the in-
stantaneous power per unit volume P can be shown to depend on five terms
[2],[10]:

P = ρ
∂2~ξ

∂t2
· ∂
~ξ

∂t
+ T :

∂S

∂t
+ ~E · ∂

~D

∂t
+∇ ·

(
−T · ∂

~ξ

∂t
+ ~E × ~H

)
. (2.40)

Colon means double contraction. The first term is the time derivative of the
kinetic energy per unit volume, while the second and third terms contribute
to the mechanical potential energy and electric potential energy per unit
volume stored in the system. The expression in the brackets is the most
important for this discussion. It is identified as the instantaneous Poynting
vector ~Σ, which gives the flow of energy per surface area per unit time:

~Σ = −T · ∂
~ξ

∂t
+ ~E × ~H = −T · ~u+ ~E × ~H, (2.41)

rewriting the partial derivative of the displacement with respect to time as
the particle velocity ~u in the last equality. From now on, complex variables
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will be used and harmonic time dependence exp(jωt) with angular frequency
ω is assumed for all relevant physical quantities. Then, the complex instan-
taneous Poynting vector, for simplicity referred to as the Poynting vector
later, reads

~Σ =
1

2

(
~E × ~H∗ − jωT · ~ξ∗

)
. (2.42)

The real part of the Poynting vector gives the time averaged energy flow per
surface area per unit time. Taking the negative divergence of this yields the
power dissipation density Pd:

Pd = −1

2
Re
{
∇ ·

(
~E × ~H∗

)
− jω~ξ∗ · (∇ · T )− jωT : (∇ · ~ξ∗)

}
. (2.43)

In the following, Holland’s approach [10] will be used to express the power
dissipation density first in terms of the electric field, electric displacement
field, stress tensor and strain tensor and then in terms of the electric field,
strain and material coefficients. The former expression will be convenient in
the finite element analyses while the latter shows how the imaginary parts
of the material coefficients contribute to the power dissipation density in a
piezoelectric.

First, Holland uses the vector identity

∇ · ( ~E × ~H∗) = ~H∗ · (∇× ~E)− ~E · (∇× ~H∗) (2.44)

to rewrite the power dissipation density Eq. (2.43) in terms of the curl of ~E
and the curl of ~H. He then applies Faraday’s law of induction Eq. (2.29) and
Ampere’s circuit law Eq. (2.30) to Eq. (2.44) to exploit the assumed time
harmonic dependence of ~B and ~D. As the double contraction of a symmetric
tensor with an antisymmetric tensor is zero, only the symmetric part of the
gradient of ~ξ∗ contributes to the last term in Eq. (2.43) and this is the strain
tensor S. For the divergence of T , Newton’s second law Eq. (2.10) with
time harmonic dependence is used. Following these steps and substituting ~H
by ~B using Eq. (2.31), Holland’s equation for the power dissipation density
reduces to

Pd =
1

2
ω Im

{
~E · ~D∗ + T : S∗

}
. (2.45)

This Equation integrated over the volume of the piezoelectric yields the power
dissipation. As explained in the beginning of Section 2.2, this Equation will
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be used to compute the power dissipation density in the epoxy, PZT and
matching layer in the FEM simulations.

Now, introducing mechanical, piezoelectric and dielectric losses by writing
the material coefficient in complex form as

sE = sE
′ − jsE′′

(2.46)

d = d
′ − jd′′

(2.47)

εT = εT
′ − jεT ′′

, (2.48)

the d-form of the piezoelectric equations Eqs. (A.3) and (A.4) used on Eq.
(2.45) imply that

Pd =
1

2
ω Im

{
Eid

∗
iαT

∗
α + Eiε

T∗
ij E

∗
j + Tαs

E∗
αβT

∗
β + E∗i d

∗
iαTα

}
, (2.49)

using Voigt notation for the stress tensor T . Next, Holland conveniently
writes the previous Equation in matrix form by first defining the column
vector ~F of length 9,

~F =

[
~T
~E,

]
(2.50)

and then the 9×9 symmetric matrixM composed of the material coefficient
matrices:

M =

[
sE d
dt εT

]
, (2.51)

dt denoting the transpose of d. This makes it possible to express the power
dissipation density compactly as

Pd =
1

2
ω Im

{
~F tM ∗ ~F ∗

}
. (2.52)

~F t is the transpose of ~F . Now, let θpq be the phase angle between the vectors
Fp and Fq, p, q ranging from 1 to 9. Then, by Euler’s formula,

FpFq = |Fp||Fq|(cos θpq + j sin θpq), (2.53)

no summation over repeated indices. If one uses the same complex notation
for Mpq as for the material coefficients,

Mpq = M
′

pq − jM
′′

pq (2.54)
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and Pd simplifies to

Pd =
1

2
ω
∑
p,q

|Fp||Fq|(M
′′

pq cos θpq +M
′

pq sin θpq)

=
1

2
ω
∑
p,q

|Fp||Fq|M
′′

pq cos θpq, (2.55)

as θpq = −θqp.

Holland concludes that the complex part of sE gives a mechanical power loss,
the complex part of εT gives a an electrical power loss and the complex part
of d gives a power loss depending on the electric field and the mechanical
stress. This can be seen more explicitly by rewriting the previous Equation
using the definition of Mpq Eq. (2.51):

Pd =
1

2
ω
∑
α,β

|Tα||Tβ|sE
′′

αβ cos θαβ

+
1

2
ω
∑
i,j

|Ei||Ej|εT
′′

ij cos θij

+ω
∑
i,α

|Ei||Tα|d
′′

iα cos θiα.

(2.56)

In the last term on the right hand side, the fact that Mpq = Mqp was used so
that the factor of 1/2 vanishes.

2.2.5 Losses in dielectrics and piezoelectrics

In the previous Subsection, it was shown that complex material parameters
Eqs. (2.46)-(2.48), in this case sE, d and εT , give rise to power dissipation
in piezoelectrics. In this short Subsection, the physical loss mechanisms will
be briefly discussed and alternative loss formulations will be given. As the
complex elastic compliance relates to the complex wavenumber presented in
Subsection 2.1.5 via the elastic wave equation Eq. (2.11), the mechanical
energy loss mechanism has already been explained, so only the electric and
piezoelectric loss mechanisms will be considered here.

For a non-ideal dielectric, the response of the polarization to the external
electric field is not instantaneous. In other words, there is a phase difference
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between the polarization and the electric field. This is denoted by δε and
is also known as the dielectric loss angle or dielectric loss factor. Along the
direction of the external field, the following relationship holds for the complex
permittivity:

tan(δε) =
εT

′′

εT ′ . (2.57)

In piezoelectrics, a similar phase difference is observed between the induced
electric displacement and applied mechanical stress (direct effect) and be-
tween the induced mechanical stress and applied electric field (inverse effect)
[14]. Thus, the piezoelectric loss factor reads

tan(δd) =
d

′′

d′ . (2.58)

2.3 1-3 piezocomposites

In the previous Section, the energy loss mechanisms in the piezoelectric inac-
tive (epoxy) and the active material (PZT) of the 1-3 piezocomposites were
given. Now, the structure itself will be presented along with its relevant
resonances. The use of 1-3 piezocomposites for underwater ultrasonic appli-
cations was motivated in Chapter 1. Subsection 2.3.3, deriving the material
parameters of the effective medium model [3], will be especially important
with regards to determining the appropriate acoustic properties of the match-
ing layer and provides verification of the fundamental thickness resonances
obtained in the FEM simulations. The last Subsection presents an equiva-
lent but simpler expression for the power dissipation obtained by Holland’s
approach [10] in the case of an AC-driven 1-3 piezocomposite operating in
vacuum.

2.3.1 Materials and composition

1-3 piezoelectric composites, often shorted to 1-3 piezocomposites, consist
of a piezoelectric material, usually PZT, and an epoxy, mostly piezoelectric
inactive. The 1-3 relates to the connectivity: The first digit, 1, means that
the piezoelectric material is connected along one direction only, which will
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Fig. 2.1: Model of a 1-3 composite with 19 × 19 square pillars and equal peri-
odicity in the lateral directions (x and y-axis). The thickness direction is along
the z-axis.

be termed the thickness direction. The second number, 3, indicates that the
epoxy is connected in all three directions. The directions along the coordinate
axes normal to the thickness direction are called lateral directions.

A model of such a 1-3 composite is shown in Fig. 2.1. It can be seen that the
1-3 connectivity implies rod or pillar like shapes for the piezoelectric material,
in this case with square lateral cross sections. Depending on the application,
1-3 composites may consist of pillars displaying other geometrical shapes and
appearing in semi-periodic patterns. For this discussion, assume the same
periodicity along both lateral directions. Also, let the lateral cross section of
the rods be square and the rods have the same thickness as the surrounding
epoxy. Fig. 2.1 is applicable to this situation.

In Fig. 2.2, a portion of the same composite is viewed from above and two
lateral measures are given: The rod size wr and the rod spacing ∆wr.
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∆wr

wr

√
2∆
w
r

Fig. 2.2: A portion of a 1-3 composite in Fig. 2.1 seen from above. The square
PZT rod size wr and rod spacing ∆wr (epoxy) are shown, along with the diagonal
rod spacing of

√
2∆wr.

2.3.2 Resonances

To generate ultrasound, the 1-3 piezocomposite is set in motion by exciting
the PZT electrically, utilizing the inverse piezoelectric effect. In the case
of thickness oscillations, electrodes of a conductive metal are mounted onto
the entire top and bottom surface to which a uniform sinusoidal voltage
with angular frequency ω is applied. Depending on the frequency of the
applied voltage, different vibrational modes are excited. The fundamental
thickness resonance frequency fr of the composite (with electrodes) is given
by the frequency at which the first minimum in the absolute value of the
electrical impedance |Z| = |Z(ω)| measured over the electrodes occurs [15].
The corresponding fundamental anti-resonance frequency fa is found at the
frequency of the first maximum of the absolute value of |Z(ω)| [15].

Other important frequencies are the series fs and parallel fp resonance fre-
quencies. These frequencies can be found in two ways. By the definition, fs

(fp) occurs at the frequency of the first maximum in conductance G = G(ω)
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(resistance R = R(ω)) [15]. For a 1-3 composite, however, an estimate of
these frequencies can be computed by assuming the composite to behave as
an effective medium for which the effective longitudinal velocities are given
in terms of the material parameters and volume fractions of the PZT and
epoxy. This model will be presented in the next Subsection - for now, the ex-
pressions will just be given. The series resonance frequency can be estimated
by

fs ≈
vEl
2tc

, (2.59)

where the effective longitudinal wave velocity of the composite vEl at constant
electric field was introduced, along with the thickness of the composite tc.
Constant electric field can be achieved by short-circuiting the electrodes. An
approximation of the parallel resonance frequency is

fp ≈
vDl
2tc

> fs. (2.60)

As before, vDl denotes the effective longitudinal wave velocity in the com-
posite, this time, however, evaluated at constant electric displacement. This
condition is met for an open circuit, that is, keeping the charge on the elec-
trodes constant. In lossy composites, the following holds in general [15]:

fr > fs, (2.61)
fa < fp. (2.62)

For applications where the composite is used in thickness mode, the rod
spacing ∆wr, rod size wr and ceramic aspect ratio AR, the latter given as
wr/tc, have to be chosen carefully. If not, lateral resonance modes may
develop within the frequency operating range of the composite, reducing its
efficiency. In [4], the resonance frequencies of two types of inter-pillar lateral
modes in the piezoelectric inactive medium (epoxy) have been related to the
rod spacing. The first kind is half-wave standing wave patterns in between
the faces of adjacent rods, while the second type is half-wave standing wave
patterns developing along the extension of the diagonal between neighbouring
rods, see Fig. 2.2. In both cases, the fundamental resonance frequencies were
found to agree well with that of half-wave resonators for a wide range of
volume fractions. Since the diagonal pillar spacing is a factor

√
2 longer than

the lateral rod spacing, the fundamental diagonal resonance ft1 is expected
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to occur at a frequency given by the fundamental lateral resonance ft2 times
1/
√

2. The resonances were found to be well-defined by the rod spacing and
shear wave velocity in the epoxy vs through the expressions

ft2 =
√

2ft1 =
vs

2∆wr

(2.63)

as long as π/tc was sufficiently small.

2.3.3 The effective medium model for thickness-model
oscillations in 1-3 piezocomposites

The derivation of the effective medium model [3] given here will be following
the same procedures as presented there. Though, as the goal is to obtain
effective material properties for determination of the effective resonance fre-
quencies f s and fp only, some of the derivations presented there are con-
veniently left out. Throughout the derivation, no losses are incorporated,
meaning that the material coefficients are real.

A few initial remarks are necessary for the reader. As in [3], the e-form
Eqs. (2.32) and (2.33) of the piezoelectric equations will be used. This
amounts to ~T and ~D as independent variables. The piezoelectric medium
will be described with the C∞-symmetry as defined in Subsection 2.2.3 and
the epoxy will be a linear elastic isotropic material with stiffness c as given
by Eq. (2.8). Electrically, the epoxy will be considered as a linear dielectric
medium with homogeneous and isotropic permittivity ε11. This corresponds
to a diagonal permittivity matrix with ε11. Linear dielectrics were described
in Subsection 2.2.1.

For each material, there are initially 6 equations for the components of the
stress ~T and 3 equations for the electric displacement ~D. For clarity, they
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will be given here. First for the epoxy:

T1 = c11S1 + c12S2 + c12S3 (2.64a)
T2 = c12S1 + c11S2 + c12S3 (2.64b)
T3 = c12S1 + c12S2 + c11S3 (2.64c)
T4 = c44S4 (2.64d)
T5 = c44S5 (2.64e)
T6 = c44S6 (2.64f)
D1 = ε11E1 (2.64g)
D2 = ε11E2 (2.64h)
D3 = ε11E3 (2.64i)

and then for the ceramic:

T1 = cE11S1 + cE12S2 + cE13S3 − e31E3 (2.65a)
T2 = cE12S1 + cE11S2 + cE13S3 − e31E3 (2.65b)
T3 = cE13S1 + cE13S2 + cE33S3 − e33E3 (2.65c)
T4 = cE44S4 − e15E2 (2.65d)
T5 = cE44S5 − e15E1 (2.65e)
T6 = cE66S6 (2.65f)
D1 = e15S5 + εS11E1 (2.65g)
D2 = e15S4 + εS11E2 (2.65h)
D3 = e31S1 + e31S2 + e33S3 + εS33E3. (2.65i)

The first approximation introduced in the effective medium model is that the
strain ~S and electric field ~E are independent of the transverse coordinates
x and y. As is pointed out, this does not hold in general as can be seen in
finite element analysis and the assumption is made to describe these variables
in an average sense. Superscript p (c) will be used for physical quantities
in the epoxy (ceramic) phase. However, the quantities c, ε and β in the
piezoelectric will be written in terms of the conventional superscript notation
as introduced in Subsection 2.2.2.

Second, symmetry in the x-y plane is assumed. As both materials are trans-
versely isotropic with respect to the thickness direction z, this seems fair.
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This implies that only one of the equations for the lateral stresses is needed
in each material as the stress in the x-direction is equal to the stress in the
y-direction. Further, the transverse electric field components are assumed to
be zero, which should be valid if the electrodes are equipotentials. Moreover,
the shear components of the stress are disregarded in both materials as only
thickness oscillations will be considered. The relevant equations now read

T p
1 = (c11 + c12)Sp

1 + c12S
p
3 , (2.66a)

T p
3 = 2c12S

p
1 + c11S

p
3 , (2.66b)

Dp
3 = ε11E

p
3 (2.66c)

for the epoxy and

T c
1 = (cE11 + cE12)Sc

1 + cE13S
c
3 − e31E

c
3, (2.67a)

T c
3 = 2cE13S

c
1 + cE33S

c
3 − e33E

c
3, (2.67b)

Dc
3 = 2e31S

c
1 + e33S

c
3 + εS33E

c
3 (2.67c)

for the piezoelectric. The irrelevant equations for the shear stresses (3 in each
material) have been left out together with one of the equations equation for
the lateral stresses (1). The electric displacement in the transverse plane
(2) vanishes in the epoxy and is disregarded in the ceramic. Thus, 9 initial
equations in each material have been narrowed down to 3 in each phase.

The third approximation introduces uniform thickness oscillations, imposing
equal vertical strains over the composite materials:

Sp
3 = Sc

3 = S3(z). (2.68)

This is also known as the iso-strain condition. As introduced earlier in Sub-
section 2.3.2, the bar will be used to denote effective quantities. If the lateral
resonance modes occur at much higher frequencies, this approximation is
reasonable. They do so if the epoxy width ∆wr introduced in Fig. 2.2 is
small enough compared to all relevant wavelengths of waves propagating in
the epoxy. As the shear wave velocity is usually the lowest velocity, the
shortest wavelength of waves in the epoxy is given by the ratio of the shear
wave velocity to the maximum frequency.

The electrodes are considered to extend over the entire upper and lower sur-
face of the composite and amount to equipotentials. Therefore, the electric
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fields is assumed to be the same in both materials along the thickness direc-
tion:

Ep
3 = Ec

3 = E3(z). (2.69)

The next approximation covers two aspects. First, the lateral stresses are
assumed to be equal in both materials. Second, one expects the composite as
a whole to be laterally clamped, meaning that the lateral strain in the ceramic
must be compensated by a complimentary strain in the epoxy. In terms of the
ceramic (epoxy) volume fraction ν (ν̃ = 1− ν) of the piezocomposite,

T p
1 = T c

1 = T 1(z) (2.70)

and
S1(z) = ν̃Sp

1 (z) + νSc
1 = 0. (2.71)

Rewriting the lateral strains Sc
1 and Sp

1 as functions of the vertical strain and
electric field in both materials yields

Sc
1 = ν̃

−(cE13 − c12)S3 + e31E3

ν(c11 + c12) + ν̃(cE11 + cE12)
(2.72)

and

Sp
1 = ν

(cE13 − c12)S3 − e31E3

ν(c11 + c12) + ν̃(cE11 + cE12)
. (2.73)

This makes it possible to eliminate Sc
1 and Sp

1 so that

T 1(z) = cE13S3 − e31E3, (2.74)

with

cE13 =
νcE13(c11 + c12) + ν̃c12(cE11 + cE12)

ν(c11 + c12) + ν̃(cE11 + cE12)
(2.75)

and
e31 =

νe31(c11 + c12)

ν(c11 + c12) + ν̃(cE11 + cE12)
. (2.76)

The stresses and electric displacements in the z-direction become

T p
3 =

[
c11 +

2νc12(cE13 − c12)

ν(c11 + c12) + ν̃(cE11 + cE12)

]
S3

−
[

2νe31c12

ν(c11 + c12) + ν̃(cE11 + cE12)

]
E3

(2.77)
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Dp
3 = ε11E3 (2.78)

for the epoxy and

T c
3 =

[
cE33 −

2ν̃cE13(cE13 − c12)

ν(c11 + c12) + ν̃(cE11 + cE12)

]
S3

−
[
e33 −

2ν̃e31c
E
13

ν(c11 + c12) + ν̃(cE11 + cE12)

]
E3

(2.79)

Dc
3 =

[
e33 −

2ν̃e31(cE13 − c12)

ν(c11 + c12) + ν̃(cE11 + cE12)

]
S3

+

[
εS33 +

2ν̃(e31)2

ν(c11 + c12) + ν̃(cE11 + cE12)

]
E3.

(2.80)

for the ceramic.

To obtain the effective medium parameters, one last assumption is needed.
Along the thickness direction, the effective total stress T 3 and displacement
D3 are acquired by averaging the stresses and displacements with respect to
the volume fractions:

T 3(z) = νT c
3 (z) + ν̃T p

3 (z) (2.81)

D3(z) = νDc
3(z) + ν̃Dp

3(z). (2.82)

The effective material properties read

cE33 = ν

[
cE33 −

2ν̃(cE13 − c12)2

ν(c11 + c12) + ν̃(cE11 + cE12)

]
+ ν̃c11 (2.83)

e33 = ν

[
e33 −

2ν̃e31(cE13 − c12)

ν(c11 + c12) + ν̃(cE11 + cE12)

]
(2.84)

εS33 = ν

[
εS33 +

2ν̃(e31)2

ν(c11 + c12) + ν̃(cE11 + cE12)

]
+ ν̃ε11. (2.85)

The final constitutive equations for the effective medium oscillating in the
thickness direction become

T 3(z) = cE33S3 − e33E3 (2.86)

D3(z) = eE33S3 − εS33E3. (2.87)
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To check the effective material properties at the extremities, consider first
ν = 1, which amounts to a piezoelectric plate:(

cE33

)
ν=1

= cE33 (2.88)(
e33

)
ν=1

= e33 (2.89)(
εS33

)
ν=1

= εS33. (2.90)

Then, let ν = 0. This yields an epoxy slab:(
cE33

)
ν=0

= c11 = c33 (2.91)(
e33

)
ν=0

= 0 (2.92)(
εS33

)
ν=0

= ε11 = ε33. (2.93)

Introducing the effective density

ρ = νρc + ν̃ρp, (2.94)

the effective specific impedance is Z:

Z =
√
cD33ρ, (2.95)

the effective stiffness under short-circuit conditions cD33 given by

cD33 = cE33 + (e33)2/εS (2.96)

by Eqs. (A.10) and (A.11). The effective longitudinal velocity under open-
circuit conditions vDl reads

vDl =
√
cD33/ρ, (2.97)

while under short-circuit conditions, it reads

vEl =
√
cE33/ρ. (2.98)
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Finally, this gives the expressions for the effective fundamental series f s and
effective fundamental parallel fp resonance frequency as given in Subsection
2.3.2:

fp =
vDl
2tc

(2.99)

and

f s =
vEl
2tc

, (2.100)

reminding the reader that tc is the thickness of the composite.

2.3.4 Ohm’s law and the Joule heating law

Ohm’s law states that the voltage drop V over an electrical conductor of
resistance R is equal to the product of the current I through the resistor and
R [11]:

V = RI. (2.101)

As current flows through the conductive material, some of the electric energy
of the current is generated into heat. For a resistive element, the power loss
P due to heating is given by the product of the current and the voltage drop
[11]:

P = V I = RI2. (2.102)

In the last equality, Ohm’s law Eq. (2.101) was used. Eq. (2.102) is known as
the Joule heating law and the phenomenon is called Joule heating. Assuming
a sinusoidal varying voltage V = V0 exp(jωt) and using complex notation,
the Joule heating law may be rewritten as

P =
1

2
Re{UI∗}, (2.103)

I∗ denoting the complex conjugate of the current. Note that this P is equal to
the time-averaged power dissipation, which is generally frequency dependent,
P = P (ω). Ohm’s law reads

U = IZ = I(R + jX), (2.104)

where Z is the electrical impedance and X is the reactance. Writing the
admittance Y = Z−1 = G + jB with conductance G and susceptance B, it
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is easy to show that

P =
1

2
|V0|2G, (2.105)

using Ohm’s law Eq. (2.104) to rewrite the current in terms of the voltage
and impedance.

This applies to currents due to free charges as well as currents due to bound
charges. Thus, for an AC-voltage driven 1-3 piezocomposite in vacuum, the
electrical power input to the composite given by Eq. (2.105) is equivalent
with the power dissipation density Pd in Eq. (2.45) integrated over the vol-
ume of the composite. In the Discussion, this will be checked explicitly for one
of the composites in vacuum. Although Eq. (2.45) was deduced for a piezo-
electric, it applies equally well for a composite as long as the epoxy/polymer
in the composite is a linear elastic material. The piezoelectric inactive mate-
rial of the composite will not give any piezoelectric loss contribution, though,
only mechanical and dielectric loss contributions (the epoxy will be modeled
electrically as a linear dielectric).

2.4 Heat transfer

This Section covers the background material for steady-state heat transfer.
Boundary conditions for radiation and convection will be discussed in Section
3.4.

2.4.1 Fourier’s law

In a medium with a non-uniform temperature distribution, heat will flow from
the warmer to the colder areas to relax the system into thermal equilibrium.
Fourier’s law gives the relation between the heat flux ~q flowing through a
material with thermal conductivity k and the temperature gradient ∇T . It
reads [13]

~q = −k∇T. (2.106)

34



2.4.2 The heat equation

The general form of the heat equation is

cpρ
∂T

∂t
= ∇ (k∇T ) +Qs, (2.107)

where cp and ρ denote the specific heat capacity at constant pressure and
mass density, respectively. The first term on the right hand side is the diver-
gence of the negative heat flux as given by Fourier’s law Eq. (2.106). The
second term Qs = Qs(~r, t) is a source or/and sink term which incorporates
phenomena such as heat generation, radiation and convection into the equa-
tion. ~r is the position vector and t is the time variable. Eq. (2.107) is solved
for T = T (~r, t) to obtain the temperature distribution.

For steady-state heat transfer, the left hand side of the heat equation Eq.
(2.107) is zero. Then, the Equation reduces to

∇ (k(~r, t)∇T (~r, t)) = −Qs(~r, t). (2.108)

This shows that the resulting temperature distribution only depends on the
thermal conductivity of the system, initial and boundary conditions and
sources/sinks.

2.5 Finite element method

Solving physical problems related to heat transfer typically involves par-
tial differential equations, such as the heat equation Eq. (2.107). Ana-
lytically, this equation is solvable only for specific problems with relatively
non-complex geometrical structures and/or symmetries, such as cylinders,
spheres and rectangles/cubes. For more complex geometries, it gets increas-
ingly difficult to find an exact solution and one turns to numerical methods.
The perhaps most used approach is the FEM, which gives an approximate
solution of the problem.

Step one in the Finite Element Analysis (FEA) is to create a digital model
of the physical system under investigation which resembles the real structure
to a certain level of detail. Then, the discretization of the system is worked
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out, better known as the process of meshing. Here, the system is divided
into smaller spatial parts called finite elements, from which this method has
its name. The shapes of these elements can range from 1D line elements to
3D elements such as tetrahedra or prisms.

Within the created finite elements and on their boundaries, there is a finite
number of points called nodes to which the physical parameters are assigned.
For the use in this thesis, the meshes were built using quadratic tetrahedrons.
Here, there is one node in each corner and one on each midpoint between
two corners, yielding ten nodes per element. These points are the discrete
points at which the independent variables are computed, and the number
of degrees of freedom, given in most cases by the amount of independent
variables times the total number of nodes in the model, gives the number of
equations that need to be solved. In simulations of linear piezoelectrics in
the frequency domain, say for the d-form Eqs. (2.32) and (2.33), there are in
general six independent variables for the stress ~T (Voigt notation) and three
independent variables for the electric displacement ~D. For steady-state heat
transfer, the temperature T is the only independent variable.

To solve for the independent variable, one must obtain a set of equations
at each node. Between subsequent nodes, interpolation functions are used
to give intermediate values. For linear (quadratic) elements, these are lin-
ear (quadratic) with respect to the local coordinates in each element. At
each node, material properties, boundary conditions and information about
neighbouring nodes are given. For a small subdomain, one uses a linear com-
bination of trial functions. The number of trial functions needed to represent
the solution here is finite and together with their coefficients, which are to
be computed, the functions give an approximate solution on the subdomain.
The goal is to determine the coefficients of these functions so that the local
error becomes as small as possible, usually performed by iterative algorithms.
Finally, the local equations are combined into a global system matrix from
which the independent variables are solved for.

One remark about the spatial discretization is necessary. An important pa-
rameter reflecting the model size and computation time is the number of
nodes. The denser the mesh, that is the higher the number of elements per
unit volume, unit area or unit length, the more nodes and hence the more
equations. Indeed, the mesh density has a direct connection to the accuracy
of the solution obtained, but beyond a certain point, further reductions in
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element sizes and hence increase in the number of nodes will not give more
accurate results. That is, the solution has converged and now only the num-
ber of calculations are increased without making any important difference in
the solution. For this reason, it is convenient to do a mesh refinement study
in which one investigates the effect of different mesh sizes and element types
before deciding for a certain mesh for the model.

37



Chapter 3

Method: FEM modeling

Here, all aspects of the finite element modeling in COMSOL Multiphysics
will be presented.

First, the modeling approach and relevant measures of the composites are
presented in Section 3.1.

Second, in Section 3.2, 12 piezocomposites are picked and the materials of the
composites and how they are modeled in COMSOL, including losses, will be
discussed. Boundary conditions are specified and guidelines for the meshing
are worked out. Moreover, the frequencies for which the simulations will be
performed are given and all relevant physical quantities for discussion and
comparison will also be presented.

Thirdly, following the same structure as before, electrodes and a quarter-
wavelength matching layer are introduced in the model of one of the com-
posites above. Additionally, a water load is added to the matching layer.
This equals to Section 3.3.

Lastly, in Section 3.4, the steady-state heat transfer model of the composite
with matching layer, electrodes and water load is presented with the choices
of boundary conditions.

3.1 Unit cell modeling

The unit cell modeling approach for FEM modeling of 1-3 piezocomposites
is very often motivated because it exploits periodicity and symmetry in or-
der to reduce the computational problem significantly. In the literature,
it is extensively used for purposes such as determination of the electrical
impedance spectrum and electromechanical efficiency [16, 17, 5] of 1-3/2-2
composites, to mention some. In [5], the method has also been compared
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with FEM simulations of finite-sized composites and experimental results. It
was concluded that the unit cell approach underestimated the resonance fre-
quency compared to the frequency obtained experimentally for high ceramic
aspect ratios (wr/tc > 0.4) and that the simulations of finite-sized compos-
ites were the most accurate for such high aspect ratios. However, the latter
simulations were performed using a 2D-model, which gives a huge speed-up
compared to a simulations taking all three spatial dimensions into account.
As the computational demands for a finite-sized 3D composite quickly grow
out of proportion and sufficient computational resources were not available,
the unit cell model approach is selected for this thesis. An important con-
sequence of this choice is that one loses information about resonance modes
that occur for a finite-sized composite, such as those caused by the width of
the composite as a whole.

In this thesis, as in the discussion in Subsection 2.3.1, the periodicity of the
composite will be assumed to be the same along both lateral directions and
square pillars are used. Then, the unit cell approach permits further reduc-
tion of the model size if accompanied with appropriate boundary conditions.
To visualize this, consider Fig. 3.1. Here, a portion of a 1-3 composite is
viewed from above with the borders of four unit cells illustrated. The lower
left unit cell is subdivided into four equal quarter unit cells by two planes
of symmetry. Hence, modeling a unit cell with periodic boundary conditions
is equivalent to analyzing a quarter cell with mirror symmetry conditions.
Both amount to infinite transversely periodic structures.

Further inspection of Fig. 3.1 yields that the upper surface area of a unit
cell is (wr + ∆wr)

2 and that the PZT area fraction of that area is the same
as the PZT volume fraction of a unit cell ν since the thickness of the epoxy
and PZT rods tc is the same:

ν =
w2

r

(wr + ∆wr)2
. (3.1)

This clearly also holds for quarter unit cells, as both the numerator and the
denominator scale with a factor of 1/4. For a given ν and rod size wr, the
rod spacing ∆wr (see Fig. 2.2 or Fig. 3.1) can be found by solving for it in
Eq. (3.1):

∆wr = wr

(
1√
ν
− 1

)
. (3.2)
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∆wr/2

wr

wr/2 wr + ∆wr

∆wr

Fig. 3.1: A portion of a 1-3 composite as shown in Fig. 2.1 seen from above
with the borders of four neighboring unit cells (dashed lines). One can imagine
that cutting the composite all the way through in the thickness direction along
these borders would give four replicas of the unit cell. Moreover, further cutting
one unit cell along its indicated planes of symmetry (dot-dashed lines) would
result in four quarter unit cells. The width of the epoxy in a unit cell is depicted,
namely ∆wr/2, later also referred to as the epoxy half-width. From this Figure,
it is clear that the periodicity is wr + ∆wr.

The pillar aspect ratio (AR) is also given:

AR =
wr

tc
. (3.3)
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3.2 1-3 piezocomposites in vacuum

3.2.1 Dimensions of the unit cells

In total, four volume fractions and three rod sizes were chosen. For each
volume fraction, the same three rod sizes were picked for purposes of com-
parison. The configurations obtained are characterized in Table 3.1 by their
volume fraction ν, rod size wr, rod spacing ∆wr and pillar aspect ratio AR.
It is clear that three configurations have pillar aspect ratios as high as 0.5
and these composites may have their lateral resonances occurring close to the
thickness resonances. For piezocomposites operating in thickness mode, this
is, as pointed out in Subsection 2.3.2, not favourable, so these composites
are considered for the purpose of investigating the power dissipation. More-
over, the pillar size of 10.0 mm actually becomes comparable to the shortest
wavelength of body waves propagating in the composite. A shear wave in
the epoxy would at a driving frequency of f = 110 000 Hz have a wavelength
λ ≈ 12.9 cm. Hence, the correspondence with the effective medium model
with respect to thickness resonance frequencies is expected to be the poorest
for these composites due to the high pillar aspect ratio AR and wide pillar
spacing ∆wr compared to the pillar size wr.

3.2.2 Materials and losses

For the piezoelectric, EC-69 manufactured by EDO (acquired by Harris) was
chosen. It is a hard doped PZT, which in general is characterized by higher
piezoelectric coupling and electrical permittivities compared to soft doped
PZTs and is applicable for high power transmission [18], the latter property
making it suitable for the uses in this thesis.

As electric excitation of the material gives rise to power dissipation and
heating, its temperature increases. Compared to soft PZTs, hard doped PZTs
often show more temperature stability in their material properties relative
to soft PZTs [18]. The temperature dependence of this particular PZT has
been studied for a wide range of temperatures [19]. For the temperature
interval of interest in this thesis, namely 15 ◦C to 40 ◦C, it seems to be a
good approximation to use temperature independent material coefficients.
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Table 3.1: PZT volume fraction ν, rod size wr, rod spacing ∆wr determined
by Eq. (3.2) and pillar aspect ratio AR for the 12 composites considered. The
thickness tc = 20 mm of the composite is fixed. For the definitions of wr and
∆wr, see Fig. 2.2.

no. ν wr (mm) ∆wr (mm) AR
1 40 % 3.5 2.0 0.175
2 40 % 6.0 3.5 0.3
3 40 % 10.0 5.8 0.5
4 50 % 3.5 1.4 0.175
5 50 % 6.0 2.5 0.3
6 50 % 10.0 4.1 0.5
7 60 % 3.5 1.0 0.175
8 60 % 6.0 1.7 0.3
9 60 % 10.0 2.9 0.5
10 80 % 3.5 0.4 0.175
11 80 % 6.0 0.7 0.3
12 80 % 10.0 1.2 0.5

The relevant material data was acquired at a temperature of 15 ◦C in [19],
also taking into account the losses via complex notation as in Eqs. (2.46)-
(2.48). As COMSOL supports complex material coefficients, these can be
used directly. All relevant material data is provided in Appendix B.

For the piezoelectric inactive material in the composite, the epoxy as de-
scribed in [20] was picked. Its material properties are characterized at room
temperature, including the mechanical quality factor Qm. Thus, all the nec-
essary data is provided to model this epoxy as a linear elastic isotropic mate-
rial with mechanical losses given through the complex elastic stiffness matrix
(generalization of Eq. (2.24)). However, since the losses are isotropic and
the elastic stiffness matrix cannot be typed in directly for a linear elastic
material in COMSOL, the easiest approach in COMSOL is to specify a so-
called isotropic structural loss factor η = Q−1

m . Then, COMSOL interprets
the elastic stiffness as

cαβ = c
′

αβ(1 + iη), (3.4)

where c′αβ is the real value of the elastic stiffness coefficients, in COMSOL
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calculated given the Young’s modulus E and Poisson’s ratio σ [9]:

c
′

11 =
E(1− σ)

(1 + σ)(1− 2σ)
, (3.5)

c
′

12 =
Eσ

(1 + σ)(1− 2σ)
, (3.6)

c
′

44 =
c
′
11 − c

′
12

2
=

E

2(1 + σ)
. (3.7)

In addition, the density ρ is needed to calculate, for instance, the longitudinal
and shear wave velocities Eqs. (2.14) and (2.15). So all in all, the material
parameters needed to model the epoxy as a lossy linear elastic isotropic
material are the Young’s modulus E, the Poisson’s ratio σ, the density ρ and
the mechanical quality factor Qm = η−1, all listed in Appendix B. Last but
not least, though the electrodes were not modeled, it was fair to include the
dielectric properties of the epoxy in the simulation as the voltage would be
applied uniformly over the entire upper and lower surface of the quarter unit
cell. The relative permittivity and dielectric loss angle were given in [20],
so the epoxy was modeled as a linear dielectric with isotropic permittivity.
These values are then also provided in Appendix B.

3.2.3 Boundary conditions

Modeling only a quarter unit cell, symmetry boundary conditions needed
to be applied to all external surfaces of the quarter cell, except for the top
and bottom, where stress free boundary conditions were applied (vacuum).
For a surface with outward normal ~n, the mathematical expression for the
symmetry boundary condition is given by

~ξ · ~n = 0, (3.8)

~ξ denoting the displacement on the surface. Stress free boundaries corre-
sponds to, as the name suggests,

Tαβ = 0 (3.9)

on the applicable surfaces. Finally, to electrically excite the quarter unit
cell, its lower surface was grounded and a sinusoidal varying voltage with
frequency f was applied to the upper surface with peak voltage V0 = 10 V.
The relevant frequencies will be determined in Subsection 3.2.5.
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3.2.4 Meshing considerations

To ensure that the finite element solutions were accurate enough, a mesh
refinement study was performed. As a rule of thumb in general, the number
of elements per shortest wavelength of waves propagating in the media should
be at least 6, so this was used as a starting point. The shortest wavelength
was, as used in Subsection 3.2.1, that of shear waves in the epoxy, given by
the shear wave velocity divided by the highest frequency sampled. However,
the obtained mesh size was found to be too coarse when performing initial
analyses. In particular, some guidelines on the mesh that were applied to all
12 quarter cells were developed based on the mesh refinement study:

1. Automatically generated meshes consisting of tetrahedral elements were
favoured over automatically generated meshes consisting of hexahedral
elements with respect to fulfillment of stress free boundary conditions
and computational effort necessary to reach sufficient convergence.

2. The number of elements per shortest wavelength λmin should be at least
15.

3. The number of elements along the half-width ∆wr/2 of the epoxy should
be at least 2.

4. Due to limited computational power, the total number of elements in
the quarter cell should not be much larger than 40 000.

Elaborating on the first guideline, it was found that although stress free
boundary conditions Eq. (3.9) (called "Free" in COMSOL) were applied to
the upper and lower surface of the unit cell facing vacuum, there could still
be non-zero stresses occurring, in particular close to the boundaries of the
quarter cell. However, evaluating the zz-component of the stress along a
transverse line at the material boundary between the epoxy and PZT re-
vealed that the stress reduced towards the intersect with the plane of sym-
metry (see Fig. 3.1). One convergence criterion was based on the reduction
of these stresses with decreasing mesh size. A second criterion was based on
the relative change in quantities like stress, strain and electric displacement
field along lines in the thickness direction, running all the way through the
composite. Sufficient convergence was reached when these quantities dis-
played changes by only a few percent upon further reductions of the mesh
size and when the stresses along the material boundary rapidly decreased
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to zero compared to the stresses with coarser mesh sizes. Not only did the
tetrahedral elements show the best performance for the latter as the mesh
size decreased, but they were also superior in terms of computational effort.
Hence, this element shape was chosen.

In the first guideline, it also needs to be clarified how "automatically gener-
ated meshes" are produced. In COMSOL, there are predefined mesh settings
and the settings for "extremely fine" were used, changing only the predefined
minimum and maximum element sizes. From these, a tetrahedral mesh was
built.

The second and third guidelines were based on the mesh refinement study
as well. Although the rod size wr was repetitive (see Table 3.1), the rod
spacing ∆wr (epoxy) was not because it was changed to acquire the correct
volume fraction (Eq. 3.2). Consequently, the volume of the quarter cells
changed, so the mesh sizes had to be adjusted for each quarter cell to obtain
a sufficiently fine mesh on which the dependent variables could be solved
for within a reasonable time frame. This is why the last guideline was also
introduced.

Fig. 3.2 and Fig. 3.3 show the mesh on the upper surface of the quarter
unit cell based on composite no. 3 and 10 in Table 3.1, respectively. In
Fig. 3.4, the first mesh is displayed for the entire quarter cell. In Table 3.2,
the shortest wavelength λmin, the number of elements per λmin, the number
of elements along the half-width of the epoxy ∆wr/2, the total number of
elements and the number of degrees of freedom for the meshes of the quarter
unit cells with dimensions given in Table 3.1 are presented. Overall, most
of the meshes have their total number of elements close to 40000 as given
in guideline no. 4, but especially quarter unit cell no. 10 has a very high
amount. This is explained by the fact that the rod spacing is the smallest
for this composite (see Table 3.1), so the elements in the epoxy have to
be correspondingly smaller to meet guideline no. 3 of at least 2 elements
per half-width (column no. 6 in Table 3.2). Thus, the number of elements
increases.
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Fig. 3.2: Mesh of the quarter cell representation of composite no. 3 in Table
3.1 (volume fraction ν = 0.4 and rod size wr = 3.5 mm), seen from above. 4
tetrahedral elements can be counted along the indicated lines (blue), which have
lengths corresponding to the epoxy half-width ∆wr/2.

3.2.5 Determination of sampling frequency and frequency
domain

From the effective medium model, one expects the series and parallel reso-
nances to develop at higher frequencies for higher volume fractions. However,
this model does not distinguish between composites of different lateral spatial
scales - it is only assumed that they are sufficiently fine. Preliminary finite
element simulations for coarser mesh sizes showed that the resonance fre-
quencies were also dependent on such dimensions. More precisely, for a fixed
volume fraction ν, increasing rod sizes wr gave decreasing resonance frequen-
cies, but the differences were only of the order of a few thousand hertz. Thus,
quarter cells of the same volume fraction were driven at the same frequencies,
also appropriate for purposes of comparison later. Based on the resonance
frequencies obtained for coarser meshes and the effective medium model, the
frequency domains to be sampled were determined. For all quarter cells,
101 equally spaced frequencies were sampled with a sampling frequency of
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Fig. 3.3: Mesh of the quarter cell representation of composite no. 10 in Table
3.1 (volume fraction ν = 0.8 and rod size wr = 3.5 mm), seen from above. 1
tetrahedral element can be counted along the indicated lines (blue), which have
lengths corresponding to the epoxy half-width ∆wr/2. However, it is clear that
there are mostly 2 elements along the epoxy half-width. Also notice how the
element density in the PZT increases close to the boundary between the two
domains to combine on the material domain boundaries. As a result, the mesh
in the PZT becomes finer closer to the epoxy.

400 Hz, thus covering a frequency interval of length 40 000 Hz. The minimum
and maximum frequencies sampled fmin and fmax are given with the mesh
related parameters in Table 3.2. These intervals are only large enough to give
the fundamental resonances. Higher order resonances will not be considered
but lateral modes, if they occur within the given interval, will be.

3.2.6 Physical quantities of interest

Starting with the power dissipation, the total power dissipation in a quarter
unit cell was defined as the volume integral of Holland’s power dissipation
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Fig. 3.4: Mesh of the quarter unit cell representation of composite no. 1 (volume
fraction ν = 0.4 and rod size wr = 3.5 mm), seen from the side.

density Pd Eq. (2.45) over the quarter unit cell V :

P (ω) =
y

V

Pd(~r, ω) dV =
1

2
ω

y

V

Im
{
~E · ~D∗ + T : S∗

}
dV . (3.10)

~r is a position vector. In COMSOL, the stress and strain tensor and the
electric field and displacement field are all defined, so Pd can be defined as a
variable to be numerically integrated over the mesh of the quarter unit cell. It
is also interesting to compute the average power dissipation per unit volume.
However, since all quarter unit cells considered have the same thickness tc,
it suffices to calculate the power dissipation PA per quarter cell unit area
A:

PA(ω) =
1

A

y

V

Pd(~r, ω) dV =
P (ω)

A
(3.11)

By Fig. 3.1, or just Eq. (3.1), it is clear that A = 1
4
(wr + ∆wr)

2.

Furthermore, the total power dissipation P (ω) in the piezocomposite as a
whole can be seen to be composed of two terms, one for the epoxy and one
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Table 3.2: Overview of the minimum and maximum frequencies sampled fmin and
fmax, the shortest wavelength of shear waves in epoxy λmin, the minimum number
of elements per shortest wavelength (# el./λmin), the number of elements along
the half-width of the epoxy (# el./ ∆wr

2
), the approximate total number of

elements in the quarter cell (# el.) and finally the approximate number of
degrees of freedom (# d.o.f.). A sampling frequency of ∆f = 400 Hz was used
for all composites.

no. fmin fmax λmin # el./λmin # el./ ∆wr

2
# el. # d.o.f.

(Hz) (Hz) (mm)
1 70 000 110 000 12.9 31.8 3 35 000 196 000
2 70 000 110 000 12.9 23.4 3 42 000 235 000
3 70 000 110 000 12.9 16.1 4 40 000 224 000
4 70 000 110 000 12.9 37.9 2 49 000 274 400
5 70 000 110 000 12.9 23.4 3 35 000 196 000
6 70 000 110 000 12.9 16.1 3 31 000 174 000
7 80 000 120 000 11.8 34.7 2 36 000 202 000
8 80 000 120 000 11.8 23.6 2 33 000 185 000
9 80 000 120 000 11.8 15.9 2 31 000 174 000
10 90 000 130 000 10.9 36.3 2 62 000 347 000
11 90 000 130 000 10.9 19.8 2 38 000 213 000
12 90 000 130 000 10.9 14.1 2 28 000 157 000

for the PZT:

P (ω) = PPZT + Pe (3.12)

=
y

VPZT

Pd(~r, ω) dV +
y

Ve

Pd(~r, ω) dV . (3.13)

Dividing by the total power dissipation P (ω) yields the relative power dissi-
pation Π in each domain:

1 = ΠPZT + Πe. (3.14)

This concludes the discussion on quantities related to the power dissipation.
Below, the resonance frequencies and electrical impedance Z(ω) will be con-
sidered.

49



To identify the series fs and parallel resonance frequency fp in COMSOL, it
was convenient to first calculate the admittance Y (ω) by [1]

Y (ω) =
1

Z(ω)
= G(ω) + iB(ω) =

iω

V0

x

A

~D⊥(~r, ω) · d ~A . (3.15)

The integral is the surface integral over the upper quarter cell surface A (see
Fig. 3.2 or Fig. 3.3) of the displacement field ~D⊥ normal to the quarter cell
surface. This gave the conductance G(ω) (real part) and admittance B(ω)
(imaginary part) and the frequency of maximum conductance was then fs by
Subsection 2.3.2. To obtain fp, the inverse of Y (ω) was computed to retrieve
the impedance Z(ω) with resistance R(ω) (real part) and reactance X(ω)
(imaginary part):

Z(ω) = R(ω) + iX(ω). (3.16)

According to the definition in Subsection 2.3.2, the frequency of maximum re-
sistance R(ω) corresponded to fp. The complex phase δ(ω) of the impedance
was also computed as

δ(ω) = atan2(X(ω), R(ω)). (3.17)

It is also necessary to address a few details about the implementation of
the effective medium model. As the effective medium model is based on the
piezoelectric equations with stress ~T (Voigt notation) and electric displace-
ment ~D as independent variables (e-form) and the material coefficients of the
PZT was given with respect to the d-form (see Appendix B), the coefficients
needed to be converted to the e-form before application. This was done by
following these three steps:

1. First, write the stiffness matrix cE under short-circuit conditions with
symmetry as given in Eq. (2.39) and invert it to obtain the the com-
pliance matrix sE under short-circuit conditions.

2. Second, use Eq. (A.8) to compute the piezoelectric coefficient e, with
the piezoelectric coefficient d given by Eq. (2.37).

3. Finally, compute εS by Eq. (A.14), using εT as given by Eq. (2.38).

The obtained resonances f s and fp from the effective medium model could
then be compared to fs and fp found by the FEM analyses. For comparison
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purposes, the relative difference δfp (δfs) of the parallel (series) resonance
frequency obtained in COMSOL fp (fs) with respect to the parallel (series)
resonance frequency acquired by the effective medium model fp (f s) are
defined below:

δfp =
fp − fp

fp

(3.18)

δfs =
fs − f s

f s

. (3.19)

The comparison will be presented in Table 4.1 in Chapter 4 and discussed in
Chapter 5.

3.3 1-3 piezocomposite with electrodes, match-
ing layer and water load

Here, the quarter unit cell model of composite no. 1 (rod size wr = 3.5 mm
and volume fraction ν = 0.4) will be modified to include a quarter-wavelength
matching layer and a water load. Electrodes will also be added on the top and
bottom surfaces (with respect to the thickness direction) of the piezocom-
posite. The effect of such relatively thin but highly thermal conductive slabs,
on the temperature increase obtained by the steady-state transfer simulation
will be investigated in the Discussion. Ultimately, this four-layer structure
(electrode, composite, electrode, matching layer) will be the geometry con-
sidered in the steady-state heat transfer analysis.

3.3.1 Dimensions of the unit cell

The quarter unit cell approach will still be used and since the matching layer
will be modeled with the same lateral dimensions as the quarter unit cell,
only its thickness tML needs to be calculated.

In Subsection 2.1.4, it was shown that perfect transmission (reflection coef-
ficient R = 0) was achieved given that
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1. the finite-sized medium had a thickness corresponding to that of a
quarter-wavelength of the pressure waves propagating through the medium,
and

2. its characteristic acoustic impedance was equal to the geometric mean
of the surrounding media.

In fact, this also holds for a matching layer sandwiched between a composite
and water load [1]. As the power reflection coefficient is the square of the
reflection coefficient R in Eq. (2.17), maximum power transmission occurs
as well for such situations. The matching layer thickness tML was chosen
accordingly:

tML =
λ

4
. (3.20)

The thickness was computed based on the series resonance frequency fs of
the 1-3 composite as defined in Eq. (2.59). Thus,

tML =
vML

4fs

, (3.21)

where vML is the longitudinal wave velocity in the matching layer (ML).

Copper-electrodes were added on the top and bottom of the composite with
thicknesses of tCu = 0.1 mm.

A picture of a unit cell of the structure is shown in Fig. 3.5.

3.3.2 Materials and losses

It was searched in the literature for a matching material with characteristic
acoustic impedance that was close as possible to

ZML =
√
Zcomp.Zwater ≈

√
ZZwater, (3.22)

invoking the effective characteristic acoustic impedance Z of the composite as
given by the effective medium model Eq. (2.94) in Subsection 2.3.3. Excellent
agreement was found with the a matching material given in Table III in [21].
Attenuation coefficients of longitudinal αl and shear waves αs had also been
investigated and these were converted into Q-values Ql and Qs by rewriting
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1)

2)

Fig. 3.5: A unit cell of a composite with electrodes (made thicker on purpose
for better visualization) and matching layer. To the left, it is displayed with
faces, while to the right, it is displayed without faces. In the latter, one can
see the PZT rod embedded in the epoxy matrix. The numbers relate to the
highlighted surfaces (blue). 1) Upper surface of the matching layer, onto which
the water load is applied. In the steady-state heat transfer simulation, this is the
surface onto which the constant temperature boundary condition is applied. 2)
Lower surface of lower electrode, onto which the stress-free boundary condition
is applied. In the steady-state heat transfer simulation, this is the surface onto
which the convective heat transfer and possibly the thermal radiation boundary
condition are applied (relevant for Subsection 3.4.1).

Eq. (2.21) in terms of the frequency f0 (given in Appendix B) used in the
characterization method in [21] and the wave velocities:

Qi =
πf0

viαi
, i ∈ {l, s}. (3.23)

Then, Eq. (2.23) was used to apply complex wave velocities in COMSOL,
along with the density ρ. This was sufficient to describe the matching layer
material as a lossy linear elastic isotropic material.
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The electrodes consisted of copper and were modeled as linear elastic isotropic
solids with material properties as given in the material library in COMSOL.
By Eq. (2.18), the copper electrodes would appear almost acoustic trans-
parent (k1L ∼ 10−2 at 130 000 Hz, the highest frequency), so they were not
brought into the simulation to account for transmission effects. The reason
why they were introduced at this point and not only for the steady-state
heat transfer simulations was that it would make it easier to set up the heat
simulations in COMSOL with regards to the heat sources. Since they were
very thin, the extra computational effort necessary was negligible. Due to
the same reason, they were also assumed to be lossless.

3.3.3 Boundary conditions and related assumptions

At all external surfaces, except for the top surface of the matching layer and
the bottom surface of the lower electrode, the symmetry boundary condition
Eq. (3.8) was applied. Like in the models with the composites in vacuum,
the voltage was applied on the upper surface of the composite and the lower
surface was grounded. As the electrodes were assumed to be lossless, the
voltage would be the same if applied over the electrodes, so this was a valid
assumption. The magnitude of the driving voltage was raised to V0 = 200 V
so that the power dissipation density applied as the heat source in the heat
transfer simulations would yield a significant temperature rise. Moreover,
the backing layer was assumed to be air. The ratio of characteristic acoustic
impedance of the composite to air is ∼ 105−106, so the acoustic transmission
into this medium is negligible (R ≈ −1 by Eq. (2.18)). Therefore, the back-
ing layer was not modeled and a stress free-boundary condition (Eq. (3.9))
was applied to the lower surface of the lower electrode (see Fig. 3.5).

On the remaining external surface, namely the upper surface of the matching
layer (see Fig. 3.5), the water load was modeled as a complex normal force
per surface area F⊥ given by

F⊥ = −Zwaterv⊥, (3.24)

where v⊥ is the complex velocity, evaluated at each node on the surface. This
implicitly assumes that the sound power transferred into water is radiated
parallel to the thickness direction. This is fair for thickness oscillations.
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3.3.4 Meshing considerations

For the composite and the matching layer, the same mesh settings as used
for the composite in vacuum were used. As the shear wave velocity in the
matching layer was higher than that in the epoxy, the shortest wavelength
of waves propagating in the matching layer would be longer than that in the
epoxy, so using the same mesh size should be more than sufficient. On the
electrodes, a swept mesh was applied in the thickness direction.

3.3.5 Physical quantities of interest

The total power dissipation in this case can be seen to be composed of four
terms, one for each material. However, since the electrodes are assumed to
be lossless, only the PZT, epoxy (e) and matching layer (ML) need to be
accounted for. Eq. (3.13) is rewritten to also include the matching layer
contribution PML:

P (ω) = PPZT + Pe + PML

=
y

PZT

Pd(x, y, z, ω) dx dy dz

+
y

e

Pd(x, y, z, ω) dx dy dz

+
y

ML

Pd(x, y, z, ω) dx dy dz .

(3.25)

Dividing by the total power dissipation yields the relative power dissipation
Π in each domain:

1 = ΠPZT + Πe + ΠML. (3.26)

As the purpose of this model was to investigate the power dissipation den-
sity and not to design a 1-3 piezocomposite transducer, parameters such as
bandwidth, sensitivity and center frequency were of little importance. Nei-
ther were possible corrections to the thickness tML of the matching layer,
which, depending on the application, may be necessary in order to optimize
power transmission at the operating frequency of the transducer [15].
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3.4 Steady-state heat transfer

For these simulations, the geometry is exactly the same as in the previous
Section. As the simulations took less than a minute to run with the same
mesh, it was simply kept the same. Thus, this Section only needs to address
the boundary conditions and related assumptions.

3.4.1 Boundary conditions and related assumptions

First of all, steady-state heat transfer will be considered. This should be
valid when the duty cycle of the transducer, which is the fraction of a period
over which the transducer is electrically excited, is sufficiently high and the
transducer transmits over a longer duration, or when the device transmits
continuously (continuous wave, CW) [22].

Temperature dependence of the thermal conductivities will be neglected. The
glass transition of the epoxy and matching layer is expected to happen at
temperatures around ∼ 100 ◦C, so this should be fair for these materials.
Since the temperatures are only within 15 ◦C to 40 ◦C, the conductivity of
PZT and copper should also undergo insignificant thermal fluctuations.

The mirror symmetry boundary conditions are applied to all external surfaces
of the quarter unit cell except for the upper surface of the matching layer and
lower surface of the lower electrode (see Fig. 3.5). In terms of heat transfer,
these conditions read

~q · ~n = 0, (3.27)

where ~q is the heat flux and ~n is the normal vector of the surface.

The piezocomposite with electrodes and matching layer is assumed to be
submerged in sea water with a temperature of 15 ◦C. Additionally, the rela-
tive motion between the transducer and sea water is taken to be sufficiently
large so that the matching layer surface in contact with water has a con-
stant temperature of 15 ◦C. On the opposite end of the structure, convective
heat transfer from the electrode into an air backing layer is assumed, the air
kept at a higher temperature of 30 ◦C due to expected heating from nearby
electronics. Thermal radiation into the backing layer is disregarded, an as-
sumption which will be validated in the Discussion. The convective heat
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transfer boundary condition is given by

− ~n · ~q = h(Tair − T ), (3.28)

where h is the convective heat transfer coefficient, Tair is the air temperature
and T is the electrode surface temperature.

The next boundary condition is relevant for the discussion of possible tem-
perature decrease due to thermal radiation from the lower electrode into an
air backing layer. Assuming that the electrode is a diffuse emitter, meaning
that it radiates thermal energy isotropically, and that the air backing layer is
much thicker than the electrode, the thermal radiation boundary condition
is given by

− ~n · ~q = εthσS−B(Tair − T )4, (3.29)

where εth is the emissitivity, σS−B is the Stefan-Boltzmann constant, Tair is
the air temperature and T is the temperature of the radiating surface, namely
the electrode.

Last but not least, homogeneous and isotropic thermal conductivities are
used for all materials, their values given in Appendix B.
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Chapter 4

Results

In this Chapter, the results are presented in the same order as the FEM mod-
els were given in the previous Chapter. Quantities relevant for comparison
were first evaluated over a quarter unit cell and then normalized. All results
will be discussed in the next Chapter.
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4.1 1-3 composites in vacuum

Table 4.1: Parallel and series resonance frequencies of the twelve quarter unit
cells obtained by FEM analyses and comparison with the corresponding resonance
frequencies of the effective medium model [3] using the epoxy described in [20]
and EC-69 PZT [14]. fs: series resonance frequency obtained in COMSOL
(frequency of maximum conductance). f s: series resonance frequency obtained
by the effective medium model Eq. (2.100). fp: parallel resonance frequency
obtained in COMSOL (frequency of maximum resistance). fp: parallel resonance
frequency obtained by the effective medium model Eq. (2.99). δfp: relative
difference in parallel resonance frequency as defined in Eq. (3.18). δfs: relative
difference in series resonance frequency as defined in Eq. (3.19).

no. ν wr(mm) fs (Hz) f s (Hz) fp (Hz) fp (Hz) δfs δfp

1 0.4 3.5 88 400 84 400 103 600 102 200 4.7 % 1.4 %
2 0.4 6.0 87 200 84 400 102 000 102 200 3.3 % -0.2 %
3 0.4 10.0 84 000 84 400 97 600 102 200 -0.5 % -4.5 %
4 0.5 3.5 91 600 86 600 107 200 105 300 5.8 % 1.8 %
5 0.5 6.0 90 000 86 600 105 600 105 300 3.9 % 0.3 %
6 0.5 10.0 86 400 86 600 101 200 105 300 -0.2 % -3.9 %
7 0.6 3.5 94 400 89 000 111 200 108 500 6.1 % 2.5 %
8 0.6 6.0 93 200 89 000 109 200 108 500 4.7 % 0.6 %
9 0.6 10.0 89 200 89 000 104 000 108 500 0.2 % -4.1 %
10 0.8 3.5 106 800 98 400 124 000 118 700 8.5 % 4.5 %
11 0.8 6.0 105 200 98 400 121 600 118 700 6.9 % 2.4 %
12 0.8 10.0 100 400 98 400 115 600 118 700 2.0 % -2.6 %
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Fig. 4.1: Total power dissipation per surface area PA(f) as defined in Eq. (3.11),
results grouped in terms of unit cell rod sizes wr. (a) wr = 3.5 mm, (b) wr =
6.0 mm and (c) wr = 10.0 mm. The amplitude of the drive voltage was V0 =
10 V.
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Fig. 4.2: Ratio of power dissipations given by Eq. (3.10) divided by Eq. (2.105).
Here, the composite with rod size wr = 3.5 mm and volume fraction ν = 0.4 is
considered only. Ideally, this should be a straight horizontal line of value 1 (see
Subsection 2.3.4), but the discrepancies are sufficiently low (below 1%, as can
be seen directly from the Figure), so these results are acceptable.
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Fig. 4.3: Modulus of impedance normalized with respect to the quarter unit cell
surface area A, |Z(f)|/A. |Z(f)| was computed as the inverse of the admittance
|Y (f)| in Eq. (3.15). Here, |Z(f)|/A is displayed for the 1-3 composite of rod
size wr = 3.5 mm and volume fraction ν = 0.4. The phase angle δ(f) is also
displayed. A peak voltage of V0 = 10 V was used.
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Fig. 4.4: Total power dissipation per surface area PA(f) as defined in Eq. (3.11),
results grouped in terms of PZT volume fraction ν. (a) ν = 0.4, (b) ν = 0.5,
(c) ν = 0.6 and (d) ν = 0.8. The amplitude of the drive voltage was V0 = 10 V.
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Fig. 4.5: Relative power dissipation of the epoxy (e, whole lines) Πe and PZT (p,
dash-dotted lines) ΠPZT as given by Eq. (3.14), results grouped in terms of unit
cell rod sizes wr. (a) wr = 3.5 mm, (b) wr = 6.0 mm and (c) wr = 10.0 mm.
The asterisks denote the respective values at resonance fr.
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Fig. 4.6: Displacement amplitude |~ξ| at f = 104 800 Hz plotted for a 3×3 array
of unit cells of rod size wr = 10.0 mm and volume fraction ν = 0.4. The spatial
deformation is also shown, hugely exaggerated for purposes of visualization.

Fig. 4.7: Displacement amplitude |~ξ| at thickness resonance fr = 84 400 Hz
plotted for a 3 × 3 array of unit cells of rod size wr = 10.0 mm and volume
fraction ν = 0.4. The spatial deformation is also shown, hugely exaggerated for
purposes of visualization.
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Fig. 4.8: Modulus of impedance normalized with respect to the quarter unit cell
surface area A, |Z(f)|/A. |Z(f)| was computed as the inverse of the admittance
|Y (f)| in Eq. (3.15). Here, |Z(f)|/A is displayed for the 1-3 composite of rod
size wr = 10.0 mm and volume fraction ν = 0.4. In contrast to Fig. 4.3, the
quantity has two local maxima and two local minima, suggesting two types of
resonances. The phase angle δ(f) is also displayed. A peak voltage of V0 = 10 V
was used.
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Fig. 4.9: Relative power dissipation of the epoxy Πe and PZT ΠPZT as given by
Eq. (3.14), results grouped in terms of PZT volume fraction ν. (a) ν = 0.4,
(b) ν = 0.5, (c) ν = 0.6 and (d) ν = 0.8. The asterisks denote the respective
values at resonance fr.
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4.2 1-3 composite with electrodes, matching layer
and water load

Fig. 4.10: Modulus of impedance normalized with respect to the quarter unit cell
surface area A, |Z(f)|/A. |Z(f)| was computed as the inverse of the admittance
|Y (f)| in Eq. (3.15). Here, |Z(f)|/A is displayed for the 1-3 composite of rod
size wr = 3.5 mm and volume fraction ν = 0.4 with electrodes, matching layer
and water load. The phase angle δ(f) is also displayed. A peak voltage of
V0 = 200 V was used.
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Fig. 4.11: Power dissipation density Pd as given by Eq. (2.45) plotted along the
plane (of symmetry) x = 0 of a unit cell. The frequency considered is f = fr2,
defined in Table 5.1. Like in Fig. 3.5, the matching layer is seen in the upper
portion of the plot, and the PZT below is surrounded with epoxy on both sides.
A negative power dissipation density can be seen in some regions, which is not
physical and is an artifact of FEM modeling.
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Fig. 4.12: Quarter unit cell, showing elements with one or more nodes where
negative power dissipation density occurs. Only elements in the PZT display this
property. Notice that the color bar has only negative values. Negative power
dissipation density is not physical and is an artifact of FEM modeling.
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Fig. 4.13: Ratio of absolute negative power dissipation to power dissipation in
composite, the latter given by Eq. (3.13), displayed for three different meshes
with the approximate number of elements and simulation run time in hours given
in the legend. Negative power dissipation is not physical and is an artifact of
FEM modeling.
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Fig. 4.14: Power dissipation in 1-3 composite given by Eq. (3.13) normalized
with respect to power dissipation obtained running the simulation with mesh2.
mesh2 was used as mesh to generate the results below.
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Fig. 4.15: Power dissipation within each material domain and the total power
dissipation, all quantities defined in Eq. (3.25).

Fig. 4.16: Relative power dissipation within each material domain, all quantities
defined in Eq. (3.26), for two cases: With (applicable to Fig. 4.15) and without
water load (dot-dashed lines and "no water" appearing in legends for the latter
case).
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Fig. 4.17: Total power dissipation P (f) as defined in Eq. (3.25) divided by the
surface averaged absolute normal velocity squared |v⊥,avg|2 at the surface of the
matching layer radiating into water. This gives a measure of radiation efficiency
into water.
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4.3 Steady-state heat transfer in 1-3 composite
with electrodes, matching layer and water
load

Fig. 4.18: Temperature rise at the outer surfaces of a unit cell, seen from the
side. The absolute temperatures are given by the temperature rise in this Figure
plus the water temperature of 15 ◦C. The peak voltage was 200 V and the heat
source used was that acquired at the frequency f = 108 400 Hz of maximum
total power dissipation.
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Fig. 4.19: Isocontours for the temperature increase in the composite, looking
at a unit cell. The upper horizontal face (z = 10 mm) is connected to the
upper electrode and the matching layer, while the lower face (z = −10 mm) is
connected to the lower electrode. The absolute temperature at a given point is
equal to the temperature rise in this Figure plus the water temperature of 15 ◦C.
The peak voltage was 200 V and the heat source used was that acquired at the
frequency f = 108 400 Hz of maximum total power dissipation.
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Fig. 4.20: Isocontours for the temperature increase in the matching layer, looking
at a unit cell. The temperature increase is the lowest close to the upper face,
where the constant temperature boundary condition was applied. The absolute
temperature at a given point is equal to the temperature rise in this Figure plus
the water temperature of 15 ◦C. The peak voltage was 200 V and the heat source
used was that acquired at the frequency f = 108 400 Hz of maximum total power
dissipation.
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Fig. 4.21: Temperature rise along the center line of a unit cell, going through,
from left to right, the PZT in the composite (−10 mm to 10 mm), the electrode
between the composite and the matching layer (10 mm to 10.1 mm) and the
matching layer. Three graphs are shown: The first, in blue, for heating at the
frequency of maximum power dissipation, the second, in green, for heating at the
frequency of local maximum of total power dissipation and the third and last,
in red, for heating at same frequency as the blue curve but with the thermal
conductivity of the electrode between the composite and the matching layer set
to that of the composite. For references for the maxima, see Fig. 4.15. The
absolute temperatures are given by the temperature rise in this Figure plus the
water temperature of 15 ◦C.
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Fig. 4.22: Temperature rise along the center line of a unit cell, going through,
from left to right, the PZT in the composite (−10 mm to 10 mm), the electrode
between the composite and the matching layer (10 mm to 10.1 mm) and the
matching layer. Here, an additional boundary condition has been applied to the
lower surface of the lower electrode to approximate the effect of heat transfer
by radiation from the electrode to the backing layer. The boundary condition,
corresponding to thermal radiation emitted by a diffuse emitter, is given by Eq.
(3.29). Five graphs are depicted with the legend indicating the emissitivity εth of
the copper surface used to obtain the results. The heat sources used corresponded
to those for the frequency f = 108 400 Hz (maximum power dissipation).
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Chapter 5

Discussion

5.1 1-3 composites in vacuum

First, Table 4.1, showing the series fs and parallel fp resonance frequen-
cies obtained in COMSOL compared with the corresponding frequencies f s

and fp predicted by the effective medium model, will be discussed. Overall,
there is good correspondence between the numerical and analytical model,
the relative differences less than 10% in all cases. Based on the premises
of the effective medium model as presented in Subsection 2.3.3, the effective
medium model is expected to apply best to the quarter unit cells in COMSOL
with the smallest rod sizes wr because this yields the finest lateral scales. In
contrast, the series resonance frequencies of the quarter unit cells with the
coarsest lateral scale compared best to those of the effective medium model,
see Table 4.1. Here, it is important to notice that the shortest wavelengths
λmin in the composites of pillar size wr = 10.0 mm range from 10.9 mm to
12.9 mm as given in Table 3.2, so these are indeed very coarse structures
and certainly too coarse to be described well by the effective medium model.
Therefore, this was an unexpected result. For the parallel resonance frequen-
cies in Table 4.1, the best correspondence between the FEM analyses and
the effective medium model was found for the intermediate rod size, namely
wr = 6.0 mm. Still, the resonance frequencies of the quarter unit cells with
the smallest rod size are in good agreement with the effective medium model,
especially the parallel resonance frequencies.

From Table 4.1, it is also clear that for a fixed volume fraction ν, the reso-
nance frequencies fs and fp obtained by FEM modeling increased for decreas-
ing rod size wr. It was tested for composite no. 1 in Table 4.1 (wr = 3.5 mm
and ν = 0.4) if further reduction of the rod size would give resonances at
even higher frequencies. Decreasing the rod size stepwise and running new
simulations at frequency intervals in the vicinity of the previously acquired
resonance frequencies, it was found that the parallel and series resonance
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frequencies converged to values within 1% of those obtained for a rod size of
wr = 3.5 mm. This means that a rod size of 3.5 mm and volume fraction of
ν = 0.4 should be sufficiently fine for comparison with the effective medium
model for that volume fraction.

Next, consider the frequencies of maximum power dissipation in Fig. 4.1. As
a consequence of Eq. (2.105), the frequency of maximum power dissipation
should be equal to the frequency of maximum conductance, which was defined
as the series resonance frequency fs, for all composites. More importantly,
as stated in Subsection 2.3.4, the power dissipation given by Eq. (2.105) is
equivalent to Eq. (3.25). For the composite with rod size wr = 3.5 mm and
volume fraction ν = 0.4, this correspondence is illustrated in Fig. 4.2 where
the ratio P (ω)/(GV 2

0 /2) is evaluated to unity within 1%.

A plot of the absolute value of the impedance as a function of frequency,
|Z(f)| (Eq. (3.15)), along with the phase angle δ(f), is presented in Fig. 4.3
for the same composite. For the lower frequencies, the phase angle is close to
−90° as the resistance is close to zero here. According to the definitions of
fr and fa in Subsection 2.3.2, the resonance occurs at (f = fr ≈ 88 400 Hz)
and as the phase angle vanishes the second time, the anti-resonance occurs
(f = fa ≈ 103 600 Hz). These values can also be found in Table 4.1.

Like fs and fp in Table 4.1, the fundamental thickness resonance frequency
fr and anti-resonance frequency fa are found to increase with increasing
volume fraction for a fixed rod size. In fact, comparison between fr and fs

and between fa and fp shows that the resonance frequencies are identical
(in terms of multiples of the sampling frequency) in almost all cases. This
indicates that the absolute differences are too small to be accurately measured
when using a sampling frequency of 400 Hz. For all of these frequencies in
Figs. 4.1, though, the following can be said: They are shifted to higher
frequencies for higher volume fractions because the composites stiffen as the
PZT is stiffer than the epoxy.

Still discussing Fig. 4.1, consider the power dissipation per surface area
PA of the composites. For a fixed rod size wr, the maximum loss can be
seen to increase for increasing PZT volume fractions. In other words, as the
volume fraction of epoxy reduces, this quantity becomes larger. As the epoxy
volume of a unit cell decreases while the PZT volume remains the same, the
PZT rod of the cell is loaded with less (piezoelectric inactive) mass and is
able to vibrate more freely in a relative sense. Thus, the power dissipation
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rises.

Now, change focus to Fig. 4.4, where the power dissipation per surface area
PA is plotted for composites with equal volume fraction ν. By Eq. (3.2), for
a fixed ν, this situation is equivalent to wr/∆wr being constant. Considering
the values of the maxima, the relative difference between the three rod sizes
grows as the volume fraction increases. This could not have been the case
in the effective medium model as that model is independent of rod size.
Although the sampling frequency could have been chosen lower near the
peaks to predict the frequencies and values of the maxima more accurately,
the relative differences might also reduce if the meshes are further refined.
Although not performed here, the approach would be to reduce the mesh
size further, run new simulations for a few frequencies centered around the
resonance frequencies (to save time since only the maxima are relevant for this
discussion) and check if the obtained relative differences were smaller.

Next, Fig. 4.5 depicting the relative power dissipation in the PZT and epoxy
of the composites, as defined in Eq. (3.26), is discussed. Here, the results
are compared in therms of varying volume fractions. For wr = 10 mm and
volume fraction ν = 0.4, the epoxy and PZT curve have a maximum and min-
imum, respectively, at f = 105 200 Hz. Investigating the total displacement
amplitude |~ξ|, it is clear that a lateral resonance mode appears at that fre-
quency. In Fig. 4.6, |~ξ| is plotted for a 3×3 array of unit cells along with the
spatial deformation at f = 104 800 Hz, the latter hugely exaggerated for pur-
poses of visualization. For reference, the displacement at resonance, |~ξ(fr)|,
is shown for the same composite and configuration of unit cells in Fig. 4.7,
which displays a high degree of uniformity at the upper free surface. There
are dominant peaks in the epoxy where the extension of the diagonals of
neighbouring unit cells cross, suggesting a diagonal lateral resonance, dis-
cussed in Subsection 2.3.2 and Eq. (2.63). Using the shear wave velocity
cs of the epoxy as given in [20] and the epoxy width (equivalent to the rod
spacing ∆wr) from Table 3.1, a fundamental diagonal resonance frequency
of approximately ft1 ≈ 86 kHz would be expected from Eq. (2.63). The
impedance spectrum for the quarter cell is plotted in Fig. 4.8 and the second
minimum (f = 104 800 Hz) and maximum (f = 106 800 Hz) correspond very
well to the frequency of the observed lateral mode in Fig. 4.6. Despite the
relatively large discrepancy with respect to Eq. (2.63), the pair of lateral
resonance frequencies obtained for this rod spacing and volume fraction are
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overall the frequencies closest to the respective frequency domains sampled.
As discussed in Subsection 2.3.2, lateral modes close to the thickness mode
is undesired for piezocomposite transducers operating in thickness mode. By
Eq. (2.63), increasing the rod spacing ∆wr would shift the lateral mode to
higher frequencies.

Continuing the discussion of Fig. 4.5, the relative power dissipation in the
PZT is in most cases larger than the epoxy for the frequencies considered
here. The exceptions are all rod sizes for ν = 0.8 and of course wr = 3.5 mm
for which the lateral mode appears. Keeping the latter out of the discussion,
there is a clear trend for the remaining 11 composites: For a fixed rod size wr,
the relative power dissipation in the epoxy increases as the volume fraction ν
of PZT increases. Another important aspect for these composites is that, for
the frequency domains considered, the power dissipation in the PZT domi-
nates more the higher the frequency. Moreover, at resonance fr, indicated in
Fig. 4.5, there is no distinct change in the shape of the graphs.

In Fig. 4.9, the curves shown previously have been grouped in terms of the
volume fraction of PZT in the respective composites. Except for ν = 0.4,
it holds that for a fixed volume fraction, a larger rod size yields a larger
piezoelectric contribution to the total power dissipation. For the lowest vol-
ume fraction considered, the lateral mode makes comparison with the two
other composites harder. As the frequency increases, the piezoelectric con-
tribution for rod size 3.5 mm intercepts and grows beyond that for rod size
6.0 mm.

5.2 1-3 composite with electrodes, matching layer
and water load

It is appropriate to start this discussion with the normalized electrical impedance
plot |Z(f)|/A in Fig. 4.10. In contrast to the 1-3 composites in vacuum just
considered (except that with a lateral mode appearing), there are now two
maxima and two minima in the impedance spectrum, and the phase angle
neither vanishes at the minima nor the maxima. The first fact is explained
by the inclusion of the matching layer: This added mass lowers the frequency
of the resonance of the composite (denoted by fr1, fa1 in the following) with
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Table 5.1: Overview of extrema of the electric impedance |Z(f)| in Fig. 4.10.
In the last column, comp. is short for composite and ML is short for matching
layer.

symbol frequency (Hz) description resonance of
fr1 64 000 1st minimum of |Z(f)| comp.
fa1 78 400 1st maximum of |Z(f)| comp.
fr2 102 000 2nd minimum of |Z(f)| comp. and ML
fa2 117 600 2nd maximum of |Z(f)| comp. and ML

respect to the free composite case and, together with the composite, gives
rise to a combined resonance at a higher frequency (denoted by fr2, fa2 in
the following). The second observation is a consequence of the water load:
The reactance X(f) remains non-zero at resonance. The values of the res-
onance frequencies are given in Table 5.1. Another important remark is
that the modulus of the impedance drops quite heavily in between fr1 and
fr2. This is due to the choice of characteristic acoustic impedance ZML of
the matching layer, picked to transfer power most efficiently as discussed
in Subsection 3.3.1. The maximally flat response for one matching layer is
obtained when the characteristic acoustic impedance of the matching layer
is equal to (Z

1/3
compZ

2/3
water)

1/2 [23], Zcomp (Zwater) denoting the characteristic
acoustic impedance of the composite (water).

In the next Figure, Fig. 4.11, the power dissipation density Pd is plotted at
f = fr2 for a cross section in the yz-plane (x = 0) through the center of one
unit cell. Due to symmetry, this is equivalent with y = 0. fr2 is in fact also
the frequency of maximum total power dissipation P (ω) by Eq. (3.10). The
upper portion of the plot shows the power dissipation in the matching layer
and below, the PZT appears in the middle with epoxy on both sides. It is
mentioned again that the electrodes are assumed to be lossless, so these will
not be considered in this discussion.

The values of the power dissipation density are clearly the highest in the
PZT, increasing from the top and bottom towards the middle of the rod.
However, the maximum is shifted towards the lower half due to the loading
of the matching layer and water. What can also be seen is negative power
dissipation density, which is most significant in the green areas in the upper
portion of the PZT and at the two bright yellow "points" in the opposite end.
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This effect can simply not have roots in the physical reality as this would
mean a power gain, so it must be an artifact of the FEM modeling. Further
investigation was carried out and now considering a quarter cell for better
visualization, the elements which have at least one node where the power
dissipation density is negative were plotted in Fig. 4.12. The Figure reveals
critical lines along the material borders between the PZT and epoxy at the
top and bottom side of the composite where the power dissipation density
is the most negative. Also note that the quantity reaches below zero only
within the PZT.

To give a measure of how large the quantity of negative power dissipation
density was, the negative portion of the power dissipation was integrated
over the volume of the PZT and divided by the power dissipation in the
composite PPZT + Pe as defined in Eq. (3.13) to form a ratio. To see how
the ratio changed for coarser and finer meshes, one coarser and one finer
mesh were generated. Fig. 4.13 shows the absolute value of the introduced
ratio for three different meshes, labeled mesh1, mesh2 and mesh3 with their
approximate run times in hours and approximate number of elements labeled.
This indicates that mesh1 was the coarsest mesh and that mesh3 was the
finest mesh. mesh2 was used to produce Fig. 4.11. The ratio decreases by
a few percent for the finest mesh. However, how much does the total power
dissipation change? Fig. 4.14 displays the total power dissipation normalized
with respect to mesh2. As the power dissipation of the finest mesh (mesh3)
differs from that of mesh2 only by around 1% at most and the computational
effort increases significantly, mesh2 is kept for the remaining results in this
discussion of the composite with matching layer and water load.

The power dissipation in the lossy materials over a quarter unit cell together
with the the total power dissipation is plotted in Fig. 4.15. At low frequen-
cies, the dissipation in the matching layer is clearly negligible, while at high
frequencies, the PZT holds the largest contribution. The first and second
maximum of total power dissipation occur at a higher frequency with re-
spect to the resonance frequency fr1 and fr2, respectively, of Table 5.1. The
next Figure Fig. 4.16 displays the relative power dissipations as given in Eq.
(3.14). To interpret the results, it was helpful to compare these quantities to
the corresponding quantities obtained from a simulation without the water
load.

First, it is interesting to note that the differences between the two different

85



scenarios seem to vanish towards both ends of the frequency domain and
that the largest changes occur at the frequency interval between the two
resonances. Both observations are probably explained by the fact that the
resonance behaviour dies out towards the ends of the spectrum. Without
the water load, the local minimum and local maximum of the epoxy contri-
bution Πe is more distinct, appearing relatively flat with water. The largest
changes are seen in the matching layer and PZT for frequencies higher than
the center frequency of the domain (f = 80 000 Hz). The matching layer
clearly dominates when it is not loaded with water while the PZT gives the
largest contribution in the other case. At the maximum of relative power
dissipation in the matching layer, the quantity increases by roughly 0.3 when
the water load is disregarded while that of the PZT decreases by about the
same amount.

Last but not least, the power dissipation P (f) normalized with respect to the
squared absolute value of the average particle velocity at the upper matching
layer surface |v⊥,avg|2, is plotted in Fig. 4.17. As the sound power emitted
into water is proportional to |v⊥,avg|2, this gives a measure of the ratio of the
losses to the radiated sound power, so this is measure of efficiency. For this
simplified model of a transducer, the plot suggests that the structure emits
most efficiently close to the anti-resonance of the piezocomposite, fa1.

5.3 Steady-state heat transfer in 1-3 composite
with electrodes, matching layer and water
load

This discussion concludes the last part of the simulations on steady-state
heat transfer in the composite with electrodes, matching layer and water
load. The temperature rise for the outer surfaces of a unit cell is shown in
Fig. 4.18 for the frequency of maximum total power dissipation, found to
be 108 400 Hz by inspection of Fig. 4.15. Notice first that the temperature
increase at the upper face of the matching layer is zero. This is as expected as
this is where the constant temperature boundary condition was applied, see
Fig. 3.5. The largest temperature increase of about 24 K was found to be in
the composite and the distribution looks fairly homogeneous with respect to
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the thickness direction (z-coordinate in the plot). To be able to tell this more
accurately, isocontour plots of the temperature increase were generated, one
for the composite (Fig. 4.19) and one for the matching layer (Fig. 4.20). Fig.
4.19 displaying the composite makes it clear that not only is the variation in
temperatures less than 2 K throughout this part, but the distribution is also
independent of the lateral coordinates except close the warmest regions. For
the matching layer, the temperature is similarly homogeneous along planes
normal to the thickness direction. All in all, these Figures indicate that with
the steady-state approach, spatial variations of the heat source across the
epoxy and PZT in the composite and in the matching layer (as seen in Fig.
4.11) are hard to spot in the resulting temperature distribution.

Fig. 4.21 shows the temperature increase along the center line of the unit
cell, running through, from the bottom to the top, the composite (z within
−10.0 mm to 10.0 mm), the upper electrode (z within 10.0 mm to 10.1 mm)
and the matching layer. Three cases are considered: The resulting tem-
perature distribution by heating at the frequency of global maximum total
power dissipation (blue), the distribution at the frequency of the first local
maximum (green) and the distribution by heating at frequency of maximum
power dissipation but this time with the thermal conductivity of the upper
electrode equal to that of the matching layer. The last scenario was made to
see what role that electrode plays in distributing the heat. As is illustrated,
the effect is marginal at steady-state. In Subsection 3.3, the motivation to
include the electrodes in the first place was to see how they affected the
temperature distribution in the composite and matching layer. Now seeing
that the changes are negligible when the high thermal conductive property
of the electrodes is left out of the simulation, the electrodes may be safely
disregarded from such analysis.

It was also found that the maximum temperature rise was the highest at the
frequency of maximum total power dissipation (frequency 108 400 Hz). The
temperature distribution in the matching layer is for all three cases linear to
a very high degree with respect to the z-coordinate, and since the distribu-
tion is in very good approximation transversely homogeneous as discussed in
the paragraph above, the temperature increase in the matching layer could
in principle be given in terms of the z-coordinate and the temperatures on
either sides only. In fact, this is also the same distribution as obtained by
considering purely conductive steady-state heat transfer through a rectangu-
lar slab of uniform cross section and thermal conductivity, with one end held
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at a constant temperature and the opposite end held at a different constant
temperature [24].

Now, the assumption about thermal radiation made in Subsection 3.4.1 will
be checked. To remind the reader, it was assumed that there would be neg-
ligible reductions in temperature increase caused by thermal radiation from
the lower electrode into the backing layer. The steady-state heat transfer
simulation was performed again with one change: The lower surface of the
lower electrode was now not only transferring heat to the backing layer by
convection but also by radiation through the boundary condition given in
Eq. (3.29). Under the assumption that the electrode surface was a diffuse
emitter and that all radiated thermal energy was lost to the backing layer,
four different emissivities εth were considered, and the resulting temperature
increases through the center line of the unit cell (similar to Fig. 4.21) were
compared. The distributions are shown in Fig. 4.22 with the applied emis-
sivities εth displayed in the legend. The fifth graph, with zero emissivity,
is equivalent with no radiation. By this somewhat simplified approach, it
becomes clear that as long as the copper electrode has an emissitivity of less
than about 0.5, the assumption is valid, whereas for higher emissitivities,
radiation could give a significant reduction (> 10%) of the temperature rise
and should be modeled. In general, the emissitivity of a metal such as copper
is strongly dependent on the surface treatment [24].

Lastly, it is necessary to address the thermal material parameters used and
the uncertainties of the material parameters. The thermal conductivity k
used for the PZT was found in the data sheet of the manufacturer [18]. How-
ever, those for the epoxy and matching layer were not available, so they were
assumed based on typical values for similar materials. For more accurate
steady-state heat transfer analysis, material-specific thermal conductivities
should have been used. In addition, the heat transfer coefficient h was as-
sumed for still air in the backing layer, which seems reasonable. Regarding
the uncertainties in material parameters, a relative uncertainty of 10% was
given for the material coefficients of the PZT in [19]. Uncertainties of the
material coefficients of the remaining materials were not available and may
be assumed similar.
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Chapter 6

Conclusion

In this thesis, FEM models of thickness mode 1-3 piezoelectric composites
with square piezoelectric rods were created to investigate the heat generation
and temperature increase when the composites were driven by a sinusoidal
voltage. The work was performed in three stages.

First, 12 different composites, showing a variety of PZT volume fractions
and pillar aspect ratios, were considered. Dielectric, mechanical and piezo-
electric losses were specified in terms of complex material coefficients for
the PZT, while the epoxy was modeled as a linear isotropic elastic medium
with mechanical losses determined by its mechanical quality factor. Due to
limited computational resources, quarter unit cell models of the composites
were simulated with symmetric boundary conditions, giving infinite periodic
structures along the lateral directions. The finite element modeling was con-
ducted over frequency domains covering the fundamental thickness resonance
and anti-resonance of the composites. The normalized power dissipation in
the composites and the relative contribution from the PZT and epoxy were
compared for fixed rod sizes and fixed PZT volume fractions. In one case,
a diagonal lateral mode in the epoxy appeared close to the anti-resonance
frequency. The main outcome at this stage was that the relative power dissi-
pation for frequencies close to the lateral resonance frequency was dominated
by the epoxy.

Second, a quarter-wavelength matching layer with characteristic acoustic
impedance chosen for maximum power transmission into a water load was
added to one of the composites from the previous step. Losses in the match-
ing layer were specified through the complex longitudinal and shear wave
velocities. It was found that the most efficient power transmission into wa-
ter occurred over a frequency interval located between the resonance of the
composite and the combined resonance of the composite and the matching
layer. On that same frequency interval, the relative power dissipation in the
epoxy peaked while that in the PZT dropped.
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Finally, the power dissipation density obtained from the previous FEM model
was used as the heat source in a steady-state heat transfer model of the same
structure. With the transducer stack submerged in sea water at constant
temperature and the composite transferring heat by convection to the air
backing layer, the temperature distribution obtained in the matching layer
and the composite was found to be practically homogeneous in planes normal
to the thickness direction. The maximum temperature increase was found to
be approximately 24 K for a peak voltage of 200 V.

Further work could include simulations on finite-sized composites with match-
ing layers and water load. This would require much more computational
effort and may be convenient to run on a cluster. In addition, Holland’s
expression for the power dissipation density in a piezoelectric may be decom-
posed into several terms according to Eq. (2.49). It would be interesting
to see how much each term contributes at lateral and fundamental thickness
resonance frequencies. Last but not least, the sampled frequency domain
could be expanded to include higher order resonances.
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Appendix A

Piezoelectric equations and inter-
relations

One of the four pairs of piezoelectric equations has already been presented
in Eqs. (2.32) and (2.33). This will be used as a basis to derive the three
remaining pairs of piezoelectric equations.

First, consider ~T (Voigt notation for the stresses, see Section 2.1.1) and ~E as
independent variables. Rewriting Eq. (2.33) yields

~E =
(
εS
)−1 ~D −

(
εS
)−1

e~S

≡ βS ~D − h~S. (A.1)

Inserting this final Equation into Eq. (2.32) gives

~T =
(
cE + eth

)
~S − etβS ~D

≡ cD ~S − ht ~D. (A.2)

These two Equations are the piezoelectric equations on the h-form.

Second, take ~S (Voigt notation for the strain, see Section 2.1.1) and ~D as
independent variables. Solving Eq. (2.32) for ~S results in

~S =
(
cE
)−1 ~T +

(
cE
)−1

et ~E

≡ sE ~T + dt ~E. (A.3)

Insertion in Eq. (2.33) then gives

~D = esE ~T +
(
edt + εS

)
~E

≡ d~T + εT ~E. (A.4)

One has acquired the piezoelectric equations on the d-form.
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Finally, consider ~S and ~E as independent variables. Then, rewriting Eq.
(A.2) yields

~S =
(
cD
)−1 ~T +

(
cD
)−1

ht ~D

≡ sD ~T + gt ~D (A.5)

The previous Equation inserted into Eq. (A.1) implies

~E = −hsD ~T +
(
βS − hgt

)
~D

≡ −g ~T + βT ~D. (A.6)

These Equations are known as the piezoelectric equations on the g-form.

Note that Eqs. (A.1) - (A.6) do not give all possible interrelations. However,
one sees that there are two types of relations falling out of this kind of ma-
nipulation. First, there are equations where two piezoelectric coefficients are
expressed in terms of one dielectric or one mechanical coefficient. Second,
there are relations between the constant ~D and constant ~E mechanical co-
efficients and between the constant ~S and constant ~T dielectric coefficients.
Below, all interrelations are given for completeness.

d = esE = εTg (A.7)
e = dcE = εSh (A.8)
g = hsD = βTd (A.9)
h = βSe = gcD (A.10)

cD − cE = eth (A.11)
sE − sD = gtd (A.12)
βS − βT = hgt (A.13)
εT − εS = edt (A.14)
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Appendix B

Material properties

PZT

Material properties as given in [14] unless otherwise stated.
sE11 = (1.12− 0.01i) · 10−11 m2N−1

sE12 = (−0.33 + 0.01i) · 10−11 m2N−1

sE13 = (−0.70 + 0.02i) · 10−11 m2N−1

sE33 = (1.25− 0.04i) · 10−11 m2N−1

sE44 = (3.25− 0.16i) · 10−11 m2N−1

εT11 = (1.43− 0.86i) · 10−8 Fm−1

εT33 = (0.859− 0.0024i) · 10−8 Fm−1

d13 = (−94.8− 0.3i) · 10−12 CN−1

d33 = (201− 2.2i) · 10−12 CN−1

d15 = (422− 210i) · 10−12 CN−1

ρ = 7500 kgm−3

From [18]:
k = 1.2 Wm−1K−1

Epoxy

Material properties as given in [20] unless otherwise stated.
E = 0.63 · 1010 Nm−2

σ = 0.30

93



ρ = 1200 kgm−3

Qm = 24.5

tan δε = 0.005
ε
′
/ε0 = 4.21

Assumed:

k = 0.125 Wm−1K−1

Matching layer

Material properties as given in Table 3 in [21] unless otherwise stated.
cl = 2416.9 ms−1

cs = 1195.5 ms−1

αl = 78 dBm−1

αs = 208 dBm−1

ρ = 1990.6 kgm−3

characteristic acoustic impedance Z = 4.81 Mrayls (= ZML in Eq. (3.22))
Also given:
f0 = 500 kHz (used in Eq. (3.23))

Assumed:
k = 0.04 Wm−1K−1

Electrodes (copper)

Material properties given by the COMSOL Multiphysics material library.

ρ = 8960 kgm−3

E = 110 · 109 Nm−2

σ = 0.35

k = 400 Wm−1K−1

94



Water

Material properties as given in the Appendix in [1].
ρ = 1026 kgm−3, c = 1500 ms−1 (ρc = Zwater in Eq. (3.22))

Air

heat transfer coefficient h = 5 Wm−2K−1
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