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Summary

This project explores the prospect of fundamental causal set events and whether or not
there exist classes of fundamental event types. By considering so-called Feynman posets,
where each vertex has a maximum degeneracy of three, this project aims to initiate the
study by introducing vertex degeneracy as a defining property of fundamental events. The
natural next step is to generalize by constructing posets containing n-degenerate vertices.

The first part of the project includes a classical growth model that simply constructs
a sample of Feynman posets subject to no dynamic constrictions. In the second part, an
action principle was introduced to drive the construction process away from the entropic
space of posets and towards the most manifoldlike posets in the subspace of Feynman
posets, if they exist. Unfortunately, the action-driven growth algorithm suffers from seri-
ous conceptual and implementational defects and offers little more than insights into what
not to do when calculating the action on a causal set and does not produce interesting
posets at this stage. However, the algorithm may prove useful in further studies under
different contexts.

The analysis includes statistical considerations of poset height, level structure, total or-
dering fractions, and poset d-rigidity (a test for the existence of local regions and therefore
a condition for manifoldlikeness). The analysis also includes results from coarse-graining
the posets at a number of different levels. Finally, this document also provides an insight
on internal interval observables within each poset along with Hasse diagrams of selected
subintervals.

In addition to the computational study of Feynman posets, this document includes an
expansive (although far from exhaustive) review of literature on causal sets, a discussion on
the philosophical approaches to the study, and a technical discussion on several theoretical
obstacles that arise in the study. Of critical importance are the scripts that were developed
to carry out the project, which have been made publicly available for further study and
are presently being improved through new releases. It is hoped that the literature review
provided by this document proves useful for prospective causal set researchers in the future
as well.

This study provides partial evidence for the manifoldlikeness of some Feynman posets.
So-called no holes posets satisfy several manifoldlikeness conditions, including the agree-
ment of dimension estimators and the existence of local regions at larger scales after
coarse-graining. On the other hand, the so-called holes posets are found to be more di-
verse and preliminary investigations reveal no manifoldlikeness at this stage. While the
results for the no holes posets are encouraging, a conclusive statement awaits further study
with more tests for manifoldlikeness.
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Preface

An adventure lacking in prospect or a rush made blindly, however, would in most cases
end in failure. The adventure that really trains the theory and leads to correct cognition

must have an accurate prospect more than anything else. The perspective adventure, even
if it fails, is able to teach certainly lessons from the failure and secures the success in the

next adventure.

- Shoichi Sakata, 1948

I don’t know how radical you are, or how radical I am. I am certainly not radical
enough. One can never be radical enough; that is, one must always try to be as radical as

reality itself.

- V.I. Lenin
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Units and Conventions

This document will use natural units, i.e. the speed of light, the gravitational constant, and
the Planck constant are set to unity:

c = 1
G = 1
~ = 1

unless otherwise specified.

This document uses the spacelike metric signature convention,

(−,+,+,+, ...)

Throughout this document, the terms Minkowski spacetime and Lorentzian manifold
will frequently be used interchangeably. The Lorentzian manifold is typically defined as
any manifold with the above signature, while Minkowski spacetime is typically defined to
be a flat Lorentzian manifold with the metric

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


in four dimensions. Since this document makes explicit reference to whether or not the
manifold in question is flat or curved, this convention will not be observed.
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1
Introduction

This chapter will deal with quantum gravity in general and some of the justifications be-
hind the causal set approach to quantum gravity, including a brief background in general
relativity and Einstein’s field equations to motivate the project. Following a philosophical
overview of the methodology of the field, the last section will provide an orientation for
the project and outlines the remaining sections.

1.1 Quantum Gravity

The search for a “theory of everything” is perhaps the most highly anticipated development
in the field today, whether it is a subsequent task underlying Grand Unification or a goal
in its own right. It suffices to say that one of the biggest embarrassments in physics is the
incompatibility of two equally empirical properties of our universe: general relativity and
quantum field theory. Unifying gravity with the three other forces has been a task since
the late 1970s and is a noble, if not lofty, pursuit if we are to finally move beyond the
Standard Model and into Planck’s realm. Yet, for this author, the pursuit for this “theory
of everything” seems a little premature, just as it was at the turn of the last century. More
explicitly formulated, making general relativity and quantum field theory agree means
having a theory of gravity that does not break down on the small scales that hold for the
other forces in quantum field theory. How could we ever hope to achieve this so-called
“theory of everything” if we do not start with the first step? That first step is quantum
gravity.

What is quantum gravity? Most definitions are fairly straightforward, although it must
be noted that the specific formulation will favor different approaches. This project will
adapt David Reid’s working definition:

1



Chapter 1. Introduction

quantum gravity is a theory that describes the structure of spacetime and
the effects of spacetime structure down to sub-Planckian scales for systems
containing any number of occupied states [44].

Perhaps the most contentious part of Reid’s definition is that the theory must describe
“the structure of spacetime and the effects of spacetime structure”. It favors those ap-
proaches that place primacy on geometry as the property from which the gravitational
force arises, unlike approaches like string theory that propose fundamental gravitational
“bosons” that define the interaction, rather than identifying the geometry itself as the car-
rier of the gravitational force. Moreover, the diction of structure evokes imagery of fun-
damental point-like discreteness, in contrast to Causal Dynamical Triangulation. Taking
general relativity seriously means entertaining its literal interpretation, that gravity is ge-
ometry. While most of the literature simply cites the metric tensor gµν and the Einstein
field equations and calls it a day, this document will trace this logic in more detail, de-
spite its tedium, but stopping short of fully deriving the Einstein field equations. It is so
fundamental to the argument behind causal sets that this author believes that it is worth
the effort. It will also help to provide a clear understanding of the tools that are so cen-
tral to causal set theory outlined in Chapter 2. The following discussion on the Einstein
field equations and how the gravitational field arises from the source it describes follows
Hartle [26].

1.1.1 Einstein Field Equations
The Einstein field equations are given by

Rµν −
1

2
Rgµν + Λgµν = 8πTµν (1.1)

where Rµν is the Ricci curvature tensor, R is the Ricci scalar curvature, gµν is the met-
ric tensor, Λ is the cosmological constant, and Tµν is the stress-energy tensor. Before
going further, it’s worth noting that the field equations express the fundamental principle
that gravity is geometry. On the left-hand side of Equation (1.1), Rµν , R, and gµν all
characterize the geometry, while Tµν on the right-hand side serves as the source for the
gravitational field. In turn:

The metric tensor is given by the line element,

ds2 = −gµν dxµ dxν

= −g00 dt2 − g11 dx2 − g22 dy2 − g33 dz2 − ... (1.2)

where dxµ gives the infinitesimal displacements between two points in the metric space
for the coordinates labeled by µ and ds is the line element. The line element can be thought
of as the length of some curve defining the trajectory between the two points in the metric
space.

The Ricci curvature tensor is given by

Rµν =
∂Γγµν
∂xγ

−
∂Γγµγ
∂xν

+ ΓγγδΓ
δ
µν − ΓγνδΓ

δ
γµ (1.3)
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1.1 Quantum Gravity

where Γ, the Christoffel symbols, define the geodesic equation, describing the trajectory
of a particle in curved spacetime:

d2xµ

ds2
= −Γµνγ

dxν

ds

dxγ

ds
(1.4)

If one imagines a collection of points in spacetime that form some closed object with
some volume, then Rµν expresses the rate of change of that object’s volume along its line
element as it moves through the metric space.

The Ricci curvature tensor is generalized by the Riemann curvature tensor, and the
former may be derived by taking the trace of the latter:

Rµν = Rαµαν = gαβRαµβν (1.5)

Physically, one may think of the Riemann tensor as describing not only the rate of change
of the volume of our ball of test points, but also its shape. In a completely empty re-
gion of spacetime, Rµν = 0, but the Riemann curvature tensor is, in general, nonzero.
The details will not be given in this document, but the Riemann curvature tensor can be
decomposed into three parts; in an empty region of spacetime, all but one–the Weyl ten-
sor–vanish. While the other two parts encompass gravitational effects from immediate
non-gravitational forces and matter, the Weyl tensor encodes information about “every-
thing else” that may contribute to the curvature of the region (e.g. gravitational waves).
This is introduced only to emphasize that “empty spacetime” should not be thought of as
equivalently flat spacetime.

In the context of Equation (1.4), it is also natural to define the Christoffel symbols with
respect to the metric tensor:

Γγµν =
1

2
gγδ(∂νgδµ + ∂µgδν − ∂δgµν) (1.6)

where the notation

∂µ =
∂

∂xµ
(1.7)

has been introduced and will be used throughout the remainder of this document.
The second term on the left-hand side of Equation (1.1) must be a rank two tensor,

which can be constructed from the scalar curvature and the metric tensor.1 The former is
the scalar analogue of the Ricci curvature tensor and assigns a value corresponding to this
change at each point (furthermore, it is the trace of the Ricci curvature tensor and can thus
also be expressed in terms of Christoffel symbols).

As for the last term on the left-hand side of Equation (1.1), for the purposes of this
project, Λ, the cosmological constant, will be interpreted as vacuum contributions to the

1If this addition seems ad hoc, it’s because it is in this treatment. As promised, I will not derive the Einstein
field equations in this space, but only briefly mention that without this term, the field equations would violate
conservation of energy and momentum. A full(er) treatment is given in [40]. Furthermore, Lovelock’s Theorem
states that this is the only possible form for this second “conservation-preserving” term [11].
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Chapter 1. Introduction

stress-energy tensor and will be subsumed into the term on the right-hand side,2 such that
Equation (1.1) now reads:

Rµν −
1

2
Rgµν = 8πTµν (1.8)

The stress-energy tensor, Tµν , expresses the total energy and momentum density and
flux in spacetime. More specifically, it is the contribution of all matter, radiation, and any
other non-gravitational fields. E.g. for some fluid, the contravariant stress-energy tensor is
given by

Tµν = ρuµuν (1.9)

where ρ is the energy density and uµ is the four-velocity of the fluid.
Finally, using the Einstein field tensor defined by

Gµν = Rµν −
1

2
Rgµν (1.10)

the Einstein field equations reduce to the simple form

Gµν = 8πTµν (1.11)

The Stress-Energy Tensor as a Source for Gravitational Fields

If the stress energy tensor is truly the source of gravitational fields, then the Einstein field
equations should reduce to the Newtonian field equation for gravity in the limit of an
approximately flat geometry and nonrelativistic matter:

Gµν = 8πTµν Einstein Field Equations
∇2Φ = 4πρ Newtonian Field Equation for Gravity

where Φ is the (Newtonian) gravitational potential and in this context, ρ is the mass density.
The limit of an approximately flat geometry implies a weak gravitational field, such

that the metric can be approximated by ηµν , the metric for a flat geometry,

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.12)

plus a small metric perturbation, hµν(x):

gµν = ηµν + hµν(x) =
−(1 + 2Φ) 0 0 0

0 (1− 2Φ) 0 0
0 0 (1− 2Φ) 0
0 0 0 (1− 2Φ)

 (1.13)

2This is justified because it satisfies local energy-momentum conservation, ∇νTµν = 0 where ∇ν is the
covariant derivative. Alternatively, one may impose Λ = 0 and define the Einstein tensor without this term,
which is the typical treatment in the literature and reflected here in Equation (1.10).
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1.1 Quantum Gravity

Inserting this expansion into the Einstein tensor, Equation (1.10), and using Equa-
tion (1.6) gives [26]

Gµν = G00 = 2∇2Φ +O(Φ2) (1.14)

The Newtonian limit also implies that the stress energy is dominated by rest energy,
because for nonrelativistic matter, v � c, and to maintain consistency with the weak field
approximation, ρ, the rest energy density, must also be small. Then uµ = (1,

−→
0 ) and

using Equation (1.9), the first order of the stress energy tensor is simply

Tµν = T 00 = ρ (1.15)

Lowering the indices for the stress-energy tensor and inserting these into the Einstein
field equations, Equation (1.11),

∇2Φ = 4πρ (1.16)

The result is the linearized gravitational field equation, equivalent to the Newtonian
field equations for gravity.

In analogy to electromagnetism, compare the field equations:

∇2Φ = 4πρ Linearized gravitational field equation
Gµν = 8πTµν Einstein’s Field Equations
∇µFµν = 4πJν Maxwell’s Equations

where in the latter equation, µ0 = 2αh
e2c and in natural units, e =

√
α is the charge of

an electron, h = 2π~ = 1 is Planck’s constant, and α is the fine structure constant, i.e.
µ0 = 2π.

Towards a Fundamental Unit of Spacetime

Order + Number = Geometry
- Rafael Sorkin

As Jν is the source of electromagnetic fields, Tµν is the source of gravitational fields.
As Fµν is the electromagnetic field, gµν is the gravitational potential,3 identically char-
acterizing the geometry of some spacetime. For some spacetime geometry–perhaps one
like the familiar 4-dimensional, smooth, connected Lorentzian manifold that describes our
own universe–what could be more fundamental than its causal structure? What more is
needed to specify the geometry than a light cone at each and every point? This is an in-
stance of the causal metric hypothesis, a term introduced by Dribus which states that “the
observed properties of the physical universe arise from causal relationships between pairs
of events, or more generally, from causal relationships among families of events,” and fur-
thermore that “the hypothesis takes the familiar relationship between cause and effect to
be the fundamental building block of this structure [19].”

3N.B., not Gµν nor Rµν . In Maxwell’s equations, the left-hand side is the derivative of Fµν . Lovelock’s
Theorem implies that the only possible solution is proportional to the metric tensor, gµν [11]. The gravitational
field is a more complicated matter involving the so-called exterior derivative in mathematics, but this is more
than is needed for this document.
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Chapter 1. Introduction

This exposition places certain demands on causal set theory. As long as the action
is approximately extremized such that the scale can be compared to the continuum limit,
causal sets must [39] :

1. Give a spacetime dimension of 4 at the continuum limit.
2. Produce a light cone given by the metric according to gµνdxµdxν ≤ 0 everywhere.
3. Satisfy Rµν = 0 in a vacuum.

1.1.2 Malament’s Theorem and Kleitman-Rothschild
This account of the story does little justice to the history. A theorem by David Malament
states

Suppose (M, g) and (M ′, g′) are spacetimes and f : M −→M ′ is a bijection
where both f and f−1 preserve future directed continuous timelike curves.
Then f is a conformal isometry [37].

Malament furthermore concludes in a corollary that the causal structure (represented by
ordered sets–a mathematical object) is enough to recover the spacetime geometry up to a
conformal factor. This is often referred to as the Hauptvermutung, or central conjecture
of causal set theory. It served as the motivation for Rafael Sorkin’s aforementioned claim:
“Order plus Number equals Geometry”, where order is the binary relation on a causal set,
i.e. Malament’s family of curves, while the number is a volume corresponding to the above
missing conformal factor. In his 1978 preprint, Myrheim suggests a counting measure as a
means of quantifying volume by proposing the assumption of a discrete spacetime [41]. By
taking an arbitrary region of spacetime as the starting point, it has been possible to model
causal sets that are approximated by the continuous Lorentz manifold in a process referred
to as sprinkling. Sprinkling has been the leading strategy for developing the kinematic
tools needed to describe causet observables.

Pedestrian experience informs us that space and time are continuous, yet the discrete-
ness of its fundamental units is central to causal set theory. These units are proposed to
be Planckian, and we therefore expect the dynamics to be governed by an action principle
as in quantum mechanics. In the same way a continuous drop of water approximates an
abundance of discrete atoms, spacetime approximates the causal set; in the same way the
classical trajectory arises from an infinite sum over its absurd (and reasonable) paths, the
familiar manifold arises from a sum over of causal structures that look nothing like it. The
task that lies before causal set theory is thus to develop 1) an analagous quantum mea-
sure that assigns to each spacetime structure an amplitude and 2) a configuration space of
causal sets to sum over.

The main obstacle in this endeavor is the Kleitman-Rothschild Theorem, which states
that the proportion of non-manifoldlike topologies on ordered sets containing N elements
approaches 1 in the asymptotic limit, N −→∞, and furthermore that this dominant space
of sets contains three-layered configurations (more specifically, sets with roughly half of
the events in the middle layer) [33, 32]. Such sets are often referred to as Kleitman-
Rothschild orders, or KR orders. Needless to say, such sets are decisively not like space-
time because they represent an infrared universe that is extremely vast while being ex-
tremely short-lived. The Kleitman-Rothschild theorem is the key contributor to what is
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1.2 Dialectics of Nature

known as the Entropy problem in causal set theory. It has also been shown in [55, 43] that
there exist a subdominant entropic space of two- and four-layered orders that for similar
reasons are non-manifoldlike.

1.2 Dialectics of Nature4

Quantum gravity is a difficult idea for us to grasp. It combines the unobservability of sub-
Planckian nature with our sense of familiarity with the strangeness of quantum physics;
the lack of empirical results has given causal set theory the stigma of being a “solution
without a problem”, and this has been enough for many to claim that the theory evolves in
an entirely different manner than the rest of scientific development. In much of the sem-
inal literature on causal set theory (see e.g. [7]), Taketani’s Doctrine of the Three Stages
of Scientific Development has been cited in an effort to organize the theory, with notable
adjustments made to reflect the perceived uniqueness of quantum gravity in physics. Trac-
ing Taketani’s three stages back to its inspiration, one finds that there is nothing particular
about causal set theory in the development of our understanding of nature. There are two
reasons for correcting this position.

The first is that the study of quantum gravity needs more discipline. The historical
approaches to causal set theory amount to little more than (expertly) groping in the dark,
and causal set theory is in turn just one of dozens of approaches to quantum gravity. Even
this project is not exempt from this dilemma. This is not necessarily a bad thing, but even
when a fuse is blown in one’s house, there is an implicit strategy for navigating around
the room in search for a flashlight or better yet: the circuit breaker. Taketani’s three stages
embody this strategy in physics and there are therefore one of two ways to move forward:
we ensure that they are well understood and take them seriously, or we fundamentally
reorganize our strategy.

Feynman is purported to have said that “the philosophy of science is as useful to sci-
entists as ornithology is to birds”. Although the apocryphal retort is admittedly salient, no
squabbles between physicists and philosphers could ever supersede Marx’s timeless jibe
on both: “Philosophers have hitherto only interpreted the world in various ways; the point
is to change it.” In other words, to lift a line from Dribus, “physics should seek not to
prescribe what may be, but to describe what is [20].” We would do well to keep this in
mind when we search for some theory for our structure, lest we discover that we have
found little more than our theory for some structure. Thus, the second reason: that “we
must clearly distinguish physics itself from interpretations of physics given by physicists.
They often state things which are different from what they have done,” as Sakata affirms
in [62].

4Readers allergic to political and/or philosophical discourse may skip this section, but the author implores
those who entertain its contents to consider the following appeals to ethos before evaluating its kairos: 1) this
philosophy of science is cited in much of the literature in causal set theory, particularly the seminal literature
on the topic; in some places it is even used to define terms, as in [44, 7, 8, 50, 38], and 2) Taketani Mitsuo, the
author of this philosophy of science, was an important contributor to the discovery of the meson, a development
he cited when establishing this interpretation of Marxist dialectics.
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Chapter 1. Introduction

1.2.1 Dialectic Materialism
In addition to being a renowned physicist, Taketani was a Marxist and his approach was
explicitly grounded in dialectic materialism. The triad thesis, antithesis, synthesis (read:
a phenomenon, its logical negation, their reconciliation), revealed first by Hegel, is the
backbone of both Taketani and Marx’s scientific approach. To apply it to causal sets, we
must make a brief detour.

From Hegel arise three laws of dialectics:

1. The law of the unity and conflict of opposites. An object exists only insofar as it is the
realization of the unity of opposites, i.e. for each thesis there exists a contradictory
antithesis: the logical negation of the thesis.

2. The law of the passage of quantitative changes into qualitative changes. The conflict
between opposites is never in perfect balance, which gives rise to small quantitative
changes to the object. Over time, these quantitative changes abruptly give way to
a qualitative change in the synthesis of contradictions to form a new thesis with its
own antithesis.

3. The law of the negation of the negation. The original antithesis that negated the
original thesis is itself negated. After cyclces of synthesis, the dialectic process
has returned the original thesis, now governed by new laws of development. While
Hegelian dialectics maintain that there is an “ultimate” negation of the negation–a
deterministic Absolute to end all conflicts of opposites5,dialectic materialism states
that the absence of conflict is the absence of existence.

While Hegel’s concept of the Absolute is deterministic, dialectic materialism is stochas-
tic (although decidedly not Markovian) and the dialectic process never terminates. The
Hegelian dialectic is idealist, in that the process is driven by the Spirit. On the other hand,
dialectic materialism declares that the laws of motion are strictly material. In Das Kapital,
Marx writes

The mystification which dialectic suffers in Hegel’s hands, by no means pre-
vents him from being the first to present its general form of working in a
comprehensive and conscious manner. With him it is standing on its head. It
must be turned right side up again, if you would discover the rational kernel
within the mystical shell...

My dialectic method is not only different from the Hegelian, but is its direct
opposite. To Hegel, the life-process of the human brain, i.e. the process of
thinking, which, under the name of ‘the Idea’, he even transforms into an
independent subject, is the demiurgos of the real world, and the real world is
only the external, phenomenal form of ‘the Idea’. With me, on the contrary,
the ideal is nothing else than the material world reflected by the human mind,
and translated into forms of thought.

In summary, the dialectic materialism adapted by Taketani is just that: 1) material,
such that phenomena exist independently of the knowledge of nature and 2) dialectic,

5Incidentally, Hegel himself claimed that this Absolute was the Prussian monarchy.
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such that theory is no more than the “temporary, relative, approximate character of [the]
milestones in the knowledge of nature”. As Lenin describes it in his Materialism and
Empirio-Criticism, “The electron is as inexhaustible as the atom, nature is infinite, but it
infinitely exists [58].”

The sharpest resolution of dialectics today is Maoist dialectics,6 from which just one
additional law must be presented: the distinction between the principal contradictions and
secondary contradictions. “If in any process there are a number of contradictions, one of
them must be the principal contradiction playing the leading and decisive role, while the
rest occupy a secondary and subordinate position.” According to Mao, “the principal and
the non-principal aspects of a contradiction transform themselves into each other and the
nature of the thing changes accordingly [60].”

Consider, e.g. a train. For a steam engine, the primary contradiction is the friction
between the wheels and the track, while air resistance is only secondary. Its motion is
the unity of opposites: the friction that enables acceleration and the very same force that
simultaneously hinders it. The synthesis of this unity of opposites is realized by the Ma-
glev. Yet, this gives rise to another unity of opposites; the friction between the train and
the tracks (whether mechanical or electromagnetic drag) becomes secondary, while air re-
sistance becomes primary. This process continues ad infinitum, with vactrains, and so on!
Critically, the motion of this development is driven at all points by the frictional force,
only taking different forms with each successive synthesis. Likewise, the Maglev does
not move faster than the steam engine because the mind wills it: it moves faster because
the objective material conditions allow it. Perhaps some new form of transportation arises
that is entirely frictionless: a negation of the negation (although, as physicists, we ought
to agree with Lenin in that nature is infinite). Even then, this mode of transportation exists
only as a unity of opposites, and the dialectic continues according to new rules.

I have surely not done justice to these principles. The preceding background is de-
signed only to give a very rough outline for the basis of the methodology used in several
fields, but in particular in causal set theory. Although I would sincerely like to expand this
discussion, this document is simply not the space for an in-depth discussion on the matter.
Readers who are interested in this topic can refer to the supplementary bibliography pro-
vided at the end of this document. Without further ado, I will demonstrate the relevance
for the patient reader who may be wondering where this digression is going.

1.2.2 Taketani’s Three Stages
Sakata describes Taketani’s stages in the following manner:

The first is the phenomenological stage [thesis] in which the [object] is de-
scribed as it is. The second is the substantialistic stage [antithesis] in which
it is investigated what structure the object has. The third is the essentialistic
stage [synthesis] in which it is clarified by what interactions and under what
laws of motion the object moves [62].

6Incidentally, Taketani could very well have been a Maoist, at least philosophically speaking. The two come
to an identical conclusion almost concurrently, but likely semi-independently (the former in January 1936; the
latter in August 1937): that the unity of contradictions is the only fundamental law, and the other laws are just its
manifestations.
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Essential to understanding this theory is Taketani’s discussion on quantum mechanics and
dialectics in [63], in which he posits that “[science] is, at every point, accomplished by
dialectics,” its main point “the unification of antagonisms”. We begin with observation of
an object, e.g. Malament’s theorem: that the spacetime structure can be recovered from an
ordered set. Then, we make an investigation of the object’s substantial properties which
contradicts our initial observation, e.g. the Kleitman-Rothschild theorem: that the space
of ordered sets is dominated almost entirely by sets whose topologies look nothing like
spacetime.

Finally comes recognition, the essentialistic stage, or synthesis: “the copying of Na-
ture...” which “penetrates deep into, and still deeper into, the essence of Nature...” This
stage is “the process of bringing the copy into agreement with the object...[rather than
an] arbitrary ‘production’ of the [observation].” Taketani seems to have come to a similar
conclusion as Lenin when he identifies the synthesis with analysis and stresses that “ob-
servation itself is not recognition.” At the risk of redundancy, this author offers another
example: 1) the Hegelian thesis of nuclear fusion in stars and 2) its logical negation–our
understanding of Coulomb forces. The observation of heavy elements is not identically
the recognition of quantum tunneling. It is only with the analysis provided by quantum
mechanics that the antagonism between nuclear fusion and Coulomb forces is unified in
the synthesis.

Bombelli writes in [7] that “quantum gravity, however, is forced to skip virtually all
of the first stage and tackle the second and third stages simultaneously, hoping that the
resulting theory will enable us to recognize with hindsight what features of already-known
physics can serve as its ‘phenomenology’.” In this author’s opinion, this is a misunder-
standing of Taketani’s theory, where the dialectic has again been turned on its head. It is
true that causal set theory today seeks to phenomenologically identify the nature of the
causal set’s fundamental unit, but it is incorrect to suppose that this has been its original
thesis. For Bombelli, it is the geometrical properties of the causal set that is the antithesis
(which he refers to as the kinematics), while the synthesis (which he refers to as the dy-
namics) is the mechanism by which the causal set gives rise to the “higher-level structure”
of the continuum.

A philosophical flaw in causal set theory is demanding that the phenomenology amounts
to a direct measurement of the object. This is the same form of dogmatic and mechanical
empiricism that Taketani decries in [63]. The phenomenological stage has already been
completed: it is Malament’s theorem (or more precisely, its corollary: that causal structure
specifies the spacetime geometry). Alternatively, taken from the perspective of causal set
theory, the thesis is that ordered sets are approximated by the spacetime manifold. The
unhappy empiricist can be satisfied with sprinklings if a more concrete phenomenonology
is needed. The antithesis is then its negation, the Kleitman-Rothschild theorem: that the
distinct topologies on ordered sets are overwhelmingly non-manifoldlike.

My purpose is not to appear flippant (or worse yet–Hegelian!). As a materialist phi-
losophy, this dialectic requires a certain level of empiricism, at least at some point. Were
we to be indefinitely content with sprinklings without speaking to the nature of the funda-
mental units of gravity, we would not be doing physics (or dialectic materialism for that
matter), but rather something else entirely! Yet, as physicists, the very act of sprinkling
presupposes a claim–albeit a temporarily immeasurable one–about some physical thing
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that the object we construct represents. The phenomenology of causal set theory is cer-
tainly weak, but far from nonexistent. The quantitative changes to causal set theory are
not so difficult to identify in this context, and one finds that they are the result of two
contradictions, alternating in their primacy:7

1. The class of causal sets was once the class of all ordered sets: a phenomenological
whole. The substantialistic existence of spacelike separated points demands an ob-
ject that reflects incomparable elements. The principal contradiction is kinematic.
In the first iteration of Taketani’s third stage then, the essentialistic reconciliation of
the contradiction between the whole and its irreconcilable parts has reduced it to a
subclass of ordered sets: the class of partially ordered sets. This is itself a whole,
but again the unity of contradictions: the phenomenological whole of its members
and the substantialistic non-manifoldlike topologies on a large portion of its sets.

2. Phenomenologically, we presume that the events in the single causal set that de-
scribes our universe are on the order of Planck’s length. Substantialistically, we find
that objects on such scales are more “fuzzy” than they appear macroscopically; that
the object itself is not a singular entity, but rather the superposition of its various
states. The principal contradiction is dynamic. In this iteration, the essentialistic
reconciliation leads to the recognition of quantum mechanical rules that govern the
causal set. It will take many small quantitative changes before causal set theorists
find an appropriate way to sum over causal sets.

With each iteration, the laws become more and more complex, from lower levels to higher
levels of structural complexity. These small quantitative changes lead to a qualitative
leap, radically changing the character of the theory. One cannot be definitive about what
this revolution looks like, simply because the theory hasn’t reached a level where it will
undergo a qualitative change quite yet. I certainly don’t know what the fundamental unit
of gravity looks like today.

The substantialistic stage is then both the kinematics and the dynamics as defined by
Bombelli–the identification of that which makes these topologies non-manifoldlike. Or
more precisely, the kinematics and dynamics are the kernel of the contradictions between
the thesis and the antithesis: realized between Taketani’s first and second stages, made
apparent in his third. It is the struggle between the thesis and antithesis (where the princi-
pal contradiction alternates between kinematics and dynamics) that informs the synthesis.
The synthesis may be the kinematic removal or addition of topologies on sets considered,
the dynamical rules by which the topologies on the sets give rise to the manifold, or some
union of these developments. In sum, each iteration tells us more about the phenomenol-
ogy of the fundamental unit of gravity, and perhaps there will come a qualitative leap in
causal set theory’s future that reveals to us how to satisfy the gentle experimentalist!

The unity of contradictions in causal set theory can be rephrased once more by appro-
priating Dowker’s brilliant language:

Causal set theory is described by the dialectic process arising from the antagonism
between Action and Entropy.

7The Maoist concept of One Divides Into Two may also be of use here. The term originates from Lenin,
who writes “The splitting of a single whole and the cognition of its contradictory parts ... is the essence ... of
dialectics [59].”
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Every successful theory, whether it be the theory of making revolution or QCD, has
been systematized and dialectical. It is this author’s belief that causal set theory has suf-
fered such a long hiatus in development precisely because it has failed to properly identify
the principal contradiction between Taketani’s first and second stages, a stumbling block
introduced due to the misunderstanding of the dialectics of nature and an inability to rec-
ognize the universal property of the unity of contradictions.

1.3 Overview of this Project
This project introduces the class of Feynman posets as a toy model for exploring the effects
of kinematic restrictions on the object approximated by continuous spacetime. By placing
strict restrictions on the properties of the set’s elements and exploring the properties of the
resulting geometries, such an approach may inform us about what the set approximated
by the continuum may look like (or may not look like). On the other hand, by making
statements about the properties of a causal set’s elements, we can begin to scratch the
surface of synthesis: a phenomenological characterization (however incomplete), or at the
least a categorization, of gravity’s fundamental units.

The impetus for the toy model was an open question posed by Jan Myrheim in a collo-
quium talk given in October 2017, “Is there only one kind of elementary event, or is there
a periodic table [39]?” Referring to their namesake, Feynman posets are inspired by the
(strictly figurative) analogy to particle interactions, whose vertices contain three lines. As
such, the vertices of a Feynman poset are always three-degenerate, but one may imagine
that if elementary events are distinguished by their degeneracy, then three-degeneracy is
likely to be but one type in a family of n-degenerate events.

Chapter 2 outlines the fundamentals of causal set theory in greater detail and intro-
duces the tools and vocabulary that will be used in the remainder of the thesis. It also
includes a cursory overview of current approaches in the literature that are relevant for
this project. Chapter 3 outlines the specific methodology chosen to construct causal sets
in this project, as well as a discussion regarding the logic behind these choices. Chapter 4
includes the immediate results from the constructions. Chapter 5 includes an in-depth
discussion on the manifoldlikeness of the causal sets constructed, a critical review of this
project’s methodology, and current and planned work moving forward. Chapter 6 is a sum-
mary of the findings of this project and contains a few closing remarks. Readers interested
in the computational implementation who find Chapter 3 lacking can refer to Appendix C
for a more detailed description of the MatLab scripts used in this project.

Open source scripts adapted from this project can be found on GitHub. Ongoing work
includes making the script user-friendly, automated and more efficient, as well as migrat-
ing the script to Python. The link can be found in Appendix C.
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2
The Fundamentals of Causal Sets

As a somewhat novel theory, the conventions and terms used in causal set theory often
differ from author to author. Moreover, the field has a fair degree of overlap and incon-
sistencies with terms used in mathematics, particularly in set and graph theory. This is a
modest attempt to organize the basic ideas in the field without cluttering the document with
technical jargon by maintaining consistency and avoiding the introduction of extraneous
terminology.

Section 2.1 will introduce the the basic concepts of causal sets, along with some tools
that are used to represent them. It includes everything that makes a causal set a causal
set, or in other words the phenomenology in this author’s estimation, with a discussion
on axioms and representations. Section 2.2 will deal with what the literature refers to as
the kinematics of the theory. This entails the properties of the causal set as a mathematical
object and the geometric information that can be extracted from it without having to embed
it within the manifold. Section 2.3 will address the dynamics of the theory, including
the path integral formulation and the continuum approximation. Finally, Section 2.4 will
provide a (far from exhaustive) summary of the past and present work in the theory.
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Chapter 2. The Fundamentals of Causal Sets

2.1 Phenomenology

2.1.1 Causal Sets
An ordered set is a mathematical object containing a collection of elements and their
ordering relations. If the ordering relations are specified by the direction of the order (i.e.
the relation indicates not only that two elements are related, but that one of the elements
causally precedes or is causally preceded by the other), the ordered set is said to be a
partially ordered set, or poset. Consider the sets illustrated in Figure 2.1. Figure 2.1a is
an ordered set containing no information about the direction of the ordering relation. On
the other hand, Figure 2.1b is a poset, where the directions of the ordering relations have
been indicated by the arrow heads. In the partially ordered set, the two top elements have
no relation to each other, while all of the elements in the ordered set are related to each
other. Two events that are related to each other are said to be comparable and otherwise
incomparable. The cardinality of the set is given by the number of elements in the set.

(a) Ordered set (b) Poset

Figure 2.1: Ordered set vs. partially ordered set.

Causal set theory states that continu-
ous spacetime is an approximation of a
partially ordered set. In this context, a
causal set or causet is nothing more than
a poset whose elements are conceptualized
as spacetime events and their partial order-
ing relations that the continuum manifold
approximates. With this interpretation, the
causet must be:

1. Connected, i.e. it is not the union of more than one non-empty disjoint set, as in
Figure 2.2, and

2. Locally finite

A subset of the poset whose elements are all causally related to its endpoints is said
to be an open interval. An open interval of finite cardinality is said to be an Alexandrov
interval. Likewise, a closed interval is the union of any closed interval with its endpoints.
The endpoints are defined as the extremal elements of the subset, where an element is said
to be minimal if there exist no elements that causally precede it and maximal if there exist
no elements that it causally precedes. A poset is locally finite if every interval in the poset
is an Alexandrov interval. Figure 2.2 illustrates the distinction between closed and open
intervals.

It is trivial to ensure that all constructed causets are connected. However, in the in-
termediate stages of the growth process of a causet or after coarse-graining (see Sec-
tion 2.3.2), the poset may become a disconnected set. In this case, the poset is understood
to be a subinterval of a larger connected poset. Moreover, the causet need not be a closed
interval. However, the kinematic tools introduced in Section 2.2 are considerably simpli-
fied when the set is a closed interval. For this reason, the posets constructed in this project
will also be understood as the subinterval of a connected and closed poset.
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2.1 Phenomenology

Figure 2.2: An example of a disconnected poset. Taken independently, each subset is a
connected poset; note that not all elements need be causally related for the poset to be

connected, as in the subset on the right-hand side. The dashed red line indicates an open
interval, while the dotted blue line indicates a corresponding closed interval between the

same endpoints.

The partial order relation is written as ≺, read as causally precedes, or �, read as is
causally preceded by. For any two events a and b, a ≺ b if b is in the future light cone of
a. The partial order relation may occasionally be referred to as a relation throughout this
document.1

Care should be taken to not interpret this statement as “a causes b”. Suppose event a
is located at the origin of its light-cone and that event b is located in the future light-cone
of event a. The presence of these two events does not imply the existence of any physical
trajectory along the world line connecting them. Nor does the presence of either event
imply the existence of any physical object located at the points. In fact, the existence of
the causal relation between the two does not even imply that some occurrence at a causes
an occurrence at b.

This semantic difficulty is unfortunate, as the concept of causality is what tethers the
theory to physical reality. Adding insult to injury, events do not have a concrete definition
either, which is particularly frustrated by the proposition that there are potential families
of events (not to mention by divergent interpretations of quantum mechanics). The issue is
severe enough that some authors have opted to use the more agnostic “spacetime atoms”
to refer to events. In this author’s opinion, the best compromise to resolve this issue is
twofold: (1) the event is defined in the same way as its typical usage in relativity: it is a
point in spacetime where something occurs (where an occurrence is extended to include
“nothing happens” on the same footing as any other conceivable occurrence) and (2) the
partial ordering relation a ≺ b can be read as “an occurrence at a could potentially, but
does not necessarily, cause an occurrence at b”.

As Bombelli emphasizes,

if we look for observational consequences of the theory, we must not try to
attach any operational meaning to the individual relationships between ele-
ments in the causal set, nor relate the intrinsic discreteness of the theory with
any notion of discreteness that may arise from ordinary experience of lab ex-

1The partial order relation can also be denoted � or � if the reflexive formulation is used and more recently,
≺≺ and �� where the acyclic formulation is used–see the remainder of this section for more on these formu-
lations. In general, I believe that this serves only to complicate matters and I am a strong proponent of simply
using the canonical≺ and� symbols, regardless of the formulation being used, as long as it is the only relevant
formulation and the convention being used is clearly stated in the document. This document will use only≺ and
� to denote the order relation. Although most of the content in this document is based on the acyclic formulation,
if the subject matter concerns any other formulation, it will be noted explicitly.
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Chapter 2. The Fundamentals of Causal Sets

periments: any observational consequences of this framework will have to
come through properties of the continuum approximation to it... [7]

This is not to say that the events in a causet are nothing but coordinate labels. If causal
set theory is correct, then these events are more than just abstract mathematical objects:
they are the very physical fundamental units of the gravitational force. To date, there is
no single definition of these objects founded on a physical interpretation (although there
are many theoretical proposals that have been offered), an unwieldy obstacle that lies in
causal set theory’s near future.

There is a wide diversity of poset-like objects in set theory, which offers many options
for causal set researchers. In fact, the poset is generalized by the ordered set, and as seen in
the preceding chapter, causal set researchers have sharpened the causal set by demanding
that the set contains incomparable elements: hence the poset. This project deals with
a particular class afforded by what mathematicians may refer to as labeled reachability-
ordered vertex sets of 3-degenerate directed acyclic graphs, which will be referred to as
Feynman posets for the remainder of this document. Below are some definitions that may
be useful in understanding this object:

• Covering relations are the ordering relations between an element and its nearest
neighboring elements, i.e. those ordering relations not implied by transitivity (later
they will be introduced as links).

• Directed Acyclic Graphs (DAGs) are the graphs of partially ordered sets and their
covering relations, where no element may precede itself by transitivity. Mathemat-
ically, the events are referred to as nodes or vertices and their relations are referred
to as edges in this context.

• Vertex Sets have as their elements the vertices, nodes or events in the DAG.

• Reachability-Ordered sets additionally contain the covering relations of its vertex
elements (i.e. the transitive reduction of the DAG).

• n-Degeneracy means that the vertices of the DAG have a maximum of n covering
relations. Moreover, one may define the indegree and outdegree of a vertex as the
number of its incoming and outgoing covering relations, respectively.

• Labeled graphs have integer labels assigned to their vertices.

In other words, Feynman posets are posets such that all of its elements have three or fewer
covering relations. Although this mathematical definition may appear cumbersome, defin-
ing the set in this manner is a step in the right direction towards systematizing future
research. Several classes of ordered sets have been studied in great detail, and organizing
the objects we use may prove rewarding in the future, especially if there happens to be a
“periodic table” of fundamental events.

As indicated, these posets (and nearly every other poset encountered in the prior litera-
ture) are labeled as a computational tool. In general, the observables of the causet are label
invariant and thus the causets as they exist in nature are unlabeled, a condition reflecting
the discrete analogue of general covariance [15].
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2.1 Phenomenology

Causal set theory is motivated by the construction of a causal set (C,≺) that can be
faithfully embedded2 into a continuous manifold (M, g), where g are smooth Lorentzian
metrics. If the embedding is faithful, then its image is a high probability Poisson distri-
bution in (M, g) [54]. This is the very essence of Malament’s theorem and the causal set
program and is known as the Hauptvermutung of causal set theory.

2.1.2 Axioms
While the overwhelmingly dominant approach to causal sets (see [8], [47]; but many more
examples abound) adheres to a single standard for defining set axioms (which I will refer
to as the transitive axioms), a novel approach offered by Dribus in [20] (which I will refer
to as acyclic axioms) has enjoyed recent popularity (see e.g. [54]). Despite some technical,
albeit largely esoteric disclaimers, all of the causal set literature reviewed by this author
agrees that the causal set is a set whose elements are events and their (typically partial)
ordering relations.

The transitive axioms are given by:

1. Irreflexivity: ∀a ∈ C : a ⊀ a, i.e. all events are incomparable with themselves.

2. Antisymmetry: ∀a, b ∈ C :
{
@a, b|a ≺ b; b ≺ a

}
, i.e. there exist no events that can

precede one another (in this document, this is occasionally referred to as a “loop”).

3. Transitivity: ∀a, b, c ∈ C :
{

(a ≺ b; b ≺ c) =⇒ a ≺ c
}

, i.e. if event a precedes
event b and b precedes event c, then a precedes c.

4. Local Finiteness: ∀a, c ∈ C : Card
{
b ⊂ C|a ≺ b ≺ c

}
< ∞, i.e. the number of

events between any two given events (a subset of the causal set) must be finite.

These four axioms comprise the very basic foundation of causal set theory introduced
from the very start. There are furthermore three more implicit axioms of causal sets that
arise from the causal set program [20]:

5. Binary: The elements of a causal set are not only the events, but also the binary
relations between them.

6. Measure: The volume of a spacetime region approximating a subset of the causal
set is proportional to the cardinality of the subset up to Poisson fluctuations.

7. Countability: The cardinality of the causal set is countably infinite.

Technically speaking, irreflexivity (taken with transitivity) implies antisymmetry. In
fact, irreflexivity and antisymmetry may be incorporated in a more general axiom of
acyclicity,

∀a, b, c...z ∈ C :
{
@a|a ≺ b ≺ ... ≺ z = a

}
. (2.1)

Although the distinction may seem trivial, only the conjunction of irreflexivity and transi-
tivity implies acyclicity. In most cases, this condition is ensured by considering partially
ordered sets. However, it may be possible to study causal set theory with the more general

2Dribus generalizes this further by promoting causal sets from a set theory to a category theory, and thereby
the faithful embedding to a morphism in [20].
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Chapter 2. The Fundamentals of Causal Sets

ordered set, as Dribus proposes in [20], in which case acyclicity is an important addition.
The axioms used in this project are:

1. Irreflexivity
2. Transitivity
3. Acyclicity
4. Local Finiteness

Acyclicity will have no practical consequences in this project, and is included here
simply to prepare the study for future work, where the space of sets may be generalized.

On a minor note, there are two formulations used in the causal set literature that are
more or less equivalent. The irreflexive formulation was used to write the axioms in
Page 18 and in this formulation, each event is incomparable with itself.

By contrast, in the reflexive formulation the partial order relation is written as � and is
read as precedes or is equivalent to and the axioms are then given by:

1. Reflexivity: ∀a ∈ C : x � x

2. Antisymmetry: ∀a, b ∈ C :
{
a ≺ b; b ≺ a =⇒ a = b

}
3. Transitivity: ∀a, b, c ∈ C :

{
a � b; b � c =⇒ a � c

}
4. Locally finite: ∀a, c ∈ C : Card

{
b ⊂ C|a � b � c

}
<∞

The implicit axioms mentioned previously also follow for the partial order formulation.

Summary of Formulations

The key distinction between the irreflexive and partial order formulations rests within the
definition of antisymmetry, but this is a trivial distinction that will have no bearing on the
information contained by the sets they govern.3 This project will use the acyclic axioms in
the irreflexive formulation.

2.1.3 Hasse Diagram and Matrix Representation
Causal sets are most commonly represented by Hasse diagrams (in mathematics, a Hasse
diagram is often referred to as the DAG of the transitive reduction of a poset). Constructing
a Hasse diagram is straightforward: each event in the causal set is represented by a point
in the diagram, and the partial ordering relation between events is represented by a line
connecting the points. Most authors will typically denote the direction of the partial order
relation by either including arrows on the lines, choosing a convention such that time is
oriented upwards along the vertical axis, or as in the case of this document, both. Unlike
light cones, Hasse diagrams have no axis scales, and therefore 45◦ lines have no special
meaning.

3Dribus points out in [20] that the latter technically does not imply acyclicity and therefore admits for
structure-breaking mappings that might otherwise be faithful embeddings (or morphisms). However, there are
simple ways to deal with this issue and [4] and [25] simply press on with the reflexive condition.
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2.1 Phenomenology

The partial ordering relation is necessarily a binary relation, and as such, the matrix
representation of a causal set is equally straightforward. The matrix representation of a
causal set C containing N events is an N × N matrix and for the relation a ≺ b, the row
labels of this matrix correspond to a and the column labels of this matrix correspond to
b. The partial order relation ≺ is denoted by 1, while the relation � is denoted by −1.
The absence of a partial ordering relation (i.e. ⊀ and �) between two events is denoted
0. As a consequence of irreflexivity, the diagonals of such a matrix are 0. All matrix
representations of causal sets are also antisymmetric as a consequence of the binary nature
of the ordering relation.4

Consider the Hasse diagram and table in Figure 2.3. The matrix representation for this
causal set is given by



1 2 3 4 5

1 0 0 1 0 1
2 0 0 1 0 1
3 −1 −1 0 0 1
4 0 0 0 0 1
5 −1 −1 −1 −1 0


where the labels on the borders refer to the number labeling the events in the causal set.

5

4 3

1 2

1 ≺ 3 3 � 1
1 ≺ 5 5 � 1
2 ≺ 3 3 � 2
2 ≺ 5 5 � 2
3 ≺ 5 5 � 3
4 ≺ 5 5 � 4

Figure 2.3: A Hasse digram for a causet with 4 elements and the table enumerating its relations.

This particular representation is a relation matrix and is the convention that most of the
literature on causal sets uses. Variations on the relation matrix include 1) the Seidel adja-
cency matrix, where the element labeled by (a, b) has 0 on the diagonal, −1 for adjacent
vertices, and +1 for non-adjacent comparable vertices and 2) the distance matrix, where
the element labeled by (a, b) has the smallest number of intermediate events between a
and b minus one. The latter will be used in this project; the former may be useful for
future studies, as it may reduce computation time.

4The reader may notice that the matrix representation is redundant, as the ordering relation is by definition
binary and this representation is trinary. As far as this author is aware, the trinary representation is the convention,
but as others have found, converting to a binary representation makes computations simpler–see for instance
Appendix C and [5]. Computations in this project will use both trinary and binary matrix representations.
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Chapter 2. The Fundamentals of Causal Sets

It is also useful to define an adjacency matrix expressing only the covering relations of
the set. The adjacency matrix for the causal set in Figure 2.3 is then given by



1 2 3 4 5

1 0 0 1 0 0
2 0 0 1 0 0
3 −1 −1 0 0 1
4 0 0 0 0 1
5 0 0 −1 −1 0


On a final note, it is worth mentioning that the Hasse diagram in Figure 2.3 and its two

representation matrices reflect natural labeling, such that the numerical ordering of event
labels reflects the causal ordering of the events themselves. In other words,

xi ≺ xj =⇒ i < j (2.2)

There is no reason that causal sets must be naturally labeled (or labeled at all, for that
matter) and this convention can even artificially restrict the construction of a causal set.5

The same causal set represented by Figure 2.3 can very well be represented by the Hasse
diagram in Figure 2.4 with no change in the causal structure, and the two are said to be
automorphic.

The relation matrix then becomes



1 2 3 4 5

1 0 −1 −1 −1 −1
2 1 0 0 0 0
3 1 0 0 0 1
4 1 0 0 0 1
5 1 0 −1 −1 0


This project does not use natural labeling, although future changes to the growth model

that make growth parameters explicit may feature natural labeling.

1

2 5

4 3

Figure 2.4: Hasse diagram without natural labeling. This Hasse diagram
represents the same causal set as the Hasse diagram in Figure 2.3.

5Rideout and Sorkin, among others, have availed themselves of natural labeling as a matter of pure compu-
tational convenience. Natural labeling is particularly useful for sequential growth models. See [29, 47, 5] and
Section 2.4. Since causets are unlabeled in nature, labeling conventions do not affect the underlying physics.
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2.2 Kinematics

2.2 Kinematics

2.2.1 Properties of the Causal Set and Definitions
The future of an event is defined as the set of events that it precedes, i.e.

T+(a) ≡
{
b ∈ C : a ≺ b

}
(2.3)

Likewise, the past of an event is defined as the set of events that precede it, i.e.

T−(a) ≡
{
b ∈ C : b ≺ a

}
(2.4)

A link is any causal relation between two events that cannot be deduced by transitivity,
i.e. there exist no intermediate relations between them. In mathematics, the link is also
referred to as a covering relation. A link L is some subset of the causal set

L ≡
{
a, b, (a ≺ b)

}
⊂ C :

{
@c ∈ C|a ≺ c ≺ b

}
(2.5)

A chain, C, or a totally ordered subset is a subset of the partially ordered set such that

C ≡
{
ci, i = 0, 1, . . . , N − 1

}
: ci ≺ ci+1 (2.6)

i.e. it is a sequence of links that form a straight line. The maximal chain of a subset is the
chain that contains the greatest number of events and the length of any subset is equal to
the number of links in its maximal chain. It has been shown in [41] that the proper length
of a geodesic curve in the continuum is given by the length of the chain between the two
events that define its endpoints.

An Alexandrov interval, I(a, b), between events a and b is a subset of events resulting
from the intersection of the future of a with the past of b, not including a or b, i.e.

I(a, b) ≡
{
I ⊂ C; a ≺ b; I(a, b) = [T+(a) ∪ T−(b)]

}
(2.7)

The interval is said to have volume equal to its cardinality, i.e. the number of points in the
interval.

The height of a causal set is the length of the maximal chain(s) in the entire set.
A layer (or level; the two terms will be used interchangeably in this document) is a

subset of the causet resulting from the partition of events that have the same chain length
between a given “root” element. In mathematics, each layer is given with respect to the
chosen root element, but causal set theory offers some natural choices for a designated
root event, i.e. the causet’s extremal elements.

As this project uses the graphical tools offered by MatLab to determine the layer struc-
ture of the causets, this document will opt for an informal definition illustrated by Fig-
ure 2.5. The specifics of assigning layers to the elements of a poset are rather complicated
and unnecessary for our purposes. Typically, the treatment depends on identifying the
antichains, subsets of incomparable events in the poset, antilinks, subsets containing ex-
actly two incomparable events in the poset, and the poset width, the number of links in
the largest antichain. Readers interested in strategies for defining layers in the context of
causal set theory are referred to [29].
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a

c

b

de

f

L0

L1

L2

Figure 2.5: An illustration of a causet’s layers. Elements a and b are assigned layer L0, while
elements e, c, and d are assigned to layer L1. Layer L2 contains only element f . This document
admits only an approximate assignment of layers in place of a rigorous mathematical assignment.
Moreover, since one is free to designate any root element, the assignment of layers is somewhat

arbitrary.

Volume, Length, and Metric

Consider the proper distance between two timelike points in Minkowski spacetime, a and
b, which we have identified as the height of the Alexandrov interval I(a, b):

L(a, b) =

∫
C

ds =
√
−gµν(aµ − bµ)(aν − bν) (2.8)

where C is the geodesic connecting the two points (compare with Equation (1.2) on
Page 2).

Suppose now that the events a and b are infinitesimally separated and parameterize
C as xµ(u), where u is some intermediate event such that a ≺ u ≺ b and (a, b) → u.
Equation (2.8) can then be written as

L =

b∫
a

du

√
−gµν

dxµ

du

dxν

du
(2.9)

Moreover, the volume of the interval I(a, b) is given in the continuum as

V =

∫
Ω

√
−g dnx (2.10)

where Ω is some n-dimensional volume and g = det(gµν). For a flat manifold, the metric
tensor is given by

gµν = ηµν = diag(−1, 1, 1, ..., 1) (2.11)

and the volume becomes

V (a, b) = CnL
n (2.12)

where the prefactor Cn is given by the volume of the intersection of two conical hypersur-
faces in an n-dimensional flat Lorentzian manifold (see Figure 2.8 on Page 35):

Cn =
π

n−1
2

2n−2n(n− 1)Γ
(
n−1

2

) (2.13)
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Prefactor for the volume of two conical hypersurfaces
for various dimensions

n 1 2 3 4 5 6

Cn 1 1
2

π
12

π
24

π2

160
π2

360

As decimal 1 0.5 0.262 0.131 0.062 0.027

Table 2.1: Reference table for comparing the volume prefactor, Cn, for a flat spacetime to the
dimension, n, of the spacetime considered. Copied from a colloquium presentation given by Jan

Myrheim [39].

where Γ is the gamma function,

Γ(n) = (n− 1)! (2.14)

Table 2.1 shows the prefactor Cn for various dimensions of Lorentzian manifolds.
Myrheim postulates in [41] that the volume can be expressed with a counting measure

as

V = knN (2.15)

where N is the number of events in the interval, n is the Minkowski dimension, and k is
the fundamental discreteness length scale. Moreover, it is postulated that(h

L

)n
∝ N

V
(2.16)

where h is the length of the maximal chain in the poset and using Equation (2.15),

L = hk (2.17)

These results hold for flat spacetime only. To generalize Equations (2.12) and (2.17),
one must return to Equation (2.10) and consider a more general metric tensor. The deriva-
tion can be rather complicated, and considerable care must be taken to observe the appro-
priate sign convention. To avoid introducing conflicting conventions, the derivation will
not be carried out in this space, and the result simply cited from [41, 40] as:

V =
πL4

24

{
1 + L2

[
1

30
R00(0)− 1

180
R(0)

]
−O(L3)

}
(2.18)

for 4D curved spacetime, although the expression can be generalized to any n dimension.
Note that in an empty region of spacetime, Rµν(0) = 0, R(0) = 0 and Equation (2.18)
reduces to Equation (2.12), as expected. Readers interested in the details of the derivation
may refer to [41] for the original derivation and [9] for a more detailed derivation.

It is worth taking a moment to fully appreciate this result. Since Equation (2.18) must
hold for any orientation of the time component of a given interval in curved spacetime, all
components of the Ricci curvature tensor, Rµν may be recovered from the causal informa-
tion in the continuum alone [28, 21].
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2.2.2 Action and Locality
Benincasa-Dowker Action

Consider the Einstein-Hilbert action,

S =

∫ [
1

16π
(R− 2Λ) + LM

]√
−g dnx (2.19)

where R is the Ricci curvature scalar, Λ is the cosmological constant, LM is the La-
grangian density describing matter fields, g = det gµν , and n is the dimension. By impos-
ing

δS = 0 (2.20)

one may use Equation (2.19) to derive Einstein’s field equations, Equation (1.11).
Suppose now that Λ = LM = 0, such that the action,

S =
1

16π

∫
R
√
−g dnx (2.21)

describes some empty region of spacetime. In other words, Equation (2.21) is the gravita-
tional action, with the gravitational Lagrangian density given by

Lg = R
√
−g (2.22)

This integral is very similar to that encountered in Equation (2.10), although now the
integrand contains a factor of R, a quantity that we have no simple way of measuring
within in the discrete causal set. The motivation for this section is then to find some
alternative definition ofR for a causal set that can be computed from the causal information
alone, then insert it into Equation (2.21) to define the action on a causal set.

Given this background, let’s reconsider the meaning of a manifold. Mathematically, a
manifold is defined as a topological space covered by an atlas of at least one map [40].
Simply put: we have some set of points and their neighborhoods (the topological space),
along with a collection (the atlas) of at least one function (the map) that assigns to each
element in the set a corresponding point in R (the manifold), such that the structure of the
set is preserved. To be more clear about how this will help us, we can consider continuous
spacetime to be our manifold, our topological space to be the causal set (we may as well
choose a discretized 2D Minkowski lattice space in light-cone coordinates with lattice
spacing lp to serve this purpose), and some scalar function, φ(u, v) that assigns some
point in R to each lattice site.

What should this scalar function look like? Synge’s world function, σ(x, y), gives half
of the square of the geodesic distance between some points x and y. In flat Minkowski
spacetime,

σ(x, y) = −1

2
ηµν(yµ − xµ)(yν − xν) (2.23)

so we may as well choose

φ(x) = �σ(0, x) (2.24)
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z

t

vu

x = (u, v)

y = (u− lp, v − lp)

Figure 2.6: A discretized 2D Minkowski space represented by a light cone lattice and some
sprinkled events. The lattice need not consist of straight lines, and in the more general case, the

coordinate axes will be curved.

where 0 is the origin. In the flat case, this is

φ(x) = −4 (2.25)

For a curved spacetime, φ(x) is not constant, and from this, one may characterize the
curvature scalar. It has been shown that [28]

R(0) = ��σ(0, x)|x=0 (2.26)

For the discrete case, Equation (2.21) becomes a sum, and we are immediately confronted
with the fact that any given point in the space, 0, has an infinite number of x along the null
surface of its past light cone.

In Appendix A, it is shown that the discrete approximation of the d’Alembertian is
given by

�φ ≈ 2

D

φ(u, v)− φ(u, v − b)− φ(u− a, v) + φ(u− a, v − b)
ab

(2.27)

The limit a −→ 0 with ab constant gives the infinitesimally skinny interval between
x = (u, v) and some event y = (u − a, v − b) along its past light cone extending to
infinity, and it is easy to see that in this limit, Equation (2.27) approaches 0, such that
contributions to the d’Alembertian of intervals extending infinitely down the light cone
can be neglected [54]. Note that this is a completely general result.

Sorkin has proposed a discrete version of Equation (2.27), a general expression for the
d’Alembertian ([3, 4] citing [49]):

B(d)φ(x) =
1

l2

(
αdφ(x) + βd

nd∑
i=1

C
(d)
i

∑
y∈Li

φ(y)

)
(2.28)
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d αd βd
1d −1 2
2d −2 4

3d − 1
Γ( 5

3 )

(
π

3
√

2

)2/3
1

Γ( 5
3 )

(
π

3
√

2

)2/3

4d − 2
Γ( 6

4 )

(
π
6

)2/4
2

Γ( 6
4 )

(
π
6

)2/4

5d − 1
Γ( 7

5 )

(
π2

20
√

2

)2/5
1

Γ( 7
5 )

(
π2

20
√

2

)2/5

6d − 2
Γ( 8

6 )

(
π2

45

)2/6
2

Γ( 8
6 )

(
π2

45

)2/6

Table 2.2: Reference table for the coefficients of αd and βd for 1-6
dimensions. Copied from Dowker and Glaser’s table in [17].

where d is the dimension, l is a discreteness length scale (i.e. the “lattice spacing” of the
approximating space), and φ(x) is the scalar field. The derivation of this expression will
not be explored in this space, but the author will offer some brief comments. Rather than
summing over each nearest neighbor, the prescription becomes to sum over the layers, Li,
with event x as the root, residing to the causal past of event x, as reflected in the second
summation. The discreteness length scale is typically set equal to

l = lp = 1 (2.29)

The limit of the first summation, nd, may be infinite, but it is minimally bound by

nd =


d
2 + 2 d even

d−1
2 + 2 d odd

(2.30)

This condition is imposed by the cutoff limit V = l2p, c.f. Equation (2.17) on Page 23.
This limit is justified by the preceding discussing on the vanishing contribution to the
d’Alembertian from distant layers. Note also that the 2

D from Equation (2.21) is expressed
in Equation (2.28) as αd and βd, coefficients characterizing the dimension of the space,
and C(d)

i , characterizing the curvature of the space [4, 17, 24]. Table 2.2 gives the values
for αd and βd in up to 6 dimensions and Table 2.3 gives the values for C(d)

i in up to 7
dimensions. The closed-form expressions for βd and αd are given by

βd =


2Γ( d

2 +2)Γ( d
2 +1)

Γ( 2
d )Γ(d)

c
2
d

d d even

d+1
2d−1Γ( 2

d +1)
c

2
d

d d odd
(2.31)
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d C1 C2 C3 C4 C5

1d 1 − 1
2

2d 1 −2 1

3d 1 − 27
8

9
4

4d 1 −9 16 −8

5d 1 − 215
16

225
8 − 125

8

6d 1 −34 141 −189 81

7d 1 − 6307
128

14749
64 − 10633

32
2401
16

Table 2.3: Reference table for the prefactors C(d)
i for 1-7 dimensions.

Copied from Dowker and Glaser’s table in [17].

and

αd =


−2c

2
d
d

Γ( d+2
d )

d even

−c
2
d
d

Γ( d+2
d )

d odd
(2.32)

while the closed-form expression for the coefficients C(d)
i is given by

C
(deven)
i =

i−1∑
k=0

(
i− 1
k

)
(−1)k

Γ(d2 (k + 1) + 2)

Γ(d2 + 2)Γ(1 + dk
2 )

(2.33)

C
(dodd)
i =

i−1∑
k=0

(
i− 1
k

)
(−1)k

Γ(d2 (k + 1) + 3
2 )

Γ(d+3
2 )Γ(1 + dk

2 )
(2.34)

Note that the lower case cd in Equations (2.31) and (2.32) are not to be confused with
coefficients C(d)

i , but rather

cd = Sd−2
1

d(d− 1)2
d
2−1

(2.35)

where Sd−2 is in this context the volume of a d− 2 dimensional unit sphere:

Sd−2 =
π

d
2

Γ(d2 + 1)
(2.36)

Table 2.4 shows the Sd for d = [1, 6].
The discrete d’Alembertian provided by Equation (2.28) is very valuable in causal

set theory for a number of reasons. The first thing to note is that the C(d)
i introduce an

alternating parity in the first sum, which allows it to converge. Secondly, although the
expression is dependent on the dimension, d, the d’Alembertian is the same regardless
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Chapter 2. The Fundamentals of Causal Sets

of the causal set it is applied to. One will need to use some estimator to approximate
the continuum dimension; the Myrheim-Meyer dimension discussed in Section 2.2.3 is an
excellent candidate. This project will instead impose a dimensionality a priori.

Prefactor for the volume of a d-ball
for various dimensions

d 1 2 3 4 5 6

Sd 2 π 4π
3

π2

2
8π2

15
π3

6

Table 2.4: Reference table for comparing the volume
prefactor, Sd and the dimension d for a d-ball.

Recall Malament’s theorem, which
states that the bijective map between
two spacetimes that preserves their
causal structure is a conformal iso-
morphism. In other words, as long as
the ordering relations between points
in the causal set are preserved, any
other arbitrary causal set may describe
the same spacetime, up to local vol-
ume fluctuations. To see this, consider
again Figure 2.6. In the depicted sce-
nario, the interval I(y,x) contains just

one point. Yet, when subject to a Lorentz boost, the interval will become “stretched” down-
wards while containing a fixed volume, while the position of the points remain invariant.
We have already shown what happens when the interval is stretched infinitely along the
light cone. What about the more immediate relations? A coordinate transformation leaves
the metric (and therefore the geometry) invariant, and yet in the limit of an infinite density
of points, even the most modest Lorentz boosts will change the number of points within
the interval with a probability that approaches 1. The operator in Equation (2.28) will then
fluctuate, yielding a different result for the d’Alembertian (and therefore for the action) on
causal sets that purportedly describe the same spacetime [23].

To address this issue, Sorkin introduces a non-locality scale, ξ, over which the d’Alembertian
is “smeared” to correct for these fluctuations, providing a more reliable average over the
causet. The resulting expression for the d’Alembertian is then given by

B(d)φ(x) =
1

l2

(
αdφ(x) + βd

nd∑
i=1

C
(d)
i

∑
y∈Li

φ(y)

)
(2.28)

B̄(d)φ(x) =
1

ξ2

(
αdφ(x) + βdε

∑
y≺x

fd(n(x, y), ε)φ(y)

)
(2.37)

where the smearing function, fd(n, ε), is given by

fd(n, ε) = (1− ε)n
nd∑
i=1

C
(d)
i

(
n

i− 1

)(
ε

1− ε

)i−1

(2.38)

and

ε =

(
l

ξ

)d
(2.39)

and n is the chain length between events x and y.
Note that the latter summation in Equation (2.28) has now been replaced in Equa-

tion (2.37) with a summation over all y ≺ x. Naturally, we will require this non-locality
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2.2 Kinematics

scale, ξ, to be larger than the discreteness scale. After all, this would also render the cor-
rection useless, as in the limit l→ ξ, Equation (2.37) simply reduces to an enumeration of
events in the interval and there is no effective smearing. Suppose we have some interval of
height h. In essence, ξ tells us that for the h − 1 layers to the causal past of the maximal
event in this interval, elements in up to ξ of these layers might be assigned to the first layer
under Lorentz transformations. Clearly, the first condition must be

l < ξ (2.40)
(2.41)

Moreover, it can be readily seen that for ξ < nl, f(n, ε) ≈ 0, which means that the
smearing only accounts for intervals of cardinality less than 1/ε, potentially leading to
infrared errors [55]. An additional condition is then given by

nld > ξd (2.42)

We therefore demand

1

n
< ε < 1 (2.43)

where n = h is the length of the maximal chain in the set (i.e. the height). It is satisfying
to note that for n −→ ∞, the lower bound on ε effectively vanishes–as expected–and in
the limit ε −→ 0, Equation (2.37) reduces to Equation (2.28).

It has been shown in [49] that

lim
ρ→∞

B̄(d)φ(x) = �(d)φ(x) (2.44)

for flat spacetime, where ρ is the density of events, i.e. the discrete d’Alembertian is
successful approximated by its continuum counterpart.

The question is now whether or not this this operator holds for curved spacetime.
Dowker and Glaser demonstrate in [17] (as well as in [4] and [49] by Benincasa and
Sorkin, respectively) that in the case of a curved spacetime, there is a correction term:

lim
ρ→∞

B̄(d)φ(x) = �(d)φ(x)− 1

2
Rφ(x) (2.45)

Finally, one can recover the Ricci curvature scalar, provided the test field, φ, is appro-
priately chosen. What is φ? Thus far, we have simply identified it as some function that
takes points from the discrete lattice and assigns them a value in continuous Minkowski
space; the d’Alembertian of Synge’s world function was given as a suitable scalar field.
Unfortunately, expanding on this discussion in detail is simply not a detour that this au-
thor is equipped to provide in this document. Suffice to say that in the context of Equa-
tion (2.25) and (2.23), σ is constant for an approximately flat spacetime and φ = �σ(0, x)
is a scalar, as required. There are a few more considerations that must be made when
choosing φ, but these details will not concern us in this space and [3] will simply be cited
for this purpose. Before this final step, it is worthwhile to review what has been done.
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Chapter 2. The Fundamentals of Causal Sets

First, it has been demonstrated that the operator B may indeed be used to approximate
the continuum d’Alembertian, which may in turn be used to define the Ricci curvature
scalar. Moreover, despite expectations, the operator is useful in curved spacetimes as well.
Second, it has been demonstrated that despite the radical non-locality of causal set the-
ory, causal relations extending infinitely along the light cone of some causal event provide
vanishing contributions to the d’Alembertian and can be ignored. This allows us to apply
a volume cutoff limit for the sum over layers, making the expression more manageable
for computations. Third, in addressing the non-trivial fluctuations arising from Lorentz
transformations not extending to infinity, a smearing function was introduced to account
for Lorentz invariance.

Using Equation (2.25) and selecting φ(x) = −4, Equation (2.45) then becomes

lim
ρ→∞

B̄(−4)|x = −1

2
R(−4) (2.46)

Here is the long-awaited definition of R; the scalar curvature of a causal set at event x is
given by

R(x) = −2B̄|x (2.47)

Summing Equation (2.47) over all x ∈ C gives

∑
x∈C

R(x) = − 1

ξ2

(
αdN + βdε

N−2∑
n=1

Nnf(n, ε)

)
(2.48)

where the equations ∑
x∈C

φ(x) =
∑
x∈C

δxy = N (2.49)

and

∑
x∈C

∑
y≺x

φ(y) =

N−2∑
n=1

Nn (2.50)

were used and where

Nn =

{
Number of links in the set n = 1

Number of intervals with volume n-1 n ≥ 2
(2.51)

i.e. N2 is the number of length-2 chains,N3 is the number of length-3 chains and so-called
diamond posets (two incomparable events in the middle layer), and so on.

With the d’Alembertian in hand, we can finally return to Equation (2.21),

S =
1

16π

∫
R
√
−g dnx (2.21)
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2.2 Kinematics

Inserting Equation (2.48) (the factor 16π−1√−g was added only to account for the con-
tinuum case, but since we now have a discrete expression, it can be removed) gives the
Benincasa-Dowker Action:

S[C] = lim
ρ→∞

∑
x∈C

R(x) (2.52)

=
∑
x∈C
−B̄|x (2.53)

= −
(
αdε

2
dN + βdε

2+d
2

N−2∑
n=1

Nnf(n, ε)

)
(2.54)

Note that Equation (2.54) is written using natural units such that ξ = ε−
1
d .

One final simplification will be made. Note that the smearing function, Equation (2.38),
introduces a factor (1− ε)n for each successive term in the leading sum over n, and since
Equation (2.43) provides ε < 1, as long as an appropriately small ε is chosen, higher or-
ders in n will be negligible (in fact, Sorkin himself suggests ε� 1 in [49]). Thus, for this
project, the summation limit N − 2 in Equation (2.54) will be replaced with the height of
the causet and ε = 1

N .
Putting this all together, the final result is the Benincasa-Dowker action,

S(d)[C] = −αd

[
ε

2
dN + ε

2+d
d
βd
αd

height∑
n=1

Nnf(n, ε)

]
(2.55)

where

f(n, ε) = (1− ε)n
nd∑
i=1

C
(d)
i

(
n

i− 1

)(
ε

1− ε

)i−1

(2.56)

It is important to note that this action is not in general additive. As Benincasa points
out in [3], if the action were additive, Equation (2.55) would simply be a sum of the
contributions of each element and in effect, S[C] ∝ N . Rather, the action is bi-local, such
that for some timelike partitioned subsets X and Y , the action of the causet C = X ∪ Y is
given by

S[C] = S[X,X] + S[Y, Y ] + S[X,Y ] + S[Y,X] (2.57)

where S[X,Y ] refers to the action of the interval between the maximum point of subset
X and the minimum point of subset Y . This behavior significantly frustrates the com-
putational methodology, since few of the causets considered are Alexandrov intervals. To
address this issue, this project adapts some simplifying assumptions about the causets. See
Section 3.4 and Chapter 5 for more.

To conclude this section, the smearing functions, Equation (2.56), are given in up to
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four dimensions:

fd =



(1− ε)n
[
1− n

2

(
ε

1−ε

)]
d = 1

(1− ε)n
[
1− 2n

(
ε

1−ε

)
+ 1

2n(n− 1)
(

ε
1−ε

)2
]

d = 2

(1− ε)n
[
1− 27

8 n
(

ε
1−ε

)
+ 9

8n(n− 1)
(

ε
1−ε

)2
]

d = 3

(1− ε)n
[
1− 9n

(
ε

1−ε

)
+ 8n(n− 1)

(
ε

1−ε

)2

− 4
3n(n2 − 3n+ 2)

(
ε

1−ε

)3
]

d = 4

(2.58)

Locality

Suppose some event 0 at the origin of its light cone were causally related to some event
b several decades and some light years along its future light cone with no intermediate
relations between the two. In this case there is no way to distinguish this relation from,
e.g. the relation between a and c, a third event timelike separated from a by a Planck
time in a Hasse diagram from the causal information alone. Causal set theory is said to be
radically non-local. What we need now is some Lorentz invariant quantity by which we
can define a local region.

Thus far, we have encountered just two observables that are by definition Lorentz in-
variant: the proper distance (Equation (2.8)) and the volume (Equation (2.10)). As we
have seen, neither of these observables contain the requisite information for defining a lo-
cal region (if the poset is embeddable in a manifold, then the dimension estimators are also
in theory Lorentz invariant, but this doesn’t help us with our locality problem). Consider
Figure 2.7, adapted from Glaser and Surya’s paper in [25]. Both the points a and b form an
Alexandrov interval with the origin and from the perspective of volume and length consid-
erations, they may both be considered local regions in the causal set. Nonetheless, while φ

z

t

a

bu v

Figure 2.7: Point a resides in a region that is local to the origin, while b does not. Neither length
nor volume may be used to distinguish local regions. Adapted from a figure provided in [25].
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is constant at 0 and a, it is not constant at b; event a therefore lies in a local neighborhood
of 0, while b does not.

The discrete operator (with the smearing function) is yet another Lorentz invariant ob-
servable, and while Equation (2.28) is non-local, Equation (2.37), in which the non-locality
scale is taken to be equal to the discreteness length scale, is well suited to a definition of
locality. In [25], Glaser and Surya give a definition of a local region in a causet using the
abundance of intervals in a causet. Using sprinklings of local regions, Glaser and Surya
define a rigidity criterion with 〈Nd

m〉 that candidate causets must satisfy in order to be local
regions.

A poset is said to be strongly d-rigid if

Nm(C) ∼ 〈Nd
m〉(N ±

√
N) n 6= 0 (2.59)

where, Nm(C) is the number of m element inclusive orders in the d-dimensional causet C
(N.B.: Notice the change in convention!),6, 〈Nd

m〉 is the expectation value of the number of
n element inclusive orders over an ensemble of manifoldlike, d-dimensional C (obtained
from analytic calculations, confirmed by simulated sprinklings), and N is the number of
events in the set. A poset is said to be weakly d-rigid if it contains subsets that are strongly
d-rigid. Strong d-rigidity is (one) condition for a causal set to be embeddable in flat d-
dimensional spacetime and a strongly d-rigid causal set is said to be “local”. Furthermore,
the presence of a large family of strongly d-rigid subintervals in a weakly d-rigid causal
set is a condition for its embeddedness in a curved d-dimensional spacetime.

The expectation value for each Nm over the dimensions arises from a geometric argu-
ment whose details will be subdued in this paper. A derivation of the concept can be found
in the appendices of [25]. For the purposes of this paper, the behavior of the characteristic
curve for the abundance of m order intervals will be compared qualitatively with those
found in [25]. The closed-form expression for 〈Nd

m〉 can be found in Chapter 4.1.2.

2.2.3 Dimension
There are many ways to estimate the dimension of a causal set, and exploring them all is
beyond the scope of this project. This project will primarily concern itself with the use of
the ordering fraction, f , and the midpoint scaling dimension estimator.

Before proceeding, an important caveat must be mentioned. When considering causal
sets, especially in this project, the dimension is only useful insofar as it is variable. By the
end of this chapter, the reader will understand that the concept of an “overall” dimension
for a given causal set should be taken with a grain of salt because:

1. For a discrete theory of spacetime, geometrical properties have statistical meaning
only [41],

2. On the mesoscopic scale of a computationally accessible causal set, dimensional
quantum fluctuations become increasingly relevant and at the limit of a single irre-
ducible relation (i.e. a link), geometrical concepts become physically meaningless
as quantum effects dominate completely, and

6N.B. despite earlier promises of simplicity, the convention has been changed here from m + 1 inclusive
intervals to m inclusive intervals for consistency with [25]; this convention will also make the calculations for
〈Nd

m〉 a little simpler. For clarity: m = 0 refers to links, m = 1 are length-2 chains, etc.

33



Chapter 2. The Fundamentals of Causal Sets

3. The individual causal set need not be consistent with continuum geometry; the su-
perposition of causal sets or some other phase transition process (i.e. the transition
from Planckian discreteness to a continuum manifold) may return the appropriate
geometry of the continuum using non-manifoldlike causal sets or subsets.

In general, the concept of an “overall” dimension only becomes relevant insofar as
one considers a sufficiently large causal set, i.e. when one considers the continuum limit,
as discussed in Section 2.3.2. For the same reason, it will also be of little use to con-
sider relatively small intervals. However, dimension estimators for the microscopic scale
have been recently developed that may shed new light on the geometry at this scale; see
e.g. [25]. Moreover, it has been suggested by Carlip in [10] that the erratic (typically two-
) dimensional behavior of infrared orders is a physical, rather than purely mathematical,
phenomenon.

A final note of caution arises from terminology. It is important to distinguish between
the Minkowski dimension (the dimension of the spacetime that approximates the causet at
the continuum limit), the Myrheim dimension (the estimated Minkowski dimension of the
causet using the ordering fraction), and the order dimension. In mathematics, the (poset)
order dimension is defined by the smallest number of total orders whose intersection gives
rise to the poset. This is in general not equal to the Minkowski dimension of the spacetime
the poset is embedded into (if it can be embedded). However, it has been shown that a
causal set can be embedded in 2D Minkowski (flat) spacetime iff it has a order dimension
of at most two [38]. The order dimension will not play a large role in this project, but it
has been useful when considering Monte-Carlo simulations [55].

The dimension estimators should not be interpreted for tests or even conditions for
manifoldlikeness. However, the agreement of several scale-invariant dimension estimators
is often considered an important preliminary condition for manifoldlikeness.

Myrheim-Meyer Dimension

The most popular method of estimating the dimension of the spacetime that approximates
the causet uses the Myrheim-Meyer dimension estimator, first introduced as the ordering
fraction by Myrheim in his 1978 CERN pre-print [41]. For a given Alexandrov interval,
the ordering fraction, f , is given by

f ≡ R

Rmax
(2.60)

where R is the number of order relations in the interval under consideration and Rmax is
the number of order relations of a totally ordered causal set constructed with the same
number of events as the interval under consideration. For an interval with cardinality N ,

Rmax =

(
N
2

)
(2.61)

such that the ordering fraction for a given interval of N events is given by

f =
2R

N(N − 1)
(2.62)
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x

ct

(a) Light cone for event c

x

ct

(b) Light cone for event c′

Figure 2.8: A visualization of the symmetry arguments exploited in order to estimate the dimension
of the spacetime from the ordering fraction of an Alexandrov interval. This is a demonstration for

2D spacetime only; the symmetry arguments do not hold for arbitrary dimensions.

The dimension can then be estimated from the ordering fraction using Table 2.5. In gen-
eral, the relationship between the ordering fraction and the dimension is given by [6] (cit-
ing [38])

f =
3

2

d!(d/2)!

(3d/2)!
(2.63)

Let I(a.b) be the intersection of the past light cone of some point b with the future
light cone of some second point a that is timelike separated from b and let A(a, b) be
the area contained by I(a, b). Consider an ensemble of I(a, b) containing some variable
intermediate point c that is timelike to both a and b (i.e. within the area formed by I(a, b)).
One element of this ensemble is given by Figure 2.8a (for two dimensions), where the
union of the blue and white regions gives I(a, b) and the sum of the areas of the blue and
white regions gives A(a, b). Let

IR = I(a, c) ∪ I(c, b) (2.64)

be the intersection of the past and future light cones of c and I(a, b). Let

AR = A(a, c) +A(c, b) (2.65)

be the area of IR. In Figure 2.8a, IR is given by the blue regions, while AR is the area
contained by the blue regions. The ordering fraction is then given by

f =
〈IR〉i
〈I〉i

(2.66)

where the subscript i denotes that the average is taken over all ensembles.
By symmetry, each event c has some corresponding event in the interval, c′, as shown

in Figure 2.8b, such that for two-dimensional spacetime, the ordering fraction is 1
2 . These

arguments can also be generalized to higher dimensions, as in Table 2.5, although the sym-
metry arguments may only be exploited for the two-dimensional case. Intervals which are
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identically links will of course always return an ordering fraction–and thus dimension–of
1 by construction. Intervals with a height of two do not fare much better for the purposes
of this project. Consider the length-2 interval formed by the ordering of two vertices as in
Figure 2.9. In theory, an event may have an infinite vertex degeneracy and thus the dimen-
sion of an interval constructed from such vertices is not bounded by any means. However,
the rules imposed by the scheme this project uses allows for such intervals to have a di-
mension no greater than two (and in fact, such intervals will always have a dimension
less than two when using the Myrheim-Meyer dimension estimator). Given the discussion
of infrared dimensional reduction in [10], the vertex degeneracy restrictions of Feynman
posets may have further physical justification.

Locality-Based Continuum Dimension Estimator

In introducing a definition of locality (and thereby a test for the manifoldlikeness of topolo-
gies on a causal set), Glaser and Surya also introduce a new dimension estimator that arises
from their methods in [25]. Each of the 〈Nd

m〉 introduced in Section 2.2.2 return character-
istic curves for the abundance of intervals in the causal set for each dimension. Although
this approach presupposes a causal set describing a local region of spacetime, these curves
can be used to estimate the dimension. Moreover, such an approach precludes fractal di-
mensions, although this should come as no surprise, given that the expectation value for
the abundance of intervals is derived from the continuum and defined only for integer
values of d.

Midpoint Scaling

Having established that the number of events in an Alexandrov interval embedded in a re-
gion of a Lorentzian manifold is proportional to the volume of that region in spacetime and
then introducing the correspondence of the height of the interval with the proper distance
of the geodesic in the continuum, one can use the cardinality of the poset to estimate the
dimension. For a given Alexandrov interval, I(a, b) containing some midpoint c, consider
subintervals I1 = I(a, c) and I2 = I(c, b), where c is the event that maximizes the subin-
tervals I1 and I2. Note that this partition need not result in exactly two subsets, but may
result in I1, I2, and the remaining elements in the poset not contained in either of the two.

Ordering fraction of an interval in
various dimensions of spacetime

d 1 2 3 4 5 6

f 1 1
2

8
35

1
10

128
3003

1
56

as decimal 1 0.5 0.229 0.1 0.043 0.018

Table 2.5: Reference table for comparing the ordering fraction, f , to the dimension of the
spacetime of the interval considered. Copied from a colloquium presentation given by Jan

Myrheim [39].
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a

b c d

e

Figure 2.9: A 3-pronged vertex and its T-symmetric vertex ordered to
create a length-2 Alexandrov interval. For arbitrarily large n, n-pronged
vertices have f = (0, 1], and d = [1,∞). For n = 3, the lowest possible

value for f is 0.7.

Since V (L) ∝ Ln, where n is the dimension (c.f. Equation (2.12)) the midpoint scaling
dimension estimator is given by [45]

N1 ' N2 '
N

2n
(2.67)

Inverting this equation, we have

n ≈ log2

( N
N2

)
(2.68)

where N1 and N2 are the number of events in I1 and I2, respectively, and N is the total
number of events in the total interval I(a, b).

Referring again to Figure 2.8, one may informally see that this approach holds in two
dimensions.

A Cursory Look at Subinterval Dimension

Most of the literature reviewed by this author indicates that considering this ordering frac-
tion for any causal set, regardless of whether or not it is an Alexandrov interval, is a close
approximation to the original dimension estimator (see e.g. [5, 55, 45, 46]). As of writing,
this author is unaware of any mathematical proof of this assumption. The validity of this
assumption was subject to a great deal of attention throughout this project, and a cursory
exploration into the issue is given in Section 3.3.2.

This approach is formulated in the following way: suppose there is some causal set
C, with N events containing NA Alexandrov subintervals, labeledAi, each containing Ni
events and Ri ordering relations as in Figure 2.10. The most naïve approach is to consider
the average interval ordering fraction, given by

〈f〉 =
1

NA

NA∑
i=1

2Ri
Ni(Ni − 1)

(2.69)
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Figure 2.10: A causal set where two extremal points and their relations to
the existing events within the set have been added to create an Alexandrov

interval. The blue points are the extremal points a and b, and the blue
dashed lines are the additional relations that are added.

Suppose now that the causal set C is a subinterval of some larger Alexandrov interval,
I(a, b), where a precedes all minimal events in C via links and b is preceded by all maximal
events in C via links (i.e. a partial order is imposed between global extrema in the causal
set and two additional events, then those relations implied by transitivity). The ordering
fraction of the interval containing C as a subinterval is then given by

f =
2(R+N +N + 1)

(N + 2)(N + 1)
=

2R+ 4N + 2

(N2 + 2N + 2)
(2.70)

where the number of relations and events in the subinterval are given by R and N respec-
tively. After adding one event, a, the number of relations is first increased by the relation
between this point and every other existing point in the subinterval. Adding the second
point, b, introduces the same number of relations, plus the relation between a and b.

Meanwhile, the “total” ordering fraction of the subinterval, if one eschews the condi-
tion that the set considered must be an Alexandrov interval, is simply

f =
2R

N(N − 1)
(2.71)

In the case of Figure 2.10, one finds 〈f〉 ≈ 0.94 when using the first method, Equa-
tion (2.69) (where links were not considered), and f = 0.88 using the second method,
Equation (2.70). Meanwhile, the “total” ordering fraction using Equation (2.71) is f =
0.60. One may also note that in this case, it was possible to add only two additional
points to complete the Alexandrov interval, but it need not be so straightforward. A causal
set may include several more extremal events, and the growth dynamics may involve re-
strictive rules (as in this project), meaning that several orders containing many extraneous
events may need to be added to create an Alexandrov interval containing the entire subin-
terval. Additionally, it is possible that the divergence explored in this extremely limited
example may become less severe in the limit N −→∞.

A crude approximation can be made for a more general causal set if one considers the
findings in [29], wherein the number of Alexandrov intervals, NA, and the typical number
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2.3 Dynamics

of relations, R, can be estimated for the limit N −→ ∞ using the Kleitman-Rothschild
theorem. Yet, this has a fairly limited application, as it characterizes the exact space of
posets that one tries to avoid.

Upon closer review, it is rather obvious that the averaging of ordering fractions is a
physically meaningless pursuit. When it comes to the total ordering fraction, a reasonable
approximation may be made to apply the estimation to open intervals. This will be ex-
plored in greater detail in Section 3.2. As it abides by the same principles for estimating
the dimension as outlined here, the discussion is better suited to methodology.

2.3 Dynamics

When considering the configuration space of all posets, the Kleitman-Rothschild theorem
will restrict any given poset to an entropy space that is decidedly non-manifoldlike. As
will be seen in Section 2.3.1, it is poset space that is presumed to give rise to the manifold,
rather than a single poset. The topology on some superposition of posets over all poset
space is proposed to give rise to the manifoldlikeness of spacetime at the continuum scale.
Presented with the contradiction between Action and Entropy, there are two strategies for
reaching synthesis:

1. Limiting the configuration space by ruling out sets whose topologies are non-
manifoldlike (it is tempting to refer this as Causal Dynamical Triangulation (CDT),
but this is already appropriated by another approach to quantum gravity; although
the two are very similar, they have irreconcilably divergent interpretations of causal
events and their relations), and

2. Kinematic Schemes,7 where the entire configuration space of posets contribute to a
sum over histories and give rise to the causal set. The strategy here is to then find the
appropriate rules for the dynamics, presumably using some analogue of the action
for a causal set to develop a quantum measure.

While causets are thought to be unlabeled posets, the Kleitman-Rothschild theorem
technically applies to labeled posets. The distinction is however trivial in the context of
the asymptotic limit, as regardless of the labeling convention, entropy space is nonetheless
dominant. Recall that this project considers a specific class of posets whose vertices are
three-degenerate. If the kinematic properties of this class, or other classes of posets based
on this class, lead to sets that escape the scenario outlined by the Kleitman-Rothschild
theorem, it may have important implications for the configuration space and perhaps even
the amplitudes of sets.

7Again, this term has also already been appropriated by Dribus in [20], but at the very least, it is not radically
different from the typical causal set theory treatment. In particular, kinematic schemes refers to expanding the
configuration space from the space of posets to higher-level multidirected structures. In this context, it may be
instructive to refer to this approach as limited kinematic schemes.
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2.3.1 Path Integral Formulation
Sum Over Histories

Causal set theory has focused primarily on the sum over causal sets approach, an adapta-
tion of the path integral, or sum over histories approach in quantum mechanics. In anal-
ogy to continuous quantum mechanics, the task has been to select classes of causal sets
(conceptualized as the histories of some locally finite region of the universe’s spacetime)
according to a causal set action, i.e. its amplitude. By applying an analagous principle of
least action, the superposition of these sets is expected to return the properties of a contin-
uum geometry. The implementation of this approach has therefore been to “grow” causal
sets stochastically, where partial order relations and/or new events are added according to
this action. Each addition in this growth is referred as a transition.

Up until recently, the subject of defining this action and thus the amplitude on a given
causal set and probability for transition remained unresolved. The focus has more or less
been to prepare a classical growth model that could later be used for a fully quantized
theory. While Rideout and Sorkin provide a dynamics for growth that produce sets that
can be approximated by the manifold in [47], they emphasized that this is a classical
model because the transitions do not depend on any parameters defined by this action.
The Benincasa-Dowker action first gave a causal set version of the Einstein-Hilbert action
in 2 and 4 dimensions and provided initial evidence that causal sets give rise to local
physics [4]. It was later generalized by Dowker and Glaser in arbitrary dimensions in [17].

Despite this phenomenal success and breakthrough for the theory, causal set growth
using amplitudes computed from this action have not yet been implemented, although
Monte-Carlo simulations have been carried out by Surya in [55] (see Section 2.4 for more)
with encouraging results. Cunningham and Krioukov have generated sprinklings of causal
sets and computed the Benincasa-Dowker action on their paths in [12], but report pro-
hibitive numerical limitations owing to the non-locality of the theory, although Glaser and
Surya’s working definition of locality may make simulations of local regions more acces-
sible.

Despite having defined the action for causal sets, its implementation in a stochastic
model is less obvious. In the Feynman path integral formulation, to find the classical
trajectory of some particle between two fixed endpoints, one simply calculates the action,
S, of all possible paths and integrates the contribution from each path given by

eiS[x] (2.72)

over path space, where the action can be easily calculated from the energy of the system, in
turn defined in reference to some substantiative coordinates. The squared modulus of the
resulting complex probability amplitude gives the probability for the trajectory to occur.
In the classical limit where S � 1 and δS ≈ 0, the classical path dominates and reflects
the principle of least action. Mathematically,

Z =

∫
eiS[x]Dx (2.73)

where Dx denotes integration over path space and Z is the path integral. The choice of
Z as the label is for historic reasons: it has a striking similarity to the partition function
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in statistical mechanics; in fact, it is often simply referred to as the partition function in
this context. This resemblance will be exploited later. Each path is assigned an equal
probability and it is the phase difference for each path that gives rise to deviations from
classical behavior; interference terms enable modest non-classical behavior, but suppress
extreme violations.

What is the analogy in causal sets? In this case, we are no longer dealing with the
trajectory of a single particle, but rather the stochastic “growth” of a causal set arising
from contributions from the whole of configuration space. Some (see e.g. [31], [28], and
[14]) opt for an approach faithful to Feynman by modeling (point) particles in the causal
set (generally referred to as the swerve model) in order to model discrete dynamics based
on these path integrals. One approach has been the (analogous) Wiener integral, where the
probability is assigned based on a class of Brownian paths passing through a small region
of spacetime, but as pointed out by Dribus in [20] and Sorkin in [51] (and again in [50]
and [53]), these approaches are necessarily classical.

The most recent approach has been to define some scalar field on the causal set, an
endeavor spearheaded by Sorkin [52], with modest success for a handful of Monte-Carlo
simulations. If the geometric meaning of spacetime is reinterpreted in a discrete Planckian
theory (recall that save their continuum approximation, the posets have no correspondence
to macroscopic geometric properties), then so too must be the field, a criticism that has
been levied against this approach [39]. While the test field described in Section 2.2.2 has
proved useful in developing a kinematics for causets, there is much work to be done in
providing a reasonable physical interpretation for this scalar field. It is certainly founded
on theoretical grounds, but without promoting the “event”, a purely mathematical concept
at the current stage, to some physical object, the theory remains partially undeveloped.
Analagously, the electromagnetic wave is not a philosophical abstract: it fundamentally
consists of real and physical photons; “mathematical object” is an ontologically unaccept-
able description of the fundamental units of the gravitational wave, at least where physi-
cists are concerned. It should be emphasized that the scalar “field” defined on the causet
is a temporary measure that cannot persist if there exists no physical interpretation that the
mathematical formalism describes.

Returning from this digression to the path integral formulation, when generalizing to
the configuration space of posets rather than the trajectories of the particles defined on
them, the analogy shifts to that of integration in quantum field theory. In this context, the
action is referred to as the functional and the key difference is that the contribution from
each field (as opposed to path) is given by

eiS[φ], (2.74)

i.e. the action is now a function of some scalar field, φ(x). The path integral then becomes

Z =

∫
exp

{
i

[
S[φ] +

∫
dnxJ(x)φ(x)

]}
Dx (2.75)

where n is the Minkowski dimension. The integration of amplitudes over fields in QFT is
mathematically imprecise due to the imaginary exponential term, as is the integration over
configuration space in causal set theory, and more will be said about analytic continuation
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in the following chapter. The second exponential term in Equation (2.75) is the source
function, or more precisely

Ssource =

∫
dnxJ(x)φ(x). (2.76)

In the context of causal set theory, the first term in the exponential of Equation (2.75)
can be identified with pure gravitation, while the source function encompasses other non-
gravitational forces. As the source may be defined arbitrarily, allowing Ssource −→ 0
(i.e. an approximately empty region of spacetime), and subsuming long distance physical
source effects into an effective Lagrangian that approximately vanishes (this is in essence
the procedure carried out in Equation (2.30)), Equation (2.75) can be expressed as

Z =

∫
eiS[φ]Dφ (2.77)

Yet for this application, the path integral does not consider fields, but causal sets and
while the former space is continuous (and, perhaps more importantly, uncountably infi-
nite), the latter is discrete (and countably infinite), such that the action is now S[C], the
action of a causal set, and the integral in Equation (2.77) is now a summation

Z =
∑
C∈Ω

eiS[C] (2.78)

where the sum over Ω, the sample space of causal sets, replaces the functional integration
over Dφ.

Configuration Space

The question is now: what is the sample space of causal sets that the path sum should
consider? A possible interpretation arising from the original formulation of path integrals
would suggest that the sample space should be the space of all posets (as these are, we
recall, the class of sets purported to specify spacetime structure). Why stop there? Perhaps
the summation should be taken over the space of all ordered sets–any mathematical object
that can represent any arbitrary geometry, no matter how absurd. After all, path integration
is taken over the space of all trajectories, no matter how classically absurd. One may be
tempted to argue that surely there are restrictions on the space of paths that are integrated
over; is Equation (2.73) taken over loop space or Cauchy surfaces?8 The answer, which
can be stated without having to engage in the lengthy ongoing debates on the interpretation
of quantum mechanics, is emphatically no: there are, for the most part, no limitations on

8Respectively: trajectories that begin and terminate at one point (i.e. closed loops) and trajectories of super-
luminal particles (i.e. spacelike sections of a light cone). This author has been tempted to include Skorokhod
space, the space of discontinuous paths, as well. Upon closer review, there are some limitations to including dis-
continuous paths in QM. The subject of selecting an appropriate measure, or space of paths, is an unresolved, but
by no means notorious problem in physics. Physicists have more or less accepted the lack of mathematical rigor
in defining the configuration space and have been content with starting with an abstract Wiener space and gen-
eralizing from there [51]. This project will simply defer to precedence and assume that the space is bounded by
nothing but our imagination [3]. Dribus has also proposed a more rigorous, albeit much more involved, definition
of the measure using kinematic schemes–see [19, 20].
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the configuration space. Those regions are more than non-classical: they are kinematically
prohibited, and yet are included in the path integral (in the Feynman formulation at the
very least). The phase difference simply erases these trajectories in the classical limit, but
they are very much still there in the entirety of configuration space, the integration space.
By analogy, the configuration space of causal set theory should include ordered sets whose
topologies are not only non-manifoldlike, but “perverse".

Sumati Surya has provided evidence for manifoldlike causal sets when summing over
Ω2D, the sample space of 2D partial orders grown using the Benincasa-Dowker action
in [55]. However, as Surya points out, such a model is more akin to causal dynamical
triangulation (and compares the results with that of Ambjørn, et. al. in [2], concerning the
sample space of 4D partial orders, but without the use of the Benincasa-Dowker action),
which features Metropolis-Hastings modeling over a restricted region of poset space. The
resulting posets in Surya’s model are just broad enough to allow for non-manifoldlike
topologies, but tend towards manifoldlike posets using the quantum measure provided by
the action. The goal is to use the Benincasa-Dowker action in generalized dimensions to
formulate a quantum dynamics for causal set growth, and perhaps to broaden the configu-
ration space even further.

In the limit S[C]� 1 and δS → 0, any dynamics governed by the action must give rise
to classical behavior, forming an effective litmus for the validity of the Benincasa Dowker
action; it should effectively pick out those posets that are most manifoldlike from a sea
of non-manifoldlike topologies. Conversely, the phase difference of classically absurd
topologies should make their contributions negligible in the classical limit. Yet, it is the
cross terms of the integration over these absurd paths that contributes to the experimentally
(and theoretically) observed interference phenomena at the classical limit. This is precisely
why the path space contains such strange paths: it is a decoherence functional.9 The
analogy to causal set theory further strengthens the argument that the sample space must
include the most comprehensive configuration space available. It has been shown that
a single poset suffices to reproduce the spacetime structure of some region, but one is
tempted to conjecture that more exotic (known or unknown) phenomena arise only in
the superposition of objects in a space encompassing non-manifoldlike posets. Following
Dowker and Halliwell’s work on analogous decoherence functionals in [18], perhaps the
next step is to reinterpret the classical limit as a maximally decoherent (i.e. approximately
diagonal decoherence functional) set of histories and look there for non-classical behavior
within the causal set.

Implementation

Having an expression for the action of a causal set and some ideas for the sample space,
all of the pieces are in place to use Equation (2.78) to grow a causal set. As the Kleitman-
Rothschild theorem has made clear, the number of topologies on a set of N elements is at
least 2N

2/4, such that growing a set with 100 elements involves summing over a sample
space of 10752 sets, of which no more than 0.09% are manifoldlike (and this situation de-

9There is a deeper and somewhat sinister ambiguity lurking in here, arising from the interpretation of quantum
mechanics, but following this thread will quickly unravel the organization and goals of this project, so for the
time being, they will be ignored. It will simply be noted that this author is following a consistent histories
generalization of the Copenhagen interpretation and save the diatribes for some other space.
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terioriates asymptotically). Furthermore, growing the set by adding one element at a time
would mean enumerating those remaining sets in the space that the set at its current stage
could still reproduce (and this is not to mention a given set’s isomorphisms, which need
to be accounted for since the causet is technically an unlabeled poset), a computational
obstacle even if the sample space shrinks with each iteration.

A promising approach can be found in [55]. Starting with some arbitrary poset and
using a Metropolis-Hastings algorithm, Surya exchanges relations one at a time with some
probability determined by the change in the action. In [55], the move is accepted if it
reduces the causal set action and rejected if the change in action is too extreme. In re-
view, Bergtun was on the right track with his Monte-Carlo simulations in [5], but without
a way to implement quantum dynamics, it is natural to expect this model to reproduce
non-manifoldlike topologies on sets. The next step would be to expand this Metropolis-
Hastings algorithm to allow for a larger domain in the sample space, i.e. to arbitrary
dimensions (and perhaps even arbitrary classes of mathematical sets). In this case, the
Benincasa-Dowker action would need to be generalized such that the probability for ex-
change is based on the action for any generalized dimension. One possible strategy would
be to use some other scale invariant measure of dimensionality, like the Myrheim-Meyer
dimension discussed in Section 2.2.3, compute first the estimated dimension of the causal
set after an exchange, and then use the most appropriate expression of the d-dimensional
Benincasa-Dowker action to assign a probability for the exchange. As Section 2.2.3 al-
luded to and as will be seen in Chapter 3, this introduces some theoretical hurdles that
will need to be navigated before a full dynamics can be developed. Namely, as Glaser dis-
cusses in [23], it is difficult to specify rules that do not inappropriately change the causal
structure.

Aside from Metropolis-Hastings algorithms, one may also apply these general prin-
ciples to stochastic growth models, where posets are constructed by adding one event at
time, rather than through exchanges. This will form the second phase of this project.

2.3.2 The Continuum Approximation

Most of the numerical approaches to causal sets reviewed by this author grow causal sets
with no greater than 5000 points. If the causal set hypothesis is correct and these events
are Planckian, even if these causal sets were totally ordered (which one would hope they
were not, as this would not be a very fruitful endeavor), they would describe a spacetime
region on the order of at most 10−40 seconds, while the spatial extent of such a spacetime
would be at most 10−70 times the size of a proton. The region of spacetime in which a
single, stationary grain of sand exists contains 10146 events (not to mention the roughly
1010290

other configurations of posets containing the same number of events), when the
discreteness scale is taken to be Planckian! A gargantuan task for the machines at this
author’s disposal, but not even remotely approaching the continuum limit. Each causal set
must then be “smoothed out”, or coarse-grained in order to represent a larger scale region
of spacetime at the continuum limit.

Another complication arises when ensuring that this process returns a coarse-grained
causal set that preserves the structure of the original causal set, although as Rideout points
out, “one would not expect the topology of spacetime to be four dimensional all the way
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down to the Planck scale... [and] it is likely that even the continuum approximation itself
will break down at Planck distances... [46]” Perhaps one can expect other types of kine-
matic differences as well. Hence, at the current stage of development in the theory, any
definitive statement about a rigourously defined limit is bound to be ill-defined. No mat-
ter which method is used to “smooth out” the causal set, there is always a risk of losing
geometrical information or changing the structure and these issues will be discussed in
Chapter 5.

As with dimension, there are several approaches to coarse-graining, but they will not
be explored in this space. The simplest method is the event decimation approach used by
Rideout and Sorkin in [48], where a subset of events and their relations are selected at
random and removed from the set. The cardinality of the resulting set is determined by
some probability P ∈ [0, 1]. Even at the upper limit of causal set simulations, coarse-
graining seldom returns a “continuum limit”, although the resulting sets are often treated
as fair approximations. The specifics of the coarse-graining procedure used in this project
will be addressed in Section 3.

2.3.3 Manifoldlikeness
This document has covered quite a bit of ground when it comes to characterizing and
measuring the poset. Somehow, with such an abundance of tools at our disposal, we still
have no way of saying whether or not the set is approximated by the manifold. So far, we
are equipped to answer what the dimension of the manifold is, if it is curved or flat, how
large it is, and if it has local regions, provided the causet is actually embeddable in the
manifold. The absence of this discussion is a partial reflection of the lacuna in the current
literature.

While some manifoldlikeness tests have been developed, some are extremely recent
(at the time of writing, at least one of these is only a few weeks old), others are very
stringent and do not allow for small deviations, and other are simply beyond the scope
of this project. Chapter 5.1.1 will deal with the matter of determining manifoldlikeness
is greater detail, but it bears mentioning at this stage that the machinery introduced until
this point collectively serve as conditions for manifoldlikeness (as opposed to tried and
true tests). The agreement of dimension estimators after coarse-graining, for instance,
is a highly cited requirement for manifoldlikeness [28]. The existence of local regions
as proposed in [25] is another. A much weaker case for the composite of indicators as
a test for manifoldlikeness is given by the Kleitman-Rothschild theorem. As such an
overwhelming region of the configuration space is occupied by posets that do not meet the
requirements for embeddedness, it may be argued that posets that pass them have a fair
likelihood of being approximated by the manifold.
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2.4 Current Approaches Within Causal Sets

Sprinkling

This approach deals with producing a causal set that can be embedded into a manifold by
simply sprinkling points into a Lorentzian manifold according to a Poisson distribution.
This is bound to return a causal set that can be faithfully embedded into the manifold, as
it necessarily does by construction. This procedure cannot reveal any new information
about the dynamics of the construction of a causal set, and is therefore a strictly classical
model. However, sprinkling has been critical for causal set theory, as it has enabled the
development of the kinematic tools outlined throughout this chapter.

Classical Sequential Growth

The fundamental principle behind the Classical Sequential Growth (CSG) model is to
construct a set by adding one relation at a time according to a set of rules, i.e. to develop
a dynamics for causal sets. This diction can be misleading because strictly speaking, all
constructions of causal sets are decidedly static. The addition of events to a causal set
does not occur in the same Minkowski “time” that the causal set itself precipitates, but
rather in some artificial, external measure of “time”. The motivation is to develop a model
that classically produces non-entropic posets in preparation for a quantum measure that
can later be applied to the model to select out manifoldlike causets. The most successful
of these models was developed by Rideout and Sorkin in [47], whose dynamics yielded
causets that were almost entirely not KR orders.

Moreover, as Fay Dowker points out in [16], the most promising paradigm for CSG
models is transitive percolation (TP), wherein the additions to the causal set are governed
by a single parameter, p, the probability that the new event will be related to the events in
the existing causal set. According to Dowker, the TP family is conjectured to be the only
CSG model that is CPT invariant.

Although it was introduced earlier, the Kleitman-Rothschild theorem is worth men-
tioning once more, this time with the appropriate preliminaries established. The Entropy
problem that the Kleitman-Rothschild theorem introduces is a more specific discretized
manifestation of the Cosmological Constant Problem that is encountered in every approach
to quantum gravity. As Dowker explains it,

classical behaviour results when the amplitudes of the paths in the path inte-
gral which are not close to a classical path cancel out and do not contribute...
[I]n the primal struggle between Action and Entropy, Entropy looks like it will
overcome a local Action. In other words, an amplitude given by exponentiat-
ing a local action that grows linearly with N, the number of spacetime atoms,
cannot overcome the entropic weight of the vast number of non-manifold-like
discrete configurations. These will then dominate the path sum and there will
be no continuum approximation [16].

To illustrate the scope of these entropically favored orders, for causal sets with just
5000 elements, the Kleitman-Rothschild theorem states that 99.98% of all causal sets that
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can be constructed will form these three-layered configurations.10 Regardless of how the
layers are defined, a KR order will have a height no greater than two, which provides a
very weak test for manifoldlikeness; if the posets are of height greater than two, they avoid
an overwhelming space of non-manifoldlike topologies.

Although the Kleitman-Rothschild theorem offers a quick check of the causal set, hav-
ing a height greater than two does not necessarily imply that the causal set can be embed-
ded in a Lorentzian manifold. Furthermore, a causal set that has more than three layers
may not necessarily have more than three layers after continuum approximations are made
(e.g, after coarse-graining). In any event, if a causal set avoids the situation described by
the Kleitman-Rothschild theorem, it can be said to have passed a first “test" which many
other dynamics have failed.

As Surya points out in [54], there exist more sub-dominant classes of (non-KR-like)
causal sets with non-manifoldlike topologies that have been identified by Dhar in [13],
and similar concerns have been voiced by Loomis in [34]. After 3-layered KR-orders, the
entropically favored orders are 2- and 4- layered posets (trailed by a declining number of
layers as one moves down the hierarchy [43, 13, 54]). That said, the transitive percolation
model has experienced modest success as a “halfway house" to quantum dynamics, even
if the causets were not entirely manifoldlike in [47].

Quantum Mechanical Growth
The strength of causal set theory is that it provides a model in which spacetime is defined
by (and thus arises solely from) events and their relations, rather than existing as an a
priori manifold in which events “live”, a defining characteristic of Dribus’ “causal metric
hypothesis”. This is a radically different interpretation of physics: Feynman diagrams,
for instance, and the probability amplitudes for some interaction they describe, presup-
pose some pre-existing substantiative manifold in which objects interact. The challenge is
then to define some rules governing growth according to quantum mechanical interaction
probabilities independent from models that depend on spacetime locality and even physi-
cal coordinate systems. In this light, the aforementioned growth models have been purely
classical.

While Rideout and Sorkin offer a toy model in [47], they point out that the dynamics of
transitive percolation cannot produce a manifold that holds at the quantum level because
“it is stochastic only in the purely classical sense, lacking quantum interference,” and
“the future of any element of the causet is completely independent of anything ‘spacelike
related’ to that element”.

The backdrop of general relativity and Einstein’s field equations suggests that the only
way to develop a quantum growth dynamics is to allow Action itself to guide causal set
growth. With the closed-form expression for the d’Alembertian for a causal set in d-
dimensional spacetime given by Glaser in [24], an open call for causal set researchers
has been made for studies of the causal set action in different dimensions. While it will
not be explored in this project, this author takes the position that there should be made

10To make things more explicit once and for all: a closed-form algorithm for the enumeration of the number
of partial orders on a (labeled or unlabeled) N -element set is an unsolved problem in combinatorics, with the
exception of exact results for N ≤ 18 (labeled posets) and N ≤ 16 (unlabeled posets); and, of course, the results
from [33] in the asymptotic limit, to which N = 5000 is considered here to be a reasonable approximation.
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Chapter 2. The Fundamentals of Causal Sets

no a priori assumptions about the domain of dimensionality contributing to the path sum
of causal sets. Therefore, the proposition may be to study the causal set action in all
dimensions.

Thus far, only Monte-Carlo simulations of an ensemble of causets with a fixed number
of points and dimensionality have been carried out (see [55]). Stochastic growth models
should also provide an opportunity to study causet dynamics. The goal is to find a means
by which to select posets that are approximated by the manifold and both of these ap-
proaches satisfy this task. While stochastic growth models are, in theory, the only means
by which a “true” dynamics can be developed (i.e. swerve models and defining fields in
direct reference to non-gravitational forces on a causal set), Monte-Carlo simulations are
a perfectly reasonable (and in many ways superior, as will be seen) means to develop a
dynamics of the type described herein.

48



3
Methodology

Underlying the project is a conjecture about the kinematics of causets, arising from
Myrheim’s suggestion that there could be a set of elementary event types, in the way
hadrons are organized by the Eightfold Way, or elements in the periodic table [39].
Myrheim’s suggestion forms the ansatz of the Feynman posets that were chosen for this
project. The central hypothesis is then that there are elementary event types and that they
are characterized by their number of links. The first leg of this voyage, likely to inform
whether or not to continue on this path, is the consideration of events with exactly three
links. The task of this project is not to actually prove this hypothesis, as even encourag-
ing results may not offer proof, nor may discouraging results necessarily preclude their
existence as elementary events.

Thus, the hypothesis ought to be reformulated. Rather than determining whether or not
this class of posets is approximated by 4-dimensional spacetime, the focus is on whether
or not such events could–either on their own or in conjunction with some other features–
contribute to a configuration space whose superposition is approximated by 4-dimensional
spacetime. Moreover, one may ask if such three-degenerate events could conceivably exist
in abundance in a 4-dimensional spacetime.

There are two parts in this chapter, corresponding to two different stages in the project.
In the first, a large collection of Feynman posets is constructed with a classical stochastic
model and their kinematic properties are explored. By organizing an overview of the
posets’ ordering fractions, heights, d-rigidity, Hasse diagrams, and so on, a partial litmus
for embeddability is established. Of particular interest is determining whether or not this
class is abundantly populated by KR orders and if they provide evidence of local regions.

The second stage is motivated by a more stringent hypothesis rejection criteria for
the first stage in light of recent reviews of the work of Surya, Benincasa, Dowker, and
Glaser (see [55, 18, 25, 17, 4]) by implementing quantum dynamical principles in the
causet growth by applying an action principle. Avoiding the entropic space of posets, the
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agreement of dimension estimators, and the existence of local regions are all conditions
for a poset’s embeddedness in the manifold. Nonetheless, these conditions still cannot
conclude whether or not this class of posets are inherently embeddable. A path sum over
the space of classically acceptable paths will of course return classical results. On the
other hand, a path sum over classically absurd paths is unlikely to produce a classical
approximation. By the same token, if this particular class never returns posets that can be
approximated by the manifold, it would serve as partial and suggestive evidence that its
elements are not “fundamental”, or at the very least that they are not the only fundamental
events that make up a physically realistic manifold.

This chapter outlines both the classical and quantum growth models with an expanded
discussion on approximating methods to deal with open intervals that arise during con-
struction.

3.1 Classical Stochastic Growth
The classical stochastic model takes a fixed number of events that initially have no ordering
relation, save for two totally ordered events. Covering relations are then added randomly
(hereafter referred to as a transition) between two events subject to only two constraints:

1. The causal set always satisfies the four axioms of causal sets as stated on Page 18 at
each step in the iteration.

2. Every event vertex may have a degeneracy of at most three and furthermore

(a) For the special case of the “no holes” script, an event vertex may have an
indegree of at most 2 and an outdegree of at most 1, or an outdegree of at most
2 and an indegree of at most 1.

(b) Any event that has a degeneracy less than three is assumed to be linked to some
other event outside of the subset considered, with the direction of the ordering
relation determined by the presently existing links.

On a theoretic level, it should be noted that the resulting causal set is in reality a subset
of the causet that the spacetime approximates, i.e. the resulting set is at most a finite
region of spacetime, even after coarse-graining. Each resulting causet is then expected to
contain at least one event that is related to some other event not included in the set (with
the exception of special configurations that arise when considering Feynman posets–see
Chapter 5 for more).

Vertices
The vertex degeneracy rule was selected as an analogy to Feynman diagrams, and the
Hasse diagrams that result are not intended to represent particle interactions in the literal
sense of Feynman diagrams. The model then allows only for two types of vertices formed
at each event: “Y” shaped vertices inspired by the fundamental Feynman vertices for a
particle interaction as in Figure 3.1, and “fork” shaped vertices that will be referred to as
holes, inspired by the Feynman diagram for a white/black hole (where some liberties have
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3.1 Classical Stochastic Growth

Figure 3.1: Three event vertices inspired by Feynman diagrams. The subclass of Feynman
posets that allows for these events only is referred to as no holes posets.

Figure 3.2: Two additional event vertices inspired by “Feynman” diagrams for black/white
holes. Both the Feynman and Hasse diagrams for such a situation are much more

complicated, and it cannot be overstated that these vertices do not literally describe holes in
either of the representations. The subclass of Feynman posets that allows for these events,

plus those in Figure 3.1 is referred to as holes posets.

certainly been taken in this analogy), as in Figure 3.2.

Although it must be admitted that the divergence from the TP paradigm is fairly ex-
treme (more will be said about this shortly, but suffice to say, this model is by no means
sequential), one may note that transitions are governed by an (implicit, over explicit) pa-
rameter dependent on the probability that a new event will be related to the events in the
existing causal set. In other words, the probability of transition is governed by the number
of “non-saturated” events which have fewer than 3 existing links.

Dealing with Transitivity

Transitivity introduces a number of computational hurdles that can only be resolved by
storing two matrices for the causets at each iteration. At each step, one link is added to
the adjacency matrix, but any additional relations implied by transitivity are not added.
Meanwhile, an auxiliary relation matrix keeps track of the relations and thus “adds in”
transitivity, as this is the only means to establish a condition for avoiding loops (and in the
case of no holes posets, for avoiding holes). This allows for a greater degree of freedom
in the causal set construction, as the direction of the transition is no longer restricted by
an extraneous relation. Consider, for instance, Figure 3.3a. If a link is added between the
free point and the maximal event in this causal set, transitivity imposes an ambiguity in the
Hasse diagram. The Hasse diagram may reflect the relations in the causal set, as in Figure
3.3b, or it may reflect the links in the causal set, as in Figure 3.3c.

If the poset in Figures 3.3 are no holes posets, transitivity will preclude otherwise per-
missible future transitions, and therefore unnaturally restrict the space of posets. Consider
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(a) Three events in an initial
configuration, where no

transitions have been
introduced.

(b) A Hasse diagram that
inadvertently expresses the

relations in the causal set and
thus restricts future

transitions.

(c) A Hasse diagram
expressing only the links in

the causet

Figure 3.3: Depiction of causal set construction using two matrix representations and the
Hasse diagrams constructed from such matrices.

Figure 3.4, a copy of Figure 3.3b where potential transitions are visualized. Despite the
fact that the dashed red line is a perfectly acceptable transition, transitivity precludes it.

Figure 3.4: Transitivity restricts the growth process.
The solid red line shows the offending relation. The
dashed blue lines show allowed transitions, while the
dashed red line shows the acceptable transition that is

precluded by transitivity.

Technically, Figure 3.3b is not a
Hasse diagram at all, as Hasse dia-
grams reflect links only.1 However,
the matrix representation remains am-
biguous unless there are two concur-
rent matrices in use. Without a corre-
sponding matrix for Figure 3.3b, there
would be no restriction on a transi-
tion that maps the set depicted in Fig-
ure 3.3c to the target depicted in Fig-
ure 3.5, a clear violation of the axioms
of causal sets.

The program is then given as
follows: 1) impose a transition
between two events (subject only
to degeneracy and acyclicity con-
straints), 2) update both the ad-
jacency and relation matrices with
this single link only (as in Fig-

ure 3.3c), and 3) update the relation matrix by “drawing in" transitivity, as in Fig-
ure 3.3b to establish the restrictions for avoiding loops (and holes, if applicable).
The significance of this feature of the model should not be overstated. It is simply a
computational tool for constructing the causet, rather than a statement about causet kine-
matics. The presence of two concurrent matrices should not be interpreted as a statement
about causet axioms. Ultimately, it is the relation matrix replete with the transitive axiom

1Recall that in graph theory, a Hasse diagram is the transitive reduction of a DAG, which by definition would
include only the covering relations of a poset.
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3.1 Classical Stochastic Growth

that serves as the causal set in the strictest sense.

Figure 3.5: A loop that results
from neglecting transitivity arising

from the relation matrix.

When the causal set has been completely con-
structed, transitivity is imposed a final time to reflect the
properties of a causal set. During the aforementioned
process, if transitivity is suspended in one of the matri-
ces, the resulting causal set may contain extraneous re-
lations, as in Figure 3.6a. Since transitivity is suspended
only as a matter of computational convenience, it is im-
posed later and therefore this direct link is demoted to
a relation that is already implied, as in Figure 3.6b. On
the other hand, the presence of two chains in Figure 3.6c
does not mean that the poset contains extraneous links
and this poset remains unchanged in the final analysis.
Readers interested in an alternative view on the business of “suspending transitivity” are
referred to [20], where Dribus proposes modes of influence governing the distinction be-
tween each vertex’s covering relations versus the relations implied by transitivity. In this
approach, the two causets indicated in Figures 3.6a and 3.6b are not automorphic and are
therefore distinguishable configurations.

(a) Hasse diagram expressing
only links with an extraneous

relation.

(b) Hasse diagram with the
offending relation removed.

(c) Hasse diagram with two
chains in the path. The links in
this poset are not considered to

be extraneous and are not
removed.

Figure 3.6: There is an extraneous relation in Figure 3.6a indicated by the dashed red line.
In the script, this relation is removed as a link, as it is already implied by transitivity and the

result is given in Figure 3.6b. This is not to be confused with the situation indicated in
Figure 3.6c, where there are two chains between the extremal points in the path. Since the

right-most path is not a link, it is not considered extraneous and no changes are made.

53



Chapter 3. Methodology

Comparison to Other Approaches

Although this project originally took Rideout and Sorkin’s CSG model as its starting point,
it is clear that the only point of similarity between the two is that they are both transitive
growth models that deal with complex networks. While CSG is a percolation model that
features sequential growth, the causets in this project do not “percolate", nor is the process
by any means sequential. In this case, the growth dynamics have been drastically sim-
plified because they no longer treat a strictly classical approach. Although the dynamics
described in the preceding section do describe a classical model, they may be applied to a
quantum model without having to devise of any analogy for the Bell causality condition.

In [47], each transition occurs “in a definite order with respect to some fictitious ‘ex-
ternal time”’, and the authors go to great lengths to emphasize that the order of transitions
in the growth model is purely fictitious. It is therefore difficult to understand the justifica-
tion behind their condition of internal temporality, in which “no element can arise to the
past of an existing element...” as “it would mean that an event occurred ‘before’ another
which intrinsically preceded it [47].” For this author, it seems as though such an event
would occur “before” the other only in the external, fictitious sense, in which case there is
no physical contradiction present. This author would like to offer the possibility that the
distinction between intrinsic and external time has not been treated in its complete nuance
in this space, and the topic will be tabled, as it will not be relevant for this project.

Unlike the original CSG model, the more generalized ‘dynamics’ of this project aban-
don Bell causality as Rideout and Sorkin suggest for an inherently non-local theory like
causal sets, a choice that will have further consequences in the second stage of this project.
For the classical case, the properties of growth dynamics are less important, as the first
stage of this project aims only to construct “complete” regions of spacetime subject to
kinematic constraints only; in other words, the phenomenological question of how the
causet comes into being is ignored in this stage. It should be emphasized that the choice
to abandon Bell causality without an in-depth consideration of the consequences it has for
Bell’s theorem was not taken lightly, but this discussion is better suited for another space.
While the phenomenological question is dropped in this consideration and the action prin-
ciple therefore does not indicate the physical “growth” of a causet, this author argues that
this will bear no impact on the quantum growth model offered in the next section. Each
transition undertaken in the scripts should not be interpreted as a physical process, but
rather a means by which to produce a large and random collection of action-minimized
posets.

It may also be noted that the parameter p, the probability that a new event will be
related to the events in the existing causal set, is implicit rather than explicit in this project.
In the original CSG model, this parameter serves to restrict the configuration space of
posets, with the additional implication that a quantum theory will provide some function
that assigns p its appropriate values. For this project, such a parameter is unnecessary, as
the posets considered presumably already occupy a rather restricted region of poset space.2

2Admittedly, this is just a conjecture, as the enumeration of posets in this class is not available at the time of
writing. It may be interesting to explore classes of posets that have been enumerated and occupy a small region of
poset space. Yet, this is not the space for such an exploration. Readers interested in this direction are offered the
following resources from OEIS, an encyclopedia of integer sequences containing sequences for poset enumer-
ation (http://oeis.org/wiki/Index_to_OEIS:_Section_Pos#posets) and digraph enumera-
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3.2 Quantizing the Classical Growth Model

In the second stage of this project, the quantum behavior of this parameter is encoded in
the action, while the role of p is subsumed by β, an analagous thermalization temperature.

3.2 Quantizing the Classical Growth Model
It has been established that the space of Feynman posets cannot and does not represent
the configuration space of topologies on posets. Initial results using the classical growth
model returned a notable collection of potentially manifoldlike posets, although most were
decidedly unlike 4D Minkowski spacetime. However, one may conjecture that the class
suffers from a more specific entropy problem leading to non-manifoldlike dominance.
This stage of the project is therefore an attempt to insert the class of Feynman posets into a
quantum growth model guided by an action principle. This process introduces significantly
higher computational demands, such that the set cardinality must be considerably reduced.
The general prescription for quantizing the model is as follows:

1. Begin as usual with the set of two partially ordered events. Determine the Myrheim-
Meyer dimension, d, of the causet (unless the dimension was specificied a priori as
it is in this project, it is trivially 1) and its Benincasa-Dowker action in d dimensions.

2. Impose a transition either:

• between two existing events,

• between one existing event and an additional event introduced to the set as in
Figures 3.7a and 3.7b, or

• between two new events introduced as in Figure 3.7c.

Each transition is selected according to the phenomenological (axioms) and kine-
matic (Feynman posets) rules enumerated in Section 3.1.

3. Before accepting the transition, determine the new Myrheim dimension of the causet
and calculate the new action of the system after the transition. Accept if ∆S ≤ 0,
reject if

e−β|∆S| < r (3.1)

where r ∈ [0, 1) is a random number that ensures that the system is approximately
stationary (i.e. ∆S → 0) and β is a thermalization constant.

It is well known that the integral in Equation (2.77) (as well as the sum in Equa-
tion (2.78)) does not converge. Equation (3.1) is the result of Wick rotating Equation (2.78)
by making the time coordinate imaginary, i.e.

ei|∆S| −→ e(iβ)i|∆S|

e−β|∆S| < r (3.2)

tion (https://oeis.org/wiki/Index_to_OEIS:_Section_Di#digraphs), some of which are
replete with closed algorithms, or at least asymptotic limits. More on this will be mentioned in Chapter 5.3.
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a

b

c

(a) Transition c ≺ a is
automorphic to b ≺ c.

a

b c

(b) Transition a ≺ c is
automorphic to c ≺ b.

a

b

c

d

(c) 2(N − 2) automorphic
transitions.

Figure 3.7: 2N initial transitions, where N is the maximum cardinality of the causet considered.

The thermodynamic transition parameter, β, has been introduced in order to frame
the causal set partition function as a thermodynamic partition function to avoid non-
manifoldlike behavior [55, 22]. While Monte-Carlo simulations have been effective in
probing the effects of β, it is more computationally demanding to reproduce phase transi-
tions in a stochastic growth model. This project will consider only coarse intervals of β,
sweeping its value from β = 0.2 to β = 1.4 in intervals of 0.2.

3.3 Intermezzo: Theoretical Obstacles
At this point one encounters some additional theoretical questions that must be addressed
before proceeding. The development of this project was rather dialectic, and went through
several stages before landing on a suitable prescription for quantizing the model. It must
also be admitted that the resulting methodology still needs improvements (a critical re-
view of the model used in this project is given in Chapter 5.2). Rather than discarding
these developments, the reader is offered an insight into this dialectic process, so as to
illuminate potential pitfalls for future researchers. Moreover, Section 3.3.2 contains a the-
orem regarding the approximation of an Alexandrov interval by means of an open interval.
The resulting methodology used in this project is given in Section 3.4 on Page 61, and the
reader may safely skip to this page to continue the methodology report.

There arise two important questions at this stage:

1. How does one calculate the Benincasa-Dowker action of a causet if it is not an
Alexandrov interval?

2. How does one determine the dimension of the causet in the intermediate stages of
the growth model?

3.3.1 Large or Small, the Poset Must be a Causet
The title of this section is at odds with the original philosophy adapted for the classical
growth model. In the classical growth model, it was assumed that the poset, a purely
mathematical object, remained so until the completion of the growth process; it is not until
“completion” that the poset is theoretically promoted to a causet. However, the action is
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S̄2 = Mean(Sred, Sgreen)
(Before Transition)

S̄1 (Before Transition)

Sgreen

Sred

S = Mean(S1, S2)
(Before Transition)

Figure 3.8: The first step of the naïve additivity for the Benincasa-Dowker Action

strictly physical. Thus, if one is to apply an action principle to the growth model, it must
be applied to a physical object. The simplifying assumption of the classical growth model
will not work here.

An earlier version of the scripts used in this project applied a naïve additivity for the
Benincasa-Dowker action, where two events were randomly selected for transition and the
dimension(s) and action(s) for the subset(s) containing the events were calculated, then
added. If any of the subsets containing the relevant events are not Alexandrov intervals,
then a sample of closed intervals from the subset is selected and their actions calculated,
then averaged to return a subset action. The ‘total action’ is then given by the sum of subset
actions. The transition is then imposed, and the action(s) calculated a second time. Fig-
ure 3.8 provides a sketch of the first step of this process. Naïve additivity makes the model
simple, as only those subsets containing the relevant events require calculation (since we
are only interested in their difference).

Unfortunately, as seen in Section 2.2.2, the causet action is bi-local, such that for a
causal set C = A ∪B, the total causet action

S[C] 6= S[A] + S[B] (3.3)

but is rather given by

S[C] = S[A,A] + S[B,B] + S[A,B] + S[B,A] (3.4)

where S[X,Y ] is the action of the interval formed by the maximum of subset X and
the minimum of subset Y . Moreover, this addition presupposes that the causet has been
partitioned along a timelike surface.

At the least one must identify the intervals in the set one wishes to use to calculate
the action, preferably some appropriately partitioned collection of intervals such that their
union returns the entire set. Alternatively, one may consider the open set to be a subinterval
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of some larger closed Alexandrov interval and assume that the abundance of intervals
will approximately retain its distribution. This is the approach adapted in this project.
Any open Feynman poset C with cardinality NC may always be a subinterval of some
Alexandrov interval A with cardinality NA, where

NA = NC +M (3.5)

where M is the smallest number of additional events that would be needed to construct
A. For Feynman posets (and any other class of posets with kinematic restrictions of the
same nature), it is straightforward to see that M is a function of 1) the kinematic vertex
restrictions of the class and therefore the indegree, deg−(v), and outdegree, deg+(v), for
a given vertex v in the set and 2) the number of extremal events in the set.

First, we introduce V , the net vertex degree, the allowed difference between the inde-
gree and outdegree of any given vertex

V = |deg−(v)− deg+(v)| (3.6)

For Feynman posets, this is given by

V =

{
1 No Holes posets

2 Holes posets
(3.7)

With a little thought, one finds that for any given poset containing Next = Nmin +Nmax
extremal events, the number of elements that must be added is given by

M = (Nmin − V ) + (Nmax − V )

= Next − 2V (3.8)

For a poset with no vertex restrictions, M is of course vanishingly small for large N :

M ≈


0 Next = 1

1 Next = 2

2 Nmin ≥ 1, Nmax ≥ 1

(3.9)

Referring to Equation (2.55), one must now determine how to define Nn and ε. The
natural choice is of course to find S[C] with respect to A, as doing so avoids the need
to partition the set to add the action. Computationally, this means not only enumerating
the number of extremal events for each subinterval at each transition, but also explicitly
imposing the additional causal structure ofA. Instead, this project opts to use C, assuming
that this will serve as a fair approximation. A similar approximation will be made for the
Myrheim dimension. This author is not aware of any rigorous proof to justify such an
approximation, and much of the literature reviewed does not make any explicit reference
to the issue. Yet, there appears to be a precedence for its application. The analysis of the
time-asymmetry of the causets in [55] for instance implies the application of the action to
a causet containing open intervals. The matter is very briefly mentioned in [46], where it
is claimed that “because this measure of dimension associates a dimension to any ordering
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fraction, it is sometimes used heuristically to specify the ‘dimension’ of a causal set as a
whole, without regard to whether it represents an Alexandrov set or whether the region
is small enough not to see the spacetime curvature.” The question will be explored on a
preliminary basis in the following section, but the reader should be aware that the following
proof is subject to a number of limitations.

It is in theory possible to consider individual intervals, devising of an algorithm to
apply the bi-local property of the action, and this is likely to be a fruitful strategy suitable
for future work. However, this project will simply assume that the causet is at all points a
subinterval of some larger Alexandrov interval to serve as a preliminary exploration of the
quantum dynamics of Feynman posets.

3.3.2 The Dimension of a Subinterval
Having established that the causet is at all stages a subinterval of some larger Alexandrov
interval, one is forced to confront the dilemma that arose in Section 2.2.3 when discussing
the Myrheim dimension of a causal set.

Theorem 1. Suppose C is an open partially ordered set of cardinalityN = NC containing
Next extremal events. Suppose A is a closed partially ordered set of cardinality NA and
suppose C ⊂ A. Let fC be the ordering fraction of C and fA be the ordering fraction of
A. In the limit N −→∞,

fC ≈ fA (3.10)

and in the limit Next
N −→ 0

∆f = |fC − fA| −→ 0. (3.11)

Proof.

Postulate 1. The number of chains in a finite set containing N elements is given by [42]

R =
4N !

2(log 2)N+1
(3.12)

�

If fC ≈ fA, then

2RC
N(N − 1)

?
≈ 2RA

(NA)(NA − 1)
(3.13)

where RC is the number of relations in C and RA is the number of relations in A. Using
Proposition 1 and Equations (3.5) and (3.8), we have

4(N − 2)!(
log(2)

)N+1

?
≈ 4(N +Next − 6)!(

log(2)
)N+Next−4

(N − 2)!

(N +Next − 6)!

(
log(2)

)Next−4 ?
≈ 1 (3.14)
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where the case V = 2 has been assumed, although in the asymptotic limit, the results can
be generalized to arbitrary values of V . In the asymptotic limit, N � 1, and denoting
α = Next

N , the approximation becomes

N !

[N(1 + α)]!

(
log(2)

)(αN−5) ?
≈ 1 (3.15)

Since log(2)N � N !
[N(1+α)]! , then

lim
N→∞

(
log(2)

)(αN−5)

≈ 1 (3.16)

and

N !

[N(1 + α)]!

?
≈ 1 (3.17)

Clearly, if only a very small fraction of elements are extremal (for a closed Alexandrov
interval, for example), then the subinterval is a very good approximation. Despite ex-
pectations, the approximation even holds in cases where the number of extremal points
approaches the cardinality of the set. Series expansions at N =∞ to first order give

N !

[N(α+ 1)]
≈



0.71 α = 1

0.75 α = 0.8

0.79 α = 0.6

0.85 α = 0.4

0.91 α = 0.2

0.95 α = 0.1

(3.18)

Therefore, for sufficiently large sets, the subinterval will serve as a suitable approxi-
mation for the interval. While this approximation remains unproven for small orders, it
has been suggested that the so-called “dimensional reduction” of posets at this scale may
be an acceptable and even expected behavior [10].

Provided the appropriate conditions on the poset are met, one may now use the follow-
ing methodology for quantum dynamics:

1. Estimate the Myrheim dimension of the interval with respect to its subinterval rela-
tions and cardinality.

2. Calculate the action using the appropriate form of the Benincasa-Dowker action
with respect to the subinterval.

3. Introduce a transition and repeat steps one and two for the target causet.

4. Accept if ∆S ≤ 0 and reject if e−β|∆S| < r.
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3.4 Resulting Methodology Used In This Project

In the preceding section it has been argued that the ordering fraction of some causal set
may be approximated by conceptualizing the set as a subinterval of some larger interval.
However, this approximation needs further study for infrared orders; while the approxi-
mation is well suited for Monte-Carlo simulations, its application to a stochastic growth
model is questionable (consider e.g. the initial set containing a total order of two elements
when N = 2–although this is itself a closed interval, the immediate transitions that follow
are unlikely to be). This project will therefore table the exploration and simply prescribe
the dimension of the poset a priori, testing at 4 dimensions. Although this simplifies the
methodology considerably, doing so has led to significant loss of a so-called “quantum”
quality, as it may be recalled that a truly quantum dynamics should make no a priori
assumptions about the dimensionality of posets.

In this project, the poset will be assumed at all stages to be a subinterval of some larger
interval with fixed cardinality.

Finally, the procedure adapted in this project is given as follows:

1. Begin with a set of two partially ordered events, the subinterval of some larger in-
terval. Prescribe the dimension a priori; this project will consider d = 4. Determine
the action of the subinterval using Equations (2.55) and (2.58), where

ε =
1

N
(3.19)

where N is the cardinality of the subinterval (i.e. those that have already been
“introduced”, i.e. N = 2 before any transitions have been made, N = 3 after the
first transition and so on).

2. Introduce a transition between any of the NC events in the interval (i.e. the “total”
number of events that will be included in the final poset) and calculate the action of
the resulting target set.

3. Accept the transition if ∆S ≤ 0 and reject if ∆S satisfies Equation (3.1).

Classical Model

The resulting analysis of the classical growth model now features two approaches. In the
first, the posets are taken at face value and rather than conceptualizing the resulting ob-
jects as subintervals, a sampling of intervals in each poset will be considered in their own
right. While this approach precludes the study from answering more interesting questions
regarding their embeddedness in a manifold, it does provide an opportunity to study the
internal structure of the posets in this class. This approach also allows us to understand, as
has been suggested by Myrheim, Sorkin, Bombelli, and others, the Planckian causal struc-
ture as a complex system with exotic behavior that is never observed at the continuum
limit. We observe, for instance, only static and integer dimensionality at the continuum
limit, although Planckian subintervals of a causet approximated by the manifold may ex-
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hibit fractal dimensions, and may wildly fluctuate along its chains (i.e. along the causal
analogues of a continuum geodesic), a natural consequence of statistical geometry. In this
part, the qualitative properties of the causet’s intervals will also be explored with Hasse
diagrams. For each of the causets constructed, a total of Nsample intervals with heights
greater than or equal to 3 are randomly selected, where

Nsample =
NintX

X +Nint − 1
, (3.20)

Nint is the number of intervals in the causet, and X is given by

X =
p̂(1− p̂)z2

M2
, (3.21)

p̂ = 0.25 is the sample proportion (chosen to maximize Equation (3.20)), z = 1.96 is the
z-score for a 95% confidence interval, and M = 0.05 is the margin of error.

The sample of intervals excludes intervals with a height less than 3 to avoid overrepre-
senting those intervals that have a Myrheim dimension of 1 by construction. A total of four
samplings are taken: once for each poset with 1800 and 4500 elements. The intervals in
each sampling are measured for their volume, ordering fraction, and length. These results
are used twice. In the first, the measures of a statistically representative sample of intervals
from one poset of each class at each cardinality is stored to explore potential relationships
between kinematic properties for infrared subintervals. In the second, the measures of a
statistically representative sample of intervals from 50 posets of each type are averaged
in order to understand the diversity of subinterval properties across posets. Since an enu-
meration of the length of each interval in the set is required for further computation, the
distributions of interval length are given as absolute values, rather than representative sam-
ples.

In the second approach, the posets are understood to be subintervals of a larger Alexan-
drov interval. This includes an analysis of the estimated Minkowski dimension of the “to-
tal” set, using both the midpoint scaling estimator and the Myrheim dimension. Both the
strong and weak d-rigidities of the causets are calculated in this part, again using the open
interval as a suitable approximation to the larger closed interval that it is a subset of.3 The
heights of the causets are also calculated in this analysis, as well as a crude approximation
of the level structure of the causet.

The benefit of this division of the approaches is that one is now in a position to make
a computational comparison between the Myrheim dimension of the open interval and the
Myrheim dimension of the closed interval that contains it. An interesting task for future
studies would be to impose the additional events and relations that are needed to construct
the interval given the subinterval and compare the ordering fractions to provide a numerical
verification of the approximations made in Section 3.3.2.

Lastly, the single poset containing 4500 elements was coarse-grained five times for
each subclass of Feynman posets, removing roughly 20% of the set’s events at each itera-
tion. The resulting sets contain (roughly) 80, 64, 51.2, 40.96, and 32.77% of their original
values. Although a more effective coarse-graining might be desired given the cardinality

3Technically Theorem 1 does not apply to the abundance of intervals in the open poset, but this issue will be
ignored for the time being.
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of the sets, the algorithm used in this project is at this current stage unstable for large
coarse-graining parameters. While some change in the causal structure is to be expected,
it is a good practice to reject coarse-grainings with extreme deviations in structure. For
each coarse-graining, the kinematic properties were calculated again to explore changes to
the causal structure.

Quantum Model

Due to time constraints, only the holes posets were selected for the quantum model. The
constructed posets from this class contained the most manifoldlike between the two types,
with a significant portion of causets featuring a Myrheim dimension of 4. As the script
no longer needs to look for holes before imposing transitions, the computation time is
significantly reduced when compared with the no holes posets. In this project, a total of
7 causets are constructed using the action principle at each transition, once for each value
of β in 4 dimensions. Initial results using the action principle returned incomplete posets,
where several elements could not be introduced by transitions, resulting in very small
and disconnected posets. Therefore, coarse-graining and detailed computations were not
carried out on the resulting posets.

Coarse-Graining

The event decimation approach was introduced in Chapter 2.3.2. The procedure is given
as follows: for each vertex in the poset, select a random number between 0 and 1; if
the number is less than the coarse-graining parameter, promote the relations between its
outgoing and incoming relations to links and remove the vertex and its relations from the
set. Repeating this process five times (using the poset from the previous coarse-graining)
gives a causal set that contains only approximately 33% of its original vertices, while
representing a region of spacetime comparable to roughly 3 times larger than the original
causal set. Figure 3.9 shows the first step of this process.

(a) Original poset containing 12 elements. The
events that are removed in the coarse-graining

process are indicated in red.
(b) Poset that results after the first

coarse-graining at 50%.

Figure 3.9: Event decimation approach to coarse-graining.
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4
Results

The scripts used in this project provide a wealth of information that may be of use in future
studies, but a portion of the data has proved extraneous for the purposes of this document.
This section will only include the most insightful results in this author’s estimation, while
figures associated with additional data can be found in Appendix B. While some analysis
will be provided in this section, a more in-depth discussion is given in Chapter 5. The aim
of this chapter is simply to provide the immediate results from the constructions.

Section 4.1 offers the results from causets of both regimes constructed using the growth
model. It includes first the interval sampling statistics where the posets are treated in their
own right and explores potential relationships between the observables in the statistics in
Section 4.1.1. Next, the posets are treated as subintervals of a larger Alexandrov interval,
and Section 4.1.2 explores d-rigidity, level structure, and dimension estimators. Finally, a
more in-depth report on the effects of coarse-graining is given in Section 4.1.3.

Section 4.2 gives the results for the quasi-quantum model and illustrates the scope of
the shortcomings in the algorithmic implementation.

4.1 Classical Growth
In general, the results indicate that the no holes posets tend to be subintervals of 1- and 2-
dimensional sets, while the holes posets tend to be subintervals of sets ranging between 4
and 6 dimensions. There exist no relationships between interval kinematic observables at
this scale, although the scatterplot of interval volume and ordering fraction in the no holes
posets is visually suggestive, offering a potential avenue for future exploration. Coarse-
graining reveals a relationship between the two measures for the no holes posets.

The interval sampling analysis reinforces the results found in [10], as regardless of
the overall ordering fraction of the set, the infrared orders within the larger intervals are
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overwhelmingly 1- and 2- dimensional.
Tests for the d-rigidity of the constructed posets return mixed results. While the inter-

val abundance curves of both the entire posets as well as their subintervals do not fit the
characteristic curves provided by Glaser and Surya in [25], larger values of m are in close
agreement and smaller values of m tend towards agreement after coarse-graining, similar
to the results found in [25] for percolated causets. Moreover, the curves are markedly
dissimilar from the curves of KR-orders.

4.1.1 Interval Sampling
Figures 4.1-4.3 give the distributions of mean interval length, volume, and ordering frac-
tion for 50 causets containing 1800 elements for each subclass of Feynman posets. Al-
though the distributions do not fit normal or half-normal distibutions, they offer somewhat
reasonable standard deviations from the mean, suggesting some degree of normality across
each poset. Figures 4.4-4.6 give the distributions of the length, volume, and ordering frac-
tions for the intervals of one causet containing 4500 elements for each subclass of Feynman
posets. Again, none of these distributions fit normal or half-normal distributions. More-
over, the standard deviations from the mean are quite large in this series with the exception
of the ordering fraction, which is nearly negligible for the holes posets, but moderate for
the no holes posets.

These results indicate that while there is a fair degree of consistency from poset to
poset for each subclass (i.e. the distributions are typically similar for any given poset), the
intervals within a single poset are rather varied. In the distribution of intervals for a single
causet, one finds a positive skew for length and volume for both types of Feynman posets,
but this should not come as a surprise. For any interval of cardinality N , the minimum
skewness of the subinterval length distribution is realized by a total order, with N − 1
length-1 intervals (links), N − 2 length-2 intervals, and so on. As the interval deviates
from a total order, there are more and more infrared subintervals available. The same logic
can be applied to the skew of the volume distribution, where the skewness increases even
more rapidly as it deviates from a total order than it does for length.

Figures 4.1-4.3 reveal that the distribution of interval volumes and lengths in the holes
posets is flatter than the comparable distribution of no holes intervals. This indicates that
the holes class exhibit a wider diversity across posets, which explains the topological di-
versity of the resulting sets.

For each type of poset, the scripts used in this project identified one subinterval with
an ordering fraction corresponding with two dimensions and isolated their respective
portions of the adjacency matrix. The Hasse diagrams for each type are given in Fig-
ures 4.10 and 4.11 on Pages 71-72. In each case, one finds very “skinny” orders that are
only a few relations removed from a total order. More will be said about these Hasse
diagrams in Chapter 5.
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(a) Mean length = 16.83
Standard Deviation = 4.815

(b) Mean Length = 22.05
Standard Deviation = 0.54

Figure 4.1: Distribution of mean interval length across 50 posets

(a) Mean Volume = 23.49
Standard Deviation = 8.67

(b) Mean Volume = 287.48
Standard Deviation = 20.88

Figure 4.2: Distribution of mean interval volume across 50 posets

(a) Mean f = 0.98
Standard Deviation = 0.01

(b) Mean f = 0.77
Standard Deviation = 0.02

Figure 4.3: Distribution of mean interval ordering fraction across 50 posets
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(a) Mean length = 17.07
Standard Deviation = 10.745

(b) Mean Length = 30.04
Standard Deviation = 14.19

Figure 4.4: Distribution of interval length in one poset

(a) Mean Volume = 19.78
Standard Deviation = 13.19

(b) Mean Volume = 654.89
Standard Deviation = 596.87

Figure 4.5: Distribution of interval volume in one poset

(a) Mean f = 0.99
Standard Deviation = 0.06

(b) Mean f = 0.74
Standard Deviation = 0.13

Figure 4.6: Distribution of interval ordering fraction in one poset
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Finally, there appears to be no relationship between any of these values at this scale.
The figures provided by the comparison between interval volume and ordering fraction in
the no holes posets invite the possibility of a correlation between the two values, where the
ordering fraction may converge on a single value in the limit of large volume. Moreover,
the ordering fraction appears to converge to approximately 0.636, the “total" ordering
fraction of the poset (reviewed in the following section). Figure 4.7 demonstrates the stark
difference between the two regimes for both the smaller and larger posets.

Nonetheless, multiple attempts to fit curves on the data have indicated that no such
relationship exists. Figure 4.8 provides a fitted curve on the entirety of the data set for the
larger no holes poset. While the curve fits the data well, it fails to converge on a non-zero
value of the ordering fraction. Figure 4.9 shows the results of comparing two fitted curves
in two piecewise vertical regions of the data set, partitioned along the line x = 0.636, the
conjectured value to which the curves might converge. In this case, the optimal curve for
the lower region is a poor fit, and even then, the fit curves for both regions intersect and
diverge rapidly rather than converge on a single value.
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Figure 4.7: An apparent relationship exists between interval volume and ordering fraction for the
no holes posets, but not for the holes posets, regardless of poset cardinality.
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Figure 4.8: Fitted curve on the scatterplot displaying
the relationship between interval volume and ordering

fraction for the 4500-element no holes poset.

If such a relationship existed, it
might provide insights on the transi-
tion behavior of a causet from a dis-
crete theory to the continuum limit.
However, the scale at which such a
transition is thought to occur is ill-
defined, but surely significantly above
that of the 4500-element causet con-
sidered. Expecting continuum-limit
evidence at this scale is wishful think-
ing, and the patterns observed at
this scale are of undetermined signif-
icance. However, this phenomenon
will be explored again when consid-
ering the coarse-grained causets, as
these results are more likely to reveal
continuum-limit behavior.

Appendix B includes the scatter-
plots for the comparison of the other

interval observables for both regimes, as well as the distribution of interval observables
for the smaller 1800-element posets. There are no significant results from these explo-
rations, as the former simply demonstrate no correlation, while the latter distributions are
similar (apart from scale) to those found for the larger 4500-element posets provided in
this section.
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Figure 4.9: Partitioned curve-fitting of the interval volume and ordering fraction scatterplot of the
4500-element no holes poset
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Figure 4.10: Hasse diagram for an isolated subinterval with an ordering fraction corresponding to
two dimensions. This set is a subinterval of an 1800-element holes poset. The node labels are

arbitrary and have no relation to their original labeling in the larger poset.
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Figure 4.11: Hasse diagram for an isolated subinterval with an ordering fraction corresponding to
two dimensions. This set is a subinterval of an 1800-element no holes poset. The node labels are

arbitrary and have no relation to their original labeling in the larger poset.
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4.1.2 Analysis of the Poset as a Subinterval
As subintervals of larger Alexandrov intervals, the posets become more interesting. Before
coarse-graining is applied, the heights of the causets are significantly above the 3-level KR
orders, as can be seen in Figures 4.12a and 4.12b for the smaller 1800-element holes and
no holes causets, respectively. The 4500-element holes poset has a height of 70, while the
4500-element no holes poset has a height of 117.

(a) Mean height = 59.3
Standard Deviation = 14.38

(b) Mean height = 77.06
Standard Deviation = 9.24

Figure 4.12: Height Distributions for 50 1800-Element Posets of each type

Figure 4.13: An order where the number of
levels is greater than its height.

Additionally, the layer structure avoids
the proportionality of KR orders, where
roughly half of the events are distributed
in the middle layer and the remaining half
are roughly evenly distributed on the top
and bottom layers, an optimistic result for
the coarse-graining analysis that follows in
the next section. Figure 4.14 provides a vi-
sual depiction of the level structure of each
type of poset. One curiosity that arises is
that while the height of the holes poset is roughly equal to its number of levels, the number
of levels in the no holes posets exceeds its height by nearly one order of magnitude. While
this may be initially surprising, it becomes obvious if one considers the simple order de-
picted in Figure 4.13. It is plain to see that for any given order that is not an Alexandrov
interval, there is a high probability that the number of levels will surpass the height of the
poset, particularly as the kinematic complexity of the order increases. For an Alexandrov
interval however, the number of levels is expected to be equal to the height plus one.1

1Mirsky’s theorem states that the number of antichains that a given finite poset can be partitioned into is
always greater than or equal to the height. One formulation of Mirsky’s theorem states that a finite poset can
always be partitioned into a number of antichains exactly equal to the height. However, layering requires each
element of a given antichain to have the same distance from a common root element, so there is no guarantee that
the number of a poset’s layers will be equal to its height if an extremal event in the set is chosen.
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Figure 4.14: Level structure of both holes and no holes posets containing 4500 elements. Note the
difference in scale between the two histograms. This reveals two interesting results: 1) the number of
levels in a poset is not necessarily equal to its height and 2) the kinematic properties of the no holes

posets leads to a greater degree of complexity reflected by the number of layers. Note: the direction of
the levels has no significance in these figures and is a remnant of the plotting function used to create

them. In general, both types of posets have monotonically decreasing cardinality as the level increases.

Upon promoting the open sets to subintervals of a closed set, the holes posets spon-
taneously exhibit 4-,5-, and 6-dimensional ordering fractions, while the no holes posets
retain the 2- dimensionality of their constituent infrared orders. It must be critically noted
that the former posets have significantly higher extrema-to-cardinality ratios than the lat-
ter, where on average roughly 25% of the elements in a holes poset are extremal, compared
with 2.5% for the no holes posets. Figure 4.15 on Page 75 indicates the ordering fractions
of each type of poset, alongside the ratio of extremal events. Nonetheless, taking into con-
sideration Equation (3.18) provides a negligible margin of error that does not change the
integer dimensionality of the sets, and these results are taken to be reliable indicators of
dimensionality for the 1800-element sets only.

The larger 4500-element posets are consistent with the results found for the smaller
posets. The 4500-element holes poset has an ordering fraction of 0.018, corresponding to
roughly 6 Minkowski dimensions, a result that is approximately 1.5 standard deviations
from the mean ordering fraction of the smaller posets. The 4500-element no holes poset
has an ordering fraction of 0.615, corresponding to roughly 2 Minkowski dimensions, a
result that is within less than one standard deviation from the mean ordering fraction of the
smaller posets. However, the midpoint scaling approach provides an estimated dimension
of 7 for the holes posets and an estimated dimension of 2 for the no holes posets.2

Recall that the Feynman posets were defined as having vertices with a maximum degen-
eracy of 3. If one imposes the stronger condition that the vertices must have a degeneracy
exactly equal to three, then only the holes posets fit this condition, as at least 1.8% of
the no holes poset’s vertices are found to be two-degenerate, while 100% of the vertices

2See the caption for Table 4.1 for a disclaimer for this result.
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Figure 4.15: Ordering Fraction and Extrema-to-Cardinality Ratio for 50 1800-Element Holes and
No Holes Posets. The mean ordering fraction is 0.0484± 0.0196 for the holes posets and

0.6362± 0.0267 for the no holes posets.

of a holes poset’s vertices are exactly three-degenerate.3 In fact, it is natural to conjec-
ture that there can exist no no holes posets where 100% of the the vertices are exactly
three-degenerate.

The vertices of the holes posets are diverse, and may contain both “Y”-shaped vertices
and “fork”-shaped vertices (c.f. Figures 3.1 and 3.2 on Page 51), but in general, roughly
25% of the poset’s vertices are “fork”-shaped, while the remaining are “Y”-shaped. As
indicated by Figure 4.16, there exists no relationship between the ordering fraction and the
proportion of vertex type. Similar null results are confirmed for the prospective relation-
ship between height and proportion of vertex type.

Before turning to d-rigidity and coarse-graining, it is worth summarizing the findings
thus far. Table 4.1 gives an overview of the dimension estimators and heights for both of
the 4500-element posets constructed.

To determine the d-rigidity of the posets, the closed form expressions of 〈Nd
m〉 pro-

vided in [25] will be qualitatively compared with the interval abundance curves found for
the larger posets constructed in this project. The expectation value for the abundance of
m-inclusive intervals in a d-dimensional poset containing N elements is given by

〈Nd
m〉(N) =

Nm+2

(m+ 2)!

Γ(d)2

(d2 (m+ 1) + 1)d−1

1

(d2m+ 1)d−1

× dFd

(
1 +m, 2

d +m, 4
d +m, . . . , 2(d−1)

d +m

3 +m, 2
d +m+ 2, 4

d +m+ 2, . . . , 2(d−1)
d +m+ 2

∣∣∣∣−N
)

(4.1)

3One exception persists among all 50 holes posets constructed, where exactly one vertex is two-degenerate
and all others are three-degenerate, but this will be considered to be an extreme outlier and neglected in the
analysis.
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where (a)d is the Pochhammer symbol and dFd is the generalized hypergeometric function
(see [25]).
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Figure 4.16: Percentage of vertices that are
fork-shaped versus ordering fraction for 50

1800-Element Holes posets.

Figures 4.17 and 4.18 on Page 77
give the simulated interval abundance
curves for the holes and no holes
posets respectively, along with the an-
alytic characteristic curves given by
Equation (4.1) for d = 2, 3, ..., 5.
These figures include the data for the
poset in its entirety and amounts to
a test for strong d-rigidity. To test
for weak d-rigidity, a selection of the
poset’s largest subintervals were iso-
lated and the abundance of m inclu-
sive intervals within each of these
subintervals have been compared with
the characteristic curves given by
Equation (4.1). Figures 4.19 and 4.20
on Page 78 give the results of this

computation. As Equation (4.1) is a function of volume, only those subintervals with
volume N ≥ Nmax −

√
Nmax, where Nmax is the volume of the set’s largest subinterval

were sampled and plotted. The solid lines represent the mean abundance ofm inclusive in-
tervals across all sampled subintervals, while the shaded region is defined by the minimum
and maximum interval abundance for the sampled subintervals. Moreover, the posets were
not partitioned according to their Myrheim dimensions, although Figure 4.7 on Page 69
indicates that the largest intervals in the holes posets are typically one or two dimensional,
while those of the no holes posets are almost certainly two dimensional.

Dimension Estimators and Height for Each 4500-Element Poset

Type of Poset
Ordering
Fraction

Margin of
Error

Myrheim
Dimension

Midpoint Scaling
Dimension Height

Holes 0.018 ±1.98× 10−3 6 7.05 70

No Holes 0.615 ±0.012 2 >1.66* 117

Table 4.1: Summary of results for dimension estimators and height for both 4500-element posets
before coarse-graining. The Myrheim dimension has been rounded to the next nearest whole

number.
*The midpoint scaling dimension estimator is not available at the time of writing, as simulations

are still in progress. Intermediate results give N2 ≤ 1425, with a volume difference of
N1 −N2 = 658, implying that the midpoint dimension is at least 1.66. Results given in Table 4.2
on Page 84 corroborate the conjecture that the midpoint dimension ≈ 2 with no coarse-graining.
This preliminary results reflects the midpoints between in the top 14% largest intervals in the set

and all other smaller intervals.
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Figure 4.17: Interval abundance curves for a holes poset compared with the expectation value for
characteristic curves for d = 2, ..., 5.
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Figure 4.18: Interval abundance curves for a no holes poset compared with the expectation value
for characteristic curves for d = 2, ..., 5.
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Figure 4.19: Interval abundance curves for a sampling of a 4500-element poset’s largest
subintervals. The shaded regions indicate the minimum and maximum number of subintervals at

each value of m for a sampling of the holes poset’s largest intervals. Each sampled interval
contains approximately 90 elements.

Figure 4.20: Interval abundance curves for a sampling of a 4500-element no holes poset’s largest
subintervals. The shaded regions indicate the minimum and maximum number of subintervals at
each value of m for a sampling of the poset’s largest intervals. Each sampled interval contains

approximately 2660 elements.

78



4.1 Classical Growth

4.1.3 Coarse-Graining
In Section 4.1.1, a potential relationship between interval volume and ordering fraction
was explored with null results. Despite the suggestive appearance of Figures 4.7, no curve
fitting on the data points (c.f. Figures 4.8 and 4.9 on Page 70) revealed convergence to
a nonzero value of the ordering fraction. Figure 4.21 shows the results of this compari-
son for the 4500-element no holes poset after coarse-graining, where the volume has been
scaled by the coarse-graining parameter. Note moreover that the density of data points has
increased, as the entirety of the coarse-graining’s intervals were measured rather than a
representative sample to ensure accurate results. A curve was fitted to the data points (ex-
cluding intervals with an ordering fraction of identically 1 to avoid ultraviolet errors) and
indicates a convergence to f ≈ 0.57 in the limit of infinite volume, reinforcing the orig-
inal conjecture that this subclass of Feynman posets demonstrates a relationship between
interval volume and ordering fraction.

Figure 4.21: Fitted curve on the scatterplot of the interval volume and ordering fraction for the
4500-element no holes poset, now including data points from post-coarse-graining

To understand the prospective transition behavior of each poset, the total ordering frac-
tion and heights of the posets were measured at each stage of coarse-graining. In Fig-
ure 4.22, the height of each type of poset is plotted against the coarse-graining level, while
Figures 4.23 plot the total ordering fraction of each type of poset against coarse-graining
along with the proportion of extremal events in the set. Figure 4.25 gives the approximate
level structure for each type of poset after the last coarse-graining.

Each of the five coarse-grainings of both posets were tested for weak and strong
d-rigidity. As the last coarse-graining containing roughly 33% of the posets’ original
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Figure 4.22: Change in the height of each type of poset as a function of coarse-graining.
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Figure 4.23: Change in the ordering fraction of each type of poset as a function of coarse-graining,
including the extrema-to-cardinality ratio of each corresponding poset.
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elements gives the best continuum-limit approximation, the results from the other four
coarse-grainings will be provided in Appendix B. Figures 4.26 and 4.27 on Page 82 give
the characteristic curves for the entire coarse-graining’s interval abundances (strong d-
rigidity), while Figures 4.28 and 4.29 on Page 83 give the characteristic curves for the
coarse-graining’s largest subintervals (weak d-rigidity).

Vertex Degeneracy for Coarse-Grained 4500-Element
Sets with 33% of the Original Elements Remaining
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Figure 4.24: Distribution of vertex degeneracy for
each 4500-element poset after coarse-graining.

Of particular interest in this part
of the project is whether or not the
sets maintain their causal structure after
this relatively modest coarse-graining.
As the results of this section indicate,
coarse-graining has little influence on
the ordering fractions and level struc-
ture of the posets and each coarse-
graining can be said to represent the
causal structure of its smaller counter-
parts.

Nonetheless, each coarse-graining
exhibits fairly strong changes to its
kinematic properties. While the origi-
nal sets admitted 3-degenerate vertices,
the coarse-grained holes posets contain

up to 13-degenerate vertices, while the no holes posets contain up to 35-degenerate ver-
tices. Figure 4.24 shows the distribution of n-degenerate vertices for each of the types
of posets at the highest level of coarse-graining (limited to 16-degeneracy for clarity; the
incidence falls off rapidly beyond this point).

Figure 4.25: Histograms giving the level distribution of both types of posets after the last
coarse-graining. Note: the direction of the levels has no significance in these figures and is a
remnant of the plotting function used to create them. In general, both types of posets have

monotonically decreasing cardinality as the level increases.
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Figure 4.26: Interval abundance curves for the entirety of coarse-graining of a 4500-element holes
poset containing roughly one-third of its original points. This amounts to a test for strong d-rigidity.
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Figure 4.27: Interval abundance curves for the entirety of coarse-graining of a 4500-element no
holes poset containing roughly one-third of its original points. This amounts to a test for strong

d-rigidity.
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Figure 4.28: Interval abundance curves for the sampling of subintervals of coarse-graining of a
4500-element holes poset containing roughly one-third of its original points. This amounts to a test

for weak d-rigidity.

Figure 4.29: Interval abundance curves for the sampling of subintervals of coarse-graining of a
4500-element no holes poset containing roughly one-third of its original points. This amounts to a

test for weak d-rigidity.
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Finally, Table 4.2 gives an overview of the results found for the coarse-graining of
each type of poset for the dimension estimators and height. Note that the height has not
been scaled according to the coarse-graining parameter. The resulting heights will not
be explicitly scaled in this document, but it is easy to see that each height in the table is
roughly equal to the original height before coarse graining multiplied by the percentage
of elements that were removed from the original set. This is an important measure for
ensuring that coarse-graining does not drastically alter the causal structure of the posets.

Dimension Estimators and Height for Each 4500-Element Poset

Poset Type
# Original
Elements

Ordering
Fraction

Margin of
Error

Myrheim
Dimension

Midpoint
Dimension Height

Holes 3624 0.0187 ±2.2× 10−3 6 7.18 51
2992 0.0192 ±2.5× 10−3 6 7.09 44
2412 0.0188 ±2.8× 10−3 6 6.84 37
1930 0.0184 ±2.6× 10−3 6 6.59 27
1570 0.0184 ±3.2× 10−3 6 6.35 22

No Holes 3650 0.61 ±1.2× 10−2 2 N/A* 97
2955 0.611 ±1.5× 10−2 2 1.97 77
2360 0.614 ±1.8× 10−2 2 1.97 61
1911 0.607 ±2.1× 10−2 2 1.97 50
1555 0.602 ±2.4× 10−2 2 1.98 42

Table 4.2: Summary of results for dimension estimators and height for both 4500-element posets at
each level of coarse-graining. The Myrheim dimensions have been rounded to the next nearest

whole number.
As in Table 4.1, the midpoint scaling dimension estimator is not available at the time of writing for
this coarse-graining, as simulations are still in progress. Unfortunately, intermediate results are not

available for this coarse-graining. This author suggests that the estimated dimension ≈ 2 for the
missing data, as it would be rather surprising to find the most mild coarse-graining dimension to

differ drastically from both the non-coarse-grained dimension and higher levels of coarse-graining.
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4.2 Quasi-Quantum Model

4.2 Quasi-Quantum Model
As alluded to previously, the action-minimizing growth model did not produce appropriate
posets. However, the resulting sets offer theoretic insights as to why this occurs, and the
resulting posets are illustrated in the following pages in order to motivate the discussion
in the next chapter. Figure 4.30 illustrates the graphs (NB: these are not Hasse diagrams,
as they have not been topologically sorted, and therefore not ordered by levels) for the one
of the posets created at varying values for β = 1.4. The other posets are similar to the one
illustrated by Figure 4.30, but are not included in this document for space considerations.
The key difference between Figure 4.30 and the remaining graphs is that they tend to have
a larger number of disconnected singleton subsets.

Figure 4.30: Graph for the poset constructed using the action principle with a
thermalization temperature β = 1.4
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Although the causet does not technically include the multitude of disconnected, sin-
gleton subsets, they have been included in this figure to illustrate the scope of the problem:
namely, very few of the “external” elements are ever connected to the complete causet.
For this reason, this document will eschew a more in-depth analysis of the causets until
further improvements to the growth model have been made during future studies.

It must be emphasized that with the assumptions made in Chapter 3, there is no reason
these sets cannot be understood as causets. After all, if the singleton subsets are simply
understood as events that “do not exist” with respect to the resulting posets, the union of
the remaining disconnected posets can easily be conceptualized as a subinterval of a larger
interval. These sets are not rejected because they are “too non-manifoldlike”. The small
cardinality is not a reflection of their non-manifoldlikeness, but rather a reflection of the
failure of the growth model at its present stage to construct posets. Although one could
conceivably perform an analysis of the manifoldlikeness of these sets, they are rejected
because they are unlikely to have been constructed with the particular kinematic and dy-
namic restrictions that this author had in mind when initializing the study, and this should
not be understood as a statement of the physics behind them.

The Hasse diagram for the set with the largest cardinality of disconnected non-
singleton subsets was found at β = 1.4 and its Hasse diagram is given in Figure 4.31.

Figure 4.31: Hasse diagram for the resulting poset constructed with the action at a
thermalization temperature of β = 1.4. Note that only those subsets containing at least 10

elements were included in this figure. The subset on the left-hand side contains 70
elements, while the subset on the right-hand side contains 11 elements.
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Although this document has alluded to several measures that serve as partial indicators of
the manifoldlikeness of the sets created, no definitive tests for manifoldlikeness have been
offered thus far. The reason for this is twofold. The first is that many of the indicators were
unknown to the author at the time of writing, and have therefore not been explored due to
time limitations. The second is that in truth, the subject of “measuring” a poset’s mani-
foldlikeness by reference to measurements within the causet remains a work in progress
in the field, and the available tests are subject to severe limitations, both in their range of
application and the accessibility of their use.

Section 5.1 will explore this issue closer and offer a preliminary analysis of the man-
ifoldlikeness of the posets created in this project. Moreover, this section will deal with
some other kinematic considerations of the poset not related to manifoldlikeness–simple
observations of the structure and properties of the sets in their own right.

Section 5.2 offers a critical review of the methodology of this project, including both
the guiding principles, as well as the technical details of numerical simulations. Section 5.3
outlines the future direction of this work, including work in progress and planned research
in the near future.

5.1 Resulting Posets

5.1.1 Manifoldlikeness of Feynman Posets

Before we consider the battery of tests that have been (partially) developed for determining
the manifoldlikeness of the poset, let’s take a moment to consider what it means for a
causet C to be “manifoldlike”. Recall that if some causet (C,≺) is approximated by the
manifold (M, g), then the embedding of C is a high probability Poisson distribution inM.
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The most obvious solution is of course to try to make some hypothesis about the kind of
manifold that C could be embedded into based on observations of the kinematic properties
of C, generate an ensemble of sprinklings from the respectiveM, and determine whether
or not the sprinkling and the causet are isometric. The computational machinery is already
in place for such a strategy, as MatLab offers a efficient algorithm for doing so.

However, even with the most efficient algorithm, this approach would be extremely
impractical; for a sufficiently large region of spacetime, there are countably infinite pos-
sible sprinklings, and only a handful of these may be isomorphic to the causet it is being
compared to. Taken from the other direction, another approach offered by Henson in [27]
is to simply embed the causet in a small region of Minkowski spacetime, using the geo-
metric information that has been defined in the set to induce a new partial order, C′ (in
a sense, it is a “reverse sprinkling”). Calculating the proportion of relations in C that are
“lost” in C′ provides a test for the manifoldlikeness of C. While this process can be gen-
eralized to n dimensions and arbitrary curvature, it has only been performed for flat 2D
spacetime, and generalizing to arbitrary spacetimes is rather complicated. A contender for
this test might be found in the no holes posets, which are highly likely to be embeddable
in 2D Minkowski spacetime, but this exploration will be left for future studies.

A less direct and less reliable approach is afforded by the notion of “self-similarity”, or
scale invariant properties of the manifold that may be observed in a manifoldlike causet.
Major, et. al. have developed a method of recovering the topology from a causal set
with reference to higher-level structures–the homology groups of the causet, although this
method is beyond the scope of this project (the reader can find more information about this
test for manifoldlikeness in [36, 35]). A more minimalistic but highly selective approach
in the same direction has been recently explored by Aghili, et. al., where properties of
the chain length distribution within the causet as a function of causet cardinality form a
parameter that exclude the most non-manifoldlike causets in the continuum limit [1].

Conversely, the implicit measures that have been used throughout this project (agree-
ment of dimension estimators, d-rigidity, etc.) offer a test for non-manifoldlikeness. The
strongest statement that can be made about this class of causets is that they are likely to
be embeddable in the manifold (note that almost all causets immediately pass these “non-
manifoldlikeness” tests, so this result is by no means trivial). Henson argues in [28] that
these collective conditions “might yield a necessary and sufficient condition [for manifold-
likeness].” A weaker, yet more appropriate claim is that almost all of the no holes posets
are not prohibited from manifoldlikeness, while the holes poset may not be manifoldlike,
although there may prove to be exceptions for other posets in the same class.

This author concludes with a high level of confidence that the no holes posets are
likely to be embeddable in flat 2D spacetime after coarse-graining and quite possibly in 2D
curved spacetime as well. First, they avoid the entropic space of infrared orders. Second,
dimension estimators agree at all levels of coarse-graining within integer rounding. Third,
their interval abundance curves are in close agreement with the characteristic curves for flat
and curved 2D spacetime, although weak d-rigidity is likely to be an unreliable indicator.
Additionally, as the level of coarse-graining increases, the interval abundance curves come
into closer agreement.

A weaker case is made for the manifoldlikeness of the holes posets. Unfortunately,
due to time constraints, only one poset containing 4500 elements was constructed from
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the holes posets. For this set, the dimension estimators did not agree at smaller scales.
While the poset had a constant Myrheim dimension of 6 at all levels of coarse-graining,
its midpoint scaling estimated dimension fluctated between 6 and 7. Despite promising
ultraviolet-level agreement in the interval abundance curves for the holes posets, the ef-
fects of coarse-graining do not place the curves significantly closer to agreement with the
characteristic curves for flat 6D spacetime (not illustrated due to graphical complications).
However, even at this very modest coarse-graining parameter, the holes posets have inter-
val abundance curves that are in perfect agreement with the characteristic curves for curved
2D spacetime at all levels of coarse-graining. At the time of writing, this author can offer
no insights into the physical implications this has for the subclass of holes posets, save
that these inconsistencies reveal non-manifoldlikeness for this particular poset. It may be
argued that the disagreement between strong and weak d-rigidity should be discarded as an
indicator for non-manifoldlikeness, as weak d-rigidity is unlikely to be a reliable indicator.

Since this subclass offers such a wide diversity of estimated topological properties, fur-
ther study is needed. An improved action principle, either applied to a stochastic growth
model or a Monte-Carlo simulation will most certainly reveal more conclusive results
about the nature of the type of events that make up the holes poset. It is also possible
that the open interval approximation of a closed interval has introduced errors that affect
dimension estimator agreement. However, the margin of error is greatest at the smaller
scales where the disagreement is the most acute, and the computations provided by Equa-
tion (3.18) cross referenced with Table 4.2 do not support this conjecture.

For both types of events, even the most rigorous coarse-graining undertaken in this
project produces causets on the scale of 104 Planck volumes. This author conjectures
that simulations involving larger posets will a) verify the manifoldlikeness of the no holes
posets more rigorously and b) shed light on the mercurial behavior of the holes posets.
Such a study will also allow us to more concretely answer questions about the continuum
limit of each type of poset.

5.1.2 Effects of Coarse-Graining
As indicated previously, coarse-graining on the posets maintained the causal structure to
a large degree, but changed the kinematic properties of the set quite considerably, with
drastic effects for the vertex degeneracy of the posets. Each coarse-graining of the causet C
can be viewed as a new and unique causet C′, even when the causal structure is shown to be
scale-invariant. The dimensionality, level structure, and even subinterval statistics remain
invariant throughout each coarse-graining with nearly negligible variation, and yet, after
coarse-graining, the posets are not, by definition, of the same class as when they started
(the class of Feynman posets).

This phenomenon is easily explained in the context of the Hauptvermutung of causal
set theory. Recall that the goal is to produce a partially ordered set that can be embedded
in a manifoldlike region of spacetime. If the partially ordered set is a closed Alexandrov
interval and is manifoldlike, its embedding in the spacetime manifold places its elements
within the intersection of the past and future light cones of the maximal and minimal events
in the Alexandrov interval, respectively, according to a Poisson distribution with the hy-
persurfaces of the resulting region determined by the topology of that manifold. Yet, if
causal set events are Planckian, then surely the causet is bound to contain “redundant”
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information that is not observed at the macroscopic continuum limit. Spacetime is con-
jectured to be an approximation of the causal set, and a coarse-graining that approaches
the continuum scale will therefore be a causal set whose elements may in turn be causal
sets in their own right with massive cardinality. That the vertex degeneracy increases is
simply a reflection of the degree to which the coarse-grained sets are approximations of
their smaller-scale constituents, and ultimately that the continuous manifold is an approx-
imation of the discrete causal set.

Incidentally, the preservation of other causet properties after coarse-graining provides
a partial indication of manifoldlikeness, as discussed in the preceding section. Consider
the interval abundance curves in Appendices B.3.1 and B.3.2 beginning on Page 113. For
the no holes poset, as the coarse-graining increases, the curves fall into greater agreement
with the corresponding analytic curves for the dimension of the manifold that the causet is
conjectured to be approximated by.

Moreover, Figures 4.23 on Page 80 show that the Myrheim dimension is scale invari-
ant under coarse-graining, another indication that the coarse-graining has appropriately
preserved causal structure. On the other hand, Figure 4.23a may foreshadow a potential
barrier to these results for the holes posets if simulations are carried out for larger inter-
vals and larger coarse-graining parameters. Unlike the no holes poset, the percentage of
extremal events in the coarse-graining appear to increase rapidly, leading to larger error
margins for the ordering fraction approximation offered by Equation (3.18). For an ex-
trema proportion of α = 0.5, there is a 28% margin of error in the ordering fraction.
For f ≈ 0.02, the ordering fraction of a typical holes poset, this is threateningly close to
changing the integer dimensionality of the poset. On the other hand, while f ≈ 0.02 corre-
sponds with a Minkowski dimension of 6, at higher coarse-grainings, the margin of error
includes a range of ordering fractions corresponding with 5 Minkowski dimensions, an
optimistic sign given the context of Figure 4.18 on Page 77, where the interval abundance
curve is closest to that of the characteristic curve for 5D spacetime.

Yet, the agreement of individual dimension estimators at different coarse-grainings is
not the condition for manifoldlikeness (rather, it is only evidence that coarse-graining has
not changed the causal structure); as suggested by Rideout in [46], the variance of causet
dimension may prove to be a manifoldlike property after all. It is the agreement of different
dimension estimators that serves as the condition.

In summary, the no holes poset do not only meet the dimension estimator condition for
manifoldlikeness, but also feature invariant dimensionality across coarse-grainings, sug-
gesting that the causal structure of the manifold that the no holes posets are approximated
have comparable topologies at both the discrete and continuum levels. On the other hand,
the holes posets do not meet either of these conditions; results remain inconclusive until a
study of closed intervals is undertaken.

On a final note, this author speculates that the topological behavior of the no holes
posets under coarse-graining suggests that the causal structure for the manifold that ap-
proximates these types of posets is scale invariant. In other words, it is possible that
this particular manifold (assuming the poset is in fact embeddable) at the continuum limit
is perhaps topologically indistinguishable from its discrete limit. More rigorous coarse-
graining should be carried out to varify this conjecture.
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5.1.3 Detailed Features of the Posets

In Section 4, it was conjectured that there may exist no no holes posets where all event ver-
tices are exactly three-degenerate. This does not require a rigorous proof, as it can rather
quickly be informally deduced with a simple drawing exercise. The reader is encouraged
to try for themselves to verify this conjecture by trying to draw a no holes poset where each
vertex is exactly three-degenerate (remember–the poset must respect the causal set axioms
on Page 18–namely, there cannot be any closed loops!). It may perhaps be straightforward
to prove this conjecture formally, but a proof will not be provided in this space.

Figure 5.1: An immediate example of
a closed interval containing

fork-shaped vertices with an ordering
fraction corresponding with 2 Myrheim

dimensions.

However, a more frustrating phenomenon to
explain has been the behavior of the “skinny or-
ders” depicted on Pages 71 and 72 for the holes
and no holes poset, respectively. Recall that if
at any point in the analysis of the subintervals of
each poset there existed a sufficiently large closed
subinterval with an ordering fraction correspond-
ing with two Myrheim dimensions, they were im-
mediately isolated and stored as subgraphs. Fig-
ures 4.10 and 4.11 are the resulting Hasse diagrams
from this analysis. Of note is that regardless of the
allowed vertex degree of the overall poset, these
special regions of the posets contain only no holes

type vertices. Even in the holes poset that admits “fork” shaped vertices, the two-
dimensional subinterval that arises contains only “Y”-shaped vertices! The reader may
at this point object that these subintervals are surely just one of a great multitude of
two-dimensional subintervals that exist within any given poset and they would be cor-
rect! However, this behavior appears to be typical among all subintervals, although this
author must concede that a rigorous analysis to this effect has not been carried out. The
most obvious counter-example is offered by the union of a fork-shaped vertex with its
time-symmetric counterpart, as illustrated in Figure 5.1. However, while it is the infrared
behavior that is of interest in this exploration, this order is perhaps “too” infrared.

This author has been inclined to suggest that this behavior may speak to the fundamen-
tal kinematic properties of 2D Minkowski spacetime, although the discussion has been
admittedly premature. The reader will be spared the lengthy foray into the tedious pro-
cess of fitting these types of events into embeddings of 2D spacetime and the conclusion
will simply be cited. Figure 5.2 gives an example of the sprinkling of 32 points in flat
2D Minkowski spacetime. The reader should not make the mistake (as this author has)
of supposing that the discreteness implies that causal set events are necessarily quantized.
The statistical geometry developed by Myrheim in [41] makes the following claims about
the Hasse diagram that can be created from the events sprinkled in Figure 5.2. First, using
Equation (2.15), which was given as

V = knN (2.15)

it may be said that the volume of the region of spacetime that these points have been
sprinkled into is proportional to N = 32, up to the discreteness scaling factor, k2, up to
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local fluctuations. Next, using Equation (2.17), which was given as

L = hk (2.17)

it may be said that the length of the geodesic between the endpoints of this region of
spacetime is proportional to h = 8, up to the discreteness scaling factor, k, up to local
fluctuations.

Let’s put a number to these fluctuations. The Hauptvermutung of causal set theory
is that the appropriate causet may be embedded into the manifold according to a Poisson
distribution. Thus, for N = 32 sprinkled points, the volume and proper length offered by
Equations (2.15) and (2.17) hold with a relative error of

η =
1√
N

(5.1)

i.e. if k is on the order of 1 Planck length, the causal set in Figure 5.2 describes a region
of spacetime with a volume of 32 ± 5.5 squared Planck lengths where the proper length
of the geodesic between its endpoints is 8 ± 1.5 Planck lengths. It is the statistical nature
of discrete geometry that prohibits the tempting literalist approach to the interpretation
of these “skinny orders” that this author has been inclined to undertake. It will not do
to simply sprinkle points into the region “by hand” according to a continuum notion of

Figure 5.2: Example of a sprinkling of 32 points in flat 2D Minkowski spacetime. From this
example, it can be seen that many sprinklings can describe the same causet. Suppose, e.g. the

points were projected along two total orders on the u and v axes. As long as the order of the points
along the axes do not change, we may make any arbitrary changes to their positions along the axes.

The Hasse diagram from this sprinkling can then be constructed by maximizing the distance
between the points along each of the two orders, and placing them back within the region. The

result represents a unique sprinkling with the same causet, but the resulting Hasse diagram
represents both sprinklings. This figure was produced with the code provided in Appendix C.3,

courtesy of Jan Myrheim.
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geometry, because distances are at this scale meaningless by construction. Thus, a closer
examination of the “fundamental” nature of 2D Minkowski space as it relates to these
skinny orders must await further exploration that treats the Planckian spacetime region
statistically, rather than empirically.

Finally, consider the poset depicted in Figure 5.3. This is a holes poset whose vertices
are all three-degenerate and which forms a closed interval. While much of the methodol-
ogy and discussion has focused heavily on ensuring that the posets form closed intervals
and this poset is at first glance rather appealing, it reveals a paradox if we are stringent
in the original hypothesis that its elements are fundamental events defined by their vertex
degeneracy. If the topology of the manifold region approximating this set truly arises from
this fundamental event alone, then it must describe some region of spacetime that is wholly
inaccessible and spacelike separated from any other region of spacetime, since one of the
axioms of causal set theory states that the sets must be locally finite. This is not an entirely
unsalvageable paradox, however.

Figure 5.3: Holes poset containing
only 3-degenerate vertices that forms a

closed interval.

One possibility–the most likely explanation–
is that three-degenerate vertices are not the only
fundamental event types and that at the endpoints
of this interval there exists some other (> 3)-
degenerate event that “links” the two regions to-
gether. From this possibility arise several new in-
terpretations. The first is that the cardinality of any
given closed and “saturated” interval is proportional
to the number of Planck volumes at the discreteness
limit (although this immediately raises the question
of quantifying the limit) and that the fundamental
causal events are the building blocks of some larger
building blocks that are in turn (> 3)-degenerate
vertices. In other words, the proposition is that

causet approaches the continuum limit precisely at the point that it becomes an “inacces-
sible” region. This would explain topology changes in coarse-grainings. Another closely
related interpretation is that these closed intervals represent the faces of a higher dimen-
sional object, a 2-complex, and that the fundamental units of causal set theory are in turn
the building blocks of what other approaches to quantum gravity call fundamental (like
loop quantum gravity–although now the topology change may be represented by these
“connecting” special vertices rather than closed timelines, as proposed in loop quantum
gravity). Henson offers an interpretation in this direction in [28], although sadly, this
author is not well-versed in spin-foam theories or loop quantum gravity enough to push
the correspondence between causal set theory and other approaches to quantum gravity
any further at this stage. Entertaining this idea can easily constitute an entirely separate
program of study.

Another possibility (and a personal favorite of the author) is that the the entire history
of the universe is bounded by the volume of this (necessarily finite) interval. This is a
cosmological model known as the ekpyrotic universe that is finite in temporal and spatial
extent and perhaps cyclic. This is similar to the conclusion reached by Rideout and Sorkin
in [47] for the causets constructed with their transitive percolation growth model. If these
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closed intervals have a cosmological explanation, one could no longer ignore the effects
of Λ in the Einstein field equations or the Einstein-Hilbert action as it was done in this
treatment, and the growth model would have to be revisited with a renewed kinematic
rigor.

This is a by no means exhaustive enumeration of possible interpretations. The most
obvious alternative is that three-degenerate events are not the only building blocks of ge-
ometry or perhaps that vertex degeneracy is not a fundamental property of causal events
at all. While this is certainly the most important interpretation, there is not enough infor-
mation on the topic in the literature to answer this question at this stage. This document
represents only a small sliver of the work that is needed to conclude this prospect.

5.2 Critical Review of Methodology
In this section, I offer an overview of the most urgent shortcomings of this project and a
few ideas on how to improve the methodology for future studies. The first concerns the
theoretic justification for the methodology; these are observations of how several tools,
although sound, have been used less than optimally. It reflects a renewed understanding
of the Benincasa-Dowker action and Glaser and Surya’s tests for locality for this author
and constructive ways in which this hindsight can be used to improve upon the existing
model. The second is a very informal discussion on the computational portion of the
project. While the scripts employed throughout this project have evolved and become
progressively more efficient and readable, there is plenty of room for improvement.

5.2.1 Guiding Principles
Action

By far the greatest weakness of the methodology used in this project has been the applica-
tion of the Benincasa-Dowker action. The most notorious snag in the development of the
action-minimizing growth model has been the dimensional reduction of infrared orders,
leading to glaring inconsistencies in the definition of the causet. On the one hand, the
intermediate posets were seen as subintervals of a closed, connected interval of fixed car-
dinality, NC , and fixed Minkowski dimension, d = 4. On the other hand, the disconnected
orders with a collective cardinality of N are clearly one-dimensional in the first transi-
tions. The initial motivation for this deliberate choice rested upon the assumption that the
Benincasa-Dowker action would rectify this inconsistency by building up the set in such a
way that the resulting, complete, connected poset featured the desired Minkowski dimen-
sion, although in hindsight this is a simply naïve (although by no means serious) misuse
of the action.

A more serious issue is the abuse of the smearing function. Consider the most likely
case after the first transition is introduced during the growth procedure: two incomparable
links. What does ε do for the action? Recall from Equation (2.39) that we have

ε =

(
l

ξ

)d
(2.39)
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(a) Two incomparable orders
that remain disconnected. The
dotted lines indicate additional

events not illustrated.

(b) NI ≈ N . Dashed lines
indicate a small number of

additional events and relations.

(c) NA � N . The dotted lines
indicate a large number of

intermediate events between
the orders and the maximal

event.

Figure 5.4: Three possible interpretations of the causet at an intermediate stage of the growth
process. In Figure 5.4a, the two orders remain disconnected throughout all stages of the growth

process and the Benincasa-Dowker action is not properly applied with ξ = 4. In Figure 5.4b,ξ ≈ 4
and the growth process is restricted to interpreting the two orders to be connected by a common

maximum at a fairly small scale. Figure 5.4c represents the optimal theoretic situation when
applying the Benincasa-Dowker action to the growth process with ξ = NC .

where l = 1 in natural units and ξ is the non-local scale. By placing ξ = 4, we are essen-
tially saying that events in up to three layers to the causal past of the set’s maximal events
may be assigned to different layers when subject to a Lorentz boost, thereby changing the
distribution of intervals according to length. Again, the inconsistency reveals itself: it is
implied that the set in reference is the disconnected set with cardinality N = 4. The use of
the 4-dimensional Benincasa-Dowker action presupposes that the interval with cardinality
NA � 4 is being measured, and not this subinterval of disconnected elements. The case
with 4 elements may of course never be 4-dimensional (c.f. Equation (2.62), which gives
a maximum ordering fraction of ≈ 0.17 corresponding with 3 Minkowski dimensions, if
we reasonably assume that there is no such thing as “half” of a covering relation), but even
if there is assumed to be some intermediate interval with cardinality N < NI < NA that
may have a 4-dimensional ordering fraction, this clearly assumes too much of the causal
structure of the set. Figure 5.4 provides an illustration of three possible interpretations:

1. The two orders are non-nonlocal, i.e. they are incomparable and disconnected now
and forever, even under Lorentz transformations and represent completely discon-
nected subsets of the larger poset, as indicated by Figure 5.4a. This represents a
nonsensical case where the non-locality scale, ξ = N = 4 in the Benincasa-Dowker
action.

2. They are non-local to within three layers to the causal past of some event that both
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orders precede, as indicated by Figure 5.4b. This is a specious assumption in an
asymptotically large poset, as there is no reason to presume that the segments occupy
the same temporal position with respect to the maximum event that connects the two
orders.

3. They are non-local to within an arbitrarily large number of layers to the causal past
of some event that both orders precede, as indicated by Figure 5.4c. This is the
ideal case with ξ = NA because a) there are made no a priori assumptions about
the closed interval that the two orders are common to and b) the “smearing” re-
mains agnostic on the matter of the relative temporal position of these segments
with respect to the maximal event in the closed interval, i.e. the cardinality of the
intermediate events between the two orders and the maximal event is not necessarily
equal for each order.

By “temporal position” I mean the following: In Figure 5.4b, the two total orders,
which we will label i = 1, 2, are separated from their common maximum by chains of
length i1 and i2. In Figure 5.4b, imposing ξ = 4 means stipulating that i1 ≈ i2. Mean-
while, in Figure 5.4c, where ξ = NC = 4500, i1 6= i2 in general.

In fact, even the so-called optimal case depicted in Figure 5.4c does not fully en-
capsulate the realm of possibilities that the designation ξ = 4 inappropriately prohibits.
Refer back to Figure 5.2, which provides a sprinkling of 32 points in 2D flat Minkowski
spacetime. Figures 5.5a and 5.5b show an even greater range of possibilities when the
intermediate causal set is understood in the context of their prospective embedding. When
ξ is set to the cardinality of the “complete” poset, the smearing over potential local regions
allows all existing elements to be (possibly) comparable, and minimizing the action will

(a) (b)

Figure 5.5: Further possibilities for the construction of causal structure during the growth process
that are inappropriately excluded when the locality scale is not set equal to the cardinality of the
“total” set. The four elements may also be comparable under Lorentz boosts. The solid colored
lines indicate the two intermediate orders, while the dashed black lines indicate possible causal

orderings in local regions, expressed as Hasse diagrams.
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in theory guide the causal structure towards manifoldlike configurations with appropriate
dimensionality.

Figure 5.4b is precisely what is reflected in the resulting posets using the action prin-
ciple. A stochastic model is simply too much to ask of this method for calculating the
observable without having designated some a priori timelike hypersurfaces by which the
causet is partitioned. If the Benincasa-Dowker action is to be applied to the growth model,
it stands to reason that each disconnected subinterval needs to be considered in its own
right, the action calculated using the bi-local additive property, and the dimension of the
causet, however defined, must be dynamic with respect to the growth process. Alterna-
tively, one may start with a sprinkling of d-dimensional Minkowski spacetime and perform
exchanges in a Monte-Carlo simulation as in [55], but with the kinematic restrictions of
the Feynman posets imposed in each sweep.

Another more immediate possibility is fixing ξ to the number of elements in the “total”
poset. Simulations with this adjustment are presently being carried out for the holes posets.

Locality

Another shortcoming of this project has been the treatment of weak d-rigidity. While
the strong d-rigidity tests are fairly straightforward and follow precedence for reasonable
applications from the prior literature [25], the procedure for determining weak d-rigidity
has been rather haphazard. As Glaser and Surya have pointed out, “weak d-rigidity is
a rather weak necessary condition for C to faithfully embed into a d-dimensional curved
spacetime, since the only requirement is that there exist a local or strongly d-rigid sub-
causal set C′ in C [25].”

In this treatment, I have merely selected a handful of subintervals subject to no condi-
tions other than that they are among the largest in the set. Clearly, if weak d-rigidity is to
serve as a condition for embeddedness in a curved spacetime, “one should expect a whole
family of strongly d-rigid sub-causal sets C′ [25]”, but the families must certainly be sub-
ject to more than the abundance of their members. Rather, the condition for embeddedness
in flat spacetime borne out by strong d-rigidity hinges on the assumption that the scale of
the causet is far below the scale of flatness. Were weak d-rigidity to serve as a condition
for embeddedness in curved spacetime, the analysis would need to include a discussion on
precisely “where” the scale of the causet reaches the flatness scale, a much more involved
and complicated consideration.

Thus, the results found for the weak d-rigidity of the causets constructed in this project
should be taken with a grain of salt. In reality, strong d-rigidity is a much more reliable
condition for manifoldlikeness.

5.2.2 Computational Approaches
As Appendix C makes clear, the scripts used in this project leave much to be desired.
While this issue does not affect the results of this project, it suffices to say that even modest
improvements to the algorithms would significantly reduce runtime, with the immediate
consequence of being able to produce a larger statistical sample (i.e. more posets) with
larger cardinality. This latter improvement is particularly important when considering
manifoldlikeness in the context of coarse-graining and the continuum limit. If we were
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able to produce larger posets, even if by one order of magnitude, we would not only be
dealing with a region of spacetime ten times larger to begin with, but the coarse-graining
of such a set to the scale of the present posets would represent a region of spacetime with
a volume on the order of half a million planck volumes. Such a set coarse-grained to 500
points would bring the scale of the poset to within just a few orders of magnitude of the
resolving power of the LHC.

Appendix C represents a collection of missed opportunities that result from an initial
lack of familiarity with the packages that MatLab has to offer. Readers who are well-
versed in computational physics will surely notice several portions of the algorithms that
are written using strategies that have been made obsolete by new functionalities. Even
at the time of writing, new packages are being developed and released that offer new
possibilities in graph theory. While most of the consequences have been largely superficial
and regard readability and runtime, many of these extended capabilities offer exciting, new
possibilities for constructing different types of sets with more specific and systematized
properties.

This author prefers to take an optimistic view in the face of these considerations. What
this project lacks in ease of reproducability it makes up for with the prospective new di-
rections to explore in the immediate future.1

5.3 Future Work

5.3.1 Further Exploration into Fundamental Event Types

Uncovering the potential existence of fundamental event types has only just begun. So
young is this proposition (and yet as timeless as Wheeler’s geons) that the preliminary
question is not “what are the fundamental event types?”, nor “how are fundamental event
types distinguished?”, but rather if geometrodynamics is an appropriate candidate for de-
scribing quantum gravity and if so, if causal set theory can be used to identify its particles.
The options moving forward are so numerous, it is almost overwhelming. The following
is an outline of the most prudent next steps in the study in this author’s estimation.

Deeper Analysis of Feynman Posets

Given the results produced in this project, it would certainly be premature to move onto
generalized n-degenerate event vertices and beyond. While we have learned a great deal
about the kinds of possibile topologies on Feynman posets, the study is far from complete.
In particular, there remain an abundance of tests and conditions for manifoldlikeness that
must be carried out before making any conclusive statements about 3-degenerate events.
The most immediate tasks include applying the stable homology tests and embedding the
most promising posets into the manifold. This is a study that will be tremendously aided
by the construction of larger posets for each type. Understanding the geometric properties
of posets containing these types of events will also benefit greatly from a more rigorous
analysis of their infrared orders.

1http://xkcd.com/1053/
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Other Parameters

Event degeneracy is just one of the possible distinguishing characteristics of fundamen-
tal event types, if they exist. Given the diversity of posets, vertex degeneracy seems to
be an almost arbitrary specification. As mentioned briefly in earlier chapters, there are
plenty of different types of posets and directed graphs with many properties that can be
explored. One direction is to restrict the properties of each node in a graph or element in a
set. Some examples are are multitrees (DAGs such that any two given chains in the poset
with a common minimal event may not share a common maximal event; these may not,
by definition, form closed intervals) and colored graphs (each node or edge in the graph
is assigned a color and and the graph is constructed in such a way that no node or edge of
the same color may be adjacent). This latter option is particularly appealing from a physi-
cist’s perspective, because it allows us to turn the tables on the narrative. By exploiting
the mathematical concept of coloring graphs, the kinematic properties of the set become
more direct analogies for particular event types that behave like coloring, but are not iden-
tical to these mathematical objects. This stands in stark contrast to the current stage of
causal set theory, where the mathematics that ought to be the model for physical reality
are presently the defining objects, barring more explicit developments in the discovery of
event properties.

Given the analogy to the path integral approach to quantum mechanics, one need not
necessarily be restricted to those mathematical objects that satisfy the exact axioms given
on Page 18. As long as the mathematical object may potentially be embedded in any topol-
ogy, and not necessarily a manifoldlike one, this author maintains that it contributes to the
sum over histories. Suspending the condition that it must be possible to express incom-
parable events, for instance, gives rise to an entirely new class of sets that are undirected.
In that case, another possibility may include specifying the properties of finite structures
within the graph, of which Figure 5.6, the so-called Bull graph, is just one of countless
examples.

Figure 5.6: A Bull graph

Until an appropriate dynamics can be fully developed, causal set theory has focused
primarily on posets, as these are thought to be the only sets that are manifoldlike in the
continuum limit. Yet another direction is afforded by introducing the concept of modes of
influence to the causet, wherein there may exist two independent and distinct chains be-
tween two events, where one chain is a link, as has been proposed by Dribus in [20]. Isham
has also developed a theory similar to causal sets by means of higher-order structures that
generalize the partially ordered set as categories ([20] citing [30]).

The possibilities are endless and this author could not hope to enumerate them in this
space. These considerations represent a long-term research project that will likely be re-
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visted at a later time in the study of fundamental causal events, although it should be em-
phasized that some of the approaches mentioned here represent independent approaches
to quantum gravity in their own right, and not necessarily in regards to causal set theory.

5.3.2 Quantum Stochastic Model
While the no holes posets are the most promising class explored in this space, the holes
posets are likely to pose a more stubborn challenge for manifoldlikeness tests owing to
their diversity. While a deeper exploration into the no holes posets may begin immedi-
ately with essentially any given poset constructed, there is a much smaller likelihood of
selecting a holes poset that happens to be manifoldlike. One approach may be to continu-
ally construct posets until one with an ordering fraction corresponding with 4 Minkowski
dimensions is offered, although this is of course no guarantee that it will be manifoldlike
(only that if it is manifoldlike, it happens to be embeddable in the particular manifold we
are most interested in).

The most promising strategy for finding manifoldlikeness among the holes posets, if
it exists, is undoubtedly by revising the stochastic growth model in hopes that this will
produce the most manifoldlike that the subclass has to offer. Due to the implementa-
tional obstacles presented by the bi-local nature of the action in its present form, Monte-
Carlo simulations are expected to offer a more straightforward and efficient model than
the growth models employed in this project.
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Conclusion

This project provides encouraging signs that no holes posets are manifoldlike and can be
embedded into 2D Minkowski spacetime, as they have passed several preliminary con-
ditions that an entropic space of posets tend to fail. Nonetheless, conclusive statements
await direct embeddings. Results for the holes posets are on the other hand inconclusive,
although the possibility remains open that the space of this subclass suffers from its own
entropy problem that might be resolved via an action principle.

Despite inconclusive results, the consideration of each poset’s infrared orders suggests
that whether or not these posets are manifoldlike, a more detailed and statistical analysis of
posets in this class may inform the question of fundamental causal event types and vertex
degeneracy as one of their distinguishing features. This project has also outlined a few of
the next steps that will be taken in this direction.

This project has also provided a critical self-review of the action-guided stochastic
growth model that was used. From these results, this author offers an example of what not
to do when quantizing the growth model, and offers a few suggestions for improvements
in future studies.

As a closing remark, I’d like to simply offer to the reader that this project has merely
scratched the surface not only of what lies in store for the future of causal set theory, but
also what causal set theory can offer to the development of a theory of quantum gravity.
The potential of the theory does not come without its risks. During one of our conversa-
tions, Jan Myrheim likened the study (with the liberty of creative license, of course) to the
parable of the blind men and the elephant. The story describes a group of blind men who
stumble upon an elephant. Each one touches a different part of the elephant–the tusk, the
hoof, a side–and tries to describe the animal to the others, finding themselves in complete
disagreement about the nature of an elephant. In our version of the story, I have measured
the height and the volume, and characterized some of the curves of some very tiny portion
of an animal, but I have not said very much about whether or not it is an elephant. Without
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stretching the analogy too far, it may perhaps be said that I have rigorously shown that my
animal does, in fact, have tusks; but tusks do not an elephant make.

Caution must be taken twofold. In the first, it is easy to lose track of the motivation of
the project and find oneself running down highly specialized mathematical tangents that
have little physical content. To be clear: this is not a reflection of what the theory has to
offer, but rather a reflection of the limitations and biases the physicist may hold. Secondly,
it is easy to take many of the images produced very literally, focusing on minute details
that may hide the so-called “true” nature of the elephant within its folds, when in fact, one
has not been observing an elephant at all.

Above all, dropping the metaphor, the greatest danger must surely be dogmatism. At
all times when studying causal set theory, it must be borne in mind that the theory is at its
current stage a purely mathematical (but no less valid) conceptualization of the physical.
Whether the event is simply a label or “something more” remains to be seen. Again,
this project has merely scratched the surface of causal sets. In turn, however, causal set
theory has merely scratched the surface of geometrodynamics. If we keep digging and
find nothing but dirt–i.e. nothing in our study appears to speak to the physical nature of
the fundamental objects of the gravitational force–then we might as well stop digging. The
key is knowing when to stop. To this author, the richness of Malament’s theorem combined
with the simplicity of Myrheim’s statistical geometry makes the theory deserving of further
investigation. I conceal no bias when I claim there is gold in them thar hills! When
compared with what is left to be done, the potential of causal set theory is far too great to
discount just yet.
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Afterword

To conclude, I’d like to refer to the quote offered in the preface:

An adventure lacking in prospect or a rush made blindly, however, would in
most cases end in failure. The adventure that really trains the theory and leads
to correct cognition must have an accurate prospect more than anything else.
The perspective adventure, even if it fails, is able to teach certainly lessons
from the failure and secures the success in the next adventure.

- Shoichi Sakata, 1948

Upon a final review, I must admit that there have been occasions where this project has
approached “a rush made blindly”. This adventure was fortunate enough to have had a
firm and patient leader. Jan Myheim has offered a strong prospect that has led to results
that in turn promise future prospects. On the other hand, this author’s adventurism has
been consistently kept in check, such that few opportunities have been missed for learning
from mistakes made in this project. For this reason, the next adventure is surely better
equipped than the present.
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A
d’Alembertian in Two Dimensions

For any scalar function φ, the d’Alembertian is given by

�φ =
1√
−g

∂µ
√
−ggµν∂νφ (A.1)

A completely general line element for any 2D spacetime in any coordinate system, (p, q),
is given by

ds2 = A(p, q) dp2 + 2B(p, q) dp dq + C(p, q) dq2 (A.2)

Consider then the line element for the topological space with light-cone coordinates,
(u, v). Along the null geodesic of the light cone, the line element must be zero, so

ds2 = 0,

{
du = 0

dv = 0
(A.3)

It follows that

ds2 = D(u, v) dudv (A.4)

The metric tensor is then

gµν =

(
0 guv
gvu 0

)
=

(
0 D
D 0

)
(A.5)

The determinant, g = det gµν is then given by

−D2 = g
√
−g = D, (D > 0) (A.6)
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Returning to Equation (A.1), we then have the covariant vector

∂νφ =

(
∂uφ
∂vφ

)
(A.7)

and the contravariant vector

gµν∂νφ =

(
1
D∂v
1
D∂u

)
(A.8)

Next,

√
−ggµν∂νφ =

(
∂vφ
∂uφ

)
(A.9)

Finally,

�φ =
2

D
∂u∂vφ (A.10)

It is straightforward to make the discrete approximations

ψ(u, v) = ∂uφ(u, v) ≈ φ(u, v)− φ(u− lp, v)

lp

∂vψ(u, v) ≈ ψ(u, v)− ψ(u, v − lp)
lp

�φ ≈ 2

D

φ(u, v)− φ(u, v − lp)− φ(u− lp, v) + φ(u− lp, v − lp)
l2p

(A.11)

More generally, the discrete approximation to the d’Alembertian in Equation (A.11) is
given by

�φ ≈ 2

D

φ(u, v)− φ(u, v − b)− φ(u− a, v) + φ(u− a, v − b)
ab

(A.12)
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B
Additional Results

This appendix includes additional results from the analysis that are either superfluous in
the discussion, or too numerous to include in the main body of the document. Section B.1
includes some statistical distributions of heights, volumes, and ordering fractions for the
smaller 1800-element posets and largely reflect those found for the larger 4500-element
posets and are therefore included in this appendix for completeness only.

Section B.2 includes the scatterplots for volume, length, and ordering fraction for the
smaller posets. These are included simply to demonstrate that there is no apparent relation
between these properties in any of the posets. The corresponding scatterplots for the 4500-
element posets feature nearly identical behaviors and are therefore not included in this
document for space considerations.

Section B.3 includes the figures associated with the interval abundance curves for inter-
mediate stages of the coarse-graining procedure for both types of posets. These figures are
important for revealing the strong and weak d-rigidity of the posets, tests for the existence
of local regions in flat and curved spacetime, respectively.
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B.1 Additional Interval Statistics (1800-Element Sets)

Figure B.1: Distribution of subinterval length for 1800-element holes poset.
Mean = 15.17

Standard Deviation = 9.42

Figure B.2: Distribution of subinterval length for 1800-element no holes poset.
Mean = 21.74

Standard Deviation = 10.38
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Figure B.3: Distribution of subinterval volume for 1800-element holes poset.
Mean = 18.15

Standard Deviation = 11.81

Figure B.4: Distribution of subinterval volume for 1800-element no holes poset.
Mean = 259.92

Standard Deviation = 238.99
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Figure B.5: Distribution of subinterval volume for 1800-element holes poset.
Mean = 0.99

Standard Deviation = 0.05

Figure B.6: Distribution of subinterval ordering fraction for 1800-element no holes poset.
Mean = 0.76

Standard Deviation = 0.15
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B.2 Scatterplots for Smaller Posets
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Figure B.7: Scatterplot of interval length versus ordering fraction for 1800-element holes poset.
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Figure B.8: Scatterplot of interval length versus ordering fraction for 1800-element no holes poset.

111



Chapter B. Additional Results

0 10 20 30 40 50

Length

0

20

40

60

V
ol

um
e

1800-Element Holes Poset

Figure B.9: Scatterplot of interval length versus volume for 1800-element holes poset.
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Figure B.10: Scatterplot of interval length versus volume for 1800-element no holes poset.
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B.3 Rigidity Tests at Intermediate Coarse-Grainings

B.3.1 Strong d-rigidity
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Figure B.11: Interval abundance curves for the entirety of coarse-graining of a 4500-element holes
poset containing roughly 80% of its original points. This amounts to a test for strong d-rigidity.
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Figure B.12: Interval abundance curves for the entirety of coarse-graining of a 4500-element no
holes poset containing roughly 80% of its original points. This amounts to a test for strong

d-rigidity.
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Figure B.13: Interval abundance curves for the entirety of coarse-graining of a 4500-element holes
poset containing roughly 64% of its original points. This amounts to a test for strong d-rigidity.

0 10 20 30 40 50 60 70 80

m

0

2000

4000

6000

8000

10000

# 
of

 In
te

rv
al

s

Interval Abundances for the Entirety of a 4500-Element
No Holes Poset (Coarse-Grained to 2955 Points)

Simulated
Analytic 2d
Analytic 3d
Analytic 4d
Analytic 5d

Figure B.14: Interval abundance curves for the entirety of coarse-graining of a 4500-element no
holes poset containing roughly 64% of its original points. This amounts to a test for strong

d-rigidity.
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Figure B.15: Interval abundance curves for the entirety of coarse-graining of a 4500-element holes
poset containing roughly 51% of its original points. This amounts to a test for strong d-rigidity.
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Figure B.16: Interval abundance curves for the entirety of coarse-graining of a 4500-element no
holes poset containing roughly 51% of its original points. This amounts to a test for strong

d-rigidity.
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Figure B.17: Interval abundance curves for the entirety of coarse-graining of a 4500-element holes
poset containing roughly 41% of its original points. This amounts to a test for strong d-rigidity.
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Figure B.18: Interval abundance curves for the entirety of coarse-graining of a 4500-element no
holes poset containing roughly 41% of its original points. This amounts to a test for strong

d-rigidity.
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B.3.2 Weak d-rigidity

Figure B.19: Interval abundance curves for the sampling of subintervals of coarse-graining of a
4500-element holes poset containing roughly 80% of its original points. This amounts to a test for

weak d-rigidity.

Figure B.20: Interval abundance curves for the sampling of subintervals of coarse-graining of a
4500-element no holes poset containing roughly 80% of its original points. This amounts to a test

for weak d-rigidity.
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Figure B.21: Interval abundance curves for the sampling of subintervals of coarse-graining of a
4500-element holes poset containing roughly 64% of its original points. This amounts to a test for

weak d-rigidity.

Figure B.22: Interval abundance curves for the sampling of subintervals of coarse-graining of a
4500-element no holes poset containing roughly 64% of its original points. This amounts to a test

for weak d-rigidity.
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Figure B.23: Interval abundance curves for the sampling of subintervals of coarse-graining of a
4500-element holes poset containing roughly 51% of its original points. This amounts to a test for

weak d-rigidity.

Figure B.24: Interval abundance curves for the sampling of subintervals of coarse-graining of a
4500-element no holes poset containing roughly 51% of its original points. This amounts to a test

for weak d-rigidity.
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Figure B.25: Interval abundance curves for the sampling of subintervals of coarse-graining of a
4500-element holes poset containing roughly 41% of its original points. This amounts to a test for

weak d-rigidity.

Figure B.26: Interval abundance curves for the sampling of subintervals of coarse-graining of a
4500-element no holes poset containing roughly 41% of its original points. This amounts to a test

for weak d-rigidity.
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C
Overview of Algorithms

This appendix contains a more detailed description of the algorithm used in this project.
All scripts are written in MatLab and all results were produced using MatLab R2017a. This
release contains additional functions that are not present in earlier releases of MatLab, and
newer releases may have changed the functionality of some of the functions used in these
scripts. These scripts are adapted for Windows environments running Java; the results
were produced by running these scripts on the Linux cluster at NTNU. Introducing the
script to a Linux environment leads to small changes in syntax, typically related to file
structure and Java support. The source codes for both Windows and Linux adaptations are
provided at https://github.com/conorak/Causet-Generator, along with
more detailed instructions that can be followed to reproduce the results with appropriate
release versions of MatLab.

The scripts provided on GitHub are not identical copies of those used in this project,
but are rather adaptations based on the original scripts with functionality, readability, and
efficiency improvements. The author is currently working on further improvements that
will be updated in future releases on GitHub.

On a final note, it should be borne in mind that the following scripts are riddled with
readability and efficiency issues, as even those with beginner-to-intermediate knowledge
with MatLab will recognize. In that respect, the reader is cautioned that variable names
are often confusing or unnecessarily lengthy, and extraneous steps plague the scripts. The
releases on GitHub represent far more advanced versions of the code included in this
document, but since these original scripts were those used to produce the results in this
project, they have been added here for completeness. Those who are interested in reading
through the details of the script are highly encouraged to consult those that have been
released on GitHub instead of those included here.
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Chapter C. Overview of Algorithms

C.1 Classical Model
The basic outline of this script is given as follows:

1. Create:

• 50 posets containing 1800 elements

• One poset containing 4500 elements

2. From each poset constructed, enumerate and sample its intervals. If a subinter-
val contains greater than 30 and less than 80 element and has an ordering fraction
corresponding to two dimensions, extract its adjacency matrix (done only once for
the 50 smaller posets). Store the distribution subinterval lengths, ordering frac-
tions, and volume for the larger poset and the smaller poset from which the subin-
terval with dimensionality 2 was extracted. Calculate also the total ordering frac-
tion, the height, the number of extremal events, the number of ‘V’-shaped vertices,
‘pitchfork’-shaped vertices, and ‘Y’-shaped vertices for the entire poset.

Causet Construction
The first step in the algorithm is to construct the initial adjacency and relation matrices with
a fixed cardinalityN : a simple script creating two identicalN×N matrices of zeroes with
a ‘1’ in the first row and second column, and a corresponding ‘-1’ in the second row and
first column. Additionally, the computation time of the algorithm is considerably aided
by a corresponding allowed matrix that keeps track of transitions that will ultimately be
rejected (i.e. between any elements that are already three-degenerate, etc.) initialized as an
N×N matrix of ones with zeros on the diagonals and zeros where there exists a ‘1’ or ‘-1’
in the adjacency matrix (as this reflects a link which has already been added). Later, a ‘0’
will be added when a transition between any events labeled (a, b) in the allowed matrix
creates a loop, a hole (where applicable), or a vertex that is more than three-degenerate.
Algorithm C.1 gives the script.

Algorithm C.1: Initial Poset Construction

1 m=4500;
2
3 %−−Link matrix−−
4 linkMatrix = zeros(m,m); %empty set
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6
7 %−−Matrix enumerating allowed additions−−
8 allowed = ones(m,m);
9 x=1;

10 while x<m+1
11 allowed(x,x)=0;
12 x=x+1;
13 end
14 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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15
16 %−−Create initial subset with 1 link−−
17 i = 1;
18 j = 1;
19 while i<n+1
20 while j<n+1
21 if i<j
22 linkMatrix(i,j)=1;
23 allowed(i,j)=0;
24 elseif i>j
25 linkMatrix(i,j)=−1;
26 allowed(i,j)=0;
27 end
28 j=j+1;
29 end
30 j=1;
31 i = i+1;
32 end
33 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34
35 reltrans = linkMatrix; %Initial transitive relation matrix
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The algorithm then immediately begins to apply transitions within a while loop spec-
ified by countlimit. While the count variable is less than countlimit, the al-
gorithm will continue to add transitions. By setting countlimit to a large constant
(e.g. ten times the cardinality of the set), the while loop will break after an arbitrarily
large number of attempts to make a transition, such that the algorithm will terminate in the
event there is an unforeseen condition that prohibits any additional transitions from being
made. Other conditions for breaking the while loop includes a set whose vertices are all
three-degenerate and an allowed matrix filled with zeros.

In addition to the allowed matrix, the algorithm also saves two arrays containing
the elements that are already “saturated” with the maximum number of links in order to
avoid picking these elements randomly when choosing a transition. Thus, the first step
for each pass is to check for these conditions and break if they are met, as reflected in
Algorithm C.2.

Algorithm C.2: Check for Exhausted Transitions

1 %−−Add relations−−
2 countlimit=m*10
3 count = 1;
4 while count<countlimit
5 %−−Filter out saturated points−−
6 rowadd = [1:m];
7 coladd = [1:m];
8 for b=1:m
9 if sum(abs(linkMatrix(b,:)))>2

10 rowadd(b) = 0;
11 allowed(b,:) = zeros(1,m);
12 end
13 if sum(abs(linkMatrix(:,b)))>2
14 coladd(b) = 0;
15 allowed(:,b) = zeros(m,1);
16 end
17 end
18 rowadd = rowadd(rowadd~=0);
19 coladd = coladd(coladd~=0);
20 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21
22 %−−Condition for finished construction−−
23 if length(coladd)<2
24 break
25 end
26 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27
28 ...
29
30 end
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Next, a distance matrix is created (each element of the matrix gives the chain length
between the event labeled by the row to the event labeled by the column, returning∞ if the
events are incomparable and 0 along the diagonals. This is used to avoid creating extrane-
ous links, i.e. those already implied by transitivity (if there is a chain from event a to event
b of length greater than one, then a transition between event a and event b introducing a
link with length one is an automorphic transformation and is therefore redundant).

The algorithm then enters another while loop, this time breaking only when the algo-
rithm has found an appropriate transition or has exhausted all possible transitions. Select-
ing two random elements from the list of allowed events, the while loop first checks to see
if the transition is redundant. If the no holes posets are being constructed and the script
encounters a potential hole created by the transition between two event pairs, it will check
to see if the hole can be avoided by imposing the direction of the new relation, as reflected
in Algorithm C.3.

Algorithm C.3: Check for Holes

1 while count<countlimit
2
3 ...
4
5 distMatrix = distances(digraph(abs(linkMatrix)));
6 %−−Check for holes and loops, then add−−
7 success = 0; %Success=1 means the transition does not create a

hole or loop
8 while success==0
9 %−−Condition for finished construction−−

10 if sum(sum(allowed)) < 2
11 count = countlimit+1;
12 break;
13 end
14 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15
16 %−−Pick random point from allowed list−−
17 e = randi(length(rowadd));
18 randrowadd = rowadd(e);
19 f = e;
20 while f==e
21 f = randi(length(coladd));
22 end
23 randcoladd = coladd(f);
24 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25
26 %−−Extraneous link avoidance−−
27 if abs(distMatrix(randrowadd,randcoladd))>1 && isinf(

distMatrix(randrowadd,randcoladd))==0 && abs(reltrans(
randrowadd,randcoladd))==1

28 allowed(randrowadd,randcoladd)=0;
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29 allowed(randcoladd,randrowadd)=0;
30 continue
31 end
32 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33
34 %−−Hole avoidance−−
35 if sum(linkMatrix(randrowadd,:))>1
36 direction=1;
37 free=0;
38 allowed(randrowadd,:) = zeros(1,m);
39 if sum(linkMatrix(:,randcoladd))<−1
40 allowed(randcoladd,:) = zeros(1,m);
41 continue
42 end
43 elseif sum(linkMatrix(randrowadd,:))<−1
44 direction=0;
45 free=0;
46 if sum(linkMatrix(:,randcoladd))>1
47 allowed(:,randcoladd) = zeros(m,1);
48 continue
49 end
50 elseif sum(linkMatrix(randcoladd,:))>1
51 direction=0;
52 free=0;
53 allowed(randcoladd,:) = zeros(1,m);
54 elseif sum(linkMatrix(randcoladd,:))<−1
55 direction=1;
56 free=0;
57 allowed(:,randcoladd) = zeros(m,1);
58 else
59 direction = randi([0,1],1);
60 free=1;
61 end
62 %−−end hole avoidance−−
63
64 ...
65
66 end
67
68 ...
69
70 end
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Next, the script checks to see if the transition will create a loop, and again attempts
to impose the direction of the transition. In the no holes script, the direction may have
already been imposed, and if the loop cannot be avoided given the direction, the transition
is rejected, as reflected in Algorithm C.4.

Algorithm C.4: Check for Loops

1 while count<countlimit
2
3 ...
4
5 while success==0
6
7 ...
8
9 %−−Loop avoidance−−

10 if free==1 && reltrans(randcoladd,randrowadd)==1
11 direction=1;
12 elseif free==1 && reltrans(randcoladd,randrowadd)==−1
13 direction=0;
14 elseif free==0 && direction == 1 && reltrans(randcoladd,randrowadd

)==−1
15 allowed(randcoladd,randrowadd)=0;
16 continue
17 elseif free==0 && direction == 0 && reltrans(randcoladd,randrowadd

)==1
18 allowed(randrowadd,randcoladd)=0;
19 continue
20 end
21 %−−end loop avoidance−−
22 success = 1;
23 end
24
25 ...
26
27 end
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If these conditions are met, the success variable is set to one and the transition is
implemented and the relation matrix updated correspondingly as in Algorithm C.5.

Algorithm C.5: Impose the Transition

1 while count<countlimit
2
3 ...
4
5 while success==0
6
7 ...
8
9 %−−Implement link addition−−

10 if success==1
11 if direction==0
12 linkMatrix(randrowadd,randcoladd)=1;
13 linkMatrix(randcoladd,randrowadd)=−1;
14 reltrans(randrowadd,randcoladd)=1;
15 reltrans(randcoladd,randrowadd)=−1;
16 allowed(randrowadd,randcoladd)=0;
17 allowed(randcoladd,randrowadd)=0;
18 else if direction==1
19 linkMatrix(randrowadd,randcoladd)=−1;
20 linkMatrix(randcoladd,randrowadd)=1;
21 reltrans(randrowadd,randcoladd)=−1;
22 reltrans(randcoladd,randrowadd)=1;
23 allowed(randcoladd,randrowadd)=0;
24 allowed(randrowadd,randcoladd)=0;
25 end
26 end
27 %−−Links added−−
28
29 %−−Create transitive (relation) matrix−−
30 if direction==0
31 a = randrowadd;
32 b = randcoladd;
33 else
34 a = randcoladd;
35 b = randrowadd;
36 end
37 i = 1;
38 while i<m+1
39 if reltrans(i,a)==1 && reltrans(i,b)~=1
40 reltrans(i,b) = 1;
41 reltrans(b,i) = −1;
42 j = 1;
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43 while j<m+1
44 if reltrans(b,j)==1 && reltrans(i,j)~=1
45 reltrans(i,j)=1;
46 reltrans(j,i)=−1;
47 end
48 j=j+1;
49 end
50 end
51 if reltrans(b,i)==1 && reltrans(a,i)~=1
52 reltrans(a,i) = 1;
53 reltrans(i,a) = −1;
54 end
55 i=i+1;
56 end
57 %−−Transitive (relation) matrix constructed−−
58 if makes_many==0
59 count = count+1
60 end
61 end
62 end
63 %−−Relation added (big while loop over)−−
64
65 ...
66
67 end
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It is easy to see that the holes posets are much simpler to construct and only trivial
changes must be made to the algorithm to admit for holes. Rather than reproducing the
entirety of the script here, it suffices to note that in Algorithm C.2, the the condition for
filtering out the “saturated” points is that the sum of the corresponding columns and rows
changes trivially:

Algorithm C.6: Minor Changes to the Condition to Remove Allowed Events

1 while count<countlimit
2 %−−Filter out saturated points−−
3 ...
4 for b=1:m
5 if abs(sum(linkMatrix(b,:)))>2
6 rowadd(b)=0;
7 allowed(b,:)=zeros(1,m);
8 end
9 if abs(sum(linkMatrix(:,b)))>2

10 rowadd(b)=0;
11 allowed(b,:)=zeros(1,m);
12 end
13 end

The section of the algorithm that checks for holes (c.f. Algorithm C.3) is of course
completely removed, while the algorithm for checking for loops (c.f. Algorithm C.4) is
somewhat simplified:

Algorithm C.7: Simplified Check for Loops

1 %−−Avoid Loops−−
2 if direction==1 && relMat(addTwo,addOne)==−1
3 direction=0;
4 elseif direction==0 && relMat(addTwo,addOne)==1
5 direction=1;
6 end
7 %−−−−−−−−−−−−−−−
8 success=1;
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Causet Analysis
When the causet construction is complete, the script will begin to calculate various prop-
erties of the causet, with a more in-depth computation of a representative sample of
the causet’s subintervals. Since the algorithm makes use of MatLab’s support for the
digraph object, the matrix is immediately converted to a binary, rather than trinary,
representation:

Algorithm C.8: Convert from Trinary to Binary Representation

1 %−−Create adjacency matrix to use digraph−−
2 linkbinary = linkMatrix;
3 linkbinary(linkbinary~=1)=0; %remove all −1
4 relbinary=reltrans;
5 relbinary(relbinary~=1)=0;
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7
8 R = digraph(relbinary);
9 L = digraph(linkbinary);

Next, two matrices are created to express the past and future of each element in the set:

Algorithm C.9: Construction of Past and Future Matrices

1 %−−Matrix of future and past events−−
2 past=zeros(m,1);
3 future=zeros(m,1);
4 for a=1:m
5 past(a,1:length(predecessors(R,a))) = predecessors(R,a);
6 future(a,1:length(successors(R,a))) = successors(R,a);
7 end
8 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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For each pair of comparable elements in the set, a ≺ b, the union of the future a and
the past of b is used to define and enumerate all intervals in the set, stored in all_pairs:

Algorithm C.10: Construction of Past and Future Matrices

1 all_pairs=zeros(1,3);
2 %−−Enumerates all extrema of intervals and keeps track of those done−−
3 allowdist= distances(digraph(linkbinary));
4 for a=1:size(allowdist)
5 for b=1:size(allowdist)
6 if isinf(allowdist(a,b))==1
7 allowdist(a,b)=0;
8 end
9 end

10 end
11 all_pairs=[];
12 for a=1:length(future(:,1))
13 if sum(future(a,:)~=0)>0
14 for b=1:length(future(1,:))
15 if future(a,b)~=0
16 all_pairs=vertcat(all_pairs,[a future(a,b) allowdist(a

,future(a,b))]);
17 end
18 end
19 end
20 end
21 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

In accordance with sampling practices, the number of intervals to sample is given by
Equation (3.20), and the sample space is restricted to those intervals with a length greater
than 3 to avoid infrared errors, as reflected in Algorithm C.11.

Algorithm C.11: Determine the sample size and space

1 Z_score=1.96;
2 moe=0.05;
3 allowed_pairs=all_pairs;
4 allowed_pairs(allowed_pairs(:,3)<3,:)=[];
5 num_intervals=size(allowed_pairs,1); %number of intervals in set
6 sample_size=(0.25*(Z_score^2))/(moe^2);
7 trialnumber=ceil((num_intervals*sample_size)/(num_intervals+

sample_size−1));
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Finally, the volume, ordering fraction, and length of the sampled intervals are saved in
a num_intervals ×3 array, where each column corresponds with one interval and the
rows are assigned respectively. In the event an interval features a Myrheim dimension of
2, the corresponding subset is saved for later use. In the event there are are several sets
being created, the sample array is also stored for later use, as well as the causet that was
constructed. Otherwise, each row in the sample array is averaged to return the interval
statistics over each trial. This step is illustrated in Algorithm C.12

Algorithm C.12: Compute Statistics for Subintervals

1 for ii=1:trialnumber
2 random_pair=randi(length(allowed_pairs(:,1))); %pick random

interval endpoints from whole set
3 interval = allowed_pairs(random_pair,:); %1x3 array of pairs
4 interval(3)=[]; %two points only
5 allowed_pairs(random_pair,:)=[]; %removes pair from allowed
6 interval_points = vertcat(nonzeros(interval),nonzeros(intersect(

future(interval(1,1),:),past(interval(1,2),:)))); %
intersection of light cones

7 interval_linkMat = linkMatrix(interval_points,interval_points);
8 interval_relMat = reltrans(interval_points,interval_points);
9 interval_size = length(interval_points); %length of subinterval

10 interval_pairs=all_pairs(ismember(all_pairs(:,1),interval_points)
==1,:); %selects subintervals whose min is in the interval

11 interval_pairs=interval_pairs(ismember(interval_pairs(:,2),
interval_points)==1,:); %then of those, those that are in the
max

12
13 %−−Calculates ordering fraction for interval−−
14 fmax = (interval_size*(interval_size−1))/2;
15 f = sum(sum(abs(triu(interval_relMat))));
16 ratio = f/fmax;
17 %−−determines interval dimension−−
18 if ismember(ratio,dim_mat(:,1))==0 %if the ordering fraction/dim

pair not stored, calculate and store
19 syms myrheim
20 eqns=(3*gamma((myrheim/2)+1)*gamma(myrheim+1))/(2*gamma((3*

myrheim/2)+1)) == ratio;
21 assume(myrheim, 'real');
22 solution=vpasolve(eqns, myrheim, [1 Inf]);
23 myrheim=round(double(solution));
24 dim_mat=vertcat(dim_mat,[ratio myrheim]);
25 else %otherwise, reuse dimension for corresponding ordering

fraction
26 myrheim = dim_mat(((dim_mat(:,1)==ratio)==1),2);
27 end
28 %−−Myrheim dimension determined−−
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29
30 %−−Save matrix if the poset dimension is 2−−
31 if isempty(sample)==1 && (makes_many==1)==1
32 if isempty(special_hasse)==1 && (myrheim==2)==1 && exist('

rigid')==0 && interval_size<80 && interval_size>30
33 special_hasse = interval_linkMat;
34 end
35 end
36 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 X(ii)=interval_size;
38 Y(ii)=ratio;
39 Z(ii)=allowdist(interval(1,1),interval(1,2));
40 myrheimDim(ii)=myrheim;
41 if isempty(sample)==1 && (makes_many==1)==1
42 special_sample = 1;
43 end
44 end
45 %Sampling of intervals finished

The dim_mat array has been imported from a text file that has calculated the cor-
respoinding Myrheim dimension from the ordering fraction beforehand. The script that
produced this file is given in Algorithm C.13.

Algorithm C.13: Produce an array of ordering fractions and their corresponding dimensions

1 dim_mat=zeros(10000000,2);
2 i=0;
3 for ratio=0:0.0000001:1
4 i=i+1
5 syms myrheim
6 eqns=(3*gamma((myrheim/2)+1)*gamma(myrheim+1))/(2*gamma((3*myrheim

/2)+1))==ratio;
7 assume(myrheim,'real');
8 solution=vpasolve(eqns,myrheim,[1 Inf]);
9 myrheim=round(double(solution));

10 dim_mat(i,:)=[ratio myrheim];
11 end
12 save('dim_mat.dat','dim_mat','−ASCII');
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C.1.1 Coarse-Graining and Rigidity

A final script is then run to both coarse-grain the causets, then determine the existence of
local regions in each resulting causet by calculating the d-rigidity. The coarse-graining
procedure is given in Algorithm C.14. Like the subinterval statistics procedure of the
preceding section, a past and future matrix is constructed based on the binary adjacency
matrix. This stage of the project was characterized by an improved familiarity with the
MatLab language, and rather than making changes to the matrix representations, nodes
are removed directly from the digraph object according to a probability determined by
the coarse-graining parameter, P, while the preceding and succeeding events are promoted
from length-2 chains to links. The new causet is then stored as relation and adjacency
matrices.

Algorithm C.14: Coarse-Graining Completed Causets

1 %−−Coarse Graining−−
2 L=digraph(linkbinary);
3 R=digraph(relbinary);
4 P=20;
5 m=numel(linkbinary(:,1));
6 N=m;
7 for coarse=1:5
8 i=1;
9 while i<numnodes(L)

10 if randi([1 100],1)<P
11 past=predecessors(L,i);
12 future=successors(L,i);
13 for a=1:length(past)
14 for b=1:length(future)
15 if findedge(L,past(a),future(b))==0
16 L=addedge(L,past(a),future(b),1);
17 end
18 end
19 end
20 L=rmnode(L,i);
21 %−−−−
22 else
23 i=i+1;
24 end
25 end
26 N = numnodes(L);
27 reltrans = full(adjacency(transclosure(L)));
28 linkCoarse=full(adjacency(L));
29 R=digraph(reltrans);
30 linklabel=strcat('linkBin',num2str(coarse),'.dat');
31 relLabel=strcat('relBin',num2str(coarse),'.dat');
32 save(linklabel,'linkCoarse','−ASCII');
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33 save(relLabel,'relBin','−ASCII');
34 %−−Coarse−Graining complete−−
35
36 ...
37
38 end
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The procedure for determining the d-rigidity of the sets is again similar to that of the
subinterval statistics, where an array enumerating all intervals in the causet is constructed.
As before, the array containing interval volume, ordering fraction, and length is stored in
a separate file labeled sample for each coarse-graining. For the test for strong d-rigidity,
the volumes of every interval in the set is enumerated, sorted by incidence, and stored in
the file labeled flat. To determine weak d-rigidity, the script identifies the maximum
volume among all subintervals. A new list of intervals, subList, is constructed based on
allPairs, but stores only those subintervals with volume within N ±

√
N , where N is

the maximum volume of subintervals. For each interval considered, the script then iden-
tifies the subintervals of each interval and calculates the minimum, mean, and maximum
incidence of each subinterval volume, which is then sorted by incidence and stored in the
files labeled curveMin, curveMean, and curveMax. This procedure is outlined by
Algorithm C.15

Algorithm C.15: Determine the strong and weak d-rigidity of each coarse-graining

1 for coarse=1:5
2
3 ...
4
5 %−− Locality (Rigidity Tests) −−
6 distMat = distances(L);
7 distMat(isfinite(distMat)==0)=0;
8
9 %−−Create Past and Future matrices−−

10 future=zeros(N,N);
11 past=zeros(N,N);
12 for a=1:N
13 past(a,1:length(predecessors(R,a))) = predecessors(R,a);
14 future(a,1:length(successors(R,a))) = successors(R,a);
15 end
16 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17
18 %−−Create list of all pairs−−
19 allPairs=zeros(5, numedges(R));
20 pair=1;
21 for a=1:N
22 if sum(future(a,:))~=0
23 for b=1:N
24 if relbinary(a,b)==1 && distMat(a,b)>1
25 points = intersect(nonzeros(future(a,:)),

nonzeros(past(b,:)));
26 pointsGreater = vertcat(points,[a b]');
27 vol = numel(points)+2;
28 numRelations = sum(sum(relBin(pointsGreater,

pointsGreater)));
29 rmax = (vol*(vol−1))/2;

137



Chapter C. Overview of Algorithms

30 ratio = numRelations/rmax;
31 allPairs(1:5,pair) = [a b distMat(a,b) vol−2

ratio]';
32 pair=pair+1;
33 end
34 end
35 end
36 end
37 sample = allPairs([3:5],1:length(allPairs(1,:)));
38 sampleLabel=strcat('sample',num2str(coarse),'.dat');
39 save(sampleLabel,'sample','−ASCII');
40
41 %%Strong d−rigidity
42 flat=zeros(max(allPairs(4,:)),1);
43 for i=1:max(allPairs(4,:));
44 flat(i) = numel(nonzeros(allPairs(4,:)==i));
45 end
46 flatLabel = strcat('flat',num2str(coarse),'.dat');
47 save(flatLabel,'flat','−ASCII');
48
49
50 %%Weak d−rigidity
51 subList=allPairs;
52
53 %−−Condition for sampling subintervals−−
54 maxVol=max(allPairs(4,:));
55 max_vol_min=maxVol−sqrt(maxVol);
56 max_vol_max = maxVol+sqrt(maxVol);
57 TF1=subList(4,:)<max_vol_min;
58 TF2=subList(4,:)>max_vol_max;
59 TF3=subList(4,:)==maxVol;
60 TF4=subList(4,:)==0;
61 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
62
63 %−−List of all intervals to sample−−
64 subList(:,(TF3==0 & (TF1==1 | TF2==1) | TF4==1))=[];
65 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
66
67 %−−Stores abundances for sample of intervals−−
68 curveMean = zeros(3,maxVol); %row 1: mean, row 2: min, row 3:

max
69 curve = zeros(numel(subList(1,:)),maxVol); %each row is a

sampled interval
70 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
71 for i=1:numel(subList(1,:))

138



C.1 Classical Model

72 points = intersect(nonzeros(future(subList(1,i),:)),
nonzeros(past(subList(2,i),:)));

73 pointsGreater = vertcat(points,[subList(1,i) subList(2,i)
]');

74
75 %−−finds only the subinterval pairs
76 TFsub1=ismember(allPairs(1,:),points);
77 TFsub2=ismember(allPairs(2,:),points);
78 TF=TFsub1 & TFsub2;
79 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
80 %include improper subintervals only
81 TFreject1=allPairs(1,:)==subList(1,i);
82 TFreject2=allPairs(2,:)==subList(2,i);
83 TFrej=TFreject1==1 &TFreject2==1;
84 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
85 interval=allPairs(:,TF==1 & TFrej==0); %this the sub−

subintervals
86
87 for ii=1:max(interval(4,:))
88 curve(i,ii)=numel(nonzeros(interval(4,:)==ii));
89 end
90 for k=1:length(curve(i,:))
91 curveMean(1,k)=mean(curve(:,k));
92 curveMean(2,k)=min(curve(:,k));
93 curveMean(3,k)=max(curve(:,k));
94 end
95 end
96 curveLabel=strcat('curve',num2str(coarse),'.dat');
97 save(curveLabel,'curveMean','−ASCII');
98
99 end %for coarse=1:5
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In order to produce the characteristic curves of interval bundances at various dimen-
sions to compare with those stored in flat, curveMin, curveMean, and curveMax,
Algorithm C.16 was used to numerically plot the function provided in Equation (4.1).

Algorithm C.16: Numerical plotting of characteristic curves based on analytic argument

1 NExp = zeros(101,1);
2 NExp(1) = 0;
3 saveN = N; %when plotting weak rigidity, N is +/− sqrt(N), so this

saves the original N
4 for d=2:5
5 abundanceExp = zeros(101,1);
6 if d==2 || d==5
7 spec=3;
8 else
9 spec=1;

10 end
11 for xx=1:spec
12 for ii=1:101
13 if xx==2
14 N=saveN+sqrt(saveN);
15 elseif xx==3
16 N=saveN−sqrt(saveN);
17 end
18 m=ii−1;
19 NExp(ii)=ii−1;
20 A = (N^(m+2))/(factorial(m+2));
21 B = ((gamma(d))^2)/(pochhammer(((d/2)*(m+1)+1),d−1)*(

pochhammer((((d*m)/2)+1),d−1)));
22 if d==5
23 C = hypergeom([1+m, (2/d)+m,(4/d)+m,(6/d)+m, (8/d)+m],

[3+m, (2/d)+m+2,(4/d)+m+2,(6/d)+m+2, (8/d)+m+2],−
N);

24 elseif d==2
25 C = hypergeom([1+m, 1+m], [3+m,3+m],−N);
26 elseif d==3
27 C = hypergeom([1+m, (2/d)+m,(4/d)+m], [3+m, (2/d)+m

+2,(4/d)+m+2],−N);
28 elseif d==4
29 C = hypergeom([1+m, (2/d)+m,(4/d)+m,(6/d)+m], [3+m,

(2/d)+m+2,(4/d)+m+2,(6/d)+m+2],−N);
30 end
31 abundanceExp(ii) = A*B*C;
32 end
33 if xx==1
34 if d==2
35 plot(NExp,abundanceExp,'−−r')
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36 elseif d==3
37 plot(NExp,abundanceExp,'−.g')
38 elseif d==4
39 plot(NExp,abundanceExp,':m')
40 elseif d==5
41 plot(NExp,abundanceExp,'−c')
42 end
43 elseif xx==2 || xx==3
44 if d==2
45 scatter(NExp,abundanceExp,10,'+r')
46 elseif d==5
47 scatter(NExp,abundanceExp,10,'+c')
48 end
49 end
50 end
51 end
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C.2 Quantum Model
The implementation of an action-minimizing growth procedure is the least developed of
the scripts and involves adding an additional check before admitting a transition, alongside
the checks for holes and loops. Algorithm C.17, a separate script entitled Action.m is
simply added as an if loop ala

1 if success==1
2 run('Action.m');
3 end

immediately after the check for loops in Algorithm C.4, while Algorithm C.5, the al-
gorithm for addition the transition, is simply removed from the main program (as it is
effectively included in the Action.m script, since the transitions need to be imposed to
calculate the action anyway. At the beginning of this script, the original causet (as well as
the allowed matrix) is stored in case it needs to be restored in the event the action condi-
tions are not met and they are saved as auxrel, auxlink, and auxall for the relation,
adjacency, and allowed matrices, respectively.

The script then initializes the matrices as digraph objects, as previously, and enu-
merates intervals in the set, calculating their volumes. The action for the original set is
calculated, the transition is imposed, and the action is calculated for the new set. If the ac-
tion is positive or if Equation (3.1) is not satisfied, the transition is rejected and all matrices
are restored to their original values.

Note that Algorithm C.17 is designed for calculting the action of 4-dimensional causets
only. However, the constants and expressions for calculating the action can be easily re-
placed with the corresponding form for the Benincasa-Dowker action in arbitrary dimen-
sions, and the script can even be altered to choose the correct form based on the total
ordering fraction of the causet, cross referenced with the dim_mat file that was created
using Algorithm C.13. This constitutes the basis for ongoing work.

Algorithm C.17: Action Minimizing Check (Action.m)

1 alpha = (2/gamma(1.5))*((pi/6)^(.5)); %one of the constant prefactors
for d=4

2
3 %−−Saves matrices in case transition is rejected−−
4 auxlink = linkMatrix;
5 auxrel = reltrans;
6 auxall = allowed;
7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8
9 %−−Do twice: once for pre−transition, another for post−transition

10 for ActionCounter=1:2
11 %−−Make matrices ready and enumerate intervals
12 linkbinary = linkMatrix;
13 linkbinary(linkbinary~=1)=0;
14 L = digraph(linkbinary);
15 distMat = distances(L);
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16 distMat(isfinite(distMat)==0)=0;
17
18 relbinary = reltrans;
19 relbinary(relbinary~=1)=0;
20 R=digraph(relbinary);
21
22 future=zeros(m,m);
23 past=zeros(m,m);
24 for a=1:m
25 past(a,1:length(predecessors(R,a))) = predecessors(R,a);
26 future(a,1:length(successors(R,a))) = successors(R,a);
27 end
28
29 allPairs=zeros(5, numedges(R));
30 pair=1;
31 for a=1:m
32 if sum(future(a,:))~=0
33 for b=1:m
34 if relbinary(a,b)==1 && distMat(a,b)>1
35 points = intersect(nonzeros(future(a,:)),nonzeros(

past(b,:)));
36 pointsGreater = vertcat(points,[a b]');
37 vol = numel(points)+2;
38 allPairs(1:4,pair) = [a b distMat(a,b) vol−2]';
39 pair=pair+1;
40 end
41 end
42 end
43 end
44 %−−All intervals accounted for−−
45
46 N = numnodes(L);
47 limitFromHeight = max(allPairs(3,:)); %sum for smearing function
48 Smear = 0;
49 %−−calculates smearing function−−
50 for xx=1:limitFromHeight
51 Nn = numel(nonzeros(allPairs(4,:)==xx));
52 STimes = ((N−1)/(N^2))^xx;
53 SOne = 1−((9*xx*(N−1))/(N^2));
54 STwo = 8*((xx^2)−xx)*(((N−1)/(N^2))^2);
55 SThree = (4/3)*((xx^3)−3*(xx^2)+2)*((N−1)/(N^2))^3;
56 Smear = Smear + Nn*STimes*(1−SOne+STwo−SThree);
57 end
58 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
59
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60 %Specify if pre or post transition
61 if ActionCounter==1
62 ActionBefore = alpha*sqrt(N)−(N^1.5)*Smear;
63 else
64 ActionAfter = alpha*sqrt(N)−(N^1.5)*Smear;
65 end
66 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67
68 %−−Impose transition if it has not been done yet−−
69 if ActionCounter==1
70 if direction==0
71 linkMatrix(randrowadd,randcoladd) = 1;
72 linkMatrix(randcoladd,randrowadd) = −1;
73 reltrans(randrowadd,randcoladd) = 1;
74 reltrans(randcoladd,randrowadd) = −1;
75 allowed(randrowadd,randwcoladd) = 0;
76 allowed(randcoladd,randrowadd) = 0;
77 elseif direction==1
78 linkMatrix(randrowadd,randcoladd) = −1;
79 linkMatrix(randcoladd,randrowadd) = 1;
80 reltrans(randrowadd,randcoladd) = −1;
81 reltrans(randcoladd,randrowadd) = 1;
82 allowed(randrowadd,randcoladd) = 0;
83 allowed(randcoladd,randrowadd) = 0;
84 end
85 end
86 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
87 end
88
89 %this also allows for the case where the action does not change
90 if ActionBefore==ActionAfter
91 ee = randi([1 10000],1);
92 ee=ee/10000;
93 if ee>0.5
94 success=0;
95 adjMat=auxlink;
96 relMat = auxrel;
97 allowed = auxall;
98 end
99 %−−If condition not met, reject and revert back to original set−−

100 elseif ActionBefore>ActionAfter
101 if exp(−(abs(ActionBefore−ActionAfter)*beta(betaCount)))<ee
102 success=0;
103 adjMat = auxlink;
104 relMat = auxrel;
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105 allowed = auxall;
106 end
107 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
108 else
109 success=0;
110 linkMatrix = auxlink;
111 reltrans = auxrel;
112 allowed = auxall;
113 end
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C.3 Additional Tools
In addition to the main causet construction script, there were a few additional scripts that
were used to calculate miscellaneous properties of the sets and/or produce figures. In the
interest of space limitations, these will be made available as releases in the GitHub reposi-
tory, but two of these are offered here. The first is a particulary simple and instructive script
for generated sprinklings in flat 2D Minkowski spacetime. The second is an algorithm for
calculating the midpoint scaling dimension estimator.

C.3.1 Simple Sprinkling Script
This script for producing sprinklings was offered to the author by Jan Myrheim and is
reproduced here with minor cosmetic edits.

Algorithm C.18: Sprinkling Script

1 rng(1917) %select seed
2 np = 32; %number of points to sprinkle
3
4 %initialize light cone coordinate axes
5 u = rand(1,np);
6 v = rand(1,np);
7 x = u−v;
8 y = u+v;
9 hold on

10 scatter(x,y,'ro','filled')
11
12 rel = zeros(np,np);
13 list1 = [];
14 list2 = [];
15 for i1=1:np−1
16 for i2=i1+1:np
17 if((y(i1)−y(i2))^2−(x(i1)−x(i2))^2>0)
18 if(y(i2)>y(i1))
19 list1 = [list1,i1];
20 list2 = [list2,i2];
21 rel(i1,i2) = 1;
22 else
23 list2 = [list2,i1];
24 list1 = [list1,i2];
25 rel(i2,i1) = 1;
26 end
27 end
28 end
29 end
30 lnk = rel;
31
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32 G = digraph(list1,list2);
33 H = transreduction(G)
34 link = H.Edges;
35 link = link.EndNodes;
36 n = size(link,1);
37 for i0=1:n
38 i1 = link(i0,1);
39 i2 = link(i0,2);
40 plot([x(i1),x(i2)],[y(i1),y(i2)],'b')
41 end
42
43 plot([ 0, 1],[0,1],':','LineWidth',1)
44 plot([ 1, 0],[1,2],':','LineWidth',1)
45 plot([ 0,−1],[0,1],':','LineWidth',1)
46 plot([−1, 0],[1,2],':','LineWidth',1)
47 axis equal
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C.3.2 Midpoint Scaling Dimension Estimator

The midpoint scaling dimension estimator was introduced later in the project, well after
the sample posets were created. For this reason, the algorithm is offered as a standalone
script. Implementing this algorithm into the main program is a priority task, as it will
considerably reduce the overall runtime if one wishes to complete a full analysis of the
posets after construction. The script relies on much of the data calculated during the main
program that is not stored after completion. If the reader should wish to reproduce the
results of this project, they are strongly urged to use a machine that is equipped to handle
the memory demands of the following script. On that note, this is another algorithm that
suffers from some of the efficiency defects of the prior scripts.

The procedure for calculating the midpoint scaling dimension estimator is outlined in
Algorithm C.19. First, the script prepares the adjacency and relation matrices for use with
digraph. As a computational convenience measure, the posets will be placed within a
closed interval (that does not nwecessarily respect the kinematic constraints of the posets)
labeled ClosedLink and ClosedRel for the adjacency and relation counterparts, re-
spectively. If there are any disconnected singleton sets after coarse-graining, they are
immediately removed before placing the posets within the closed interval.

Next, the distance matrix is created and all intervals within the poset are enumerated,
along with a list of elements within them and their volumes. ∆V , the difference in volume
between two intervals, is set to an arbitrarily high constant significantly above the cardi-
nality of the poset. Beginning with the largest interval in the set, the script then begins
to compare it against every other interval in the set. The script first checks to see if there
is any intersection between the two intervals considered (other than their endpoints), and
if so, moves to the next interval in the list by descending ordering in volume. If any two
intervals have a difference in volume less than any other ∆V , Vsmall is assigned to the
smallest of the two, and Vdiff is refreshed with the new value.

In the event two intervals have exactly the same value, the script immediately breaks
out of the loop by setting the success variable equal to one.

Asq a protective measure to ensure accuracy of results, the script will end its search
for a suitable partition of intervals if the volumes become too small. If the only remaining
intervals have volumes less than Vmax − 2

√
Vmax, the script will simply use th2e last value

of Vsmall to calculate the midpoint scaling dimension estimate. In the event that no
suitable partition has been found, the script will terminate without storing any values (this
is a temporary debugging solution). For this script, the labels link and rel have been
used to denote the binar3y adjacency and relation matrices, respectively.

Algorithm C.19: Midpoint Scaling Dimension Estimator

1 L=digraph(link);
2 R=digraph(rel);
3 ClosedLink = L;
4 ClosedRel = R;
5 %remove disconnected
6 if numel(nonzeros(indegree(L)==0 & outdegree(L)==0))>0
7 ClosedLink = rmnode(ClosedLink,find(indegree(L)==0 &

outdegree(L)==0));
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8 ClosedRel = rmnode(ClosedRel,find(indegree(L)==0 &
outdegree(L)==0));

9 end
10 %removed disconnected nodes
11
12 %add minima and maxima and impose relations
13 addmin = 0;
14 addmax = 0;
15 if numel(nonzeros(indegree(ClosedLink)==0))>0
16 addmin=1;
17 minima = find(indegree(ClosedLink)==0);
18 end
19 if numel(nonzeros(outdegree(ClosedLink)==0))>0
20 addmax=1;
21 maxima = find(outdegree(ClosedLink)==0);
22 end
23 if addmin==1
24 ClosedRel = addedge(ClosedRel,numnodes(ClosedRel)+1,minima

,1);
25 ClosedLink = addedge(ClosedLink,numnodes(ClosedLink)+1,

minima,1);
26 end
27 if addmax==1
28 ClosedRel = addedge(ClosedRel,maxima,numnodes(ClosedRel)

+1,1);
29 ClosedLink = addedge(ClosedLink, maxima, numnodes(

ClosedLink)+1,1);
30 end
31
32 %−−distance matrix
33 distmat=distances(ClosedLink);
34 distmat(isfinite(distmat)==0)=0;
35
36 %−−find all pairs
37 [x, y] = find(distmat ~= 0);
38 allPairs = zeros(length(x),3);
39 allPairs(:,[1 2]) = [x y];
40 %column 1 is minima, column 2 is maxima, 3 is volume
41
42 %−−find volumes−−
43 for ii = 1:length(x)
44 subint = intersect(nonzeros(successors(ClosedRel,x(ii))),

nonzeros(predecessors(ClosedRel,y(ii))));
45 vol = numel(subint);
46 allPairs(ii,3) = vol;
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47 ii
48 end
49 %−−−−−−−−−−−−−−−−−−−−−
50
51 %−−sort intervals according to volume
52 allPairs = sortrows(allPairs,3,'descend');
53 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54
55 Vdiff=10000000; %arbitrarily large difference
56 success=0; %condition for good vol diff
57
58 for ii=1:length(allPairs(:,3))−1 %pick largest interval
59 k = ii+1;
60 for jj=k:length(allPairs(:,3)) %then compare with others
61 %if the maximum of the selected pair is not the

minimum of the other, skip
62 if allPairs(ii,2)~=allPairs(jj,1)
63 continue
64 end
65 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
66 %if they are exactly equal, this is the best partition
67 if abs(allPairs(ii,3) − allPairs(jj,3))==0
68 Vsmall = allPairs(ii,3);
69 success=1;
70 break
71 end
72 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
73 if abs(allPairs(ii,3) − allPairs(jj,3))<Vdiff
74 Vdiff = abs(allPairs(ii,3) − allPairs(jj,3));
75 Vsmall = allPairs(ii,3);
76 end
77 end
78 if success==1
79 break
80 end
81 end
82 %debugging
83 if Vdiff==10000000
84 Vsmall = 0;
85 end
86 %debug
87
88 midpoint = log2(numnodes(ClosedLink)/Vsmall);
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